EP4157515A1 - Zéolithes à compatibilité améliorée - Google Patents

Zéolithes à compatibilité améliorée

Info

Publication number
EP4157515A1
EP4157515A1 EP21739157.2A EP21739157A EP4157515A1 EP 4157515 A1 EP4157515 A1 EP 4157515A1 EP 21739157 A EP21739157 A EP 21739157A EP 4157515 A1 EP4157515 A1 EP 4157515A1
Authority
EP
European Patent Office
Prior art keywords
crystals
modified
zeolite crystals
zeolites
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21739157.2A
Other languages
German (de)
English (en)
Inventor
Guillaume ORTIZ
Cécile LUTZ
Thierry Vassalo
Karine LOPEZ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkema France SA
Original Assignee
Arkema France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France SA filed Critical Arkema France SA
Publication of EP4157515A1 publication Critical patent/EP4157515A1/fr
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • B01J20/186Chemical treatments in view of modifying the properties of the sieve, e.g. increasing the stability or the activity, also decreasing the activity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/261Synthetic macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28026Particles within, immobilised, dispersed, entrapped in or on a matrix, e.g. a resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/08Ingredients agglomerated by treatment with a binding agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes

Definitions

  • the invention relates to the field of zeolitic adsorbents, more particularly that of composite materials comprising zeolitic adsorbents, and in particular composite materials comprising zeolitic adsorbents dispersed in organic matrices.
  • the role of the polymer matrix is then limited to that of an agglomeration binder for shaping the zeolite into an adsorbent article, for example in the form of adsorbent strips, molded or extruded parts, gaskets.
  • Patent application FR2939330 describes a zeolitic adsorbent material with an organic binder containing from 65% to 99% of zeolite in the form of crystals which are incorporated directly into the polymer matrix.
  • the technique of incorporating the crystals into the polymer is mixing in a twin-screw extruder. This technique requires a relatively large amount of energy and shows the low compatibility between the zeolite and the organic matrix.
  • zeolites Due to this "incompatibility" generally observed between mineral zeolites and organic polymer matrices, zeolites are generally only incorporated at a relatively low content in polymer matrices. This is one of the reasons why zeolite crystals are often used as a filler material, for example in flame-retardant compositions, as for example described in documents EP0629678, FR3062390 and EP1375594). The zeolite content by weight in the material then generally does not exceed 10%.
  • Zeolites can also serve as a carrier agent for the active principle, for example amines capable of controlling the crosslinking of a composition.
  • Crosslinkable polymer based on a polymer having groups of maleic anhydride type (US Pat. No. 5,792,816). The zeolite content is again generally less than 20%.
  • zeolites are used at low content, for example to provide occasional dehydration properties, for example during the manufacture of polyurethanes, to eliminate traces of water in formulations of polyols and isocyanates and to avoid thus the formation of bubbles in the polymer, or else to trap traces of residual monomers in the polymer material.
  • the zeolite confers particular properties on the composition, as is for example the case in document FR2811304, where fungistatic packaging based on polyolefins or polystyrenes containing up to 30% zeolite crystals partially exchanged for silver.
  • Application WO2009032869 describes a dehydrating composition obtained by mixing an organic binder of polyolefin type and of an adsorbent component of zeolitic type present in an amount of 55% to 77%.
  • This composition is used for the manufacture of desiccant gaskets for double glazing.
  • the use of such compositions is however difficult: the times for incorporation of the adsorbent solid into the preparation are long and the mixture is very viscous.
  • one of the objectives of the present invention is to provide zeolites with improved compatibility with organic materials, such as organic polymers.
  • Another objective of the present invention is to provide zeolites with improved compatibility with organic materials, and to incorporate large amounts of said zeolites into said organic materials.
  • Yet another objective is to provide zeolites with improved compatibility, which can be easily prepared and used in industry, with relatively low production costs and controlled energy consumption.
  • the present invention relates to modified zeolite crystals comprising zeolite crystals and from 0.5% to 20%, preferably from 0.5% to 15%, more preferably from 1% to 10%, and advantageously from 1% to 5%, by weight, limits included, relative to the total weight of modified zeolite crystals, of at least one polymer compatibilizer, in particular a functional polyolefin.
  • the zeolite crystals are zeolitic adsorbent materials well known to those skilled in the art and can be of all types used in the field of adsorption, and preferred examples of zeolites include, without limitation, zeolites of LTA type, preferably 3A, 4A and 5A, zeolites of FAU type, preferably of X, LSX, MSX, Y type, zeolites of MFI type, preferably of MFI type.
  • ZSM-5 and silicalites P zeolites, SOD type zeolites (such as sodalites), MOR type zeolites, CFIA type zeolites (such as chabazites), FIEU type zeolites (such as clinoptilolites), and mixtures of two or more of them in all proportions.
  • the preferred zeolites are chosen from zeolites of LTA type, preferably 3A, 4A and 5A, zeolites of FAU type, preferably of type X, LSX, MSX, Y, P zeolites, SOD-type zeolites (such as sodalites), MOR-type zeolites, CHA-type zeolites (such as chabazites), HEU-type zeolites (such as clinoptilolites), and mixtures of two or several of them in all proportions.
  • zeolites of LTA type preferably 3A, 4A and 5A
  • zeolites of FAU type preferably of type X, LSX, MSX, Y, P zeolites
  • SOD-type zeolites such as sodalites
  • MOR-type zeolites such as CHA-type zeolites (such as chabazites)
  • HEU-type zeolites such as clinoptilolites
  • the aforementioned zeolites can be natural, artificial or synthetic, that is to say natural, modified or synthesized. Zeolites most often contain one or more types of cations in order to ensure electronic neutrality.
  • the cations present in zeolites naturally or after one or more cationic exchanges are well known to those skilled in the art. Non-limiting examples of such cations include cations of hydrogen, alkali metals, alkaline earth metals, metals of Groups VIII, IB and IIB, and mixtures of two or more of them, and most often examples of cations include cations of lithium, potassium, sodium, barium, calcium, silver, copper, zinc, and mixtures of two or more thereof, in all proportions.
  • the number-average size of the crystals can vary widely and is generally between 0.05 ⁇ m and 20 ⁇ m, preferably between 0.1. pm and 20 pm, more preferably between 0.1 pm and 10 pm, advantageously between 0.2 pm and 10 pm, more preferably between 0.3 pm and 8 pm, more preferably between 0.5 pm and 5 pm.
  • the modified zeolite crystals of the present invention further comprise at least one polymer compatibilizer, in particular a functional polyolefin, as indicated above.
  • the compatibilizer used preferably said at least one functional polyolefin, for the preparation of the modified zeolite crystals has a melt flow index (MFI, or "Melt Flow Index" in English) greater than 250 g / 10 min, measured according to standard ASTM D1238 (190 ° C, 2.16 kg), preferably between 250 g / 10 min and 1000 g / 10 min, more preferably between 300 g / 10 min and 950 g / 10 min, better still between 500 g / 10 min and 900 g / 10 min and, most preferably, between 550 g / 10 min and 900 g / 10 min.
  • MFI melt flow index
  • the melting temperature of said compatibilizing agent is less than 150 ° C, more preferably less than 120 ° C, advantageously less than 110 ° C, and better still less than 100 ° C.
  • the compatibilizer is a polymer, preferably a polyolefin and more specifically a functional polyolefin.
  • polyolefins is meant the homopolymers or copolymers of alpha-olefins or diolefins. These olefins are, by way of example, ethylene, propylene, butene-1, octene-1, butadiene, styrene, and others, as well as mixtures of two or more of them, in all proportions.
  • polyolefins also encompasses mixtures of two or more homopolymers and / or copolymers mentioned above.
  • polyolefins mention may be made of polyethylene (HDPE, LDPE or VLDPE), polypropylene, and their copolymers.
  • the number molecular weight of the polyolefins can vary widely, and is generally between 1000 g / mol and 1,000,000 g / mol.
  • polyolefins or copolyolefins can also be grafted or "functionalized” with various functional groups, well known to those skilled in the art, such as for example anhydrides of unsaturated carboxylic or dicarboxylic acids such as maleic anhydride or unsaturated epoxides such as glycidyl methacrylate.
