WO2008145011A1 - Procédé de transmission de signal parallèle d'une alimentation ininterrompue - Google Patents

Procédé de transmission de signal parallèle d'une alimentation ininterrompue Download PDF

Info

Publication number
WO2008145011A1
WO2008145011A1 PCT/CN2008/001003 CN2008001003W WO2008145011A1 WO 2008145011 A1 WO2008145011 A1 WO 2008145011A1 CN 2008001003 W CN2008001003 W CN 2008001003W WO 2008145011 A1 WO2008145011 A1 WO 2008145011A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
parallel signal
parallel
uninterruptible power
transmission method
Prior art date
Application number
PCT/CN2008/001003
Other languages
English (en)
French (fr)
Inventor
Yihang Lu
Dangsheng Zhou
Zhihua Wang
Quanbo Xia
Bo Liu
Steve Moran
Chris Crawford
Brian Heber
Original Assignee
Liebert Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liebert Corporation filed Critical Liebert Corporation
Priority to US12/601,045 priority Critical patent/US8290103B2/en
Publication of WO2008145011A1 publication Critical patent/WO2008145011A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/40006Architecture of a communication node
    • H04L12/40032Details regarding a bus interface enhancer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L2012/40208Bus networks characterized by the use of a particular bus standard
    • H04L2012/40215Controller Area Network CAN

