WO2008152289A2 - Installation de liaison fond-surface comprenant un lien souple entre un support flottant et l'extremite superieure d'une conduite rigide en subsurface - Google Patents

Installation de liaison fond-surface comprenant un lien souple entre un support flottant et l'extremite superieure d'une conduite rigide en subsurface Download PDF

Info

Publication number
WO2008152289A2
WO2008152289A2 PCT/FR2008/050908 FR2008050908W WO2008152289A2 WO 2008152289 A2 WO2008152289 A2 WO 2008152289A2 FR 2008050908 W FR2008050908 W FR 2008050908W WO 2008152289 A2 WO2008152289 A2 WO 2008152289A2
Authority
WO
WIPO (PCT)
Prior art keywords
floating support
pipe
rigid pipe
rigid
bar
Prior art date
Application number
PCT/FR2008/050908
Other languages
English (en)
Other versions
WO2008152289A3 (fr
Inventor
Floriano Casola
Garry P. Mahoney
Original Assignee
Saipem S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saipem S.A. filed Critical Saipem S.A.
Priority to EP08805852A priority Critical patent/EP2148974B1/fr
Priority to AT08805852T priority patent/ATE534803T1/de
Publication of WO2008152289A2 publication Critical patent/WO2008152289A2/fr
Publication of WO2008152289A3 publication Critical patent/WO2008152289A3/fr

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/01Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells specially adapted for obtaining from underwater installations
    • E21B43/0107Connecting of flow lines to offshore structures
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/01Risers
    • E21B17/015Non-vertical risers, e.g. articulated or catenary-type
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B19/00Handling rods, casings, tubes or the like outside the borehole, e.g. in the derrick; Apparatus for feeding the rods or cables
    • E21B19/002Handling rods, casings, tubes or the like outside the borehole, e.g. in the derrick; Apparatus for feeding the rods or cables specially adapted for underwater drilling
    • E21B19/004Handling rods, casings, tubes or the like outside the borehole, e.g. in the derrick; Apparatus for feeding the rods or cables specially adapted for underwater drilling supporting a riser from a drilling or production platform
    • E21B19/006Handling rods, casings, tubes or the like outside the borehole, e.g. in the derrick; Apparatus for feeding the rods or cables specially adapted for underwater drilling supporting a riser from a drilling or production platform including heave compensators