  • the polyolefins thus functionalized can be prepared by homopolymerization of functionalized monomers or copolymerization of olefins with functionalized comonomers or else copolymerization of functionalized olefins with optionally functionalized comonomers, said functionalized monomers or comonomers being advantageously and most generally chosen from unsaturated carboxylic acids, their salts and their esters, such as alkyl (meth) acrylate, for example methyl acrylate, vinyl esters of saturated carboxylic acids such as vinyl acetate, unsaturated dicarboxylic acids, their salts, esters, half-esters, anhydrides, unsaturated epoxides, and the like, as well as mixtures of two or more of them, in all proportions .
  • unsaturated carboxylic acids such as alkyl (meth) acrylate, for example methyl acrylate
  • vinyl esters of saturated carboxylic acids such as vinyl acetate
  • the term “functionalized polyolefin” or “functional polyolefin” is understood to mean a polyolefin known in the English language under the generic term “functionalized polyolefin” and as being an olefin polymer (s) with at least one polar functionality or not. polar linked to the polymer chain. According to a preferred aspect of the present invention, preferred are olefin polymers with at least one polar functionality. According to another preferred aspect of the present invention, the term “functional polyolefin” does not include halogenated polyolefins.
  • the compatibilizing agent is a copolymer, and preferably a copolymer with an olefinic component
  • the latter is advantageously chosen from olefin / carboxylic acid copolymers (optionally under salt form or ester form) and copolymers of olefins and vinyl esters of carboxylic acids, to name only the most common olefinic copolymers.
  • olefin / carboxylic acid copolymers (optionally in salt form or in ester form), olefin / unsaturated carboxylic acid copolymers, optionally in salt form or in ester form.
  • carboxylic acids, salts or esters suitable for the purposes of the present invention include in particular acrylic and methacrylic acids, their salts or esters, and most particularly methyl acrylate or butyl acrylate.
  • copolymers of olefins and vinyl esters of carboxylic acids mention may be made of copolymers of olefins and of vinyl esters of saturated carboxylic acids, and in particular olefin / vinyl acetate copolymers.
  • the polymer compatibilizing agent can comprise one or more polymers and / or copolymers as they have just been defined, and in particular polymers and / or olefinic copolymers such that they have just been defined.
  • the content (in number, determined by infrared spectrometry) of functionalized comonomers is from 10 to 40% in the copolymer.
  • the zeolite crystals modified according to the present invention are in the form of free crystals (that is to say of free powder) or in the form of friable aggregates of crystals.
  • the crystals according to the present invention are crystals which are not integral with each other, with the exception of possible aggregates of crystals, these crystals which are not integral with each other are zeolite crystals comprising at least one polymer compatibilizer, preferably at least one functional polyolefin.
  • the number-average size of the modified crystals (more simply "size of the modified crystals" in the remainder of the description) according to the present invention is generally between 0.07 ⁇ m and 25 ⁇ m, preferably between 0.1 ⁇ m. and 20 ⁇ m, more preferably between 0.1 ⁇ m and 10 ⁇ m, advantageously between 0.2 ⁇ m and 10 ⁇ m, more preferably between 0.3 ⁇ m and 8 ⁇ m, more preferably between 0.5 ⁇ m and 5 ⁇ m.
  • the present invention relates to the process for preparing the modified zeolite crystals according to the invention, that is to say zeolite crystals comprising at least one compatibilizing agent.
  • This process is characterized in that it comprises the following steps: a) mixing the zeolite crystals with said at least one compatibilizer, and b) recovering the modified zeolite crystals.
  • the compatibilizer used in step a) can be either melted or ground, for example by cryogrinding, prior to mixing with the zeolite crystals.
  • the compatibilizer can be in the solid state or in the molten state before and / or during mixing.
  • the modified zeolite crystals recovered are in the form of pulverulent crystals, and / or in the form of friable aggregates, as indicated above.
  • the modified zeolite crystals are pulverulent crystals, and / or in the form of friable aggregates most often and most generally obtained in a melting step after or during mixing with at least one compatibilizing agent, as defined above, which is either a fusion of said at least one compatibilizing agent by supplying an external heat source, and / or an at least partial fusion of said at least one compatibilizing agent by the friction forces in the mixer, during mixing.
  • the mixing of the zeolite crystals with said at least one compatibilizing agent can be carried out in batch or continuously, by means of suitable mixers and well known to those skilled in the art, and which include, by way of examples not limiting, the Brabender type mixers, for example with rotating blades and of various shapes adapted to each type of die, the devices of the Banbury type in which two spiral rotors rotate in opposite directions at a variable speed of rotation, the extruders, mono screw or twin screw, such as for example the BUSS type mixers, which are generally equipped with an axially oscillating screw with a sinusoidal movement.
  • Extruders are particularly well suited for continuous processes, while mixers of the Brabender or Banbury type are more suitable for batch processes. These various types of mixers can withstand the temperatures applied and adapted to the melting temperature of the compatibilizer, if applicable.
  • the zeolite crystals can be introduced in one or more times or, better, by fractions in the mixture.
  • the mixers used comprise several feed zones, this making it possible to favor and greatly facilitate mixtures with a high content of zeolite crystals.
  • various additives and / or fillers to the zeolite crystals, before and / or during and / or after the addition of said at least one compatibilizing agent.
  • the additives and fillers which can thus be incorporated form part of those well known to those skilled in the art and generally include, and by way of nonlimiting examples, crosslinking agents, antibacterial agents, fungicides, anti-fog agents. , blowing agents, dispersants, flame retardants, pigments, lubricants, impact modifiers, anti-oxidants, and the like, and mixtures thereof, to name only the main ones.
  • zeolite crystals that is to say desorbed from the water adsorbed by heat treatment, and more generally having a very residual water. low, typically at a Loss On Ignition (PAF) of less than 2%.
  • PAF Loss On Ignition
  • the Loss on Ignition is determined in an oxidizing atmosphere, by calcining the crystals in air, at a temperature of 950 ° C ⁇ 25 ° C, as described in standard NF EN 196-2 (April 2006). The standard deviation of the measurement is less than 0.1%.
  • modified zeolite crystals are obtained, that is to say a zeolite in the form of crystals and comprising said at least one compatibilizing agent. These modified zeolite crystals are ready to be used, after optional storage, under conditions well known to those skilled in the art for the storage of adsorbent materials.
  • the modified zeolite crystals comprise at least one compatibilizer, said at least one compatibilizer being able to be present and visible by scanning electron microscopy (SEM) in various forms, and for example in the form of particles intimately mixed with zeolite crystals, and / or in a thin layer of compatibilizing agent on the surface of the crystals, and / or others, as well as the combinations of these various forms.
  • SEM scanning electron microscopy
  • the compatibilizer when the compatibilizer is in the form of particles intimately mixed with the zeolite crystals, said particles have a number-average size of less than 100 ⁇ m, preferably less than 80 ⁇ m, of more preferably less than 60 ⁇ m, preferably of number-average size between 0.1 ⁇ m and 100 ⁇ m, of preferably between 0.5 ⁇ m and 80 ⁇ m, more preferably between 1 ⁇ m and 60 ⁇ m, the number-average size being measured by SEM as indicated below.
  • Such sizes of compatibilizing agent particles can be obtained by any means well known to those skilled in the art and for example by cryogrinding, as indicated above.
  • the compatibilizer is in the form of a thin layer partially or totally covering the surface of the zeolite crystals, said layer preferably having a thickness, observed by means of a Scanning Electron Microscope (SEM) or even a Transmission Electron Microscope (TEM or “TEM” in English) less than 1.0 ⁇ m, advantageously less than 0.5 ⁇ m, preferably less than 0.2 ⁇ m.
  • SEM Scanning Electron Microscope
  • TEM Transmission Electron Microscope
  • the compatibilizing agent layer partially or totally covering the surface of the zeolite crystals is generally obtained by mixing said zeolite crystals with the compatibilizing agent at a temperature preferably at least above the melting temperature of said agent. compatibilizing.
  • the zeolite crystals comprising at least one compatibilizing agent according to the invention are zeolite crystals or aggregates of crystals. friable, and exhibit completely unexpected properties in terms of compatibility with organic matrices, in particular polymer matrices.
