WO2008148342A1 - Illuminateur doté d'une source lumineuse plane émettant une lumière blanche - Google Patents

Illuminateur doté d'une source lumineuse plane émettant une lumière blanche Download PDF

Info

Publication number
WO2008148342A1
WO2008148342A1 PCT/CN2008/071154 CN2008071154W WO2008148342A1 WO 2008148342 A1 WO2008148342 A1 WO 2008148342A1 CN 2008071154 W CN2008071154 W CN 2008071154W WO 2008148342 A1 WO2008148342 A1 WO 2008148342A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
lens
emitting device
white light
light
Prior art date
Application number
PCT/CN2008/071154
Other languages
English (en)
French (fr)
Inventor
Jianping Zhu
Original Assignee
Jianping Zhu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jianping Zhu filed Critical Jianping Zhu
Publication of WO2008148342A1 publication Critical patent/WO2008148342A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Definitions

  • the present invention relates to a light emitting device, and more particularly to a surface light source emitting device using a semiconductor as a light emitting element.
  • LEDs white light LEDs
  • LEDs As the fourth-generation lighting source, LED has the advantages of energy saving, environmental protection, long life, high luminous efficiency, no radiation, and impact resistance, which are unmatched by traditional light sources.
  • LEDs have many unique advantages, LEDs have a small light-emitting area and high brightness.
  • the light source generated by the LED is concentrated, and it is a little light source, which is highly prone to glare and light pollution. If the light conversion material such as phosphor is directly covered on the surface of the chip, the phosphor is extremely susceptible to the high temperature of the LED chip, accelerating the aging of the phosphor, and causing the LED light emission rate and service life to be shortened. These all affect the performance and application range of LEDs.
  • the phosphor is a powdery material or a mixture of other colloids
  • the shape of the coating is uncertain, so it is coated on the lens, thickness It is difficult to control with uniformity, the processing technology is very demanding, and the uniformity of white light generated by LED excitation and the consistency of color temperature are also difficult to control.
  • the object of the present invention is to overcome the above disadvantages of the prior art and to provide a semiconductor chip as a light-emitting element
  • a white light surface light source illuminating device including a semiconductor chip and a pedestal, wherein a cavity is formed inside the lens, the cavity is filled with a light conversion material, and the lens is fixed above the semiconductor chip and separated from the semiconductor chip;
  • the semiconductor chip is fixed on a pedestal
  • the pedestal is provided with a groove, and the semiconductor chip is fixed in the groove;
  • the surface of the base is provided with an anti-reflection film
  • the surface of the groove of the base is provided with an anti-reflection film
  • the semiconductor chip has an emission wavelength range of 200 nm to 100om;
  • the semiconductor chip is an LED chip
  • the semiconductor chip is at least one
  • the light conversion material is a phosphor or a mixture containing a phosphor
  • the lens is made of plastic material or glass material
  • the light conversion material is distributed in a plane in a cavity of the lens
  • the cavity has a square, circular or irregular shape
  • the inner surface of the cavity is rough or uneven
  • the lens is composed of a plurality of parts, and the parts are combined into one piece by one or more of ultrasonic welding, adhesive bonding, bayonet, and thread structure, and are formed therein. a cavity and an injection hole, the light conversion material is filled in the cavity through the injection hole;
  • the adhesive is colorless and transparent
  • the refractive index of the adhesive is between 1 and 2;
  • the lens and the semiconductor chip are filled with one of epoxy resin, silicone resin, acrylic resin, thermoplastic material or polyurethane material;
  • the lens surface is provided with an anti-reflection film
  • the antireflection film is a single layer or a multilayer structure
  • the state and volume of the light-converting material and the shape and number of layers of the lens cavity can be controlled, so that the light-emitting rate, color temperature, chromaticity and consistency of the produced white-light source light-emitting device can also be effectively obtained. Improve and effectively improve the yield.
  • LED As a fourth-generation light source, LED has the advantages of environmental protection, energy saving and long service life. However, it produces a pungent point light source, which is easy to cause eye discomfort.
  • the invention fills the light conversion material into the lens cavity to form a light conversion material layer, and the light source generated by the light conversion material layer is a light source, which enlarges the light emitting area and uniformity of the light source, and the emitted light is a white light surface light source. , can effectively prevent glare.
  • FIG. 1 is a schematic cross-sectional view showing a first embodiment of the present invention
  • FIG. 2 is a schematic cross-sectional view showing a second embodiment of the present invention.
  • Figure 3 is a schematic cross-sectional view showing a third embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view showing a fourth embodiment of the present invention.
  • Figure 5 is a cross-sectional view showing a fifth embodiment of the present invention.
  • Fig. 1 is a cross-sectional view showing a first embodiment of the present invention.
  • the lens 1 is made of various plastics and glass materials such as PC (polycarbonate) and PMMA (polymethyl methacrylate).
  • the lens 1 is composed of a plurality of parts, and the inter-parts are combined into one unitary structure by one or more of ultrasonic welding, adhesive bonding, bayonet, and screw structure.
