WO2008155563A1 - Dispositifs à cristaux liquides à effet de lentille, à base de nanotubes de carbone, et leurs procédés de fabrication - Google Patents

Dispositifs à cristaux liquides à effet de lentille, à base de nanotubes de carbone, et leurs procédés de fabrication Download PDF

Info

Publication number
WO2008155563A1
WO2008155563A1 PCT/GB2008/002147 GB2008002147W WO2008155563A1 WO 2008155563 A1 WO2008155563 A1 WO 2008155563A1 GB 2008002147 W GB2008002147 W GB 2008002147W WO 2008155563 A1 WO2008155563 A1 WO 2008155563A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical device
liquid crystal
substrate
substrate electrode
projecting
Prior art date
Application number
PCT/GB2008/002147
Other languages
English (en)
Inventor
Timothy David Wilkinson
Original Assignee
Cambridge Enterprise Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cambridge Enterprise Limited filed Critical Cambridge Enterprise Limited
Publication of WO2008155563A1 publication Critical patent/WO2008155563A1/fr

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/294Variable focal length devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/36Micro- or nanomaterials
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/18Function characteristic adaptive optics, e.g. wavefront correction

Definitions

  • WO 2006/003441 discloses a device for controlling the polarisation state of transmitted light, the device comprising first and second cell walls enclosing a layer of liquid crystal material having a substantially uniformly aligned helical axis in the absence of an applied field, and electrodes for applying an electric field substantially perpendicularly to the helical axis.
  • the electrodes have a thickness of 10 microns and are arranged around the periphery of the layer to create a transverse field.
  • the liquid crystal used is a chiral nematic liquid crystal, which is chirally birefringent and therefore rotates linear polarisation.
  • the present invention provides an optical device having: a cover layer ; a substrate; a liquid crystal layer sandwiched between the cover layer and the substrate; at least one substrate electrode formed at the substrate; at least one conductive projecting element electrically connected to and projecting from the substrate electrode and whose electric potential is controllable by the substrate electrode to provide a spatial variation in the optical properties of the liquid crystal layer in a region local to the projecting element, wherein the projecting element has a tip distal from the substrate electrode, said tip having a radius of curvature of 1000 run or less.
  • the present invention provides a method of manufacturing an optical device according to the first aspect, wherein the substrate electrode is formed on the substrate and the projecting element is grown in situ on the substrate electrode.
  • the projecting element is an elongate structure having a width in a direction transverse to the elongate direction of 100 nm or less.
  • the elongate direction is preferably substantially straight along the structure.
  • the width in the direction transverse to the elongate direction is more preferably 90 nm or less, 80 nm or less, 70 nm or less, 60 nm or less, 50 run or less, 40 nm or less, 30 nm or less or 20 nm or less.
  • the liquid crystal has anisotropic optical properties so that its refractive index varies with orientation of the liquid crystal molecules.
  • the liquid crystal molecules have dielectric anisotropy. This, combined with an ability to flow, allows the liquid crystal molecules to orient themselves preferentially with respect to an applied electric field.
  • the preferred embodiments use carbon nanotubes as the conductive projecting elements, but the invention is not necessarily limited to this. In particular, it is possible to use other conductive projecting nanostructures, such as nanorods, nanowires and nanocylinders . Furthermore, nanostructures of different composition are contemplated, such as carbon nanostructures doped with one or more dopants, or Si, GaN, CdSe, ZnS etc.
  • the electrode 14 is shown as extending up to and contacting the side of the nanotube 12. However, it is preferred that the nanotube 12 is formed either on top of the electrode 14, or that the electrode surrounds the base of the nanotube, in order to ensure good electrical contact.
  • An electric field can be applied to the device by, for example, applying a voltage of 10V at electrode 14 and keeping electrode 18 grounded.
  • a simplified resultant electric field profile is illustrated by single schematic electric field line 22 in Fig. IA.
  • FIG. 2 A more complete electric field profile is illustrated in Fig. 2. This is a simulated electric field profile (modelled using finite element analysis) surrounding a carbon nanotube at 10V.
  • the nematic liquid crystal molecules 30 may align planar with the substrate and the cover layer in a known manner when there is zero potential applied across the liquid crystal layer.
  • the sparse array similar to that shown in Figs. 4A and 4B was then fabricated into a liquid crystal device.
  • 400 nm of aluminium was cold sputtered onto an array of groups of 4 carbon nanotubes on a silicon substrate, the carbon nanotubes in each group being spaced 0.5 ⁇ m apart.
  • a 200 nm layer of SiO 2 was evaporated over the top of the Al layer (this is discussed in more detail below) .
  • the array was then assembled with a top electrode containing ITO on borosilicate glass into a liquid crystal cell with a 5.5 ⁇ m cell gap set by spacer balls in UV set glue.
  • FIG. 16A A typical form of in-plane electrode structure (not within the scope of the invention) is shown in Fig. 16A where there are provided two individually addressable substrate electrodes 62, 64. Due to the low-profile nature of the electrodes, the electric field profile has a distorted shape, and this affects the properties of the device.
  • FIG. 16B A modified version of this device is shown in Fig. 16B, in which carbon nanotube 66 is formed at the edge of substrate electrode 62 and carbon nanotube 68 is formed at the edge of substrate electrode 64. Due to the height of the carbon nanotubes compared with the height of the substrate electrodes, the electric field profile is far more uniform and linear.
  • FIG. 16B A top view of the device of Fig. 16B is shown in Fig. 16C.
  • Fig. 16C A top view of the device of Fig. 16B is shown in Fig. 16C.
  • Suitable blue phase materials are disclosed in Coles and
  • Pivnenko (Coles H.J. and Pivnenko M.N. , "Liquid crystal 'blue phases' with a wide temperature range", Nature, 2005 August 18; 436(7053) : 997-1000), the content of which is hereby incorporated by reference in its entirety.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Nonlinear Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Liquid Crystal (AREA)