  • modified zeolite crystals according to the invention are incorporated much more easily into polymer matrices, this having for direct implication a very large number of advantages, among which one can quote, between others, reduced energy consumption, greater incorporation speed, better rheological behavior (for example reduction in viscosity), a higher rate of zeolite crystals in the polymer matrices.
  • the polymer matrices in which it may be advantageous to incorporate the modified zeolite crystals according to the present invention can be of any type and in particular the polymer matrices known to be loaded with zeolite crystals but also other types of polymer matrices which, until now, could not contain, or only contain small amounts of zeolite crystals.
  • the polymer materials which can serve as a matrix for the modified zeolite crystals according to the invention can be in particular, and preferably thermoplastic polymers, among which there may be mentioned, by way of nonlimiting examples, polyethylenes, ethylene elastomers, propylene rubbers (EPR), ethylene, propylene and diene elastomers (EPDM), their mixtures, polyisobutylenes, silicones, polyurethanes, as well as copolymers, and mixtures of these polymers.
  • Said polymer matrices comprising the modified zeolite crystals can then optionally be crosslinked or vulcanized, according to conventional techniques and well known to those skilled in the art.
  • modified zeolite crystals according to the invention into the polymer matrices is generally carried out according to techniques known to those skilled in the art, and generally according to conventional and known techniques for processing plastics, such as kneading , extrusion, extrusion-molding, kneading-molding, and the like, as well as combinations of these techniques.
  • incorporation techniques can also include the incorporation of various additives and fillers, also well known in the art, to impart additional properties to the zeolite loaded polymer matrix.
  • additives and fillers mention may be made, by way of nonlimiting examples, of crosslinking agents, antibacterial agents, fungicides, anti-fogging agents, swelling agents, dispersants, flame retardants, pigments, etc. lubricants, impact modifiers, anti-oxidants, and the like, and mixtures thereof, to name just the main ones.
  • the modified zeolite crystals of the present invention thus allow access to polymer matrices loaded with zeolite endowed with remarkable properties. It has in particular been demonstrated, surprisingly, that the modified zeolite crystals according to the invention are incorporated much more easily into polymer matrices, this having for direct implication a very large number of advantages, among which one can quote, among others, a consumption reduced energy, higher incorporation rate, better rheological behavior (for example reduction in viscosity), a higher rate of zeolite crystals in the polymer matrices.
  • the invention also relates to the use of the modified zeolite crystals according to the invention as a filler in a polymer matrix, in particular for the preparation of composite materials.
  • the modified zeolite crystals according to the invention find very interesting applications in a very large number of industrial fields, and in particular as fillers in polymer matrices (or polymer compositions).
  • the modified zeolite crystals according to the invention can be incorporated into polymer matrices in large or even very large amounts, for example contents of at least 40%, or even at least. at least 60%, or even at least 80% and more.
  • the modified zeolite crystals according to the invention can therefore be used as fillers in polymer matrices, and find quite interesting applications, in the field of double-glazing, in the field of coating compositions, for example, polyurethane coatings or coatings for metal supports such as aluminum or coatings for glass, or in the field of ready-to-polymerize formulations, ready-to-crosslink formulations, but also as filler in materials with reinforced mechanical properties, flame-retardant, phonic, as well as for applications in the electrical and electronic fields, such as cables, connectors, and others.
  • coating compositions for example, polyurethane coatings or coatings for metal supports such as aluminum or coatings for glass, or in the field of ready-to-polymerize formulations, ready-to-crosslink formulations, but also as filler in materials with reinforced mechanical properties, flame-retardant, phonic, as well as for applications in the electrical and electronic fields, such as cables, connectors, and others.
  • the size of the various materials is estimated by observation with a Scanning Electron Microscope (SEM). To this end, a set of images is taken at a magnification of at least 5000. The size of at least 200 elements is then measured using dedicated software, for example the publisher's Smile View software. LoGraMi. The accuracy is in the order of 3%. "Size” is defined as the largest dimension of the element. The resulting particle size distribution is equivalent to the average of the particle size distributions observed on each of the images. The number-average size is calculated according to conventional methods known to those skilled in the art, by applying the statistical rules of Gaussian distribution.
  • the morphology of the crystals as well as the modification of the surface of the crystals are qualified from SEM photos taken at the magnification suited to the size of the crystals (for example magnification between 4000 and 20,000).
  • Example 1 Preparation of crystals of 3A zeolite modified with a functional polyolefin
  • a Lotryl ® 28BA700T grade polyolefin from Arkema in the form of granules (10 g) is introduced into a mixer of the Brabender Rheomix ® 600 type of the HAAKE TM brand, at 100 ° C. and 50 revolutions per minute. After melting lapolyarchyarchfine at this temperature, the 3A type zeolite crystals grade Siliporite ® NK30AP Arkema (190 g) in powder form are added to the mixer by fractions. After 20 minutes of mixing, a homogeneous mixture of modified zeolite crystals (200 g) is obtained in the form of free powder and very friable aggregates, which are left to cool to room temperature away from humidity in a Schlenk.
  • Figure 1 shows a photograph obtained by SEM (5000 magnification) showing 3A zeolite crystals covered almost entirely by a thin layer of polyolefin.
  • Example 1a comparative: Preparation of crystals of 3A zeolite modified with a non-functional polyolefin
  • Polypropylene (Sigma Aldrich, isotactic grade, Mw -250,000, Mn -67,000) in the form of granules (10 g) is introduced into a mixer of the Brabender Rheomix ® 600 type of the HAAKE TM brand, at 160 ° C and 50 revolutions per minute. After melting the polyolefin at this temperature, the 3A type zeolite crystals grade Siliporite ® NK30AP Arkema (190 g) in powder form are added to the mixer by fractions. After 20 minutes of mixing, a mixture of agglomerates of crystals stuck in polypropylene and unmodified, free zeolite crystals is obtained. invention.
  • a peroxide-type crosslinking agent, Arkema's Luperox P (3.6 g) is first added with stirring to 200 g of modified zeolite crystals obtained in Example 1.
  • This premix is then introduced into 190 g of a silicone polymer matrix (Silicone 4-7155 from Dow Corning) using a twin-cylinder mixer. Mixing is carried out for approximately 15 minutes at room temperature (20 ° C.). The rotational speeds of the cylinders (diameter 150 mm) are different 18 revolutions per minute (rpm) for the rear cylinder and 24 rpm for the front cylinder. The spacing between the two cylinders is approximately 3mm. A homogeneous mixture is obtained in the form of a sheet about 60 cm long and about 15 cm wide and 3 mm thick.
  • a crosslinking agent for peroxide, Luperox P Arkema (3.6 g) was added in 190 g of 3A grade type zeolite crystals Siliporite ® NK30AP Arkema.
  • the mixture obtained is then introduced into 200 g of a silicone polymer matrix (Silicone 4-7155 from Dow Corning) using a twin-cylinder mixer. The mixing is carried out for approximately 15 min at room temperature.
  • the rotational speeds of the cylinders (diameter 150 mm) are different and 18 rpm for the rear cylinder and 24 rpm for the front cylinder.
  • the spacing between the two cylinders is approximately 3 mm.
  • the homogeneous mixture is obtained in the form of a sheet approximately 60 cm long and approximately 15 cm wide and 3 mm thick.
  • Measurements of the rheological behavior are then carried out on the sheets obtained using a plane-plane rheometer with oscillating matrix (MDR-C type of the France Scientifique brand) at 130 ° C for 45 min, duration for which crosslinking of the silicone matrix.
  • MDR-C oscillating matrix
  • the rheometer is operated according to ISO 6502 and ASTM D5289 standards.
  • the sheet prepared with the modified zeolite crystals according to the invention has a minimum torque lower than that obtained with the unmodified zeolite crystals (reduction of the order of 30%, or even less), which demonstrates that a smaller amount of energy is required to mix the modified zeolite crystals according to the invention with the polymer matrix.
  • greater fluidity (lower viscosity) of the mixture with the modified crystals according to the invention is observed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

L'invention concerne des cristaux de zéolithe modifiés comprenant des cristaux de zéolithe et de 0,5% à 20%, en poids, bornes incluses, par rapport au poids total de cristaux de zéolithe modifiés, d'au moins un agent compatibilisant polymère, en particulier une polyoléfine fonctionnelle. L'invention concerne également l'utilisation des cristaux de zéolithe modifiés selon l'invention comme charge dans une matrice polymère, par exemple pour la préparation de matériaux composites.

Description

ZÉOLITHES À COMPATIBILITÉ AMÉLIORÉE
[0001] L’invention concerne le domaine des adsorbants zéolithiques, plus particulièrement celui des matériaux composites comprenant des adsorbants zéolithiques, et notamment des matériaux composites comprenant des adsorbants zéolithiques dispersés dans des matrices organiques.
[0002] Des applications, aujourd’hui de plus en plus nombreuses, requièrent l’incorporation d’une forte proportion d’adsorbant(s) zéolithique(s) (plus simplement « zéolithe(s) ») dans des matrices polymères, en particulier lorsque la zéolithe est utilisée comme matière active à des fins d’adsorption telles que l’adsorption d’eau ou l’adsorption de composés organiques volatiles.
[0003] Le rôle de la matrice polymère se limite alors à celui de liant d’agglomération pour la mise en forme de la zéolithe en article adsorbant, par exemple sous forme de barrettes adsorbantes, de pièces moulées ou extrudées, de joints.
[0004] La demande de brevet FR2939330 décrit un matériau adsorbant zéolithique à liant organique contenant de 65% à 99% de zéolithe sous forme de cristaux qui sont incorporés directement dans la matrice polymère. La technique d’incorporation des cristaux dans le polymère est un mélange dans une extrudeuse bi-vis. Cette technique nécessite une quantité d’énergie relativement importante et montre la faible compatibilité entre la zéolithe et la matrice organique.
[0005] En raison de cette « incompatibilité » généralement observée entre les zéolithes minérales et les matrices polymères organiques, les zéolithes ne sont généralement incorporées qu’à une teneur relativement faible dans les matrices polymères. C’est une des raisons pour lesquelles les cristaux de zéolithe sont souvent utilisés en tant que matériau de charges, par exemple dans des compositions ignifugeantes, comme par exemple décrits dans les documents EP0629678, FR3062390 et EP1375594). La teneur pondérale en zéolithe dans le matériau n’excède alors généralement pas 10%.
[0006] Les zéolithes peuvent aussi servir d’agent vecteur de principe actif, par exemple d’amines capables de contrôler la réticulation d’une composition polymérique réticulable, à base de polymère présentant des groupes de type anhydride maléique (US5792816). La teneur en zéolithe est là encore généralement inférieure à 20%.
[0007] D’autres utilisations encore ont été étudiées pour les zéolithes, mais les teneurs pondérales restent faibles, essentiellement en raison de la médiocre compatibilité entre minéraux zéolithiques et matrices organiques. Dans de telles applications, les zéolithes sont utilisées à faible teneur, par exemple pour apporter ponctuellement des propriétés de déshydratation, par exemple lors de la fabrication des polyuréthanes, pour éliminer les traces d’eau dans des formulations de polyols et d’isocyanates et éviter ainsi la formation de bulles dans le polymère, ou encore pour piéger des traces de monomères résiduels dans le matériau polymère.
[0008] Dans d’autres cas, la zéolithe confère des propriétés particulières à la composition, comme c’est par exemple le cas dans le document FR2811304, où sont ainsi décrits des emballages fongistatiques à base de polyoléfines ou de polystyrènes contenant jusqu’à 30% de cristaux de zéolithe échangée partiellement à l’argent.
[0009] La demande W02009032869 décrit quant à elle une composition déshydratante obtenue par mélange d’un liant organique de type polyoléfine et d’un composant adsorbant de type zéolithique présent à hauteur de 55% à 77%. Cette composition est utilisée pour la fabrication de joints déshydratants pour double vitrage. La mise en oeuvre de telles compositions est cependant mal aisée : les temps d’incorporation du solide adsorbant dans la préparation sont longs et le mélange est très visqueux.
[0010] L’état de la technique actuel montre donc qu’il reste aujourd’hui un besoin non encore pleinement satisfait d’incorporation de zéolithe en forte proportion dans une matrice polymère dans des conditions de mise en oeuvre compatibles avec une exploitation industrielle.
[0011] L’incorporation d’une forte proportion de zéolithe(s) dans une matrice polymère est délicate, souvent assez longue et énergivore, si bien que toute solution visant à diminuer la durée de mélange des différents ingrédients entrant dans la formulation et/ou la consommation énergétique associée, ou encore à augmenter à iso-productivité la proportion de zéolithe(s) dans la matrice polymère, serait d’une grande utilité et serait grandement appréciée.
[0012] Ainsi, un des objectifs de la présente invention est de proposer des zéolithes à compatibilité améliorée envers les matériaux organiques, tels que les polymères organiques. Un autre objectif de la présente invention est de proposer des zéolithes à compatibilité améliorée envers les matériaux organiques, et d’incorporer des quantités importantes desdites zéolithes dans lesdits matériaux organiques. Un autre objectif encore est de proposer des zéolithes à compatibilité améliorée, qui puissent être aisément préparées et mises en oeuvre dans l’industrie, avec des coûts de production relativement faibles et une consommation d’énergie maîtrisée.
[0013] Les inventeurs ont maintenant découvert que ces objectifs peuvent être atteints en totalité, ou tout au moins en partie, grâce à la présente invention. D’autres objectifs encore apparaîtront dans la description qui suit.
[0014] En effet, il a maintenant été découvert qu’il est possible d’améliorer substantiellement la compatibilité ou l’affinité des cristaux de zéolithes, c’est-à-dire de matériaux adsorbants (c’est-à-dire de cristaux activés, i.e. ayant subi un traitement thermique), avec les polymères notamment, afin d’améliorer l’incorporation desdites zéolithes en forte proportion dans une matrice polymère et/ou, à iso-productivité, augmenter la proportion de zéolithe incorporée dans la matrice polymère, tout en conservant de bonnes propriétés mécaniques et dans certains cas en apportant des propriétés tout à fait inattendues aux polymères et matériaux composites incorporant les cristaux de zéolithe modifiés selon l’invention. [0015] Ainsi, et selon un premier aspect, la présente invention concerne des cristaux de zéolithe modifiés comprenant des cristaux de zéolithe et de 0,5% à 20%, de préférence de 0,5% à 15%, de préférence encore de 1% à 10%, et avantageusement de 1 % à 5%, en poids, bornes incluses, par rapport au poids total de cristaux de zéolithe modifiés, d’au moins un agent compatibilisant polymère, en particulier une polyoléfine fonctionnelle.
[0016] Dans la présente invention, les cristaux de zéolithe sont des matériaux adsorbants zéolithiques bien connus de l’homme du métier et peuvent être de tous types utilisés dans le domaine de l’adsorption, et des exemples préférés de zéolithes comprennent, de manière non limitative, les zéolithes de type LTA, de préférence 3A, 4A et 5A, les zéolithes de type FAU, de préférence de type X, LSX, MSX, Y, les zéolithes de type MFI, de préférence de type ZSM-5 et les silicalites, les zéolithes P, les zéolithes de type SOD (telles que les sodalites), les zéolithes de type MOR, les zéolithes de type CFIA (telles que les chabazites), les zéolithes de type FIEU (telles que les clinoptilolites), et les mélanges de deux ou plusieurs d’entre elles en toutes proportions.
[0017] Pour les besoins de la présente invention, on préfère les zéolithes choisies parmi les zéolithes de type LTA, de préférence 3A, 4A et 5A, les zéolithes de type FAU, de préférence de type X, LSX, MSX, Y, les zéolithes P, les zéolithes de type SOD (telles que les sodalites), les zéolithes de type MOR, les zéolithes de type CHA (telles que les chabazites), les zéolithes de type HEU (telles que les clinoptilolites), et les mélanges de deux ou plusieurs d’entre elles en toutes proportions.