  • Ultrasonic welding mainly uses high-frequency ultrasonic vibration. Under pressure, the surfaces of the two parts rub against each other to form a fusion between the molecular layers, which are integrated into one body.
  • the lens 1 is made of PC material
  • use super The sonic welding machine is welded, the welding frequency is adjusted at 15 ⁇ 45KHZ, the welding time is adjusted in 0.3 ⁇ 0.7 seconds, the delay between days is adjusted in 0.3 ⁇ 0.65 seconds, the hardening is adjusted in 0.35 ⁇ 0.6 seconds, and the welding pressure is adjusted in 2 ⁇ 5kg/cm2, through the above adjusted welding parameters, a good welding effect can be achieved, and the various parts of the lens are integrated.
  • the adhesive In the process of bonding the components of the lens with a binder, the adhesive mainly uses a colorless and transparent colloid, and its refractive index is between 1 and 2, and epoxy resin, silicone resin, acrylic resin, Any of materials such as UV glue, thermoplastic materials or polyurethane materials.
  • the lens components are connected by other means, such as a simple bayonet or a threaded structure connecting the lens components, the components may not be connected tightly.
  • the lens members are connected by a bayonet or a threaded structure, and the respective members are bonded with an adhesive to form an integral body, and the bonding strength of each member of the lens 1 is increased, and the air due to the connection gap is reduced. Light loss.
  • a cavity 11 and an injection hole 12 are formed inside, and the light conversion material 2 is filled in the cavity 11 through the injection hole 12.
  • the cavity 11 may have a square, circular or other irregular shape; the inner surface of the cavity 11 may be a smooth and flat surface, or may be a rough or uneven surface, a rough or uneven surface.
  • the diffuse reflection of the excited light of the light conversion material 2 at the interface can be effectively improved, and the light extraction rate of the light is increased.
  • the light conversion material 2 is a mixture of yellow phosphor and silica gel, and different phosphor ratios can be selected according to different color temperature requirements, such as yellow phosphor and silica gel with a mass of 1:10. More than mixing.
  • the lens 1 is placed in an oven, and the temperature is 110 ° C to 150 ° C, and the optimum temperature is 120 ° C.
  • the light converting material 2 is solidified in the cavity 11.
  • the light-converting material 2 in the lens 1 is a planar distribution, and the appearance and shape of the lens 1 can be designed and fabricated according to actual optical requirements.
  • d V4n (where n is the refractive index of the film, ⁇ is the light) The wavelength in the air).
  • the reflected light on both sides of the film is half-wave loss, so that the thickness of the film only satisfies the optical path difference of the two reflected lights by half a wavelength.
  • the reflected light on the back surface of the film travels more than the reflected light on the front surface, which is twice the thickness of the film. Therefore, the film thickness should be 1/4 of the wavelength of the light in the film medium, so that the two reflected light cancel each other out, and the light is transmitted through the lens.
  • the semiconductor chip 3 can use chips of various wavelengths of 200 nm to 1000 nm, and in this example, an LED chip that emits blue light with a wavelength of about 460 nm is fixed in the groove 51 of the susceptor 5, wherein the recess is concave.
  • the groove 5 1 has a truncated cone structure.
  • the lens 1 is fixed above the semiconductor chip 3 and spaced apart from the semiconductor chip 3, so that the light conversion material 2 in the lens 1 is not affected by the high temperature of the semiconductor chip 3.
  • the semiconductor chip 3 is fixed above the lens 1, generally in the case where the outgoing light source of the illumination device faces upward. If the exit source of the illuminator is facing down, the opposite is true.
  • a colloid 4 such as a silica gel, an epoxy resin, an acrylic resin, a thermoplastic material or a polyurethane material, wherein the colloid 4 has a refractive index of between 1.4 and 2.0.
  • the semiconductor chip 3 is driven to a constant current, the light-converting material 2 in the lens 1 is irradiated to excite and mix the original blue light to produce white light similar to daylight.
  • the lens 1 containing the light conversion material 2 is used in the present invention, the process of covering the surface of the semiconductor chip 3 with the light conversion material 2 can be reduced during the preparation process, and the processing process of the white light source is further improved. Simple, further shorten the production process, increase production efficiency, and reduce production costs.
  • the light converting material 2 in the lens 1 is a circular arc-shaped distribution.
  • the semiconductor chip 3 is an ultraviolet light LED chip with a wavelength of 200 to 380 nm
  • the light conversion material 2 is a mixture of RGB phosphor (three primary color phosphor) and UVOJltraviolet Rays, which is an ultraviolet light) glue, wherein the UV glue can also be used. Replace with silicone or epoxy resin.
  • the light converting material 2 may also be a kind of phosphor, and no other mixture is required. Phosphor and UV glue are mixed, and the phosphor and UV glue are mixed according to the color temperature requirements, such as a mass ratio of 1:10.
  • the mixture of the phosphor and the UV gel is cured by a UV light source having a light intensity of about 30 mWy C m2 and a wavelength of about 365 nm, and after a few minutes, the light conversion material 2 filled in the cavity 11 is solidified.
  • the method for rapidly curing the phosphor can greatly improve the production efficiency in the curing process; and the UV glue has a great advantage in cost compared with the silicone resin, so that the production cost can be effectively reduced.
