WO2008152288A2 - Installation de liaison fond-surface comprenant un dispositif elastique d'amortissement reprenant la tension de l'extremite superieure d'une conduite rigide en subsurface - Google Patents

Installation de liaison fond-surface comprenant un dispositif elastique d'amortissement reprenant la tension de l'extremite superieure d'une conduite rigide en subsurface Download PDF

Info

Publication number
WO2008152288A2
WO2008152288A2 PCT/FR2008/050907 FR2008050907W WO2008152288A2 WO 2008152288 A2 WO2008152288 A2 WO 2008152288A2 FR 2008050907 W FR2008050907 W FR 2008050907W WO 2008152288 A2 WO2008152288 A2 WO 2008152288A2
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
rigid pipe
damping device
floating support
rigid
Prior art date
Application number
PCT/FR2008/050907
Other languages
English (en)
Other versions
WO2008152288A4 (fr
WO2008152288A3 (fr
Inventor
Garry P Mahoney
Floriano Casola
Original Assignee
Saipem S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saipem S.A. filed Critical Saipem S.A.
Priority to EP08805851.6A priority Critical patent/EP2153018B1/fr
Publication of WO2008152288A2 publication Critical patent/WO2008152288A2/fr
Publication of WO2008152288A3 publication Critical patent/WO2008152288A3/fr
Publication of WO2008152288A4 publication Critical patent/WO2008152288A4/fr

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/01Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells specially adapted for obtaining from underwater installations
    • E21B43/0107Connecting of flow lines to offshore structures
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/01Risers
    • E21B17/015Non-vertical risers, e.g. articulated or catenary-type
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B19/00Handling rods, casings, tubes or the like outside the borehole, e.g. in the derrick; Apparatus for feeding the rods or cables
    • E21B19/002Handling rods, casings, tubes or the like outside the borehole, e.g. in the derrick; Apparatus for feeding the rods or cables specially adapted for underwater drilling
    • E21B19/004Handling rods, casings, tubes or the like outside the borehole, e.g. in the derrick; Apparatus for feeding the rods or cables specially adapted for underwater drilling supporting a riser from a drilling or production platform
    • E21B19/006Handling rods, casings, tubes or the like outside the borehole, e.g. in the derrick; Apparatus for feeding the rods or cables specially adapted for underwater drilling supporting a riser from a drilling or production platform including heave compensators