Definitions

  • a bottom-to-surface bonding arrangement comprising a flexible link between a floating support and the upper end of a subsurface rigid pipe.
  • the present invention relates to a bottom-surface connection installation comprising at least one underwater pipe providing the connection between a floating support and the seabed, particularly at great depth.
  • These rigid underwater pipes are called
  • risers or “risers” as explained below, these risers consisting of unitary tubular elements welded together end to end, made of steel.
  • the present invention relates to a bottom surface connection installation of a submarine pipe resting at the bottom of the sea comprising a rigid pipe rising from the seabed where it rests, to the subsurface where its upper end is connected to a floating support by a mechanical connection comprising a flexible link and a flexible pipe for transferring the fluid from the rigid pipe to a floating support.
  • the technical sector of the invention is therefore the field of the manufacture and installation of subsea pipelines and more particularly bottom-surface production links for the underwater extraction of oil, gas or other soluble material. or fuse, or a suspension of mineral material, from submerged wellhead for the development of production fields installed offshore at sea.
  • the main and immediate application of the invention being in the field of oil production, as well as in the reinjection of water and the production or re-injection of gas.
  • a floating support generally comprises anchoring means to remain in position despite the effects of currents, winds and waves. It also generally comprises means for drilling, storage and treatment of oil and means of unloading to oil tankers, the latter presenting itself at regular intervals to perform the removal of production.
  • the name of these floating supports is the Anglo-Saxon term “Floating Production Storage Offloading” (meaning “floating means of storage, production and unloading") which will be used the abbreviated term "FPSO” throughout the description FDPU or Floating Drilling & Production Unit), where the floating support is also used to carry out drilling operations with deviated wells in the height of the slice. of water.
  • An underwater pipe, or a riser, according to the invention can be either a "production line” of crude oil or gas, or a water injection pipe, ensuring the connection with a sub-wellhead. marine installed at the bottom of the sea, is still a “drilling riser” ensuring the connection between the floating support and a wellhead located at the bottom of the sea.
  • the bottom-surface connection pipe When the bottom-surface connection pipe is of the catenary type, it directly ensures the connection between a floating support and a point of contact at the bottom of the sea which is offset with respect to the axis of said support, said pipe takes from its own weight a so-called "chain" configuration, forming a curve whose radius of curvature decreases from the surface to the point of contact at the bottom of the sea, and the axis of said pipe forms an angle ⁇ with the vertical of which the value generally varies from 5 to 20 degrees at the floating support up to, theoretically, 90 degrees at the seabed corresponding to a theoretical position substantially tangential to the horizontal as will be explained below.
  • Chain links are usually made with the aid of flexible pipes, but their cost is extremely high due to complex structure of the pipe.
  • Step Catenary Riser meaning "chain-shaped steel riser” which will be used for the abbreviated term “SCR” or " catenary riser “in the present description, whether steel or other material such as a composite material.
  • R Ro (Y / Ro + I) 2 in which :
  • x represents the distance in the horizontal direction between said contact point and a point M of the curve
  • y represents the altitude of the point M (x and y are therefore the abscissae and ordinates of a point M of the curve with respect to an orthonormal coordinate system whose origin is at the point of contact)
  • R - R 0 represents the radius of curvature at said contact point, that is to say at the point of horizontal tangency.
  • R represents the radius of curvature at the point M (x, y)
  • the curvature varies continuously along the chain from the surface, or its radius has a maximum value R max , up to the point of contact, or its radius has a minimum value R mn (or R 0 in the formula above) .
  • R max maximum value
  • R mn minimum value
  • the pipe has a radius of curvature which is maximum at the top of the chain, generally at least 1500, in particular from 1500 to 5000m, ie at the point of suspension on the FPSO, and which decreases until at the point of contact with the ground. At this point, the radius of curvature is minimal in the suspended portion. But, in the adjacent part resting on the bottom of the sea, said pipe being theoretically in a straight line, its radius of curvature is theoretically infinite. In fact, this radius is not infinite but extremely high, because there remains a residual curvature.
  • the contact point moves back and forth and, in the raised area or rested on the bottom, the radius of curvature successively passes from a minimum value R mm to a extremely high value or even infinite in the case of a theoretical configuration where the underwater pipe rests on the bottom of the sea substantially in a straight line.
  • the floating support is anchored in general by 8 or 16 lines of anchors usually equally distributed and located in Angles. Under the effect of wind and current, the floating support moves inside a surface called “excursion circle", substantially elliptical or circular and substantially centered with respect to its position. resting. And, we try to minimize the size of this circle excursion by playing on the stiffness of the anchors. Thus, it is common to provide the anchors to limit the excursion of the floating support in a radius of 5-6% of the water height. Thus, for a water depth of 1500m, the excursion circle will have a radius of 75-9Om.
  • the second type of movement is due to the heave of the floating support which occurs over several meters and then generates vertical movements of the riser. These dynamic movements are much more prejudicial because they have a much shorter period, between 3-5 seconds and 15-18 seconds. And in addition, certain frequencies between the extreme values, correspond to the resonance frequencies of the riser in the chain configuration, which has the effect of considerably amplifying the deformations of said chain, and thus the movements and risks of damage to the foot chain, at the point of contact.
  • a flexible flexible joint device On the surface, at the level of the connection of the riser head with the floating support, a flexible flexible joint device called “flexjoint” is generally installed, so as to absorb the angular variations of the top of the riser, during the movements of the support floating.
  • These "flexjoints” consisting mainly of elastomers, especially in the form of laminated abutments with a surface of revolution, serve not only to take up the traction forces generated by the riser, but also to transfer the crude oil to the rigid pipes. integral with the floating support.
  • These laminated abutment hinge devices of the "flex joint” type have an additional advantage in that they imply a reduced lateral space requirement and thus make it possible to connect a large number of risers side by side along the edge of the floating support.
  • the connection of the riser head with the floating support is difficult to achieve because it involves the implementation of large capacity winches capable of handling rigid pipes whose weight can reach 50Ot, on board the floating support and that it is necessary to move said winch when it is desired to set up a multiplicity of riser connected to the floating support as is the case in practice.
  • the laminated abutment hinge devices mentioned above make the connection of the riser head on the floating support all the more difficult to achieve.
  • the object of the present invention is to provide an improved bottom-surface connection installation comprising a rigid pipe or riser rising from the seabed to a floating support whose connection of the riser head with the floating support is at mechanically reliable, simpler to achieve and more generally to overcome the disadvantages mentioned above.
  • an object of the present invention is to provide a bottom-surface bonding installation as defined above making it possible to preferably allow the movements of the riser to be attenuated, so as to minimize the harmful consequences of the movements of the floating support and the riser head, more particularly the heave movements, thereby to increase the fatigue strength of said bottom-surface connection.
  • an object of the present invention is to provide a bottom-surface link installation as defined above having a minimum lateral space along the side of the barge, thereby allowing the installation of a plus a large number of risers along said plating, for the same distance.
  • an object of the present invention is to provide a bottom-surface connection installation comprising a safety device, which, in the event of an incident or breakage of an upper retaining element, maintains the riser in the configuration of backup, thus avoiding the rupture of the flexible link and the resulting pollution.
  • the present invention provides a bottom surface connection facility of a submarine pipe resting at the bottom of the sea comprising a rigid pipe rising from the bottom of the sea where it rests, to the subsurface where its upper end is connected to a floating support, characterized in that said upper end of the rigid pipe is connected to said floating support by:
  • a flexible pipe capable of allowing the transfer of the fluid conveyed by said rigid pipe towards the floating support, said flexible pipe being retained by at least one holding point at said mechanical connection such that the flexible pipe is substantially completely held in a curved shape above said upper end of the rigid pipe, the length of the flexible pipe being greater than at the maximum possible distance between the upper end of the rigid pipe and the hooked point of said flexible pipe at the floating support.
  • the installation according to the present invention makes it possible to dissociate:
  • the flexible link thus combined with said flexible pipe allows movements of the riser head while limiting them by the tension exerted by said flexible link on the riser head, which reduces fatigue and wear of the rigid pipe to its point of attachment with the floating support and allows to eliminate or avoid the implementation of a jointed stop joint type flexjoint for mechanical connection and transfer of fluid between the floating support of the riser head.
  • the curvature of the flexible pipe has an inverted double curvature with an inflection point preferably located at said retaining point, which allows said flexible pipe to follow the limited movements of the riser head without undergoing any damage. traction that is damaging and with limited space compared to traditional flexible plunging pipes, the latter having a variable curvature without inversion of the curvature, that is to say without inflection point.
  • the retention of the flexible pipe above the riser head avoids the damage of the flexible pipe during the movements of the riser head and limits the lateral movements of the flexible pipe and thus the space requirement. authorizes the establishment of a greater number of bottom-to-side bond side by side.
  • the invention also makes it possible to facilitate the connection of the riser head to the floating support without the need to implement a winch of high capacity, difficult to move on the floating support, but by implementing such winches only to edge of the laying ship.
  • the invention makes it possible to limit the movements in the zone of the riser foot, and thus limit the formation of a groove at the bottom of the sea, which makes it possible to reduce the cumulative fatigue in the foot zone of the riser in a big way.
  • the safety and guiding device guides the movements of the riser head and protects said flexible pipe in case of rupture of said flexible link.
  • said bar facilitates the installation of the installation and in particular the connection of the end of said flexible link to the floating support.
  • said safety and guiding device provides a mechanical connection of variable length between the floating support and the upper end of the rigid pipe and the floating support, allowing to vary the distance between the point of attachment of the said first hinge on the floating support and the upper end of said rigid pipe.
  • said safety device and guide comprises at least one said first telescopic bar 5, the variation of the sliding of said first bar for varying the distance between the point of attachment of said first joint on the support floating and the upper end of said pipe rigid, this distance remaining less than the length of said flexible pipe.
  • said safety and guidance device comprises a said first bar articulated by a first hinge at one end at its point of attachment to the floating support and by a second hinge at the other end at said flexible link. ends are attached respectively to the upper end of the riser and to a point of hanging on said floating support.
  • said flexible link may consist of two lengths of links whose junction is provided at said second joint.
  • said flexible pipe is retained by at least one point, preferably two retention points respectively at said first bar and at said flexible link between the upper end of the rigid pipe and said second joint.
  • said safety and guiding device comprises at least two first and second safety bars hinged together by a said second hinge and at their ends by a said first hinge at the end of said first hinge. bar at the floating support and a third articulation at the end of the second bar at the upper end of the rigid pipe, said first bar being preferably telescopic, the variation of the inclination of the two said bars relative to one another, and preferably the sliding extension of said first bar for varying the distance between on the one hand the point of attachment of said first hinge of said first bar on the floating support and on the other hand the point of attachment of the third articulation of said second bar to the upper end of said rigid pipe.
  • said flexible link is fixed at one end at the medial joint or said second joint between the two said bars and at the other end at a point of attachment to said floating support.
  • said flexible pipe is retained by at least two holding points respectively at said two bars. This makes it possible to maintain an inverted double curvature of said flexible pipe more reliably.
  • the maximum distance from said link corresponds to the maximum length of said telescopic bar in maximum extension and / or respectively to the cumulative length of the two said bars.
  • said first articulation at the hook of said first bar to the floating support only allows a rotation of said first bar relative to an axis parallel to the edge of the floating support, said axis YY being horizontal when said floating support is in the rest position, so as to maintain the axis XX of the upper part of the rigid pipe in a plane substantially perpendicular to said edge of the floating support.
  • This latter embodiment is advantageous because it reduces the lateral size of the installation in case of movements of the upper end of the rigid pipe and the floating support.
  • said third articulation is a ball joint allowing rotations in all directions.
  • the safety and guiding device comprises two said first bars arranged parallel on either side of the axial plane of a single said second bar and the said second joints are integral with a plate which is itself integral with the end. of said second bar.
  • said flexible link consists of a so-called first cable, itself preferably consisting of thermoplastic fibers having elastic characteristics or comprising or cooperating with at least one elastic damping device, said elastic damping device taking up the tension of said rigid pipe at its upper end, and allowing the variation of the distance between the upper end of the rigid pipe and the floating support, while maintaining said first cable or said string tensioned.
  • the elastic damping device by its extension or retraction, induces an increase or a decrease in the distance between the upper end of the rigid pipe and the floating support, said flexible link being kept taut, and this variation of distance is controlled within limits pre-established by the characteristics and elastic properties of the elastic damping device;
  • the variation in distance between the upper end of the rigid pipe and the floating support induced by the elastic damping device is a function of the variation of tension exerted on it by the upper end of the rigid pipe, with a increasing the distance in case of traction and a decrease in case of relaxation of the tension exerted on the elastic damping device.
  • the device damping elastic according to the invention makes it possible to soften the connection between the upper end of the rigid pipe and the floating support by reducing the tension at the upper end of the rigid pipe by increasing or decreasing the distance between the upper end of the rigid pipe and the floating support.
  • the present invention thus makes it possible to radically reduce the fatigue and wear of the rigid pipe at its point of contact with the seabed and at its point of attachment with the floating support.
  • the elastic damping device makes it possible to limit the movements in the zone of the riser foot, and thus limit the formation of a groove at the bottom of the sea, which makes it possible to reduce cumulative fatigue in the foot zone of the riser in a considerable way.
  • the elastic damping device is:
  • the displacement of the upper end of the rigid pipe is related to the possible extension or retraction of the elastic damping device by its elastic properties.
  • said elastic damping device is fixed on said floating support and said flexible link ensures the connection between the damping device and a rigid element of said mechanical connection between the upper end of the pipe and the floating support, preferably said rigid element being a said second articulation of a said safety bar, preferably a so-called first articulation between said two safety bars of a safety device.
  • the elastic damping device is positioned in alignment with the upper end of the rigid pipe, either directly secured thereto, or integral with the floating support, but without the flexible link being cooperates with a return pulley on said floating support.
  • positioning in the alignment of the upper end of the rigid pipe is meant that the elastic device extends or retracts, and / or the point of attachment of said flexible link with said elastic device moves in a longitudinal direction substantially corresponding to that of the axial direction of said rigid pipe at its upper end.
  • This embodiment is advantageous because it makes it possible to reduce the fatigue and wear problems of said cable, which are created at the level of the windings on the return pulleys, because of the extremely high tension existing in said cable.
  • an elastic damping device essentially reduces the vertical movements of the upper end of the rigid pipe induced by heave movements. of the floating support, and the variations of tension of the shortest most detrimental periods which result from it.
  • an elastic damping device has substantially little effect on so-called quasi-static movements of the head of the riser related to lateral or horizontal excursion of the floating support as described above.
  • said rigid pipe is a catenary type pipe going up from the seabed to said subsurface in a chain curve having a curvature substantially continuously variable to its upper end.
  • said flexible pipe is connected to the upper end of the rigid pipe by a device comprising a bent pipe element. The curvature thus created allows the flexible pipe to withstand the excursions of the floating support without ever having to resume the tensions exerted on the floating support or the riser head following the movements of the yawning head and heave of the floating support, only said flexible link combined, where appropriate, with the safety and guiding device and the elastic damping device taking up most of the tension at the top of the riser associated with these lurches and heaving of the floating support.
  • said resilient damping device comprises a spring-type mechanical elastic device or washers called “belleville” or a hydraulic pneumatic elastic device of the hydraulic cylinder type.
  • an installation according to the invention comprises a resilient mechanical damping device comprising biconical elastic elements comprising frustoconical washers of the Belleville type, preferably consisting of pairs of frustoconical washers of belleville type arranged axially and inversely, suitable for to deform elastically axially, threaded around a first axial rigid rod contained in a cylindrical chamber to a prestressing state, so as to form a stack of said washers retained on one side by a stop at one end of said first rigid rod axial and on the other side by one of the end walls of said cylindrical enclosure, end wall through a perforation of which the other end of said first rigid rod is able to move, said other end of the first rigid rod being connected to said upper end e rigid driving.
  • Said frustoconical washers called "belleville washers” are grouped in pairs forming biconical elements, said successive washers being disposed axially inversely alternately, that is to say the small bases of the two frustoconical washers of the pair being one against the other while the large bases of the two frustoconical washers of a pair are adjacent to other large frustoconical washer bases of an adjacent pair slipped on the same rod.
  • the elastic damping device makes it possible to take up a voltage corresponding to the voltage of the upper end of said enclosure; the rigid pipe when the floating support is at rest, and
  • the elastic damping device makes it possible to take up the maximum possible tension exerted on said end wall; upper end of the rigid pipe in case of excursion of said floating support in particular under the effect of swell, wind and / or strong sea currents.
  • This damping device with frustoconical washers will thus always have an exit rod length capable of giving flexibility searched between the floating support and the upper end of the rigid pipe.
  • said initial prestressing tension and maximum abutment tension of said elastic damping device substantially correspond to the tension values delimiting a flattening zone of the force / displacement curve representing the voltage variation in the damping device as a function of the length of said first rod output from said chamber, flattening zone in which the variation of the displacement of said first rod is maximum for a given voltage variation exerted on said first rod .
  • said elastic mechanical damping device comprises a spring combined with a return pulley and a counterweight, one end of said spring being rigidly fixed to a said point of attachment on said floating support and the other end said spring being fixed to said counterweight, said flexible link ensuring the connection between said counterweight and said upper end of rigid pipe passing through said first return pulley.
  • This embodiment makes it possible to implement springs only taking up part of the tension at the upper end of the rigid pipe, the remainder, namely the greater part of said tension being taken up by said counterweight, said spring allowing only to soften the voltage variations by variations in distance between the upper end of the rigid pipe and the floating support, the tension at the end of the rigid pipe when the floating support is at rest being taken up by said counterweight .