Definitions

  • the present invention relates to the field of uninterruptible power supplies, and more particularly to a method for transmitting parallel signals of an uninterruptible power supply. Background technique
  • Uninterruptible Power Supply is a constant-frequency, regulated, pure, uninterrupted, high-quality power supply. With the rapid development of information technology and the widespread use of computers, it has become an indispensable part of many important occasions. Power supply unit. To improve reliability or increase capacity, multiple UPSs often need to work in parallel. The function of the parallel signal is to enable each UPS in the parallel system to know the working status of other machines and provide a basis for its operation based on these conditions. In order to ensure fast and reliable parallel connection, it is necessary to ensure timely and reliable transmission of a large amount of information between the UPSs, and also requires a long transmission distance. Therefore, the current parallel communication generally transmits parallel signals through parallel transmission. Way to transfer. Although the transmission method has the advantages of simplicity and speed, it has significant limitations in important aspects such as transmission distance, fault tolerance and wiring.
  • the signal interaction between the UPSs can be quickly performed, but the number of signal lines required increases with the number of parallel signals, and the number of parallel signal lines is large.
  • the wiring becomes complicated, which leads to inconvenience of wiring; and once the parallel signal increases, the hardware circuit will have to be redesigned, which lacks flexibility.
  • the parallel transmission process is susceptible to interference and cannot meet the requirements of long-distance transmission; more importantly, once a certain signal line is short-circuited with other signal lines or short-circuited with power/ground, due to circuit limitations, the system will Unrecognized. Summary of the invention
  • the object of the present invention is to solve the above problems in the prior art, and to provide an uninterruptible power supply parallel signal transmission method, which solves the problems of inconvenient wiring, easy to be interfered, short transmission distance and unreliable identification of parallel line faults in the prior art.
  • the technical solution adopted by the present invention is: an uninterruptible power supply parallel signal transmission method, which first uses a logic processing unit to serialize a parallel signal; and then performs parallelization of the same nature of each node machine.
  • a bus-type transmission in which signals are transmitted synchronously.
  • each node machine includes a master node machine and a slave node machine, and the difference between the master node machine and the slave node machine can be obtained through power-on competition or can be obtained through hardware configuration.
  • the master node periodically sends the synchronization information, and the synchronization information is received from the node machine in real time; after the master node sends the synchronization information and receives the correct synchronization information from the node, the synchronization succeeds, and then each node machine follows the same bit order. Send parallel data serially.
  • the synchronization information is a string of strings that are not identical to the valid data.
  • the bus transfer is implemented by a "wire and" circuit unit.
  • the "wire and" circuit unit is a CAN transceiver.
  • bus transfer is implemented by a "wire or" circuit unit.
  • the "wire or" circuit unit is a CAN transceiver.
  • the wiring is simple, and the anti-interference ability is strong while satisfying the basic transmission requirement, the real-time transmission and the transmission distance of the signal can be ensured, and the identification can be conveniently recognized.
  • the parallel line is faulty.
  • the synchronization of the signal is not synchronized by using an additional sync line, but a string of special strings is used as the synchronization information.
  • the special string shares the bus with the valid data, but its code stream Will not be the same as valid data, this also It is ensured that each node can extract synchronization information in a continuous data stream, so that each node transmits valid data of the same nature to the bus at the same time and receives valid information on the bus.
  • the synchronization information will be sent by the master node, and the slave node will only receive the synchronization information.
  • the division of the master-slave node can effectively plan the synchronization mechanism and reduce the overhead of bus competition. Whether the node is a master node or a slave node can be obtained through hardware configuration or through power-on competition.
  • the CAN transceiver can convert the parallel signal into a differential signal, and the differential transmission of the signal can greatly increase the transmission distance and the line anti-interference ability.
  • the parallel system design can also replace the CAN transceiver with a common "wire and" or “wire or” circuit unit, thereby reducing the cost of the device.
  • FIG. 1 is a schematic diagram of a parallel transmission principle of parallel signals in the prior art
  • FIG. 2 is a schematic diagram of parallel signalization of a parallel signal according to an embodiment of the present invention.
  • FIG. 3 is a schematic block diagram of parallel signal transmission of a parallel signal according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of signal synchronous transmission according to an embodiment of the present invention
  • FIG. 5 is a diagram showing the level of a CAN physical bus in accordance with an embodiment of the present invention. detailed description
  • the implemented bus has a logical "line or” or “line and” function. This embodiment takes “line and” as an example;
  • the present embodiment employs a CPLD (Complex Programmable Logic Device) and a CAN (Controller Area Network) transceiver to implement a serial signal bus type high speed transmission method.
  • CPLD Complex Programmable Logic Device
  • CAN Controller Area Network
  • FIG. 2 The technical scheme adopted in this embodiment is shown in FIG. 2.
  • the parallel signals of each UPS machine are converted into serial signals and then transmitted by bus.
  • the connection diagram of the parallel system is shown in Figure 3.
  • the above method can convert the n signal lines originally required into one or two signal lines (two signal lines are required for differential transmission), which greatly reduces the number of transmission lines.
  • the above parallel signal serial transmission method is required to ensure that the above four conditions are satisfied.
  • serial transmission has more time overhead than parallel transmission
  • serial transmission can fully meet the real-time requirements of the parallel system by reasonable protocol arrangement and transmission speed selection. The interaction of all parallel signals is completed within the time.
  • both 1 ⁇ 8-8 and 1 ⁇ 8 8 are sent 81 ⁇ _1 or Sig- n, to achieve the above purpose Make UPS A and UPS B clock synchronized.
  • the embodiment of the present invention firstly uses the CPLD to realize the competition between the master and the slave of each UPS, and the machine that obtains the host right will send a string of strings that are not identical to the parallel signal data as the synchronization information, and obtain the UPS of the slave right. The synchronization information sent by the host will be received.