Definitions

  • a bottom-surface connection installation comprising an elastic damping device taking up the tension of the upper end of a rigid pipe in the subsurface.
  • the present invention relates to a bottom-surface connection installation comprising at least one underwater pipe providing the connection between a floating support and the seabed, particularly at great depth.
  • These rigid subsea pipes are called “risers” or “risers” as explained below, these risers consisting of unitary tubular elements welded together end to end, made of steel.
  • the present invention relates to a bottom surface connection installation of a submarine pipe resting at the bottom of the sea comprising a rigid pipe rising from the seabed where it rests, to the subsurface where its upper end is connected to a floating support.
  • the technical sector of the invention is therefore the field of the manufacture and installation of subsea pipelines and more particularly bottom-surface production links for the underwater extraction of oil, gas or other soluble material. or fuse, or a suspension of mineral material, from submerged wellhead for the development of production fields installed offshore at sea.
  • the main and immediate application of the invention being in the field of oil production, as well as in the reinjection of water and the production or re-injection of gas.
  • a floating support generally comprises anchoring means to remain in position despite the effects of currents, winds and waves. It also generally comprises means for drilling, storage and treatment of oil and means of unloading to removing tankers, the latter occurring at regular intervals to perform the removal of production.
  • the name of these floating supports is the Anglo-Saxon term “Floating Production Storage Offloading” (meaning “floating means of storage, production and unloading "), the abbreviated term” FPSO “throughout the following description, or” FDPU “or” Floating Drilling & Production Unit “(meaning” floating drilling and production means "), where the support Floating is also used to carry out drilling operations with deviated wells in the height of the slice of water.
  • An underwater pipe, or a riser, according to the invention can be either a "production line” of crude oil or gas, or a water injection pipe, ensuring the connection with a sub-wellhead. marine installed at the bottom of the sea, is still a “drilling riser” ensuring the connection between the floating support and a wellhead located at the bottom of the sea.
  • the bottom-surface connection pipe When the bottom-surface connection pipe is of the catenary type, it directly ensures the connection between a floating support and a point of contact at the bottom of the sea which is offset with respect to the axis of said support, said pipe takes from its own weight a so-called "chain" configuration, forming a curve whose radius of curvature decreases from the surface to the point of contact at the bottom of the sea, and the axis of said pipe forms an angle ⁇ with the vertical of which the value generally varies from 5 to 20 degrees at the floating support up to, theoretically, 90 degrees at the seabed corresponding to a theoretical position substantially tangential to the horizontal as will be explained below.
  • Chain linkages are generally carried out using flexible pipes, but their cost is extremely high due to the complex structure of the pipe.
  • Step Catenary Riser meaning "chain-shaped steel riser” which will be used for the abbreviated term “SCR” or " catenary riser “in the present description, whether steel or other material such as a composite material.
  • x represents the distance in the horizontal direction between said contact point and a point M of the curve
  • - y represents the altitude of the point M (x and y are therefore the abscissae and ordinates of a point M of the curve with respect to an orthonormal coordinate system whose origin is at the point of contact)
  • - R 0 represents the radius of curvature at the point of contact is to say at the point of horizontal tangency.
  • R represents the radius of curvature at the point M (x, y)
  • the curvature varies continuously along the chain from the surface, or its radius has a maximum value R max , up to the point of contact, or its radius has a minimum value R min (or R 0 in the formula below). above).
  • R max maximum value
  • R min minimum value
  • the pipe has a radius of curvature which is maximum at the top of the chain, generally at least 1500, in particular from 1500 to 5000m, ie at the point of suspension on the FPSO, and which decreases until at the point of contact with the ground. At this point, the radius of curvature is minimal in the suspended portion. But, in the adjacent part resting on the bottom of the sea, said pipe being theoretically in a straight line, its radius of curvature is theoretically infinite. In fact, this radius is not infinite but extremely high, because there remains a residual curvature.
  • the contact point moves back and forth and, in the raised area or rested on the bottom, the radius of curvature successively passes from a minimum value R m ⁇ n to a extremely high value, even infinite in the case of a theoretical configuration where the underwater pipe rests on the bottom of the sea substantially in a straight line.
  • the floating support is anchored in general by 8 or 16 lines of anchors usually equally distributed and located in Angles. Under the effect of wind and current, the floating support moves inside a surface called "circle excursion", substantially elliptical or circular and substantially centered relative to its rest position. And, we try to minimize the size of this circle excursion by playing on the stiffness of the anchors. Thus, it is common to provide the anchors to limit the excursion of the floating support in a radius of 5-6% of the water height. Thus, for a water depth of 1500m, the excursion circle will have a radius of 75-90m.
  • the second type of movement is due to the heave of the floating support which occurs over several meters and then generates vertical movements of the riser. These dynamic movements are much more prejudicial because they have a much shorter period, between 3-5 seconds and 15-18 seconds. And in addition, certain frequencies between the extreme values, correspond to the resonance frequencies of the riser in the chain configuration, which has the effect of considerably amplifying the deformations of said chain, and thus the movements and risks of damage to the foot chain, at the point of contact.
  • a flexible flexible joint device On the surface, at the level of the connection of the riser head with the floating support, a flexible flexible joint device called “flexjoint” is generally installed, so as to absorb the angular variations of the top of the riser, during the movements of the support floating.
  • These "flexjoints” consisting mainly of elastomers, in particular in the form of laminated abutments with a surface of revolution, not only serve to take up the traction forces generated by the riser, but also to transfer the crude oil to the rigid pipes integral with the floating support. .
  • These laminated abutment hinge devices are very expensive and delicate to manufacture and the risks of elastomer leakage are important because the life of such installations reaches and exceeds 20-25 years or more.
  • the object of the present invention is to provide an improved bottom-surface connection facility comprising a rigid pipe or riser rising from the seabed to a floating support to overcome the above-mentioned drawbacks.
  • an object of the present invention is to provide a bottom-surface connection facility as defined above for attenuating the movements of the riser, so as to minimize the consequences of movements of the floating support and more particularly the heave movements, thereby radically increasing the fatigue strength of said bottom-surface connection.
  • the present invention provides a bottom surface connection facility of a submarine pipe resting at the bottom of the sea comprising a rigid pipe rising from the bottom of the sea where it rests, to the subsurface where its upper end is connected to a floating support, characterized in that said upper end of the rigid pipe is connected to said floating support by:
  • a flexible link comprising at least one elastic damping device to ensure the connection between the upper end of the riser and a hooked point on said floating support, said elastic damping device taking up the tension of said rigid pipe to its upper end, and allowing the variation of the distance between the upper end of the rigid pipe and the floating support, in a controlled manner.
  • the elastic damping device by its extension or retraction, induces an increase or a decrease in the distance between the upper end of the rigid pipe and the floating support, said flexible link being maintained taut, and this variation of distance is controlled within limits pre-established by the characteristics and elastic properties of the elastic damping device;
  • the variation in distance between the upper end of the rigid pipe and the floating support induced by the elastic damping device is a function of the variation of tension exerted on it by the upper end of the rigid pipe, with a increase in distance in case traction and a decrease in case of relaxation of the tension exerted on the elastic damping device.
  • the device damping elastic allows to soften the connection between the upper end of the rigid pipe and the floating support by reducing the tension at the upper end of the rigid pipe by increasing or decreasing the distance between the upper end of the rigid pipe and the floating support.
  • the present invention makes it possible to reduce the fatigue and wear of the rigid pipe at its point of contact with the seabed and at its point of attachment with the floating support and in particular allows the possibility of eliminating or avoiding the implementation of a flexible articulation device of the flexjoint type at the junction between the rigid pipe and the floating support.
  • the elastic damping device makes it possible to limit the movements in the zone of the riser foot, and thus limit the formation of a groove at the bottom of the sea, which makes it possible to reduce cumulative fatigue in the foot zone of the riser in a considerable way.
  • the installation according to the present invention makes it possible to dissociate:
  • said flexible link comprises a first cable or chain cooperating with said elastic damping device such that said elastic damping device allows the variation of the distance between the upper end of the pipe and the floating support while maintaining said first cable or chain stretched over a substantially constant length.
  • the elastic damping device is:
  • the displacement of the upper end of the rigid pipe relative to the floating support is related to the possible extension or retraction of the elastic damping device by its elastic properties.
  • the elastic damping device is positioned in alignment with the upper end of the rigid pipe, either directly secured thereto, or integral with the floating support, but without the flexible link being cooperates with a return pulley on said floating support.
  • positioning in the alignment of the upper end of the rigid pipe is meant that the elastic device extends or retracts, and / or the point of attachment of said flexible link with said elastic device moves in a longitudinal direction substantially corresponding to that of the axial direction of said rigid pipe at its upper end.
  • This embodiment is advantageous because it makes it possible to reduce the fatigue and wear problems of said cable, which are created at the level of windings on the return pulleys, due to the extremely high voltage existing in said cable.
  • an elastic damping device according to the invention in line with the upper end of the rigid pipe as described above allows to further reduce the movements of the upper end of the rigid pipe induced by the heave motions of the floating support, and the short-term variations of the most damaging periods that result, that in the case where the elastic damping device is supported entirely by the floating support and cooperates with said cable by means of return pulleys on the floating support.
  • an elastic damping device has substantially little effect on so-called quasi-static movements of the head of the riser related to lateral or horizontal excursion of the floating support as described above.
  • said rigid pipe is a catenary type pipe going up from the seabed to said subsurface in a chain curve having a curvature substantially continuously variable to its upper end.
  • said flexible pipe is a dip pipe having a low point located between its two ends respectively connected to the upper end of the rigid pipe and said floating support, said flexible pipe being connected to the upper end of the pipe. rigid pipe by means of an elbow-type device of the gooseneck type.
  • connection between the upper end of the rigid pipe and the flexible pipe is via an angled device called gooseneck, so as to allow the flexible pipe to dip below the level of the pipe. upper end of the rigid pipe before going back to the floating support.
  • the loop thus created allows the flexible pipe to withstand the excursions of the floating support without ever having to take again the tensions exerted on the floating support or the head of riser following the movements of the head of yaw and heave of the floating support, only said flexible link combined with the elastic damping device taking up most of the tension at the top of the riser associated with these lurches and pounding of the floating support.
  • said elastic damping device comprises a mechanical elastic device or a hydro-pneumatic elastic device.
  • an installation according to the invention comprises a resilient mechanical damping device comprising biconical elastic elements comprising frustoconical washers of the Belleville type, preferably consisting of pairs of frustoconical washers of belleville type arranged axially and inversely, suitable for to deform elastically axially, threaded around a first axial rigid rod contained in a cylindrical chamber to a prestressing state, so as to form a stack of said washers retained on one side by a stop at one end of said first rigid rod axial and on the other side by one of the end walls of said cylindrical enclosure, end wall through a perforation of which the other end of said first rigid rod is able to move, said other end of the first rigid rod being connected to said upper end e rigid driving.
  • Said frustoconical washers called "belleville washers” are grouped in pairs forming biconical elements, the said successive washers being arranged alternately axially reversed, that is to say the small bases of the two frustoconical washers of the pair being one against the other while the large bases of the two frustoconical washers of a pair are adjacent to other large bases of frustoconical washers of an adjacent pair slipped on the same rod.
  • the elastic damping device makes it possible to take up a voltage corresponding to the voltage of the upper end of said enclosure; the rigid pipe when the floating support is at rest, and
  • the elastic damping device makes it possible to take up the maximum possible tension exerted on said end wall; upper end of the rigid pipe in case of excursion of said floating support in particular under the effect of swell, wind and / or strong sea currents.
  • This cushioning device with frustoconical washers will thus always have an exit rod length capable of giving the required flexibility between the floating support and the upper end of the rigid pipe.
  • said initial prestressing tension and maximum abutment tension of said elastic damping device substantially correspond to the tension values delimiting a flattening zone of the force / displacement curve representing the voltage variation in the damping device in a function of the length of said first rod output from said chamber, a flattening zone in which the variation of the displacement of said first rod is maximum for a given voltage variation exerted on said first rod.
  • said elastic mechanical damping device comprises a spring combined with a return pulley and a counterweight, one end of said spring being rigidly fixed to a said point of attachment on said floating support and the other end said spring being fixed to said counterweight, said flexible link ensuring the connection between said counterweight and said upper end of rigid pipe passing through said first return pulley.
  • This embodiment makes it possible to implement springs only taking up part of the tension at the upper end of the rigid pipe, the remainder, namely the greater part of said tension being taken up by said counterweight, said spring allowing only to soften the voltage variations by variations in distance between the upper end of the rigid pipe and the floating support, the tension at the end of the rigid pipe when the floating support is at rest being taken up by said counterweight .
  • said elastic damping device is a hydro-pneumatic device comprising a hydraulic jack fixed on the floating support, combined with a hydro-pneumatic energy storage system, making it possible to control the movement of the rod of the cylinder, said first cable or chain being attached to the upper end of said rigid pipe and cooperating with the ends of said rigid cylinder rod, so that a pull exerted by the upper end of the rigid pipe on said first cable or chain is taken up by a thrust exerted by the cylinder rod under the effect of the hydraulic pressure supplied by said hydraulic energy storage system, said thrust of the cylinder rod exerting an opposite traction on said first cable or chain taking up the tension exerted by the upper end of said rigid pipe.
  • the average extension of the jack rod corresponds to a thrust resuming the tension exerted on the upper end of the rigid pipe when the floating support is at rest and the maximum extension, respectively minimum, of the cylinder rod. corresponds to a thrust taking again the tension exerted by the upper end of the rigid pipe corresponding to the movements of maximum distance of the barge, respectively of maximum approach in the direction of the point of contact in foot of riser.
  • said jack rod cooperates with at least one second return pulley secured to the end of the cylinder rod, said second return pulley cooperating with said first cable or chain.
  • said second return pulley sends a return of the flexible link between its first end fixed to the upper end of the rigid pipe and its second end fixed to the floating support.
  • the elastic hydro-pneumatic damping device is characterized in that: - said accumulator system consists of a plurality of tanks filled partly with liquid and partly with gas,
  • control of the pressure losses by devices for varying pressure drop during the transfer of the liquid between said reservoirs and said jack for controlling and damping hydraulic pressure variations in the accumulator system and in the jack, so that it is possible to obtain maximum variations of displacement of the cylinder rod for corresponding variations hydraulic pressure in the accumulator system and the hydraulic cylinder.
  • an installation according to the invention comprises a safety device providing a second connection of variable size between the upper end of the rigid pipe and the floating support constituted by at least two safety bars articulated to their ends, varying the inclination of said bars relative to each other to vary the distance between the point of attachment and articulation of said second connection on the floating support and the upper end of said rigid pipe, the maximum length of said second connection corresponding to the cumulative length of said bars being less than the length of said flexible pipe and preferably greater than the maximum displacement length of the upper end of said rigid pipe relative to said support; floating as controlled by said damping device.