[0018] Les zéolithes précitées peuvent être naturelles, artificielles ou synthétiques, c’est-à-dire naturelles, modifiées ou synthétisées. Les zéolithes contiennent le plus souvent un ou plusieurs types de cations afin d’en assurer la neutralité électronique. Les cations présents dans les zéolithes naturellement ou après un ou plusieurs échanges cationiques sont bien connus de l’homme du métier. Des exemples non limitatifs de tels cations comprennent les cations d’hydrogène, de métaux alcalins, de métaux alcalino-terreux, de métaux des groupes VIII, IB et IIB, et les mélanges de deux ou plusieurs d’entre eux, et le plus souvent des exemples de cations comprennent les cations de lithium, de potassium, de sodium, de baryum, de calcium, d’argent, de cuivre, de zinc, et les mélanges de deux ou plusieurs d’entre eux, en toutes proportions.
[0019] La taille moyenne en nombre des cristaux (plus simplement « taille des cristaux » dans la suite de la description) peut varier dans de grandes proportions et est généralement comprise entre 0,05 pm et 20 pm, de préférence entre 0,1 pm et 20 pm, de préférence encore entre 0,1 pm et 10 pm, avantageusement entre 0,2 pm et 10 pm, de préférence encore entre 0,3 pm et 8 pm, mieux encore entre 0,5 pm et 5 pm. [0020] Les cristaux de zéolithe modifiés de la présente invention comprennent en outre au moins un agent compatibilisant polymère, en particulier une polyoléfine fonctionnelle, comme indiqué précédemment.
[0021] Dans un mode de réalisation de l’invention, l’agent compatibilisant utilisé, de préférence ladite au moins une polyoléfine fonctionnelle, pour la préparation des cristaux de zéolithe modifiés présente un indice de fluidité (MFI, ou « Melt Flow Index » en langue anglaise) supérieur à 250 g / 10 min, mesuré selon la norme ASTM D1238 (190°C, 2,16 kg), de préférence compris entre 250 g / 10 min et 1000 g / 10 min, de préférence encore entre 300 g / 10 min et 950 g / 10 min, mieux encore entre 500 g / 10 min et 900 g / 10 min et, de manière tout à fait préférée, entre 550 g / 10 min et 900 g / 10 min.
[0022] Selon un mode de réalisation préféré, la température de fusion dudit agent compatibilisant est inférieure à 150°C, de préférence encore inférieure à 120°C, avantageusement inférieure à 110°C, et mieux encoreinférieure à 100°C.
[0023] L’agent compatibilisant est un polymère, préférentiellement une polyoléfine et plus spécifiquement encore une polyoléfine fonctionnelle.
[0024] Par « polyoléfines », on entend les homopolymères ou copolymères d’alpha-oléfines ou de dioléfines. Ces oléfines sont, à titre d’exemple, l’éthylène, le propylène, le butène-1 , l’octène-1 , le butadiène, le styrène, et autres, ainsi que les mélanges de deux ou plusieurs d’entre eux, en toutes proportions.
[0025] Le terme de polyoléfines englobe également les mélanges de deux ou plusieurs homopolymères et/ou copolymères cités ci-dessus. À titre d'exemples non limitatifs de polyoléfines, on peut citer le polyéthylène (HDPE, LDPE ou VLDPE), le polypropylène, et leurs copolymères. Le poids moléculaire en nombre des polyoléfines peut varier dans une large mesure, et est généralement compris entre 1000 g/mol et 1000000 g/mol.
[0026] Ces polyoléfines ou copolyoléfines peuvent être par ailleurs greffées ou « fonctionnalisées » avec divers groupements fonctionnels, bien connus de l’homme du métier, tels que par exemple des anhydrides d’acides carboxyliques ou dicarboxyliques insaturés tel que l’anhydride maléique ou des époxydes insaturés tels que le méthacrylate de glycidyle. [0027] Selon un autre mode de réalisation, les polyoléfines ainsi fonctionnalisées, dites polyoléfines fonctionnelles, peuvent être préparées par homopolymérisation de monomères fonctionnalisés ou copolymérisation d’oléfines avec des comonomères fonctionnalisés ou encore copolymérisation d’oléfines fonctionnalisées avec des comonomères éventuellement fonctionnalisés, lesdits monomères ou comonomères fonctionnalisés étant avantageusement et le plus généralement choisis parmi les acides carboxyliques insaturés, leurs sels et leurs esters, tels que le (méth)acrylate d’alkyle, par exemple l’acrylate de méthyle, les esters vinyliques d’acides carboxyliques saturés tel que l’acétate de vinyle, les acides dicarboxyliques insaturés, leurs sels, leurs esters, leurs hémi-esters, leurs anhydrides, les époxydes insaturés, et autres, ainsi que les mélanges de deux ou plusieurs d’entre eux, en toutes proportions. De manière générale, on entend par « polyoléfine fonctionnalisée » ou « polyoléfine fonctionnelle », une polyoléfine connue en langue anglaise sous le terme générique « functionalized polyolefin » et comme étant un polymère d’oléfine(s) avec au moins une fonctionnalité polaire ou non polaire liée à la chaîne polymère. Selon un aspect préféré de la présente invention, on préfère les polymères d’oléfines avec au moins une fonctionnalité polaire. Selon un autre aspect préféré de la présente invention, le terme « polyoléfine fonctionnelle » ne comprend pas les polyoléfines halogénées.
[0028] Ainsi, et selon un mode de réalisation de l’invention, lorsque l’agent compatibilisant est un copolymère, et de préférence un copolymère à composante oléfinique, celui-ci est avantageusement choisi parmi les copolymères oléfine/acide carboxylique (éventuellement sous forme de sel ou sous forme d’ester) et les copolymères d’oléfines et d’esters vinyliques d’acides carboxyliques, pour ne citer que les copolymères oléfiniques les plus courants.
[0029] On peut également citer, parmi les copolymères oléfine/acide carboxylique (éventuellement sous forme de sel ou sous forme d’ester), les copolymères oléfine/acide carboxylique insaturé, éventuellement sous forme de sel ou sous forme d’ester. Des exemples d’acides carboxyliques, sels ou esters, appropriés pour les besoins de la présente invention comprennent notamment les acides acryliques et méthacryliques, leurs sels ou esters, et tout particulièrement l’acrylate de méthyle ou l’acrylate de butyle. [0030] Parmi les copolymères d’oléfines et d’esters vinyliques d’acides carboxyliques, on peut citer les copolymères d’oléfines et d’esters vinyliques d’acides carboxyliques saturés, et en particulier les copolymères oléfine/acétate de vinyle.
[0031] Il doit être compris au sens de la présente invention, que l’agent compatibilisant polymère peut comprendre un ou plusieurs polymères et/ou copolymères tels qu’ils viennent d’être définis, et en particulier polymères et/ou copolymères oléfiniques tels qu’ils viennent d’être définis.
[0032] Selon un mode particulier de réalisation, la teneur (en nombre, déterminée par spectrométrie infra-rouge) en comonomères fonctionnalisés est de 10 à 40% dans le copolymère.
[0033] Les cristaux de zéolithe modifiés selon la présente invention, c’est-à-dire les cristaux comprenant au moins un agent compatibilisant comme indiqué précédemment, se présentent sous forme de cristaux libres (c’est-dire de poudre libre) ou sous forme d’agrégats friables de cristaux. En d’autres termes, les cristaux selon la présente invention sont des cristaux non solidaires entre eux, à l’exception d’éventuels agrégats de cristaux, ces cristaux non solidaires entre eux sont des cristaux de zéolithes comprenant au moins un agent compatibilisant polymère, de préférence au moins une polyoléfine fonctionnelle.
[0034] La taille moyenne en nombre des cristaux modifiés (plus simplement « taille des cristaux modifiés » dans la suite de la description) selon la présente invention est généralement comprise entre 0,07 pm et 25 pm, de préférence entre 0,1 pm et 20 pm, de préférence encore entre 0,1 pm et 10 pm, avantageusement entre 0,2 pm et 10 pm, de préférence encore entre 0,3 pm et 8 pm, mieux encore entre 0,5 pm et 5 pm.
[0035] Selon un autre aspect, la présente invention concerne le procédé de préparation des cristaux de zéolithe modifiés selon l’invention, c’est-à-dire des cristaux de zéolithe comprenant au moins un agent compatibilisant. Ce procédé se caractérise par le fait qu’il comprend les étapes suivantes : a) mélange des cristaux de zéolithe avec ledit au moins un agent compatibilisant, et b) récupération des cristaux de zéolithe modifiés. [0036] L’agent compatibilisant mis en œuvre à l’étape a) peut être soit fondu soit broyé, par exemple par cryobroyage, préalablement au mélange avec les cristaux de zéolithe. L’agent compatibilisant peut être à l’état solide ou à l’état fondu avant et/ou pendant le mélange. Les cristaux de zéolithe modifiés récupérés se présentent sous la forme de cristaux pulvérulents, et/ou sous forme d’agrégats friables, comme indiqué précédemment. Les cristaux de zéolithe modifiés sont des cristaux pulvérulents, et/ou sous forme d’agrégats friables le plus souvent et le plus généralement obtenus dans une étape de fusion après ou pendant le mélange avec au moins un agent compatibilisant, tel que défini précédemment, qui est soit une fusion dudit au moins un agent compatibilisant par apport de source thermique externe, et/ou une fusion au moins partielle dudit au moins un agent compatibilisant par les forces de friction dans le mélangeur, lors du mélange.