  • the anti-reflection film 6 is disposed on the upper surface of the cavity 11 of the lens 1.
  • the two reflected lights cancel each other, and all the light is transmitted through the lens.
  • the semiconductor chip 3 is fixed on the pedestal 5
  • the multilayer film is often used to increase the reflection of light and reduce the transmission, so that the reflectivity of the high-reflection film is over 99%.
  • a parabolic groove is formed at the bottom of the bracket, and a film that reflects 450 to 465 nm blue light is plated on the groove and the side surface, and the film can reflect blue light to some extent.
  • the light source generated by the semiconductor chip 3 can be reflected, and the reflected light is projected onto the surface of the light conversion material 2, and is excited by the light conversion material 2 to generate planar white light.
  • a colloid 4 such as one of an epoxy resin, a silicone resin, an acrylic resin, a thermoplastic material, and a polyurethane material is filled between the lens 1 and the semiconductor chip 3. Since the wavelength of the light source of the semiconductor chip 3 can be well controlled, the light conversion material 2 has a good uniformity and a uniform shape in the cavity 11 of the lens 1. Therefore, the light source produced by the device also has good consistency, which can greatly improve the yield of the finished LED product.
  • FIG. 3 is a schematic cross-sectional view showing another embodiment of the present invention.
  • the light converting material 2 is filled into the cavity 11 of the lens 1 through the injection hole 12 of the lens 1, wherein the number and position of the injection hole 12, the cavity 11 can be changed and adjusted according to actual needs.
  • An antireflection film 6 having a two-layer structure is provided on the surface of the lens 1 to enhance the effect of increasing the light emission.
  • An anti-reflection layer 7 is disposed on the surface of the groove 51. At the bottom of the groove 51, a eutectic or silver paste is thermally combined with a plurality of semiconductor chips 3, and a plurality of chips are integrally packaged by parallel and/or series connection.
  • the pedestal is made of copper, aluminum, ceramics, etc., wherein the thermal conductivity series of copper is 401 W/mK, the thermal conductivity of aluminum is 237 W/mK, and the thermal conductivity of the aluminum alloy is different according to the miscellaneous metal.
  • the coefficient is slightly lower than the thermal conductivity of pure aluminum, but its hardness, toughness and workability are better than pure aluminum, and the surface finish of pure aluminum is not good. Among them, multiple chips can be packaged on the same pedestal, in parallel or in series.
  • a colloid 4 such as an epoxy resin, a silicone resin, an acrylic resin, a thermoplastic material, or a polyurethane material is filled between the lens 1 and the semiconductor chip 3.
  • the lens 1 has a convex structure on both sides, which enables the multi-chip to illuminate the light-converting material 2 to excite a soft, uniform surface light source.
  • FIG. 4 is a cross-sectional view showing a fourth embodiment of the present invention.
  • a cavity 11 and an injection hole 12 are formed in the lens 1, wherein the number of the cavity 11 and the injection hole 12 can be adjusted according to actual needs.
  • the light converting material 2 is filled into the cavity 11 through the injection hole 12 to form a layer of the light converting material.
  • the antireflection film 6 is added to increase the transmittance of light and reduce reflection.
  • the semiconductor chip 3 is fixed in the recess 51 of the pedestal 5. Since the illuminating angle of the chip 3 is 180 degrees, a part of the light emitted by the chip causes a loss, affecting the internal light extraction rate, and the surface of the pedestal 5 is provided with a groove 51. The reflection of the chip 3 on the side of the groove 51 can be increased, and the internal light extraction rate can be improved.
  • Fig. 5 is a cross-sectional view showing a fifth embodiment of the present invention.
  • the lens 1 contains a light conversion material 2, and the appearance and shape of the lens 1 can be designed and fabricated according to actual optical requirements, and the material can be made of plastic materials such as PC, P MMA, PS or glass materials, and the light conversion material 2
  • An irregular surface composed of a curved surface and a flat surface is formed in the cavity 11 of the lens 1.
  • An antireflection film 6 is provided on the upper surface of the lens cavity 11, and an antireflection film structure may be provided on the surface of the lens 1, and a multilayer structure or a single layer structure may be used to increase the transmittance of the light.
  • the ultraviolet semiconductor chip 3 having an emission wavelength range of 200 to 380 nm is fixed in the groove 51 of the susceptor 5, and an anti-reflection film 7 is disposed on the surface of the groove 51 to increase the reflectance of the light, and the lens 1 is fixed to the semiconductor.
  • colloid 4 such as epoxy resin, silicone resin, acrylic resin, thermoplastic material, polyurethane material, etc.
  • the most widely used silicone resin, its refractive index and lens refractive index are similar, can greatly improve The overall internal light extraction efficiency reduces light loss.
  • silica gel is more stable than epoxy resin.
  • the light generated by the semiconductor chip 3 is irradiated onto the light converting material 2, and the planar distribution can effectively increase the excited area of the light source, and the planar light emitting area can maximize the degree of excitation of the light converting material.
  • the shape of the cross section of the cavity 11 can be selected according to different LED light source distribution positions.
  • the light-converting material 2 is excited to produce a soft, uniform white light source.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Description