  • this safety device protects said flexible pipe in the event of breakage or damage of said flexible link or of said elastic damping device according to the present invention.
  • said safety device comprises a bar articulated on said floating support, which articulated bar is a telescopic bar.
  • This embodiment makes it possible to keep the elastic damping device substantially in a straight line with the other security bar articulated on the upper end of the rigid pipe.
  • said elastic damping device is fixed at one end to said floating support and at the other end to the upper end of the pipe or, where appropriate, the articulation between said two safety bars. a security device. It is understood that this particular embodiment not including said first cable or chain implies that the link flexible according to the invention does not cooperate with any return pulley.
  • said damping device is capable of taking up tensions at the upper end of said rigid pipe from 50 to 750 T, preferably 100 T to 250 T.
  • said damping device allows said displacements of the upper end of said rigid pipe, capable of damping voltage variations at the upper end of said rigid pipe, said variations representing up to 20% of the voltage at the rest at said upper rigid pipe end, that is to say when the floating support and the upper end of the rigid pipe are at rest.
  • said elastic damping device is able to allow variations in distance between the upper end of the rigid pipe and the floating support or displacements in the axial direction XX of the upper end of the rigid pipe of 1 at 10 m, preferably from 2 to 5 m, preferably for voltage variations at the upper end of the rigid pipe from 5 to 150 T.
  • the upper end of said rigid pipe is located in a subsurface at a depth of 20 to 60 m.
  • said flexible pipe has a length of 20 to 140 m.
  • FIG. 1 is a side view of a rigid underwater pipe in simple chain configuration, suspended on a floating support 10 of the FPSO type, and whose lower end rests on the bottom of the sea 13, represented in FIG. three different positions la, Ib, Ic, according to the prior art.
  • FIG. 1 is a sectional side view of the trench 12 hollowed by the foot 11 of chain during the lifting movements of the pipe 1 on the seabed.
  • FIG. 2 is a curve detailing the voltage variations in the riser in quasi-static motion and in dynamics.
  • FIG. 3 is a side view of a damping device according to the invention installed between a fixed point of a barge and the upper end of a riser.
  • Figure 3A is a variant of Figure 3, wherein the damping device is disposed in a well inside the barge.
  • FIG. 4 is a side view of a barge and a riser connected to a counterweight associated with a damping device installed wedge of the barge in a well.
  • FIGS. 5A-5C are cross-sectional views of a damping device according to the invention consisting of conical rings, respectively in assembly configuration, prestressing and operation.
  • FIG. 5D is a diagram of the forces generated during the variation of the rod length H of said device.
  • FIG. 6 shows a damping device according to the invention consists of a hydraulic cable tensioner, in a passive operating configuration and active operation.
  • FIG. 6A represents a view of the rod head of the jack of FIG. 6.
  • FIG. 1 there is shown in side view a bottom-surface connection 1 of the SCR type, suspended on a floating support 10 of FPSO type anchored at 11, and resting on the bottom of the sea 13 at the point of contact 14.
  • the curvature varies along the chain from the surface, or its radius has a maximum value, up to the point of contact, or its radius has a minimum value R.
  • the floating support 10 moves, for example from left to right as shown in the figure, which has the effect of lifting or resting the chain-shaped pipe at the bottom of the sea.
  • the support floating moves away from the normal position 10a, which has the effect of straightening the chain Ic by lifting it, and move the point of contact 14 to the right of 14a to 14c; the radius of curvature at the foot of chain increasing from Ro to R 2 , as well as the horizontal tension in the pipe generated at said point of contact at the bottom of the sea, as well as the tension in the pipe at the head of riser at said floating support.
  • the displacement towards the right of the floating support has the effect of relaxing the chain Ib and of resting a part of the pipe on the bottom of the sea.
  • the radius R 0 at the point contact 14a decreases to the value Ri in 14b, as well as the horizontal tension in the pipe at the same point 14b, and the tension in the pipe at said floating support.
  • the radius of curvature of the pipe is minimal in the portion in suspension, but in the adjacent part resting on the bottom of the sea, said pipe being theoretically in a straight line, its radius of curvature is theoretically infinite. In fact, this radius is not infinite but extremely high, because it generally remains a residual curvature.
  • the contact point 14 moves from the right on the left and, in the raised or rested zone on the bottom, the radius of curvature successively passes from a minimum value Rmin to an extremely high value, even infinite in the case of a configuration substantially in a straight line.
  • the variation of the radius of curvature at 14 creates considerable internal stresses within the structure of the pipe, which generates cumulative fatigue phenomena that can eventually lead to the ruin of the bottom-surface bond.
  • the elastic damping device makes it possible to radically limit the movements in the zone of the riser foot, as well as the formation in time of the furrow 12, and consequently to reduce the cumulative fatigue in this zone, of a factor 4 to 6 or more in some preferred embodiments.
  • FIGS. 3 and 4 show a bottom surface connection installation of an underwater pipe resting at the bottom of the sea, comprising a rigid pipe 1 going up from the bottom of the sea where it rests, to the subsurface where its upper end Ii is connected to a floating support 1) in which said rigid pipe is a catenary type pipe (SCR) rising from the seabed 13 to said subsurface in a chain curve having a substantially continuously variable curvature up to its upper end, and said upper end Ii of the rigid pipe is connected to said floating support by:
  • SCR catenary type pipe
  • a flexible pipe 2 adapted to allow the transfer of the fluid conveyed by said rigid pipe 1 to the floating support, said flexible pipe being a dip pipe having a low point 2a located between its two ends respectively connected to the upper end of the rigid pipe and said floating support, said flexible pipe being connected to the upper end of the rigid pipe by a gooseneck type pipe device 6, and
  • a flexible link comprising a first cable 3 cooperating with an elastic damping device 4 to ensure the connection between the upper end of the riser and a hooked point 5 on said floating support located above the level of the surface of the sea, said elastic damping device 4 taking up the tension of said rigid pipe at its upper end, and adapted to allow the variation of the distance between the upper end of the rigid pipe and the floating support, so as to control while maintaining said flexible link stretched.
  • said flexible pipe 2 has an end 2i connected to the upper end of the gooseneck 6 at the end. upper of the rigid pipe and the other end 2 2 connected to pipes 53b on board the floating support.
  • the elastic damping device 4, 20 is integral with the upper end of the rigid pipe to which it is directly fixed rigidly, said first cable 3 providing the connection between a hanging point 5 of the floating support. and the other end of the resilient damping device 4, 20.
  • the elastic damping device 4, 30 comprises a spring 30i associated with a counterweight 30 2 , said spring 30i being attached at one end to a hooking point 5 of the solid support, said first cable 3 ensuring the connection between the other end of the elastic damping device 4, 30 and the upper end of the rigid pipe li.
  • the upper end of said rigid pipe is located in a subsurface at a depth of 20 to 60m.
  • Said flexible pipe has a length of 20 to 140m.
  • FIG. 2 shows the diagram of the variations in time of the tension at the head Ii of riser under the effects of quasi-static movements and dynamic movements of the floating support.
  • Curve C2 represents the combination of quasi-static C2a and dynamic C2b variations over a quasi-static period of 200-300 seconds.
  • the damping device comprises a pre-compressed spring 20 consisting of a stack of elastic frustoconical washers 20a, known as belleville washers (or “conical spring”). washer ").
  • the operation of the device 20 is explained with reference to FIGS. 5A-5D.
  • the belleville washers 20b are arranged alternately axially reversed, thus forming a succession of pairs 20a of frustoconical washers 20b threaded by their axial perforation around a said first rod 22.
  • each frustoconical washer 20b of the same pair 20a being turned toward each other and the two large opposite bases of the washers of the pair being turned towards the large base of a next or previous washer threaded thereafter on said first rod 22.
  • the washers threaded on the rod 22 are inserted into a cylindrical tube 21 provided with a bottom 21a pierced so as to let the rod 22 provided at its lower end with an attachment point 22a. Said washers are threaded around said rod in sufficient number to be compressed into a state of pre-stress as illustrated in Figure 5B.
  • a washer or end stop 22b is then secured to said rod, so that if one pulls down on the fastener 22a, the compression of the spring and therefore the return force F is increased.
  • the preload of the device 20 at 23b is adjusted to a minimum value lower than the minimum of the quasi-static voltage accumulated with the dynamic variation, as represented in FIG. 2, and the upper voltage of the device 20 is advantageously limited to 23c. at a maximum value greater than the maximum of the quasi-static voltage cumulated with the dynamic variation, as represented in FIG. 2.
  • the device 20 according to the invention will always have its length of rod 22 output located between the two points 23b-23c of 5D diagram, and give the desired flexibility between the structure of the barge and the upper end of the riser.
  • the belleville washers are advantageously arranged by a first group of two or three or more, oriented in the same direction, the second group comprising the same number of identical washers oriented in reverse.
  • the end of the riser is connected by a cable 3 rotated around a first deflection pulley 7, and connected to the device 20 installed inside a well 15 extending over the height of the barge 10, that is, 25-10m.
  • FIG. 4 shows in partial section and in side view, a preferred version of the invention in which the riser tension is counterbalanced by a counterweight 30 2 connected to a first cable 3 rotated around a said first pulley. of return 7 secured to the barge.
  • a counterweight 30 2 connected to a first cable 3 rotated around a said first pulley. of return 7 secured to the barge.
  • the counterweight rises upwards or downwards thus giving flexibility to the connection between the barge and the riser, thus avoiding transmitting the movements at the foot of the said riser chain.
  • an additional elastic device 30i for example a spring, is added, or a belleville washer device 20 with a capacity lower than that described with reference to FIGS. 5A-5D.
  • the tension of the riser being counterbalanced by the counterweight 3O 2 for example of a value of 80 tons, the capacity of the device 20 or spring 301 can then be reduced to 10 tons in prestressing configuration corresponding to point 23b of the FIG. 5D, and at a maximum value of 35 tons corresponding to point 23c of the same FIG. 5D.
  • FIG. 6 shows a hydraulic elastic tensioning device 40 consisting of a cylinder body 41 supported at 41a by the barge 10.
  • the cylinder rod 42 supports at its end at least one upper pulley 43 (or said second pulley). reference), the first cable
  • the hydraulic cylinder is connected by a pipe 46 of the cylinder body 41 to a first set of three hydraulic accumulator tanks 44a constituting a first system passive. Indeed, when the voltage at the riser increases, the pressure in the hydraulic circuit increases and the oil 44b compresses the upper gas 44c. The decrease in the volume of gas put in compression allows the rod 42 of the jack then down and the first cable 3 rotated around the pulleys 43-41b is unfolding down thus drastically reducing the increase in tension at the top of the riser.
  • adjustable regulators associated with check valves 44e-44f, which make it possible to create, in a manner known to those skilled in the art, and independently, a damping of the movements of oil in the rising direction of the cylinder rod (lowering of the voltage: regulator 44e), and in the downward direction of the cylinder rod (increase of the voltage: regulator 44f).
  • batteries 46a are advantageously installed as a dynamic device 45 consisting of a gas accumulator 45a preloaded at a higher pressure, for example P + 30 bars, at the maximum pressure 44d of the three accumulators 44a.
  • a 45e-45f slave valve isolates the second accumulator 45a from the shunt 46a.
  • a calibrated discharge valve 45d directs the oil to a tank 45b when the pressure in the hydraulic circuit 46-46a exceeds a defined value, thus causing a rapid discharge of the pressure, therefore a reduction of the voltage in the first cable 3.
  • the 45 e -45f slave valve of the active device then opens and releases the oil from the second precharged accumulator to a pressure higher and thus restores the desired level of pressure.
  • a hydraulic pump 45c recharges the second accumulator as needed to maintain the overpressure, by drawing the oil into the discharge tank 45b.
  • the passive system 44 provides the desired flexibility for small voltage variations, while the active device 45 closes the voltage peaks by releasing oil in the cover 45b in case increasing the voltage above a first fixed upper threshold, or by re-injecting the oil through the controlled valve 45e-45f in the event of a drop in voltage below a second lower threshold set to maintain the displacement of the cylinder rod within controlled limits.
  • Said device 40 has been shown installed on board the barge with a 6-strand squirrel and three sets of pulleys 43 as shown in FIG. 6A, but a similar device comprising only the jack and the hydraulic circuit previously described is advantageously installed in place and placing the device 20 of FIG. 3 or the device 30 of FIG.
  • FIGS. 7A-7C show a preferred version of the invention facilitating the installation of the assembly on site, as well as the safety in case of partial or complete rupture of one of the elements.
  • the installation of the risers requires the installation on board of the barge towing gear extremely powerful and bulky so as to transfer the end of the riser to its support secured to the barge.
  • said device because a plurality of risers is generally installed side by side along the plating, said device must be successively moved from one location to riser to the location of the next riser, which greatly complicates the organization this area is already heavily congested by various pipes, as well as reinforced structural structures capable of resuming efforts of several hundred tons.
  • a safety device 51 comprising two safety bars 51a-51b hinged at 51c are suspended at a hinge 51d integral with the plating of the barge.
  • the installation vessel 50 has just completed the assembly of the riser 1, suspended from the ship by a cable 50a.
  • a cable 51e makes it possible to bring the hinged busbar 51a-51b towards the upper end of the riser to make their connection with each other as detailed in FIG. 7B, in the position Ic of the riser 1. Once the connection is completed, the cable 50a is deviated and the riser takes the position Id.
  • the device is then installed.
  • damping and softening for example the device 20 of Figure 3, or a hydraulic cylinder 40 associated with accumulators 44-45 as described with reference to Figure 6, integral with a hooking point 5 fixed on the structure of the barge, and whose second end is connected to the hinge 51c between the two bars 51a and 51b by means of a first cable 3.
  • a flexible pipe 2 connects the upper end of the riser to the rigid pipes 53 of the barge 10, said flexible pipe being guided at 54a-54b respectively at the bars 51a-51b.
  • the first bar 51a is telescopic and comprises two elements.
  • the elastic damping device induces no compression force within the telescopic bar 51a 1-51a2, and the damping elastic device is substantially in a straight line with respect to the end of the riser 1 and at the second bar 51b.
  • the invention has been described in multiple configurations based on elastic damping devices, either in direct line with the end of the riser (FIGS. 3, 7A-7D) or with idler pulley (FIGS. 3A, 4), but It remains in the spirit of the invention when one associates with any of these devices a muffling whose function is to amplify or reduce the available stroke, the force within the elastic device. damper is accordingly amplified or reduced in the same proportions, insofar as it neglects internal friction within the pulleys and bearings.
  • 6-6A has a 6-strand blowing, which, for a stroke of about 12m between the riser head and the floating support, requires a jack of 2m stroke; against the efforts at the head of the riser will be, at the rod 42 of the cylinder, multiplied by the same factor 6.
  • gear devices can increase or decrease the stroke by increasing or decreasing respectively in the same report the efforts at the damping elastic device, insofar as one can neglect the friction within the system.
  • the various devices have been described in connection with a barge anchored in a fixed manner on multiple anchors, but they have the same advantage when they are installed on FPSO anchored on reel.
  • the drum is anchored on the seabed by 6-8-12 anchors, and the FPSO freely turns around said drum and is thus naturally positioned according to the winds and currents, in the position creating the minimum effort between FPSO and reel, so the minimum effort in the anchoring system, which increases the stability of the FPSO and all the less disrupts the risers in chain configuration connected to said reel.
  • the device according to the invention makes it possible, by adjusting for example the length of the flexible link 3, to modify the sensitive zone in the foot of riser subjected to fatigue.
  • the length of said flexible link will for example be 5m, then after five years, it will be increased to 10m, the sensitive area at the foot of the chain then being substantially displaced, an area critical cumulative fatigue then resting permanently on the ground, and therefore not being subjected to fatigue.
  • the operation will advantageously be repeated at regular intervals, insofar as the length of the flexible connection has been provided long enough to absorb these variations in the position of the upper end of the riser in a chain configuration. If necessary, the flexible link will simply be changed and a new longer flexible link will replace the length that has become too short.
  • hawser made of thermoplastic fibers of high capacity and of great length.
  • hawsers 100 to 300mm in diameter are capable of withstanding loads of several hundred tons and are commonly used for docking floating structures. They have a high elasticity and their length will advantageously be 100 to 200m to provide the necessary clearance of several meters in the desired voltage range. The end of the riser being thus further away from the plating of the barge, it will be necessary to adjust the flexible link length which, in this configuration will be much greater than in the variants described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Mechanical Engineering (AREA)
  • Earth Drilling (AREA)
  • Vibration Prevention Devices (AREA)
  • Supports For Pipes And Cables (AREA)
  • Laying Of Electric Cables Or Lines Outside (AREA)
  • Pipe Accessories (AREA)