  • the slave UPS After the host UPS sends the synchronization information, and the slave UPS receives the correct synchronization information, it indicates that the synchronization is successful, and each UPS will follow the same sequence (Sig-1, Sig-2, ..., Sig-n).
  • the line sends the parallel data.
  • the bus transfer function with logic "line or” or “wire and” function is implemented by the CAN transceiver.
  • CAN bus For the general CAN bus, it is physically transmitted in a differential manner.
  • the typical timing diagram of the input signal is shown in Figure 5.
  • the bus voltage difference When the bus voltage difference is greater than 0.9V, it indicates the logic zero level (dominant level) of the communication signal, and the bus voltage difference is less than 0.5V, indicating the logic high of the communication signal. Level (recessive level).
  • the CAN transceiver is the interface between the CAN protocol controller and the physical bus.
  • the bus When the TXD output of the transceiver of the transceiver is high, if the TXD output of the other node on the bus is low, the bus will exhibit a logic low level, that is, the hidden characteristic of the node on the bus is other.
  • the explicit characteristics of the node are covered. That is, the CAN transceiver logically has the ability to "wire and".
  • each bus will take advantage of the dominant nature of the bus to avoid collisions.
  • a CAN node sends a stealth level
  • the CAN controller detects a dominant level on the bus, it will stop its own transmission behavior to avoid confusion of data on the bus.
  • each node can simultaneously transmit its own parallel information without causing some nodes not to be transmitted due to conflicts, while using the CAN transceiver.
  • the "line and" capability realizes the real-time logic line of each parallel signal on the bus, thereby achieving the real-time integration of the parallel signals of each UPS.
  • the pulse signal is transmitted on the actual parallel line, and the transmission signal has high and low level changes, so once the CPLD detects the received data is Continuously constant level, it can be determined that the parallel line has a fault; and because the CAN transceiver is used, the parallel line transmits the differential signal, which is much better than the parallel transmission in the transmission distance and anti-interference performance of the line.
  • the transmission method can ensure the real-time transmission and transmission distance of the signal transmission while satisfying the basic transmission requirement of the parallel signal, and can easily identify the parallel line fault.
  • the implemented bus has a logical "line or” or “line and” function. This embodiment takes “line and” as an example; 4. Ensure the convenience and fault tolerance of the networking, and the formed bus has good fault judgment ability.
  • This embodiment adopts an FPGA (Field Programmable Gate Array) and a CAN (Controller Area Network) transceiver to implement a serial signal bus type high-speed transmission method.
  • FPGA Field Programmable Gate Array
  • CAN Controller Area Network
  • FIG. 2 The technical scheme adopted in this embodiment is shown in FIG. 2.
  • the FPGA converts the parallel signals of each UPS machine into serial signals and then performs bus transmission.
  • the connection diagram of the parallel system is shown in Figure 3.
  • the above method can convert the n signal lines originally required into one or two signal lines (two signal lines are required for differential transmission), which greatly reduces the number of transmission lines.
  • the above parallel signal serial transmission method is required to ensure that the above four conditions are satisfied.
  • serial transmission has more time overhead than parallel transmission
  • serial transmission can fully meet the real-time requirements of the parallel system by reasonable protocol arrangement and transmission speed selection. The interaction of all parallel signals is completed within the time.
  • both 1 ⁇ 8-8 and 1 ⁇ 8 8 are sent 81 ⁇ _1 or Sig- n, to achieve the above purpose Make UPS A and UPS B clock synchronized.
  • the embodiment of the present invention first uses the FPGA to realize the competition of the master and slave of each UPS, and the machine that obtains the host right will send a string of strings that are not identical to the parallel signal data as the synchronization information, and obtain the UPS of the slave right. The synchronization information sent by the host will be received.
  • each UPS After the host UPS sends the synchronization information, and the slave UPS receives the correct synchronization information, it indicates that the synchronization is successful, and each UPS will send the parallel in the same order (Sig_l, Sig_2, ..., Sig-n). data.
  • the bus transfer function with logic "line or” or “wire and” function is implemented by the CAN transceiver.
  • the signal is physically transmitted in differential mode.
  • the typical timing diagram is shown in Figure 2.
  • the bus voltage difference is greater than 0.9V, it indicates the logic zero level (dominant level) of the communication signal.
  • the bus voltage difference is less than 0.5V, it indicates a logic high level (recessive level) of the communication signal.
  • CAN transceiver is CAN protocol controller and physical total The interface between the lines.
  • TXD input is high, if the TXD output of other nodes on the bus is low, the bus will exhibit a logic low level, that is, its own hidden characteristics on the bus are exposed by other nodes. Covered. That is, the CAN transceiver logically has the ability to "wire and".
  • each node on each bus will use the dominant characteristics of the bus to avoid collisions, that is, when a CAN node itself sends a stealth level, if the CAN controller detects a bus rendering For the dominant level, its own transmission behavior will be stopped to avoid confusion of data on the bus.
  • each node can simultaneously transmit its own parallel information without causing some nodes not to be transmitted due to collisions, while using the CAN transceiver.
  • the "line and" capability realizes the real-time logic line of each parallel signal on the bus, thereby achieving the real-time integration of the parallel signals of each UPS.
  • the pulse signal is transmitted on the actual parallel line, and the transmission signal has a high-low level change, so once the FPGA detects the received data, Continuously constant level, it can be determined that the parallel line has a fault; and because the CAN transceiver is used, the parallel line transmits the differential signal, which is much better than the parallel transmission in the transmission distance and anti-interference performance of the line.
  • the transmission method can ensure the real-time transmission and transmission distance of the signal transmission while satisfying the basic transmission requirement of the parallel signal, and can also easily identify the parallel line fault.
  • CPLDs or FPGAs can be replaced with microcontrollers or other ICs with logic processing capabilities. It is also possible to replace the CAN transceiver with other circuits or ICs with "wire or" or “wire and” functions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Small-Scale Networks (AREA)
  • Hardware Redundancy (AREA)