说明书 白光面光源发光装置
[1] 技术领域
[2] 本发明涉及一种发光器件, 尤其是涉及一种以半导体为发光元件的面光源发光 装置。
[3] 背景技术
[4] 从上世纪 90年代末, 白光 LED (light emitting diode, 简称为 LED) 得到了迅 猛发展。 LED作为第 4代照明光源, 具有节能、 环保、 寿命长、 光效高、 无辐射 、 抗冲击等优点, 这都是传统光源无法比拟的。
[5] 虽然 LED具有众多独特的优点, 但由于 LED芯片的发光面积小, 亮度高, 因此
LED产生的光源集中, 为一点光源, 极容易产生眩光和光污染。 如果直接将荧光 粉等光转换材料覆盖在芯片表面, 荧光粉极容易受到 LED芯片高温的影响, 加速 荧光粉的老化, 引起 LED的出光率和使用寿命的缩短。 这些都影响着 LED的使用 性能和应用范围。
[6] 在专利公幵号为" CN03824703.8"的"具有改良效率的镀膜 LED"专利中, 其主要 是将透明透镜覆盖在半导体上并与半导体隔幵, 其中磷光体层涂布在透镜的内 表面或外表面。 半导体产生的光源, 通过透镜表面的磷光体层激发和原来的光 线混合产生白光, 扩大光源的发光面积。 虽然这样也能够解决 LED的点光源问题 , 但是由于磷光体为粉末状材料, 或是和其他胶体混合而成的混合物, 在涂布 吋形状具有不确定性, 因此涂布在透镜上吋, 厚度和均匀性比较难控制, 对加 工工艺的要求非常高, 而且对 LED激发产生白光的均匀性和色温一致性也都难以 控制。
[7] 发明内容
[8] 本发明的目的是克服上述现有技术的缺点, 提供一种以半导体芯片为发光元件
, 并通过含有光转换材料的透镜吸收、 激发和转化, 以产生白光面光源的发光 装置。
[9] 为实现上述目的, 本发明釆用的技术方案是: 一种白光面光源发光装置, 包括 有半导体芯片、 基座, 其中透镜内部形成有空腔, 空腔内填充有光转换材料, 透镜固定于半导体芯片上方, 并与半导体芯片隔开;
[10] 所述的半导体芯片固定在基座上;
[11] 所述的基座设置有凹槽, 半导体芯片固定在凹槽内;
[12] 所述的基座表面设置有增反膜;
[13] 所述基座的凹槽表面设置有增反膜;
[14] 所述半导体芯片的发光波长范围为 200 nm ~ lOOOnm;
[15] 所述的半导体芯片为 LED芯片;
[16] 所述的半导体芯片至少为一个;
[17] 所述的光转换材料为荧光粉或含有荧光粉的混合物;
[18] 所述的透镜为塑料材料或玻璃材料制作;
[19] 所述的光转换材料在透镜的空腔中为面状分布;
[20] 所述的空腔截面为方形、 圆环形或不规则形状;
[21] 所述的空腔内表面为粗糙或凹凸不平;
[22] 所述的透镜由若干部分组成, 各部分之间釆用超声波焊接、 粘合剂粘结、 卡口 、 螺纹结构中的一种或多种方式结合成一整体, 并在其内部形成有空腔和注射 孔, 光转换材料通过注射孔填充在空腔内;
[23] 所述的粘合剂为无色透明;
[24] 所述粘合剂的折射率在 1〜2之间;
[25] 所述的透镜与半导体芯片之间填充有环氧树脂、 硅树脂、 丙烯酸树脂、 热塑性 材料或聚氨酯材料中的一种;
[26] 所述的透镜表面设置有增透膜;
[27] 所述的增透膜为单层或多层结构;
[28] 本发明由于釆用了含有光转换材料层的透镜, 因此在白光器件的制备过程中, 就可以省略在芯片表面覆盖光转换材料的这一工序, 使白光面光源的加工工艺 更加简单, 进一步缩短生产流程, 提高生产效率, 降低生产成本; 并且可以有 效的解决由于半导体芯片发热对光转换材料所造成的量子效率下降、 老化等不 良影响, 大大提高白光器件的使用寿命。 此外, 由于光转换材料包含在透镜的 空腔中, 光转换材料的状态、 体积以及透镜空腔的形状、 层数都可以控制, 因 此所制作的白光面光源发光装置的出光率、 色温、 色度和一致性等也能够得到 有效的改善, 有效的提高成品率。
[29] 发光二极管 LED作为第四代光源, 虽具有环保、 节能、 使用寿命长等优点, 但 是其所产生的是刺眼的点光源, 极易造成人眼的不适。 本发明将光转换材料填 充到透镜空腔中, 形成光转换材料层, 经光转换材料层激发后产生的光源为一 面光源, 扩大了光源的发光面积和均匀性, 发出的光为白光面光源, 能够有效 的防止眩光现象。
[30] 附图说明
[31] 图 1为本发明实施例 1的剖面示意图;
[32] 图 2为本发明实施例 2的剖面示意图;
[33] 图 3为本发明实施例 3的剖面示意图;
[34] 图 4为本发明实施例 4的剖面示意图;
[35] 图 5为本发明实施例 5的剖面示意图;
[36] 标号说明
[37] 1-透镜 2-光转换材料
[38] 11-空腔 12-注射孔
[39] 3-半导体芯片 4-胶体
[40] 5-基座 51-凹槽
[41] 6-增透膜 7-增反膜
[42] 具体实施方式
[43] 下面结合具体实施方式对本发明作进一步的描述:
[44] 如图 1所示, 为本发明实施例 1的剖面图。 透镜 1釆用 PC (聚碳酸酯)、 PMMA (聚 甲基丙烯酸甲脂)等各种塑料及玻璃材料制作。 透镜 1由若干部分组成, 各部分之 间釆用超声波焊接、 粘合剂粘结、 卡口、 螺纹结构中的一种或多种方式结合成 一整体结构。