Abstract

La présente invention concerne une installation de liaison fond surface d'une conduite sous-marine reposant au fond de la mer comprenant une conduite rigide (1) remontant depuis le fond de la mer où elle repose, jusqu'en subsurface où son extrémité supérieure (11) est reliée à un support flottant (10) caractérisé en ce que ladite extrémité supérieure (11) de la conduite rigide est reliée audit support flottant par : 1) une conduite flexible (2) apte à permettre le transfert du fluide véhiculé par ladite conduite rigide (1) vers le support flottant, et 2) un lien souple comprenant au moins un dispositif élastique d'amortissement (4) pour assurer la liaison entre l'extrémité supérieure du riser et un point d'accroché (5,41c) sur ledit support flottant, ledit dispositif élastique d'amortissement (4) reprenant la tension de ladite conduite rigide à son extrémité supérieure, et permettant la variation de la distance entre l'extrémité supérieure de la conduite rigide et le support flottant, de manière contrôlée.

Description

Installation de liaison fond-surface comprenant un dispositif élastique d'amortissement reprenant la tension de l'extrémité supérieure d'une conduite rigide en subsurface.
La présente invention concerne une installation de liaison fond- surface comprenant au moins une conduite sous-marine assurant la liaison entre un support flottant et le fond de la mer notamment à grande profondeur. Ces conduites rigides sous-marines sont appelées "colonnes montantes" ou "risers" comme explicité ci-après, ces risers étant constitués d'éléments tubulaires unitaires soudés entre eux bout à bout, réalisés en acier.
Plus particulièrement, la présente invention concerne une installation de liaison fond surface d'une conduite sous-marine reposant au fond de la mer comprenant une conduite rigide remontant depuis le fond de la mer où elle repose, jusqu'en subsurface où son extrémité supérieure est reliée à un support flottant.
Le secteur technique de l'invention est donc le domaine de la fabrication et de l'installation de conduites sous-marines et plus particulièrement de liaisons fond-surface de production pour l'extraction sous-marine de pétrole, de gaz ou autre matériau soluble ou fusible, ou d'une suspension de matière minérale, à partir de tête de puits immergé pour le développement de champs de production installés en pleine mer au large des côtes. L'application principale et immédiate de l'invention étant dans le domaine de la production pétrolière, ainsi que dans la réinjection d'eau et la production ou ré-injection de gaz.
Un support flottant comporte en général des moyens d'ancrage pour rester en position malgré les effets des courants, des vents et de la houle. Il comporte aussi en général des moyens de forage, de stockage et de traitement du pétrole ainsi que des moyens de déchargement vers des pétroliers enleveurs, ces derniers se présentant à intervalle régulier pour effectuer l'enlèvement de la production. L'appellation de ces supports flottants est le terme anglo-saxon "Floating Production Storage Offloading" (signifiant "moyen flottant de stockage, de production et de déchargement") dont on utilisera le terme abrégé "FPSO" dans l'ensemble de la description suivante, ou encore "FDPU" ou "Floating Drilling & Production Unit" (signifiant "moyen flottant de forage et de production"), lorsque le support flottant est aussi utilisé pour effectuer les opérations de forage avec puits dévié dans la hauteur de la tranche d'eau.
Une conduite sous-marine, ou un riser, selon l'invention peuvent être soit un "conduite de production" de pétrole brut ou de gaz, soit un conduite d'injection d'eau, assurant la liaison avec une tête de puits sous- marine installée au fond de la mer, soit encore un "riser de forage" assurant la liaison entre le support flottant et une tête de puits localisée au fond de la mer.
Dans les FPSO où l'on installe en général une multiplicité de lignes, on est amené à mettre en œuvre soit des liaisons fond-surface de type tour-hybride, soit des liaisons de type caténaire en forme de "chaînette".
Lorsque la conduite de liaison fond-surface est du type caténaire, elle assure directement la liaison entre un support flottant et un point de contact au fond de la mer qui se trouve décalé par rapport à l'axe dudit support, ladite conduite prend de par son propre poids une configuration dite de "chaînette", formant une courbe dont le rayon de courbure diminue depuis la surface jusqu'au point de contact au fond de la mer, et l'axe de ladite conduite forme un angle α avec la verticale dont la valeur varie en général de 5 à 20 degrés au niveau du support flottant jusqu'à, théoriquement, 90 degrés au niveau du fond de la mer correspondant à une position théorique sensiblement tangentielle à l'horizontale comme il sera explicité ci-après.
Les liaisons de type chaînette sont en général réalisées à l'aide de conduites flexibles, mais leur coût est extrêmement élevé en raison de structure complexe de la conduite.
Ainsi on a été amené à développer des colonnes montantes sensiblement verticales, de manière à rapprocher de la surface la liaison souple en configuration de chaînette vers le support flottant, ce qui permet de minimiser la longueur de ladite conduite flexible, ainsi que les efforts qui lui sont appliqués, minimisant ainsi considérablement son coût.
Dès lors que la profondeur d'eau atteint et dépasse 500-100Om, il devient possible de réaliser ladite liaison fond-surface à l'aide d'une conduite rigide à paroi épaisse, car la longueur de la conduite étant considérable, sa souplesse permet d'obtenir une configuration de chaînette satisfaisante en restant dans des limites de contraintes acceptables.
Ces risers rigides en matériaux résistants de forte épaisseur, en configuration de chaînette, sont communément appelés par le terme anglo-saxon "Steel Catenary Riser" signifiant "riser en acier en forme de chaînette" dont on utilisera le terme abrégé "SCR" ou "riser caténaire" dans la présente description, qu'il soit en acier ou en autre matériau tel qu'un matériau composite.
Ces "SCR" ou "risers caténaires" sont beaucoup plus simples à réaliser que les conduites flexibles et donc moins onéreux.
La courbe géométrique formée par une conduite de poids uniforme en suspension soumise à la gravité, appelée "chaînette" est une fonction mathématique de type cosinus hyperbolique (Coshx = (ex + e"x)/2 , reliant l'abscisse et l'ordonnée d'un point quelconque de la courbe selon les formules suivantes : y = R0(cosh(x/R0) - 1) R = Ro.(Y/Ro + I)2
dans lesquelles : - x représente la distance dans la direction horizontale entre ledit point de contact et un point M de la courbe,
- y représente l'altitude du point M (x et y sont donc les abscisses et ordonnées d'un point M de la courbe par rapport à un repère orthonormé dont l'origine est audit point de contact) - R0 représente le rayon de courbure au dit point de contact, c'est à dire au point de tangence horizontale.
- R représente le rayon de courbure au point M (x, y)
Ainsi, la courbure varie continûment le long de la chaînette depuis la surface, ou son rayon a une valeur maximale Rmax, jusqu'au point de contact, ou son rayon a une valeur minimale Rmιn (ou R0 dans la formule ci-dessus). Sous l'effet des vagues, du vent et du courant, le support de surface se déplace latéralement et verticalement, ce qui a pour effet de soulever ou de reposer la conduite en forme de chaînette, au niveau du fond de la mer.
Ainsi, la conduite présente un rayon de courbure qui est maximal au sommet de la chaînette, en général, d'au moins 1500, notamment de 1500 à 5000m, c'est à dire au point de suspension sur le FPSO, et qui décroît jusqu'au point de contact avec le sol . A cet endroit, le rayon de courbure est minimal dans la portion en suspension. Mais, dans la partie adjacente reposant sur le fond de la mer, ladite conduite étant théoriquement en ligne droite, son rayon de courbure est théoriquement infini. En fait ledit rayon n'est pas infini mais extrêmement élevé, car il subsiste une courbure résiduelle.
Ainsi, au gré des mouvements du support flottant en surface, le point de contact se déplace d'avant en arrière et, dans la zone soulevée ou reposée sur le fond, le rayon de courbure passe successivement d'une valeur minimale Rmιn à une valeur extrêmement élevée, voire infinie dans le cas d'une configuration théorique où la conduite sous-marine repose sur le fond de la mer sensiblement en ligne droite.
Ces flexions alternatives créent des phénomènes de fatigue concentrés dans toute la zone de pied de chaînette et la durée de vie de telles conduites est fortement réduite et en général incompatible avec les durées de vie recherchées pour les liaisons fond-surface, c'est à dire 20- 25 ans, voire plus.
De plus, on observe que durant ces mouvements alternatifs du point de contact, la raideur de la conduite, associée à la courbure résiduelle mentionnée précédemment, va dans le temps creuser un sillon sur toute la longueur soulevée puis reposée et créer une zone de transition dans laquelle existera un point d'inflexion où le rayon de courbure, minimal en pied de chaînette, changera alors de sens dans ladite zone de transition, et croîtra pour atteindre enfin une valeur infinie dans la portion de conduite sous-marine reposant en ligne droite sur le fond de la mer.
Ces mouvements répétés en tête de riser sur de longues périodes créent un sillon d'autant plus important dans les sols peu consolidés que l'on rencontre couramment en grande profondeur, ce qui a pour effet de modifier la courbure de la chaînette et conduire, si le phénomène s'amplifie, à des risques d'endommagement des conduites, soit au niveau des conduites sous-marines reposant au fond de la mer, soit au niveau des SCR assurant la liaison entre ces conduites sous-marines reposant au fond de la mer et la surface.
Les mouvements sont de deux types très différents se produisant avec des périodicités et des conséquences très variables comme montré sur la figure 2. En effet, le support flottant est ancré en général par 8 ou 16 lignes d'ancres en général également réparties et situées dans les angles. Sous l'effet du vent et du courant, le support flottant se déplace à l'intérieur d'une surface appelée « cercle d'excursion », sensiblement elliptique ou circulaire et sensiblement centrée par rapport à sa position au repos. Et, on cherche à réduire au maximum la taille de ce cercle d'excursion en jouant sur la raideur des ancrages. Ainsi, il est courant de prévoir les ancrages pour limiter l'excursion du support flottant dans un rayon représentant 5-6% de la hauteur d'eau. Ainsi, pour une profondeur d'eau de 1500m, le cercle d'excursion aura sensiblement un rayon de 75- 90m. Ces mouvements dus au vent et au courant sont en général très lents et leur période est de 200 à 300 secondes, c'est-à-dire que le pied de chaînette se déplace relativement lentement d'avant en arrière et en conditions normales les mouvements sont de très faible amplitude. On parle d'état « quasi-statique », c'est-à-dire que le système est toujours en quasi-équilibre, ce qui permet de négliger les efforts dus à l'inertie de l'ensemble. En fait, ce type de mouvement à période longue n'est pas très préjudiciable à la tenue en fatigue du pied de riser pendant toute sa durée de vie.
Le second type de mouvement est dû au pilonnement du support flottant qui se produit sur plusieurs mètres et engendre alors des mouvements verticaux dudit riser. Ces mouvements dynamiques sont beaucoup plus préjudiciables, car ils présentent une période beaucoup plus courte, entre 3-5 secondes et 15-18 secondes. Et de plus, certaines fréquences comprises entre les valeurs extrêmes, correspondent à des fréquences de résonance du riser en configuration de chaînette, ce qui a pour effet d'amplifier considérablement les déformations de ladite chaînette, donc les mouvements et risques d'endommagement en pied de chaînette, au niveau du point de contact.
En surface, au niveau du raccordement de la tête du riser avec le support flottant, on installe en général un dispositif d'articulation souple étanche appelée « flexjoint », de manière à absorber les variations angulaires du sommet du riser, lors des mouvements du support flottant. Ces « flexjoints » constitués principalement d'élastomères, notamment sous forme de butées lamifiées à surface de révolution, servent non seulement à reprendre les efforts de traction engendrés par le riser, mais aussi à transférer le pétrole brut vers les conduites rigides solidaires du support flottant. Ces dispositifs d'articulation à butée lamifiée sont très coûteux et délicats à fabriquer et les risques de fuites au niveau des élastomères sont importants, car la durée de vie de telles installations atteint et dépasse 20-25 ans, voire plus.
Le but de la présente invention est de fournir une installation de liaison fond-surface améliorée comprenant une conduite rigide ou riser remontant depuis le fond de la mer jusqu'à un support flottant permettant de surmonter les inconvénients mentionnés ci-dessus.
Plus particulièrement, un but de la présente invention est de fournir une installation de liaison fond-surface telle que définie ci-dessus permettant d'atténuer les mouvements du riser, de manière à minimiser les conséquences des mouvements du support flottant et plus particulièrement les mouvements de pilonnement, afin d'augmenter de ce fait radicalement la tenue en fatigue de ladite liaison fond-surface.
Pour ce faire, la présente invention fournit une installation de liaison fond surface d'une conduite sous-marine reposant au fond de la mer comprenant une conduite rigide remontant depuis le fond de la mer où elle repose, jusqu'en subsurface où son extrémité supérieure est reliée à un support flottant, caractérisé en ce que ladite extrémité supérieure de la conduite rigide est reliée audit support flottant par :
1) une conduite flexible apte à permettre le transfert du fluide véhiculé par ladite conduite rigide vers le support flottant, et
2) un lien souple comprenant au moins un dispositif élastique d'amortissement pour assurer la liaison entre l'extrémité supérieure du riser et un point d'accroché sur ledit support flottant, ledit dispositif élastique d'amortissement reprenant la tension de ladite conduite rigide à son extrémité supérieure, et permettant la variation de la distance entre l'extrémité supérieure de la conduite rigide et le support flottant, de manière contrôlée.
On comprend que : le dispositif élastique d'amortissement selon l'invention, de par son extension ou sa rétractation, induit une augmentation ou une diminution de la distance entre l'extrémité supérieure de la conduite rigide et le support flottant, ledit lien souple étant maintenu tendu, et cette variation de distance est contrôlée dans des limites pré-établies par les caractéristiques et propriétés élastiques du dispositif élastique d'amortissement ; et
- la variation de distance entre l'extrémité supérieure de la conduite rigide et le support flottant induite par le dispositif élastique d'amortissement est fonction de la variation de tension exercée sur celui-ci par l'extrémité supérieure de la conduite rigide, avec une augmentation de la distance en cas de traction et une diminution en cas de relâchement de la traction exercée sur le dispositif élastique d'amortissement.