  • said elastic damping device is a hydro-pneumatic device comprising a hydraulic jack fixed on the floating support, combined with a hydro-pneumatic energy storage system, making it possible to control the displacement of the cylinder rod, said first cable or chain being fixed to the upper end of said rigid pipe and cooperating with the ends of said rigid cylinder rod, so that a traction exerted by the upper end of the rigid pipe on said first cable or chain is taken up by a thrust exerted by the cylinder rod under the effect of the hydraulic pressure supplied by said hydraulic energy accumulator system, said thrust of the cylinder rod exerting an opposite traction on said first cable or chain taking up the tension exerted by the upper end of said rigid pipe.
  • the average extension of the jack rod corresponds to a thrust resuming the tension exerted on the upper end of the rigid pipe when the floating support is at rest and the maximum extension, respectively minimum, of the cylinder rod. corresponds to a thrust taking again the tension exerted by the upper end of the rigid pipe corresponding to the movements of maximum distance of the barge, respectively of maximum approach in the direction of the point of contact in foot of riser.
  • said jack rod cooperates with at least one second return pulley secured to the end of the cylinder rod, said second return pulley cooperating with said first cable or chain.
  • said second return pulley sends a return of the flexible link between its first end fixed to the upper end of the rigid pipe and its second end fixed to the floating support.
  • the elastic hydro-pneumatic damping device is characterized in that: said accumulator system consists of a plurality of tanks filled partly with liquid and partly with gas,
  • said first cable and, if appropriate, said damping device are capable of resuming voltages at the upper end of said rigid pipe from 50 to 750 T, preferably 100 T to 250 T.
  • said first cable and, if appropriate, said damping device allow said displacements of the upper end of said rigid pipe, capable of damping voltage variations at the upper end of said rigid pipe, said variations representing up to at 20% of the resting tension at said upper end of the rigid pipe, that is to say when the floating support and the upper end of the rigid pipe are at rest.
  • said first cable and, if appropriate, said elastic damping device is able to allow variations in distance between the upper end of the rigid pipe and the floating support or displacements in the axial direction XX of the upper end of the rigid pipe from 1 to 10 m, preferably from 2 to 5 m, preferably for voltage variations at the upper end of the rigid pipe from 5 to 150 T.
  • the upper end of said rigid pipe is located in a subsurface at a depth of 20 to 60 m.
  • said flexible pipe has a length of 20 to 400 m
  • said flexible link has a length of 10 to 300m, and where appropriate the safety device and guide can extend over a length of 1.5 to 25 m.
  • FIG. 1 is a side view of a rigid underwater pipe in simple chain configuration, suspended on a floating support 10 of the FPSO type, and whose lower end rests on the bottom of the sea 13, represented in FIG. three different positions la, Ib, Ic, according to the prior art.
  • FIG. 1 is a sectional side view of the trench 12 hollowed by the foot 11 of chain during the lifting movements of the pipe 1 on the seabed.
  • FIG. 2 is a curve detailing the voltage variations in the riser in quasi-static motion and in dynamics.
  • FIGS. 3A to 3C are side views of several alternative embodiments of the bottom-surface connection installation according to the invention without safety device (FIG. 3A), with safety device to an articulated bar (FIG. 3B). and with a security device with several articulated bars (FIG. 3C).
  • FIG. 3D is a front view of the variant of FIG. 3C.
  • - Figure 4 is a side view of a bottom-surface connection installation according to the invention with a safety device associated with a damping device.
  • FIGS. 5A-5C are cross-sectional views of a damping device according to the invention consisting of conical rings, respectively in assembly configuration, prestressing and operation.
  • FIG. 5D is a diagram of the forces generated during the variation of the rod length H of said device.
  • FIGS. 6A to 6C show the stages of attachment of a riser head to the edge of a solid support according to the prior art
  • Figures 8A-8B-8C are exploded in side view, the telescopic articulated bar, respectively single version ( Figure 8A), and versions with integrated damping ( Figures 8B and 8C).
  • FIG. 1 there is shown in side view a bottom-surface connection 1 of the SCR type, suspended on a floating support 10 of FPSO type anchored at 11, and resting on the bottom of the sea 13 at the point of contact 14.
  • the curvature varies along the chain from the surface, or its radius has a maximum value, up to the point of contact, or its radius has a minimum value R.
  • the floating support 10 moves, for example from left to right as shown in the figure, which has the effect of lifting or resting the chain-shaped pipe at the seabed.
  • the floating support deviates from the normal position 10-1, which has the effect of straightening the chain Ic by lifting it, and moving the point of contact 14 to the right of 14a in 14c ; the radius of curvature at the foot of the chain increasing from R 0 to R 2 , as well as the horizontal tension in the pipe generated at said point of contact at the bottom of the sea, as well as the tension in the pipe at the head of the riser at level of said floating support.
  • the displacement to the right of the floating support has the effect of relaxing the chain I b and to rest a portion of the pipe on the bottom of the sea.
  • the radius R 0 to the level of the contact point 14a decreases to the value Ri at 14b, as well as the horizontal tension in the pipe at the same point 14b, as well as the tension in the pipe at said floating support.
  • the radius of curvature of the pipe is minimal in the portion in suspension, but in the adjacent part resting on the bottom of the sea, said pipe being theoretically in a straight line, its radius of curvature is theoretically infinite. In fact, this radius is not infinite but extremely high, because it generally remains a residual curvature.
  • the variation of the radius of curvature at 14 creates considerable internal stresses within the structure of the pipe, which generates cumulative fatigue phenomena that can eventually lead to the ruin of the bottom-surface bond.
  • FIG. 2 shows the diagram of the variations in time of the tension at the head Ii of riser under the effects of quasi-static movements and dynamic movements of the floating support.
  • Curve 12 represents the combination of the quasi-static 12a and dynamic 12b variations over a quasi-static period of 200-300 seconds.
  • the damping device according to the invention acts as a filter for the high frequencies corresponding to the dynamic movements, but has substantially little effect on the low frequencies corresponding to the quasi-motions. -static.
  • FIGS. 3A to 3D show various embodiments of a bottom-surface connection installation according to the invention comprising the upper end II of a rigid pipe 1 going up from the seabed 13, on which it rests, to the subsurface where its said upper end Ii is connected to a floating support 10 (hereinafter also called “barge”) by which said rigid pipe is a catenary type pipe (“SCR”) rising from the seabed 13 to said surface along a chain curve having a curvature substantially continuously variable up to said upper end.
  • a floating support 10 hereinafter also called “barge”
  • SCR catenary type pipe
  • the upper end Ii of the rigid pipe 1 is connected to the floating support by a flexible link or said first cable 3 itself attached to the floating support at a mounting plate 7.
  • This first cable 3 ensures a simple connection between the upper end of the rigid pipe Ii and the floating support.
  • a flexible pipe 2 adapted to allow the transfer of the fluid conveyed by the rigid pipe 1 to the floating support, is connected to the upper end of the rigid pipe 1 by means of a device comprising a bent pipe portion 6, 1 other end of the flexible pipe being connected to ends of pipes on board the floating support at the attachment plate 8.
  • the flexible pipe is entirely located above its point of connection at the bent device 10 with the upper end of the rigid pipe and adopts a curved shape position with an inverted double curvature, said flexible pipe being retained by a retainer 2a at the first cable 3 to do this.
  • said first cable 3 may represent a length of 10 to 300 m. If it is desired to give the first cable 3 elastic properties in order to dampen and soften movements at the top of the riser head, it may be advantageous to implement a cable consisting of hawsers of 100 to 300 mm made of thermoplastic fiber, such as those commonly used for mooring floating structures. These bullets are able to withstand loads of several hundred tonnes. They have a high elasticity and their length from 100 to 200 m allows to provide a movement by elasticity of several meters if necessary in the voltage range concerned. It is understood that the length of the flexible pipe is adapted as a function of the length of said first cable 3.
  • FIG. 3B shows a bottom surface connection installation of the type of FIG. 3, but also comprising a safety and guidance device 5 consisting of a telescopic bar 5a.
  • the telescopic bar 5a has two sliding elements one inside the other
  • the first element a tubular body 5a l is secured at one of its ends of the floating support by a first hinge 5d, the second telescopic bar member, a sliding rod 5a2 sliding inside the first element 5a l as explained below, with reference to FIGS. 8A to 8C.
  • the telescopic bar 5a is in the form of a hydraulic jack with a tubular body 5a1 and a sliding rod 5a2 associated with a piston 5a3 coming into abutment at the end of the tubular body 5a. in 5a4 when the sliding rod 5a2 is fully extended outwards.
  • the free end of the sliding rod 5a2 is connected to the first cable 3 by a second articulation 5c.
  • the first cable 3 may consist of two slings 3i and 3 2 providing the connection between the second hinge 5c and the attachment point 7 to the floating support is for the sling 3i and the connection between 5c the second joint and the upper end of the rigid pipe Ii for the second sling 3 2.
  • the second hinge 5c is attached to the upper end of the rigid pipe directly, but this embodiment involves a larger telescopic bar implementation.
  • the flexible pipe 2 is held above the upper end of the rigid pipe by adopting a position in shape at least doubly curved and having a point of inflection, thanks to 2 retaining points where the flexible pipe is held by holding elements 2a on the first sling 3 2 and retaining member 2b at the tubular body 5a of the telescopic bar 5a.
  • the telescopic bar 5a serves as a guiding and safety device. It makes it possible in fact by controlling the sliding of the telescopic bar to control the movements of the first cable 3 and thus the riser head as needed.
  • the configuration of the joints of said first 5d and second articulation 5c also serves to guide the movements of the upper portion of the rigid pipe 1 relative to the floating support and in particular to maintain the axis XX of the upper part of the rigid pipe 1 in a plane substantially perpendicular to the shell 1Oi of the floating support.
  • the first articulation 5d only allows rotation in a plane perpendicular to the plating 10i, that is to say about an axis parallel to the ply 10i and substantially horizontal when the floating support and the sea are at rest, that is to say substantially parallel to the upper platform 1O 2 of the floating support.
  • the second articulation 5c is preferably in the form of a ball joint thus allowing rotations in all directions, so as to avoid twisting, kinking or bending which could damage the first cable 3.
  • the telescopic bar 5a also constitutes a safety in case of incident or breakage of the first cable 3i, for example at the point of hooking 7 to the floating support, which makes it possible to prevent the tension being taken up by the flexible pipe 2 in a such a case of rupture, insofar as the length of the flexible pipe is greater than the maximum possible distance between the upper end at the device 6 of the rigid pipe 1 and the hooked point 8 at the other end of the pipe.
  • the flexible pipe in case of maximum extension of the telescopic bar and alignment thereof with the sling 3 2 .
  • the safety device comprises two articulated bars 5a and 5b, as shown in FIG. 3c.
  • the second articulation 5c serving as articulation between the two articulated bars 5a and 5b, the second bar 5b being non-telescopic and itself being articulated at its other end by a third articulation 5e at the upper end II of the pipe rigid.
  • the flexible pipe is retained by the retaining elements 2a at the second bar 5b and 2b at the first telescopic bar 5a.
  • This embodiment has an additional security with respect to FIG 3b insofar as there is no risk of rupture at the third sling 3 2.
  • the second bar 5b reinforces the guiding of the upper part of the rigid pipe 1 in its movements by the stiffening of the mechanical connection between the upper end Ii of the rigid pipe and the second articulation 5c connected at the point of hooking 7 of the floating support by the first cable 3.
  • FIG. 3D shows an advantageous variant embodiment in which the safety device comprises in fact two first bars 5a hinged at a first hinge 5d on the hoop 1O 1 of the floating support and providing a telescopic connection with the plate 5f integral with the end of the second bar 5b and supporting said second joints 5c at the end of each of the rods 5a2 of the first telescopic bar 5a (not shown in Figure 3D).
  • the plate 5f is supported by 5g reinforcement elements.
  • This embodiment with two said first telescopic bars 5a arranged parallel on either side of the axial plane of the single second non-telescopic bar 5b reinforces the guiding of the end of the upper portion of the rigid pipe 1 in a plane substantially perpendicular to the plane of the plating 10i.
  • Said second joints 5c at the end of the sliding rods 5a2 of each of the first bars 5a do not allow also that a rotation about an axis parallel to the plane of the plating 1Oi and the plate 5f, as well as to the upper plate 1O 2 of the floating support, that is to say is in substantially horizontal position when the floating support and at rest, the sea being also at rest.
  • said first telescopic bars 5a are in an intermediate position, as shown in FIGS. 3A to 3C and the first cable 3 is in a position substantially in a straight line with respect to the second bar 5b and the upper end II rigid pipe 1.
  • FIGS. 8B and 8C show hydraulic cylinder variants constituting said first telescopic bars 5a comprising a hydraulic device making it possible to avoid a too sudden impact of the piston 5a3 on the abutment 5a4 at the end of the tubular body 5a 1 in case of implementation of the safety device, that is to say breaking the cable 3 if necessary.
  • the movements of the sliding rod 5a2 are damped by throttling devices 6a and nonreturn valve 6b to control in a known manner respectively the output and the retraction of rod.
  • a small hydro-pneumatic accumulator 6c makes it possible to absorb the variations in the volume of oil in the hydraulic lines 6 coming from the two chambers 5a5 and 5a6 of the hydraulic cylinder.
  • FIG. 8C shows a simplified version of FIG. 8B in which only the rod exit 5a2 is controlled by the throttling device or caliber 6a, the re-entry of the rod only opening the non-controlling valve 6b. some movement.
  • FIGS. 6A to 6C show the hooking of a riser head 1 on a floating support 10 at a hooked point 8 on the plank 10i of the floating support from a surface vessel
  • the riser head II is moved from the laying ship to the floating support with the aid of cables.
  • the attachment of the riser head at 8 along the rim 10i of the floating support requires the use of traction units such as extremely powerful IO3 winches and bulky IO2 platform that allow through a cable 15 to progressively transfer the riser head to the floating support.
  • this traction unit IO 3 must be successively moved from one location to riser to the next, which greatly complicates the organization of this area of the floating support, already heavily encumbered by the various pipes as well as reinforced structural structures capable of taking each effort of several hundred tons.
  • the safety and guiding device 5 makes it easier to grip the riser heads, insofar as the riser head is offset relative to the plank and connected. to it by a mechanical double bond 3 and fluid transfer by flexible pipe 2.
  • the safety device comprising the first two bars 5a and second bars 5b comprising a first hinge 5d ensuring the attachment of the end of the first bar 5a at the plating 10i and comprising a second hinge 5c allowing the articulation relative to one another of the two bars 5a and 5b, facilitates the setting place flexible links 3 and flexible pipe connections 2 at the upper end Ii of the rigid pipe.
  • the installation vessel is used to perform all phases requiring significant traction means.
  • the assembly is found then substantially in the configuration If of Figure 7B, the flexible connecting pipe 2 is always connected at both ends. This avoids interrupting the production, all remaining safe in a configuration similar to the prior art, although temporarily without the damping and softening device 4, waiting for the repair of the latter and restarting the device according to the invention.
  • FIG. 4 shows a bottom surface connection installation of a submarine pipe resting at the bottom of the sea, comprising a flexible link comprising a first cable 3 cooperating with an elastic damping device 4 to provide the link between the upper end of the riser and a hooked point 7 on said floating support situated above the level of the sea surface, said resilient damping device 4 taking up the tension of said rigid pipe at its upper end, and adapted to allow the variation of the distance between the upper end of the rigid pipe and the floating support, so as to control, while maintaining said flexible link stretched.
  • the elastic damping device makes it possible to limit radically the movements in the zone of the riser foot, as well as the formation in time of the groove 13a, and consequently to reduce the cumulative fatigue in this zone, of a factor 4 to 6 or more in some preferred embodiments.
  • the resilient damping device 4 is integral with the upper end of the rigid pipe to which it is directly fixed rigidly, said first cable 3 providing the connection between a hooking point 7 of the floating support and the other end of the elastic damping device 4, 20.
  • the upper end of said rigid pipe is located in a subsurface at a depth of 20 to 60m.
  • Said flexible pipe has a length of 20 to 140m.
  • FIGS. 1 In one version of the invention, shown in FIGS.
  • the damping device 4 comprises a pre-compressed spring 20 consisting of a stack of elastic frustoconical washers 20a, known as washers bel levil the (or "conical spring washer”).
  • the operation of the device 20 is explained with reference to FIGS. 5A-5C.
  • the belleville washers 20b are arranged alternately axially reversed, thus forming a succession of pairs 20a of frustoconical washers 20b threaded by their axial perforation around a said first rod 22.
  • the two small bases of each frustoconical washer 20b of the same pair 20a being turned toward each other and the two large opposite bases of the washers of the pair being turned towards the large base of a next or previous washer threaded thereafter on said first rod 22.
  • the washers threaded on the rod 22 are inserted into a cylindrical tube 21 provided with a bottom 21a pierced so as to let the rod 22 provided at its lower end with an attachment point 22a. Said washers are threaded around said rod in sufficient number to be put into compression in a state of pre-stress as shown in Figure 5B. A washer or end stop 22b is then secured to said rod, so that if one pulls down on the fastener 22a, the compression of the spring and therefore the return force F is increased. creating an elongation ⁇ H which thus gives flexibility to the upper end of the riser.
  • the variations of the voltage in the device 20 are represented as a function of the length of the rod 22 output ⁇ H.
  • the peculiarity of the belleville washers is that the curve 23 force / displacement is substantially linear until a certain value of flattening or crushing of the washers, then the curve 23 flattens in a second time between 23b and 23c. In this zone 23b-23c, a slight increase in compression creates a large displacement.
  • the number of washers 20a is adjusted so as to reach the point 23b of the diagram of FIG. 5D with a rod 22 practically fully retracted into the chamber 21.
  • the prestressing is 9Ot taking up the tension at the head of riser when the floating support 10 is at rest in 10a, that is to say that if one draws towards down on the end 22a of the rod 22, no movement occurs. If the voltage increases at the riser head, the rod 22 moves downwards thus giving flexibility to the device 20, until reaching 23c the maximum voltage value F corresponding substantially to a maximum rod output 22. If we go beyond point 23c, the set of washers is almost flat and then we reach a quick stop 23d which then blocks the device, thus making it completely rigid. Thus, the preload of the device 20 at 23b is adjusted to a minimum value less than the minimum of the quasi-static voltage cumulated with the dynamic variation, as represented in FIG.
  • the device 20 according to the invention will always have its rod length output 22 located between the two points 23b-23c of the 5D diagram, and will thus give the desired flexibility between the structure of the barge and the upper end of the riser.
  • the belleville washers are advantageously arranged by a first group of two or three or more, oriented in the same direction, the second group comprising the same number of identical washers oriented in reverse.
  • the first bar 5a is telescopic, and comprises two elements 5a 1, 5a2, a first said element 5a being integral with the articulation 5d, a second element 5a2 sliding at the interior of 5a l and abutting in full extension, the second end being articulated at 5c on the second bar 5b, the resilient damping device 4 being connected at the same joint 5c.
  • the elastic damping device induces no compression force within the telescopic bar 5a 1 -5a2, and the damping elastic device is substantially in a straight line with respect to the end of the riser 1 and at the second bar 5b.
  • the device according to the invention makes it possible, by adjusting for example the length of the flexible link 3, to modify the sensitive zone in the foot of riser subjected to fatigue.
  • the length of said flexible link will for example be 25 to 100 m, then after five years, it will be increased to 50 to 300 m, the sensitive area at the foot of the chain then being substantially displaced. all the more, a critical cumulative fatigue zone then permanently resting on the ground, and therefore not being subjected to fatigue.
  • the operation will advantageously be repeated at regular intervals, insofar as the length of the flexible connection has been provided long enough to absorb these variations in the position of the upper end of the riser in a chain configuration. If necessary, the flexible link will simply be changed and a new longer flexible link will replace the length that has become too short.