[45] 超声波焊接主要是利用高频的超声波振动, 在加压情况下, 两个部件表面相互 摩擦而形成分子层之间的熔合, 连成一体。 当透镜 1釆用 PC材料制作吋, 使用超 声波焊接机进行焊接, 其焊接频率调节在 15〜45KHZ, 焊接吋间调节在 0.3〜0.7 秒, 延迟吋间调节在 0.3〜0.65秒, 硬化吋间调节在 0.35〜0.6秒, 焊接压力调节 在 2〜5kg/cm2, 通过以上调节的焊接参数, 能够达到很好的焊接效果, 将透镜 的各部分连成一体。
[46] 在使用黏合剂粘接透镜各部件的过程中, 黏合剂主要釆用无色透明的胶体, 其 折射率在 1〜2之间, 可以釆用环氧树脂、 硅树脂、 丙烯酸树脂、 UV胶、 热塑性 材料或聚氨酯材料等材料中的任意一种。
[47] 但釆用其他方式连接透镜部件吋, 如单纯的釆用卡口或螺纹结构连接各透镜部 件, 可能会造成各部件连接不紧密的现象, 当光线通过吋, 容易造成光的损失 。 因此, 在釆用卡口或螺纹结构连接各透镜部件吋, 同吋对各个部件釆用黏合 剂进行粘合, 形成一体, 并增加透镜 1各个部件的黏结强度, 减少由于连接间隙 的空气而产生光损。
[48] 透镜 1在形成一体后, 内部形成有空腔 11和注射孔 12, 光转换材料 2通过注射孔 12填充在空腔 11内。 其中空腔 11的截面可以为方形、 圆环形或其他不规则形状 ; 空腔 11的内表面可以为光滑平整的表面, 也可以为粗糙或高低不平的凹凸面 , 粗糙或高低不平的凹凸面能够有效的提高光转换材料 2的受激发光线在界面的 漫反射, 增加光线的出光率。
[49] 在本实施例中, 光转换材料 2为黄色荧光粉和硅胶的混合物, 可以根据不同的 色温要求, 来选用不同的荧光粉比例, 例如黄色荧光粉和硅胶釆用 1 : 10的质量 比混合。 光转换材料 2通过透镜 1的注射孔 12, 填充到空腔 11中后, 再将透镜 1放 入烘箱中, 釆用 110°C〜150°C温度, 最佳温度为 120°C, 连续烘烤 1小吋左右, 将 光转换材料 2固化在空腔 11内。 本实施例中, 透镜 1中的光转换材料 2为平面状分 布, 透镜 1的外观和造型则可以根据实际的光学要求来进行设计和制作。
[50] 在一块透镜 1的表面, 利用物理或化学的方法, 镀一层均匀的透明介质薄膜, 即增透膜 6, 其厚度为 d = V4n (其中 n为膜的折射率, λ为光在空气中的波长) 。 当光射到两种透明介质的界面吋, 若光从光密介质射向光疏介质, 光有可能发 生全反射; 当光从光疏介质射向光密介质, 反射光有半波损失。 以空气和透镜 为例, 对于透镜上的增透膜, 其折射率大小介于透镜介质和空气折射率之间, 当光由空气射向透镜吋, 使得膜两面的反射光均有半波损失, 从而使膜的厚度 仅仅只满足两反射光的光程差为半个波长。 膜的后表面上的反射光比前表面上 的反射光多经历的路程, 即为膜的厚度的两倍。 所以, 膜厚应为光在薄膜介质 中波长的 1/4, 从而使两反射光相互抵消, 将光线全部透过透镜。
[51] 半导体芯片 3可以釆用 200nm〜1000nm各种不同波段的芯片, 本实例中釆用为 波长在 460nm左右发蓝色光的 LED芯片, 其固定在基座 5的凹槽 51内, 其中凹槽 5 1为圆台型结构。 透镜 1固定于半导体芯片 3的上方, 并和半导体芯片 3隔开, 使 透镜 1中的光转换材料 2不受半导体芯片 3的高温影响。 半导体芯片 3固定在透镜 1 的上方, 一般是指照明装置的出射光源朝上的情况。 如果照明装置的出射光源 朝下, 则相反。 在透镜 1和 LED芯片 3之间填充有胶体 4, 如硅胶、 环氧树脂、 丙 烯酸树脂、 热塑性材料或聚氨酯材料, 其中胶体 4的折射率在 1.4〜2.0之间。 当 半导体芯片 3恒流驱动吋, 照射到透镜 1中光转换材料 2, 使之激发并混合原来的 蓝色光, 产生类似日光的白光。
[52] 本发明由于釆用了含有光转换材料 2的透镜 1, 因此在制备过程中, 就可以减少 在半导体芯片 3表面覆盖光转换材料 2的这一工序, 使白光面光源的加工工艺更 加简单, 进一步缩短生产流程, 提高生产效率, 降低生产成本。
[53] 图 2为本发明的另一实施例, 其透镜 1中的光转换材料 2为曲面的圆环状分布。
半导体芯片 3为波长为 200〜380nm的紫外光 LED芯片, 光转换材料 2为 RGB荧光 粉 (三基色荧光粉)和 UVOJltraviolet Rays的缩写,即紫外光线)胶的混合物, 其中 U V胶也可以釆用硅胶或环氧树脂等来替换。 光转换材料 2也可以为荧光粉一种, 不需要其它的混合物。 荧光粉和 UV胶混合吋, 荧光粉和 UV胶根据色温要求, 按 一定的比例进行混合后, 如釆用 1 : 10的质量比。 荧光粉和 UV胶的混合物在光强 大约 30mWyCm2, 波长为 365nm左右的 UV光源照射下, 通过数分钟后, 使填充 到空腔 11中的光转换材料 2固化。 此种快速固化荧光粉的方法, 能够大幅度的提 高固化过程中的生产效率; 而且 UV胶相对于硅树脂, 其成本上也有很大的优势 , 因此能够有效的降低生产成本。