Compte tenu du fait que la variation de tension à l'extrémité supérieure de la conduite rigide est essentiellement liée aux mouvements de la conduite rigide et du support flottant sous l'effet de la houle et du vent et/ou des courants marins, le dispositif élastique d'amortissement selon l'invention permet d'assouplir la liaison entre l'extrémité supérieure de la conduite rigide et le support flottant en diminuant la tension à l'extrémité supérieure de la conduite rigide par augmentation ou diminution de la distance entre l'extrémité supérieure de la conduite rigide et le support flottant.
La présente invention permet de réduire les fatigue et usure de la conduite rigide à son point de contact avec le fond de la mer et à son point d'accrochage avec le support flottant et permet notamment la possibilité de supprimer ou éviter la mise en œuvre d'un dispositif d'articulation flexible du type flexjoint au niveau de la jonction entre la conduite rigide et le support flottant.
Plus particulièrement encore, le dispositif élastique d'amortissement selon l'invention permet de limiter les mouvements dans la zone du pied de riser, et donc limiter la formation d'un sillon au fond de la mer, ce qui permet de réduire la fatigue cumulée dans la zone de pied du riser de façon considérable.
L'installation selon la présente invention permet de dissocier :
- d'une part, la fonction de transfert de fluide depuis l'extrémité supérieure de la conduite rigide jusqu'à son support flottant, fonction de transfert exercée par ladite conduite flexible, et
- d'autre part, la fonction de liaison mécanique entre l'extrémité supérieure de la conduite rigide et le support flottant, fonction exercée par ledit lien combiné audit dispositif élastique d'amortissement.
Avantageusement, ledit lien souple comprend un premier câble ou chaîne coopérant avec ledit dispositif élastique d'amortissement tel que ledit dispositif élastique d'amortissement permet la variation de la distance entre l'extrémité supérieure de la conduite et le support flottant tout en maintenant ledit premier câble ou chaîne tendu sur une longueur sensiblement constante.
Dans ce cas, on comprend que le dispositif élastique d'amortissement est :
- solidaire du support flottant auquel il est fixé rigidement, ledit premier câble ou chaîne assurant alors, le cas échéant, la liaison entre le dispositif d'amortissement et l'extrémité supérieure de la conduite rigide, ou
- solidaire de l'extrémité supérieure de la conduite rigide à laquelle il est directement fixé rigidement, ledit premier câble ou chaîne assurant alors, le cas échéant, la liaison entre le support flottant et le dispositif d'amortissement.
Dans les deux cas, le déplacement de l'extrémité supérieure de la conduite rigide par rapport au support flottant est lié à la possible extension ou rétractation du dispositif élastique d'amortissement de par ses propriétés élastiques.
Dans un mode de réalisation préféré, le dispositif élastique d'amortissement est positionné dans l'alignement de l'extrémité supérieure de la conduite rigide, soit directement solidaire de celle-ci, soit solidaire du support flottant, mais sans que le lien souple ne coopère avec une poulie de renvoi sur ledit support flottant. Par « positionnement dans l'alignement de l'extrémité supérieure de la conduite rigide », on entend que le dispositif élastique s'étend ou se rétracte, et/ou le point d'accroché dudit lien souple avec ledit dispositif élastique se déplace dans une direction longitudinale correspondant sensiblement à celle de la direction axiale de ladite conduite rigide à son extrémité supérieure.
Ce mode de réalisation est avantageux, car il permet de réduire les problèmes de fatigue et d'usure dudit câble, qui se créent au niveau des enroulements sur les poulies de renvoi, en raison de la tension extrêmement importante existant dans ledit câble.
D'autre part, comme il sera explicité dans la description détaillée qui va suivre, les inventeurs ont découvert qu'un dispositif élastique d'amortissement selon l'invention en ligne avec l'extrémité supérieure de la conduite rigide comme décrit ci-dessus permet de réduire davantage les mouvements de l'extrémité supérieure de la conduite rigide induits par les mouvements de pilonnement du support flottant, et les variations de tension de courtes périodes les plus préjudiciables qui en résultent, que dans le cas où le dispositif élastique d'amortissement est supporté entièrement par le support flottant et coopère avec ledit câble par l'intermédiaire de poulies de renvoi sur le support flottant.
Mais, un dispositif élastique d'amortissement selon la présente invention n'a sensiblement que peu d'effet sur les mouvements dits quasi statiques de la tête du riser liée à l'excursion latérale ou horizontale du support flottant tel que décrite ci-dessus.
Plus particulièrement, ladite conduite rigide est une conduite de type caténaire remontant depuis le fond de la mer jusqu'en dite subsurface selon une courbe en chaînette présentant une courbure essentiellement continûment variable jusqu'à son extrémité supérieure.
Dans une variante de réalisation, ladite conduite flexible est une conduite plongeante présentant un point bas situé entre ses deux extrémités reliées respectivement à l'extrémité supérieure de la conduite rigide et audit support flottant, ladite conduite flexible étant reliée à l'extrémité supérieure de la conduite rigide par un dispositif à conduite coudée de type col de cygne.
De façon connue, la liaison entre l'extrémité supérieure de la conduite rigide et la conduite flexible se fait par l'intermédiaire d'un dispositif coudé appelé col de cygne, de façon à permettre que la conduite flexible plonge en dessous du niveau de l'extrémité supérieure de la conduite rigide avant de remonter jusqu'au support flottant. La boucle ainsi créée permet à la conduite flexible de supporter les excursions du support flottant sans jamais devoir reprendre les tensions exercées au niveau du support flottant ou de la tête de riser suite aux mouvements de la tête d'embardée et de pilonnement du support flottant, seul ledit lien souple combiné au dispositif élastique d'amortissement reprenant l'essentiel de la tension en tête du riser liée à ces embardées et pilonnement du support flottant.
Dans un premier mode de réalisation, ledit dispositif élastique d'amortissement comprend un dispositif élastique mécanique ou un dispositif élastique hydro pneumatique.
Plus particulièrement, une installation selon l'invention comprend un dispositif élastique d'amortissement mécanique comprenant des éléments élastiques biconiques comprenant des rondelles tronconiques de type belleville, de préférence constitués de paires de rondelles tronconiques de type belleville disposées axialement et de façon inversée, aptes à se déformer élastiquement axialement, enfilées autour d'une première tige rigide axiale contenues dans une enceinte cylindrique à un état de précontrainte, de manière à former un empilement de dites rondelles retenues d'un côté par une butée à une extrémité de ladite première tige rigide axiale et de l'autre côté par une des parois d'extrémité de ladite enceinte cylindrique, paroi d'extrémité à travers une perforation de laquelle l'autre extrémité de ladite première tige rigide est apte à se déplacer, ladite autre extrémité de la première tige rigide étant reliée à ladite extrémité supérieure de la conduite rigide.
Lesdites rondelles tronconiques dénommées « rondelles belleville » sont groupées par paires formant des éléments biconiques , les dites rondelles successives étant disposées axialement de façon inversée alternativement, c'est-à-dire les petites bases des deux rondelles tronconiques de la paire étant l'une contre l'autre tandis que les grandes bases des deux rondelles tronconiques d'une paire sont adjacentes à d'autres grandes bases de rondelles tronconiques d'une paire adjacente enfilée sur la même tige. On comprend que lorsque lesdites rondelles sont comprimées axialement, de par leurs propriétés élastiques, elles exercent une traction sur ladite première tige et donc sur l'extrémité supérieure de la conduite rigide qui reprend la tension à l'extrémité supérieure de la conduite rigide, laquelle tire ladite première tige du dispositif d'amortissement en dehors de ladite enceinte suite à la descente de l'extrémité supérieure du riser plus profondément en subsurface, sous l'effet de pilonnement du support flottant.
Plus particulièrement encore, les nombre et dimension desdites rondelles tronconiques dites belleville sont tels que :
- dans leur état de précontrainte initiale à l'intérieur de ladite enceinte, avec une extension minimale de ladite première tige en dehors de ladite enceinte, le dispositif élastique d'amortissement permet de reprendre une tension correspondant à la tension de l'extrémité supérieure de la conduite rigide lorsque le support flottant est au repos, et
• dans leur état de contrainte maximale de butée contre ladite paroi d'extrémité, lors de l'extension maximale possible de ladite première tige en dehors de ladite enceinte rigide, le dispositif élastique d'amortissement permet de reprendre la tension maximale possible exercée à l'extrémité supérieure de la conduite rigide en cas d'excursion dudit support flottant notamment sous l'effet de houle, vent et/ou courants marins forts.
Ce dispositif d'amortissement à rondelles tronconiques aura ainsi toujours une longueur de tige sortie apte à donner la souplesse recherchée entre le support flottant et l'extrémité supérieure de la conduite rigide.
Avantageusement, dans ce dispositif élastique d'amortissement comprenant des rondelles tronconiques, lesdites tension initiale de précontrainte et tension maximale de butée dudit dispositif élastique d'amortissement correspondent sensiblement aux valeurs de tension délimitant une zone d'aplatissement de la courbe effort/déplacement représentant la variation de tension dans le dispositif d'amortissement en fonction de la longueur de dite première tige sortie de ladite enceinte, zone d'aplatissement dans laquelle la variation du déplacement de ladite première tige est maximal pour une variation de tension donnée exercée sur ladite première tige.
Dans un autre mode de réalisation, ledit dispositif élastique d'amortissement mécanique comprend un ressort combiné à une poulie de renvoi et un contrepoids, une extrémité dudit ressort étant fixée rigidement à un dit point d'accroché sur ledit support flottant et l'autre extrémité dudit ressort étant fixée audit contrepoids, ledit lien souple assurant la liaison entre ledit contrepoids et ladite extrémité supérieure de conduite rigide en passant par ladite première poulie de renvoi.
Ce mode de réalisation permet de mettre en œuvre des ressorts ne reprenant qu'une partie de la tension à l'extrémité supérieure de la conduite rigide, le reste, à savoir la plus grande part de ladite tension étant reprise par ledit contrepoids, ledit ressort permettant seulement d'assouplir les variations de tension par des variations de distance entre l'extrémité supérieure de la conduite rigide et le support flottant, la tension à l'extrémité de la conduite rigide lorsque le support flottant est au repos étant reprise par ledit contrepoids.
Dans un autre mode de réalisation, ledit dispositif élastique d'amortissement est un dispositif hydro pneumatique comprenant un vérin hydraulique fixé sur le support flottant, combiné à un système d'accumulateur d'énergie hydro pneumatique, permettant de contrôler le déplacement de la tige du vérin, ledit premier câble ou chaîne étant fixé à l'extrémité supérieure de ladite conduite rigide et coopérant avec les extrémités de ladite tige rigide de vérin, de telle sorte qu'une traction exercée par l'extrémité supérieure de la conduite rigide sur ledit premier câble ou chaîne est reprise par une poussée exercée par la tige du vérin sous l'effet de la pression hydraulique fournie par ledit système d'accumulateur d'énergie hydraulique, ladite poussée de la tige de vérin exerçant une traction opposée sur ledit premier câble ou chaîne reprenant la tension exercée par l'extrémité supérieure de ladite conduite rigide. On comprend que l'extension moyenne de la tige de vérin correspond à une poussée reprenant la tension exercée à l'extrémité supérieure de la conduite rigide lorsque le support flottant est au repos et l'extension maximale, respectivement minimale, de la tige de vérin correspond à une poussée reprenant la tension exercée par l'extrémité supérieure de la conduite rigide correspondant aux mouvements d'éloignement maximal de la barge, respectivement de rapprochement maximal dans la direction du point de contact en pied de riser.
Plus particulièrement, dans ledit dispositif hydro pneumatique élastique d'amortissement selon l'invention, ladite tige de vérin coopère avec au moins une deuxième poulie de renvoi solidaire de l'extrémité de la tige du vérin, ladite deuxième poulie de renvoi coopérant avec ledit premier câble ou chaîne.
On comprend que ladite deuxième poulie de renvoi réalise un renvoi du lien souple entre sa première extrémité fixée à l'extrémité supérieure de la conduite rigide et sa deuxième extrémité fixée sur le support flottant.
Plus particulièrement encore, le dispositif élastique d'amortissement hydro pneumatique selon l'invention est caractérisé en ce que : - ledit système d'accumulateur est constitué d'une pluralité de réservoirs remplis pour partie de liquide et pour partie de gaz,
- la compression dudit gaz sous l'effet du transfert du liquide depuis le vérin jusqu'auxdits réservoirs est en fonction des déplacements de la tige de vérin et conférant des propriétés d'élasticité audit dispositif élastique d'amortissement, et
- le contrôle des pertes de charges par des dispositifs de variation de perte de charge lors du transfert du liquide entre lesdits réservoirs et ledit vérin permettant de contrôler et d'amortir des variations de pression hydraulique dans le système d'accumulateur et dans le vérin, de sorte qu'il est possible d'obtenir des variations maximales de déplacement de la tige de vérin pour des variations correspondantes minimales de la pression hydraulique dans le système d'accumulateur et du vérin hydraulique.
Dans un mode préféré de réalisation, une installation selon l'invention comprend un dispositif de sécurité assurant une seconde liaison de dimension variable entre l'extrémité supérieure de la conduite rigide et le support flottant, constituée par au moins deux barres de sécurité articulées à leurs extrémités, la variation de l'inclinaison desdites barres l'une par rapport à l'autre permettant de faire varier la distance entre le point d'attache et d'articulation de ladite seconde liaison sur le support flottant et l'extrémité supérieure de ladite conduite rigide, la longueur maximale de ladite seconde liaison correspondant à la longueur cumulée desdites barres étant inférieure à la longueur de ladite conduite flexible et de préférence, supérieure à la longueur de déplacement maximale de l'extrémité supérieure de ladite conduite rigide par rapport audit support flottant telle que contrôlée par ledit dispositif d'amortissement.
On comprend que ce dispositif de sécurité protège ladite conduite flexible en cas de rupture ou d'endommagement dudit lien souple ou dudit dispositif élastique d'amortissement selon la présente invention.