Landscapes

  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Mechanical Engineering (AREA)
  • Earth Drilling (AREA)
  • Vibration Prevention Devices (AREA)
  • Supports For Pipes And Cables (AREA)
  • Laying Of Electric Cables Or Lines Outside (AREA)
  • Pipe Accessories (AREA)

Abstract

La présente invention concerne une installation de liaison fond surface d'une conduite sous-marine reposant au fond de la mer comprenant une conduite rigide (1) remontant depuis le fond de la mer où elle repose, jusqu'en subsurface où son extrémité supérieure (11) est reliée à un support flottant (10) caractérisé en ce que ladite extrémité supérieure (11) de la conduite rigide est reliée audit support flottant par: 1) au moins une liaison mécanique entre l'extrémité supérieure du riser (11) et un point d'accroche (7) sur ledit support flottant comprenant au moins un lien souple de type câble ou chaîne, et 2) une conduite flexible (2) apte à permettre le transfert du fluide véhiculé par ladite conduite rigide (1) vers le support flottant, la dite conduite flexible étant retenue par au moins un point de retenue (2a) au niveau de la dite liaison mécanique et/ou dudit dispositif de sécurité (5),de telle sorte que la conduite flexible est sensiblement entièrement maintenue selon une forme incurvée au dessus de la dite extrémité supérieure de la conduite rigide, la longueur de la conduite flexible étant supérieure à la distance maximale possible entre l'extrémité supérieure (11) de la conduite rigide et le point d'accroche de la dite conduite flexible au niveau du support flottant. De préférence, elle comprend un dispositif de sécurité et de guidage (5) comprenant au moins une première barre rigide (5a) articulée à une extrémité par une première articulation (5d) au niveau de son point d'accroche sur le support flottant et à l'autre extrémité par une deuxième articulation (5c) au niveau de la dite liaison mécanique.