Abstract

L'invention concerne un dispositif optique qui est équipé d'une couche de revêtement (12), d'un substrat (10) et d'une couche de cristaux liquides (20) située en sandwich entre la couche de revêtement (18) et le substrat (10). Une électrode de substrat (14) est formée sur le substrat (10) et au moins un élément saillant conducteur (12), tel qu'un nanotube de carbone ou un groupe de nanotubes de carbone, est connecté électriquement à l'électrode de substrat (14) et fait saillie à partir de cette dernière. Le potentiel électrique de l'élément saillant conducteur peut être commandé par l'électrode de substrat. Ceci donne une variation spatiale (22) des propriétés optiques de la couche de cristaux liquides dans une région à proximité de l'élément saillant (12). L'élément saillant (12) comporte une pointe située à distance de l'électrode de substrat, à rayon de courbure aigu. Ceci permet la commande de la couche de cristaux liquides (20) pour produire un effet de lentille.
PCT/GB2008/002147 2007-06-21 2008-06-23 Dispositifs à cristaux liquides à effet de lentille, à base de nanotubes de carbone, et leurs procédés de fabrication WO2008155563A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GBGB0712059.5A GB0712059D0 (en) 2007-06-21 2007-06-21 Optical components, use of optical components and manufacture of optical components
GB0712059.5 2007-06-21

Publications (1)

Publication Number Publication Date
WO2008155563A1 true WO2008155563A1 (fr) 2008-12-24

Family

ID=38352678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB2008/002147 WO2008155563A1 (fr) 2007-06-21 2008-06-23 Dispositifs à cristaux liquides à effet de lentille, à base de nanotubes de carbone, et leurs procédés de fabrication

Country Status (2)

Country Link
GB (1) GB0712059D0 (fr)
WO (1) WO2008155563A1 (fr)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110044122A (ko) * 2009-10-22 2011-04-28 삼성전자주식회사 능동 렌즈 및 이를 채용한 입체 영상 디스플레이 장치
CN102043302A (zh) * 2009-10-22 2011-05-04 三星电子株式会社 有源透镜、包括有源透镜的立体图像显示装置及其操作方法
US20120242927A1 (en) * 2011-03-23 2012-09-27 Samsung Electronics Co., Ltd. Active optical device and display apparatus including the same
WO2013017881A1 (fr) 2011-08-02 2013-02-07 Cambridge Enterprise Limited Système laser et procédé permettant de faire fonctionner le système laser
CN103383509A (zh) * 2012-05-02 2013-11-06 东南大学 一种纳米结构液晶相位调制器
CN103454705A (zh) * 2012-06-04 2013-12-18 清华大学 液体透镜
WO2017151405A1 (fr) * 2016-02-29 2017-09-08 Microsoft Technology Licensing, Llc Réduction d'ordres de diagrammes de diffraction
US10048647B2 (en) 2014-03-27 2018-08-14 Microsoft Technology Licensing, Llc Optical waveguide including spatially-varying volume hologram
US10210844B2 (en) 2015-06-29 2019-02-19 Microsoft Technology Licensing, Llc Holographic near-eye display
US10254542B2 (en) 2016-11-01 2019-04-09 Microsoft Technology Licensing, Llc Holographic projector for a waveguide display
CN110865475A (zh) * 2020-01-20 2020-03-06 南京芯视元电子有限公司 一种高衍射效率相位型空间光调制器
US10712567B2 (en) 2017-06-15 2020-07-14 Microsoft Technology Licensing, Llc Holographic display system
US10845761B2 (en) 2017-01-03 2020-11-24 Microsoft Technology Licensing, Llc Reduced bandwidth holographic near-eye display