Avantageusement, ledit dispositif de sécurité comprend une barre articulée sur ledit support flottant, laquelle barre articulée est une barre télescopique.
Ce mode de réalisation permet de maintenir le dispositif élastique d'amortissement sensiblement en ligne droite avec l'autre barre de sécurité articulée sur l'extrémité supérieure de la conduite rigide.
Dans un mode particulier de réalisation, ledit dispositif élastique d'amortissement est fixé à une extrémité sur ledit support flottant et à l'autre extrémité sur l'extrémité supérieure de la conduite ou le cas échéant, l'articulation entre lesdites deux barres de sécurité d'un dispositif de sécurité. On comprend que ce mode de réalisation particulier ne comprenant pas de dit premier câble ou chaîne implique que le lien souple selon l'invention ne coopère pas avec une quelconque poulie de renvoi.
En pratique, ledit dispositif d'amortissement est capable de reprendre des tensions à l'extrémité supérieure de ladite conduite rigide de 50 à 750 T, de préférence 100T à 250 T.
Plus particulièrement, ledit dispositif d'amortissement autorise desdits déplacements de l'extrémité supérieure de ladite conduite rigide, apte à amortir des variations de tension à l'extrémité supérieure de ladite conduite rigide, lesdites variations représentant jusqu'à 20% de la tension au repos au niveau de ladite extrémité supérieure de conduite rigide , c'est-à-dire lorsque le support flottant et l'extrémité supérieure de la conduite rigide sont au repos.
Plus particulièrement encore, ledit dispositif élastique d'amortissement est apte à permettre des variations de distance entre l'extrémité supérieure de la conduite rigide et le support flottant ou des déplacements dans la direction axiale XX de l'extrémité supérieure de la conduite rigide de 1 à 10 m, de préférence de 2 à 5 m, de préférence pour des variations de tension à l'extrémité supérieure de la conduite rigide de 5 à 150 T.
Dans un mode de réalisation, l'extrémité supérieure de ladite conduite rigide est située en subsurface à une profondeur de 20 à 60 m.
Plus particulièrement encore, ladite conduite flexible présente une longueur de 20 à 140 m.
D'autres caractéristiques et avantages de la présente invention apparaîtront à la lumière détaillée des modes de réalisation qui vont suivre, en référence aux figures suivantes, dans lesquelles :
- la figure 1 est une vue de côté d'une conduite rigide sous-marine en configuration de chaînette simple, suspendue à un support flottant 10 de type FPSO, et dont l'extrémité inférieure repose sur le fond de la mer 13, représentée dans trois positions différentes la, Ib, Ic, selon la technique antérieure.
- la figure IA est une coupe en vue de côté détaillant la tranchée 12 creusée par le pied 11 de chaînette lors des mouvements de soulèvement de la conduite 1 sur le fond marin.
- la figure 2 est une courbe détaillant les variations de tension dans le riser en mouvement quasi-statique et en dynamique.
- la figure 3 est une vue de côté d'un dispositif d'amortissement selon l'invention installé entre un point fixe d'une barge et l'extrémité supérieure d'un riser.
- la figure 3A est une variante de la figure 3, dans laquelle le dispositif d'amortissement est disposé dans un puits à l'intérieur de la barge.
- la figure 4 est une vue de côté d'une barge et d'un riser connecté à un contrepoids associé à un dispositif d'amortissement installé en cale de la barge dans un puits.
- les figures 5A-5C sont des coupes en vue de côté d'un dispositif d'amortissement selon l'invention constitué de rondelles coniques, respectivement en configuration d'assemblage, de précontrainte et de fonctionnement.
- la figure 5D est un diagramme des efforts engendrés lors de la variation de la longueur H de tige dudit dispositif.
- la figure 6 représente un dispositif d'amortissement selon l'invention constitué d'un tensionneur hydraulique à câbles, dans une configuration de fonctionnement passif et de fonctionnement actif.
- la figure 6A représente une vue de la tête de tige du vérin de la figure 6.
- les figures Ik-IC représentent en vue de côté un mode préféré d'installation de l'invention dans lequel l'extrémité du riser est guidée par rapport à la barge 10 au moyen de barres articulées.
Dans la figure 1, on a représenté en vue de côté une liaison fond- surface 1, de type SCR, suspendue à un support flottant 10 de type FPSO ancré en 11, et reposant sur le fond de la mer 13 au niveau du point de contact 14.
La courbure varie le long de la chaînette depuis la surface, ou son rayon a une valeur maximale, jusqu'au point de contact, ou son rayon a une valeur minimale R. Sous l'effet des vagues, du vent et du courant, le support flottant 10 se déplace, par exemple de gauche à droite comme représenté sur la figure, ce qui a pour effet de soulever ou de reposer la conduite en forme de chaînette, au niveau du fond de la mer. Dans la position 10c, le support flottant s'écarte de la position normale 10a, ce qui a pour effet de tendre la chaînette Ic en la soulevant, et de déplacer le point de contact 14 vers la droite de 14a en 14c; le rayon de courbure en pied de chaînette augmentant de Ro à R2, de même que la tension horizontale dans la conduite engendrée au niveau dudit point de contact au fond de la mer, ainsi que la tension dans la conduite en tête de riser au niveau dudit support flottant. De la même manière, dans la position opposée 10b, le déplacement vers la droite du support flottant a pour effet de détendre la chaînette Ib et de reposer une partie de la conduite sur le fond de la mer. Le rayon R0 au niveau du point de contact 14a décroît jusqu'à la valeur Ri en 14b, de même que la tension horizontale dans la conduite au même point 14b, ainsi que la tension dans la conduite au niveau dudit support flottant.
Au point de contact 14 avec le sol 13, le rayon de courbure de la conduite est minimal dans la portion en suspension, mais dans la partie adjacente reposant sur le fond de la mer, ladite conduite étant théoriquement en ligne droite, son rayon de courbure est théoriquement infini. En fait ledit rayon n'est pas infini mais extrêmement élevé, car il persiste en général une courbure résiduelle.
Ainsi, comme expliqué précédemment, au gré des mouvements du support flottant en surface 10, le point de contact 14 se déplace de droite à gauche et, dans la zone soulevée ou reposée sur le fond, le rayon de courbure passe successivement d'une valeur minimale Rmin à une valeur extrêmement élevée, voire infinie dans le cas d'une configuration sensiblement en ligne droite.
La variation du rayon de courbure en 14 crée des contraintes internes considérables au sein de la structure de la conduite ce qui engendre des phénomènes de fatigue cumulés pouvant conduire à terme à la ruine de la liaison fond-surface.
Ces flexions alternatives créent des phénomènes de fatigue concentrés dans toute la zone de pied de chaînette et la durée de vie de telles conduites est fortement réduite et en général incompatible avec les durées de vie recherchées pour les liaisons fond-surface, c'est à dire 20-
25 ans, voire plus.
De plus, comme illustré dans la figure IA, on observe que durant ces mouvements alternatifs du point de contact, la raideur de la conduite, associée à la courbure résiduelle mentionnée précédemment, va dans le temps creuser un sillon 12 sur toute la longueur soulevée puis reposée. Il se crée ainsi une zone de transition dans laquelle existe un point d'inflexion 11, où la courbure change de sens dans les zones de transition, pour atteindre enfin une valeur infinie dans la portion de conduite sous-marine reposant en ligne droite sur le fond de la mer, ladite portion n'étant soulevée que de manière exceptionnelle, par exemple lors du cumul maximal dans la même direction, vers la gauche, de tous les éléments perturbateurs (houle-vent-courant) agissant sur le support flottant et sur la chaînette, ou encore lors de l'apparition de phénomènes de résonance au niveau de la chaînette elle-même. Lorsque la conduite se soulève, le point d'inflexion disparaît et les matériaux de la conduite précédemment en traction se retrouvent alors en compression ce qui crée une fatigue considérable dans cette portion de conduite. Ladite fatigue est alors d'un ou deux ordres supérieur à la fatigue en section courante où il n'y a pas de changement de la courbure, ce qui est incompatible avec une durée de vie recherchée de 25-30 ans voire plus. Le dispositif élastique d'amortissement selon l'invention permet de limiter radicalement les mouvements dans la zone du pied de riser, ainsi que la formation dans le temps du sillon 12, et en conséquence de réduire la fatigue cumulée dans cette zone, d'un facteur 4 à 6, voire plus dans certains modes préférés de réalisation.
Sur les figures 3 et 4, on a représenté une installation de liaison fond surface d'une conduite sous-marine reposant au fond de la mer comprenant une conduite rigide 1 remontant depuis le fond de la mer où elle repose, jusqu'en subsurface où son extrémité supérieure Ii est reliée à un support flottant 1) dans laquelle ladite conduite rigide est une conduite de type caténaire (SCR) remontant depuis le fond de la mer 13 jusqu'en dite subsurface selon une courbe en chaînette présentant une courbure essentiellement continûment variable jusqu'à son extrémité supérieure, et ladite extrémité supérieure Ii de la conduite rigide est reliée audit support flottant par :
1) une conduite flexible 2 apte à permettre le transfert du fluide véhiculé par ladite conduite rigide 1 vers le support flottant, ladite conduite flexible étant une conduite plongeante présentant un point bas 2a situé entre ses deux extrémités reliées respectivement à l'extrémité supérieure de la conduite rigide et audit support flottant, ladite conduite flexible étant reliée à l'extrémité supérieure de la conduite rigide par un dispositif à conduite coudée de type col de cygne 6, et
2) un lien souple comprenant un premier câble 3 coopérant avec un dispositif élastique d'amortissement 4 pour assurer la liaison entre l'extrémité supérieure du riser et un point d'accroché 5 sur ledit support flottant situé au-dessus du niveau de la surface de la mer, ledit dispositif élastique d'amortissement 4 reprenant la tension de ladite conduite rigide à son extrémité supérieure, et apte à permettre la variation de la distance entre l'extrémité supérieure de la conduite rigide et le support flottant, de manière à contrôler, tout en maintenant ledit lien souple tendu.
On comprend que ladite conduite flexible 2 présente une extrémité 2i reliée à l'extrémité supérieure au col de cygne 6 à l'extrémité supérieure de la conduite rigide et l'autre extrémité 22 reliée à des conduites 53b à bord du support flottant.
Sur la figure 3, le dispositif élastique d'amortissement 4, 20 est solidaire de l'extrémité supérieure de la conduite rigide à laquelle il est directement fixé rigidement, ledit premier câble 3 assurant la liaison entre un point d'accroché 5 du support flottant et l'autre extrémité du dispositif élastique d'amortissement 4, 20.
Sur la figure 4, le dispositif élastique d'amortissement 4, 30 comprend un ressort 3Oi associé à un contrepoids 3O2, ledit ressort 3Oi étant fixé à une extrémité sur un point d'accroché 5 du support solide, ledit premier câble 3 assurant la liaison entre l'autre extrémité du dispositif élastique d'amortissement 4, 30 et l'extrémité supérieure de la conduite rigide li.
Plus particulièrement, l'extrémité supérieure de ladite conduite rigide est située en subsurface à une profondeur de 20 à 60m. Ladite conduite flexible présente une longueur de 20 à 140m.
Sur la figure 2 on a représenté le diagramme des variations dans le temps de la tension en tête Ii de riser sous les effets des mouvements quasi-statiques et des mouvements dynamiques du support flottant. La courbe C2 représente la combinaison des variations quasi-statique C2a et dynamique C2b sur une période quasi-statique de 200-300 secondes. Au départ, le support flottant est au centre du cercle d'excursion, c'est-à-dire que le riser est dans la position la de la figure 1, correspondant à une tension dans le riser de FO= IOOt. Puis, la barge s'écarte vers la gauche vers la position maximale Ic, où la tension est alors maximale avec pour valeur Fmax= 110t. La position est atteinte au bout de T/4= 50-75 secondes. Puis, le support flottant revient vers la droite et la tension décroît jusqu'à un minimum Fmin = 90t, position atteinte à 3T/4, soit 150- 225 secondes. A ces variations de tension, viennent se superposer des variations dynamiques 2b dues au mouvement vertical de pilonnement de la barge. Ces variations dynamiques sont de période plus courte, de 3-5 secondes à 15-20 secondes, et d'amplitude variable en fonction desdits mouvements du FPSO. Au cas où la fréquence d'excitation correspond à une fréquence de résonance propre du riser, l'amplitude de la variation de tension se trouve considérablement amplifiée comme indiqué en C2c-C2d, ce qui provoque un mouvement préjudiciable extrêmement important au niveau du pied de chaînette. Sur la partie gauche (première demi-période de T=O à T/2) du diagramme on a représenté les variations C2a, C2b, C2c de la tension en tête de riser, pour un riser de l'art antérieur, simplement accroché sur le bordé du FPSO, par le biais d'un flexjoint. Et sur la droite (deuxième demi-période de T= T/2 à T), on a représenté les variations de tension C2e en tête de riser muni d'un dispositif amortisseur et d'assouplissement 20, 30, 40 selon l'invention installé entre l'extrémité supérieure 1 du riser et le support flottant. Ainsi, le dispositif d'amortissement selon l'invention 20, 30, 40 joue le rôle de filtre pour les hautes fréquences correspondant aux mouvements dynamiques, mais n'a sensiblement que peu d'effet sur les basses fréquences correspondant aux mouvements quasi-statiques.