[54] 在实施例中, 增透膜 6设置在透镜 1的空腔 11上表面, 当膜光在薄膜介质中波长 的 1/4, 使两反射光相互抵消, 将光线全部透过透镜。 半导体芯片 3固定在基座 5 的凹槽 51内, 在凹槽 51的表面设置有一层增反膜 7, 也叫高反膜, 其厚度为 d的 薄膜, 使强度相等的两束反射光的光程差 d满足干涉减弱 (d=(k+l/2) ) 条件, 可以提高光学器件的反射率, 其中薄膜的厚度^ 光波波长人。 由于相邻两束光 的强度不等, 实际常釆用多层膜, 增加光线的反射, 降低透射, 使高反膜的反 射率达 99%以上。 例如: 在支架底部冲击制作抛物线式的凹槽, 在凹槽和侧面镀 上可反射 450〜465nm蓝光的薄膜, 此薄膜可一定程度反射蓝光。 半导体芯片 3产 生的光源能够经反射后, 将反射光线都投射到光转换材料 2的面上, 通过光转换 材料 2激发后产生面状的白光。 在透镜 1和半导体芯片 3之间填充有胶体 4, 如环 氧树脂、 硅树脂、 丙烯酸树脂、 热塑性材料、 聚氨酯材料中的一种。 由于半导 体芯片 3光源的波长能够很好的控制, 再加上光转换材料 2在透镜 1的空腔 11内有 很好的均匀性和统一的形状。 因此其产生的光源也具有良好的一致性, 能大幅 提高 LED成品的良品率。
[55] 如图 3所示, 为本发明另一实施例的剖面示意图。 光转换材料 2通过透镜 1的注 射孔 12, 填充到透镜 1的空腔 11中, 其中注射孔 12、 空腔 11数量和位置可以根据 实际的需要进行变换和调节。 在透镜 1的表面设置有双层结构的增透膜 6, 提高 增透出光效果。 在凹槽 51表面设有增反层 7, 在凹槽 51的底部, 共晶或银胶等热 结合有多颗半导体芯片 3, 通过并联和 /或串联的方式, 集成封装多个芯片。
[56] 在实施例中, 基座为铜、 铝、 陶瓷等材料制作, 其中铜的导热系列为 401W/mK , 铝的导热系数为 237W/mK, 铝合金根据惨杂的金属不同, 其导热系数略低于 纯铝的导热系数, 但是其硬度、 韧性和可加工性要好于纯铝, 纯铝表面的光洁 度不好。 其中, 可以在同一个基座上集成封装多个芯片, 通过并联或串联的方 式。
[57] 在透镜 1和半导体芯片 3之间填充有胶体 4, 如环氧树脂、 硅树脂、 丙烯酸树脂 、 热塑性材料、 聚氨酯材料中的一种。 透镜 1釆用两侧凸起的结构, 能够使多芯 片照射光转换材料 2后, 激发产生柔和、 均匀的面光源。
[58] 如图 4所示, 为本发明实施例 4的剖面图。 在透镜 1内形成有一个空腔 11和注射 孔 12, 其中空腔 11和注射孔 12的数量可以根据实际的需求进行调节。 光转换材 料 2通过注射孔 12填充到空腔 11内, 形成光转换材料层。 在空腔 11的表面设置有 增透膜 6, 以增加光线的透过率, 减少反射。 半导体芯片 3固定在基座 5的凹槽 51 内, 由于芯片 3的发光角度为 180度, 芯片发出的光线会有一部分造成损失, 影 响内部的出光率, 基座 5的表面设置有凹槽 51, 能够增加芯片 3在凹槽 51侧面的 反光, 提高内部的出光率。
[59] 在透镜 1与半导体芯片 3之间隔离有一定的距离, 其间填充胶体 4。 由于半导体 芯片 3与透镜 1的空腔 11中的光转换材料 2之间间隔较大距离, 有效的解决了由于 半导体芯片 3发热对光转换材料 2所造成的量子效率下降、 老化等不良影响, 大 大提高白光器件的使用寿命。
[60] 如图 5所示, 为本发明实施例 5的剖面图。 透镜 1内含有光转换材料 2, 透镜 1的 外观和造型则可以根据实际的光学要求来进行设计和制作, 其材料则可以 PC、 P MMA、 PS等塑料材料或玻璃材料制作, 光转换材料 2在透镜 1的空腔 11内形成由 曲面和平面组成的不规则面。 在透镜空腔 11的上表面设置有一层的增透膜 6, 同 吋也可以在透镜 1的表面设置增透膜结构, 可以釆多层结构或单层结构以增加光 线的透过率。
[61] 发光波长范围为 200~380nm的紫外半导体芯片 3固定在基座 5的凹槽 51内, 在凹 槽 51的表面设置有增反膜 7, 增加光线的反射率, 透镜 1固定在半导体芯片 3上方 , 其间填充胶体 4, 如环氧树脂、 硅树脂、 丙烯酸树脂、 热塑性材料、 聚氨酯材 料等材料, 目前应用最广的是硅树脂, 其折射率和透镜的折射率相似, 能够大 幅提高整体内部的出光效率, 减少光损失。 同吋, 硅胶的稳定性要强于环氧树 脂。 半导体芯片 3产生的光线照射到光转换材料 2, 面状分布能够有效增加光源 的受激发面积, 并且面状的发光面积可以最大限度提高光转换材料的受激发程 度。 空腔 11截面的形状可以根据不同的 LED光源分布位置, 选择不同的结构形状 。 光转换材料 2受激发后产生一面状柔和、 均匀的白光面光源。
[62] 以上的实施例只是本发明的几个优选方案, 但本发明不局限于以上方案, 任何 表面形式和结构的简单改动都在本发明专利的保护范围内。