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030179433A1 (en) * 2002-03-22 2003-09-25 Jeffrey Hunt System for phase modulating an incoming optical wavefront
JP2005326825A (ja) * 2005-03-18 2005-11-24 Kenji Sato 生物由来の素材を用いた液晶デバイス、フレキシブル透明基板およびカーボンナノチューブ保持体
WO2006003435A1 (fr) * 2004-07-02 2006-01-12 Cambridge Enterprise Limited Dispositif a cristaux liquides
US20070040960A1 (en) * 2005-07-02 2007-02-22 Samsung Electronics Co., Ltd. Planar light source device and liquid crystal display device having the same
WO2007080323A2 (fr) * 2006-01-11 2007-07-19 Universite Du Littoral Cote D'opale Suspension aqueuse stable de nanotubes de carbone

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030179433A1 (en) * 2002-03-22 2003-09-25 Jeffrey Hunt System for phase modulating an incoming optical wavefront
WO2006003435A1 (fr) * 2004-07-02 2006-01-12 Cambridge Enterprise Limited Dispositif a cristaux liquides
JP2005326825A (ja) * 2005-03-18 2005-11-24 Kenji Sato 生物由来の素材を用いた液晶デバイス、フレキシブル透明基板およびカーボンナノチューブ保持体
US20070040960A1 (en) * 2005-07-02 2007-02-22 Samsung Electronics Co., Ltd. Planar light source device and liquid crystal display device having the same
WO2007080323A2 (fr) * 2006-01-11 2007-07-19 Universite Du Littoral Cote D'opale Suspension aqueuse stable de nanotubes de carbone