Dans une version préférée de l'invention, représentée sur la figure 3, le dispositif d'amortissement comprend un ressort 20 pré-comprimé constitué d'un empilement de rondelles tronconiques élastiques 20a, connues sous le nom de rondelles belleville (ou « conical spring washer »). Le fonctionnement du dispositif 20 est expliqué en référence aux figures 5A-5D. Les rondelles belleville 20b sont disposées axialement de façon inversée alternativement, formant ainsi une succession de paires 20a de rondelles tronconiques 20b enfilées par leur perforation axiale autour d'une dite première tige 22. Les 2 petites bases de chaque rondelle tronconique 20b d'une même paire 20a étant tournées l'une vers l'autre et les 2 grandes bases opposées des rondelles de la paire étant tournée vers la grande base d'une rondelle suivante ou précédente enfilées à la suite sur la dite première tige 22. Les rondelles enfilées sur la tige 22 sont insérées au sein d'un tube cylindrique 21 muni d'un fond 21a percé de manière à laisser passer la tige 22 munie à son extrémité inférieure d'un point d'attache 22a. Lesdites rondelles sont enfilées autour de ladite tige en nombre suffisant pour qu'elles soient mises en compression dans un état de pré contrainte comme illustré sur la figure 5B. Une rondelle ou butée d'extrémité 22b est alors rendue solidaire de ladite tige, de telle manière que si l'on tire vers le bas sur l'attache 22a, on augmente la compression du ressort et donc l'effort de rappel F, en créant un allongement δH qui donne ainsi de la souplesse à l'extrémité supérieure du riser. Sur le diagramme de la figure 5D, on a représenté les variations de la tension dans le dispositif 20 en fonction de la longueur de tige 22 sortie δH. La particularité des rondelles belleville est que la courbe 23 effort/déplacement est sensiblement linéaire jusqu'à une certaine valeur d'aplatissement ou écrasement des rondelles, puis la courbe 23 s'aplatit dans un deuxième temps entre 23b et 23c. Dans cette zone 23b-23c, une légère augmentation de la compression crée un déplacement important. Ainsi, lors de l'assemblage du dispositif 20 et de sa précontrainte pour atteindre l'état représenté sur la figure 5B, on ajuste le nombre de rondelles 20a de manière à atteindre le point 23b du diagramme de la figure 5D avec une tige 22 quasiment entièrement rentrée dans l'enceinte 21. Dans cette position 23b, la précontrainte est de 9Ot reprenant la tension en tête de riser lorsque le support flottant 10 est au repos en 10a, c'est-à-dire que si l'on tire vers le bas sur l'extrémité 22a de la tige 22, aucun mouvement ne se produit. Si la tension augmente en tête de riser, la tige 22 se déplace vers le bas donnant ainsi de la souplesse au dispositif 20, jusqu'à atteindre en 23c la valeur maximale de tension F correspondant sensiblement à une sortie de tige 22 maximale. Si l'on dépasse le point 23c, l'ensemble des rondelles est quasiment à plat et l'on atteint alors rapidement une butée franche 23d qui bloque alors le dispositif, le rendant ainsi complètement rigide. Ainsi, on ajuste la précontrainte du dispositif 20 en 23b à une valeur minimale inférieure au minimum de la tension quasi-statique cumulée à la variation dynamique, telle que représentée sur la figure 2, et on limite avantageusement la tension supérieure du dispositif 20 en 23c à une valeur maximale supérieure au maximum de la tension quasi-statique cumulée à la variation dynamique, telle que représentée sur la figure 2. En procédant ainsi, le dispositif 20 selon l'invention aura toujours sa longueur de tige 22 sortie située entre les deux points 23b-23c du diagramme 5D, et donnera de ce fait la souplesse recherchée entre la structure de la barge et l'extrémité supérieure du riser. Pour augmenter la raideur du dispositif par deux, par trois, voire plus, on dispose avantageusement les rondelles belleville par premier groupe de deux ou trois, voire plus, orientées dans le même sens, le second groupe comportant le même nombre de rondelles identiques orientées en sens inverse.
Dans la figure 3A l'extrémité du riser est reliée par un câble 3 tourné autour d'une première poulie de renvoi 7, et relié au dispositif 20 installé à l'intérieur d'un puits 15 s'étendant sur la hauteur de la barge 10, c'est-à-dire sur 25-3Om.
Sur la figure 4 on a représenté en coupe partielle et en vue de côté, une version préférée de l'invention dans laquelle la tension du riser est contrebalancée par un contrepoids 3O2 relié à un premier câble 3 tourné autour d'une dite première poulie de renvoi 7 solidaire de la barge. Ainsi, lorsque la tension augmente ou diminue, le contrepoids monte vers le haut ou descend donnant ainsi de la souplesse à la liaison entre la barge et le riser, évitant ainsi de transmettre les mouvements au pied de chaînette dudit riser. On rajoute avantageusement un dispositif élastique additionnel 30i, par exemple un ressort, ou encore un dispositif à rondelles belleville 20 de capacité inférieure à celui décrit en référence aux figures 5A-5D. En effet, la tension du riser étant contrebalancée par le contrepoids 3O2, par exemple d'une valeur de 80 tonnes, la capacité du dispositif 20 ou ressort 3Oi pourra alors être réduite à 10 tonnes en configuration de précontrainte correspondant au point 23b de la figure 5D, et à une valeur maximale de 35 tonnes correspondant au point 23c de la même figure 5D.
Sur la figure 6 on a représenté un dispositif tensionneur élastique hydraulique 40 constitué d'un corps de vérin 41 supporté en 41a par la barge 10. La tige de vérin 42 supporte à son extrémité au moins une poulie supérieure 43 (ou dite deuxième poulie de renvoi), le premier câble
3 étant tourné autour de la/les poulies supérieures 43 et inférieures 41b, l'extrémité dudit câble étant fixé en 41c sur un support 41d solidaire de la structure de la barge 10. Le vérin hydraulique est relié par une conduite 46 du corps de vérin 41 à un premier jeu de trois réservoirs accumulateurs hydrauliques 44a constituant un premier système passif. En effet, lorsque la tension au niveau du riser augmente, la pression dans le circuit hydraulique augmente et l'huile 44b comprime la partie supérieure gazeuse 44c. La diminution du volume de gaz mis en compression permet que la tige 42 du vérin descende alors et le premier câble 3 tourné autour des poulies 43-41b se déroule vers le bas réduisant ainsi radicalement l'augmentation de la tension en tête du riser. On rajoute avantageusement dans le circuit hydraulique des régulateurs ajustables associés à des clapets anti-retour 44e-44f, qui permettent de créer, de manière connue de l'homme de l'art, et de manière indépendante, un amortissement des mouvements d'huile dans le sens montant de la tige de vérin (baisse de la tension : régulateur 44e), et dans le sens descendant de la tige de vérin (augmentation de la tension : régulateur 44f). On installe avantageusement en dérivation 46a des accumulateurs un dispositif dynamique 45 constitué d'un accumulateur à gaz 45a préchargé à une pression supérieure, par exemple P + 30 bars, à la pression maximale 44d des 3 accumulateurs 44a. Une vanne asservie 45e- 45f isole le second accumulateur 45a de la dérivation 46a. Un clapet de décharge taré 45d dirige l'huile vers une bâche 45 b dès lors que la pression dans le circuit hydraulique 46-46a dépasse une valeur définie, provoquant ainsi une décharge rapide de la pression, donc une réduction de la tension dans le premier câble 3. En cas de baisse importante de la tension dans le câble, les accumulateurs se déchargent et la pression chute, la vanne asservie 45e-45f du dispositif actif s'ouvre alors et libère l'huile du second accumulateur préchargé à une pression supérieure et rétablit ainsi le niveau de pression souhaité. Une pompe hydraulique 45c recharge le second accumulateur dès que nécessaire pour maintenir la surpression, en puisant l'huile dans la bâche de décharge 45b. En procédant ainsi, le système passif 44 fournit la souplesse recherchée pour les petites variations de tension, tandis que le dispositif actif 45 écrête les pointes de tension en relâchant de l'huile dans la bâche 45b en cas d'augmentation de la tension au delà d'un premier seuil supérieur fixé, ou en réinjectant le l'huile par la vanne asservie 45e-45f en cas de chute de la tension en deçà d'un second seuil inférieur fixé pour maintenir le déplacement de la tige de vérin dans des limites contrôlées.
Ledit dispositif 40 a été représenté installé à bord de la barge avec un moufflage à 6 brins et trois jeux de poulies 43 comme représenté sur la figure 6A, mais un dispositif similaire comportant seulement le vérin et le circuit hydraulique précédemment décrit est avantageusement installé en lieu et place du dispositif 20 de la figure 3 ou du dispositif 30 de la figure 4.
Sur les figures 7A-7C, on a représenté une version préférée de l'invention facilitant l'installation de l'ensemble sur site, ainsi que la sécurité en cas de rupture partielle ou complète de l'un des éléments. Dans l'art antérieur, l'installation des risers nécessite la mise en place à bord de la barge d'engins de traction extrêmement puissants et encombrants de manière à transférer l'extrémité du riser vers son support solidaire de la barge. De plus, du fait qu'une multiplicité de risers est en général installée côte à côte le long du bordé, ledit dispositif doit être successivement déplacé d'un emplacement de riser vers l'emplacement du riser suivant, ce qui complique considérablement l'organisation de cette zone déjà fortement congestionnée par les diverses conduites, ainsi que par les structures de charpente renforcées capables de reprendre des efforts de plusieurs centaines de tonnes. A cet effet, un dispositif de sécurité 51 comprenant deux barres de sécurité 51a-51b, articulées en 51c sont suspendues au niveau d'une articulation 51d solidaire du bordé de la barge. Le navire d'installation 50 vient de terminer l'assemblage du riser 1, suspendu au navire par un câble 50a. Un câble 51e permet de ramener le jeu de barres articulées 51a-51 b vers l'extrémité supérieure du riser pour effectuer leur connexion entre elles comme détaillé sur la figure 7B, dans la position Ic du riser 1. Une fois la connexion terminée, le câble 50a est déviré et le riser prend la position Id .
Comme illustré sur la figure 7C, on installe ensuite le dispositif d'amortissement et assouplissement, par exemple le dispositif 20 de la figure 3, ou encore un vérin hydraulique 40 associé à des accumulateurs 44-45 tels que décrits en référence à la figure 6, solidaire d'un point d'accroché 5 fixé sur la structure de la barge, et dont la seconde extrémité est reliée à l'articulation 51c entre les deux barres 51a et 51b par le biais d'un premier câble 3. Une conduite flexible 2 relie l'extrémité supérieure du riser aux canalisations rigides 53 de la barge 10, ladite conduite flexible étant guidée en 54a-54b respectivement au niveau des barres 51a-51b. En procédant ainsi, le navire d'installation est utilisé pour effectuer toutes les phases nécessitant des moyens importants de traction, et en cas de rupture du dispositif assouplisseur 4 ou du premier câble 3, l'ensemble se retrouve alors sensiblement dans la configuration Id de la figure 7B, le flexible de jonction 2 étant toujours connecté à ses deux extrémités, évitant de ce fait d'interrompre la production, l'ensemble restant en sécurité dans une configuration similaire à l'art antérieur, bien que momentanément dépourvu du dispositif d'amortissement et d'assouplissement 4, en attente de la réparation de ce dernier et de la remise en route du dispositif selon l'invention.
Dans une version préférée de l'invention, représentée sur la figure 7D, la première barre 51a est télescopique, et comporte deux éléments
51a l, 51a2, un premier dit élément 51a l étant solidaire de l'articulation
51d, un deuxième élément 51a2 coulissant à l'intérieur de 51a l et venant en butée franche en cas de complète extension, sa seconde extrémité étant articulée en 51c sur la seconde barre 51b, le dispositif élastique amortisseur étant connecté au niveau de la même articulation 51c. Ainsi, en fonctionnement normal, le dispositif élastique d'amortissement n'induit aucun effort de compression au sein de la barre télescopique 51a l-51a2, et le dispositif élastique amortisseur se trouve sensiblement en ligne droite par rapport à l'extrémité du riser 1 et à la seconde barre 51b. Lors de l'installation précédemment détaillée en référence aux figures 7A-7B-
7C, ainsi qu'en cas de rupture de l'un des éléments dudit dispositif élastique amortisseur, l'élément coulissant 51a2 de la première barre 51a vient en butée de l'élément 51a l solidaire de l'articulation 51d sur le support flottant, ce qui donne alors à l'ensemble du dispositif la configuration Id représentée sur la figure 7B, simplifiant ainsi la procédure d'installation, ou mettant en sécurité le riser en cas de rupture de l'un des éléments dudit dispositif élastique amortisseur.
On a décrit l'invention dans de multiples configurations basées sur des dispositifs élastiques amortisseurs, soit en ligne directe avec l'extrémité du riser (figures 3, 7A-7D), soit avec poulie de renvoi (figures 3A, 4), mais l'on reste dans l'esprit de l'invention dès lors que l'on associe à l'un quelconque de ces dispositifs un moufflage dont la fonction est d'amplifier ou de réduire la course disponible, l'effort au sein du dispositif élastique amortisseur étant en conséquence amplifié ou réduit dans les mêmes proportions, dans la mesure où l'on néglige les frottements internes au sein des poulies et des paliers. Le dispositif hydropneumatique décrit en référence aux figures 6-6A, possède un moufflage à 6 brins, ce qui, pour une course d'environ 12m entre la tête de riser et le support flottant, nécessite un vérin de 2m de course ; par contre les efforts en tête de riser seront, au niveau du la tige 42 du vérin, multipliés par le même facteur 6. De la même manière, des dispositifs à engrenage permettent d'augmenter ou de diminuer la course en augmentant ou en diminuant respectivement dans le même rapport les efforts au niveau du dispositif élastique amortisseur, dans la mesure où l'on peut négliger les frottements au sein du système.
Les divers dispositifs ont été décrits en relation avec une barge ancrée de manière fixe sur de multiples ancrages, mais ils présentent le même avantage quand ils sont installés sur des FPSO ancrés sur touret. Dans ce type d'ancrage, le touret est ancré sur le fond de la mer par 6-8-12 ancres, et le FPSO tourne librement autour dudit touret et se positionne ainsi naturellement au gré des vents et courants, dans la position créant le minimum d'effort entre FPSO et touret, donc le minimum d'efforts dans le système d'ancrage, ce qui augmente d'autant la stabilité du FPSO et perturbe alors d'autant moins les risers en configuration de chaînette reliées audit touret. Le dispositif selon l'invention permet, en ajustant par exemple la longueur du lien souple 3, de modifier la zone sensible en pied de riser soumise à la fatigue. Ainsi, pendant les premières années d'exploitation la longueur de ladite liaison souple sera par exemple de 5m, puis après cinq années, elle sera augmentée pour atteindre 10m, la zone sensible en pied de chaînette étant alors sensiblement déplacée d'autant, une zone de fatigue cumulée critique reposant alors de manière permanente sur le sol, et n'étant de ce fait plus soumise à fatigue. L'opération sera avantageusement répétée à intervalle régulier, dans la mesure où la longueur de la liaison flexible a été prévue suffisamment longue pour absorber ces variations de la position de l'extrémité supérieure du riser en configuration de chaînette. Le cas échéant, la liaison flexible sera simplement changée et une nouvelle liaison flexible plus longue viendra en remplacement de la longueur devenue trop courte.
On reste dans l'esprit de l'invention dès lors que l'on utilise comme dispositif élastique amortisseur une aussière en fibres thermoplastiques de forte capacité et de grande longueur. De telles aussières, de 100 à 300mm de diamètre sont capables de résister à des charges de plusieurs centaines de tonnes et sont couramment employée pour l'amarrage des structures flottantes. Elles possèdent une élasticité importante et leur longueur sera avantageusement de 100a 200m pour fournir le débattement nécessaire de plusieurs mètres, dans la plage de tension recherchée. L'extrémité du riser se trouvant de ce fait plus éloignée du bordé de la barge, il conviendra alors d'ajuster la longueur de liaison flexible qui, dans cette configuration sera beaucoup plus importante que dans les variantes décrites précédemment.