[0037] Le mélange des cristaux de zéolithe avec ledit au moins un agent compatibilisant peut être réalisé en batch ou en continu, au moyen de mélangeurs adaptés et bien connus de l’homme du métier, et qui comprennent, à titre d’exemples non limitatifs, les mélangeurs de type Brabender, par exemple à pales rotatives et de formes variées adaptées à chaque type de matrice, les appareils de type Banbury dans lesquels deux rotors spiraux tournent en directions opposées à une vitesse de rotation variable, les extrudeuses, mono-vis ou double-vis, telles que par exemple les malaxeurs de type BUSS, qui sont généralement équipés d’une vis oscillante de manière axiale avec un mouvement sinusoïdal.
[0038] Les extrudeuses sont particulièrement bien adaptées pour les procédés en continu, alors que les mélangeurs de type Brabender ou Banbury sont plus adaptés aux procédés batch. Ces divers types de mélangeurs peuvent supporter les températures appliquées et adaptées à la température de fusion de l’agent compatibilisant, le cas échéant.
[0039] Les cristaux de zéolithe peuvent être introduits en une ou plusieurs fois ou, mieux, par fractions dans le mélange. Selon un mode de réalisation avantageux de la présente invention, les mélangeurs utilisés comportent plusieurs zones d’alimentation, ceci permettant de favoriser et de faciliter grandement les mélanges à haute teneur en cristaux de zéolithe. [0040] On peut également, si cela est nécessaire ou souhaitable, ajouter divers additifs et/ou charges aux cristaux de zéolithe, avant et/ou pendant et/ou après l’ajout dudit au moins un agent compatibilisant. Les additifs et charges qui peuvent ainsi être incorporés font partie de ceux bien connus de l’homme du métier et comprennent généralement, et à titres d’exemples non limitatifs, les agents réticulants, les agents antibactériens, les fongicides, les agents anti-buée, les agents de gonflement, les dispersants, les retardateurs de flamme, les pigments, les lubrifiants, les modifiants chocs, les anti-oxydants, et autres et leurs mélanges, pour ne citer que les principaux d’entre eux.
[0041] Pour les besoins du procédé selon l’invention, on préfère utiliser des cristaux de zéolithe préalablement activés, c’est-à-dire désorbés de l’eau adsorbée par traitement thermique, et plus généralement présentant un résiduel d’eau très bas, typiquement à une Perte Au Feu (PAF) inférieure à 2%. La Perte Au Feu est déterminée en atmosphère oxydante, par calcination des cristaux à l'air, à une température de 950°C ± 25°C, comme décrit dans la lorme NF EN 196-2 (avril 2006). L’écart-type de mesure est inférieur à 0,1 %.
[0042] À l’issue du procédé de l’invention, on obtient des cristaux de zéolithe modifiés, c’est-à-dire une zéolithe sous forme de cristaux et comprenant ledit au moins un agent compatibilisant. Ces cristaux de zéolithe modifiés sont prêts à être utilisés, après stockage éventuel, dans les conditions bien connues de l’homme du métier pour le stockage de matériaux adsorbants.
[0043] Ainsi, les cristaux de zéolithe modifiés comprennent au moins un agent compatibilisant, ledit au moins un agent compatibilisant pouvant être présent et visible par microscopie électronique à balayage (MEB) sous diverses formes, et par exemple sous forme de particules intimement mélangées avec les cristaux de zéolithe, et/ou bien en fine couche d’agent compatibilisant à la surface des cristaux, et/ou autres, ainsi que les combinaisons de ces diverses formes.
[0044] Selon un mode de réalisation préféré, lorsque l’agent compatibilisant se présente sous forme de particules intimement mélangées avec les cristaux de zéolithe, lesdites particules ont une taille moyenne en nombre inférieure à 100 pm, de préférence inférieure à 80 pm, de préférence encore inférieure à 60 pm, de préférence de taille moyenne en nombre comprise entre 0,1 pm et 100 pm, de préférence entre 0,5 pm et 80 pm, de préférence encore entre 1 pm et 60 pm, la taille moyenne en nombre étant mesurée par MEB comme indiqué plus loin. De telles tailles de particules d’agent compatibilisant peuvent être obtenues selon tout moyen bien connu de l’homme du métier et par exemple par cryobroyage, comme indiqué précédemment.
[0045] Selon un autre mode de réalisation, l’agent compatibilisant se présente sous forme de fine couche recouvrant partiellement ou totalement la surface des cristaux de zéolithes, ladite couche ayant de préférence une épaisseur, observée au moyen d’un Microscope Electronique à Balayage (MEB) voire d’un Microscope Électronique à Transmission (MET ou « TEM » en langue anglaise) inférieure à 1 ,0 pm, avantageusement inférieure à 0,5 pm, de préférence inférieure à 0,2 pm. [0046] La couche d’agent compatibilisant recouvrant partiellement ou totalement la surface des cristaux de zéolithes est généralement obtenue en opérant le mélange desdits cristaux de zéolithe avec l’agent compatibilisant à une température de préférence au moins supérieure à la température de fusion dudit agent compatibilisant.
[0047] Comme indiqué précédemment les cristaux de zéolithe comprenant au moins un agent compatibilisant selon l’invention, c’est-à-dire les cristaux de zéolithe modifiés par au moins un agent compatibilisant, sont des cristaux de zéolithes ou des agrégats de cristaux friables, et présentent des propriétés tout à fait inattendues en termes de compatibilité avec les matrices organiques, en particulier les matrices polymères.
[0048] Il a notamment été démontré, de manière surprenante, que les cristaux de zéolithe modifiés selon l’invention sont incorporés beaucoup plus facilement dans des matrices polymères, ceci ayant pour implication directe de très nombreux avantages, parmi lesquels on peut citer, entre autres, une consommation d’énergie réduite, une plus grande vitesse d’incorporation, un meilleur comportement rhéologique (par exemple réduction de viscosité), un taux de cristaux de zéolithe dans les matrices polymères plus élevé.
[0049] Les matrices polymères dans lesquels il peut être intéressant d’incorporer les cristaux de zéolithes modifiés selon la présente invention peuvent être de tout type et notamment les matrices polymères connues pour être chargées par des cristaux de zéolithe mais aussi d’autres types de matrices polymères qui, jusqu’à présent, ne pouvaient pas contenir, ou ne contenir que de faibles quantités de cristaux de zéolithe.
[0050] Ainsi les matériaux polymères pouvant servir de matrice pour les cristaux de zéolithe modifiés selon l’invention peuvent être notamment, et de préférence des polymères thermoplastiques, parmi lesquels on peut citer, à titre d’exemples non limitatifs, les polyéthylènes, les élastomères d’éthylène, les caoutchoucs propylène (EPR), les élastomères d’éthylène, propylène et diène (EPDM), leurs mélanges, les polyisobutylènes, les silicones, les polyuréthanes, ainsi que les copolymères, et les mélanges de ces polymères. Lesdites matrices polymères comprenant les cristaux de zéolithe modifiés peuvent ensuite éventuellement être réticulées ou vulcanisées, selon les techniques classiques et bien connues de l’homme du métier.
[0051] L’incorporation des cristaux de zéolithe modifiés selon l’invention dans les matrices polymères est généralement réalisée selon les techniques connues par l’homme du métier, et généralement selon les techniques classiques et connues de transformation des matières plastiques, tels que malaxage, extrusion, extrusion- moulage, malaxage-moulage, et autres, ainsi que les combinaisons de ces techniques.
[0052] Ces techniques d’incorporation peuvent également inclure l’incorporation de divers additifs et charges, également bien connus dans le domaine, pour conférer à la matrice polymère chargée en zéolithe des propriétés supplémentaires. Parmi ces additifs et charges, on peut citer à titre d’exemples non limitatifs, les agents réticulants, les agents antibactériens, les fongicides, les agents anti-buée, les agents de gonflement, les dispersants, les retardateurs de flamme, les pigments, les lubrifiants, les modifiants chocs, les anti-oxydants, et autres et leurs mélanges, pour ne citer que les principaux d’entre eux.
[0053] Les cristaux de zéolithe modifiés de la présente invention permettent ainsi l’accès à des matrices polymères chargées en zéolithe dotées de propriétés remarquables. Il a notamment été démontré, de manière surprenante, que les cristaux de zéolithe modifiés selon l’invention sont incorporés beaucoup plus facilement dans des matrices polymères, ceci ayant pour implication directe de très nombreux avantages, parmi lesquels on peut citer, entre autres, une consommation d’énergie réduite, une plus grande vitesse d’incorporation, un meilleur comportement rhéologique (par exemple réduction de viscosité), un taux de cristaux de zéolithe dans les matrices polymères plus élevé.