Description

Installation de liaison fond-surface comprenant un lien souple entre un support flottant et l'extrémité supérieure d'une conduite rigide en subsurface.
La présente invention concerne une installation de liaison fond- surface comprenant au moins une conduite sous-marine assurant la liaison entre un support flottant et le fond de la mer notamment à grande profondeur. Ces conduites rigides sous-marines sont appelées
"colonnes montantes" ou "risers" comme explicité ci-après, ces risers étant constitués d'éléments tubulaires unitaires soudés entre eux bout à bout, réalisés en acier.
Plus particulièrement, la présente invention concerne une installation de liaison fond surface d'une conduite sous-marine reposant au fond de la mer comprenant une conduite rigide remontant depuis le fond de la mer où elle repose, jusqu'en subsurface où son extrémité supérieure est reliée à un support flottant par une liaison mécanique comprenant un lien souple et une conduite flexible permettant le transfert du fluide depuis la conduite rigide jusqu'à un support flottant.
Le secteur technique de l'invention est donc le domaine de la fabrication et de l'installation de conduites sous-marines et plus particulièrement de liaisons fond-surface de production pour l'extraction sous-marine de pétrole, de gaz ou autre matériau soluble ou fusible, ou d'une suspension de matière minérale, à partir de tête de puits immergé pour le développement de champs de production installés en pleine mer au large des côtes. L'application principale et immédiate de l'invention étant dans le domaine de la production pétrolière, ainsi que dans la réinjection d'eau et la production ou ré-injection de gaz.
Un support flottant comporte en général des moyens d'ancrage pour rester en position malgré les effets des courants, des vents et de la houle. Il comporte aussi en général des moyens de forage, de stockage et de traitement du pétrole ainsi que des moyens de déchargement vers des pétroliers enleveurs, ces derniers se présentant à intervalle régulier pour effectuer l'enlèvement de la production. L'appellation de ces supports flottants est le terme anglo-saxon "Floating Production Storage Offloading" (signifiant "moyen flottant de stockage, de production et de déchargement") dont on utilisera le terme abrégé "FPSO" dans l'ensemble de la description suivante, ou encore "FDPU" ou "Floating Drilling & Production Unit" (signifiant "moyen flottant de forage et de production"), lorsque le support flottant est aussi utilisé pour effectuer les opérations de forage avec puits dévié dans la hauteur de la tranche d'eau.
Une conduite sous-marine, ou un riser, selon l'invention peuvent être soit un "conduite de production" de pétrole brut ou de gaz, soit un conduite d'injection d'eau, assurant la liaison avec une tête de puits sous-marine installée au fond de la mer, soit encore un "riser de forage" assurant la liaison entre le support flottant et une tête de puits localisée au fond de la mer.
Dans les FPSO où l'on installe en général une multiplicité de lignes, on est amené à mettre en œuvre soit des liaisons fond-surface de type tour-hybride, soit des liaisons de type caténaire en forme de "chaînette".
Lorsque la conduite de liaison fond-surface est du type caténaire, elle assure directement la liaison entre un support flottant et un point de contact au fond de la mer qui se trouve décalé par rapport à l'axe dudit support, ladite conduite prend de par son propre poids une configuration dite de "chaînette", formant une courbe dont le rayon de courbure diminue depuis la surface jusqu'au point de contact au fond de la mer, et l'axe de ladite conduite forme un angle α avec la verticale dont la valeur varie en général de 5 à 20 degrés au niveau du support flottant jusqu'à, théoriquement, 90 degrés au niveau du fond de la mer correspondant à une position théorique sensiblement tangentielle à l'horizontale comme il sera explicité ci-après.
Les liaisons de type chaînette sont en général réalisées à l'aide de conduites flexibles, mais leur coût est extrêmement élevé en raison de structure complexe de la conduite.
Ainsi on a été amené à développer des colonnes montantes sensiblement verticales, de manière à rapprocher de la surface la liaison souple en configuration de chaînette vers le support flottant, ce qui permet de minimiser la longueur de ladite conduite flexible, ainsi que les efforts qui lui sont appliqués, minimisant ainsi considérablement son coût.
Dès lors que la profondeur d'eau atteint et dépasse 500-100Om, il devient possible de réaliser ladite liaison fond-surface à l'aide d'une conduite rigide à paroi épaisse, car la longueur de la conduite étant considérable, sa souplesse permet d'obtenir une configuration de chaînette satisfaisante en restant dans des limites de contraintes acceptables.
Ces risers rigides en matériaux résistants de forte épaisseur, en configuration de chaînette, sont communément appelés par le terme anglo-saxon "Steel Catenary Riser" signifiant "riser en acier en forme de chaînette" dont on utilisera le terme abrégé "SCR" ou "riser caténaire" dans la présente description, qu'il soit en acier ou en autre matériau tel qu'un matériau composite.
Ces "SCR" ou "risers caténaires" sont beaucoup plus simples à réaliser que les conduites flexibles et donc moins onéreux.
La courbe géométrique formée par une conduite de poids uniforme en suspension soumise à la gravité, appelée "chaînette" est une fonction mathématique de type cosinus hyperbolique (Coshx = (ex + e"x)/2 , reliant l'abscisse et l'ordonnée d'un point quelconque de la courbe selon les formules suivantes :
y = R0(cosh(x/R0) - 1)
R = Ro.(Y/Ro + I)2 dans lesquelles :
- x représente la distance dans la direction horizontale entre ledit point de contact et un point M de la courbe,
- y représente l'altitude du point M (x et y sont donc les abscisses et ordonnées d'un point M de la courbe par rapport à un repère orthonormé dont l'origine est audit point de contact)
- R0 représente le rayon de courbure au dit point de contact, c'est à dire au point de tangence horizontale.
- R représente le rayon de courbure au point M (x, y)
La courbure varie continûment le long de la chaînette depuis la surface, ou son rayon a une valeur maximale Rmax, jusqu'au point de contact, ou son rayon a une valeur minimale Rmιn (ou R0 dans la formule ci-dessus). Sous l'effet des vagues, du vent et du courant, le support de surface se déplace latéralement et verticalement, ce qui a pour effet de soulever ou de reposer la conduite en forme de chaînette, au niveau du fond de la mer.
Ainsi, la conduite présente un rayon de courbure qui est maximal au sommet de la chaînette, en général, d'au moins 1500, notamment de 1500 à 5000m, c'est à dire au point de suspension sur le FPSO, et qui décroît jusqu'au point de contact avec le sol . A cet endroit, le rayon de courbure est minimal dans la portion en suspension. Mais, dans la partie adjacente reposant sur le fond de la mer, ladite conduite étant théoriquement en ligne droite, son rayon de courbure est théoriquement infini. En fait ledit rayon n'est pas infini mais extrêmement élevé, car il subsiste une courbure résiduelle.
Ainsi, au gré des mouvements du support flottant en surface, le point de contact se déplace d'avant en arrière et, dans la zone soulevée ou reposée sur le fond, le rayon de courbure passe successivement d'une valeur minimale Rmm à une valeur extrêmement élevée, voire infinie dans le cas d'une configuration théorique où la conduite sous- marine repose sur le fond de la mer sensiblement en ligne droite.
Ces flexions alternatives créent des phénomènes de fatigue concentrés dans toute la zone de pied de chaînette et la durée de vie de telles conduites est fortement réduite et en général incompatible avec les durées de vie recherchées pour les liaisons fond-surface, c'est à dire
20-25 ans, voire plus.
De plus, on observe que durant ces mouvements alternatifs du point de contact, la raideur de la conduite, associée à la courbure résiduelle mentionnée précédemment, va dans le temps creuser un sillon sur toute la longueur soulevée puis reposée et créer une zone de transition dans laquelle existera un point d'inflexion où le rayon de courbure, minimal en pied de chaînette, changera alors de sens dans ladite zone de transition, et croîtra pour atteindre enfin une valeur infinie dans la portion de conduite sous-marine reposant en ligne droite sur le fond de la mer.
Ces mouvements répétés en tête de riser sur de longues périodes créent un sillon d'autant plus important dans les sols peu consolidés que l'on rencontre couramment en grande profondeur, ce qui a pour effet de modifier la courbure de la chaînette et conduire, si le phénomène s'amplifie, à des risques d'endommagement des conduites, soit au niveau des conduites sous-marines reposant au fond de la mer, soit au niveau des SCR assurant la liaison entre ces conduites sous-marines reposant au fond de la mer et la surface.
Les mouvements sont de deux types très différents se produisant avec des périodicités et des conséquences très variables comme montré sur la figure 2. En effet, le support flottant est ancré en général par 8 ou 16 lignes d'ancres en général également réparties et situées dans les angles. Sous l'effet du vent et du courant, le support flottant se déplace à l'intérieur d'une surface appelée « cercle d'excursion », sensiblement elliptique ou circulaire et sensiblement centrée par rapport à sa position au repos. Et, on cherche à réduire au maximum la taille de ce cercle d'excursion en jouant sur la raideur des ancrages. Ainsi, il est courant de prévoir les ancrages pour limiter l'excursion du support flottant dans un rayon représentant 5-6% de la hauteur d'eau. Ainsi, pour une profondeur d'eau de 1500m, le cercle d'excursion aura sensiblement un rayon de 75-9Om. Ces mouvements dus au vent at au courant sont en général très lents et leur période est de 200 à 300 secondes, c'est-à- dire que le pied de chaînette se déplace relativement lentement d'avant en arrière et en conditions normales les mouvements sont de très faible amplitude. On parle d'état « quasi-statique », c'est-à-dire que le système est toujours en quasi-équilibre, ce qui permet de négliger les efforts dus à l'inertie de l'ensemble. En fait, ce type de mouvement à période longue n'est pas très préjudiciable à la tenue en fatigue du pied de riser pendant toute sa durée de vie.
Le second type de mouvement est dû au pilonnement du support flottant qui se produit sur plusieurs mètres et engendre alors des mouvements verticaux dudit riser. Ces mouvements dynamiques sont beaucoup plus préjudiciables, car ils présentent une période beaucoup plus courte, entre 3-5 secondes et 15-18 secondes. Et de plus, certaines fréquences comprises entre les valeurs extrêmes, correspondent à des fréquences de résonance du riser en configuration de chaînette, ce qui a pour effet d'amplifier considérablement les déformations de ladite chaînette, donc les mouvements et risques d'endommagement en pied de chaînette, au niveau du point de contact.
En surface, au niveau du raccordement de la tête du riser avec le support flottant, on installe en général un dispositif d'articulation souple étanche appelé « flexjoint », de manière à absorber les variations angulaires du sommet du riser, lors des mouvements du support flottant. Ces « flexjoints » constitués principalement d'élastomères, notamment sous forme de butées lamifiées à surface de révolution, servent non seulement à reprendre les efforts de traction engendrés par le riser, mais aussi à transférer le pétrole brut vers les conduites rigides solidaires du support flottant. Ces dispositifs d'articulation à butée lamifiée du type « flexjoints » présentent un avantage supplémentaire en ce qu'ils impliquent un encombrement latéral réduit et ainsi permettent de raccorder un grand nombre de riser côte à côte le long du bordé du support flottant.
Mais, ces dispositifs d'articulation à butée lamifiée sont très coûteux et délicats à fabriquer et les risques de fuites au niveau des élastomères sont importants, car la durée de vie de telles installations atteint et dépasse 20-25 ans, voire plus.
D'autre part, le raccordement de la tête de riser avec le support flottant est difficile à réaliser car il implique la mise en œuvre de treuils de grandes capacités aptes à manutentionner des conduites rigides dont le poids peut atteindre 50Ot, à bord du support flottant et qu'il est nécessaire de déplacer ledit treuil lorsque l'on souhaite mettre en place une multiplicité de riser raccordés au support flottant comme c'est le cas en pratique. En outre, les dispositifs d'articulation à butée lamifiée mentionnés ci-dessus rendent le raccordement de la tête de riser sur le support flottant d'autant plus délicat à réaliser.
Enfin, en cas d'endommagement au niveau du « flexjoint » il est très difficile de maintenir le riser en configuration de sauvegarde pendant l'intervention de réparation ou remplacement du « flexjoint ».
Le but de la présente invention est de fournir une installation de liaison fond-surface améliorée comprenant une conduite rigide ou riser remontant depuis le fond de la mer jusqu'à un support flottant dont le raccordement de la tête de riser avec le support flottant soit à la fois fiable mécaniquement, plus simple à réaliser et qui permette plus généralement de surmonter les inconvénients mentionnés ci-dessus.
Plus particulièrement, un but de la présente invention est de fournir une installation de liaison fond-surface telle que définie ci- dessus permettant d'autoriser de préférence d'atténuer les mouvements du riser, de manière à minimiser les conséquences dommageables des mouvements du support flottant et de la tête du riser, plus particulièrement les mouvements de pilonnement, afin d'augmenter de ce fait la tenue en fatigue de ladite liaison fond-surface.
Plus particulièrement encore, un but de la présente invention est de fournir une installation de liaison fond-surface telle que définie ci- dessus présentant un encombrement latéral minimal le long du bordé de la barge, autorisant de ce fait l'installation d'un plus grand nombre de risers le long dudit bordé, sur une même distance.
Plus particulièrement encore, un but de la présente invention est de fournir une installation de liaison fond-surface comportant un dispositif de sécurité, qui, en cas d'incident ou de rupture d'un élément supérieur de retenue, maintient le riser en configuration de sauvegarde, évitant ainsi la rupture de la liaison flexible et les pollutions qui en découleraient.
Pour ce faire, la présente invention fournit une installation de liaison fond surface d'une conduite sous-marine reposant au fond de la mer comprenant une conduite rigide remontant depuis le fond de la mer où elle repose, jusqu'en subsurface où son extrémité supérieure est reliée à un support flottant, caractérisée en ce que ladite extrémité supérieure de la conduite rigide est reliée audit support flottant par :
1) au moins une liaison mécanique entre l'extrémité supérieure du riser et un point d'accroché sur ledit support flottant comprenant au moins un lien souple de type câble ou chaîne, ladite installation comprenant en outre, un dispositif de sécurité et de guidage comprenant au moins une première barre rigide articulée à une extrémité par une première articulation au niveau de son point d'accroché sur le support flottant et à l'autre extrémité par une deuxième articulation au niveau de la dite liaison mécanique ou de la dite extrémité supérieure de la conduite rigide, et
2) une conduite flexible apte à permettre le transfert du fluide véhiculé par ladite conduite rigide vers le support flottant, ladite conduite flexible étant retenue par au moins point de retenue au niveau de ladite liaison mécanique de telle sorte que la conduite flexible est sensiblement entièrement maintenue selon une forme incurvée au dessus de ladite extrémité supérieure de la conduite rigide, la longueur de la conduite flexible étant supérieure à la distance maximale possible entre l'extrémité supérieure de la conduite rigide et le point d'accroché de ladite conduite flexible au niveau du support flottant.
L'installation selon la présente invention permet de dissocier :
- d'une part, la fonction de transfert de fluide depuis l'extrémité supérieure de la conduite rigide jusqu'à son support flottant, fonction de transfert exercée par ladite conduite flexible, et
- d'autre part, la fonction de liaison mécanique entre l'extrémité supérieure de la conduite rigide et le support flottant, fonction exercée par au moins un dit lien.
Le lien souple ainsi combiné à ladite conduite flexible autorise des mouvements de la tête de riser tout en les limitant de par la tension exercée par ledit lien souple sur la tête de riser, ce qui permet de réduire les fatigue et usure de la conduite rigide à son point d'accrochage avec le support flottant et permet de supprimer ou éviter la mise en œuvre d'une articulation à butée lamifiée du type flexjoint pour les raccordement mécanique et transfert du fluide entre le support flottant de la tête de riser.
De préférence, la courbure de la conduite flexible présente une double courbure inversée avec un point d'inflexion situé de préférence au niveau dudit point de retenue, ce qui permet à ladite conduite flexible de suivre les mouvements limités de la tête de riser sans subir de traction dommageable et avec un encombrement limité par rapport aux conduites flexibles plongeantes traditionnellement mises en œuvre, ces dernières présentant une courbure variable sans inversion de la courbure, c'est-à-dire sans point d'inflexion. D'autre part, la retenue de la conduite flexible au dessus de la tête de riser évite l'endommagement de la conduite flexible lors des mouvements de la tête de riser et limite les déplacement latéraux de la conduite flexible et donc l'encombrement ce qui autorise la mise en place d'un nombre plus grand de liaison fond-surface côte à côte.
L'invention permet aussi de faciliter la réalisation du raccordement de la tête de riser au support flottant sans nécessiter la mise en œuvre de treuil de forte capacité, difficiles à déplacer sur le support flottant, mais en en mettant en œuvre de tels treuils uniquement à bord du navire de pose.
Plus particulièrement encore, l'invention permet de limiter les mouvements dans la zone du pied de riser, et donc limiter la formation d'un sillon au fond de la mer, ce qui permet de réduire la fatigue cumulée dans la zone de pied du riser de façon considérable.
On comprend que le dispositif de sécurité et de guidage guide les mouvements de la tête de riser et protège ladite conduite flexible en cas de rupture dudit lien souple. D'autre part comme explicité plus loin, ladite barre facilite la mise en place de l'installation et notamment le raccordement de l'extrémité dudit lien souple sur le support flottant .
De préférence encore, ledit dispositif de sécurité et de guidage assure une liaison mécanique de longueur variable entre le support flottant et l'extrémité supérieure de la conduite rigide et le support flottant, permettant de faire varier la distance entre le point d'attache de la dite première articulation sur le support flottant et l'extrémité supérieure de ladite conduite rigide.
Dans une variante de réalisation, ledit dispositif de sécurité et de guidage comprend au moins une dite première barre télescopique 5, la variation du coulissement de ladite première barre permettant de faire varier la distance entre le point d'attache de ladite première articulation sur le support flottant et l'extrémité supérieure de ladite conduite rigide, cette distance restant inférieure à la longueur de ladite conduite flexible.
Plus particulièrement, ledit dispositif de sécurité et de guidage comprend une dite première barre articulée par une première articulation à une extrémité au niveau de son point d'accroché au support flottant et par une deuxième articulation à l'autre extrémité au niveau dudit lien souple les extrémités sont fixées respectivement à l'extrémité supérieure du riser et à un point d'accroché sur ledit support flottant.
On comprend que le dit lien souple peut être constitué de deux longueurs de liens dont la jonction est assurée au niveau de la dite deuxième articulation.
Avantageusement, ladite conduite flexible est retenue par au moins un point, de préférence deux points de retenue au niveau respectivement de ladite première barre et au niveau dudit lien souple entre l'extrémité supérieure de la conduite rigide et ladite deuxième articulation.
Dans une autre variante de réalisation, le dit dispositif de sécurité et de guidage comporte au moins deux première et seconde barres de sécurité articulées entre elles par une dite deuxième articulation et à leurs extrémités par une dite première articulation à l'extrémité de la dite première barre au niveau du support flottant et une troisième articulation à l'extrémité de la deuxième barre au niveau de l'extrémité supérieure de la conduite rigide, la dite première barre étant de préférence télescopique,la variation de l'inclinaison des deux dites barres l'une par rapport à l'autre, et de préférence le coulissement en extension de la dite première barre permettant de faire varier la distance entre d'une part le point d'attache de la dite première articulation de ladite première barre sur le support flottant et d'autre part le point d'attache de la troisième articulation de ladite seconde barre à l'extrémité supérieure de ladite conduite rigide. Plus particulièrement, le dit lien souple est fixé à une extrémité au niveau de l'articulation médiane ou dite deuxième articulation entre les deux dites barres et à l'autre extrémité à un point d'accroché sur ledit support flottant.
Avantageusement, ladite conduite flexible est retenue par au moins deux points de retenue au niveau respectivement des deux dites barres. Ceci permet de maintenir une double courbure inversée de ladite conduite flexible de façon plus fiable.
On comprend que la distance maximale de ladite liaison correspond à la longueur maximale de ladite barre télescopique en extension maximale et/ou respectivement à la longueur cumulée des deux dites barres.
Dans un mode préféré de réalisation, la dite première articulation au niveau de l'accroche de la dite première barre au support flottant autorise uniquement une rotation de la dite première barre par rapport à un axe parallèle au bordé du support flottant, ledit axe YY étant horizontal lorsque ledit support flottant est en position au repos, de manière à maintenir l'axe XX de la partie supérieure de la conduite rigide dans un plan sensiblement perpendiculaire au dit bordée du support flottant. Ce dernier mode de réalisation est avantageux car il permet de réduire l'encombrement latéral de l'installation en cas de mouvements de l'extrémité supérieure de la conduite rigide et du support flottant.
De préférence, ladite troisième articulation est une rotule permettant des rotations dans toutes les directions.
Avantageusement, le dispositif de sécurité et de guidage comprend deux dites premières barres disposées parallèlement de part de d'autre du plan axial d'une unique dite deuxième barre et lesdites deuxièmes articulations sont solidaires d'une platine elle-même solidaire de l'extrémité de ladite deuxième barre. Avantageusement encore, ledit lien souple est constitué d'un dit premier câble, lui-même constitué de préférence de fibres thermoplastiques présentant des caractéristiques d'élasticité ou comprenant ou coopérant avec au moins un dispositif élastique d'amortissement, ledit dispositif élastique d'amortissement reprenant la tension de ladite conduite rigide à son extrémité supérieure, et permettant la variation de la distance entre l'extrémité supérieure de la conduite rigide et le support flottant, tout en maintenant ledit premier câble ou dite chaîne tendu.
On comprend que :