Description

一种不间断电源并机信号的传输方法 技术领域
本发明涉及不间断电源领域, 特别涉及一种不间断电源并机信号 的传输方法。 背景技术
不间断电源 (Uninterruptible Power Supply, UPS) 是一种恒频、 稳压、 纯净、 不间断的高品质电源, 随着信息技术的高速发展和计算 机的广泛应用, 它已成为许多重要场合不可缺少的电源装置。 为提高 可靠性或者增加容量, 多台 UPS经常需要并联工作。 并机信号的作用 是使并机系统里的各 UPS能够知道其它机器的工作状态, 并根据这些 状态, 为自身的操作提供依据。 为了确保快速且可靠的并联, 需要保 证大量信息在各 UPS之间及时可靠的传输, 且还需要有较长的传输距 离, 因此目前的并机通讯, 一般都是把并机信号通过并行传输的方式 来进行传输。 尽管该传输方法具有简单、 速度快的优点, 但在传输距 离、 容错和布线等重要的方面都有较大的限制。
在以往的并机通讯方法里面, 信号都是采用并行的方式进行传输。 如图 1所示, 两台 UPS并机, 需要传输 η (η>1 ) 个并机信号, 每一个信 号通过二极管或者类似功能的电路在传输的同时实现信号的逻辑与, 也就是 "线与", 从而使得每一台机器能够得到其它机器的状态信息。 图 1中 Sig— l_Tx和 Sig—n—Tx表示 UPS发送的并机信号 1和并机信号 n, Sig_l_Rx和 Sig— n— Rx表示 UPS接收的并机信号 1和并机信号 n。 采用图 1 所示的方法进行并机通讯,能够快速的进行各 UPS之间信号的交互,但 所需要信号线的数量随着并机信号数量的增加而增加, 在并机信号线 数量大的情况下, 布线就会变得很复杂, 由此带来布线的不方便; 而 且一旦并机信号增加, 将不得不重新设计硬件电路, 缺少灵活性。 另 外, 并行传输过程中易受干扰, 无法满足长距离传输的要求; 更重要 的一点是, 一旦某一个信号线与其它信号线短路, 或者与电源 /地短路, 由于电路的局限性, 系统将无法识别出来。 发明内容
本发明的目的是针对现有技术中的上述问题, 提出一种不间断电 源并机信号传输方法, 解决现有技术中布线不便、 易受干扰、 传输距 离短且无法可靠的识别并机线路故障的问题。
为达到上述发明目的, 本发明采用的技术方案为: 一种不间断电 源并机信号传输方法, 首先利用逻辑处理单元将并机信号串行化处理; 然后进行使得各节点机器相同性质的并机信号得以同步传输的总线式 传输。
进一步的, 逻辑处理单元为 CPLD或者 FPGA或者微控制器。 进一步的, 各节点机器包括主节点机器和从节点机器, 主节点机 器和从节点机器的区别可以通过上电竞争获得, 也可以通过硬件配置 获得。
更进一步的, 主节点机器定时发送同步信息, 而从节点机器实时 接收同步信息; 主节点发送完同步信息而从节点接收到正确的同步信 息以后同步成功, 然后各节点机器将按照相同的位顺序串行发送并机 数据。
再进一步的, 同步信息为一串与有效数据不会相同的字符串。 更进一步的, 总线式传输是由 "线与" 电路单元实现的。
再进一步的, "线与" 电路单元为 CAN收发器。
更进一步的, 总线式传输是由 "线或" 电路单元实现的。
再进一步的, "线或" 电路单元为 CAN收发器。
采用本发明技术方案的不间断电源并机信号的串行传输方法, 布 线简单, 在满足基本传输需求的同时, 抗干扰能力强, 能够保证信号 传输的实时性和传输距离, 且能够方便的识别并机线路故障。
采用 CPLD或者 FPGA或者微控制器, 可以方便的将并行信号转 换成为串行信号, 并保证实时性, 同时上述逻辑控制器的选用也能够 实现多并机单元所传输有效信号的同步, 比采用离散逻辑器件来实现 该功能有更高的效率和经济性。
在信号同步方面, 出于成本的考虑, 信号的同步没有采用额外的 同步线进行同步, 而是采用一串特殊的字符串作为同步信息, 该特殊 字符串与有效数据共用总线, 但其码流不会与有效数据的相同, 这也 就能够保证各节点能够在连续不断的数据流中提取出同步信息, 从而 各节点在相同的时刻发送相同性质的有效数据到总线上, 并接收总线 上的有效信息。 同步信息将由主节点发送, 从节点只是接收同步信息。 主从节点的划分可以有效的规划同步机制, 减少总线竞争的开销。 节 点是主节点还是从节点既可以通过硬件配置获得, 也可以通过上电竞 争获得。
根据并机原理, 各节点的状态信息需要进行实时的综合。 如果在 某一周期时间 T 内, 总线上只能发送某一节点的状态信息, 那对于 N(N>=2)台并机的系统完成一次信息的综合就需要 N*T个周期时间。 但是如果采用 "线与"或者 "线或"电路单元, 在一个周期时间 T内, 所有的节点都能够发送自己的状态信息, 并且利用 "线与"或者 "线 或" 电路单元能够在同一个周期时间内获得最终的综合信息, 这样的 做法就大大节省了时间开销, 提高了并机系统的实时性。 同时, 采用 CAN收发器能够将并机信号转换成差分信号, 信号的差分传输能极大 的增加传输距离以及线路抗干扰能力。 当然, 对于传输距离较短, 工 作环境比较好的并机系统设计也可以采用普通的 "线与"或者 "线或" 电路单元来替代 CAN收发器, 从而能够降低设备的成本。 附图说明
图 1是现有技术中并机信号并行传输原理示意图;
图 2是本发明具体实施方式并机信号串行化示意图;
图 3是本发明具体实施方式并机信号串行传输示意框图; 图 4是本发明具体实施方式信号同步传输示意图;
图 5是本发明具体实施方式 CAN物理总线电平示意图。 具体实施方式
实施例一
下面结合附图详细介绍该方法的实现。
针对 UPS并机需求, 对并行离散信号的串行传输需要满足以下条 件:
1、 满足并机通信的实时性, 确保并机系统的正常工作; 2、需要有合适的传输规范,以便能够从数据流里面提取有效信息;
3、 所实现的总线具有逻辑 "线或"或者 "线与"功能, 本实施例 以 "线与"为例;
4、 确保组网的方便性、 容错性, 构成的总线具有良好的故障判断 能力。
针对这些要求, 本实施例采用一种 CPLD (复杂可编程逻辑器件, Complex Programmable Logic Device ) 禾口 CAN ( Controller Area Network, 控制器局部网)收发器来实现串行信号总线式高速传输的方 法。
本实施例采用的技术方案如图 2所示,在并机系统中,把每一台 UPS 机器的并机信号转换成串行信号以后再进行总线式传输。 经过上述的 处理, 并机系统的连线框图如图 3所示。
由图 3可以看出, 上述的做法可以将原本需要的 n根信号线转换成 1 根或者 2根信号线 (差分传输时需要 2根信号线), 大大减少了传输线的 数量。
采用上述的并机信号串行传输方法需要确保满足上面提到的 四个条件。
对于传输的实时性, 尽管串行传输比并行传输会有更多的时间开 销, 但通过合理的协议安排和传输速度的选择, 串行传输完全能够满 足并机系统的实时性要求, 实现在规定的时间内完成对所有并机信号 的交互。
对于提取有效信息, 如图 4所示, 其意思为: 在同一个时钟周期 里面, 1^8八和1^8 8都发送的是81§_1或者 Sig— n, 要实现上述的目 的就需要做到 UPS A与 UPS B的时钟同步。 为此, 本发明实施例首先 利用 CPLD实现各 UPS的主从机竞争, 获得主机权利的机器将发送一 串与并机信号数据不会相同的字符串作为同步信息, 而获得从机权利 的 UPS将接收主机发送的同步信息。主机 UPS发送完同步信息, 并且 从机 UPS接收到正确的同步信息以后, 表示同步成功, 各 UPS将按照 相同顺序 (Sig— 1, Sig— 2, ...... ,Sig— n)串行发送并机数据。
而具有逻辑 "线或"或者 "线与"功能的总线传输功能则由 CAN 收发器来实现。 对于通用的 CAN总线来说, 物理上采用差分方式来传 输信号, 其典型的时序图如图 5所示, 当总线电压差大于 0.9V表示通讯 信号的逻辑零电平 (显性电平), 而总线电压差小于 0.5V时表示通讯信 号的逻辑高电平(隐性电平)。 CAN收发器是 CAN协议控制器和物理总 线之间的接口。 当收发器的发送端 TXD输出是高电平时, 如果总线上 有其他 '节点的发送端 TXD输出是低电平, 则总线将呈现逻辑低电平, 即节点在总线上的隐性特性被其它节点的显形特性所覆盖。也就是说, CAN收发器从逻辑上看, 具有 "线与" 的能力。
在通用 CAN总线通讯中, 各个总线上的 CAN节点将会利用总线的 显性特性来避免冲突。当一个 CAN节点发送隐形电平的时候,如果 CAN 控制器检测到总线上呈现为显性电平, 将停止自身的发送行为, 以免 引起总线上数据的混淆。 而本实施例则恰恰相反, 由于电路中只存在 CAN收发器而没有 CAN控制器,各节点能够同时发送自身的并机信息, 而不会因为冲突导致某些节点不发送, 同时利用 CAN收发器的 "线与" 能力, 实现各并机信号在总线上的实时逻辑线与,从而达到各 UPS的并 机信号实时综合的目的。
从上面的分析可知, 并机信号由并行传输转换成串行传输以后, 在实际并机线路上传输的是脉冲信号, 传输信号存在高低电平的变化, 因此一旦 CPLD检测到接收到的数据是持续恒定的电平, 则可以判定该 并机线路已经存在故障; 而且由于采用 CAN收发器, 并机线路传输的 是差分信号, 在线路的传输距离以及抗干扰性能上都大大优于并行传 输。
综上所述, 该传输方法在满足并机信号基本传输需求的同时, 能 够保证信号传输的实时性和传输距离, 且能够方便的识别并机线路故 障。
实施例二
针对 UPS并机需求, 对并行离散信号的串行传输需要满足以下条 件:
1、 满足并机通信的实时性, 确保并机系统的正常工作;
2、需要有合适的传输规范,以便能够从数据流里面提取有效信息;
3、 所实现的总线具有逻辑 "线或"或者 "线与"功能, 本实施例 以 "线与" 为例; 4、 确保组网的方便性、 容错性, 构成的总线具有良好的故障判断 能力。
本实施例采用 FPGA ( Field Programmable Gate Array现场可编 程逻辑阵列) 和 CAN (Controller Area Network, 控制器局部网) 收 发器来实现串行信号总线式高速传输的方法。 下面将详细介绍该方法 的实现。
本实施例采用的技术方案如图 2所示, 在并机系统中, FPGA把每 一台 UPS机器的并行信号转换成串行信号以后再进行总线式传输。经过 上述的处理, 并机系统的连线框图如图 3所示。
由图 3可以看出, 上述的做法可以将原本需要的 n根信号线转换成 1 根或者 2根信号线 (差分传输时需要 2根信号线), 大大减少了传输线的 数量。
采用上述的并机信号串行传输方法需要确保满足上面提到的 四个条件。
对于传输的实时性, 尽管串行传输比并行传输会有更多的时间开 销, 但通过合理的协议安排和传输速度的选择, 串行传输完全能够满 足并机系统的实时性要求, 实现在规定的时间内完成对所有并机信号 的交互。
对于提取有效信息, 如图 4所示, 其意思为: 在同一个时钟周期 里面, 1^8八和1^8 8都发送的是81§_1或者 Sig— n, 要实现上述的目 的就需要做到 UPS A与 UPS B的时钟同步。 为此, 本发明实施例首先 利用 FPGA实现各 UPS的主从机竞争, 获得主机权利的机器将发送一 串与并机信号数据不会相同的字符串作为同步信息, 而获得从机权利 的 UPS将接收主机发送的同步信息。主机 UPS发送完同步信息, 并且 从机 UPS接收到正确的同步信息以后, 表示同步成功, 各 UPS将按照 相同顺序 (Sig_l, Sig_2, ...... ,Sig— n)串行发送并机数据。
而具有逻辑 "线或"或者 "线与"功能的总线传输功能则由 CAN 收发器来实现。 对于通用的 CAN总线来说, 物理上采用差分方式来传 输信号, 其典型的时序图如图 2所示, 当总线电压差大于 0.9V表示通讯 信号的逻辑零电平 (显性电平), 而总线电压差小于 0.5V时表示通讯信 号的逻辑高电平(隐性电平)。 CAN收发器是 CAN协议控制器和物理总 线之间的接口。 当自身的 TXD输入是高电平时, 如果总线上有其他节 点的发送端 TXD输出是低电平, 则总线将呈现逻辑低电平, 即自身在 总线上的隐性特性被其它节点的显形特性所覆盖。 也就是说, CAN收 发器从逻辑上看, 具有 "线与" 的能力。
在通用 CAN总线通讯中, 各个总线上的 CAN节点将会利用总线的 显性特性来避免冲突, 也就是说, 当一个 CAN节点自身发送隐形电平 的时候, 如果 CAN控制器检测到总线上呈现为显性电平, 将停止自身 的发送行为, 以免引起总线上数据的混淆。 而本实施例则恰恰相反, 由于电路中只存在 CAN收发器而没有 CAN控制器, 各节点能够同时发 送自身的并机信息, 而不会因为冲突导致某些节点不发送, 同时利用 CAN收发器的 "线与" 能力, 实现各并机信号在总线上的实时的逻辑 线与, 从而达到各 UPS的并机信号实时综合的目的。
由上面的分析可知, 并机信号由并行传输转换成串行传输以后, 在实际并机线路上传输的是脉冲信号, 传输信号存在高低电平的变化, 因此一旦 FPGA检测到接收到的数据是持续恒定的电平, 则可以判定该 并机线路已经存在故障; 而且由于采用 CAN收发器, 并机线路传输的 是差分信号, 在线路的传输距离以及抗干扰性能上都大大优于并行传 输。
综上所述, 该传输方法在满足并机信号基本传输需求的同时, 能 够保证信号传输的实时性和传输距离, 且也能够方便的识别并机线路 故障。
此外可以用微控制器或者其它具有逻辑处理能力的 IC来替换 CPLD或者 FPGA。 也可以用其它具有 "线或"或者 "线与"功能的电 路或者 IC来替代 CAN收发器。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细 说明, 不能认定本发明的具体实施只局限于这些说明。 对于本发明所 属技术领域的普通技术人员来说, 在不脱离本发明构思的前提下, 还 可以做出若干简单推演或替换, 都应当视为属于本发明的保护范围。

Claims

权利要求书
1、 一种不间断电源并机信号传输方法, 其特征在于, 首先利用逻 辑处理单元将并机信号串行化处理; 然后进行使得各节点机器并机信 号得以同步传输的总线式传输。
2、 根据权利要求 1所述的一种不间断电源并机信号传输方法, 其 特征在于, 所述的逻辑处理单元为 CPLD或者 FPGA或者微控制器。
3、 根据权利要求 1所述的一种不间断电源并机信号传输方法, 其 特征在于, 所述的各节点机器包括主节点机器和从节点机器, 所述的 主节点机器是通过上电竞争或者硬件配置获得。
4、 根据权利要求 3所述的一种不间断电源并机信号传输方法, 其 特征在于, 所述的主节点机器定时发送同步信息, 而所述的从节点机 器实时接收同步信息; 主节点发送完同步信息而从节点接收到正确的 同步信息以后同步成功, 然后各节点机器按照相同的位顺序串行发送 并机数据。
5、 根据权利要求 4所述的一种不间断电源并机信号传输方法, 其 特征在于, 所述的同步信息为一串有别于有效数据的字符串。
6、 根据权利要求 1至 5中任一所述的一种不间断电源并机信号传 输方法, 其特征在于, 所述的总线式传输是由 "线与" 电路单元实现 的。
7、 根据权利要求 6所述的一种不间断电源并机信号传输方法, 其 特征在于, 所述的 "线与" 电路单元为 CAN收发器。
8、 根据权利要求 1至 5中任一所述的一种不间断电源并机信号传 输方法, 其特征在于, 所述的总线式传输是由 "线或" 电路单元实现 的。
9、 根据权利要求 8所述的一种不间断电源并机信号传输方法, 其 特征在于, 所述的 "线或" 电路单元为 CAN收发器。
PCT/CN2008/001003 2007-05-24 2008-05-23 Procédé de transmission de signal parallèle d'une alimentation ininterrompue WO2008145011A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/601,045 US8290103B2 (en) 2007-05-24 2008-05-23 Method for transmitting parallelization signals of uninterruptible power supplies

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200710109228.4 2007-05-24
CN2007101092284A CN101312302B (zh) 2007-05-24 2007-05-24 一种不间断电源并机信号的传输方法

Publications (1)

Publication Number Publication Date
WO2008145011A1 true WO2008145011A1 (fr) 2008-12-04

Family

ID=40074563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/001003 WO2008145011A1 (fr) 2007-05-24 2008-05-23 Procédé de transmission de signal parallèle d'une alimentation ininterrompue

Country Status (3)

Country Link
US (1) US8290103B2 (zh)
CN (1) CN101312302B (zh)
WO (1) WO2008145011A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130184891A1 (en) * 2012-01-17 2013-07-18 Sahba Etaati Uninterruptible power supply control
CN102608456B (zh) * 2012-03-02 2014-08-13 华为技术有限公司 并机线故障检测装置和系统
CN104079013B (zh) * 2013-03-25 2017-03-01 力博特公司 一种ups并联系统及同步方法
CN104079014B (zh) * 2013-03-25 2016-08-17 力博特公司 一种ups并联系统及信号传输方法
CN106165242B (zh) * 2013-11-18 2018-10-02 力博特公司 在多路不间断电源系统中选择最优同步源的方法
DE102017212544A1 (de) * 2017-07-21 2019-01-24 Robert Bosch Gmbh Sende-/Empfangseinrichtung für ein CAN Bussystem und Verfahren zur Erkennung eines Kurzschlusses mit einer CAN Sende-/Empfangseinrichtung
JP2019041543A (ja) * 2017-08-28 2019-03-14 株式会社東芝 モータ駆動制御装置
CN107888231A (zh) * 2017-10-27 2018-04-06 中国科学院西安光学精密机械研究所 基于差分信号的多路同步脉冲信号传输系统及传输方法
US10635518B2 (en) 2017-10-31 2020-04-28 Hewlett Packard Enterprise Development Lp Detecting bus faults
CN109088440A (zh) * 2018-11-08 2018-12-25 深圳市斯玛特新能源技术有限公司 一种储能逆变器并机同步信号电路
CN109709845A (zh) * 2018-12-19 2019-05-03 深圳市艾普诺电子有限公司 一种基于fpga的模块化ups的逻辑处理系统
CN110740085B (zh) * 2019-09-24 2022-03-11 科华恒盛股份有限公司 一种基于并机系统的通信方法、通信装置及终端
US11695589B2 (en) 2020-12-10 2023-07-04 Stmicroelectronics Application Gmbh Controller area network data link layer protocol processing system, related integrated circuit, device and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1423389A (zh) * 2001-12-07 2003-06-11 广东志成冠军电子实业有限公司 总线控制的并联不间断电源(ups)系统
CN1581633A (zh) * 2003-07-30 2005-02-16 飞瑞股份有限公司 不间断电源模块并联控制方法及其系统
CN1713480A (zh) * 2004-06-22 2005-12-28 中兴通讯股份有限公司 并联不间断电源同步切换控制方法及装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050043859A1 (en) * 2003-08-13 2005-02-24 Chia-Ming Tsai Modular uninterruptible power supply system and control method thereof
CN1324794C (zh) * 2004-01-05 2007-07-04 中兴通讯股份有限公司 一种不间断电源的并联同步锁相方法
US7638899B2 (en) * 2006-03-10 2009-12-29 Eaton Corporation Nested redundant uninterruptible power supply apparatus and methods

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1423389A (zh) * 2001-12-07 2003-06-11 广东志成冠军电子实业有限公司 总线控制的并联不间断电源(ups)系统
CN1581633A (zh) * 2003-07-30 2005-02-16 飞瑞股份有限公司 不间断电源模块并联控制方法及其系统
CN1713480A (zh) * 2004-06-22 2005-12-28 中兴通讯股份有限公司 并联不间断电源同步切换控制方法及装置

Also Published As

Publication number Publication date
US20100239028A1 (en) 2010-09-23
CN101312302B (zh) 2011-02-16
US8290103B2 (en) 2012-10-16
CN101312302A (zh) 2008-11-26

Similar Documents

Publication Publication Date Title
WO2008145011A1 (fr) Procédé de transmission de signal parallèle d'une alimentation ininterrompue
CN102088386B (zh) 一种电路系统主从互联模块的串行总线
US20050259685A1 (en) Dual speed interface between media access control unit and physical unit
US10645553B2 (en) Method and apparatus for processing signal in a mobile device
CN102023954A (zh) 具有多路i2c总线的装置、处理器、系统主板及工控计算机
CN103746889B (zh) 半竞争式rs-485总线多主通讯系统及其工作方法
WO2006071838A2 (en) Dual speed interface between media access control unit and physical unit
CN106953787B (zh) 一种基于电平迁移的电池管理系统多主机通信方法及装置
CN103235767B (zh) 一种主从mii管理接口串行通信方法
CN113258547B (zh) 芯片级继电保护装置和系统
CN104331031A (zh) 功率供应系统和方法
CN104301191A (zh) 总线系统
CN110888831B (zh) 一种多电源域异步通信装置
CN209433225U (zh) 用于列车网络输入输出系统的处理装置
CN214504203U (zh) 一种plc多模块扩展的设备
CN106125597B (zh) 基于lvds环网总线的机器人高速测控系统及方法
CN113722254B (zh) 一种适用于工业控制现场的多主机通讯总线系统
CN209860929U (zh) 一种通信总线结构
CN103259705B (zh) 基于带电源隔离的can总线的蛇形机器人通信系统
CN101430672B (zh) 相容i2c与系统管理两种总线的架构及时序缓冲装置
CN218959168U (zh) 基于fpga和千兆以太网的led联机控制系统
Navaneethan et al. Industrial Application of the Serial Peripheral Interface Protocol on Field Programmable Gate Arrays
CN111130675B (zh) 一种基于时间触发网络的时间同步装置
CN220528027U (zh) 一种总线隔离中继电路
CN216670542U (zh) 一种can总线接口电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08757344

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12601045

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 08757344

Country of ref document: EP

Kind code of ref document: A1