Claims

权利要求书
1、 一种白光面光源发光装置, 包括有半导体芯片、 基座, 其特征在于透镜 内部形成有空腔, 空腔内填充有光转换材料, 透镜固定于半导体芯片上方 , 并与半导体芯片隔开。
2、 根据权利要求 1所述的一种白光面光源发光装置, 其特征在于所述的半 导体芯片固定在基座上。
3、 根据权利要求 2所述的一种白光面光源发光装置, 其特征在于所述的基 座设置有凹槽, 半导体芯片固定在凹槽内。
4、 根据权利要求 2所述的一种白光面光源发光装置, 其特征在于所述的基 座表面设置有增反膜。
5、 根据权利要求 3所述的一种白光面光源发光装置, 其特征在于所述基座 的凹槽表面设置有增反膜。
6、 根据权利要求 1所述的一种白光面光源发光装置, 其特征在于所述半导 体芯片的发光波长范围为 200 nm ~ 1000nm。
7、 根据权利要求 1-6所述的任意一种白光面光源发光装置, 其特征在于所 述的半导体芯片为 LED芯片。
8、 根据权利要求 1, 2, 3或 6所述的任意一种白光面光源发光装置, 其特征 在于所述的半导体芯片至少为一个。
9、 根据权利要求 1所述的一种白光面光源发光装置, 其特征在于所述的光 转换材料为荧光粉或含有荧光粉的混合物。
10、 根据权利要求 1所述的一种白光面光源发光装置, 其特征在于所述的透 镜为塑料材料或玻璃材料制作。
11、 根据权利要求 1或 9所述的一种白光面光源发光装置, 其特征在于所述 的光转换材料在透镜的空腔中为面状分布。
12、 根据权利要求 1所述的一种白光面光源发光装置, 其特征在于所述的空 腔截面为方形、 圆环形或不规则形状。
13、 根据权利要求 1或 12所述的一种白光面光源发光装置, 其特征在于所述 的空腔内表面为粗糙或凹凸不平。
14、 根据权利要求 1所述的一种白光面光源发光装置, 其特征在于所述的透 镜由若干部分组成, 各部分之间釆用超声波焊接、 粘合剂粘结、 卡口、 螺 纹结构中的一种或多种方式结合成一整体, 并在其内部形成有空腔和注射 孔, 光转换材料通过注射孔填充在空腔内。
15、 根据权利要求 14所述的一种白光面光源发光装置, 其特征在于所述的 粘合剂为无色透明。
16、 根据权利要求 14所述的一种白光面光源发光装置, 其特征在于所述粘 合剂的折射率在 1〜2之间。
17、 根据权利要求 1所述的一种白光面光源发光装置, 其特征在于所述的透 镜与半导体芯片之间填充有环氧树脂、 硅树脂、 丙烯酸树脂、 热塑性材料 或聚氨酯材料中的一种。
18、 根据权利要求 1所述的一种白光面光源发光装置, 其特征在于所述的透 镜表面设置有增透膜。
19、 根据权利要求 18所述的一种白光面光源发光装置, 其特征在于所述的 增透膜为单层或多层结构。
PCT/CN2008/071154 2007-06-05 2008-05-30 Illuminateur doté d'une source lumineuse plane émettant une lumière blanche WO2008148342A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200710009071.8 2007-06-05
CN2007100090718A CN101075655B (zh) 2007-06-05 2007-06-05 白光面光源发光装置

Publications (1)

Publication Number Publication Date
WO2008148342A1 true WO2008148342A1 (fr) 2008-12-11

Family

ID=38976548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/071154 WO2008148342A1 (fr) 2007-06-05 2008-05-30 Illuminateur doté d'une source lumineuse plane émettant une lumière blanche

Country Status (2)

Country Link
CN (1) CN101075655B (zh)
WO (1) WO2008148342A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2759764A4 (en) * 2011-09-15 2015-06-03 Dong Hoon Hyun LIGHT EMITTING DIODE LIGHTING ENGINE THAT ADOPTS A STALACTITE TYPE DIFFUSION UNIT

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101075655B (zh) * 2007-06-05 2010-07-07 诸建平 白光面光源发光装置
CN101358715A (zh) * 2008-09-10 2009-02-04 和谐光电科技(泉州)有限公司 一种白光led的封装工艺
CN101769461B (zh) * 2010-01-05 2012-03-07 艾迪光电(杭州)有限公司 一种高效的led发光模块
CN101826590B (zh) * 2010-04-20 2013-11-13 北京朗波尔光电股份有限公司 一种透镜注荧光胶的led灯及其封装方法
FI122809B (fi) * 2011-02-15 2012-07-13 Marimils Oy Valolähde ja valolähdenauha
CN102252273A (zh) * 2011-04-12 2011-11-23 广东佛照新光源科技有限公司 一种波长转换器件及其制备方法
US20130141917A1 (en) * 2011-12-01 2013-06-06 Tzy-Ying Lin Led light device
CN103208581A (zh) * 2012-01-17 2013-07-17 中央大学 发光二极管透镜
CN103943762A (zh) * 2014-04-22 2014-07-23 佛山佛塑科技集团股份有限公司 具有多层结构的led照明用远程荧光粉配光薄膜及其制备方法
US10103300B2 (en) * 2014-05-21 2018-10-16 Lumileds Llc Method of attaching a lens to an LED module with high alignment accuracy
CN105185890A (zh) * 2015-08-10 2015-12-23 深圳市华星光电技术有限公司 Led光源结构及其封装方法
CN111103722A (zh) * 2018-10-26 2020-05-05 深圳Tcl新技术有限公司 背光源及光学模组

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004207660A (ja) * 2002-12-26 2004-07-22 Toyoda Gosei Co Ltd 発光ダイオード
CN1159776C (zh) * 2002-01-11 2004-07-28 北京大学 高亮度氮化物白光发光二极管及其制备方法
CN1780000A (zh) * 2004-11-24 2006-05-31 杭州创元光电科技有限公司 发光二极管封装结构
CN2809881Y (zh) * 2005-05-20 2006-08-23 光鼎电子股份有限公司 高亮度发光二极管
CN2826706Y (zh) * 2005-06-01 2006-10-11 张龙宝 单颗和集群封装的功率led定向光源
JP2007103926A (ja) * 2005-09-09 2007-04-19 Matsushita Electric Works Ltd Led照明装置
CN1960016A (zh) * 2005-11-02 2007-05-09 西铁城电子股份有限公司 发光二极管单元
CN101075655A (zh) * 2007-06-05 2007-11-21 诸建平 白光面光源发光装置
CN201062757Y (zh) * 2007-06-05 2008-05-21 诸建平 白光面光源发光装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1159776C (zh) * 2002-01-11 2004-07-28 北京大学 高亮度氮化物白光发光二极管及其制备方法
JP2004207660A (ja) * 2002-12-26 2004-07-22 Toyoda Gosei Co Ltd 発光ダイオード
CN1780000A (zh) * 2004-11-24 2006-05-31 杭州创元光电科技有限公司 发光二极管封装结构
CN2809881Y (zh) * 2005-05-20 2006-08-23 光鼎电子股份有限公司 高亮度发光二极管
CN2826706Y (zh) * 2005-06-01 2006-10-11 张龙宝 单颗和集群封装的功率led定向光源
JP2007103926A (ja) * 2005-09-09 2007-04-19 Matsushita Electric Works Ltd Led照明装置
CN1960016A (zh) * 2005-11-02 2007-05-09 西铁城电子股份有限公司 发光二极管单元
CN101075655A (zh) * 2007-06-05 2007-11-21 诸建平 白光面光源发光装置
CN201062757Y (zh) * 2007-06-05 2008-05-21 诸建平 白光面光源发光装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2759764A4 (en) * 2011-09-15 2015-06-03 Dong Hoon Hyun LIGHT EMITTING DIODE LIGHTING ENGINE THAT ADOPTS A STALACTITE TYPE DIFFUSION UNIT

Also Published As

Publication number Publication date
CN101075655A (zh) 2007-11-21
CN101075655B (zh) 2010-07-07

Similar Documents

Publication Publication Date Title
WO2008148342A1 (fr) Illuminateur doté d'une source lumineuse plane émettant une lumière blanche
TWI461793B (zh) 顯示裝置
CN102709449B (zh) 荧光粉片层、荧光粉色轮及使用该荧光粉片层的光源
CN101639164B (zh) 一种高稳定的增强显色性led光源模块
CN201062757Y (zh) 白光面光源发光装置
CN105738994B (zh) 波长转换装置及相关照明装置、荧光色轮和投影装置
JP6076975B2 (ja) Led照明システム用コリメートレンズ、コリメートレンズを含むled照明システム、及び/又はその製造方法
JP2014526120A (ja) 蛍光体サブアセンブリを装着したled照明システム、及び/又はその製造方法
CN101345236A (zh) 一种均匀照明的白光led模组封装光学方案
EP2859595A1 (en) Light-emitting device and illuminating apparatus comprising the light-emitting device
WO2020125263A1 (zh) 一种led封装表面遮挡结构
US20100259916A1 (en) Light-emitting device and method for fabricating the same
CN102679194B (zh) Led灯具
CN103047553A (zh) 一种高光效大功率led面板灯
CN111425820A (zh) 一种波长转换单元及激光照明模组
WO2019165741A1 (zh) 光源系统及照明装置
JP7187683B2 (ja) 照明装置及び車両用ライト
KR101069690B1 (ko) 측광원에 의해 발광하는 비구면렌즈를 이용한 엘이디 조명장치
JP2011086515A (ja) Led照明装置及びリフレクタ
KR20130103080A (ko) Led 조명장치
CN205281102U (zh) 发光装置、投影显示装置和灯具
CN201047878Y (zh) 一种用于led光源的发散透镜
CN207909915U (zh) 一种具有反射腔结构的发光模组
WO2019136832A1 (zh) 光源装置、光导及光导的制造方法
CN109698265A (zh) 一种具有反射腔结构的发光模组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08757565

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08757565

Country of ref document: EP

Kind code of ref document: A1