[0054] Ces différentes propriétés remarquables rendent possible l’accès sur le marché à des matériaux polymères de coûts de fabrication moins élevés et/ou avec des propriétés d’adsorption améliorées, et/ou des propriétés mécaniques améliorées (telles que élasticité, résistance à l’écrasement, à l’élongation, à la rupture, au cisaillement, et autres).
[0055] L’invention concerne également l’utilisation des cristaux de zéolithe modifiés selon l’invention comme charge dans une matrice polymère, notamment pour la préparation de matériaux composites. À ce titre, les cristaux de zéolithe modifiés selon l’invention trouvent des applications tout à fait intéressantes dans de très nombreux domaines industriels, et notamment en tant que charges dans des matrices polymères (ou compositions polymères).
[0056] En raison de leur compatibilité améliorée, les cristaux de zéolithe modifiés selon l’invention peuvent être incorporés dans des matrices polymères dans des quantités importantes, voire très importantes, par exemples des teneurs d’au moins 40%, voire d’au moins 60%, voire d’au moins 80% et plus.
[0057] Ainsi, les cristaux de zéolithe modifiés selon l’invention peuvent donc être utilisés comme charges dans les matrices polymères, et trouvent des applications tout à fait intéressantes, dans le domaine du double-vitrage, dans le domaine des compositions de revêtements, par exemple type revêtements polyuréthane ou revêtements pour supports métalliques tels que aluminium ou revêtements pour le verre, ou encore dans le domaine des formulations prêtes à polymériser, des formulations prêtes à réticuler, mais aussi comme charge dans des matériaux à propriétés mécaniques renforcées, ignifugeantes, phoniques, ainsi que pour des applications dans les domaines électriques et électroniques, telles que câblerie, connectiques, et autres.
[0058] L'invention est maintenant illustrée par les exemples suivants qui ne sont nullement limitatifs.
EXEMPLES [0059] Dans les exemples qui suivent les techniques analytiques suivantes ont été utilisées :
[0060] La taille des divers matériaux (cristaux, agent compatibilisant cryobroyés) est estimée par observation au Microscope Électronique à Balayage (MEB). À cette fin, on effectue un ensemble de clichés à un grossissement d'au moins 5000. On mesure ensuite la taille d'au moins 200 éléments à l’aide d'un logiciel dédié, par exemple le logiciel Smile View de l’éditeur LoGraMi. La précision est de l’ordre de 3%. La « taille » est définie comme étant la plus grande dimension de l’élément. La distribution granulométrique résultante équivaut à la moyenne des distributions granulométriques observées sur chacun des clichés. La taille moyenne en nombre est calculée selon les méthodes classiques connues de l’homme du métier, en appliquant les règles statistiques de distribution gaussienne.
[0061] La morphologie des cristaux ainsi que la modification de la surface des cristaux sont qualifiées à partir de photos MEB prises au grossissement adapté à la taille des cristaux (par exemple grossissement entre 4000 et 20000).
Exemple 1 selon l’invention : Préparation de cristaux de zéolithe 3A modifiés avec une polyoléfine fonctionnelle
[0062] Une polyoléfine grade Lotryl® 28BA700T d’Arkema sous forme de granulés (10 g) est introduite dans un mélangeur de type Brabender Rheomix® 600 de la marque HAAKE™, à 100°C et 50 tours par minute. Après fonte de lapolyoléfine à cette température, des cristaux de zéolithe de type 3A grade Siliporite® NK30AP d’Arkema (190 g) sous forme de poudre sont ajoutés dans le mélangeur par fractions. Après 20 minutes de malaxage, un mélange homogène de cristaux de zéolithe modifiés (200 g) est obtenu sous forme de poudre libre et d’agrégats très friables, que l’on laisse refroidir à température ambiante à l’abri de l’humidité dans un Schlenk.
[0063] La Figure 1 présente une photographie obtenue par MEB (grossissement 5000) montrant des cristaux de zéolithe 3A recouverts en quasi-totalité par une fine couche de polyoléfine. Exemple 1 bis (comparatif) : Préparation de cristaux de zéolithe 3A modifiés avec une polyoléfine non fonctionnelle
[0064] Du polypropylène (Sigma Aldrich, grade isotactique, Mw -250,000, Mn -67,000) sous forme de granulés (10 g) est introduit dans un mélangeur de type Brabender Rheomix® 600 de la marque HAAKE™, à 160° C et 50 tours par minute. Après fonte de la polyoléfine à cette température, des cristaux de zéolithe de type 3A grade Siliporite® NK30AP d’Arkema (190 g) sous forme de poudre sont ajoutés dans le mélangeur par fractions. Après 20 minutes de malaxage, on obtient un mélange d’agglomérats de cristaux englués dans du polypropylène et des cristaux de zéolithe, non modifiés, libres La Figure 2 présente une photographie obtenue par MEB (grossissement 5000) de ce mélange non conforme à l’invention.
Exemple 2 :
Utilisation des cristaux de zéolithe 3A modifiés dans une matrice de type silicone
[0065] Un agent réticulant de type peroxyde, le Luperox P d’Arkema (3,6 g) est tout d’abord ajouté sous agitation dans 200 g de cristaux de zéolithe modifiés obtenus à l’exemple 1 .
[0066] Ce pré-mélange est ensuite introduit dans 190 g d’une matrice polymère silicone (Silicone 4-7155 de Dow Corning) à l’aide d’un mélangeur bicylindre. Le mélange est réalisé pendant 15 minutes environ à température ambiante (20°C). Les vitesses de rotation des cylindres (diamètre 150 mm) sont différentes 18 tours par minute (tr/min) pour le cylindre arrière et 24 tr/min pour le cylindre avant. L’espacement entre les deux cylindres est de 3 mm environ. Un mélange homogène est obtenu sous forme d’une feuille de longueur environ 60 cm et de largeur environ 15 cm et 3 mm d’épaisseur.
Utilisation des cristaux de zéolithe 3A non modifiés dans une matrice de type silicone (exemple comparatif)
[0067] Un agent réticulant de type peroxyde, le Luperox P d’Arkema (3,6 g) est ajouté dans 190 g de cristaux de zéolithe de type 3A grade Siliporite® NK30AP d’Arkema. [0068] Le mélange obtenu est ensuite introduit dans 200 g d’une matrice polymère silicone (Silicone 4-7155 de Dow Corning) à l’aide d’un mélangeur bicylindre. Le mélange est réalisé pendant 15 min environ à température ambiante. Les vitesses de rotation des cylindres (diamètre 150 mm) sont différentes et de 18 tr/min pour le cylindre arrière et de 24 tr/min pour le cylindre avant. L’espacement entre les deux cylindres est de 3 mm environ. Le mélange homogène est obtenu sous forme de feuille de longueur environ 60 cm et de largeur environ 15 cm et 3 mm d’épaisseur.
Comparaison rhéologique
[0069] Des mesures du comportement rhéologique sont ensuite réalisées sur les feuilles obtenues à l’aide d’un rhéomètre plan-plan à matrice oscillante (type MDR-C de la marque France Scientifique) à 130 °C pendant 45 min, durée pendant laquelle s’effectue la réticulation de la matrice silicone. Le rhéomètre est opéré selon les normes ISO 6502 et ASTM D5289.
[0070] On observe que la feuille préparée avec les cristaux de zéolithe modifiés selon l’invention présente un couple minimum inférieur à celui obtenu avec les cristaux de zéolithe non modifiés (diminution de l’ordre de 30%, voire moins), ce qui démontre qu’une moins grande quantité d’énergie est nécessaire pour réaliser le mélange des cristaux de zéolithe modifiés selon l’invention avec la matrice polymère. On observe en effet une plus grande fluidité (viscosité moindre) du mélange avec les cristaux modifiés selon l’invention.
Comparaison des contraintes-déformations en traction [0071] Des mesures de déformation en traction sont ensuite réalisées en appliquant la norme ISO 37:2017. Afin de pouvoir réaliser ces mesures, il est nécessaire dans un premier temps de procéder à la réticulation du silicone en chauffant les feuilles dans une presse pneumatique de la marque DARRAGON à 200°C pendant 5 minutes, sous une pression de 150 bar (15 MPa). Après 24 heures de repos à l’abri de l’humidité, des éprouvettes haltères de type 2 conformément à la norme ISO 37:2017 sont ensuite découpées dans les feuilles à l’aide d’un emporte-pièce CEAST. Les mesures de déformation en traction sont réalisées à l’aide d’une machine d’essais de traction de la marque Instron modèle 4505. [0072] On observe que l’allongement à la rupture est plus important avec les échantillons comprenant les cristaux modifiés selon l’invention, et que cet allongement peut atteindre des valeurs jusqu’à 25% supérieures par rapport à des éprouvettes comprenant la même quantité de cristaux de zéolithe classiques, c’est- à-dire non modifiés.

Claims

REVENDICATIONS
1. Cristaux de zéolithe modifiés comprenant des cristaux de zéolithe et de 0,5% à 20%, de préférence de 0,5% à 15%, de préférence encore de 1 % à 10%, et avantageusement de 1 % à 5%, en poids, bornes incluses, par rapport au poids total de cristaux de zéolithe modifiés, d’au moins un agent compatibilisant polymère, en particulier polyoléfine fonctionnelle.
2. Cristaux modifiés selon la revendication 1 , dans lesquels les cristaux de zéolithes sont des matériaux adsorbants zéolithiques choisis parmi les zéolithes de type LTA, les zéolithes de type FAU, les zéolithes de type MFI, les zéolithes P, les zéolithes de type SOD, les zéolithes de type MOR, les zéolithes de type CFIA, les zéolithes de type FIEU, et les mélanges de deux ou plusieurs d’entre elles en toutes proportions.
3. Cristaux modifiés selon la revendication 1 ou la revendication 2, dans lesquels les cristaux de zéolithes présentent une taille moyenne en nombre comprise entre 0,05 pm et 20 pm, de préférence entre 0,1 pm et 20 pm, de préférence encore entre 0,1 pm et 10 pm, avantageusement entre 0,2 pm et 10 pm, de préférence encore entre 0,3 pm et 8 pm, mieux encore entre 0,5 pm et 5 pm.
4. Cristaux modifiés selon l’une quelconque des revendications précédentes, dans lesquels, l’agent compatibilisant présente un indice de fluidité supérieur à 250 g / 10 min, mesuré selon la norme ASTM D1238 (190°C, 2,16 kg), de préférence compris entre 250 g / 10 min et 1000 g / 10 min, de préférence encore entre 300 g / 10 min et 950 g / 10 min, mieux encore entre 500 g / 10 min et 900 g / 10 min et, de manière tout à fait préférée, entre 550 g / 10 min et 900 g / 10 min.
5. Cristaux modifiés selon l’une quelconque des revendications précédentes, dans lesquels, la température de fusion dudit agent compatibilisant est inférieure à 150°C, de préférence encore inférieure à 120°C, avæitageusement inférieure à 110 ° C, et mieux encore inférieure à 100 ° C.
6. Cristaux modifiés selon l’une quelconque des revendications précédentes, dans lesquels l’agent compatibilisant est un polymère, préférentiellement une polyoléfine et plus spécifiquement encore une polyoléfine fonctionnelle.
7. Cristaux modifiés selon l’une quelconque des revendications précédentes, dans lesquels l’agent compatibilisant est choisi parmi les homopolymères ou copolymères d’alpha-oléfines ou de dioléfines, éventuellement mais de préférence fonctionnalisées par un ou plusieurs groupement fonctionnels, choisis parmi les anhydrides d’acides carboxyliques ou dicarboxyliques insaturés et les époxydes insaturés, les copolymères d’oléfines avec des comonomères fonctionnalisés.
8. Cristaux modifiés selon l’une quelconque des revendications précédentes, présentant une taille moyenne en nombre comprise entre 0,07 pm et 25 pm, de préférence entre 0,1 pm et 20 pm, de préférence encore entre 0,1 pm et 10 pm, avantageusement entre 0,2 pm et 10 pm, de préférence encore entre 0,3 pm et 8 pm, mieux encore entre 0,5 pm et 5 pm.
9. Utilisation des cristaux modifiés selon l’une quelconque des revendications précédentes, comme charge dans une matrice polymère.
10. Utilisation selon la revendication 9 en tant que charges dans des matrices polymères pour des applications dans les domaines du double-vitrage, des compositions de revêtements, des formulations prêtes à polymériser, des formulations prêtes à réticuler, mais aussi pour des applications comme charge dans des matériaux à propriétés mécaniques renforcées, ignifugeantes, phoniques, ainsi que pour des applications dans les domaines électriques et électroniques, et autres.
EP21739157.2A 2020-06-02 2021-06-02 Zéolithes à compatibilité améliorée Pending EP4157515A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2005763A FR3110860A1 (fr) 2020-06-02 2020-06-02 Zéolithes à compatibilité améliorée
PCT/FR2021/051001 WO2021245354A1 (fr) 2020-06-02 2021-06-02 Zéolithes à compatibilité améliorée

Publications (1)

Publication Number Publication Date
EP4157515A1 true EP4157515A1 (fr) 2023-04-05

Family

ID=73038065

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21739157.2A Pending EP4157515A1 (fr) 2020-06-02 2021-06-02 Zéolithes à compatibilité améliorée

Country Status (6)

Country Link
US (1) US20230211314A1 (fr)
EP (1) EP4157515A1 (fr)
KR (1) KR20220161497A (fr)
CN (1) CN115666780B (fr)
FR (1) FR3110860A1 (fr)
WO (1) WO2021245354A1 (fr)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0629678A1 (fr) 1993-06-18 1994-12-21 Elf Atochem S.A. Compositions ignifugeantes pour mélanges de résines thermoplastiques contenant une zéolithe
EP0733087B1 (fr) 1994-10-10 2001-03-14 Atochem S.A. Elf Agents de reticulation pour polymeres a groupes anhydrides d'acides
FR2811304B1 (fr) 2000-07-07 2002-10-25 Ceca Sa Emballage fongistatique et procede de fabrication
FR2841254B1 (fr) 2002-06-24 2004-09-03 Atofina Compositions ignifugees a base de polyamide et de polyolefine
CA2450150C (fr) * 2002-11-22 2012-01-24 Minh-Tan Ton-That Nanocomposites polymeres
US8481634B2 (en) 2007-09-07 2013-07-09 Bostik, Inc. Hot melt desiccant matrix composition based on plasticized polyolefin binder
EP2215155B1 (fr) * 2007-11-27 2013-08-07 Basell Poliolefine Italia S.r.l. Matières nanocomposites de polyoléfine
FR2939330B1 (fr) 2008-12-05 2015-12-04 Ceca Sa Adsordant zeolitique a liant organique
US20140272207A1 (en) * 2013-03-15 2014-09-18 Micropore, Inc. Adsorbent For Use As A Window Desiccant
FR3038240B1 (fr) * 2015-07-02 2019-08-09 Arkema France Article comprenant des particules zeolitiques reliees par une resine
CA3031153A1 (fr) * 2016-08-04 2018-02-08 Tundra Composites, LLC Teneur en polymere et liaison reduites dans un composite materiau particulaire-polymere
FR3062390B1 (fr) 2017-01-27 2020-11-06 Arkema France Compositions thermoplastiques souples a haute tenue thermomecanique et ignifugees a vieillissement thermique ameliore

Also Published As

Publication number Publication date
CN115666780A (zh) 2023-01-31
CN115666780B (zh) 2024-04-26
US20230211314A1 (en) 2023-07-06
WO2021245354A1 (fr) 2021-12-09
FR3110860A1 (fr) 2021-12-03
KR20220161497A (ko) 2022-12-06

Similar Documents

Publication Publication Date Title
CA1334777C (fr) Procede de preparation d'un liant pour revetement de chaussee a base de bitume et de poudre de caoutchouc de recuperation ainsi que liant obtenu par la mise en oeuvre de ce procede
EP2443183B1 (fr) Composition melange-maitre comprenant un peroxyde
EP3559135B1 (fr) Liant solide a température ambiante
EP1616907B1 (fr) Mélange maitre à base de polymère fluoré et son utilisation pour l'extrusion des polyoléfines
WO2008107314A1 (fr) Composition polymere thermoplastique a base de polyamide
CA2111301C (fr) Emulsions aqueuses bitume-polymere, leur procede de preparation et leurs applications
EP3559136B1 (fr) Composition d'asphalte coulé pour la réalisation de revêtements
EP1743914A2 (fr) Utilisation de polypropylènes isotactiquess de très grande fluidité pour la préparation de concentrés de charges utilisables dan les thermoplastiques de type oléfinique, concentrés de charges et thermoplastiques ainsi obtenus
FR2965565A1 (fr) Composition polyamide thermo-stabilisee
WO2007066032A2 (fr) Composition réticulée comprenant un copolymère coeur-écorce, son procédé d'obtention, ses utilisations.
WO2011124547A1 (fr) Composition polyamide de haute viscosite
WO2017085109A1 (fr) Procédé de préparation d'un caoutchouc naturel stabilisé
FR2475561A1 (fr) Composition perfectionnee d'un polymere de styrene thermoplastique
FR2763073A1 (fr) Polymere charge par des particules solides passees par un etat de suspension
EP1583800A1 (fr) Compositions thermoplastiques renforcees aux chocs comprenant un polyamide et un copolymere a blocs
FR3052169A1 (fr)
FR2602236A1 (fr) Compositions thermoplastiques a tres haute teneur en matieres minerales pulverulentes pour incorporation dans les polymeres
WO2021245354A1 (fr) Zéolithes à compatibilité améliorée
WO2011067504A1 (fr) Systeme de reticulation a haute vitesse
CA2383478A1 (fr) Compositions reticulables de poudres de polyolefines fonctionnalisees
WO2018069650A1 (fr) Composés dissymétriques porteurs de groupes associatifs
EP0307684B1 (fr) Compositions polyoléfiniques de propriétés rhéologiques modifiées et leur utilisation
EP0440558A2 (fr) Composition à base d'un copolymère d'éthylène-acétate de vinyle saponifié contenant une solution solide d'hydrotalcite et son utilisation
EP2097473B1 (fr) Melanges-maitres ayant pour support un copolymere d'ethylene et d'alpha-olefine et contenant des agents de vulcanisation
FR2955585A1 (fr) Melange polymerique a phase co-continue de polyamide

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20221124

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)