Claims

REVENDICATIONS
1. Installation de liaison fond surface d'une conduite sous- marine reposant au fond de la mer comprenant une conduite rigide (1) remontant depuis le fond de la mer où elle repose, jusqu'en subsurface où son extrémité supérieure (li) est reliée à un support flottant (10) caractérisé en ce que ladite extrémité supérieure (li) de la conduite rigide est reliée audit support flottant par :
1) une conduite flexible (2) apte à permettre le transfert du fluide véhiculé par ladite conduite rigide (1) vers le support flottant, et 2) un lien souple comprenant au moins un dispositif élastique d'amortissement (4) pour assurer la liaison entre l'extrémité supérieure du riser et un point d'accroché (5,41c) sur ledit support flottant, ledit dispositif élastique d'amortissement (4) reprenant la tension de ladite conduite rigide à son extrémité supérieure, et permettant la variation de la distance entre l'extrémité supérieure de la conduite rigide et le support flottant, de manière contrôlée.
2. Installation selon la revendication 1, caractérisée en ce que le dispositif élastique d'amortissement est positionné dans l'alignement de l'extrémité supérieure (11) de ladite conduite rigide.
3. Installation selon la revendication 2, caractérisée en ce que ledit lien souple comprend un premier câble ou chaîne (3) coopérant avec ledit dispositif élastique d'amortissement (4) tel que ledit dispositif élastique d'amortissement permet la variation de la distance entre l'extrémité supérieure de la conduite et le support flottant, tout en maintenant ledit premier câble ou chaîne (3) tendu sur une longueur sensiblement constante.
4. Installation selon la revendication 1 ou 3, caractérisé en ce que ladite conduite rigide est une conduite de type caténaire remontant depuis le fond de la mer jusqu'en dite subsurface selon une courbe en chaînette présentant une courbure essentiellement continûment variable jusqu'à son extrémité supérieure.
5. Installation selon la revendication 1 à 4, caractérisée en ce que ladite conduite flexible (2) est une conduite plongeante présentant un point bas (2a) situé entre ses deux extrémités reliées respectivement à l'extrémité supérieure de la conduite rigide et audit support flottant, ladite conduite flexible étant reliée à l'extrémité supérieure de la conduite rigide par un dispositif à conduite coudée de type col de cygne (6).
6. Installation selon l'une des revendications 1 à 5, caractérisée en ce que ledit dispositif élastique d'amortissement comprend un dispositif élastique mécanique (20, 30) ou un dispositif élastique hydro pneumatique (40).
7. Installation selon la revendication 1 à 6, caractérisée en ce que ledit dispositif élastique d'amortissement comprend des éléments élastiques biconiques (20a) comprenant des rondelles tronconiques de type belleville, de préférence constitués de paires de rondelles tronconiques de type belleville disposées axialement et de façon inversée , aptes à se déformer élastiquement axialement, enfilées autour d'une première tige rigide axiale (22) contenues dans une enceinte cylindrique (21) à un état de précontrainte, de manière à former un empilement de dites rondelles retenues d'un côté par une butée (22b) à une extrémité de ladite première tige rigide axiale (22) et de l'autre côté par une des parois d'extrémité (21a) de ladite enceinte cylindrique (21), paroi d'extrémité (21a) à travers une perforation de laquelle l'autre extrémité (22a) de ladite première tige rigide (22) est apte à se déplacer, ladite autre extrémité de la première tige rigide étant reliée à ladite extrémité supérieure de la conduite rigide.
8. Installation selon la revendication 7, caractérisée en ce que les nombre et dimension desdites rondelles tronconiques dites belleville sont tels que :
- dans leur état de précontrainte initiale à l'intérieur de ladite enceinte (21), avec une extension minimale de ladite première tige (22) en dehors de ladite enceinte (21), le dispositif élastique d'amortissement
(20) permet de reprendre une tension correspondant à la tension de l'extrémité supérieure de la conduite rigide lorsque le support flottant est au repos, et
- dans leur état de contrainte maximale de butée contre ladite paroi d'extrémité (21a), lors de l'extension maximale possible de ladite première tige (22) en dehors de ladite enceinte rigide (21), le dispositif élastique d'amortissement (20) permet de reprendre la tension maximale possible exercée à l'extrémité supérieure de la conduite rigide en cas d'excursion dudit support flottant notamment sous l'effet de houle, vent et/ou courants marins forts.
9. Installation selon la revendication 8, caractérisée en ce que lesdites tension initiale de précontrainte et tension maximale de butée dudit dispositif élastique d'amortissement (20) correspondent sensiblement aux valeurs de tension délimitant une zone de plus faible pente de la courbe effort/déplacement représentant la variation de tension dans le dispositif d'amortissement (20) en fonction de la longueur de dite première tige (22) sortie de ladite enceinte (21), zone de plus faible pente dans laquelle la variation du déplacement de ladite première tige est maximale pour une variation de tension donnée exercée sur ladite première tige.
10. Installation selon la revendication 5, caractérisée en ce que ledit dispositif élastique d'amortissement mécanique (30) comprend un ressort (20, 30i) combiné à une première poulie de renvoi (7) et un contrepoids (3O2), une extrémité dudit ressort étant fixée rigidement à un dit point d'accroché (5) sur ledit support flottant et l'autre extrémité dudit ressort étant fixée audit contrepoids (3O2), ledit lien souple (3) assurant la liaison entre ledit contrepoids (3O2) et ladite extrémité supérieure de conduite rigide en passant par ladite première poulie de renvoi (7).
11. Installation selon l'une des revendications 1 à 5, caractérisée en ce que ledit dispositif élastique d'amortissement est un dispositif hydro pneumatique (40) comprenant un vérin hydraulique (41-42) , combiné à un système d'accumulateur d'énergie hydro pneumatique (44-45), permettant de contrôler le déplacement de la tige du vérin (42), ledit premier câble ou chaîne (3) étant fixé à l'extrémité supérieure de ladite conduite rigide et coopérant avec les extrémités de ladite tige rigide de vérin (42), de telle sorte qu'une traction exercée par l'extrémité supérieure de la conduite rigide sur ledit premier câble ou chaîne (3) est reprise par une poussée exercée par la tige du vérin sous l'effet de la pression hydraulique fournie par ledit système d'accumulateur d'énergie hydraulique (44-45), ladite poussée de la tige de vérin exerçant une traction opposée sur ledit premier câble ou chaîne (3) reprenant la tension exercée par l'extrémité supérieure de ladite conduite rigide.
12. Installation selon la revendication 11, caractérisée en ce que ladite tige de vérin (42) coopère avec au moins une deuxième poulie de renvoi (43) solidaire de l'extrémité de la tige du vérin (42), ladite deuxième poulie de renvoi (43) coopérant avec ledit premier câble ou chaîne (3).
13. Installation selon la revendication 11 ou 12, caractérisée en ce que :
- ledit système d'accumulateur (44-45) est constitué d'une pluralité de réservoirs (44a, 45a) remplis pour partie de liquide (44b, 45b) et pour partie de gaz (44c, 45c), - la compression dudit gaz sous l'effet du transfert du liquide depuis le vérin (41-42) jusqu'auxdits réservoirs est en fonction des déplacements de la tige de vérin (42) et conférant des propriétés d'élasticité audit dispositif élastique d'amortissement, et
- le contrôle des pertes de charges par des dispositifs de variation de perte de charge (44e-44f) lors du transfert du liquide entre lesdits réservoirs et ledit vérin permettant de contrôler et d'amortir des variations de pression hydraulique dans le système d'accumulateur et dans le vérin, de sorte qu'il est possible d'obtenir des variations maximales de déplacement de la tige de vérin pour des variations correspondantes de pression hydraulique minimale dans le système d'accumulateur hydraulique et du vérin hydraulique.
14. Installation selon l'une des revendications 1 à 13, caractérisée en ce qu'elle comprend un dispositif de sécurité (51) assurant une seconde liaison de dimension variable entre l'extrémité supérieure de la conduite rigide et le support flottant, constituée par au moins deux barres de sécurité (51a, 51b) articulées (51c) à leurs extrémités, la variation de l'inclinaison desdites barres l'une par rapport à l'autre permettant de faire varier la distance entre le point d'attache et d'articulation (5Id) de ladite seconde liaison sur le support flottant et l'extrémité supérieure de ladite conduite rigide, la longueur maximale de ladite seconde liaison correspondant à la longueur cumulée desdites barres étant inférieure à la longueur de ladite conduite flexible (2) et de préférence, supérieure à la longueur de déplacement maximale de l'extrémité supérieure de ladite conduite rigide par rapport audit support flottant telle que contrôlée par ledit dispositif d'amortissement (4).
15. Installation selon la revendication 13, caractérisée en ce que une dite barre de sécurité (51a) articulée sur ledit support flottant est une barre télescopique.
16. Installation selon l'une des revendications 1 à 15, caractérisée en ce que ledit dispositif élastique d'amortissement est fixé à une extrémité sur ledit support flottant et à l'autre extrémité sur l'extrémité supérieure de la conduite ou le cas échéant, l'articulation (51c) entre lesdites deux barres de sécurité (51a, 51b) d'un dispositif de sécurité (51).
17. Installation selon l'une des revendications 1 à 16, caractérisée en ce que ledit dispositif d'amortissement est capable de reprendre des tensions à l'extrémité supérieure de ladite conduite rigide de 50 à 750 T, de préférence 100T à 250 T.
18. Installation selon l'une des revendications 1 à 17, caractérisée en ce que ledit dispositif d'amortissement autorise desdits déplacements de l'extrémité supérieure de ladite conduite rigide, apte à amortir des variations de tension à l'extrémité supérieure de ladite conduite rigide, lesdites variations représentant jusqu'à 20% de la tension au repos au niveau de ladite extrémité supérieure de conduite rigide.
19. Installation selon l'une des revendications 1 à 18, caractérisée en ce que ledit dispositif élastique d'amortissement est apte à permettre des variations de distance entre l'extrémité supérieure de la conduite rigide et le support flottant ou des déplacements dans la direction axiale (XX) de l'extrémité supérieure de la conduite rigide de 1 à 10 m, de préférence de 2 à 5 m, de préférence pour des variations de tension à l'extrémité supérieure de la conduite rigide de 5 à 150 T.
20. Installation selon l'une des revendications 1 à 19, caractérisée en ce que l'extrémité supérieure de ladite conduite rigide est située en subsurface à une profondeur de 20 à 60 m.
21. Installation selon l'une des revendications 1 à 20, caractérisée en ce que ladite conduite flexible présente une longueur de 20 à 140 m.
PCT/FR2008/050907 2007-05-29 2008-05-26 Installation de liaison fond-surface comprenant un dispositif elastique d'amortissement reprenant la tension de l'extremite superieure d'une conduite rigide en subsurface WO2008152288A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP08805851.6A EP2153018B1 (fr) 2007-05-29 2008-05-26 Installation de liaison fond-surface comprenant un dispositif elastique d'amortissement reprenant la tension de l'extremite superieure d'une conduite rigide en subsurface

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR0703801 2007-05-29
FR0703801A FR2916795B1 (fr) 2007-05-29 2007-05-29 Installation de liaison fond-surface comprenant un disposisif elastique d'amortissement reprenant la tension de l'extremite superieure d'une conduite rigide en subsurface
FR0755926 2007-06-21
FR0755926A FR2916796B1 (fr) 2007-05-29 2007-06-21 Installation de liaison fond-surface comprenant un lien souple entre un support flottant et l'extremite superieure d'une conduite rigide en subsurface.

Publications (3)

Publication Number Publication Date
WO2008152288A2 true WO2008152288A2 (fr) 2008-12-18
WO2008152288A3 WO2008152288A3 (fr) 2009-05-14
WO2008152288A4 WO2008152288A4 (fr) 2009-07-23

Family

ID=38924515

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/FR2008/050908 WO2008152289A2 (fr) 2007-05-29 2008-05-26 Installation de liaison fond-surface comprenant un lien souple entre un support flottant et l'extremite superieure d'une conduite rigide en subsurface
PCT/FR2008/050907 WO2008152288A2 (fr) 2007-05-29 2008-05-26 Installation de liaison fond-surface comprenant un dispositif elastique d'amortissement reprenant la tension de l'extremite superieure d'une conduite rigide en subsurface

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/FR2008/050908 WO2008152289A2 (fr) 2007-05-29 2008-05-26 Installation de liaison fond-surface comprenant un lien souple entre un support flottant et l'extremite superieure d'une conduite rigide en subsurface

Country Status (4)

Country Link
EP (2) EP2153018B1 (fr)
AT (1) ATE534803T1 (fr)
FR (2) FR2916795B1 (fr)
WO (2) WO2008152289A2 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2957649B1 (fr) 2010-03-18 2012-05-11 Saipem Sa Procede de depose d'une ligne sous-marine au fond de la mer
AU2013279827B2 (en) * 2012-06-21 2017-07-13 National Oilwell Varco Denmark I/S An offshore top site system
US10184589B2 (en) 2015-03-04 2019-01-22 Ge Oil & Gas Uk Limited Riser assembly and method
BR102016024269B1 (pt) * 2016-10-18 2023-05-16 Petróleo Brasileiro S.A. - Petrobras Sistema de auto-alinhamento e enrijecimento de dutos flexíveis em uma unidade estacionária de produção, e, método de instalação de dutos flexíveis através do mesmo
BR112019018473A2 (pt) 2017-03-09 2020-04-14 Single Buoy Moorings interface superior do riser de catenária em aço
CN109764188B (zh) * 2019-02-19 2024-05-07 长沙学院 柔性连接调节器

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4023517A (en) * 1975-08-11 1977-05-17 Ryan William J Riser mooring system
US4065822A (en) * 1976-02-27 1978-01-03 Texaco Inc. Single point mooring with strain relief anchoring
GB0002703D0 (en) * 2000-02-08 2000-03-29 Victoria Oilfield Dev Limited Mooring and flowline system
CA2406528A1 (fr) * 2000-04-27 2001-11-01 Larry Russell Jordan Procede et systeme de stabilisation de colonne montante
FR2808263B1 (fr) * 2000-04-28 2002-07-05 Coflexip Dispositif de transfert d'un fluide entre au moins deux supports flottants
EP1353840B1 (fr) * 2001-01-24 2005-11-16 Single Buoy Moorings Inc. Systeme de dechargement absorbant le mouvement des vagues
WO2003012327A1 (fr) * 2001-08-03 2003-02-13 Nkt Flexibles I/S Systeme d'ancrage limitant la flexion et structure de conduite souple ancree
AU2002314538A1 (en) * 2002-06-17 2003-12-31 Douglas Marine S.R.L. Mooring damper
US6824330B2 (en) * 2002-09-19 2004-11-30 Coflexip S.A. Constant tension steel catenary riser system
BRPI0400422A (pt) * 2004-03-02 2005-10-18 Petroleo Brasileiro Sa Arranjo de elemento compensador suspensor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Also Published As

Publication number Publication date
EP2153018B1 (fr) 2013-07-10
WO2008152289A3 (fr) 2009-05-14
FR2916795A1 (fr) 2008-12-05
WO2008152288A4 (fr) 2009-07-23
WO2008152289A2 (fr) 2008-12-18
EP2148974A2 (fr) 2010-02-03
FR2916796B1 (fr) 2010-08-27
FR2916795B1 (fr) 2010-08-27
FR2916796A1 (fr) 2008-12-05
ATE534803T1 (de) 2011-12-15
EP2153018A2 (fr) 2010-02-17
EP2148974B1 (fr) 2011-11-23
WO2008152288A3 (fr) 2009-05-14

Similar Documents

Publication Publication Date Title
EP1073823B1 (fr) Procede et dispositif de liaison fond-surface par conduite sous-marine installee a grande profondeur
EP2153018B1 (fr) Installation de liaison fond-surface comprenant un dispositif elastique d'amortissement reprenant la tension de l'extremite superieure d'une conduite rigide en subsurface
EP2286056B1 (fr) Installation de liaison fond-surface d'une conduite rigide avec une conduite flexible a flottabilite positive
EP1899219B1 (fr) Dispositif de transfert de fluide entre deux supports flottants
FR2653162A1 (fr) Colonne montante pour grande profondeur d'eau.
EP2342488A2 (fr) Procédé de montage d'une tour d'exploitation d'un fluide dans une étendue d'eau et tour d'exploitation associée
FR2801088A1 (fr) Systeme de pinces pour maintenir une conduite en tension, et support flottant en comprenant
EP0307255B1 (fr) Ligne d'ancrage caténaire pour un engin flottant et dispositif et procédé de mise en oeuvre de cette ligne d'ancrage
EP1250510B1 (fr) Dispositif de liaison fond-surface comportant un dispositif stabilisateur
FR2930618A1 (fr) Element de conduite de transition d'inertie pour encastrement d'une conduite rigide sous-marine
FR2858648A1 (fr) Dispositif de liaison fond-surface comportant une articulation flexible etanche entre un riser et un flotteur
WO2004070165A1 (fr) Dispositif de collecte de produit et/ou de tranquillisation d'une colonne en milieu sous-marin et son utilisation
EP2997220B1 (fr) Dispositif d'ancrage d'un support de goulottes d'une installation fond-surface
WO2010052423A2 (fr) Procédé de mise en place d'une tour d'exploitation d'un fluide dans une étendue d'eau avec un engin de traction
WO2001011184A1 (fr) Dispositif et procede de maintien et de guidage d'un riser, et procede de transfert d'un riser sur un support flottant
FR2507146A1 (fr) Plate-forme marine, notamment de forage, et procede de mise en place s'y rapportant
EP2640923B1 (fr) Tour d'exploitation de fluide dans une étendue d'eau et procédé d'installation associé.
CH649364A5 (en) Earthquake-proof linking device
FR2857690A1 (fr) Systeme de forage en mer comprenant une colonne montante haute pression
OA17784A (fr) Dispositif d'ancrage d'un support de goulottes d'une installation fond-surface
FR2757896A1 (fr) Systeme pour le forage et la production d'effluents petroliers
OA16429A (fr) Tour d'exploitation de fluide dans une étendue d'eau et procédé d'installation associé.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08805851

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2008805851

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE