WO2008139111A2 - Compositions de polymeres antistatiques - Google Patents

Compositions de polymeres antistatiques Download PDF

Info

Publication number
WO2008139111A2
WO2008139111A2 PCT/FR2008/050618 FR2008050618W WO2008139111A2 WO 2008139111 A2 WO2008139111 A2 WO 2008139111A2 FR 2008050618 W FR2008050618 W FR 2008050618W WO 2008139111 A2 WO2008139111 A2 WO 2008139111A2
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic polymer
copolymers
weight
parts
ethylene
Prior art date
Application number
PCT/FR2008/050618
Other languages
English (en)
Other versions
WO2008139111A3 (fr
Inventor
Benoît BRULE
Perrine Babin
Jean Guilment
Original Assignee
Arkema France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France filed Critical Arkema France
Publication of WO2008139111A2 publication Critical patent/WO2008139111A2/fr
Publication of WO2008139111A3 publication Critical patent/WO2008139111A3/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/16Anti-static materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds

Definitions

  • the present invention relates to a composition (M) having antistatic properties, comprising at least one thermoplastic polymer (A) and at least one aluminosilicate (B), natural hydrated or synthetic. It relates, in particular, a mixture (M) of PEBA and aluminosilicate, which can be added to a thermoplastic polymer matrix in order to provide it with antistatic properties.
  • the invention also relates to the use of at least one aluminosilicate as an antistatic agent in a thermoplastic matrix, said matrix possibly comprising PEBA.
  • antistatic agents such as ethoxylated amine or sulfonate ionic surfactants which are added to polymers.
  • the antistatic properties of polymers depend on the ambient humidity and they are not permanent, since these agents migrate on the surface of the polymers then disappear. It was then proposed as antistatic agents of copolymers containing polyamide blocks and hydrophilic blocks; these agents have the advantage of not migrating and therefore of giving permanent antistatic properties and, moreover, independent of the ambient humidity.
  • Patent Application JP 60 023 435 A which describes antistatic compositions comprising 5 to 80% polyetheresteramide and 95 to 20% of a thermoplastic resin selected among others from polystyrene, ABS and PMMA.
  • Patent EP 242 158 which describes antistatic compositions comprising 1 to 40% of polyetheresteramide and 99 to 60% of a thermoplastic resin optionally functionalized.
  • patent application WO 0110951 which describes a composition comprising 99 to 60 parts of a styrene polymer, and 1 to 40 parts of a mixture of two polymers, one of which is a polyamide block copolymer and polyether blocks.
  • patent EP 829 520 which describes substrates such as PVC, HDPE, LLDPE, polypropylene, ABS and polystyrene which are made antistatic by adding an antistatic mixture of a polyamide block copolymer and polyether blocks, a salt such as sodium perchlorate and a fibrous material or which forms fibers during the introduction of the mixture into the substrate.
  • the proportion of antistatic mixture by weight is 1 to 15% of the substrate.
  • the problem is to provide a polymer, and more particularly a thermoplastic polymer, improved permanent antistatic properties compared to what is known and this by using compounds not detrimental to the other physical properties of the thermoplastic polymer.
  • the antistatic property of a polymer is mainly characterized by its surface resistivity which is expressed in ohm / square and measured according to ASTM D257.
  • the invention relates to a composition
  • a composition comprising a mixture (M) of:
  • thermoplastic polymer A
  • aluminosilicate B
  • the ratio (A) / (B) is between 90/10 and 70/30, more preferably between 80/20 and 70/30 and even more advantageously between 75/25 and 70/30. .
  • thermoplastic polymer (A) is a copolymer with polyamide blocks and polyether blocks.
  • the composition further comprises another thermoplastic polymer called thermoplastic polymer (T) which is not a polyamide block and polyether block copolymer, the proportions of the various components of said composition being per 100 parts by weight. weight: 1 to 40 parts by weight of mixture (M);
  • T thermoplastic polymer
  • M mixture
  • thermoplastic polymer (T) 60 to 99 parts by weight of thermoplastic polymer (T). According to one embodiment, the proportions of the various components of said composition are per 100 parts by weight:
  • thermoplastic polymer (T) 70 to 90 parts by weight of thermoplastic polymer (T).
  • the aluminosilicate (B) is chosen from allophanes, zeolites and imogolites.
  • the invention also relates to the use of at least one aluminosilicate as antistatic agent of a matrix comprising at least one thermoplastic polymer (A).
  • the use is characterized in that the matrix comprises at least one polyamide block and polyether block copolymer and at least one other thermoplastic polymer.
  • the use is characterized in that the aluminosilicate is chosen from allophanes, zeolites and imogolites.
  • thermoplastic polymers A
  • TPU thermoplastic polyurethanes
  • EVA copolymers with polyamide blocks and polyether blocks
  • copolymers with polyester blocks and polyether blocks copolymers with polyamide blocks, with blocks polyether and polyester blocks
  • the polyolefins within the meaning of the invention refer to both polyethylenes and polypropylenes, whether homo or copolymers with, in this case, an alpha olefin as comonomer.
  • the copolymeric polyethylenes have a percentage by weight of ethylene strictly greater than 50% and the Polypropylene copolymers have a percentage by weight of propylene strictly greater than 50%.
  • thermoplastic polymers (A) different mentioned above.
  • copolymers (A) are polyamide block copolymers and polyether blocks
  • they result from the copolycondensation of polyamide sequences with reactive ends with polyether sequences with reactive ends, such as, inter alia: 1) Polyamide sequences with ends of diamine chain with polyoxyalkylene sequences with dicarboxylic chain ends.
  • Polyamide sequences with dicarboxylic chain ends with polyoxyalkylene sequences with diamine chain ends obtained by cyanoethylation and hydrogenation of aliphatic dihydroxylated aliphatic polyoxyalkylene aliphatic sequences called polyether diols.
  • thermoplastic polymers (T) By way of example of thermoplastic polymers (T), mention may be made of the thermoplastic polymers (A) above, said at least one thermoplastic polymer T being different from said at least one thermoplastic polymer (A).
  • thermoplastic polymer (A) when the thermoplastic polymer (A) is a polyamide block and polyether block copolymer, said thermoplastic polymer (T) may be any thermoplastic polymer excluding the same polyamide block copolymer and polyether blocks as that of the thermoplastic polymer A.
  • the aluminosilicates (B) used in the compositions of the invention are hydrated or synthetic natural aluminosilicates, such as, for example, imogolites, allophanes and zeolites. These aluminosilicates will have strong ion exchange capacities.
  • This ion exchange capacity expressed in cationic exchange will be greater than or equal to 30 meq, preferably greater than 60 meq per 100 g of dry aluminosilicate.
  • they will advantageously be in the form of small particles.
  • the size of these particles, whether in spherical or tubular form, will generally be less than 300 nm, preferably less than 100 nm.
  • the specific surface area of these aluminosilicates will be greater than 200 m 2 / g, preferably greater than 400 m 2 / g.
  • Imogolites and allophanes are naturally occurring aluminosilicates that can be synthesized (see Montargès-Pelletier E., Bogenez S., Pelletier M., Razafitianamaharavo A., Ghanbaja J., Lianos B., Michot L. (2005) - Synthetic allophane -like particles: textural properties, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 255, 1-10).
  • imogolites A ⁇ SiOs (OH) 4
  • allophanes AI 2 ⁇ 3 (SiO2) i, 3-2.
  • Their size varies from a few nanometers to a few hundred nm and they are respectively tubular and supposedly spherical.
  • These aluminosilicates have a character not very crystalline, allophanes being classified as amorphous and imogolites as paracrystalline.
  • the structure of these "nano-minerals” gives them very large specific surfaces (-700 m 2 / g) as well as strong cationic and anionic exchange capacities. These characteristics allow them to bring conductivity into an insulating polymer matrix and thus antistatic properties without altering the other properties of this matrix.
  • the invention relates both to the mixing compositions (M) comprising at least one thermoplastic polymer (A) and at least one aluminosilicate (B), the thermoplastic polymer being chosen from the list defined above.
  • the thermoplastic polymer is a polyamide block copolymer and polyether blocks
  • the composition may further comprise another thermoplastic polymer different from said polyamide block copolymer and polyether blocks.
  • composition according to the invention comprises several different aluminosilicates
  • the latter are preferably chosen from zeolites, allophanes, imogolites and mixtures thereof.
  • compositions are such that the ratios by weight (A) / (B) are between 99/1 and 60/40. These ratios will preferably be between 90/10 and 70/30, more preferably between 80/20 and 70/30 and even more advantageously between 75/25 and 70/30.
  • thermoplastic polymer (T) comprise from 60 to 99 parts by weight of thermoplastic polymer (T) and from 1 to 40 parts by weight of mixture (M) as defined above and, preferably,
  • compositions of the invention provide an improvement in antistatic properties due to the decrease in resistivity.
  • imogolites, allophanes and zeolites allow a conservation of the transparency of the compositions in which they are added, when these are transparent at the origin. This is due to the size of the nanometer-sized particles.
  • this type of inorganic filler has a cost advantage compared to that of other conductive fillers.
  • these charges may be available in nature.
  • the following compositions illustrate the invention, examples CP1 to 3 and 6 to
  • compositions are prepared from:
  • ABS Acrylonitrile / butadiene / styrene terpolymer
  • Pebax® MV1074 SA01 A1 sold by Arkema France. It is a block copolymer of PA12 / PEG type with a Shore D of 40 and a length of PA12 blocks of 1500 and a length of PEG blocks of 1500. • Allophane resulting from synthesis of TEOS type with an Al / Si ratio 1 8.
  • ABS / Pebax / allophanes were developed through a laboratory extruder at

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

La présente invention concerne une composition (M) ayant des propriétés antistatiques, comprenant au moins un polymère thermoplastique (A) et au moins un aluminosilicate (B), naturel hydraté ou synthétique. Elle concerne, en particulier, un mélange (M) de PEBA et d'aluminosilicate, pouvant être ajoutée à une matrice de polymère thermoplastique afin de lui apporter des propriétés antistatiques. L'invention concerne également l'utilisation d'au moins un aluminosilicate comme agent antistatique dans une matrice thermoplastique, ladite matrice pouvant comprendre du PEBA.

Description

COMPOSITIONS DE POLYMERES ANTISTATIQUES
La présente invention concerne une composition (M) ayant des propriétés antistatiques, comprenant au moins un polymère thermoplastique (A) et au moins un aluminosilicate (B), naturel hydraté ou synthétique. Elle concerne, en particulier, un mélange (M) de PEBA et d'aluminosilicate, pouvant être ajoutée à une matrice de polymère thermoplastique afin de lui apporter des propriétés antistatiques. L'invention concerne également l'utilisation d'au moins un aluminosilicate comme agent antistatique dans une matrice thermoplastique, ladite matrice pouvant comprendre du PEBA.
La formation et la rétention de charges d'électricité statique à la surface de la plupart des matières plastiques sont connues. La présence d'électricité statique sur des films thermoplastiques conduit, par exemple, ces films à se coller les uns sur les autres rendant leur séparation difficile. La présence d'électricité statique sur des films d'emballage peut provoquer l'accumulation de poussières sur les objets à emballer et ainsi gêner leur utilisation. L'électricité statique peut aussi endommager des microprocesseurs ou des constituants de circuits électroniques. L'électricité statique peut aussi provoquer la combustion ou l'explosion de matières inflammables telles que, par exemple, les billes de polystyrène expansible qui contiennent du pentane.
L'art antérieur a décrit des agents antistatiques, tels que des surfactants ioniques du type aminés éthoxylées ou sulfonates qu'on ajoute dans des polymères. Cependant, les propriétés antistatiques des polymères dépendent de l'humidité ambiante et elles ne sont pas permanentes, puisque ces agents migrent à la surface des polymères puis disparaissent. Il a alors été proposé comme agents antistatiques des copolymères à blocs polyamides et blocs hydrophiles; ces agents ont l'avantage de ne pas migrer et donc de donner des propriétés antistatiques permanentes et, de plus, indépendantes de l'humidité ambiante. On peut citer à ce sujet :
- la demande de brevet japonais JP 60 023 435 A qui décrit des compositions antistatiques comprenant 5 à 80% de polyétheresteramide et 95 à 20% d'une résine thermoplastique choisie entre autres parmi le polystyrène, l'ABS et le PMMA. - le brevet EP 242 158 qui décrit des compositions antistatiques comprenant 1 à 40% de polyétheresteramide et 99 à 60% d'une résine thermoplastique éventuellement fonctionnalisée. la demande de brevet WO 0110951 qui décrit une composition comprenant 99 à 60 parties d'un polymère styrènique, et 1 à 40 parties d'un mélange de deux polymères dont l'un est un copolymère à blocs polyamide et blocs polyéther.
- le brevet EP 829 520 qui décrit des substrats tels que du PVC, du HDPE, du LLDPE, du polypropylène, de l'ABS et du polystyrène qu'on rend antistatique en y ajoutant un mélange antistatique constitué d'un copolymère à blocs polyamide et blocs polyéther, d'un sel tel que le perchlorate de sodium et d'un matériau fibreux ou qui forme des fibres au cours de l'introduction du mélange dans le substrat. La proportion du mélange antistatique en poids est de 1 à 15% du substrat.
Le problème est d'apporter à un polymère, et plus particulièrement à un polymère thermoplastique, des propriétés antistatiques permanentes améliorées par rapport à ce qui est connu et cela en faisant appel à des composés ne portant pas préjudice aux autres propriétés physiques du polymère thermoplastique.
La propriété antistatique d'un polymère est principalement caractérisée par sa résistivité superficielle qui est exprimée en ohm/carré et mesurée selon la norme ASTM D257.
L'invention vise une composition comprenant un mélange (M) de:
- 99 à 60 parties en poids d'au moins un polymère thermoplastique (A), 1 à 40 parties en poids d'au moins un aluminosilicate (B).
Selon un mode de réalisation, le rapport (A)/(B) est compris entre 90/10 et 70/30, de manière plus préférée entre 80/20 et 70/30 et encore plus avantageusement entre 75/25 et 70/30.
Selon un mode de réalisation, le polymère thermoplastique (A) est un copolymère à blocs polyamide et blocs polyéther.
Selon un mode de réalisation, la composition comprend, de plus, un autre polymère thermoplastique appelé polymère thermoplastique (T) qui n'est pas un copolymère à blocs polyamide et blocs polyéther, les proportions des différents composants de ladite composition étant pour 100 parties en poids : 1 à 40 parties en poids de mélange (M) ;
- 60 à 99 parties en poids de polymère thermoplastique (T). Selon un mode de réalisation, les proportions des différents composants de ladite composition sont pour 100 parties en poids :
- 10 à 30 parties en poids de mélange (M) ;
- 70 à 90 parties en poids de polymère thermoplastique (T).
Selon un mode de réalisation, l'aluminosilicate (B) est choisi parmi les allophanes, les zéolites et les imogolites. L'invention a également pour objet, l'utilisation d'au moins un aluminosilicate comme agent antistatique d'une matrice comprenant au moins un polymère thermoplastique (A). Selon un mode de réalisation, l'utilisation est caractérisée en ce que la matrice comprend au moins un copolymère à blocs polyamide et blocs polyéther et au moins un autre polymère thermoplastique.
Selon un mode de réalisation, l'utilisation est caractérisée en ce que l'aluminosilicate est choisi parmi les allophanes, les zéolites et les imogolites.
> A titre d'exemple de polymères thermoplastique (A), on peut citer les polymères thermoplastiques homo ou copolymères pris dans le groupe des polyoléfines, des polyamides, des polymères fluorés, des polyesters saturés, du polycarbonate, des résines styréniques, du PMMA, des polyuréthanes thermoplastiques (TPU), des copolymères de l'éthylène et de l'acétate de vinyle (EVA), des copolymères à blocs polyamide et blocs polyéther, des copolymères à blocs polyester et blocs polyéther, des copolymères à blocs polyamide, à blocs polyéther et à blocs polyester, des copolymères de l'éthylène et d'un (méth)acrylate d'alkyle, des copolymères de l'éthylène et de l'alcool vinylique (EVOH), de l'ABS, du SAN, du polyacétal et des polycétones.
Les polyoléfines au sens de l'invention désignent aussi bien les polyéthylènes que les polypropylènes, qu'ils soient homo ou copolymères avec, dans ce cas, une alpha oléfine comme comonomère. Les polyéthylènes copolymères ont un pourcentage en poids en éthylène strictement supérieur à 50% et les polypropylènes copolymères ont un pourcentage en poids en propylène strictement supérieur à 50%.
On ne sortirait pas du cadre de l'invention en utilisant un mélange de deux ou plusieurs polymères thermoplastiques (A) différents mentionnés précédemment.
Dans le cas où les copolymères (A) sont des copolymères à blocs polyamide et blocs polyéther, ils résultent de la copolycondensation de séquences polyamides à extrémités réactives avec des séquences polyéthers à extrémités réactives, telles que, entre autres : 1 ) Séquences polyamides à bouts de chaîne diamines avec des séquences polyoxyalkylènes à bouts de chaînes dicarboxyliques.
2) Séquences polyamides à bouts de chaînes dicarboxyliques avec des séquences polyoxyalkylènes à bouts de chaînes diamines obtenues par cyanoéthylation et hydrogénation de séquences polyoxyalkylène alpha-oméga dihydroxylées aliphatiques appelées polyétherdiols.
3) Séquences polyamides à bouts de chaînes dicarboxyliques avec des polyétherdiols, les produits obtenus étant, dans ce cas particulier, des polyétheresteramides. Les copolymères de l'invention sont avantageusement de ce type. Ces copolymères connus sont notamment décrits dans la demande de brevet EP1262527.
> A titre d'exemple de polymères thermoplastique (T), on peut citer les polymères thermoplastiques (A) ci-dessus, ledit au moins un polymère thermoplastique T étant différent dudit au moins un polymère thermoplastique (A). En particulier, lorsque le polymère thermoplastique (A) est un copolymère à blocs polyamide et blocs polyéther, ledit polymère thermoplastique (T) peut être tout polymère thermoplastique à l'exclusion du même copolymère à blocs polyamide et blocs polyéther que celui du polymère thermoplastique A. > Les aluminosilicates (B) utilisés dans les compositions de l'invention sont des aluminosilicates, naturels hydratés ou synthétiques, tels que par exemple les imogolites, les allophanes et les zéolites. Ces aluminosilicates présenteront de fortes capacités d'échanges ioniques. Cette capacité d'échange ionique exprimée en échange cationique sera supérieure ou égale à 30 méq, de préférence, supérieure à 60 méq pour 100g d'aluminosilicate sec. En outre, ils seront avantageusement sous forme de particules de faible taille. La taille de ces particules, qu'elles se présentent sous forme sphérique ou tubulaire, sera en général inférieure à 300 nm, de préférence inférieure à 100 nm. La surface spécifique de ces aluminosilicates sera supérieure à 200 m2/g, de préférence supérieure à 400 m2/g.
Parmi les aluminosilicates utilisables, on peut citer les imogolites et les allophanes. Les imogolites et les allophanes sont des aluminosilicates naturels pouvant éventuellement être synthétisés (voir Montargès-Pelletier E., Bogenez S., Pelletier M., Razafitianamaharavo A., Ghanbaja J., Lartiges B., Michot L. (2005) - Synthetic allophane-like particles : textural properties, Colloids and Surfaces A : Physicochemical and Engineering Aspects, 255, 1-10).
Ils répondent aux formules chimiques suivantes, imogolites : A^SiOs (OH)4, et allophanes : AI2θ3(Siθ2)i,3-2 . Leur taille varie de quelques nanomètres à quelques centaines de nm et ils sont respectivement de forme tubulaire et supposée sphérique. Ces aluminosilicates présentent un caractère peu cristallin, les allophanes étant classés comme amorphes et les imogolites comme paracristallins. La structure de ces «nano-minéraux» leur confère de très grandes surfaces spécifiques (-700 m2/g) ainsi que de fortes capacités d'échanges cationiques et anioniques. Ces caractéristiques leur permettent d'apporter de la conductivité dans une matrice polymère isolante et donc des propriétés antistatiques sans altérer les autres propriétés de cette matrice.
L'invention vise à la fois les compositions de mélange (M) comprenant au moins un polymère thermoplastiques (A) et au moins un aluminosilicate (B), le polymère thermoplastique étant choisi parmi la liste définie ci-dessus. Dans le cas où le polymère thermoplastique est un copolymère à blocs polyamide et blocs polyéther, la composition peut comprendre en plus un autre polymère thermoplastique différent dudit copolymère à blocs polyamide et blocs polyéther.
Dans le cas, où la composition selon l'invention comprend plusieurs aluminosilicates différents, ces derniers sont choisis, de préférence, parmi les zéolites, les allophanes, les imogolites et leurs mélanges.
Les compositions sont telles que les ratios en poids (A)/(B) sont compris entre 99/1 et 60/40. Ces ratios seront, de préférence, compris entre respectivement 90/10 et 70/30, de manière plus préférée entre 80/20 et 70/30 et encore plus avantageusement entre 75/25 et 70/30.
Les compositions de polymères comportant un polymère thermoplastique (T) comprennent de 60 à 99 parties en poids de polymère thermoplastique (T) et de 1 à 40 parties en poids de mélange (M) tel que défini ci-dessus et, de préférence, de
70 à 90 parties en poids de polymère thermoplastique (T) et de 30-10 parties en poids de mélange (M), le total de la composition faisant 100 parties en poids. Les compositions de l'invention apportent une amélioration en termes de propriétés antistatiques en raison de la diminution de la résistivité. Par ailleurs, les imogolites, les allophanes et les zéolites permettent une conservation de la transparence des compostions dans lesquelles ils sont ajoutés, lorsque ces dernières sont transparentes à l'origine. Cela provient du fait de la taille des particules de l'ordre du nanomètre. De plus ce type de charge minérale présente un coût avantageux comparé à celui d'autres charges conductrices. Enfin, ces charges peuvent être disponibles dans la nature. Les compositions suivantes illustrent l'invention, les exemples CP1 à 3 et 6 à
8 étant des exemples comparatifs et les exemples EX4, 5 et 9 étant des exemples selon l'invention.
Les différentes compositions sont préparées à partir de :
• Terpolymère acrylonitrile/butadiène/styrène (ABS) de grade TR 558 A1 de Kostat,
• Pebax® MV1074 SA01 A1 vendu par la société Arkema France. C'est un copolymère blocs de type PA12/PEG avec une Shore D de 40 et une longueur des blocs PA12 de 1500 et une longueur des blocs PEG de 1500, • Allophane issu de synthèse de type TEOS avec un rapport Al/Si=1 ,8.
Les mélanges ABS / Pebax, Pebax / allophanes et enfin
ABS/Pebax/allophanes ont été élaborés grâce à une extrudeuse de laboratoire à
2400C avec une vitesse de vis de 100 tours/min sous forme de joncs. Les mélanges (à 2 ou 3 composants) ont été réalisés par la voie de mélange à sec. Des mesures de résistivité surfacique ont été réalisées sur les joncs et sont présentées dans le tableau 1 ci-dessous.
Tableau 1
Figure imgf000010_0001
On peut constater que l'ajout d'aluminosilicates tels que l'allophane au Pebax antistatique permet d'abaisser la résistivité de ce dernier d'environ un facteur 10 et donc d'obtenir un grade de Pebax plus performant en terme de propriétés antistatiques.
On peut relever que l'additivation d'une matrice polymère isolante par un mélange allophanes / Pebax antistatique permet d'abaisser la résistivité de celle-ci d'un facteur 10 environ par rapport à la même matrice seulement additivée de Pebax, à taux d'additif antistatique constant.
Des mesures de résistance (ohm) pour des compositions comprenant d'autres teneurs des mêmes composants ont donné les résultats suivants : CP6: ABS pur: Résistance = 1013 ohms
CP7: ABS + zéolites : Résistance = 1013 ohms (l'ajout de zéolites n'a pas d'effet sur la résistance)
CP8: ABS + 14% de Pebax : Résistance = 1010 ohms EX9: ABS + 20% mélange (Pebax / zéolites : 70/30) soit 14% de Pebax: :
Résistance = 109 ohms
A teneur en Pebax égale dans une composition avec de l'ABS, l'ajout de zéolites avec le Pebax diminue encore la résistance du matériau final d'un facteur 10, alors que l'ajout de zéolites seul (sans Pebax) à de l'ABS n'a pas d'effet sur la résistance du matériau. Le Pebax et les zéolites ont un effet synergique sur la diminution de résistance lorsqu'ils sont associés en combinaison dans une matrice ABS. L'effet antistatique du Pebax ainsi « dopé » avec des zéolites est décuplé, comparé à l'effet du Pebax seul.

Claims

Revendications
1 ) Composition comprenant un mélange (M) de:
- 99 à 60 parties en poids d'au moins un polymère thermoplastique (A), - 1 à 40 parties en poids d'au moins un aluminosilicate (B), ledit polymère thermoplastique (A) étant choisi parmi les polyéthylènes homo ou copolymères, les polypropylènes homo ou copolymères, les polyamides, les polymères fluorés, les polyesters saturés, le polycarbonate, les résines styréniques, le PMMA, les polyuréthanes thermoplastiques (TPU), les copolymères de l'éthylène et de l'acétate de vinyle (EVA), les copolymères à blocs polyamide et blocs polyéther, les copolymères à blocs polyester et blocs polyéther, les copolymères à blocs polyamide, à blocs polyéther et à blocs polyester, les copolymères de l'éthylène et d'un (méth)acrylate d'alkyle, les copolymères de l'éthylène et de l'alcool vinylique (EVOH), l'ABS, le SAN, le polyacétal et les polycétones.
2) Composition selon la revendication 1 , caractérisée en ce que le rapport (A)/(B) est compris entre 90/10 et 70/30, de manière plus préférée entre 80/20 et 70/30 et encore plus avantageusement entre 75/25 et 70/30.
3) Composition selon la revendication 1 ou 2, caractérisée en ce que le polymère thermoplastique (A) est un copolymère à blocs polyamide et blocs polyéther.
4) Composition selon l'une des revendications 1 à 3, caractérisée en ce que la composition comprend, de plus, un autre polymère thermoplastique appelé polymère thermoplastique (T) qui est différent dudit au moins un polymère thermoplastique (A), les proportions des différents composants de ladite composition étant pour 100 parties en poids : 1 à 40 parties en poids de mélange (M) ; - 60 à 99 parties en poids de polymère thermoplastique (T), et de préférence les proportions des différents composants de ladite composition étant pour 100 parties en poids :
- 10 à 30 parties en poids de mélange (M) ;
- 70 à 90 parties en poids de polymère thermoplastique (T).
5) Composition selon l'une des revendications précédentes, caractérisée en ce que le polymère thermoplastique (T) est choisi parmi les polyéthylènes homo ou copolymères, les polypropylènes homo ou copolymères, les polyamides, les polymères fluorés, les polyesters saturés, le polycarbonate, les résines styréniques, le PMMA, les polyuréthanes thermoplastiques (TPU), le PVC, les copolymères de l'éthylène et de l'acétate de vinyle (EVA), les copolymères à blocs polyester et blocs polyéther, les copolymères de l'éthylène et d'un (méth)acrylate d'alkyle, les copolymères de l'éthylène et de l'alcool vinylique (EVOH), l'ABS, le SAN, le polyacétal et les polycétones.
6) Composition selon l'une des revendications précédentes, caractérisée en ce que l'aluminosilicate (B) est choisi parmi les allophanes, les zéolites et les imogolites. 7) Utilisation d'au moins un aluminosilicate comme agent antistatique d'une matrice comprenant au moins un polymère thermoplastique (A) selon l'une des revendications 1 à 3.
8) Utilisation selon la revendication 7, caractérisée en ce que la matrice comprend au moins un copolymère à blocs polyamide et blocs polyéther et au moins un autre polymère thermoplastique (T).
9) Utilisation selon l'une des revendications 8 ou 9, caractérisée en ce que l'aluminosilicate est choisi parmi les allophanes, les zéolites et les imogolites.
PCT/FR2008/050618 2007-04-06 2008-04-07 Compositions de polymeres antistatiques WO2008139111A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0754350 2007-04-06
FR0754350A FR2914648A1 (fr) 2007-04-06 2007-04-06 Compositions de polymeres antistatiques