- le dispositif élastique d'amortissement selon l'invention, de par son extension ou sa rétractation, induit une augmentation ou une diminution de la distance entre l'extrémité supérieure de la conduite rigide et le support flottant, ledit lien souple étant maintenu tendu, et cette variation de distance est contrôlée dans des limites pré-établies par les caractéristiques et propriétés élastiques du dispositif élastique d'amortissement ; et
- la variation de distance entre l'extrémité supérieure de la conduite rigide et le support flottant induite par le dispositif élastique d'amortissement est fonction de la variation de tension exercée sur celui-ci par l'extrémité supérieure de la conduite rigide, avec une augmentation de la distance en cas de traction et une diminution en cas de relâchement de la traction exercée sur le dispositif élastique d'amortissement.
Compte tenu du fait que la variation de tension à l'extrémité supérieure de la conduite rigide est essentiellement liée aux mouvements de la conduite rigide et du support flottant sous l'effet de la houle et du vent et/ou des courants marins, le dispositif élastique d'amortissement selon l'invention permet d'assouplir la liaison entre l'extrémité supérieure de la conduite rigide et le support flottant en diminuant la tension à l'extrémité supérieure de la conduite rigide par augmentation ou diminution de la distance entre l'extrémité supérieure de la conduite rigide et le support flottant.
La présente invention permet ainsi de réduire radicalement les fatigue et usure de la conduite rigide à son point de contact avec le fond de la mer et à son point d'accrochage avec le support flottant.
Plus particulièrement encore, le dispositif élastique d'amortissement selon l'invention permet de limiter les mouvements dans la zone du pied de riser, et donc limiter la formation d'un sillon au fond de la mer, ce qui permet de réduire la fatigue cumulée dans la zone de pied du riser de façon considérable.
On comprend que le dispositif élastique d'amortissement est :
- solidaire du support flottant auquel il est fixé rigidement, ledit premier câble ou chaîne assurant alors, le cas échéant, la liaison entre le dispositif d'amortissement et l'extrémité supérieure de la conduite rigide, ou
- solidaire de l'extrémité supérieure de la conduite rigide à laquelle il est directement fixé rigidement, ledit premier câble ou chaîne assurant alors, le cas échéant, la liaison entre le support flottant et le dispositif d'amortissement.
Dans les deux cas, le déplacement de l'extrémité supérieure de la conduite rigide est lié à la possible extension ou rétractation du dispositif élastique d'amortissement de par ses propriétés élastiques.
De préférence, ledit dispositif élastique d'amortissement est fixé sur ledit support flottant et ledit lien souple assure la liaison entre le dispositif d'amortissement et un élément rigide de ladite liaison mécanique entre l'extrémité supérieure de la conduite et le support flottant, de préférence ledit élément rigide étant une dite deuxième articulation d'une dite barre de sécurité, de préférence encore une dite première articulation entre lesdites deux barres de sécurité d'un dispositif de sécurité .
Dans un mode de réalisation préféré, le dispositif élastique d'amortissement est positionné dans l'alignement de l'extrémité supérieure de la conduite rigide, soit directement solidaire de celle-ci, soit solidaire du support flottant, mais sans que le lien souple ne coopère avec une poulie de renvoi sur ledit support flottant. Par « positionnement dans l'alignement de l'extrémité supérieure de la conduite rigide », on entend que le dispositif élastique s'étend ou se rétracte, et/ou le point d'accroché dudit lien souple avec ledit dispositif élastique se déplace dans une direction longitudinale correspondant sensiblement à celle de la direction axiale de ladite conduite rigide à son extrémité supérieure.
Ce mode de réalisation est avantageux, car il permet de réduire les problèmes de fatigue et d'usure dudit câble, qui se créent au niveau des enroulements sur les poulies de renvoi, en raison de la tension extrêmement importante existant dans ledit câble.
Comme il sera explicité dans la description détaillée qui va suivre, les inventeurs ont découvert qu'un dispositif élastique d'amortissement selon l'invention permet essentiellement de réduire les mouvements verticaux de l'extrémité supérieure de la conduite rigide induits par les mouvements de pilonnement du support flottant, et les variations de tension de courtes périodes les plus préjudiciables qui en résultent. Mais, un dispositif élastique d'amortissement selon la présente invention n'a sensiblement que peu d'effet sur les mouvements dits quasi statiques de la tête du riser liée à l'excursion latérale ou horizontale du support flottant tel que décrite ci-dessus.
Plus particulièrement, ladite conduite rigide est une conduite de type caténaire remontant depuis le fond de la mer jusqu'en dite subsurface selon une courbe en chaînette présentant une courbure essentiellement continûment variable jusqu'à son extrémité supérieure. Dans une variante de réalisation, ladite conduite flexible est reliée à l'extrémité supérieure de la conduite rigide par un dispositif comprenant un élément de conduite coudée. La courbure ainsi créée permet à la conduite flexible de supporter les excursions du support flottant sans jamais devoir reprendre les tensions exercées au niveau du support flottant ou de la tête de riser suite aux mouvements de la tête d'embardée et de pilonnement du support flottant, seul ledit lien souple combiné le cas échéant au dispositif de sécurité et de guidage et dispositif élastique d'amortissement reprenant l'essentiel de la tension en tête du riser liée à ces embardées et pilonnement du support flottant.
Dans un mode de réalisation, ledit dispositif élastique d'amortissement comprend un dispositif élastique mécanique du type à ressort ou à rondelles dites « belleville » ou un dispositif élastique hydro pneumatique du type à vérin hydraulique.
Plus particulièrement, une installation selon l'invention comprend un dispositif élastique d'amortissement mécanique comprenant des éléments élastiques biconiques comprenant des rondelles tronconiques de type belleville, de préférence constitués de paires de rondelles tronconiques de type belleville disposées axialement et de façon inversée, aptes à se déformer élastiquement axialement, enfilées autour d'une première tige rigide axiale contenues dans une enceinte cylindrique à un état de précontrainte, de manière à former un empilement de dites rondelles retenues d'un côté par une butée à une extrémité de ladite première tige rigide axiale et de l'autre côté par une des parois d'extrémité de ladite enceinte cylindrique, paroi d'extrémité à travers une perforation de laquelle l'autre extrémité de ladite première tige rigide est apte à se déplacer, ladite autre extrémité de la première tige rigide étant reliée à ladite extrémité supérieure de la conduite rigide.
Lesdites rondelles tronconiques dénommées « rondelles belleville » sont groupées par paires formant des éléments biconiques , les dites rondelles successives étant disposées axialement de façon inversée alternativement, c'est-à-dire les petites bases des deux rondelles tronconiques de la paire étant l'une contre l'autre tandis que les grandes bases des deux rondelles tronconiques d'une paire sont adjacentes à d'autres grandes bases de rondelles tronconiques d'une paire adjacente enfilée sur la même tige.
On comprend que lorsque lesdites rondelles sont comprimées axialement, de par leurs propriétés élastiques, elles exercent une traction sur ladite première tige et donc sur l'extrémité supérieure de la conduite rigide qui reprend la tension à l'extrémité supérieure de la conduite rigide, laquelle tire ladite première tige du dispositif d'amortissement en dehors de ladite enceinte suite à la descente de l'extrémité supérieure du riser plus profondément en subsurface, sous l'effet de pilonnement du support flottant.
Plus particulièrement encore, les nombre et dimension desdites rondelles tronconiques dites belleville sont tels que :
- dans leur état de précontrainte initiale à l'intérieur de ladite enceinte, avec une extension minimale de ladite première tige en dehors de ladite enceinte, le dispositif élastique d'amortissement permet de reprendre une tension correspondant à la tension de l'extrémité supérieure de la conduite rigide lorsque le support flottant est au repos, et
- dans leur état de contrainte maximale de butée contre ladite paroi d'extrémité, lors de l'extension maximale possible de ladite première tige en dehors de ladite enceinte rigide, le dispositif élastique d'amortissement permet de reprendre la tension maximale possible exercée à l'extrémité supérieure de la conduite rigide en cas d'excursion dudit support flottant notamment sous l'effet de houle, vent et/ou courants marins forts.
Ce dispositif d'amortissement à rondelles tronconiques aura ainsi toujours une longueur de tige sortie apte à donner la souplesse recherchée entre le support flottant et l'extrémité supérieure de la conduite rigide.
Avantageusement, dans ce dispositif élastique d'amortissement comprenant des rondelles tronconiques, lesdites tension initiale de précontrainte et tension maximale de butée dudit dispositif élastique d'amortissement correspondent sensiblement aux valeurs de tension délimitant une zone d'aplatissement de la courbe effort/déplacement représentant la variation de tension dans le dispositif d'amortissement en fonction de la longueur de dite première tige sortie de ladite enceinte, zone d'aplatissement dans laquelle la variation du déplacement de ladite première tige est maximal pour une variation de tension donnée exercée sur ladite première tige.
Dans un autre mode de réalisation, ledit dispositif élastique d'amortissement mécanique comprend un ressort combiné à une poulie de renvoi et un contrepoids, une extrémité dudit ressort étant fixée rigidement à un dit point d'accroché sur ledit support flottant et l'autre extrémité dudit ressort étant fixée audit contrepoids, ledit lien souple assurant la liaison entre ledit contrepoids et ladite extrémité supérieure de conduite rigide en passant par ladite première poulie de renvoi.
Ce mode de réalisation permet de mettre en œuvre des ressorts ne reprenant qu'une partie de la tension à l'extrémité supérieure de la conduite rigide, le reste, à savoir la plus grande part de ladite tension étant reprise par ledit contrepoids, ledit ressort permettant seulement d'assouplir les variations de tension par des variations de distance entre l'extrémité supérieure de la conduite rigide et le support flottant, la tension à l'extrémité de la conduite rigide lorsque le support flottant est au repos étant reprise par ledit contrepoids.
Dans un autre mode de réalisation, ledit dispositif élastique d'amortissement est un dispositif hydro pneumatique comprenant un vérin hydraulique fixé sur le support flottant, combiné à un système d'accumulateur d'énergie hydro pneumatique, permettant de contrôler le déplacement de la tige du vérin, ledit premier câble ou chaîne étant fixé à l'extrémité supérieure de ladite conduite rigide et coopérant avec les extrémités de ladite tige rigide de vérin, de telle sorte qu'une traction exercée par l'extrémité supérieure de la conduite rigide sur ledit premier câble ou chaîne est reprise par une poussée exercée par la tige du vérin sous l'effet de la pression hydraulique fournie par ledit système d'accumulateur d'énergie hydraulique, ladite poussée de la tige de vérin exerçant une traction opposée sur ledit premier câble ou chaîne reprenant la tension exercée par l'extrémité supérieure de ladite conduite rigide.
On comprend que l'extension moyenne de la tige de vérin correspond à une poussée reprenant la tension exercée à l'extrémité supérieure de la conduite rigide lorsque le support flottant est au repos et l'extension maximale, respectivement minimale, de la tige de vérin correspond à une poussée reprenant la tension exercée par l'extrémité supérieure de la conduite rigide correspondant aux mouvements d'éloignement maximal de la barge, respectivement de rapprochement maximal dans la direction du point de contact en pied de riser.
Plus particulièrement, dans ledit dispositif hydro pneumatique élastique d'amortissement selon l'invention, ladite tige de vérin coopère avec au moins une deuxième poulie de renvoi solidaire de l'extrémité de la tige du vérin, ladite deuxième poulie de renvoi coopérant avec ledit premier câble ou chaîne.
On comprend que ladite deuxième poulie de renvoi réalise un renvoi du lien souple entre sa première extrémité fixée à l'extrémité supérieure de la conduite rigide et sa deuxième extrémité fixée sur le support flottant.
Plus particulièrement encore, le dispositif élastique d'amortissement hydro pneumatique selon l'invention est caractérisé en ce que : - ledit système d'accumulateur est constitué d'une pluralité de réservoirs remplis pour partie de liquide et pour partie de gaz,
- la compression dudit gaz sous l'effet du transfert du liquide depuis le vérin jusqu'auxdits réservoirs est en fonction des déplacements de la tige de vérin et conférant des propriétés d'élasticité audit dispositif élastique d'amortissement, et
- le contrôle des pertes de charges par des dispositifs de variation de perte de charge lors du transfert du liquide entre lesdits réservoirs et ledit vérin permettant de contrôler et d'amortir des variations de pression hydraulique dans le système d'accumulateur et dans le vérin,
de sorte qu'il est possible d'obtenir des variations maximales de déplacement de la tige de vérin pour des variations correspondantes minimales de la pression hydraulique dans le système d'accumulateur et du vérin hydraulique.
En pratique, ledit premier câble et le cas échéant dit dispositif d'amortissement sont capables de reprendre des tensions à l'extrémité supérieure de ladite conduite rigide de 50 à 750 T, de préférence 100T à 250 T.
Plus particulièrement, ledit premier câble et le cas échéant ledit dispositif d'amortissement autorisent desdits déplacements de l'extrémité supérieure de ladite conduite rigide, apte à amortir des variations de tension à l'extrémité supérieure de ladite conduite rigide, lesdites variations représentant jusqu'à 20% de la tension au repos au niveau de ladite extrémité supérieure de conduite rigide , c'est-à-dire lorsque le support flottant et l'extrémité supérieure de la conduite rigide sont au repos.
Plus particulièrement encore, ledit premier câble et le cas échéant ledit dispositif élastique d'amortissement est apte à permettre des variations de distance entre l'extrémité supérieure de la conduite rigide et le support flottant ou des déplacements dans la direction axiale XX de l'extrémité supérieure de la conduite rigide de 1 à 10 m, de préférence de 2 à 5 m, de préférence pour des variations de tension à l'extrémité supérieure de la conduite rigide de 5 à 150 T.
Dans un mode de réalisation, l'extrémité supérieure de ladite conduite rigide est située en subsurface à une profondeur de 20 à 60 m.
Plus particulièrement encore, ladite conduite flexible présente une longueur de 20 à 400 m , et le dit lien souple présente une longueur de 10 à 300m, et le cas échéant le dispositif de sécurité et de guidage peut s'étendre sur une longueur de 1.5 à 25 m.
D'autres caractéristiques et avantages de la présente invention apparaîtront à la lumière détaillée des modes de réalisation qui vont suivre, en référence aux figures suivantes, dans lesquelles :
- la figure 1 est une vue de côté d'une conduite rigide sous- marine en configuration de chaînette simple, suspendue à un support flottant 10 de type FPSO, et dont l'extrémité inférieure repose sur le fond de la mer 13, représentée dans trois positions différentes la, Ib, Ic, selon la technique antérieure.
- la figure IA est une coupe en vue de côté détaillant la tranchée 12 creusée par le pied 11 de chaînette lors des mouvements de soulèvement de la conduite 1 sur le fond marin.
- la figure 2 est une courbe détaillant les variations de tension dans le riser en mouvement quasi-statique et en dynamique.
- les figures 3A à 3C sont des vues de côté de plusieurs variantes de réalisation de l'installation de liaison fond-surface selon l'invention sans dispositif de sécurité (figure 3A), avec dispositif de sécurité à une barre articulée ( figure 3B) et avec dispositif de sécurité à plusieurs barres articulées ( figure 3C).
- la figure 3D est une vue de face de la variante de la figure 3 C. - la figure 4 est une vue de côté d'une l'installation de liaison fond-surface selon l'invention avec dispositif de sécurité associé à un dispositif d'amortissement.
- les figures 5A-5C sont des coupes en vue de côté d'un dispositif d'amortissement selon l'invention constitué de rondelles coniques, respectivement en configuration d'assemblage, de précontrainte et de fonctionnement.
- la figure 5D est un diagramme des efforts engendrés lors de la variation de la longueur H de tige dudit dispositif.
- les figures 6A à 6C représentent les étapes d'accrochage d'une tête de riser sur le bordée d'un support solide selon la technique antérieure
- les figures Ik-IC représentent en vue de côté les différentes étapes d' un mode préféré d'installation de l'invention dans lequel l'extrémité du riser est guidée par rapport à la barge 10 au moyen de barres articulées,
- les figures 8A-8B-8C représentent en éclaté en vue de côté, la barre articulée télescopique, respectivement en version simple (figure 8A), et en versions avec amortissement intégré (figures 8B et 8C).
Dans la figure 1, on a représenté en vue de côté une liaison fond- surface 1, de type SCR, suspendue à un support flottant 10 de type FPSO ancré en 11, et reposant sur le fond de la mer 13 au niveau du point de contact 14.
La courbure varie le long de la chaînette depuis la surface, ou son rayon a une valeur maximale, jusqu'au point de contact, ou son rayon a une valeur minimale R. Sous l'effet des vagues, du vent et du courant, le support flottant 10 se déplace, par exemple de gauche à droite comme représenté sur la figure, ce qui a pour effet de soulever ou de reposer la conduite en forme de chaînette, au niveau du fond de la mer. Dans la position 10-3, le support flottant s'écarte de la position normale 10-1, ce qui a pour effet de tendre la chaînette Ic en la soulevant, et de déplacer le point de contact 14 vers la droite de 14a en 14c; le rayon de courbure en pied de chaînette augmentant de R0 à R2, de même que la tension horizontale dans la conduite engendrée au niveau dudit point de contact au fond de la mer, ainsi que la tension dans la conduite en tête de riser au niveau dudit support flottant. De la même manière, dans la position opposée 10-2, le déplacement vers la droite du support flottant a pour effet de détendre la chaînette I b et de reposer une partie de la conduite sur le fond de la mer. Le rayon R0 au niveau du point de contact 14a décroît jusqu'à la valeur Ri en 14b, de même que la tension horizontale dans la conduite au même point 14b, ainsi que la tension dans la conduite au niveau dudit support flottant.
Au point de contact 14 avec le sol 13, le rayon de courbure de la conduite est minimal dans la portion en suspension, mais dans la partie adjacente reposant sur le fond de la mer, ladite conduite étant théoriquement en ligne droite, son rayon de courbure est théoriquement infini. En fait ledit rayon n'est pas infini mais extrêmement élevé, car il persiste en général une courbure résiduelle.
Ainsi, comme expliqué précédemment, au gré des mouvements du support flottant en surface 10, le point de contact 14 se déplace de droite à gauche et, dans la zone soulevée ou reposée sur le fond, le rayon de courbure passe successivement d'une valeur minimale Rmιn à une valeur extrêmement élevée, voire infinie dans le cas d'une configuration sensiblement en ligne droite.
La variation du rayon de courbure en 14 crée des contraintes internes considérables au sein de la structure de la conduite ce qui engendre des phénomènes de fatigue cumulés pouvant conduire à terme à la ruine de la liaison fond-surface.
Ces mouvements alternés répétitifs créent des phénomènes de fatigue concentrés non seulement dans toute la zone de pied de chaînette, mais aussi dans la zone de jonction entre la tête de riser et le support flottant, et la durée de vie de telles conduites est alors fortement réduite et en général incompatible avec les durées de vie recherchées pour les liaisons fond-surface, c'est à dire 20-25 ans, voire plus.
De plus, comme illustré dans la figure IA, on observe que durant ces mouvements alternatifs du point de contact, la raideur de la conduite, associée à la courbure résiduelle mentionnée précédemment, va dans le temps creuser un sillon 13a sur toute la longueur soulevée puis reposée. Il se crée ainsi une zone de transition dans laquelle existe un point d'inflexion 11, où la courbure change de sens dans les zones de transition, pour atteindre enfin une valeur infinie dans la portion de conduite sous-marine reposant en ligne droite sur le fond de la mer, ladite portion n'étant soulevée que de manière exceptionnelle, par exemple lors du cumul maximal dans la même direction, vers la gauche, de tous les éléments perturbateurs (houle-vent-courant) agissant sur le support flottant et sur la chaînette, ou encore lors de l'apparition de phénomènes de résonance au niveau de la chaînette elle-même. Lorsque la conduite se soulève, le point d'inflexion disparaît et les matériaux de la conduite précédemment en traction se retrouvent alors en compression ce qui crée une fatigue considérable dans cette portion de conduite. Ladite fatigue est alors d'un ou deux ordres supérieur à la fatigue en section courante où il n'y a pas de changement de la courbure, ce qui est incompatible avec une durée de vie recherchée de 25-30 ans voire plus.
Sur la figure 2 on a représenté le diagramme des variations dans le temps de la tension en tête Ii de riser sous les effets des mouvements quasi-statiques et des mouvements dynamiques du support flottant. La courbe 12 représente la combinaison des variations quasi- statique 12a et dynamique 12b sur une période quasi-statique de 200- 300 secondes. Au départ, le support flottant est au centre du cercle d'excursion, c'est-à-dire que le riser est dans la position la de la figure 1, correspondant à une tension dans le riser de FO= IOOt. Puis, la barge s'écarte vers la gauche vers la position maximale Ic, où la tension est alors maximale avec pour valeur Fmax= 110t. La position est atteinte au bout de T/4 = 50-75 secondes. Puis, le support flottant revient vers la droite et la tension décroît jusqu'à un minimum Fmin = 90t, position atteinte à 3T/4, soit 150-225 secondes. A ces variations de tension, viennent se superposer des variations dynamiques 12b dues au mouvement vertical de pilonnement de la barge. Ces variations dynamiques sont de période plus courte, de 3-5 secondes à 15-20 secondes, et d'amplitude variable en fonction desdits mouvements du FPSO. Au cas où la fréquence d'excitation correspond à une fréquence de résonance propre du riser, l'amplitude de la variation de tension se trouve considérablement amplifiée comme indiqué en 12c-12d, ce qui provoque un mouvement préjudiciable extrêmement important au niveau du pied de chaînette. Sur la partie gauche (première demi-période de T=O à T/2) du diagramme on a représenté les variations 12a, 12b, 12c de la tension en tête de riser, pour un riser de l'art antérieur, simplement accroché sur le bordé du FPSO, par le biais d'un flexjoint. Et sur la droite (deuxième demi-période de T= T/2 à T), on a représenté les variations de tension 12e en tête de riser comprenant un lien souple de préférence muni d'un dispositif amortisseur et d'assouplissement 20 selon l'invention, installé entre l'extrémité supérieure 1 du riser et le support flottant. Ainsi, le dispositif d'amortissement selon l'invention 20 tel que décrit ci-après joue le rôle de filtre pour les hautes fréquences correspondant aux mouvements dynamiques, mais n'a sensiblement que peu d'effet sur les basses fréquences correspondant aux mouvements quasi-statiques.