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHAN YU KING R ET AL: "Transparent carbon nanotube-based driving electrodes for liquid crystal dispersion display devices", APPLIED PHYSICS A; MATERIALS SCIENCE & PROCESSING, SPRINGER, BERLIN, DE, vol. 86, no. 2, 18 November 2006 (2006-11-18), pages 159 - 163, XP019459612, ISSN: 1432-0630 *
COLES H J ET AL: "Liquid crystal 'blue phases' with a wide temperature range", NATURE NATURE PUBLISHING GROUP UK, vol. 436, no. 7053, 18 August 2005 (2005-08-18), pages 997 - 1000, XP002494581, ISSN: 0028-0836 *
DRAGOMAN D ET AL: "Carbon nanotube zoom lenses", IEEE TRANSACTIONS ON NANOTECHNOLOGY, IEEE SERVICE CENTER, PISCATAWAY, NJ, US, vol. 2, no. 2, 1 June 2003 (2003-06-01), pages 93 - 96, XP011097621, ISSN: 1536-125X *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8917377B2 (en) 2009-10-22 2014-12-23 Samsung Electronics Co., Ltd. Active lenses, stereoscopic image display apparatuses including active lenses and methods of operating the same
CN102043302A (zh) * 2009-10-22 2011-05-04 三星电子株式会社 有源透镜、包括有源透镜的立体图像显示装置及其操作方法
JP2011090305A (ja) * 2009-10-22 2011-05-06 Samsung Electronics Co Ltd 能動レンズ及び当該能動レンズを採用した立体映像ディスプレイ装置
EP2322987A1 (fr) * 2009-10-22 2011-05-18 Samsung Electronics Co., Ltd. Lentilles actives, appareils à affichage d'images stéréoscopiques incluant les lentilles actives et procédés pour les faire fonctionner
KR20110044122A (ko) * 2009-10-22 2011-04-28 삼성전자주식회사 능동 렌즈 및 이를 채용한 입체 영상 디스플레이 장치
KR101632315B1 (ko) * 2009-10-22 2016-06-21 삼성전자주식회사 능동 렌즈 및 이를 채용한 입체 영상 디스플레이 장치
CN102043302B (zh) * 2009-10-22 2015-08-26 三星电子株式会社 有源透镜、包括有源透镜的立体图像显示装置及其操作方法
US20120242927A1 (en) * 2011-03-23 2012-09-27 Samsung Electronics Co., Ltd. Active optical device and display apparatus including the same
WO2013017881A1 (fr) 2011-08-02 2013-02-07 Cambridge Enterprise Limited Système laser et procédé permettant de faire fonctionner le système laser
CN103383509A (zh) * 2012-05-02 2013-11-06 东南大学 一种纳米结构液晶相位调制器
CN103454705A (zh) * 2012-06-04 2013-12-18 清华大学 液体透镜
US10048647B2 (en) 2014-03-27 2018-08-14 Microsoft Technology Licensing, Llc Optical waveguide including spatially-varying volume hologram
US10210844B2 (en) 2015-06-29 2019-02-19 Microsoft Technology Licensing, Llc Holographic near-eye display
CN108700768B (zh) * 2016-02-29 2021-05-28 微软技术许可有限责任公司 减少衍射图案的阶
WO2017151405A1 (fr) * 2016-02-29 2017-09-08 Microsoft Technology Licensing, Llc Réduction d'ordres de diagrammes de diffraction
CN108700768A (zh) * 2016-02-29 2018-10-23 微软技术许可有限责任公司 减少衍射图案的阶
US10310335B2 (en) 2016-02-29 2019-06-04 Microsoft Technology Licensing, Llc Reducing orders of diffraction patterns
US10254542B2 (en) 2016-11-01 2019-04-09 Microsoft Technology Licensing, Llc Holographic projector for a waveguide display
US10845761B2 (en) 2017-01-03 2020-11-24 Microsoft Technology Licensing, Llc Reduced bandwidth holographic near-eye display
US11022939B2 (en) 2017-01-03 2021-06-01 Microsoft Technology Licensing, Llc Reduced bandwidth holographic near-eye display
US10712567B2 (en) 2017-06-15 2020-07-14 Microsoft Technology Licensing, Llc Holographic display system
CN110865475A (zh) * 2020-01-20 2020-03-06 南京芯视元电子有限公司 一种高衍射效率相位型空间光调制器

Also Published As

Publication number Publication date
GB0712059D0 (en) 2007-08-01

Similar Documents

Publication Publication Date Title
WO2008155563A1 (fr) Dispositifs à cristaux liquides à effet de lentille, à base de nanotubes de carbone, et leurs procédés de fabrication
JP6626145B2 (ja) 電気的に調整可能な出力およびアライメントを有するレンズ
JP5334116B2 (ja) 低電圧駆動液晶レンズ
TWI574096B (zh) 光束整形裝置
JP5699394B2 (ja) 液晶シリンドリカルレンズアレイおよび表示装置
JP5882203B2 (ja) 同調可能な電気光学液晶レンズおよびそのレンズの形成方法
JP4435795B2 (ja) 液晶光学デバイス
US10036894B2 (en) Image display and liquid crystal lens therefor
US11747708B2 (en) Polarization-insensitive phase modulator
US20150301427A1 (en) Capacitively coupled electric field control device
US20110292306A1 (en) Electrically-driven liquid crystal lens and stereoscopic display device using the same
US20130002970A1 (en) Liquid crystal lens and display including the same
JP2015533226A5 (fr)
JP5776135B2 (ja) 低電圧駆動液晶レンズ
US9488759B2 (en) Varifocal lens
US20210364882A1 (en) Optical axis tunable liquid crystal lens, electronic apparatus, display apparatus, and method of operating optical axis tunable liquid crystal lens
JP4863403B2 (ja) 液晶光学デバイス
Wilkinson et al. Sparse multiwall carbon nanotube electrode arrays for liquid‐crystal photonic devices
US11822190B2 (en) Spatial light modulator and method of forming the same
WO2017197533A1 (fr) Dispositif à lentille de fresnel à couches plates de cristaux liquides
US20120242927A1 (en) Active optical device and display apparatus including the same
CN109709739B (zh) 一种短焦距液晶透镜
US11156895B2 (en) Controllable liquid crystal layered Fresnel lens device
US11327385B2 (en) Polarization-insensitive phase modulator
JP5156999B2 (ja) 液晶光学レンズ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08762459

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08762459

Country of ref document: EP

Kind code of ref document: A1