Publications (2)

Publication Number Publication Date
WO2008139111A2 true WO2008139111A2 (fr) 2008-11-20
WO2008139111A3 WO2008139111A3 (fr) 2009-03-19

Family

ID=38952591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2008/050618 WO2008139111A2 (fr) 2007-04-06 2008-04-07 Compositions de polymeres antistatiques

Country Status (2)

Country Link
FR (1) FR2914648A1 (fr)
WO (1) WO2008139111A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112759834A (zh) * 2020-12-28 2021-05-07 成都金发科技新材料有限公司 一种永久抗静电pp/ps合金及其制备方法和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001010951A1 (fr) * 1999-08-04 2001-02-15 Atofina Compositions de polymeres styreniques antistatiques

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RO93287B1 (ro) * 1985-08-12 1988-01-04 Emil Anton Antistatizant pentru polimeri vinilici si procedeu de obtinere a acestuia

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001010951A1 (fr) * 1999-08-04 2001-02-15 Atofina Compositions de polymeres styreniques antistatiques

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 198819 Thomson Scientific, London, GB; AN 1988-131043 XP002466024 & RO 93 287 A (COMB SODICE GOVORA) 31 décembre 1987 (1987-12-31) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112759834A (zh) * 2020-12-28 2021-05-07 成都金发科技新材料有限公司 一种永久抗静电pp/ps合金及其制备方法和应用

Also Published As

Publication number Publication date
WO2008139111A3 (fr) 2009-03-19
FR2914648A1 (fr) 2008-10-10

Similar Documents

Publication Publication Date Title
CA2342711C (fr) Compositions antistatiques a base de polyamide
EP1885790B1 (fr) Procede de dispersion de nanotubes de carbone dans une matrice polymerique
EP1972655B1 (fr) Dispersions de polymères aqueux modifiés avec des nanoparticules adoucies avec un solvant
CA2593476A1 (fr) Utilisation de nanotubes de carbone pour la fabrication d'une composition organique conductrice et applications d'une telle composition.
FR2490660A1 (fr) Composition a base de copolymeres du propylene, utilisable notamment dans la fabrication de pare-chocs
EP2652013A1 (fr) Copolymere polyamide-polyolefine
FR2948675A1 (fr) Composition conductrice composite a base de polyamide et tube de transport de carburant l'utilisant
CA2339905C (fr) Tube pour le transport d'essence
CA2364215A1 (fr) Composition conductrice a base de polymere fluore
US5441807A (en) Multilayer, stretched heat-sealable polypropylene film
WO2008139111A2 (fr) Compositions de polymeres antistatiques
EP1331091B1 (fr) Structure multicouche à base de polyamides et d'un liant en mélange de copolyamides
FR2626778A1 (fr) Nouvelles semelles de ski, leur procede de fabrication et skis equipes de ces semelles
CN111019368A (zh) 一种改性沥青及其制备方法
JP2003507555A (ja) 静電散逸性マルチポリマー組成物
FR2602236A1 (fr) Compositions thermoplastiques a tres haute teneur en matieres minerales pulverulentes pour incorporation dans les polymeres
CA2133703C (fr) Objet a base d'un melange de polyamide et de polyolefine comprenant une ligne de ressoudure
KR101738723B1 (ko) 저온 열봉합 특성이 우수한 어텍틱 폴리프로필렌 수지 조성물
KR102078477B1 (ko) 표면에 폴리아크릴아마이드를 가지는 폴리스티렌 입자를 포함하는 점조화 거동이 우수한 전단농화유체 및 그 제조방법
EP3498766B1 (fr) Composition thermoplastique élastomérique de pré-expansion comprenant un élastomère et un agent d'expansion physique
EP4377380A1 (fr) Composition polymérique transparente antistatique
FR2925865A1 (fr) Structure multicouche comprenant une couche barriere comprenant des nanoparticules
EP4157515A1 (fr) Zéolithes à compatibilité améliorée
CA2626519C (fr) Dispersions aqueuses de polymere modifiees aux nanoparticules ramollies par solvant
EP2938671B1 (fr) Composition elastomere autoadherente

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08788141

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08788141

Country of ref document: EP

Kind code of ref document: A2