Sur les figures 3A à 3D, on a représenté différents modes de réalisation d'une installation de liaison fond surface selon l'invention comprenant l'extrémité supérieure Ii d'une conduite rigide 1 remontant depuis le fond de la mer 13, sur lequel elle repose, jusqu'en subsurface où sa dite extrémité supérieure Ii est reliée à un support flottant 10 (encore appelé ci-après « barge ») par laquelle ladite conduite rigide est une conduite de type caténaire (« SCR ») remontant depuis le fond de la mer 13 jusqu'en dite surface au long d'une courbe en chaînette présentant une courbure essentiellement continûment variable jusqu'à ladite extrémité supérieure.
L'extrémité supérieure Ii de la conduite rigide 1 est reliée au support flottant par un lien souple ou dit premier câble 3 lui-même accroché au support flottant au niveau d'une platine d'accrochage 7. Ce premier câble 3 assure une simple liaison mécanique entre l'extrémité supérieure de la conduite rigide Ii et le support flottant.
Une conduite flexible 2 apte à permettre le transfert du fluide véhiculé par la conduite rigide 1 vers le support flottant, est reliée à l'extrémité supérieure de la conduite rigide 1 par le biais d'un dispositif comprenant une portion de conduite coudée 6, l'autre extrémité de la conduite flexible étant reliée à des extrémités de conduites à bord du support flottant au niveau de la platine d'accrochage 8.
La conduite flexible est toute entière située au-dessus de son point de liaison au niveau du dispositif coudé 10 avec l'extrémité supérieure de la conduite rigide et adopte une position de forme incurvée avec une double courbure inversée, ladite conduite flexible étant retenue par un élément de retenue 2a au niveau du premier câble 3 pour ce faire.
En pratique, ledit premier câble 3 peut représenter une longueur de 10 à 300 m. Si l'on souhaite conférer au premier câble 3 des propriétés d'élasticité afin d'amortir et d'assouplir des mouvements en tête de riser de façon accrue, il peut être intéressant de mettre en œuvre un câble constitué d'haussières de 100 à 300 mm réalisées en fibre thermoplastique, telles que celles couramment utilisées pour l'amarrage des structures flottantes. Ces haussières sont capables de résister à des charges de plusieurs centaines de tonnes. Elles possèdent une élasticité importante et leur longueur de 100 à 200 m permet de fournir un débattement par élasticité de plusieurs mètres le cas échéant dans la plage de tension concernée. On comprend que la longueur de la conduite flexible est adaptée en fonction de la longueur dudit premier câble 3.
Sur la figure 3B, on a représenté une installation de liaison fond surface du type de la figure 3, mais comportant en outre un dispositif de sécurité et guidage 5, constitué d'une barre télescopique 5a . La barre télescopique 5a comporte 2 éléments coulissants l'un dans l'autre
5a l et 5a2, le premier élément un corps tubulaire 5a l est solidaire à une de ses extrémités du support flottant par une première articulation 5d, le deuxième élément de barre télescopique, une tige coulissante 5a2 coulissant à l'intérieur du premier élément 5a l comme explicité ci-après, en référence aux figures 8A à 8C.
Sur les figures 8A à 8C, la barre télescopique 5a se présente sous la forme d'un vérin hydraulique avec un corps tubulaire 5a l et une tige coulissante 5a2 associée à un piston 5a3 venant en butée franche à l'extrémité du corps tubulaire 5a l en 5a4 lorsque la tige coulissante 5a2 est en complète extension vers l'extérieur. L'extrémité libre de la tige coulissante 5a2 est reliée au premier câble 3 par une deuxième articulation 5c. En pratique dans un mode de réalisation, le premier câble 3 peut être constitué de deux élingues 3i et 32 assurant la liaison entre la deuxième articulation 5c et le point d'accroché 7 au support flottant est pour l'élingue 3i et la liaison entre la deuxième articulation 5c et l'extrémité supérieure Ii de la conduite rigide pour la seconde élingue 32.
Dans un autre mode de réalisation, la seconde articulation 5c est fixée à l'extrémité supérieure de la conduite rigide directement, mais ce mode de réalisation implique une mise en œuvre de barre télescopique de plus grandes dimensions.
La conduite flexible 2 est maintenue au-dessus de l'extrémité supérieure de la conduite rigide en adoptant une position en forme au moins doublement incurvée et présentant un point d'inflexion, grâce à 2 points de retenue où la conduite flexible est maintenue par des éléments de retenue 2a sur la première élingue 32 et élément de retenue 2b au niveau du corps tubulaire 5a l de la barre télescopique 5a.
La barre télescopique 5a fait office de dispositif de guidage et de sécurité. Elle permet en effet en contrôlant le coulissement de la barre télescopique de contrôler les mouvements du premier câble 3 et donc de la tête de riser en tant que de besoin. D'autre part, la configuration des articulations desdites première 5d et deuxième articulation 5c permet également de guider les mouvements de la portion supérieure de la conduite rigide 1 par rapport au support flottant et notamment de maintenir l'axe XX de la partie supérieure de la conduite rigide 1 dans un plan sensiblement perpendiculaire au bordé 1Oi du support flottant. Pour ce faire, il peut être prévu notamment que la première articulation 5d n'autorise qu'une rotation dans un plan perpendiculaire au bordé 10i, c'est-à-dire autour d'un axe parallèle au bordé 1Oi et sensiblement horizontal lorsque le support flottant et la mer sont au repos, c'est-à- dire sensiblement parallèle à la plateforme supérieure 1O2 du support flottant. En revanche, la deuxième articulation 5c se présente de préférence sous forme d'une rotule permettant ainsi des rotations dans toutes les directions, de façon à éviter des torsions, plicatures ou flexions qui pourraient endommager le premier câble 3.
La barre télescopique 5a constitue également une sécurité en cas d'incident ou de rupture du premier câble 3i, par exemple au point d'accroché 7 au support flottant, qui permet d'éviter que la tension soit reprise par la conduite flexible 2 dans un tel cas de rupture, dans la mesure où la longueur de la conduite flexible est supérieure à la distance maximum possible entre l'extrémité supérieure au niveau du dispositif 6 de la conduite rigide 1 et le point d'accroché 8 à l'autre extrémité de la conduite flexible ,en cas d'extension maximum de la barre télescopique et d'alignement de celle-ci avec l'élingue 32. Avantageusement, le dispositif de sécurité comporte deux barres articulées 5a et 5b, telles que représentées sur la figure 3c. La deuxième articulation 5c servant d'articulation entre les deux barres articulées 5a et 5b, la deuxième barre 5b étant non télescopique et étant elle-même articulée à son autre extrémité par une troisième articulation 5e au niveau de l'extrémité supérieure Ii de la conduite rigide. La conduite flexible est retenue par les éléments de retenue 2a au niveau de la deuxième barre 5b et 2b au niveau de la première barre télescopique 5a . Ce mode de réalisation présente une sécurité supplémentaire par rapport à la figure 3b dans la mesure où il n'y a pas de risque de rupture au niveau de la troisième élingue 32. D'autre part, la deuxième barre 5b permet de renforcer le guidage de la partie supérieure de la conduite rigide 1 dans ses mouvements de par la rigidification de la liaison mécanique entre l'extrémité supérieure Ii de la conduite rigide et la deuxième articulation 5c reliée au point d'accroché 7 du support flottant par le premier câble 3.
Sur la figure 3D, on a représenté une variante avantageuse de réalisation dans laquelle le dispositif de sécurité comporte en fait deux premières barres 5a articulées au niveau d'une première articulation 5d sur le bordé 1Oi du support flottant et assurant une liaison télescopique avec la platine 5f solidaire de l'extrémité de la deuxième barre 5b et supportant lesdites deuxièmes articulations 5c à l'extrémité de chacune des tiges 5a2 de la première barre télescopique 5a (non représentées sur la figure 3D). La platine 5f est soutenue par des éléments de renfort 5g.
Ce mode de réalisation avec deux dites premières barres 5a télescopiques disposées parallèlement de part et d'autre du plan axial de l'unique deuxième barre non télescopique 5b permet de renforcer le guidage de l'extrémité de la portion supérieure de la conduite rigide 1 dans un plan sensiblement perpendiculaire au plan du bordé 10i.
Lesdites deuxièmes articulations 5c à l'extrémité des tiges coulissantes 5a2 de chacune des premières barres 5a n'autorise également qu'une rotation autour d'un axe parallèle au plan du bordé 1Oi et à la platine 5f, ainsi qu'à la platine supérieure 1O2 du support flottant, c'est-à-dire se présente en position sensiblement horizontale lorsque le support flottant et au repos, la mer étant également au repos.
En fonctionnement normal, lesdites premières barres télescopiques 5a se trouvent dans une position intermédiaire, telle que représentée figures 3A à 3C et le premier câble 3 se trouve dans une position sensiblement en ligne droite par rapport à la deuxième barre 5b et l'extrémité supérieure Ii de la conduite rigide 1.
Sur les figures 8B et 8C, on a représenté des variantes de vérin hydraulique constitutif desdites premières barres télescopiques 5a comportant un dispositif hydraulique permettant d'éviter un choc trop brutal du piston 5a3 sur la butée 5a4 à l'extrémité du corps tubulaire 5a l en cas de mise en œuvre du dispositif de sécurité, c'est-à-dire de rupture du câble 3 le cas échéant. Les mouvements de la tige coulissante 5a2 sont amortis par des dispositifs à étranglement 6a et clapet anti retour 6b permettant de contrôler de manière connue respectivement la sortie et la rentrée de tige. Un petit accumulateur hydro pneumatique 6c permet d'absorber les variations du volume d'huile dans les canalisations hydrauliques 6 provenant des deux chambres 5a5 et 5a6 du vérin hydraulique. En effet, le volume d'huile provenant de la chambre 5a6 étant diminué du volume occupé par la tige 5a2 à l'intérieur de la chambre 5a6 par rapport au volume de la dite chambre 5a6, tout déplacement du piston 5a3 entraîne une variation du différentiel des volumes d'huile expulsé et aspiré dans l'une et respectivement l'autre chambre des chambres 5a6 et 5a5, l'excès d'huile pouvant être gérée par le dispositif et l'accumulateur hydro pneumatique 6c. Ces dispositifs hydrauliques de contrôle de mouvements de la barre télescopique 5a sont bien connus de l'homme du métier. Sur la figure 8C, on a représenté une version simplifiée de la figure 8B dans laquelle on ne contrôle que la sortie de tige 5a2 par le dispositif d'étranglement ou calibre 6a, la rentrée de tige ne faisant qu'ouvrir le clapet 6b sans contrôle du mouvement.
Sur les figures 6A à 6C, on a représenté l'accrochage d'une tête de riser 1 sur un support flottant 10 au niveau d'un point d'accroché 8 sur le bordé 1Oi du support flottant à partir d'un navire en surface 9 servant de navire de pose de conduite en mer. La tête du riser Ii est déplacée depuis le navire de pose jusqu'au support flottant à l'aide de câbles. Dans l'art antérieur, tel que représenté sur la figure 6A, l'accrochage de la tête de riser en 8 le long du bordé 1Oi du support flottant requière la mise en oeuvre d'engins de traction tels que des treuils IO3 extrêmement puissants et encombrants sur la plateforme IO2 qui permettent par l'intermédiaire d'un câble 15 de transférer progressivement la tête de riser vers le support flottant. Du fait de la multiplicité des risers installés côte à côte le long du bordé, cet engin de traction IO3 doit être successivement déplacé d'un emplacement de riser vers le suivant, ce qui complique considérablement l'organisation de cette zone du support flottant, déjà fortement encombrée par les diverses conduites ainsi que par les structures de charpente renforcée capable de reprendre chacune des efforts de plusieurs centaines de tonnes.
Selon la présente invention, tel que représenté sur les figures 7A, 7B et 7C, le dispositif de sécurité et guidage 5 permet de faciliter l'accroche des têtes de riser dans la mesure où la tête de riser est déportée par rapport au bordé et reliée à celui-ci par une double liaison mécanique 3 et de transfert de fluide par conduite flexible 2. Le dispositif de sécurité comprenant les deux premières barres 5a et deuxièmes barres 5b comprenant une première articulation 5d assurant la fixation de l'extrémité de la première barre 5a au niveau du bordé 10i et comprenant une deuxième articulation 5c permettant l'articulation l'une par rapport à l'autre des deux barres 5a et 5b, facilite la mise en place des liaisons souples 3 et liaisons par conduite flexible 2 à l'extrémité supérieure Ii de la conduite rigide. En effet, il suffit pour cela d'installer un câble 16 fixé à l'autre extrémité de la deuxième barre 5b, le câble 16 étant manœuvré depuis un engin de traction à bord du navire de pose 9 et permettant ainsi de ramener le jeu de barres articulées 5a, 5b vers l'extrémité supérieure Ii du riser, elle-même reliée au navire de pose 9 par un câble 17. L'extrémité libre de la deuxième barre 5b peut ainsi être accrochée par le biais d'une troisième articulation 5e (non représentée) à l'extrémité supérieure Ii de la conduite rigide. Une fois la connexion terminée, on peut installer les premiers câbles 3 et deuxièmes conduites flexibles 2 et dévirer le câble 17 afin de disposer la conduite rigide Ii depuis une position Id jusqu'à une position le de fonctionnement.
Comme illustré sur la figure 4, on peut également avantageusement installer un dispositif d'amortissement et assouplissement 4, par exemple le dispositif 20 des figures 5A à 5C, fixé sur la platine d'accroché 7 du support flottant 10.
En procédant ainsi, le navire d'installation est utilisé pour effectuer toutes les phases nécessitant des moyens importants de traction. Et, en cas de rupture du dispositif assouplisseur 4 ou du premier câble 3, l'ensemble se retrouve alors sensiblement dans la configuration If de la figure 7B, la conduite flexible de jonction 2 étant toujours connecté à ses deux extrémités. On évite de ce fait d'interrompre la production, l'ensemble restant en sécurité dans une configuration similaire à l'art antérieur, bien que momentanément dépourvu du dispositif d'amortissement et d'assouplissement 4, en attente de la réparation de ce dernier et de la remise en route du dispositif selon l'invention.
Sur la figure 4, on a représenté une installation de liaison fond surface d'une conduite sous-marine reposant au fond de la mer comprenant un lien souple comprenant un premier câble 3 coopérant avec un dispositif élastique d'amortissement 4 pour assurer la liaison entre l'extrémité supérieure du riser et un point d'accroché 7 sur ledit support flottant situé au-dessus du niveau de la surface de la mer, ledit dispositif élastique d'amortissement 4 reprenant la tension de ladite conduite rigide à son extrémité supérieure, et apte à permettre la variation de la distance entre l'extrémité supérieure de la conduite rigide et le support flottant, de manière à contrôler, tout en maintenant ledit lien souple tendu. Le dispositif élastique d'amortissement selon l'invention permet de limiter radicalement les mouvements dans la zone du pied de riser, ainsi que la formation dans le temps du sillon 13a, et en conséquence de réduire la fatigue cumulée dans cette zone, d'un facteur 4 à 6, voire plus dans certains modes préférés de réalisation.
Sur la figure 4, le dispositif élastique d'amortissement 4 est solidaire de l'extrémité supérieure de la conduite rigide à laquelle il est directement fixé rigidement, ledit premier câble 3 assurant la liaison entre un point d'accroché 7 du support flottant et l'autre extrémité du dispositif élastique d'amortissement 4, 20.
Plus particulièrement, l'extrémité supérieure de ladite conduite rigide est située en subsurface à une profondeur de 20 à 60m. Ladite conduite flexible présente une longueur de 20 à 140m.
Dans une version de l'invention, représentée sur les figures 5A-
5C, le dispositif d'amortissement 4 comprend un ressort 20 précomprimé constitué d'un empilement de rondelles tronconiques élastiques 20a, connues sous le nom de rondelles bel levil le (ou « conical spring washer »). Le fonctionnement du dispositif 20 est expliqué en référence aux figures 5A-5C. Les rondelles belleville 20b sont disposées axialement de façon inversée alternativement, formant ainsi une succession de paires 20a de rondelles tronconiques 20b enfilées par leur perforation axiale autour d'une dite première tige 22. Les 2 petites bases de chaque rondelle tronconique 20b d'une même paire 20a étant tournées l'une vers l'autre et les 2 grandes bases opposées des rondelles de la paire étant tournée vers la grande base d'une rondelle suivante ou précédente enfilées à la suite sur la dite première tige 22. Les rondelles enfilées sur la tige 22 sont insérées au sein d'un tube cylindrique 21 muni d'un fond 21a percé de manière à laisser passer la tige 22 munie à son extrémité inférieure d'un point d'attache 22a. Lesdites rondelles sont enfilées autour de ladite tige en nombre suffisant pour qu'elles soient mise en compression dans un état de pré contrainte comme illustré sur la figure 5B. Une rondelle ou butée d'extrémité 22b est alors rendue solidaire de ladite tige, de telle manière que si l'on tire vers le bas sur l'attache 22a, on augmente la compression du ressort et donc l'effort de rappel F, en créant un allongement δH qui donne ainsi de la souplesse à l'extrémité supérieure du riser. Sur le diagramme de la figure 5D, on a représenté les variations de la tension dans le dispositif 20 en fonction de la longueur de tige 22 sortie δH. La particularité des rondelles belleville est que la courbe 23 effort/déplacement est sensiblement linéaire jusqu'à une certaine valeur d'aplatissement ou écrasement des rondelles, puis la courbe 23 s'aplatit dans un deuxième temps entre 23b et 23c. Dans cette zone 23b-23c, une légère augmentation de la compression crée un déplacement important. Ainsi, lors de l'assemblage du dispositif 20 et de sa précontrainte pour atteindre l'état représenté sur la figure 5B, on ajuste le nombre de rondelles 20a de manière à atteindre le point 23b du diagramme de la figure 5D avec une tige 22 quasiment entièrement rentrée dans l'enceinte 21. Dans cette position 23b, la précontrainte est de 9Ot reprenant la tension en tête de riser lorsque le support flottant 10 est au repos en 10a, c'est-à-dire que si l'on tire vers le bas sur l'extrémité 22a de la tige 22, aucun mouvement ne se produit. Si la tension augmente en tête de riser, la tige 22 se déplace vers le bas donnant ainsi de la souplesse au dispositif 20, jusqu'à atteindre en 23c la valeur maximale de tension F correspondant sensiblement à une sortie de tige 22 maximale. Si l'on dépasse le point 23c, l'ensemble des rondelles est quasiment à plat et l'on atteint alors rapidement une butée franche 23d qui bloque alors le dispositif, le rendant ainsi complètement rigide. Ainsi, on ajuste la précontrainte du dispositif 20 en 23b à une valeur minimale inférieure au minimum de la tension quasi-statique cumulée à la variation dynamique, telle que représentée sur la figure 2, et on limite avantageusement la tension supérieure du dispositif 20 en 23c à une valeur maximale supérieure au maximum de la tension quasi- statique cumulée à la variation dynamique, telle que représentée sur la figure 2. En procédant ainsi, le dispositif 20 selon l'invention aura toujours sa longueur de tige 22 sortie située entre les deux points 23b- 23c du diagramme 5D, et donnera de ce fait la souplesse recherchée entre la structure de la barge et l'extrémité supérieure du riser. Pour augmenter la raideur du dispositif par deux, par trois, voire plus, on dispose avantageusement les rondelles belleville par premier groupe de deux ou trois, voire plus, orientées dans le même sens, le second groupe comportant le même nombre de rondelles identiques orientées en sens inverse.
Dans une version de l'invention, représentée sur la figure 4, la première barre 5a est télescopique, et comporte deux éléments 5a l, 5a2, un premier dit élément 5a l étant solidaire de l'articulation 5d, un deuxième élément 5a2 coulissant à l'intérieur de 5a l et venant en butée franche en cas de complète extension, sa seconde extrémité étant articulée en 5c sur la seconde barre 5b, le dispositif élastique amortisseur 4 étant connecté au niveau de la même articulation 5c. Ainsi, en fonctionnement normal, le dispositif élastique d'amortissement n'induit aucun effort de compression au sein de la barre télescopique 5a l-5a2, et le dispositif élastique amortisseur se trouve sensiblement en ligne droite par rapport à l'extrémité du riser 1 et à la seconde barre 5b. Lors de l'installation précédemment détaillée en référence aux figures 7A-7B, ainsi qu'en cas de rupture de l'un des éléments dudit dispositif élastique amortisseur, l'élément coulissant 5a2 de la première barre 5a vient en butée de l'élément 5a l solidaire de l'articulation 5d sur le support flottant, ce qui donne alors à l'ensemble du dispositif la configuration Id représentée sur la figure 7B, simplifiant ainsi la procédure d'installation, ou mettant en sécurité le riser en cas de rupture de l'un des éléments dudit dispositif élastique amortisseur.
Les divers dispositifs ont été décrits en relation avec une barge ancrée de manière fixe sur de multiples ancrages, mais ils présentent le même avantage quand ils sont installés sur des FPSO ancrés sur touret. Dans ce type d'ancrage, le touret est ancré sur le fond de la mer par 6-8-12 ancres, et le FPSO tourne librement autour dudit touret et se positionne ainsi naturellement au gré des vents et courants, dans la position créant le minimum d'effort entre FPSO et touret, donc le minimum d'efforts dans le système d'ancrage, ce qui augmente d'autant la stabilité du FPSO et perturbe alors d'autant moins les risers en configuration de chaînette reliées audit touret.
Le dispositif selon l'invention permet, en ajustant par exemple la longueur du lien souple 3, de modifier la zone sensible en pied de riser soumise à la fatigue. Ainsi, pendant les premières années d'exploitation la longueur de ladite liaison souple sera par exemple de 25 à 100 m, puis après cinq années, elle sera augmentée pour atteindre 50 à 300m m, la zone sensible en pied de chaînette étant alors sensiblement déplacée d'autant, une zone de fatigue cumulée critique reposant alors de manière permanente sur le sol, et n'étant de ce fait plus soumise à fatigue. L'opération sera avantageusement répétée à intervalle régulier, dans la mesure où la longueur de la liaison flexible a été prévue suffisamment longue pour absorber ces variations de la position de l'extrémité supérieure du riser en configuration de chaînette. Le cas échéant, la liaison flexible sera simplement changée et une nouvelle liaison flexible plus longue viendra en remplacement de la longueur devenue trop courte.
On reste dans l'esprit de l'invention dès lors que l'on utilise comme dispositif élastique amortisseur une haussière en fibres thermoplastiques de forte capacité et de grande longueur. De telles haussières, de 100 à 300mm de diamètre sont capables de résister à des charges de plusieurs centaines de tonnes et sont couramment employée pour l'amarrage des structures flottantes. Elles possèdent une élasticité importante et leur longueur sera avantageusement de 100a 200m pour fournir le débattement nécessaire de plusieurs mètres, dans la plage de tension recherchée. L'extrémité du riser se trouvant de ce fait plus éloignée du bordé 1Oi de la barge, il conviendra alors d'ajuster la longueur de conduite flexible qui, dans cette configuration sera beaucoup plus importante que dans les variantes décrites précédemment.

Claims

REVENDICATIONS
1. Installation de liaison fond surface d'une conduite sous- marine reposant au fond de la mer comprenant une conduite rigide (1) remontant depuis le fond de la mer où elle repose, jusqu'en subsurface où son extrémité supérieure (li) est reliée à un support flottant (10) caractérisé en ce que ladite extrémité supérieure (li) de la conduite rigide est reliée audit support flottant par :
1) au moins une liaison mécanique entre l'extrémité supérieure du riser (li) et un point d'accroché (7) sur ledit support flottant comprenant au moins un lien souple de type câble ou chaîne, ladite installation comprenant en outre, un dispositif de sécurité et de guidage (5) comprenant au moins une première barre rigide (5a) articulée à une extrémité par une première articulation (5d) au niveau de son point d'accroché sur le support flottant et à l'autre extrémité par une deuxième articulation (5c) au niveau de la dite liaison mécanique ou de la dite extrémité supérieure de la conduite rigide, et
2) une conduite flexible (2) apte à permettre le transfert du fluide véhiculé par ladite conduite rigide (1) vers le support flottant, la dite conduite flexible étant retenue par au moins un point de retenue (2a) au niveau de la dite liaison mécanique et/ou dudit dispositif de sécurité (5), de telle sorte que la conduite flexible est entièrement maintenue selon une forme incurvée au dessus de la dite extrémité supérieure de la conduite rigide, la longueur de la conduite flexible étant supérieure à la distance maximale possible entre l'extrémité supérieure (li) de la conduite rigide et le point d'accroché de la dite conduite flexible au niveau du support flottant.
2. Installation selon la revendication 1 caractérisé en ce que ledit dispositif de sécurité et de guidage (5) assure une liaison mécanique de longueur variable entre le support flottant (10) et l'extrémité supérieure de la conduite rigide et le support flottant, permettant de faire varier la distance entre le point d'attache de ladite première articulation (5d) sur le support flottant et l'extrémité supérieure de ladite conduite rigide.
3. Installation selon l'une des revendications 1 à 2 caractérisé en ce que ledit dispositif de sécurité et de guidage (5) comprend au moins une dite première barre télescopique (5a) articulée à ses extrémités ( 5d, 5c), la variation du coulissement de la dite première barre permettant de faire varier la distance entre le point d'attache de ladite première articulation (5d) sur le support flottant et l'extrémité supérieure de ladite conduite rigide, cette distance restant inférieure à la longueur de ladite conduite flexible (2).
4. Installation selon la revendication 3 caractérisé en ce que dit dispositif de sécurité comprend une dite première barre (5a) articulée par une première articulation (5d) à une extrémité au niveau de son point d'accroché au support flottant et par une deuxième articulation (5c) à l'autre extrémité au niveau du dit lien souple, les extrémités dudit lien souple étant fixées respectivement à l'extrémité supérieure du riser (li) et à un point d'accroché (7) sur ledit support flottant.
5. Installation selon l'une des revendications 1 à 4 caractérisée en ce que la courbure de ladite conduite flexible présente une double courbure inversée avec un point d'inflexion situé de préférence au niveau d'un dit point de retenue (2a).
6. Installation selon la revendication 5 caractérisé en ce que la dite conduite flexible est retenue par au moins deux point de retenue (2a, 2b) au niveau respectivement de la dite première barre (5a) et au niveau du dit lien souple (3) entre l'extrémité supérieure de la conduite rigide et la dite deuxième articulation (5c).
7. Installation selon l'une des revendications 3 à 6 caractérisé en ce que le dit dispositif de sécurité et de guidage(5) comprend au moins deux première et seconde barres de sécurité (5a, 5b) articulées entre elles par une dite deuxième articulation (5c) et à leurs extrémités par une dite première articulation (5d) à l'extrémité de la dite première barre au niveau du support flottant et une troisième articulation (5e) à l'extrémité de la deuxième barre au niveau de l'extrémité supérieure de la conduite rigide, la dite première barre étant de préférence télescopique,la variation de l'inclinaison des deux dites barres l'une par rapport à l'autre , et de préférence le coulissement en extension de la dite première barre permettant de faire varier la distance entre d'une part le point d'attache de la dite première articulation (5d) de ladite première barre sur le support flottant et d'autre part le point d'attache de la dite troisième articulation (5e) de ladite seconde barre à l'extrémité supérieure de ladite conduite rigide.
8. Installation selon la revendication 7 caractérisé en ce que le dit lien souple est fixé à une extrémité au niveau de l'articulation médiane ou dite deuxième articulation (5c) entre les deux dites barres ( 5c) et à l'autre extrémité à un point d'accroché (3a) sur ledit support flottant .
9. Installation selon la revendication 7 ou 8 caractérisé en ce que la dite conduite flexible étant retenue par au moins deux point de retenue (2a, 2b) au niveau respectivement des deux dites barres.
10. Installation selon l'une des revendications 2 à 9 caractérisé en ce que la dite première articulation au niveau de l'accroche de la dite première barre au support flottant autorise uniquement une rotation de la dite première barre par rapport à un axe parallèle au bordée du support flottant , le dit axe( YY) étant horizontal lorsque ledit support flottant est en position au repos, de manière à maintenir l'axe (XX) de la partie supérieure de la conduite rigide sensiblement dans un plan sensiblement perpendiculaire au dit bordée du support flottant.
11. Installation selon la revendication 10 caractérisé en ce que le dispositif de sécurité et de guidage comprend deux dites premières barres disposées parallèlement de part de d'autre du plan axial d'une unique dite deuxième barre et les dites deuxièmes articulations (5c) sont solidaires d'une platine (5f) elle-même solidaire de l'extrémité de la dite deuxième barre.
12. Installation selon l'une des revendications 1 à 11 caractérisé en ce que ledit lien souple est constitué d'un dit premier câble, lui-même constitué de préférence de fibres thermoplastiques présentant des caractéristiques d'élasticité, ou comprenant ou coopérant avec au moins un dispositif élastique d'amortissement (4), ledit dispositif élastique d'amortissement (4) reprenant la tension de ladite conduite rigide à son extrémité supérieure, et permettant la variation de la distance entre l'extrémité supérieure de la conduite rigide et le support flottant, tout en maintenant ledit premier câble ou dite chaîne (3) tendu.
13. Installation selon la revendication 1 ou 12, caractérisé en ce que ladite conduite rigide est une conduite de type caténaire remontant depuis le fond de la mer jusqu'en dite subsurface selon une courbe en chaînette présentant une courbure essentiellement continûment variable jusqu'à son extrémité supérieure.
14. Installation selon l'une des revendications 12 ou 13, caractérisée en ce que ledit dispositif élastique d'amortissement (4) comprend un dispositif élastique mécanique du type à ressort ou à rondelles belleville ou un dispositif élastique hydro pneumatique du type à vérins.
15. Installation selon l'une des revendications 12 à 14, caractérisée en ce que ledit dispositif élastique d'amortissement est fixé sur ledit support flottant et le dit lien souple assure la liaison entre le dispositif d'amortissement et un élément rigide de la dite liaison mécanique entre l'extrémité supérieure de la conduite et le support flottant, de préférence le dit élément rigide étant une dite deuxième articulation d'une dite barre de sécurité ( 5a), de préférence encore une dite première articulation (5c) entre lesdites deux barres de sécurité (5a, 5b) d'un dispositif de sécurité (5).
16. Installation selon l'une des revendications 1 à 15 caractérisée en ce que ledit dispositif élastique d'amortissement est positionné dans l'alignement de l'extrémité supérieure de ladite conduite rigide.
17. Installation selon l'une des revendications 12 à 16, caractérisée en ce que ledit premier câble et le cas échéant ledit dispositif d'amortissement sont capables de reprendre des tensions à l'extrémité supérieure de ladite conduite rigide de 50 à 750 T, de préférence 100T à 250 T.
18. Installation selon l'une des revendications 12 à 17, caractérisée en ce que ledit premier câble et le cas échéant ledit dispositif d'amortissement autorisent desdits déplacements de l'extrémité supérieure de ladite conduite rigide, aptes à amortir des variations de tension à l'extrémité supérieure de ladite conduite rigide, lesdites variations représentant jusqu'à 20% de la tension au repos au niveau de ladite extrémité supérieure de conduite rigide.
19. Installation selon l'une des revendications 12 à 18, caractérisée en ce que ledit premier câble et le cas échéant ledit dispositif élastique d'amortissement sont aptes à permettre des variations de distance entre l'extrémité supérieure de la conduite rigide et le support flottant ou des déplacements dans la direction axiale (XX) de l'extrémité supérieure de la conduite rigide de 1 à 10 m, de préférence de 2 à 5 m, de préférence pour des variations de tension à l'extrémité supérieure de la conduite rigide de 5 à 150 T.
20. Installation selon l'une des revendications 1 à 19, caractérisée en ce que l'extrémité supérieure de ladite conduite rigide est située en subsurface à une profondeur de 20 à 60 m.
21. Installation selon l'une des revendications 1 à 20 caractérisée en ce que ladite conduite flexible présente une longueur de 20 à 400 m, et le dit lien souple présente une longueur de 10 à 300 m, et le cas échéant le dispositif de sécurité et de guidage peut s'étendre sur une longueur de 1,5 à 25 m.
PCT/FR2008/050908 2007-05-29 2008-05-26 Installation de liaison fond-surface comprenant un lien souple entre un support flottant et l'extremite superieure d'une conduite rigide en subsurface WO2008152289A2 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP08805852A EP2148974B1 (fr) 2007-05-29 2008-05-26 Installation de liaison fond-surface comprenant un lien souple entre un support flottant et l'extremite superieure d'une conduite rigide en subsurface
AT08805852T ATE534803T1 (de) 2007-05-29 2008-05-26 Boden-oberflächen-verknüpfungsausrüstung mit einem flexiblen link zwischen einem schwimmenden träger und dem oberen ende eines unterwasserrohrs

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR0703801A FR2916795B1 (fr) 2007-05-29 2007-05-29 Installation de liaison fond-surface comprenant un disposisif elastique d'amortissement reprenant la tension de l'extremite superieure d'une conduite rigide en subsurface
FR0703801 2007-05-29
FR0755926 2007-06-21
FR0755926A FR2916796B1 (fr) 2007-05-29 2007-06-21 Installation de liaison fond-surface comprenant un lien souple entre un support flottant et l'extremite superieure d'une conduite rigide en subsurface.

Publications (2)

Publication Number Publication Date
WO2008152289A2 true WO2008152289A2 (fr) 2008-12-18
WO2008152289A3 WO2008152289A3 (fr) 2009-05-14

Family

ID=38924515

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/FR2008/050907 WO2008152288A2 (fr) 2007-05-29 2008-05-26 Installation de liaison fond-surface comprenant un dispositif elastique d'amortissement reprenant la tension de l'extremite superieure d'une conduite rigide en subsurface
PCT/FR2008/050908 WO2008152289A2 (fr) 2007-05-29 2008-05-26 Installation de liaison fond-surface comprenant un lien souple entre un support flottant et l'extremite superieure d'une conduite rigide en subsurface

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/FR2008/050907 WO2008152288A2 (fr) 2007-05-29 2008-05-26 Installation de liaison fond-surface comprenant un dispositif elastique d'amortissement reprenant la tension de l'extremite superieure d'une conduite rigide en subsurface

Country Status (4)

Country Link
EP (2) EP2148974B1 (fr)
AT (1) ATE534803T1 (fr)
FR (2) FR2916795B1 (fr)
WO (2) WO2008152288A2 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9701369B2 (en) 2012-06-21 2017-07-11 National Oilwell Varco Denmark I/S Offshore top site system
WO2018163126A3 (fr) * 2017-03-09 2018-11-01 Single Buoy Moorings, Inc. Interface supérieure de riser caténaire en acier
US10330230B2 (en) * 2016-10-18 2019-06-25 Petróleo Brasileiro S.A.—Petrobras System for auto-alignment and tensioning of flexible pipes in a stationary production unit, and method for installing flexible pipes thereby

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2957649B1 (fr) 2010-03-18 2012-05-11 Saipem Sa Procede de depose d'une ligne sous-marine au fond de la mer
US10184589B2 (en) 2015-03-04 2019-01-22 Ge Oil & Gas Uk Limited Riser assembly and method
CN109764188B (zh) * 2019-02-19 2024-05-07 长沙学院 柔性连接调节器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4065822A (en) * 1976-02-27 1978-01-03 Texaco Inc. Single point mooring with strain relief anchoring
GB2359054A (en) * 2000-02-08 2001-08-15 Brovig Rds Ltd Mooring and flowline system
WO2002060750A1 (fr) * 2001-01-24 2002-08-08 Single Buoy Moorings Inc. Systeme de dechargement absorbant le mouvement des vagues
WO2003012327A1 (fr) * 2001-08-03 2003-02-13 Nkt Flexibles I/S Systeme d'ancrage limitant la flexion et structure de conduite souple ancree
US20050196242A1 (en) * 2004-03-02 2005-09-08 Petroleo Brasileiro S.A. - Petrobras Compensating suspension element configuration

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4023517A (en) * 1975-08-11 1977-05-17 Ryan William J Riser mooring system
AU2001257408A1 (en) * 2000-04-27 2001-11-07 Retsco International, L.P. System and method for riser recoil control
FR2808263B1 (fr) * 2000-04-28 2002-07-05 Coflexip Dispositif de transfert d'un fluide entre au moins deux supports flottants
ES2269723T3 (es) * 2002-06-17 2007-04-01 Douglas Marine S.R.L. Amortiguador de amarre.
US6824330B2 (en) * 2002-09-19 2004-11-30 Coflexip S.A. Constant tension steel catenary riser system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4065822A (en) * 1976-02-27 1978-01-03 Texaco Inc. Single point mooring with strain relief anchoring
GB2359054A (en) * 2000-02-08 2001-08-15 Brovig Rds Ltd Mooring and flowline system
WO2002060750A1 (fr) * 2001-01-24 2002-08-08 Single Buoy Moorings Inc. Systeme de dechargement absorbant le mouvement des vagues
WO2003012327A1 (fr) * 2001-08-03 2003-02-13 Nkt Flexibles I/S Systeme d'ancrage limitant la flexion et structure de conduite souple ancree
US20050196242A1 (en) * 2004-03-02 2005-09-08 Petroleo Brasileiro S.A. - Petrobras Compensating suspension element configuration

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9701369B2 (en) 2012-06-21 2017-07-11 National Oilwell Varco Denmark I/S Offshore top site system
US10330230B2 (en) * 2016-10-18 2019-06-25 Petróleo Brasileiro S.A.—Petrobras System for auto-alignment and tensioning of flexible pipes in a stationary production unit, and method for installing flexible pipes thereby
WO2018163126A3 (fr) * 2017-03-09 2018-11-01 Single Buoy Moorings, Inc. Interface supérieure de riser caténaire en acier
US10597952B2 (en) 2017-03-09 2020-03-24 Single Buoy Moorings, Inc. Steel catenary riser top interface

Also Published As

Publication number Publication date
FR2916795A1 (fr) 2008-12-05
FR2916795B1 (fr) 2010-08-27
WO2008152288A4 (fr) 2009-07-23
WO2008152288A2 (fr) 2008-12-18
WO2008152288A3 (fr) 2009-05-14
EP2148974A2 (fr) 2010-02-03
ATE534803T1 (de) 2011-12-15
EP2153018B1 (fr) 2013-07-10
WO2008152289A3 (fr) 2009-05-14
EP2148974B1 (fr) 2011-11-23
FR2916796B1 (fr) 2010-08-27
EP2153018A2 (fr) 2010-02-17
FR2916796A1 (fr) 2008-12-05

Similar Documents

Publication Publication Date Title
EP1073823B1 (fr) Procede et dispositif de liaison fond-surface par conduite sous-marine installee a grande profondeur
EP1899219B1 (fr) Dispositif de transfert de fluide entre deux supports flottants
EP2122114B1 (fr) Installation de conduite montante flexible de transport d'hydrocarbures
EP1913229B1 (fr) Installation sous-marine équipée d'une conduite flexible à courbure contrôlée
EP2148974B1 (fr) Installation de liaison fond-surface comprenant un lien souple entre un support flottant et l'extremite superieure d'une conduite rigide en subsurface
EP2329175B1 (fr) Installation de conduite montante flexible de transport d'hydrocarbures pour grande profondeur
FR2801088A1 (fr) Systeme de pinces pour maintenir une conduite en tension, et support flottant en comprenant
EP2785952B1 (fr) Installation de liaisons fond-surface flexibles multiples sur au moins deux niveaux
EP2571753B1 (fr) Installation de liaison fond-surface comprenant une structure de guidage de conduite flexible
EP2997220B1 (fr) Dispositif d'ancrage d'un support de goulottes d'une installation fond-surface
FR2951802A1 (fr) Conduite sous-marine appliquee a l'exploitation de l'energie thermique des mers
EP2640923B1 (fr) Tour d'exploitation de fluide dans une étendue d'eau et procédé d'installation associé.
OA17784A (fr) Dispositif d'ancrage d'un support de goulottes d'une installation fond-surface
FR2757896A1 (fr) Systeme pour le forage et la production d'effluents petroliers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08805852

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2008805852

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE