WO2008134451A1 - Réacteur à catalyseur d'hydrogène - Google Patents

Réacteur à catalyseur d'hydrogène Download PDF

Info

Publication number
WO2008134451A1
WO2008134451A1 PCT/US2008/061455 US2008061455W WO2008134451A1 WO 2008134451 A1 WO2008134451 A1 WO 2008134451A1 US 2008061455 W US2008061455 W US 2008061455W WO 2008134451 A1 WO2008134451 A1 WO 2008134451A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
catalyst
source
reaction
nah
Prior art date
Application number
PCT/US2008/061455
Other languages
English (en)
Inventor
Randell L. Mills
Original Assignee
Blacklight Power, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to MX2009011545A priority Critical patent/MX2009011545A/es
Priority to AU2008245686A priority patent/AU2008245686B2/en
Application filed by Blacklight Power, Inc. filed Critical Blacklight Power, Inc.
Priority to JP2010506500A priority patent/JP2010532301A/ja
Priority to EP08754923A priority patent/EP2185468A4/fr
Priority to BRPI0810972-9A2A priority patent/BRPI0810972A2/pt
Priority to KR1020157026590A priority patent/KR20150116905A/ko
Priority to EA200901438A priority patent/EA200901438A1/ru
Priority to KR1020097024516A priority patent/KR101871950B1/ko
Priority to CA002684952A priority patent/CA2684952A1/fr
Priority to CN200880020310.2A priority patent/CN101679025B/zh
Priority to AP2009005030A priority patent/AP3135A/xx
Publication of WO2008134451A1 publication Critical patent/WO2008134451A1/fr
Priority to IL201716A priority patent/IL201716A0/en
Priority to HK10108540.6A priority patent/HK1142055A1/xx
Priority to IL238038A priority patent/IL238038A0/en
Priority to IL249525A priority patent/IL249525A0/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • B01J31/121Metal hydrides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • 60/991 ,434 filed on November 30, 2007; (17) Application No. 60/991 ,974 filed on December 3, 2007; (18) Application No. 60/992,601 filed on December 5, 2007; (19) Application No. 61/012,717 filed on December 10, 2007; (20) Application No. 61/014,860 filed on December 19, 2007; (21) Application No. 61/016,790 filed on December 26, 2007; (22) Application No. 61/020,023 filed on January 9, 2008; (23) Application No. 61/021 ,205 filed on January 15, 2008; (24) Application No. 61/021 ,808 filed on January 17, 2008; (25) Application No. 61/022,112 filed on January 18, 2008; (26) Application No.
  • n integer in the Rydberg equation for hydrogen excited states.
  • He + , Ar + , and K are predicted to serve as catalysts since they meet the catalyst criterion — a chemical or physical process with an enthalpy change equal to an integer multiple of the potential energy of atomic hydrogen, 27.2 eV .
  • Specific predictions based on closed-form equations for energy levels were tested. For example, two H(I I p) may react to form H 2 (l / p) that have
  • alkali catalyst K The predicted products of alkali catalyst K are // " (1 / 4) which form KH * X , a novel alkali halido ( X ) hydride compound, and H 2 (1 / 4) which may be trapped in
  • the invention comprises a power source and a reactor to form lower-energy-hydrogen species and compounds.
  • the invention further comprises catalyst reaction mixtures to provide catalyst and atomic hydrogen.
  • Preferred atomic catalysts are lithium, potassium, and cesium atoms.
  • a preferred molecular catalyst is NaH.
  • Hvdrinos A hydrogen atom having a binding energy given by
  • Nansteel, and P. Ray "Excessively Bright Hydrogen-Strontium Plasma Light Source Due to Energy Resonance of Strontium with Hydrogen," J. Plasma Physics, Vol. 69, (2003), pp. 131-158; R. L. Mills, “Highly Stable Novel Inorganic Hydrides,” J. New Materials for Electrochemical Systems, Vol. 6, (2003), pp. 45-54; R. L. Mills, P. Ray, “Substantial Changes in the Characteristics of a Microwave Plasma Due to Combining Argon and Hydrogen," New Journal of Physics, www.njp.org, Vol. 4, (2002), pp. 22.1-22.17; R. M. Mayo, R. L. Mills, M.
  • Nansteel "Direct Plasmadynamic Conversion of Plasma Thermal Power to Electricity," IEEE Transactions on Plasma Science, October, (2002), Vol. 30, No. 5, pp. 2066-2073; R. L. Mills, M. Nansteel, P. Ray, "Bright Hydrogen-Light Source due to a Resonant Energy Transfer with Strontium and Argon Ions," New Journal of Physics, Vol. 4, (2002), pp. 70.1-70.28; R. M. Mayo, R. L. Mills, M. Nansteel, "On the Potential of Direct and MHD
  • the binding energy of an atom, ion, or molecule is the energy required to remove one electron from the atom, ion or molecule.
  • a hydrogen atom having the binding energy given in Eq. (1) is hereafter referred to as a hvdrino atom or hvdrino.
  • a hydrogen atom with a radius a H is hereinafter referred to as "ordinary hydrogen atom” or "normal hydrogen atom.”
  • Ordinary atomic hydrogen is characterized by its binding energy of 13.6 eV.
  • Hydrinos are formed by reacting an ordinary hydrogen atom with a catalyst having a net enthalpy of reaction of about m - 21. I eV (2) where m is an integer.
  • This catalyst has also been referred to as an energy hole or source of energy hole in Mills earlier filed Patent Applications. It is believed that the rate of catalysis is increased as the net enthalpy of reaction is more closely matched to m ⁇ 27.2 eV . It has been found that catalysts having a net enthalpy of reaction within ⁇ 10% , preferably ⁇ 5% , of m • 27.2 eV are suitable for most applications.
  • a catalytic system is provided by the ionization of t electrons from an
  • the first and second ionization energies of lithium are 5.39172 eV and 75.64018 eV, respectively [1].
  • the catalytic system involves cesium.
  • the first and second ionization energies of cesium are 3.89390 eV and 23.15745 eV , respectively.
  • An additional catalytic system involves potassium metal.
  • the first, second, and third ionization energies of potassium are 4.34066 eV , 31.63 eV , 45.806 eV ,
  • the energy given off during catalysis is much greater than the energy lost to the catalyst.
  • the energy released is large as compared to conventional chemical reactions. For example, when hydrogen and oxygen gases undergo combustion to form water
  • the hydrino hydride ion of the present invention can be formed by the reaction of an electron source with a hydrino, that is, a hydrogen atom having a
  • the hydrino hydride ion is distinguished from an ordinary hydride ion comprising an ordinary hydrogen nucleus and two electrons having a binding energy of about 0.8 eV.
  • the latter is hereafter referred to as "ordinary hydride ion” or "normal hydride ion”
  • the hydrino hydride ion comprises a hydrogen nucleus including proteum, deuterium, or tritium, and two indistinguishable electrons at a binding energy according to Eq. (15).
  • the binding energy of a novel hydrino hydride ion can be represented by the following formula:
  • the hydride ion binding energies are respectively 3, 6.6, 11.2, 16.7, 22.8, 29.3, 36.1 , 42.8, 49.4, 55.5, 61.0, 65.6, 69.2, 71.6, 72.4, 71.6, 68.8, 64.0, 56.8, 47.1 , 34.7, 19.3, and 0.69 eV.
  • Compositions comprising the novel hydride ion are also provided.
  • the hydrino hydride ion is distinguished from an ordinary hydride ion comprising an ordinary hydrogen nucleus and two electrons having a binding energy of about 0.8 eV.
  • the latter is hereafter referred to as "ordinary hydride ion” or "normal hydride ion”
  • the hydrino hydride ion comprises a hydrogen nucleus including proteum, deuterium, or tritium, and two indistinguishable electrons at a binding energy according to Eqs. (15-16).
  • Novel compounds are provided comprising one or more hydrino hydride ions and one or more other elements. Such a compound is referred to as a hvdrino hydride compound.
  • Ordinary hydrogen species are characterized by the following binding energies (a) hydride ion, 0.754 eV ("ordinary hydride ion”); (b) hydrogen atom ("ordinary hydrogen atom"), 13.6 eV; (c) diatomic hydrogen molecule, 15.3 eV ("ordinary hydrogen molecule”); (d) hydrogen molecular ion, 16.3 eV ("ordinary hydrogen molecular ion”); and (e) H 3 + , 22.6 eV ("ordinary trihydrogen molecular ion”).
  • binding energies (a) hydride ion, 0.754 eV (“ordinary hydride ion”); (b) hydrogen atom ("ordinary hydrogen atom"), 13.6 eV; (c) diatomic hydrogen molecule, 15.3 eV (“ordinary hydrogen molecule”); (d) hydrogen molecular ion, 16.3 eV (“ordinary hydrogen molecular ion”); and (e) H 3 + , 22.6 eV (“ordinary trihydrogen molecular
  • a compound comprising at least one increased binding energy hydrogen species such as (a) a
  • Binding Energy , preferably m. 1 + Js(s + 1)
  • P an integer, preferably and integer from 2 to 137; (f) a dihydrino molecular ion with a
  • a compound comprising at least one increased binding energy hydrogen species such as (a) a dihydrino molecular ion having a total energy of
  • the compound comprises a negatively charged increased binding energy hydrogen species
  • the compound further comprises one or more cations, such as a proton, ordinary H + , or ordinary H 3 + .
  • a method for preparing compounds comprising at least one increased binding energy hydride ion is provided. Such compounds are hereinafter referred to as "hydrino hydride compounds". The method comprises reacting atomic hydrogen
  • binding energy hydrogen atom having a binding energy of about where p is an integer, preferably an integer from 2 to 137.
  • a further product of the catalysis is energy.
  • the increased binding energy hydrogen atom can be reacted with an electron source, to produce an increased binding energy hydride ion.
  • the increased binding energy hydride ion can be reacted with one or more cations to produce a compound comprising at least one increased binding energy hydride ion.
  • novel hydrogen species and compositions of matter comprising new forms of hydrogen formed by the catalysis of atomic hydrogen are disclosed in "Mills Prior Publications”.
  • novel hydrogen compositions of matter comprise:
  • the compounds of the invention are hereinafter referred to as "increased binding energy hydrogen compounds".
  • other element in this context is meant an element other than an increased binding energy hydrogen species.
  • the other element can be an ordinary hydrogen species, or any element other than hydrogen.
  • the other element and the increased binding energy hydrogen species are neutral.
  • the other element and increased binding energy hydrogen species are charged such that the other element provides the balancing charge to form a neutral compound.
  • the former group of compounds is characterized by molecular and coordinate bonding; the latter group is characterized by ionic bonding.
  • novel compounds and molecular ions comprising (a) at least one neutral, positive, or negative hydrogen species (hereinafter “increased binding energy hydrogen species”) having a total energy
  • the total energy of the hydrogen species is the sum of the energies to remove all of the electrons from the hydrogen species.
  • the hydrogen species according to the present invention has a total energy greater than the total energy of the corresponding ordinary hydrogen species.
  • the hydrogen species having an increased total energy according to the present invention is also referred to as an "increased binding energy hydrogen species" even though some embodiments of the hydrogen species having an increased total energy may have a first electron binding energy less that the first electron binding energy of the corresponding ordinary hydrogen species.
  • novel compounds and molecular ions comprising
  • the compounds of the invention are hereinafter referred to as "increased binding energy hydrogen compounds".
  • the increased binding energy hydrogen species can be formed by reacting one or more hydrino atoms with one or more of an electron, hydrino atom, a compound containing at least one of said increased binding energy hydrogen species, and at least one other atom, molecule, or ion other than an increased binding energy hydrogen species.
  • novel compounds and molecular ions comprising
  • a new chemically generated or assisted plasma source based on a resonant energy transfer mechanism (rt-plasma) between atomic hydrogen and certain catalysts has been developed that may be a new power source.
  • the products are more stable hydride and molecular hydrogen species such as // " (1 / 4) and H 2 (1 /4) .
  • One such source operates by incandescently heating a hydrogen dissociator and a catalyst to provide atomic hydrogen and gaseous catalyst, respectively, such that the catalyst reacts with the atomic hydrogen to produce a plasma. It was extraordinary that intense extreme ultraviolet (EUV) emission was observed by Mills et al. [3-10] at low temperatures (e.g.
  • EUV extreme ultraviolet
  • the supporting data include EUV spectroscopy [3-10, 13, 17-22, 25, 27-28], characteristic emission from catalysts and the hydride ion products [3, 5, 7, 21-22, 27-28], lower-energy hydrogen emission [12-13, 18-20], chemically formed plasmas [3-10, 21-22, 27-28], extraordinary (>100 eV) Balmer a line broadening [3-5, 7, 9- 10, 12, 18-19, 21 , 23-28], population inversion of ⁇ lines [3, 21 , 27-29], elevated electron temperature [19, 23-25], anomalous plasma afterglow duration [3, 8], power generation [3, 9, 11-13], and analysis of novel chemical compounds [3, 14-16].
  • atomic hydrogen may undergo a catalytic reaction with certain atoms, excimers, and ions which provide a reaction with a net enthalpy of an integer multiple of the potential energy of atomic hydrogen, m ⁇ 27.2 eV wherein m is an integer.
  • the reaction involves a nonradiative energy transfer to form a hydrogen atom called a hydrino atom that is lower in energy than unreacted atomic hydrogen that corresponds to a fractional principal quantum number. That is
  • n -,-,—,...,— ; p is an integer (21 )
  • a catalyst provides a net positive enthalpy of reaction of m ⁇ 27.2 eV (i.e. it resonantly accepts the nonradiative energy transfer from hydrogen atoms and releases the energy to the surroundings to affect electronic transitions to fractional quantum energy levels).
  • the hydrogen atom becomes unstable and emits further energy until it achieves a lower-energy nonradiative state having a principal energy level given by Eqs. (19) and (21).
  • Processes such as hydrogen molecular bond formation that occur without photons and that require collisions are common [31].
  • Ar ⁇ may serve as a catalyst since its ionization energy is about 27.2 eV .
  • the catalyst reaction of Ar + to Ar 2+ forms H(112) which may further serve as both a catalyst and a reactant to form H(I /4) [19-20, 30].
  • H(I /4) is predicted to be flow dependent since the formation of H 2 (1 /4) requires the buildup of intermediates.
  • He + also fulfills the catalyst criterion — a chemical or physical process with an enthalpy change equal to an integer multiple of 27.2 eV since it ionizes at 54.417 eV which is 2 ⁇ 27.2 eV .
  • the product of the catalysis reaction of He * , H( ⁇ 13) may further serve as a catalyst to form H(l / 4) and H(l / 2) [19-20, 30] which can lead to transitions to other states H(I / p) .
  • Novel emission lines with energies of ⁇ • 13.6 eV where q 1,2,3,4,6,7,8,9, or 11 were previously observed by extreme ultraviolet (EUV) spectroscopy recorded on microwave discharges of helium with 2% hydrogen [18-20]. These lines matched H(I / p) , fractional Rydberg states of atomic hydrogen given by Eqs. (19) and (21).
  • H 2 (I /4) was further characterized by studies on the vibration-rotational emission from electron-beam maintained argon- hydrogen plasmas and from Fourier-transform infrared (FTIR) spectroscopy of solid samples containing H " ( ⁇ IA) with interstitial H 2 (1 / 4) . Water bath calorimetry was used to determine that measurable power was developed in rt-plasmas due to the reaction to form states given by Eqs. (19) and (21 ). Specifically, He/ H 2 (10%) (500 mTorr), Ar / H 2 (10%) (500 mTorr), and
  • VUV vacuum ultraviolet
  • earlier studies with these same rt-plasmas demonstrated that other unusual features were present including dramatic broadening of the hydrogen Balmer series lines [3-5, 7, 9- 10, 12, 18-19, 21 , 23-28], and in the case of water plasmas, population inversion of the hydrogen excited states [3, 21 , 27-29]. Both the current results and the earlier results are completely consistent with the existence of a hitherto unknown predicted exothermic chemical reaction occurring in rt-plasmas.
  • Characteristic emission was observed from a continuum state of Ar 2+ at 45.6 nm without the typical Rydberg series of Ar I and Ar Il lines which confirmed the resonant nonradiative energy transfer of 27.2 eV from atomic hydrogen to Ar + [5, 7, 22].
  • Predicted Sr 3+ emission lines were also observed from strontium-hydrogen plasmas [5, 7] that supported the rt-plasma mechanism.
  • Time-dependent line broadening of the H Balmer a line was observed corresponding to extraordinarily fast H (25 eV).
  • An excess power of 20 mW ⁇ cm ⁇ was measured calorimetrically on rt-plasmas formed when Ar + was added to Sr + as an additional catalyst.
  • hydrogen-sodium, hydrogen-magnesium, and hydrogen-barium mixtures required 4000, 7000, and 6500 times the power of the hydrogen-strontium mixture, respectively, and the addition of argon increased these ratios by a factor of about two.
  • a low- voltage EUV and visible light source is feasible [10].
  • the energy transfer of m • 27.2 eV from the hydrogen atom to the catalyst causes the central-field interaction of the H atom to increase by m and its electron to drop m levels lower from the radius of the hydrogen atom, a H , to a
  • K to ⁇ 3+ provides a reaction with a net enthalpy l + m equal to three times the potential energy of atomic hydrogen, 3 • 27.2 eV , it may serve as a catalyst such that each ordinary hydrogen atom undergoing catalysis releases a net of 204 eV [3]. K may then react with the product H(I / 4) to form a
  • the catalyst product, H( ⁇ l p) may also react with an electron to form a novel
  • the calculated p ⁇ ' 2 ionization energy of the hydride ion is 0.75418 eV
  • the experimental value given by Lykke [38] is 6082.99 + 0.15 cm ⁇ l (0.75418 eV).
  • Substantial evidence of an energetic catalytic reaction was previously reported [3] involving a resonant energy transfer between hydrogen atoms and K to form very stable novel hydride ions H " (l / p) called hydrino hydrides having a
  • the X-ray photoelectron spectrum (XPS) of the hydrino hydride KH * I was performed to determine if the predicted // " (1 /4) binding energy given by Eq. (28) was observed, and FTIR analysis of these crystals with H ' (1 / 4) was performed before and after storage in argon for 90 days to search for interstitial H 2 (1 / 4) having a predicted rotational energy given by Eq. (24).
  • the identification of single rotational peaks at this energy with ortho-para splitting due to free rotation of a very small hydrogen molecule would represent definite proof of its existence since there is no other possible assignment [39].
  • H 2 (l / 4) The rotational energy of H 2 (l / 4) was confirmed by this technique as well. Consistent results from the broad spectrum of investigational techniques provide definitive evidence that hydrogen can exist in lower-energy states then previously thought possible in the form of H ⁇ (l / 4) and H 2 (1 / 4) .
  • the products of the Li catalyst reaction and NaH catalyst reaction are both // " (1 /4) and H 2 (1 /4) and additionally H " (1 / 3) and H 2 (1 / 3) for NaH.
  • the present invention provides for their identification and the corresponding energetic exothermic reaction by EUV spectroscopy, characteristic emission from catalysts and the hydride ion products, lower-energy hydrogen emission, chemically formed plasmas, extraordinary Balmer a line broadening, population inversion of H lines, elevated electron temperature, anomalous plasma afterglow duration, power generation, and analysis of novel chemical compounds.
  • Preferred identification techniques for the species H ⁇ ( ⁇ l p) and H 2 (I / /?) are NMR of H ⁇ (l /p) and
  • H 2 (l ip) FTIR of H 2 (I / P ) trapped in a crystal
  • XPS of H ' [M p)
  • ToF-SIMs of H " (l / p) electron-beam excitation emission spectroscopy of H 2 (1 / p)
  • electron beam emission spectroscopy of H 2 (I I p) trapped in a crystalline lattice and TOF- SIMS identification of novel compounds comprising H " (l / p) .
  • Preferred characterization techniques for the energetic catalysis reaction and the power balance are line broadening, plasma formation, and calorimetry.
  • H ⁇ ( ⁇ l p) and H 2 (I Zp) are // " (1 /4) and H 2 (1 / 4) , respectively.
  • FIGURE 1 A is a schematic drawing of an energy reactor and power plant in accordance with the present invention.
  • FIGURE 2A is a schematic drawing of an energy reactor and power plant for recycling or regenerating the fuel in accordance with the present invention.
  • FIGURE 3A is a schematic drawing of a power reactor in accordance with the present invention.
  • FIGURE 4A is a schematic drawing of a discharge power and plasma cell and reactor in accordance with the present invention.
  • Figure 1 is the experimental set up comprising a filament gas cell to form lithium- argon-hydrogen and lithium-hydrogen rt-plasmas.
  • Figure 2 is a schematic of the reaction cell and the cross sectional view of the water flow calorimeter used to measure the energy balance of the NaH catalyst reaction to form hydrinos.
  • the components were: 1 — inlet and outlet thermistors; 2 — high-temperature valve; 3 — ceramic fiber heater; 4 — copper water-coolant coil; 5 — reactor; 6 — insulation; 7 — cell thermocouple, and 8 — water flow chamber.
  • Figure 3 is a schematic of the water flow calorimeter used to measure the energy balance of the NaH catalyst reaction to form hydrinos.
  • Figure 4 is a schematic of the stainless steel gas cell to synthesize LiH * Br ,
  • LiH */ , NaH * Cl and NaH * Br comprising the reaction mixture (i) R-Ni, Li , LiNH 2 , and LiBr or LU or (ii) Pt/Ti dissociator, Na , NaH , and NaCl or NaBr as the reactants.
  • the components were: 101 — stainless steel cell; 117 — internal cavity of cell; 118 — high vacuum conflat flange; 119 — mating blank conflat flange; 102 — stainless steel tube vacuum line and gas supply line; 103 — lid to the kiln or top insulation, 104 — surrounding heaters coverer by high temperature insulation; 108 — Pt/Ti dissociator; 109 — reactants; 110 — high vacuum turbo pump; 112 — pressure gauge; 111 — vacuum pump valve; 113 — valve; 114 — valve; 115 — regulator, and 116 — hydrogen tank.
  • Figure 5 shows the 656.3 nm Balmer a line width recorded with a high-resolution visible spectrometer on (A) the initial emission of a lithium-argon-hydrogen rt-plasma and (B) the emission at 70 hours of operation. Lithium lines and significant broadening of only the H lines was observed over time corresponding to an average hydrogen atom temperature of >40 eV and fractional population over 90%.
  • Figure 6 shows the 656.3 nm Balmer a line width recorded with a high-resolution
  • Figure 7 shows the results of the DSC (100-750 0 C) of NaH at a scan rate of 0.1 degree/minute.
  • a broad endothermic peak was observed at 350 0 C to 420 0 C which corresponds to 47 U I mole and matches sodium hydride decomposition in this temperature range with a corresponding enthalpy of 57 kJ I mole .
  • a large exotherm was observed under conditions that form NaH catalyst in the region 640°C to 825 0 C which corresponds to at least -354 kJ I moleH 2 , greater than that of the most exothermic reaction possible for H , the -241.8 kJ I mole H 2 enthalpy of combustion of hydrogen.
  • Figure 8 shows the results of the DSC (100-750 0 C) of MgH 2 at a scan rate of 0.1 degree/minute. Two sharp endothermic peaks were observed. A first peak centered at 351.75 0 C corresponding to 68.61 kJ I mole MgH 2 matches the 74.4 kJ I mole MgH 2 decomposition energy. The second peak at 647.66 0 C corresponding to 6.65 U I mole MgH 2 matches the known melting point of Mg(m) is 650 0 C and enthalpy of fusion of 8.48 Ul mole Mg(m) . Thus, the expected behavior was observed for the decomposition of a control, noncatalyst hydride.
  • Figure 9 shows the temperature versus time for the calibration run with an evacuated test cell and resistive heating only.
  • Figure 10 shows the power versus time for the calibration run with an evacuated test cell and resistive heating only.
  • the numerical integration of the input and output power curves yielded an output energy of 292.2 kJ and an input energy of 303.1 kJ corresponding to a coupling of flow of 96.4% of the resistive input to the output coolant.
  • Figure 11 shows the cell temperature with time for the hydrino reaction with the cell containing the reagents comprising the catalyst material, 1g Li , 0.5g LiNH 2 , 10g LiBr , and 15g PdZAl 2 O 3 .
  • the reaction liberated 19.1 kJ of energy in less than 120 s to develop a system-response-corrected peak power in excess of 160 W.
  • Figure 12 shows the coolant power with time for the hydrino reaction with the cell containing the reagents comprising the catalyst material, 1g Li , 0.5g LiNH 2 , 10g LiBr, and 15g PdIAl 2 O 3 .
  • the numerical integration of the input and output power curves with the calibration correction applied yielded an output energy of 227.2 kJ and an input energy of 208.1 kJ corresponding to an excess energy of 19.1 kJ.
  • Figure 13 shows the cell temperature with time for the R-Ni control power test with the cell containing the reagents comprising the starting material for R-Ni, 15g R- Ni/AI alloy powder, and 3.28g of Na.
  • Figure 14 shows the coolant power with time for the control power test with the cell containing the reagents comprising the starting material for R-Ni, 15g R-Ni/AI alloy powder, and 3.28g of Na.
  • Energy balance was obtained with the calibration- corrected numerical integration of the input and output power curves yielding an output energy of 384 kJ and an input energy of 385 kJ.
  • Figure 15 shows the cell temperature with time for the hydrino reaction with the cell containing the reagents comprising the catalyst material, 15g NaOH -doped R-Ni 2800, and 3.28g of Na.
  • the reaction liberated 36 kJ of energy in less than 90 s to develop a system-response-corrected peak power in excess of 0.5 kW.
  • Figure 16 shows the coolant power with time for the hydrino reaction with the cell containing the reagents comprising the catalyst material, 15g NaOH -doped R-Ni 2800, and 3.28g of Na.
  • FIG. 17 shows the cell temperature with time for the hydrino reaction with the cell containing the reagents comprising the catalyst material, 15g NaOH -doped R-Ni 2400. The cell temperature jumped from 60 0 C to 205 0 C in 60 s wherein the reaction liberated 1 1.7 kJ of energy in less time to develop a system-response-corrected peak power in excess of 0.25 kW.
  • Figure 18 shows the coolant power with time for the hydrino reaction with the cell containing the reagents comprising the catalyst material, 15g NaOH -doped R-Ni 2400.
  • the numerical integration of the input and output power curves with the calibration correction applied yielded an output energy of 195.7 kJ and an input energy of 184.0 kJ corresponding to an excess energy of 1 1.7 kJ.
  • Figure 19 shows the positive ToF-SIMS spectrum ( m / e - 0 - 100 ) of LiBr .
  • the dominant ion on the surface was Na + consistent with NaOH doping of the surface.
  • the ions of the other major elements of R-Ni 2400 such as Al + , Nr , Cr + , and Fe + were also observed.
  • Figures 30A-B show 1 H MAS ⁇ MR spectra relative to external TMS.
  • Figures 31 A-B show 1 H MAS ⁇ MR spectra relative to external TMS.
  • KH* Cl showing a very sharp -4.46 ppm upfield-shifted peak corresponding to an environment that is essentially that of a free ion.
  • KH * I showing a broad -2.31 ppm upfield-shifted peak similar to the case of LiH * Br and LiH * I . Both spectra also had a 1.13 ppm peak assigned to H 2 (l / 4) .
  • Figures 32A-B show 1 H MAS ⁇ MR spectra relative to external TMS showing an ⁇ -content selectivity of ZiH * X for molecular species alone based on the nonpolarizability of the halide and the corresponding nonreactivity towards H ⁇ (l /4) .
  • LiH * F comprising a nonpolarizable fluorine showing peaks at 4.31 ppm assigned to H 2 and 1.16 ppm assigned to H 2 (1 / 4) and the absence of the
  • Figure 33 shows the 1 H MAS ⁇ MR spectra of NaH * Br relative to external TMS showing a -3.58 ppm upfield-shifted peak, a peak at 1.13 ppm, and a peak at 4.3 ppm assigned to H " (l / 4) , H 2 (l / 4) , and H 2 , respectively.
  • Figures 34A-B show the NaH * Cl 1 H MAS ⁇ MR spectra relative to external TMS showing the effect of hydrogen addition on the relative intensities of H 2 ,
  • E b 0 eVto 1200 eV ).
  • A LiBr .
  • B
  • LiH * Br Figure 37 shows the 0-85 eV binding energy region of a high resolution XPS spectrum of LiH * Br and the control LiBr (dashed).
  • the XPS spectrum of LiH * Br differs from that of LiBr by having additional peaks at 9.5 eV and 12.3 eV that could not be assigned to known elements and do not correspond to any other primary element peak. The peaks match // " (1 / 4) in two different chemical environments.
  • Figure 39 shows the 0-40 eV binding energy region of a high resolution XPS spectrum of NaH * Br and the control NaBr (dashed).
  • the XPS spectrum of NaH * Br differs from that of NaBr by having additional peaks at 9.5 eV and 12.3 eV that could not be assigned to known elements and do not correspond to any other primary element peak. The peaks match /T (1 /4) in two different chemical environments.
  • E b 0 eVto 1200 eV.
  • A Pt /Ti .
  • B NaH * -coated Pt ITi following the production of 15 kJ of excess heat.
  • the XPS spectrum of NaH * -coated Pt I Ti differs from that of Pt I Ti by having additional peaks at 6 eV, 10.8 eV, and 12.8 eV that could not be assigned to known elements and do not correspond to any other primary element peak.
  • the 10.8 eV, and 12.8 eV peaks match // " (1/ 4) in two different chemical environments, and the 6 eV peak matched and was assigned to H ⁇ ( ⁇ 13) .
  • the 10.8 eV, and 12.8 eV peaks match H " (1 / 4) in two different chemical environments, and the 6 eV peak matched and was assigned to H ⁇ (l / 3) .
  • both fractional hydrogen states, 1/3 and 1/4, were present as predicted by Eq. (27) matching the results of NaH * -coated Pt I Ti shown in Figure 42B.
  • Figures 45A-B show high resolution (0.5 cm ⁇ x ) FTIR spectra (490-4000 cm '1 ).
  • the amide peaks at 3314, 3259, 2079(broad), 1567, and 1541 cm “1 and the imide peaks at 3172 (broad), 1953, and 1578 cnf ] were eliminated; thus, they were not the source of the -2.5 ppm NMR peak that remained.
  • the -2.5 ppm peak in 1 H NMR spectrum was assigned to the H ⁇ (l /4) ion.
  • the 1989 cm '1 FTIR peak could not be assigned to any know compound, but matched the predicted frequency of para H 2 (l / 4) .
  • Figure 46 shows the 150-350 nm spectrum of electron-beam excited CsCl crystals having trapped H 2 (I/ 4) . A series of evenly spaced lines was observed in the 220-300 nm region that matched the spacing and intensity profile of the P branch of H 2 (I /4) .
  • Figure 47 shows the 100-550 nm spectrum of an electron-beam excited silicon wafer coated with NaH * Cl having trapped H 2 (I /4) . A series of evenly spaced lines was observed in the 220-300 nm region that matched the spacing and intensity profile of the P branch of H 2 (I /4)
  • a hydrogen catalyst reactor 50 for producing energy and lower-energy hydrogen species is shown in FIGURE 1A and comprises a vessel 52 which contains an energy reaction mixture 54, a heat exchanger 60, and a power converter such as a steam generator 62 and turbine 70.
  • the catalysis involves reacting atomic hydrogen from the source 56 with the catalyst 58 to form lower-energy hydrogen "hydrinos" and produce power.
  • the heat exchanger 60 absorbs heat released by the catalysis reaction, when the reaction mixture, comprised of hydrogen and a catalyst, reacts to form lower-energy hydrogen.
  • the heat exchanger exchanges heat with the steam generator 62 which absorbs heat from the exchanger 60 and produces steam.
  • the energy reactor 50 further comprises a turbine 70 which receives steam from the steam generator 62 and supplies mechanical power to a power generator 80 which converts the steam energy into electrical energy, which can be received by a load 90 to produce work or for dissipation.
  • the energy reaction mixture 54 comprises an energy releasing material 56 such as a solid fuel supplied through supply passage 42.
  • the reaction mixture may comprise a source of hydrogen isotope atoms or a source of molecular hydrogen isotope, and a source of catalyst 58 which resonantly remove approximately m • 27.2 eV to form lower-energy atomic hydrogen where m is an integer, preferably an integer less than 400 wherein the reaction to lower energy states of hydrogen occurs by contact of the hydrogen with the catalyst.
  • the catalyst may be in the molten, liquid, gaseous, or solid state. The catalysis releases energy in a form such as heat and forms at least one of lower-energy hydrogen isotope atoms, molecules, hydride ions, and lower-energy hydrogen compounds.
  • the power cell also comprises a lower-energy hydrogen chemical reactor.
  • the source of hydrogen can be hydrogen gas, dissociation of water including thermal dissociation, electrolysis of water, hydrogen from hydrides, or hydrogen from metal-hydrogen solutions.
  • molecular hydrogen of the energy releasing material 56 is dissociated into atomic hydrogen by a molecular hydrogen dissociating catalyst of the mixture 54.
  • Such dissociating catalysts may also absorb hydrogen, deuterium, or tritium atoms and/or molecules and include, for example, an element, compound, alloy, or mixture of noble metals such as palladium and platinum, refractory metals such as molybdenum and tungsten, transition metals such as nickel and titanium, inner transition metals such as niobium and zirconium, and other such materials listed in the Prior Mills Publications.
  • the dissociator has a high surface area such as a noble metal such as Pt, Pd, Ru, Ir, Re, or Rh, or Ni on AI 2 O 3 , SiO 2 , or combinations thereof.
  • a catalyst is provided by the ionization of t electrons from an atom or ion to a continuum energy level such that the sum of the ionization energies of the t electrons is approximately m - 27.2 eV where t and m are each an integer.
  • a catalyst may also be provided by the transfer of / electrons between participating ions.
  • the transfer of t electrons from one ion to another ion provides a net enthalpy of reaction whereby the sum of the / ionization energies of the electron- donating ion minus the ionization energies of t electrons of the electron-accepting ion equals approximately m • 27.2 eV where t and m are each an integer.
  • the catalyst comprises MH such as NaH having an atom M bound to hydrogen, and the enthalpy of m ⁇ 27.2 eV is provided by the sum of the M - H bond energy and the ionization energies of the / electrons.
  • a source of catalyst comprises a catalytic material 58 supplied through catalyst supply passage 41 , that typically provides a net
  • the catalysts include
  • the catalyst may comprise at least one species selected from the group of molecules of AI ⁇ , BiH, CIH, CoH, GeH, InH, NaH, RuH, SbH, SeH, SiH, SnH, C 2 , N 2 , O 2 , CO 2 , NO 2 , and NO 3 and atoms or ions of Li, Be, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Kr, Rb, Sr, Nb, Mo, Pd, Sn, Te, Cs, Ce, Pr, Sm, Gd, Dy, Pb, Pt, Kr, 2/T , He + , Na + , Rb * , Sr + , Fe 3+ , Mo 2+ , Mo 4+ , In 3+ , He , Ar + , Xe , Ar 2* and H + , and Ne + and H + .
  • the heat is removed by a heat exchanger having a heat exchange medium.
  • the heat exchanger may be a water wall and the medium may be water.
  • the heat may be transferred directly for space and process heating.
  • the heat exchanger medium such as water undergoes a phase change such as conversion to steam. This conversion may occur in a steam generator.
  • the steam may be used to generate electricity in a heat engine such as a steam turbine and a generator.
  • FIGURE 2A An embodiment of an hydrogen catalyst energy and lower-energy-hydrogen species-producing reactor 5, for recycling or regenerating the fuel in accordance with the Invention, is shown in FIGURE 2A and comprises a boiler 10 which contains a solid fuel reaction mixture 11 , a hydrogen source 12, steam pipes and steam generator 13, a power converter such as a turbine 14, a water condenser 16, a water-make-up source 17, a solid-fuel recycler 18, and a hydrogen-dihydrino gas separator 19.
  • the solid fuel comprising a source of catalyst and a source of hydrogen reacts to form hydrinos and lower-energy hydrogen products.
  • the spent fuel is reprocessed to re-supply the boiler 10 to maintain thermal power generation.
  • the heat generated in the boiler 10 forms steam in the pipes and steam generator 13 that is delivered to the turbine 14 that in turn generates electricity by powering a generator.
  • the water is condensed by the water condensor 16. Any water loss may be made up by the water source 17 to complete the cycle to maintain thermal to electric power conversion.
  • lower-energy hydrogen products such as hydrino hydride compounds and dihydrino gas may be removed, and unreacted hydrogen may be returned to the fuel recycler 18 or hydrogen source 12 to be added back to spent fuel to make-up recycled fuel.
  • the gas products and unreacted hydrogen may be separated by hydrogen-dihydrino gas separator 19. Any product hydrino hydride compounds may be separated and removed using solid-fuel recycler 18.
  • the processing may be performed in the boiler or externally to the boiler with the solid fuel returned.
  • the system may further comprise at least one of gas and mass transporters to move the reactants and products to achieve the spent fuel removal, regeneration, and re-supply.
  • Hydrogen make-up for that spent in the formation of hydrinos is added from the source 12 during fuel reprocessing and may involve recycled, unconsumed hydrogen.
  • the recycled fuel maintains the production of thermal power to drive the power plant to generate electricity.
  • the reaction mixture comprises species that can generate the reactants of atomic or molecular catalyst and atomic hydrogen that further react to form hydrinos, and the product species formed by the generation of catalyst and atomic hydrogen can be regenerated by at least the step of reacting the products with hydrogen.
  • the reactor comprises a moving bed reactor that may further comprise a fluidized-reactor section wherein the reactants are continuously supplied and side products are removed and regenerated and returned to the reactor.
  • the lower-energy hydrogen products such as hydrino hydride compounds or dihydrino molecules are collected as the reactants are regenerated.
  • the hydrino hydride ions may be formed into other compounds or converted into dihydrino molecules during the regeneration of the reactants.
  • the power system may further comprise a catalyst condensor means to maintain the catalyst vapor pressure by a temperature control means which controls the temperature of a surface at a lower value than that of the reaction cell.
  • the surface temperature is maintained at a desired value which provides the desired vapor pressure of the catalyst.
  • the catalyst condensor means is a tube grid in the cell.
  • the flow rate of the heat transfer medium may be controlled at a rate that maintains the condensor at the desired lower temperature than the main heat exchanger.
  • the working medium is water, and the flow rate is higher at the condensor than the water wall such that the condensor is the lower, desired temperature.
  • the separate streams of working media may be recombined to be transferred for space and process heating or for conversion to steam.
  • the present energy invention is further described in Mills Prior Publications which are incorporated herein by reference.
  • the cells of the present invention include those described previously and further comprise the catalysts, reaction mixtures, methods, and systems disclosed herein.
  • the electrolytic cell energy reactor, plasma electrolysis reactor, barrier electrode reactor, RF plasma reactor, pressurized gas energy reactor, gas discharge energy reactor, microwave cell energy reactor, and a combination of a glow discharge cell and a microwave and or RF plasma reactor of the present invention comprises: a source of hydrogen; one of a solid, molten, liquid, and gaseous source of catalyst; a vessel containing hydrogen and the catalyst wherein the reaction to form lower-energy hydrogen occurs by contact of the hydrogen with the catalyst or by reaction of MH catalyst; and a means for removing the lower-energy hydrogen product.
  • each cell type may be interfaced with any of the converters of thermal energy or plasma to mechanical or electrical power described in Mills Prior Publications as well as converters known to those skilled in the Art such as a heat engine, steam or gas turbine system, Sterling engine, or thermionic or thermoelectric converter.
  • Further plasma converters comprise the magnetic mirror magnetohydrodynamic power converter, plasmadynamic power converter, gyrotron, photon bunching microwave power converter, charge drift power, or photoelectric converter disclosed in Mills Prior Publications.
  • the cell comprises at least one cylinder of an internal combustion engine as given in Mills Prior Publications. Hydrogen Gas Cell and Solid Fuel Reactor
  • a reactor for producing hydrinos and power may take the form of a hydrogen gas cell.
  • a gas cell hydrogen reactor of the present invention is shown in FIGURE 3A.
  • Reactant hydrinos are provided by a catalytic reaction with catalyst. Catalysis may occur in the gas phase or in solid or liquid state.
  • the reactor of FIGURE 3A comprises a reaction vessel 207 having a chamber 200 capable of containing a vacuum or pressures greater than atmospheric.
  • a source of hydrogen 221 communicating with chamber 200 delivers hydrogen to the chamber through hydrogen supply passage 242.
  • a controller 222 is positioned to control the pressure and flow of hydrogen into the vessel through hydrogen supply passage 242.
  • a pressure sensor 223 monitors pressure in the vessel.
  • a vacuum pump 256 is used to evacuate the chamber through a vacuum line 257.
  • the catalysis occurs in the gas phase.
  • the catalyst may be made gaseous by maintaining the cell temperature at an elevated temperature that, in turn, determines the vapor pressure of the catalyst.
  • the atomic and/or molecular hydrogen reactant is also maintained at a desired pressure that may be in any pressure range.
  • the pressure is less than atmospheric, preferably in the range about 10 millitorr to about 100 Torr.
  • the pressure is determined by maintaining a mixture of source of catalyst such as a metal source and the corresponding hydride such as a metal hydride in the cell maintained at the desired operating temperature.
  • a source of catalyst 250 for generating hydrino atoms can be placed in a catalyst reservoir 295, and gaseous catalyst can be formed by heating.
  • the reaction vessel 207 has a catalyst supply passage 241 for the passage of gaseous catalyst from the catalyst reservoir 295 to the reaction chamber 200.
  • the catalyst may be placed in a chemically resistant open container, such as a boat, inside the reaction vessel.
  • the source of hydrogen can be hydrogen gas and the molecular hydrogen.
  • Hydrogen may be dissociated into atomic hydrogen by a molecular hydrogen dissociating catalyst.
  • dissociating catalysts or dissociators include, for example, Raney nickel (R-Ni), precious or noble metals, and a precious or noble metal on a support.
  • the precious or noble metal may be Pt, Pd, Ru, Ir, and Rh, and the support may be at least one of Ti, Nb, AI 2 O 3 , Si ⁇ 2 and combinations thereof.
  • Pt or Pd on carbon may comprise a hydrogen spillover catalyst, nickel fiber mat, Pd sheet, Ti sponge, Pt or Pd electroplated on Ti or Ni sponge or mat, TiH, Pt black, and Pd black, refractory metals such as molybdenum and tungsten, transition metals such as nickel and titanium, inner transition metals such as niobium and zirconium, and other such materials listed in the Prior Mills Publications.
  • hydrogen is dissociated on Pt or Pd.
  • the Pt or Pd may be coated on a support material such as titanium or AI 2 O 3 .
  • the dissociator is a refractory metal such as tungsten or molybdenum
  • the dissociating material may be maintained at elevated temperature by temperature control means 230, which may take the form of a heating coil as shown in cross section in FIGURE 3A.
  • the heating coil is powered by a power supply 225.
  • the dissociating material is maintained at the operating temperature of the cell.
  • the dissociator may further be operated at a temperature above the cell temperature to more effectively dissociate, and the elevated temperature may prevent the catalyst from condensing on the dissociator.
  • Hydrogen dissociator can also be provided by a hot filament such as 280 powered by supply 285.
  • the hydrogen dissociation occurs such that the dissociated hydrogen atoms contact gaseous catalyst to produce hydrino atoms.
  • the catalyst vapor pressure is maintained at the desired pressure by controlling the temperature of the catalyst reservoir 295 with a catalyst reservoir heater 298 powered by a power supply 272.
  • the catalyst vapor pressure is maintained at the desired value by controlling the temperature of the catalyst boat, by adjusting the boat's power supply.
  • the cell temperature can be controlled at the desired operating temperature by the heating coil 230 that is powered by power supply 225.
  • the cell (called a permeation cell) may further comprise an inner reaction chamber 200 and an outer hydrogen reservoir 290 such that hydrogen may be supplied to the cell by diffusion of hydrogen through the wall 291 separating the two chambers.
  • the temperature of the wall may be controlled with a heater to control the rate of diffusion.
  • the rate of diffusion may be further controlled by controlling the hydrogen pressure in the hydrogen reservoir.
  • the cell having permeation as the hydrogen source may be sealed.
  • the cell further comprises high temperature valves at each inlet or outlet such that the valve contacting the reaction gas mixture is maintained at the desired temperature.
  • the cell may further comprise a getter or trap 255 to selectively collect the lower-energy- hydrogen species and/or the increased-binding-energy hydrogen compounds and may further comprise a selective valve 206 for releasing dihydrino gas product.
  • the catalyst may be at least one of the group of atomic lithium, potassium, or cesium, NaH molecule and hydrino atoms wherein catalysis comprises a disproportionation reaction.
  • Lithium catalyst may be made gaseous by maintaining the cell temperature in the 500-1000 °C range.
  • the cell is maintained in the 500-750 0 C range.
  • the cell pressure may be maintained at less than atmospheric, preferably in the range about 10 millitorr to about 100 Torr.
  • at least one of the catalyst and hydrogen pressure is determined by maintaining a mixture of catalyst metal and the corresponding hydride such as lithium and lithium hydride, potassium and potassium hydride, sodium and sodium hydride, and cesium and cesium hydride in the cell maintained at the desired operating temperature.
  • the catalyst in the gas phase may comprise lithium atoms from the metal or a source of lithium metal.
  • the lithium catalyst is maintained at the pressure determined by a mixture of lithium metal and lithium hydride at the operating temperature range of 500-1000 0 C and most preferably, the pressure with the cell at the operating temperature range of 500-750 °C.
  • K, Cs, and Na replace Li wherein the catalyst is atomic K, atomic Cs, and molecular NaH.
  • gaseous Na, NaH catalyst, or the gaseous catalyst such as Li, K, and Cs vapor is maintained in a super-heated condition in the cell relative to the vapor in the reservoir or boat which is the source of the cell vapor.
  • the superheated vapor reduces the condensation of catalyst on the hydrogen dissociator or the dissociator of at least one of metal and metal hydride molecules disclosed infra.
  • the reservoir or boat is maintained at a temperature at which Li vaporizes.
  • H 2 may be maintained at a pressure that is lower than that which forms a significant mole fraction of LiH at the reservoir temperature.
  • the pressures and temperatures that achieve this condition can be determined from the data plots of Mueller et al. such as Figure 6.1 [40] of H 2 pressure versus LiH mole fraction at given isotherms.
  • the cell reaction chamber containing a dissociator is operated at a higher temperature such that the Li does not condense on the walls or the dissociator.
  • the H 2 may flow from the reservoir to the cell to increase the catalyst transport rate. Flow such as from the catalyst reservoir to the cell and then out of the cell is a means to remove hydrino product to prevent hydrino product inhibition of the reaction.
  • K, Cs, and Na replace Li wherein the catalyst is atomic K, atomic Cs, and molecular NaH.
  • Hydrogen is supplied to the reaction from a source of hydrogen.
  • the hydrogen is supplied by permeation from a hydrogen reservoir.
  • the pressure of the hydrogen reservoir may be in the range of 10 Torr to 10,000 Torr, preferably 100 Torr to 1000 Torr, and most preferably about atmospheric pressure.
  • the cell may be operated in the temperature of about 100 0 C to 3000 °C, preferably in the temperature of about 100 0 C to 1500 0 C, and most preferably in the temperature of about 500 0 C to 800 0 C.
  • the source of hydrogen may be from decomposition of an added hydride.
  • a cell design that supplies H 2 by permeation is one comprising an internal metal hydride placed in a sealed vessel wherein atomic H permeates out at high temperature.
  • the vessel may comprise Pd, Ni, Ti, or Nb.
  • the hydride is placed in a sealed tube such as a Nb tube containing a hydride and sealed at both ends with seals such as Swagelocks.
  • the hydride could be an alkaline or alkaline earth hydride.
  • the hydride could be at least one of the group of saline hydrides, titanium hydride, vanadium, niobium, and tantalum hydrides, zirconium and hafnium hydrides, rare earth hydrides, yttrium and scandium hydrides, transition element hydrides, intermetalic hydrides, and their alloys given by W. M. Mueller et al. [40].
  • the hydride and operating temperature ⁇ 200 °C, based on each hydride decomposition temperature is at least one of the list of: a rare earth hydride with an operating temperature of about 800 0 C; lanthanum hydride with an operating temperature of about 700 °C; gadolinium hydride with an operating temperature of about 750 0 C; neodymium hydride with an operating temperature of about 750 0 C; yttrium hydride with an operating temperature of about 800 0 C; scandium hydride with an operating temperature of about 800 0 C; ytterbium hydride with an operating temperature of about 850-900 0 C; titanium hydride with an operating temperature of about 450 0 C; cerium hydride with an operating temperature of about 950 0 C; praseodymium hydride with an operating temperature of about 700 0 C; zirconium-titanium (50%/50%) hydride with an operating temperature of about 600 0 C; an alkal
  • Metals in the gas state comprise diatomic covalent molecules.
  • An objective of the present Invention is to provide atomic catalyst such as Li as well as K and Cs.
  • the reactor may further comprise a dissociator of at least one of metal molecules ("MM") and metal hydride molecules ("MH").
  • MM metal molecules
  • MH metal hydride molecules
  • the source of catalyst, the source of H 2 , and the dissociator of MM, MH, and HH, wherein M is the atomic catalyst are matched to operate at the desired cell conditions of temperature and reactant concentrations for example.
  • a hydride source of H 2 in an embodiment, its decomposition temperature is in the range of the temperature that produces the desired vapor pressure of the catalyst.
  • a dissociator comprises a means to generate catalyst and H from sources.
  • catalysts such as Pt on Ti or Pd, iridium, or rhodium alone or on a substrate such as Ti may also serve the role as a dissociator of molecules of combinations of catalyst and hydrogen atoms.
  • the dissociator has a high surface area such as Pt/AI 2 O 3 or Pd/AI 2 O 3 .
  • the H 2 source can also be H 2 gas.
  • the pressure can be monitored and controlled.
  • catalyst and catalyst sources such as K or Cs metal and LiNH 2 , respectively, since they are volatile at low temperature which is permissive of using a high-temperature valve.
  • LiNH 2 also lowers the necessary operating temperature of the Li cell and is less corrosive which is permissive of long-duration operation using a feed through in the case of plasma and filament cells wherein a filament serves as a hydrogen dissociator.
  • gas cell hydrogen reactor having NaH as the catalyst comprise a filament with a dissociator in the reactor cell and Na in the reservoir.
  • H 2 may be flowed through the reservoir to main chamber.
  • the power may be controlled by controlling the gas flow rate, H 2 pressure, and Na vapor pressure. The latter may be controlled by controlling the reservoir temperature.
  • the hydrino reaction is initiated by heating with the external heater and an atomic H is provided by a dissociator.
  • the invention is also directed to other reactors for producing increased binding energy hydrogen compounds of the invention, such as dihydrino molecules and hydrino hydride compounds.
  • a further products of the catalysis is plasma, light, and power.
  • Such a reactor is hereinafter referred to as a "hydrogen reactor” or "hydrogen cell”.
  • the hydrogen reactor comprises a cell for making hydrinos.
  • the cell for making hydrinos may take the form of a gas cell, a gas discharge cell, a plasma torch cell, or microwave power cell, for example.
  • Each of these cells comprises: a source of atomic hydrogen; at least one of a solid, molten, liquid, or gaseous catalyst for making hydrinos; and a vessel for reacting hydrogen and the catalyst for making hydrinos.
  • a source of atomic hydrogen includes not only proteum ( 1 H), but also deuterium ( 2 H) and tritium ( 3 H).
  • FIGURE 4A A hydrogen gas discharge power and plasma cell and reactor of the present invention is shown in FIGURE 4A.
  • the hydrogen gas discharge power and plasma cell and reactor of FIGURE 4A includes a gas discharge cell 307 comprising a hydrogen gas-Filled glow discharge vacuum vessel 315 having a chamber 300.
  • a hydrogen source 322 supplies hydrogen to the chamber 300 through control valve 325 via a hydrogen supply passage 342.
  • a catalyst is contained in the cell chamber 300.
  • a voltage and current source 330 causes current to pass between a cathode 305 and an anode 320. The current may be reversible.
  • the material of cathode 305 may be a source of catalyst such as Fe, Dy, Be, or Pd.
  • the wall of vessel 313 is conducting and serves as the cathode which replaces electrode 305, and the anode 320 may be hollow such as a stainless steel hollow anode.
  • the discharge may vaporize the catalyst source to catalyst.
  • Molecular hydrogen may be dissociated by the discharge to form hydrogen atoms for generation of hydrinos and energy. Additional dissociation may be provided by a hydrogen dissociator in the chamber.
  • the gas discharge power and plasma cell and reactor where catalysis occurs in the gas phase utilizes a controllable gaseous catalyst.
  • the gaseous hydrogen atoms for conversion to hydrinos are provided by a discharge of molecular hydrogen gas.
  • the gas discharge cell 307 has a catalyst supply passage 341 for the passage of the gaseous catalyst 350 from catalyst reservoir 395 to the reaction chamber 300.
  • the catalyst reservoir 395 is heated by a catalyst reservoir heater 392 having a power supply 372 to provide the gaseous catalyst to the reaction chamber 300.
  • the catalyst vapor pressure is controlled by controlling the temperature of the catalyst reservoir 395, by adjusting the heater 392 by means of its power supply 372.
  • the reactor further comprises a selective venting valve 301.
  • a chemically resistant open container such as a stainless steel, tungsten or ceramic boat, positioned inside the gas discharge cell may contain the catalyst.
  • the catalyst in the catalyst boat may be heated with a boat heater using an associated power supply to provide the gaseous catalyst to the reaction chamber.
  • the glow gas discharge cell is operated at an elevated temperature such that the catalyst in the boat is sublimed, boiled, or volatilized into the gas phase.
  • the catalyst vapor pressure is controlled by controlling the temperature of the boat or the discharge cell by adjusting the heater with its power supply. To prevent the catalyst from condensing in the cell, the temperature is maintained above the temperature of the catalyst source, catalyst reservoir 395 or catalyst boat.
  • the catalysis occurs in the gas phase
  • lithium is the catalyst
  • a source of atomic lithium such as lithium metal or a lithium compound such as LJNH2 is made gaseous by maintaining the cell temperature in the range of about 300-1000 °C.
  • the cell is maintained in the range of about 500-750 0 C.
  • the atomic and/or molecular hydrogen reactant may be maintained at a pressure less than atmospheric, preferably in the range of about 10 millitorr to about 100 Torr. Most preferably, the pressure is determined by maintaining a mixture of lithium metal and lithium hydride in the cell maintained at the desired operating temperature.
  • the operating temperature range is preferably in the range of about 300-1000 °C and most preferably, the pressure is that achieved with the cell at the operating temperature range of about 300-750 0 C.
  • the cell can be controlled at the desired operating temperature by the heating coil such as 380 of FIGURE 4A that is powered by power supply 385.
  • the cell may further comprise an inner reaction chamber 300 and an outer hydrogen reservoir 390 such that hydrogen may be supplied to the cell by diffusion of hydrogen through the wall 313 separating the two chambers.
  • the temperature of the wall may be controlled with a heater to control the rate of diffusion.
  • the rate of diffusion may be further controlled by controlling the hydrogen pressure in the hydrogen reservoir.
  • An embodiment of the plasma cell of the present invention regenerates the reactants such as Li and LiNH 2 .
  • the reaction given by Eqs. (32) and (37) occurs to generate the hydrino reactants Li and H with a large excess of energy released due to hydrino production.
  • the products are then hydrogenated by a hydrogen source.
  • one reaction to regenerate the lower-energy-hydrogen-catalysis reactants is given by Eq. (66). This may be achieved with the reactants placed in a reactive region in the plasma cell such as at the cathode region in a hydrogen plasma cell.
  • the reaction may be
  • Li 2 NH + H- to Li + LiNH 2 (31) may occur to some extent to maintain a steady-state level of Li + LiNH 2 .
  • the H 2 pressure, electron density, and energy may be controlled to achieve the maximum or desired extent of the reaction to regenerate hydrino reactants Li + LiNH 2 .
  • the mixture is stirred or mixed during the plasma reaction.
  • the cell comprises a heated flat-bottom stainless steel plasma chamber.
  • LiH and Li 2 NH comprise a mixture in molten Li. Since stainless steel is not magnetic, the liquid mixture may be stirred with a stainless-steel-coated stirring bar driven by a stirring motor upon which the flat-bottom plasma reactor sits.
  • the Li- metal mixture may serve as a cathode. The reduction of LiH to Li and H " and the further reaction of H " + Li 2 NH to Li and LiNH 2 can be monitored by XRD and FTIR of the product.
  • At least one of the reactants is regenerated by adding one or more of the reagents and by a plasma regeneration.
  • the plasma may be one of the gases such as NH3 and H 2 .
  • the plasma may be maintained in situ (in the reaction cell) or in an external cell in communication with the reaction cell.
  • K, Cs, and Na replace Li wherein the catalyst is atomic K, atomic Cs, and molecular NaH.
  • the cell having permeation as the hydrogen source may be sealed.
  • the cell further comprises high temperature valves at each inlet or outlet such that the valve contacting the reaction gas mixture is maintained at the desired temperature.
  • the plasma cell temperature can be controlled independently over a broad range by insulating the cell and by applying supplemental heater power with heater 380.
  • the catalyst vapor pressure can be controlled independently of the plasma power.
  • the discharge voltage may be in the range of about 100 to 10,000 volts.
  • the current may be in any desired range at the desired voltage.
  • the plasma may be pulsed as disclosed in Mills Prior Publications such as PCT/US04/10608 entitled “Pulsed Plasma Power Cell and Novel Spectral Lines” which is herein incorporated by reference in its entirety.
  • Boron nitride may comprise the feed-throughs of the plasma cell since this material is stable to Li vapor.
  • Crystalline or transparent alumina are other stable feed-through materials of the present invention.
  • Metals in the gas state comprise diatomic covalent molecules.
  • An objective of the present Invention is to provide atomic catalyst such as Li as well as K and Cs and molecular catalyst NaH.
  • the reactants comprise alloys, complexes, or sources of complexes that reversibly form with a metal catalyst M and decompose or react to provide gaseous catalyst such as Li.
  • at least one of the catalyst source and atomic hydrogen source further comprises at least one reactant which reacts to form at least one of the catalyst and atomic hydrogen.
  • the source or sources comprise at least one of amides such as LiNhb, imides such as U 2 NH, nitrides such as LJ 3 N, and catalyst metal with NH3.
  • the present invention comprises an energy reactor comprising a reaction vessel constructed and arranged to contain pressures lower, equal to, and higher than atmospheric pressure, a source of atomic hydrogen for chemically producing atomic hydrogen in communication with the vessel, a source of catalyst comprising at least one of atomic lithium, atomic cesium, atomic potassium, and molecular NaH in communication with the vessel, and may further comprise a getter such as source of an ionic compound for binding or reacting with a lower-energy hydride.
  • the source of catalyst and reactant atomic hydrogen may comprise a solid fuel that may be continuously or batch-wise regenerated inside or outside of the cell wherein a physical process or chemical reaction generates the catalyst and H from a source such that H catalysis occurs and hydrinos are formed.
  • hydrino reactants comprise solid fuels, and preferable embodiments comprise those solid fuels that can be regenerated. Solid fuels can used in many applications ranging from space and process heating, electricity generation, motive applications, propellants, and others applicants well known to those skilled in the Art.
  • a gas cell or plasma cell of the present invention such as those shown in FIGURES 3A and 4A comprises a means for the formation of catalyst and H atoms from sources.
  • the cell further comprises reactants to provide catalyst and H upon initiation of a chemical or physical process.
  • the initiation may be by means such as heating or plasma reaction.
  • the external power requirement to maintain the production of hydrinos is low or zero based on the large power of the H catalysis reaction to form hydrinos.
  • the reactants can be regenerated with a net release of energy for each cycle of reaction and regeneration.
  • the reactor shown in FIGURE 3A comprises a solid- fuels reactor wherein a reaction mixture comprises a source of catalyst and a source of hydrogen. The reaction mixture can be regenerated by supplying a flow of reactants and by removing products from the corresponding product mixture.
  • the reaction vessel 207 has a chamber 200 capable of containing a vacuum or pressures equal to or greater than atmospheric. At least one source of reagent such a gaseous reagent 221 is in communication with chamber 200 and delivers reagent to the chamber through at least one reagent supply passage 242. A controller 222 is positioned to control the pressure and flow of reagent into the vessel through reagent supply passage 242. A pressure sensor 223 monitors pressure in the vessel. A vacuum pump 256 is used to evacuate the chamber through a vacuum line 257. Alternatively, line 257 represents at least one output path such as a product passage line to remove material from the reactor.
  • the reactor further comprises a source of heat such as a heater 230 to bring the reactants up to a desired temperature that initiates the solids fuel chemistry and the hydrino-forming catalysis reaction.
  • a source of heat such as a heater 230 to bring the reactants up to a desired temperature that initiates the solids fuel chemistry and the hydrino-forming catalysis reaction.
  • the temperature is in the range of about 50 to 1000 0 C; preferably it is in the range of about 100-600 0 C, and for reactants comprising at least the Li/N-alloy system, the desired temperature is in the range of about 100-500 0 C.
  • the cell may further comprise a source of hydrogen gas and dissociator to form atomic hydrogen.
  • the vessel may further comprise a source of hydrogen 221 in communication with the vessel for regenerating at least one of the source of atomic catalyst such as atomic lithium and the source of atomic hydrogen.
  • the hydrogen source may be hydrogen gas.
  • the H2 gas may be supplied by a hydrogen line 242 or by permeation from a hydrogen reservoir 290.
  • the source of atomic lithium and atomic hydrogen may be generated by hydrogen addition according to Eqs. (66-71 ).
  • the first step of an alternative regeneration reaction may given by Eq. (69).
  • the cell size and materials are such that a high operating temperature is archived.
  • the cell may be appropriately sized to the power output to achieve the desired operating temperature.
  • High-temperature materials for the cell construction are niobium and a high-temperature stainless steel such as Hastalloy.
  • the source of H 2 may be an internal metal hydride that does not react with LiNH 2 , but releases H only at very high temperature. Also, even in the cases that the hydride does react with LiNH 2 , it can be separated from the reagents such as Li and LiNH 2 by placing it in an open or closed vessel in the cell.
  • a cell design that supplies H 2 by permeation is one comprising an internal metal hydride placed in a sealed vessel wherein atomic H permeates out at high temperature.
  • the reactor may further comprise means to separate components of a product mixture such as sieves for mechanically separating by differences in physical properties such as size.
  • the reactor may further comprise means to separate one or more components based on a differential phase change or reaction.
  • the phase change comprises melting using a heater, and the liquid is separated from the solid by means known in the Art such as gravity filtration, filtration using a pressurized gas assist, and centrifugation.
  • the reaction may comprise decomposition such as hydride decomposition or reaction to from a hydride, and the separations may be achieved by melting the corresponding metal followed by its separation and by mechanically separating the hydride, respectively. The latter may be achieved by sieving.
  • the phase change or reaction may produce a desired reactant or intermediate.
  • the regeneration including any desired separation steps may occur inside or outside of the reactor.
  • a chemical reactor of the present invention further comprises a source of inorganic compound such as MX wherein M is an alkali metal and X is a halide.
  • the inorganic compound may be an alkali or alkaline earth salt such a hydroxide, oxide, carbonate, sulfate, phosphate, borate, and silicate (other suitable inorganic compounds are given in D. R. Lide, CRC Handbook of Chemistry and Physics, 86th Edition, CRC Press, Taylor & Francis, Boca Raton, (2005-6), pp. 4-45 to 4-97 which is herein incorporated by reference).
  • the inorganic compound may further serve as a getter in the generation of power by preventing product accumulation and a consequent back reaction or other product inhibition.
  • a preferred Li chemical-type power cell comprises Li, LiNH 2 , LiBr or LiI, and R-Ni in a hydrogen cell run at about 760 Torr H 2 and about 700+ 0 C.
  • a preferred NaH chemical-type power cell comprises Na, NaX (X is a halide, preferably Br or I) and R- Ni in a hydrogen cell run at about 760 Torr H 2 and about 700+ 0 C.
  • the cell may further comprise at least one of NaH and NaNH 2 .
  • a preferred K chemical-type power cell comprises K, Kl, and Ni screen or R-Ni dissociator in a hydrogen cell run at about 760 Torr H 2 and about 700+ 0 C.
  • the H 2 pressure range is about 1 Torr to 10 5 Torr.
  • the H pressure is maintained in the range of about 760-1000 Torr.
  • LiHX such as LiHBr and LiHI is typically synthesized in the temperature range of about 450-550 0 C, but can be run at lower temp (-350 0 C) with LiH present.
  • NaHX such as NaHBr and NaHI is typically synthesized in the temperature range of about 450-550 0 C.
  • KHX such as KHI is preferably synthesized in the temperature range of about 450-550 0 C.
  • NaH and K are supplied from a source such as catalyst reservoir wherein the cell temperature is maintained at a higher level than that of the catalyst reservoir.
  • the cell is maintained at the temperature range of about 300- 550 0 C and the reservoir is maintained in a temperature range of about 50 to 200 0 C lower.
  • Another embodiment of the hydrogen reactor having NaH as the catalyst comprises a plasma torch for the production of power and increased-binding-energy hydrogen compounds such as NaHX wherein H is increased-binding-energy hydrogen and X is a halide.
  • At least one of NaF, NaCI, NaBr, NaI may be aerosolized in the plasma gas such as H 2 or a noble gas/hydrogen mixture such as He/H 2 or Ar/H 2 .
  • a reaction mixture of the present invention comprises a catalyst or a source of catalyst and atomic hydrogen or a source of atomic hydrogen (H) wherein at least one of the catalyst and atomic hydrogen is released by a chemical reaction of at least one species of the reaction mixture or between two or more reaction-mixture species.
  • the reaction is reversible.
  • the energy released is greater than the enthalpy of reaction of the formation of catalyst and reactant hydrogen, and in the case that the reactants of the reaction mixture are regenerated and recycled, preferably, net energy is given off over the cycle of reaction and regeneration due to the large energy of formation of product H states given by Eq. (1).
  • the species may be at least one of an element, alloy, or a compound such as a molecular or inorganic compound wherein each may be at least one of a reagent or product in the reactor.
  • the species may form an alloy or compound such as a molecular or inorganic compound with at least one of hydrogen and the catalyst.
  • One or more of the reaction-mixture species may form one or more reaction product species such that the energy to release H or free catalyst is lowered relative to the case in the absence of the formation of the reaction product species.
  • the reactants to provide a catalyst and atomic hydrogen to form states with energy levels given by Eq. (1 ), the reactants comprise at least one of solid, liquid (including molten), and gaseous reactants.
  • the reactions to form the catalyst and atomic hydrogen to form states with energy levels given by Eq. (1 ) occurs in one or more of the solid, liquid (including molten), and gaseous phase.
  • Exemplary solid-fuels reactions are given herein that are certainly not meant to be limiting in that other reactions comprising additional reagents are within the scope of the Invention.
  • the reaction product species is an alloy or compound of at least one of the catalyst and hydrogen or sources thereof.
  • the reaction-mixture species is a catalyst hydride and the reaction product species is a catalyst alloy or compound that has a lower hydrogen content.
  • the energy to release H from a hydride of the catalyst may be lowered by the formation of an alloy or second compound with the at least one another species such as an element or first compound.
  • the catalyst is one of Li, K, Cs, and NaH molecule and the hydride is one of LiH, KH, CsH, NaH(s) and the at least one other element is selected from the group of M (catalyst), Al, B, Si, C, N, Sn, Te, P, S, Ni, Ta, Pt, and Pd.
  • the first and the second compound may be one of the group of H 2 , H 2 O, NH3, NH 4 X, (X is a couterion such as halide (other anions are given in D. R. Lide, CRC Handbook of Chemistry and Physics, 86th Edition, CRC Press, Taylor & Francis, Boca Raton, (2005-6), pp.
  • MX is an alkali metal that may be the catalyst.
  • a hydride comprising at least one other element than the catalyst element releases H by reversible decomposition.
  • One or more of the reaction-mixture species may form one or more reaction product species such that the energy to release free catalyst is lowered relative to the case in the absence of the formation of the reaction product species.
  • a reaction species such as an alloy or compound may release free catalyst by a reversible reaction or decomposition.
  • the free catalyst may be formed by a reversible reaction of a source of catalyst with at least one other species such as an element or first compound to form a species such as an alloy or second compound.
  • the element or alloy may comprise at least one of M (catalyst atom), H, Al, B, Si, C, N, Sn, Te, P, S, Ni, Ta, Pt, and Pd.
  • the first and the second compound may be one of the group of H 2 , NH 3 , NH 4 X where X is a couterion such as halide, MMX, MNO 3 , MAIH 4 , M 3 AIH 6 , MBH 4 , M 3 N, M 2 NH, and MNH 2 , wherein M is an alkali metal that may be the catalyst.
  • the catalyst may be one of Li, K, and Cs, and NaH molecule.
  • the source of catalyst may be M-M such as LiLi, KK, CsCs, and NaNa.
  • the source of H may be MH such as LiH, KH, CsH, or NaH(s).
  • Li catalyst may be alloyed or react to form a compound with at least one other element or compound such that the energy barrier for the release of H from LiH or Li from LiH and LiLi molecules is lowered.
  • the alloy or compound may also release H or Li by decomposition or reaction with further reaction species.
  • the alloy or compound may be one or more of LiAIH 4 , Li 3 AIH 6 , LiBH 4 , Li 3 N, Li 2 NH, LiMH 2 , LiX, and LiNO 3 .
  • the alloy or a compound may be one or more of Li/Ni, Li/Ta, Li/Pd, Li/Te, Li/C, Li/Si, and Li/Sn wherein the stoichiometry of Li and any other element of the alloy or compound is varied to achieve the optimal release of Li and H which subsequently react during the catalysis reaction to form lower energy states of hydrogen.
  • K, Cs, and Na replace Li wherein the catalyst is atomic K, atomic Cs, and molecular NaH.
  • the alloy or compound has the formula M x E y wherein M is the catalyst such as Li, K, or Cs, or it is Na, E is the other element, and x and y designate the stoichiometry.
  • M and E y may be in ant desired molar ratio.
  • x is in the range of 1 to 50 and y is in the range of 1 to 50, and preferably x is in the range of 1 to 10 and y is in the range of 1 to 10.
  • the alloy or compound has the formula M x E y E z wherein M is the catalyst such as Li, K, or Cs, or it is Na, E y is a first other element, E z is a second other element, and x, y, and z designate the stoichiometry. M, E y , and E y may be in any desired molar ratio.
  • x is in the range of 1 to 50
  • y is in the range of 1 to 50
  • z is in the range of 1 to 50
  • x is in the range of 1 to 10
  • y is in the range of 1 to 10
  • z is in the range of 1 to 10.
  • E y and E z are selected from the group of H, N, C, Si, and Sn.
  • the alloy or compound may be at least one of Li x C y Si z , Li x Sn y Si z , Li x N y Si z , Li x Sn y C z , Li x N y Sn z , Li x C y N z , Li x C y H z , Li x Sn y H z , Li x N y H z , and Li x Si y H z .
  • K, Cs, and Na replace Li wherein the catalyst is atomic K, atomic Cs, and molecular NaH.
  • the alloy or compound has the formula M x E w E y E z wherein M is the catalyst such as Li, K, or Cs, or it is Na, E w is a first other element, E y is a second other element, E 2 is a third other element, and x, w, y, and z designate the stoichiometry.
  • M, E y , E y , and E z may be in any desired molar ratio.
  • x is in the range of 1 to 50
  • w is in the range of 1 to 50
  • y is in the range of 1 to 50
  • z is in the range of 1 to 50
  • x is in the range of 1 to 10
  • w is in the range of 1 to 10
  • y is in the range of 1 to 10
  • z is in the range of 1 to 10.
  • E w> E y , and E z are selected from the group of H, N, C, Si, and Sn.
  • the alloy or compound may be at least one of Li x H w C y Si z , Li x H w Sn y Si z , Li x H w N y Si z , Li x H w Sn y C z , Li x H w N y Sn z , and Li x H w C y N z .
  • K, Cs, and Na replace Li wherein the catalyst is atomic K, atomic Cs, and molecular NaH.
  • Species such as M x E w E y E z are exemplary and are certainly not meant to be limiting in that other species comprising additional elements are within the scope of the Invention.
  • the reaction contains a source of atomic hydrogen and a source of Li catalyst.
  • the reaction contains one or more species from the group of a hydrogen dissociator, H 2 , a source of atomic hydrogen, Li, LiH, LiNO 3 , LiNH 2 , Li 2 NH, Li 3 N, LiX, NH 3 , LiBH 4 , LiAIH 4 , Li 3 AIH 6 , NH 3 , and NH 4 X wherein X is a counterion such halide and those given in the CRC [41].
  • the weight % of the reactants may be in any desired molar range.
  • the reagents may be well mixed using a ball mill.
  • the reaction mixture comprises a source of catalyst and a source of H.
  • the reaction mixture further comprises reactants which undergo reaction to form Li catalyst and atomic hydrogen.
  • the reactants may comprise one or more of the group of H 2 , hydrino catalyst, MNH 2 , M 2 NH, M 3 N, NH 3 , LiX, NH 4 X (X is a couterion such as a halide), MNO 3 , MAIH 4 , M 3 AIH 6 , and MBH 4 , wherein M is an alkali metal that may be the catalyst.
  • the reaction mixture may comprise reagents selected from the group of Li, LiH, LiNO 3 , LiNO, LiNO 2 , Li 3 N, Li 2 NH, LiNH 2 , LiX, NH3, LiBH 4 , LiAIH 4 , Li 3 AIH 6 , LiOH, Li 2 S, LiHS, LiFeSi, Li 2 CO 3 , LiHCO 3 , Li 2 SO 4 , LiHSO 4 , Li 3 PO 4 , Li 2 HPO 4 , LiH 2 PO 4 , Li 2 MoO 4 , LiNbO 3 , Li 2 B 4 O 7 (lithium tetraborate), LiBO 2 , Li 2 WO 4 , LiAICI 4 , LiGaCI 4 , Li 2 CrO 4 , Li 2 Cr 2 O 7 , Li 2 TiO 3 , LiZrO 3 , LiAIO 2 , LiCoO 2 , LiGaO 2 , Li 2 GeO 3 , LiMn 2 O 4 , Li 4 SiO 4
  • the mixture further comprises hydrogen or a source of hydrogen.
  • other dissociators are used or one may not be used wherein atomic hydrogen, and, optionally, atomic catalyst, are generated chemically by reaction of the species of the mixture.
  • the reactant catalyst may be added to the reaction mixture.
  • the reaction mixture may further comprise an acid such as H 2 SO 3 , H 2 SO 4 , H 2 CO 3 , HNO 2 , HNO 3 , HCIO 4 , H 3 PO 3 , and H 3 PO 4 or a source of an acid such as an anhydrous acid.
  • the latter may comprise at least one of the list of SO2, SO 3 , CO 2 , NO 2 , N 2 O 3 , N 2 O 5 , CI 2 O 7 , PO 2 , P 2 O 3 , and P 2 O 5 .
  • the reaction mixture further comprises a reactant catalyst to generate the reactants that serve as a lower-energy-hydrogen catalyst or a source of lower-energy-hydrogen catalyst and atomic hydrogen or a source of atomic hydrogen.
  • Suitable reactant catalysts comprise at one of the group of acids, bases, halide ions, metal ions and free radical sources.
  • the reactant catalyst may be at least one of the group of a weak-base-catalysts such as Li 2 SO 4 , a weak-acid catalyst such as a solid acid such as LiHSO 4 , a metal ion source such as TiCI 3 or AICI 3 which provide Ti 3+ and Al 3+ ions, respectively, a free radical source such a C0X 2 wherein X is a halide such as Cl wherein Co 2+ may react with O 2 to form the O 1 radical, metals such as Ni, Fe, Co preferably at a concentration of about 1 mol%, a source of X ' ion (X is halide) such as Cl ' or F " from LiX, a source of free radical initiators/propagators such as peroxides, azo-group compounds, and UV light.
  • the reactant mixture to form lower-energy hydrogen comprises a source of hydrogen, a source of catalyst, and at least one of a getter for hydrino and a getter for electrons from the catalyst as it is ionized to resonantly accept energy from atomic hydrogen to form hydrinos having energies given by Eq. (1).
  • the hydrino getter may bind to lower-energy hydrogen to prevent the reverse reaction to ordinary hydrogen.
  • the reaction mixture comprises a getter for hydrino such as LiX or Li 2 X (X is halide or other anion such anions from the CRC [41]).
  • the electron getter may perform at least one of accepting electrons from the catalyst and stabilizing the catalyst-ion intermediate such as a Li 2+ intermediate to allow the catalysis reaction to occur with fast kinetics.
  • the getter may be an inorganic compound comprising at least one cation and one anion.
  • the cation may be Li + .
  • the anion may be a halide or other anion given in the CRC [41] such as one of the group comprising F “ , Cl “ , Br “ , I “ , NO 3 “ , NO 2 “ , SO 4 2” , HSO 4 “ , CoO 2 “ , 1O 3 “ , 1O 4 “ , TiO 3 “ , CrO 4 “ , FeO 2 “ , PO 4 3” , HPO 4 2” , H 2 PO 4 “ , VO 3 “ , CIO 4 " and Cr 2 O 7 2” and other anions of the reactants.
  • reaction mixture such as Li, LiNH 2 , and X wherein X is the hydride binding compound, X is at least one of LiHBr, LiHI, a hydrino hydride compound, and a lower-energy hydrogen compound.
  • the catalyst reaction mixture is regenerated by addition of hydrogen from a source of hydrogen.
  • the hydrino product may bind to form a stable hydrino hydride compound.
  • the hydride binder may be LiX wherein X is a halide or other anion.
  • the hydride binder may react with a hydride that has an NMR upfield shift greater than that of TMS.
  • the binder may be an alkali halide, and the product of hydride binding may be an alkali hydride halide having an NMR upfield shift greater than that of TMS.
  • the hydride may have a binding energy determined by XPS of 11 to 12 eV.
  • the product of the catalysis reaction is the hydrogen molecule H 2 (IM) having an solid NMR peak at about 1 ppm relative to TMS and a binding energy of about 250 eV that is trapped in a crystalline ionic lattice.
  • the product H 2 (IM) is trapped in the crystalline lattice of an ionic compound of the reactor such that the selection rules for infrared absorption are such that the molecule becomes IR active and a FTIR peak is observed at about 1990 cm "1 .
  • Additional sources of atomic Li of the present invention comprise additional alloys of Li such as these comprising Li and at least one of alkali, alkaline earth metals, transitions, metals, rare earth metals, noble metals, tin, aluminum, other Group III and Group IV metal, actinides, and lanthanides.
  • Some representative alloys comprise one or more members of the group of LiBi, LiAg, LiIn, LiMg, LiAI, LiMgSi, LiFeSi, LiZr, LiAICu, LiAIZr, LiAIMg, LiB, LiCa, LiZn, LiBSi, LiNa, LiCu, LiPt, LiCaNa, LiAICuMgZr, LiPb, LiCaK, LiV, LiSn, and LiNi.
  • K, Cs, and Na replace Li wherein the catalyst is atomic K, atomic Cs, and molecular NaH.
  • an anion can form a hydrogen-type bond with a Li atom of a covalently bound Li-Li molecule.
  • This hydrogen-type bond can weaken the Li-Li bond to the point that a Li atom is at vacuum energy (equivalent to free a atom) such that it can serve as a catalyst atom to form hydrinos.
  • K, Cs, and Na replace Li wherein the catalyst is atomic K, atomic Cs, and molecular NaH.
  • the function of the hydrogen dissociator is provided by a chemical reaction.
  • Atomic H is generated by the reaction of at least two species of the reaction mixture or by the decomposition of at least one species.
  • Li-Li reacts with LiNH2 to form atomic Li, atomic H, and Li 2 NH.
  • Atomic Li may also form by the decomposition or reaction of LiN ⁇ 3 .
  • K, Cs, and Na replace Li wherein the catalyst is atomic K, atomic Cs, and molecular NaH.
  • the reaction mixture in addition to a catalyst or source of catalyst to form lower-energy hydrogen, the reaction mixture comprises heterogeneous catalysts to dissociate MM and MH such as LiLi and LiH as to provide M and H atoms.
  • the heterogeneous catalyst may comprise at least one element from the group of transition elements, precious metals, rare earth and other metals and elements such as Mo, W, Ta, Ni, Pt, Pd, Ti, Al, Fe, Ag, Cr, Cu, Zn, Co, and Sn.
  • the reaction mixture comprises an excess of Li over the Li-carbon intercalation limit. The excess may be in the range of 1% and 1000% and preferably in the range of 1% to 10%.
  • the carbon may further comprise a hydrogen spillover catalyst having a hydrogen dissociator such as Pd or Pt on activated carbon.
  • the cell temperature exceeds that at which Li is completely intercalated into the carbon.
  • the cell temperature may be in the range of about 100 to 2000 0 C, preferably in the range of about 200 to 800 0 C, and most preferably in the range of about 300 to 700 0 C.
  • K, Cs, and Na replace Li wherein the catalyst is atomic K, atomic Cs, and molecular NaH.
  • the cell temperature is in the range over which the silicon alloy further comprising H releases atomic hydrogen.
  • the range may be about 50-1500 0 C, preferably about 100 to 800 0 C, and most preferably in the range of about 100 to 500 0 C.
  • the hydrogen pressure may be in range of about 0.01 to 10 5 Torr, preferably in the range of about 10 to 5000 Torr, and most preferably in the range of about 0.1 to 760 Torr.
  • K, Cs, and Na replace Li wherein the catalyst is atomic K, atomic Cs, and molecular NaH.
  • the reaction mixture, alloys, and compounds may be formed by mixing the catalyst such as Li or a source of catalyst such as catalyst hydride with the other element(s) or compound(s) or a source of the other element(s) or compound(s) such as a hydride of the other element(s).
  • the catalyst hydride may be LiH, KH, CsH, or NaH.
  • the reagents may be mixed by ball milling.
  • An alloy of the catalyst may also be formed from a source of alloy comprising the catalyst and at least one other element or compound.
  • the reaction mechanism for the Li/N system to form hydrino reactants of atomic Li and H is LiNH 2 + Li-Li to Li + H + Li 2 NH (32)
  • the reaction mechanism is analogous to that of the Li/N system with the other alloy element(s) replacing N.
  • Exemplary reaction mechanisms to carryout the reaction to form hydrino reactants, atomic Li and H, involving the reaction mixtures comprising Li with at least one of S, Sn, Si, and C are
  • Li/S alloy-catalyst system comprises Li with Li 2 S and Li with LiHS.
  • K, Cs, and Na replace Li wherein the catalyst is atomic K, atomic Cs, and molecular NaH.
  • Lithium in the solid and liquid states is a metal, and the gas comprises covalent Li 2 molecules.
  • the reaction mixture of the solid fuel comprises Li/N alloy reactants.
  • the reaction mixture may comprise at least one of the group of Li, LiH, LiNH 2 , Li 2 NH, Li 3 N, NH 3 , a dissociator, a hydrogen source such as H 2 gas or a hydride, a support, and a getter such as LiX (X is a halide).
  • the dissociator is preferably Pt or Pd on a high surface area support inert to Li. It may comprise Pt or Pd on carbon or Pd/AI 2 O 3 .
  • the latter support may comprise a protective surface coating of a material such as LiAIO 2 .
  • Preferred dissociators for a reagent mixture comprising a Li/N alloy or Na/N alloy are Pt or Pd on AbO 3 , Raney nickel (R-Ni), and Pt or Pd on carbon.
  • the reactor temperature may be maintained below that which results in its substantial reaction with Li. The temperature may be below the range of about 250 0 C to 600 0 C.
  • Li is in the form of LiH and the reaction mixture comprises one or more of LiNH 2 , U 2 NH, Li 3 N, MH 3 , a dissociator, a hydrogen source such as H2 gas or a hydride, a support, and a getter such as LiX (X is a halide) wherein the reaction of LiH with AI 2 O 3 is substantially endothermic.
  • the dissociator may be separate from the balance of the reaction mixture wherein the separator passes H atoms.
  • Two preferred embodiments comprise the first reaction mixture of LiH, LiNH 2 , and Pd on AI 2 O 3 powder and a second reaction mixture of Li, Li 3 N, and hydrided Pd on AI 2 O 3 powder that may further comprise H 2 gas.
  • the first reaction mixture can be regenerated by addition of H 2
  • the second mixture can be regenerated by removing H 2 and hydriding the dissociator or by reintroducing H 2 .
  • the reactions to generate catalyst and H as well as the regeneration reactions are given infra.
  • ZZNH 2 is added to the reaction mixture.
  • ZZNH 2 generates atomic hydrogen as well as atomic Li according to the reversible reactions
  • the reaction mixture comprises about 2:1 Li and LiNH 2 .
  • Li-Li and LiNH 2 react to form atomic Li, atomic H, and Li 2 NH, and the cycle continues according to Eq. (38).
  • the reactants may be present in any wt%.
  • the mechanism of the formation of Li 2 NH from LiNH 2 involves a first step that forms ammonia [42]: 2LiNH 2 to Li 2 NH + NH 3 (39)
  • the reactants comprise a mixture of Li and LiNH 2 to form atomic Li and atomic H according to Eqs. (37-38).
  • the reaction mixture of Li and LiNH 2 that serves as a source of Li catalyst and atomic hydrogen may be regenerated.
  • the reaction product mixture comprising species such as Li, Li 2 NH, and Li 3 N can be reacted with H to form LiH and LiNH 2 .
  • LiH has a melting point of 688 0 C; whereas, LiNH 2 melts at 380 0 C, and Li melts at 180 0 C.
  • LiNH 2 liquid and any Li liquid that forms can be physically removed from the LiH solid at about 380 0 C, and then LiH solid can be heated separately to form Li and H 2 .
  • the Li and LiNH 2 can be recombined to regenerate the reaction mixture. And, the excess H 2 from LiH thermal decomposition can be reused in the next regeneration cycle with some make-up H 2 to replace any H 2 consumed in hydrino formation.
  • the competing kinetics of the hydriding or dehydriding of one reactant over another is exploited to achieve a desired reaction mixture comprising hydrided and non-hydrided compounds.
  • hydrogen can be added under appropriate temperature and pressure conditions such that the reverse of reactions of Eqs. (37) and (38) occur over the competing reaction of the formation of LiH such that the hydrogenated products are predominantly Li and LiNH 2 .
  • a reaction mixture comprising compounds of the group of Li, Li 2 NH, and LisN may be hydrogenated to form the hydrides and the LiH can be selectively dehydrided by pumping at the temperature and pressure ranges and duration which achieves the selectivity based on differential kinetics.
  • Li is deposited as a thin film over a large area and a mixture of LiH and LiNH 2 is formed by addition of ammonia.
  • the reaction mixture may further comprise excess Li.
  • Atomic Li and H are formed according to Eqs. (37- 38) with the subsequent reaction to form states with energies given by Eq. (1 ). Then, the mixture can be regenerated by H 2 addition followed by heating and pumping with selective pumping and removal of H 2 .
  • a reversible system of the present invention to generate atomic lithium catalyst is the U 3 N + H system which can be regenerated by pumping.
  • the reaction mixture comprises at least one of L ⁇ 3N and a source of Li 3 N such as Li and N 2 , and a source of H such as at least one of H 2 and a hydrogen dissociator, LZNH 2 ,
  • the atomic Li catalyst can then react with additional atomic H to form hydrinos.
  • the side products such as LiH, Li 2 NH, and LiNH 2 can be converted to Li ⁇ N by evacuating the reaction vessel of H 2 .
  • Representative Li/N alloy reactions are as follows: Iz 3 N + H ⁇ Li 2 NH + Li (44)
  • Li 3 N, a source of ⁇ , and a hydrogen dissociator are in any desired molar ratio. Each are in molar ratios of greater than 0 and less than 100%. Preferably the molar ratios are similar. In an embodiment, the ratios of U 3 N, at least one of LZNH 2 , LZ 2 NH , LiH , Li , and NH 3 , and a ⁇ source such as a metal hydride are similar. In other embodiments, K, Cs, and Na replace Li wherein the catalyst is atomic K, atomic Cs, and molecular NaH. In an embodiment, lithium amide and hydrogen is reacted to form ammonia and lithium:
  • the reaction can be driven to form Li by increasing the H 2 concentration.
  • the forward reaction can be driven via the formation of atomic H using a dissociator.
  • the reaction with atomic H is given by
  • the reaction mix comprises at least one species from the group of LiNH 2 , LJ 2 NH, Li 3 N, Li, LiH, NH 3 , H 2 and a dissociator.
  • Li catalyst is generated from a reaction of LiNH 2 and hydrogen, preferably atomic hydrogen as given in reaction Eq. (50).
  • the ratios of reactants may be any desired amount. Preferably the ratios are about stoichiometric to those of Eqs. (49-50).
  • the reactions to form catalyst are reversible with the addition of a source of H such as H 2 gas to replace that reacted to form hydrinos wherein the catalyst reactions are given by Eqs. (3-5), and lithium amide forms by the reaction of ammonia with Li:
  • K, Cs, and Na replace Li wherein the catalyst is atomic K, atomic Cs, and molecular NaH.
  • the reaction mixture comprises a hydrogen dissociator, a source of atomic hydrogen, and Na or K and NH 3 .
  • ammonia reacts with Na or K to form NaNH 2 or KNH 2 that serves as a source of catalyst.
  • Another embodiment comprises a source of K catalyst such as K metal, a hydrogen source such as at least one of NH 3 , H 2 , and a hydride such as a metal hydride, and a dissociator.
  • a preferred hydride is one comprising R-Ni that also may serve as a dissociator.
  • a hydrino getter such as KX may be present wherein X is preferably a halide such as Cl, Br, or I.
  • the cell may be run continuously with the replacement of the hydrogen source.
  • the NH 3 may act as a source of atomic K by the reversible formation of KN alloy compounds from K-K such as at least one of amide, imide, or nitride or by formation of KH with the release of atomic K.
  • the reactants comprise the catalyst such as Li and an atomic hydrogen source such H2 and a dissociator or a hydride such as hydrided R-Ni.
  • H can react with Li-Li to form LiH and Li which can further serve as the catalyst to react with additional H to form hydrinos. Then, Li can be regenerated by evacuating H 2 released from LiH.
  • the plateau temperature at 1 Torr for LiH decomposition is about 560 0 C.
  • LiH can be decomposed at about 0.5 Torr and about 500 0 C, below the alloy-formation and sintering temperatures of R-Ni.
  • Li atoms are vapor deposited on a surface.
  • the surface may support or be a source of H atoms.
  • the surface may comprise at least one of a hydride and hydrogen dissociator.
  • the surface may be R-Ni which may be hydrided.
  • the vapor deposition may be from a reservoir containing a source of Li atoms.
  • the Li source may be controlled by heating. One source that provides Li atoms when heated is Li metal.
  • the surface may be maintained at a low temperature such as room temperature during the vapor deposition.
  • the Li-coated surface may be heated to cause the reaction of Li and H to form H states given by Eq. (1 ).
  • Other thin-film deposition techniques that are well known in the ART comprise further embodiments of the Invention. Such embodiments comprise physical spray, electro- spray, aerosol, electro-arching, Knudsen cell controlled release, dispenser-cathode injection, plasma-deposition, sputtering, and further coating methods and systems such as melting a fine dispersion of Li, electroplating Li, and chemical deposition of Li.
  • K, Cs, and Na replace Li wherein the catalyst is atomic K, atomic Cs, and molecular NaH.
  • Li and R-Ni are in any desired molar ratio. Each of Li and R-Ni are in molar ratios of greater than 0 and less than 100%. Preferably the molar ratio of Li and R- Ni are similar.
  • the competing kinetics of the hydriding or dehydriding of one reactant over another is exploited to achieve a reaction mixture comprising hydrided and non-hyd ⁇ ded compounds
  • the formation of LiH is thermodynamically favored over the formation of R-Ni hydride
  • the rate of LiH formation at low temperature such as the range of about 25 0 C-IOO 0 C is very low
  • the formation of R-Ni hydride proceeds at a high rate in this temperature range at modest pressures such as the range of about 100 Torr to 3000 Torr
  • the reaction mixture of Li and hydrided R-Ni can be regenerated from LiH R-Ni by pumping at about 400-500 0 C to dehydride LiH, cooling the vessel to about 25-100 °C, adding hydrogen to preferentially hydride R-Ni for a duration that achieves the desired selectivity, and then removing the excess hydrogen by evacuating the cell While excess Li is present or is added to
  • LiH has a high melting point of 688 0 C which may be above that which sinters the dissociator or causes the dissociator metal to form an alloy with the catalyst metal
  • an alloy of LiNi may form at temperatures in excess of about 550 0 C in the case that the dissociator is R-Ni and the catalyst is Li
  • LiH is converted to LiNH 2 that can be removed at its lower melting point such that the reaction mixture can be regenerated.
  • the reaction to form lithium amide from lithium hydride and ammonia is given by
  • LiNH 2 LiH + NH 3 ⁇ LiNH 2 + H 2 (52) Then, molten LiNH 2 can be recovered at the melting point of 380 0 C. LiNH 2 may be converted to Li by decomposition.
  • gas pressure is applied to the mixture comprising LiNH 2 to increase the rate of its separation from solid components.
  • a screen separator or semi-permeable membrane may retain the solid components.
  • the gas may be an inert gas such as a noble gas or a decomposition product such as nitrogen to limit the decomposition of LiNH 2 .
  • Molten Li can be separated using gas pressure as well.
  • gas flow can be used.
  • An inert gas such as a noble gas is preferable.
  • the residue can be removed by washing with a basic solution such as a basic aqueous solution which may also regenerate the R-Ni.
  • the Li may be hydrided and the solids of LiH and R-Ni and any additional solid compounds present may be separated mechanically by methods such as sieving.
  • the dissociator such as R-Ni and the other reactants may be physically separated but maintained in close proximity to permit diffusion of atomic hydrogen to the balance of reactant mixture.
  • the balance of reaction mixture and dissociator may be placed in open juxtaposed boats, for example.
  • the reactor further comprises multiple compartments independently containing the dissociator and balance of the reaction mixture. The separator of each compartment allows for atomic hydrogen formed in a dissociator compartment to flow to the balance-of-reaction-mixture compartment while maintaining the chemical separation.
  • the separator may be a metallic screen or semipermeable, inert membrane which may be metallic.
  • the contents may be mechanically mixed during the operation of the reactor.
  • the separated balance of the reaction mixture and its products can be removed and reprocessed outside of the reaction vessel and returned independently of the dissociator, or either may be independently reprocessed within the reactor.
  • Atomic Li catalyst and atomic H can be generated by reaction of Li 2 and NH3: Li 2 + NH 3 to LiNH 2 + Li + H (53)
  • LiNH 2 is a source of NH3 by the reaction:
  • the Li is dispersed on a support having a large surface area to react with ammonia.
  • Ammonia can also react with LiH to generate LiNH 2 : LiH + NH 3 to LiNH 2 + H 2 (55)
  • H 2 can react with Li 2 NH to regenerate LiNH 2 :
  • the reactants comprise a mixture of LiNH 2 and a dissociator.
  • the reaction to form atomic lithium is: LiNH 2 + H to Li + NH 3 (57)
  • the Li can then react with additional H to form hydrino.
  • Atomic Li catalyst and atomic H can be generated by reaction of Li 2 and LiBH 4 : Li 2 + LiBH 4 to LiBH 3 + Li + LiH (58) NH 4 X can generate LiMH 2 and H 2
  • atomic Li can be generated according to the reaction of Eqs. (32) and (37).
  • reaction mechanism for the Li/N system to form hydrino reactants of atomic Li and H is
  • Atomic Li catalyst can be generated by reaction of Li 2 NH or Li 3 N with atomic H formed by the dissociation of H 2 : Li 2 NH + H to LiNH 2 + Li (61 )
  • the reaction mixture comprises nitrides of metals in addition to Li such as those of Mg Ca Sr Ba Zn and Th.
  • the reaction mixture may comprise metals that exchange with Li or form mixed-metal compounds with Li.
  • the metals may be from the group of alkali, alkaline earth, and transition metals.
  • the compounds may further comprise N such as amides, imides, and nitrides.
  • the catalyst Li is generated chemically by an anion exchange reaction such as a halide (X) exchange reaction.
  • X halide
  • Li metal and Li-Li molecules are reacted with a halide compound to form atomic Li and LiX.
  • LiX is reacted with a metal M to form atomic Li and MX.
  • lithium metal is reacted with a lanthanide halide to form Li and the LiX where X is halide.
  • CeBr 3 with Li 2 to form Li and LiBr.
  • K, Cs, and Na replace Li wherein the catalyst is atomic K, atomic Cs, and molecular NaH.
  • the reaction mixture further comprises the reactants and products of the Haber process [43].
  • Li-Li may react with NH x to form Li and possibly H:
  • K, Cs, and Na replace Li wherein the catalyst is atomic K, atomic Cs, and molecular NaH.
  • a mixture of compounds may be used which melts at a lower temperature than that of one or more of compounds individually.
  • a eutectic mixture may form that is a molten salt that mixes the reactants such as Li and LiNH 2 .
  • the chemistry of the reaction mixture can change very substantially based on the physical state of the reactants and the presence or absence of a solvent or added solute or alloy species.
  • Objectives of the present invention for changing the physical state are to control the rate of reaction and to alter the thermodynamics to achieve a sustainable lower-energy hydrogen reaction with the addition of H from a source of H.
  • the Li/N alloy system comprising reactants such as Li and LiNH 2 , alkali metals, alkaline earth metals, and their mixtures may serve as the solvent.
  • excess Li can serve as a molten solvent for LiMH 2 to comprise solvated Li and LiNH 2 reactants that will have different kinetics and thermodynamics of reaction relative to those of the solid-state mixture.
  • the former effect control of the kinetics of the lower-energy hydrogen reaction, can be adjusted by controlling the properties of the solute and solvent such as temperature, concentration, and molar ratios.
  • the latter effect can be used to regenerate the initial reactants. This is a route when the products cannot be directly regenerated by hydrogenation.
  • One embodiment where the regeneration of the reactants is facilitated by a solvent or added solute or alloy species involves lithium metal wherein the hydriding of Li is not to completion so that Li remains a solvent and a reactant.
  • the following regeneration reaction may occur with the addition of H from a source to form LiH:
  • the solvent is selected such that it can reduce LiH to Li and form an unstable solvent hydride with the release of H.
  • the solvent may be one or more of the group of Li (excess), Na, K, Rb, Cs, and Ba that have the ability to reduce Li + and a corresponding hydride having a low thermal stability.
  • the solvent can be mixed with other solvents such as metals to from a solvent with a lower melting point such as one comprising a eutectic mixture.
  • one or more alkaline earth metals can be mixed with one or more alkali metals to lower the melting point, add the capability to reduce Li + , and decrease the stability of the corresponding solvent hydride.
  • Another embodiment where the regeneration of the reactants is facilitated by a solvent or added solute or alloy species involves potassium metal. Potassium metal in a mixture of LiH and LiNH 2 may reduce LiH to Li and form KH.
  • KH is thermally unstable at intermediate temperatures such as 300 °C, it may facilitate the further hydrogenation of Li 2 NH to Li and LiNH 2 .
  • K may catalyze the reaction given by Eq. (66).
  • the reaction steps are LiH + K to Li + KH (67)
  • K catalytically generates Li and H from LiH wherein LiNH 2 is formed directly from hydrogenation of Li 2 NH.
  • the amide (KNH 2 ) is also unstable so that the exchange of lithium amide with potassium amide is not thermodynamically favorable.
  • Na is a preferred metal solvent since it can reduce LiH and has a lower vapor pressure.
  • suitable metal solvents are Rb, Cs, Mg. Ca, Sr, Ba, and Sn.
  • the solvent may comprise a mixture of metals such as a mixture of two or more alkaline or alkaline earth metals.
  • Preferable solvents are Li (excess) and Na above 380 0 C since Li is miscible in Na above this temperature.
  • an alkali or alkaline earth metal serves as a regeneration catalyst according to Eqs. (70-71 ).
  • LiNH 2 is first removed from the LiH/UNH 2 mixture by melting the LiNH 2 .
  • the metal M may be added to catalyze the LiH to Li conversion.
  • M can be selectively removed by distillation. Na, K, Rb, and Cs form hydrides that decompose at relatively low temperatures and form amides that thermally decompose; thus, in another embodiment, at least one can serve as a reactant for the catalytic conversion of LiH to Li and H according to the corresponding reaction for K given by Eqs. (67-71).
  • alkaline earths such as Sr can form very stable hydrides which can serve to convert LiH to Li by reaction of LiH and an alkaline earth metal to form the stable alkaline earth hydride.
  • hydrogen may be supplied from the alkaline earth hydride via decomposition with the lithium inventory being primarily as Li.
  • the reaction mixture may comprise Li, LiMH 2 , X, and a dissociator wherein X may be a lithium compound such as LiH, Li 2 NH, Li 3 N with a small amount of an alkaline earth metal that forms a stable hydride to generate Li from LiH.
  • the source of hydrogen may be H 2 gas.
  • the operating temperature may be sufficient such that H is available.
  • LiNO 3 can serve to generate the LiNH 2 source of Li and H in a set of coupled reactions.
  • the catalysis reaction mixture comprising Li , LiNH 2 , and LZNO 3 .
  • the reaction of Li and LiNH 2 to Li 3 N and release H 2 is
  • reaction Eq. (72) can proceed with the generated LiNH 2 and the balance of
  • Li and the coupled reactions given by Eqs. (72) and (73) can occur until the Li is completely consumed.
  • the overall reaction is given by LiNO 3 + SLi + ILiNH 2 ⁇ +3H 2 O + 4Li 2 N (74)
  • the water may be dynamically removed by methods such as condensation or reacted with a getter to prevent its reaction with species such as Li , LiNH 2 , Li 2 NH ,
  • the present invention further comprises methods and systems to generate, or regenerate the reaction mixture to form states given by Eq. (1 ) from any side products that form during said reaction.
  • the catalysis reaction mixture such as Li, LiNH 2 , and LZNO 3 is regenerated from any side products such as LiOH and Li 2 O by methods known to those skilled in the Art such as given in Cotton and Wilkinson [43].
  • Components of the reaction mixture including side products may be liquid or solids. The mixture is heated or cooled to a desired temperature, and the products are separated physically by means known by those skilled in the Art.
  • LiOH and Z-Z 2 O are solid, Li , LiNH 2 , and LiNO 3 are liquid, and the solid components are separated from the liquid ones.
  • the LiOH and IZ 2 O may be converted to lithium metal by reduction with H 2 at high temperature or by electrolysis of the molten compounds or a mixture containing them.
  • the electrolysis cell may comprise a eutectic molten salt comprising at least one of LiOH , Li 2 O, LiCl , KCl , CaCl 2 and
  • the electrolysis cell is comprised of a material resistant to attack by Li such as a BeO or BN vessel.
  • the Li product may be purified by distillation.
  • LZNH 2 is formed by means known in the Art such as reaction of Li with nitrogen followed by hydrogen reduction. Alternatively, LiNH 2 can be formed directly by reaction of Li with NH 3 .
  • Li metal may be regenerated by methods such as electrolysis, LiNO 3 can be generated from Li metal.
  • One key step that eliminates the difficult nitrogen fixation step is the reaction of Li metal with N 2 to form Li 3 N even at room temperature.
  • Li 3 N can be reacted with H 2 to form Li 2 NH and LiNH 2 .
  • Li 3 N can be reacted with an oxygen source to form LiNO 3 .
  • Li 3 N is used in the synthesis of lithium nitrate (LiNO 3 ) involving reactants or intermediates of at least one or more of lithium (Li), lithium nitride (Li 3 N), oxygen (O 2 ), an oxygen source, lithium imide (Li 2 NH), and lithium amide (LiNH 2 ).
  • the oxidation reactions are
  • Lithium nitrate can be regenerated from Li 2 O and LiOH using at least one of NO 2 , NO , and O 2 by the following reactions
  • Lithium oxide can be converted to lithium hydroxide by reaction with steam:
  • Li 2 O is converted to LiOH followed by reaction with NO 2 and NO according to Eq. (81 ).
  • Both lithium oxide and lithium hydroxide can be converted to lithium nitrate by treatment with nitric acid followed by drying:
  • IJNO3 can be made by treatment of lithium oxide or lithium hydroxide with nitric acid.
  • Nitric acid in tern, can be generated by known industrial methods such as by the Haber process followed by the Ostwald process and then by hydration and oxidation of NO as given in Cotton and Wilkinson [43].
  • the exemplary sequence of steps are:
  • the ⁇ aber process may be used to produce NH 3 from N 2 and H 2 at elevated temperature and pressure using a catalyst such as ⁇ -iron containing some oxide .
  • the ammonia may be used to form LiMH 2 from Li.
  • the Ostwald process may be used to oxidize the ammonia to NO at a catalyst such as a hot platinum or platinum-rhodium catalyst.
  • the NO may be further reacted with oxygen and water to form nitric acid which can be reacted with lithium oxide or lithium hydroxide to form lithium nitrate.
  • the crystalline lithium nitrate reactant is then obtained by drying.
  • NO and NO 2 are reacted directly with the one or more of lithium oxide and lithium hydroxide to form lithium nitrate.
  • an embodiment of the reactor comprises the reactants of Li, LiNH 2 , and LiCoO 2 .
  • LiOH, Li 2 O, and Co and its lower oxides are the side products.
  • the reactants can be regenerated by electrolysis of LiOH and Li 2 O to Li.
  • LiNH 2 can be regenerated by reaction of Li with NH3 or N 2 and then H 2 .
  • the CoO 2 and its lower oxides can be regenerated by reaction with oxygen.
  • the LiCoO 2 can be formed by reaction of Li with CoO 2 .
  • Li, LiNH 2 , and LiCoO 2 are then returned to the cell in a batch or continuous regeneration process.
  • LiIO 3 or LiIO 4 is a reagent of the mixture
  • IO 3 " and or 1O 4 " may be regenerated by reaction of iodine or iodide ion with base and may further undergo electrolysis to the desired anion which may be precipitated out as LiIO 3 or LiIO 4 , dried, and dehydrated.
  • a compound comprising hydrogen such as MH where H is hydrogen and M is another element serves as a source of hydrogen and a source of catalyst.
  • a catalytic system is provided by the breakage of the M-H bond plus the ionization of t electrons from an atom M each to a continuum energy level such that the sum of the bond energy and ionization
  • 27 2 energies of the t electrons is approximately one of m - 27.2 eV and m — — eV
  • the catalyst reactions are given by
  • the catalyst reactions are given by
  • H f + asl is a fast hydrogen atom having at least 13.6 eV of kinetic energy
  • the reaction mixture comprises at least one of a source of NaH molecules and hydrogen.
  • the NaH molecules may serve as the catalyst to form H states given by Eq. (1).
  • a source of NaH molecules may comprise at least one of Na metal, a source of hydrogen, preferably atomic hydrogen, and NaH(s).
  • the source of hydrogen may be at least one of H 2 gas and a dissociator and a hydride.
  • the dissociator and hydride may be R-Ni.
  • the dissociator may also be Pt/Ti, Pt/Al 2 ⁇ 3, and Pd/Al 2 ⁇ 3 powder.
  • Solid NaH may be a source of at least one of NaH molecules, H atoms, and Na atoms.
  • one of atomic sodium and molecular NaH is provided by a reaction between a metallic, ionic, or molecular form of Na and at least one other compound or element.
  • the source of Na or NaH may be at least one of metallic Na, an inorganic compound comprising Na such as NaOH, and other suitable Na compounds such as NaNH 2 , Na 2 C ⁇ 3, and Na 2 O which are given in the CRC [41], NaX (X is a halide), and NaH(s).
  • the other element may be H, a displacing agent, or a reducing agent.
  • the reaction mixture may comprise at least one of (1 ) a source of sodium such as at least one of Na(m), NaH, NaNH 2 , Na 2 CO 3 , Na 2 O, NaOH, NaOH doped-R-Ni, NaX (X is a halide), and NaX doped R-Ni, (2) a source of hydrogen such as H 2 gas and a dissociator and a hydride, (3) a displacing agent such as an alkali or alkaline earth metal, preferably Li, and (4) a reducing agent such as at least one of a metal such as an alkaline metal, alkaline earth metal, a lanthanide, a transition metal such as Ti, aluminum, B, a metal alloy such as AIHg, NaPb, NaAI, LiAI, and a source of a metal alone or in combination with reducing agent such as an alkaline earth halide, a transition metal halide, a lanthanide halide, and aluminum halide.
  • the alkali metal reductant is Na.
  • suitable reductants comprise metal hydrides such as LiBH 4 , NaBH 4 , LiAIH 4 , or NaAIH 4 .
  • the reducing agent reacts with NaOH to form a NaH molecules and a Na product such as Na, NaH(s), and Na 2 O.
  • the source of NaH may be R-Ni comprising NaOH and a reactant such as a reductant to form NaH catalyst such as an alkali or alkaline earth metal or the Al intermetallic of R-Ni.
  • exemplary reagents are an alkaline or alkaline earth metal and an oxidant such as AIX3, MgX 2 , LaX 3 , CeXe, and TiX n where X is a halide, preferably Br or I.
  • the reaction mixture may comprise another compound comprising a getter or a dispersant such as at least one of Na 2 C ⁇ 3 , Na 3 SO 4 , and Na 3 PO 4 that may be doped into the dissociator such as R-Ni.
  • the reaction mixture may further comprise a support wherein the support may be doped with at least one reactant of the mixture.
  • the support may have preferably a large surface area that favors the production of NaH catalyst from the reaction mixture.
  • AI 2 O 3 such as gamma, beta, or alpha alumina, sodium aluminate (according to Cotton [45] beta-aluminas
  • the support may have a high surface area and comprise a high-surface-area (HSA) materials such as R-Ni, zeolites, silicates, aluminates, aluminas, alumina nanoparticles, porous AI 2 O 3 , Pt, Ru, or PaVAI 2 O 3 , carbon, Pt or Pd/C, inorganic compounds such as Na 2 CO 3 , silica and zeolite materials, preferably Y zeolite powder
  • the support such as AI 2 O 3 (and the AI 2 O 3 support of the dissociator if present) reacts with the reductant such as a lanthanide to form a surface-modified support
  • the surface Al exchanges with the lanthanide to form a lanthamde- substituted support
  • This support may be doped with a source of NaH molecules such as NaOH and reacted with a reductant such as a lanthanide The subsequent reaction of the lanthanide-substituted support with the lanthanide
  • the source of NaH may be an alloy of Na and a source of hydrogen
  • the alloy may comprise at least one of those known in the Art such as an alloy of sodium metal and one or more other alkaline or alkaline earth metals, transition metals, Al, Sn, Bi, Ag, In, Pb, Hg, Si 1 Zr, B, Pt, Pd, or other metals and the H source may be H 2 or a hydride
  • the reagents such as the source of NaH molecules, the source of sodium, the source of NaH, the source of hydrogen, the displacing agent, and the reducing agent are in any desired molar ratio Each is in a molar ratio of greater than O and less than 100% Preferably, the molar ratios are similar
  • a preferred embodiment comprises the reaction mixture of NaH and Pd on AI 2 O 3 powder wherein the reaction mixture may be regenerated by addition of H2
  • Na atoms are vapor deposited on a surface
  • the surface may support or be a source of H atoms to form NaH molecules.
  • the surface may comprise at least one of a hydride and hydrogen dissociator such as Pt, Ru, or Pd/AbOs which may be hydrided.
  • the surface area is large.
  • the vapor deposition may be from a reservoir containing a source of Na atoms.
  • the Na source may be controlled via heating.
  • One source that provides Na atoms when heated is Na metal.
  • the surface may be maintained at a low temperature such as room temperature during the vapor deposition.
  • the Na-coated surface may be heated to cause the reaction of Na and H to form NaH and may further cause the NaH molecules to react to form H states given by Eq. (1 ).
  • Other thin-film deposition techniques that are well known in the ART comprise further embodiments of the Invention. Such embodiments comprise physical spray, electro-spray, aerosol, electro-arching, Knudsen cell controlled release, dispenser-cathode injection, plasma-deposition, sputtering, and further coating methods and systems such as melting a fine dispersion of Na, electroplating Na, and chemical deposition of Na.
  • Na metal may be dispersed on a high-surface area material, preferably Na2CO 3 , carbon, silica, alumina, R-Ni, and Pt, Ru, or Pd/AbO ⁇ , to increase the activity to form NaH when reacted with another reagent such as H or a source of H.
  • a high-surface area material preferably Na2CO 3 , carbon, silica, alumina, R-Ni, and Pt, Ru, or Pd/AbO ⁇
  • Other dispersion materials are known in the Art such as those given in Cotton et al. [46].
  • At least one reactant comprising the reductant or source of NaH undergoes aerosolization to create a corresponding reactant vapor to react to form NaH catalyst.
  • Na and NaOH may react in the cell to form NaH catalyst wherein at least one species undergoes aerosolization.
  • the aerosolized species may be transported into the cell to react to form NaH catalyst.
  • the means to carry the aerosolized species may be a carrier gas.
  • the aerosolization of the reactant may be achieved using a mechanical agitator and a carrier gas such as a noble gas to carry the reactant into the cell to form NaH catalyst.
  • Na which may serve as a source of NaH and a reductant is aerosolized by becoming charged and electrically dispensed.
  • the reactants such as at least one of Na and NaOH may be aerosolized mechanically in a carrier gas or they may undergo ultrasonic aerosolization.
  • the reactant may be forced through an orifice to form a vapor.
  • the reactant may be heated locally to very high temperature to be vaporized or sublimed to form a vapor.
  • the reactants may further comprise a source of hydrogen.
  • the hydrogen may react with Na to form NaH catalyst.
  • the Na may be in the form of a vapor.
  • the cell may comprise a dissociator to from atomic hydrogen from H 2 .
  • Other means of achieving aerosolization that are known to those skilled in the Art are part of the Invention.
  • the reaction mixture comprises at least one species of the group comprising Na or a source of Na, NaH or a source of NaH, a metal hydride or source of a metal hydride, a reactant or source of a reactant to form a metal hydride, a hydrogen dissociator, and a source of hydrogen.
  • the reaction mixture may further comprise a support.
  • a reactant to form a metal hydride may comprise a lanthanide, preferably La or Gd.
  • the hydride exchange reaction forms NaH catalyst.
  • the reversible general reaction may be given by NaH + M ⁇ Na + MH (96)
  • the reaction given by Eq. (96) applies to other M7/-type catalysts given in TABLE 2.
  • the reaction may proceed with the formation of hydrogen that may be dissociated to form atomic hydrogen that reacts with Na to form NaH catalyst.
  • the dissociator is preferably at least one of Pt, Pd, or RU/AI2O3 powder, Pt/Ti, and R-Ni.
  • the dissociator support such as AI 2 O3 comprises at least surface La substitution for Al or comprises Pt, Pd, or R11/M 2 O3 powder wherein M is a lanthanide.
  • the dissociator may be separated from the rest of the reaction mixture wherein the separator passes atomic H.
  • a preferred embodiment comprises the reaction mixture of NaH, La, and Pd on AI2O3 powder wherein the reaction mixture may be regenerated in an embodiment, by adding H2, separating NaH and lanthanum hydride by sieving, heating lanthanum hydride to form La, and mixing La and NaH.
  • the regeneration involves the steps of separating Na and lanthanum hydride by melting Na and removing the liquid, heating lanthanum hydride to form La, hydriding Na to NaH, and mixing La and NaH.
  • the mixing may be by ball milling.
  • the doped R-Ni is reacted with a reagent that will displace the halide to form at least one of Na and NaH.
  • the reactant is at least an alkali or alkaline earth metal, preferably at least one of K, Rb, Cs.
  • the reactant is an alkaline or alkaline earth hydride, preferably at least one of KH, RbH, CsH, MgH 2 and CaH 2 .
  • the reactant may be both an alkali metal and an alkaline earth hydride.
  • the reversible general reaction may be given by
  • the exothermic reaction can drive the formation of ⁇ a ⁇ (g).
  • Na metal can serve as a reductant to form catalyst NaH(g).
  • suitable reductants that have a similar highly exothermic reduction reaction with the NaH source are alkali metals, alkaline earth metals such as at least one of Mg and Ca, metal hydrides such as LiBH 4 , NaBH 4 , LiAIH 4 , or NaAIH 4 , B, Al, transition metals such as Ti, lanthanides such as at least one of La, Sm, Dy, Pr, Tb, Gd, and Er, preferably La, Tb, and Sm.
  • the reaction mixture comprises a high-surface-area material (HSA material) having a dopant such as NaOH comprising a source of NaH catalyst.
  • HSA material high-surface-area material
  • conversion of the dopant on the material with a high surface area to the catalyst is achieved.
  • the conversion may occur by a reduction reaction.
  • the reductant may be provided as a gas stream.
  • Na is flowed into the reactor as a gas stream.
  • other preferred reductants are other alkali metals, Ti, a lanthanide, or Al.
  • the reaction mixture comprises NaOH doped into a HSA material preferably R-Ni wherein the reductant is Na or the intermetallic Al.
  • the reaction mixture may further comprise a source of H such as a hydride or H 2 gas and a dissociator.
  • the H source is hydrided R-Ni.
  • the reaction temperature is maintained below that at which the reductant such as a lanthanide forms an alloy with the source of catalyst such as R-Ni.
  • the reaction temperature does not exceed 532 0 C which is the alloy temperature of Ni and La as shown by Gasser and Kefif [47].
  • the reaction temperature is maintained below that at which the reaction with the AI 2 O 3 of R-Ni occurs to a significant extent such as in the range of 100 0 C to 45O 0 C.
  • the Al of the intermetallic serves as the reductant to form NaH catalyst
  • the balanced reaction is given by
  • This exothermic reaction can drive the formation of NaH(g) to drive the very exothermic reaction given by Eqs. (88-92) wherein the regeneration of NaH occurs from Na in the presence of atomic hydrogen.
  • Two preferred embodiments comprise the first reaction mixture of Na and R-
  • Ni comprising about 0.5 wt% NaOH wherein Na serves as the reductant and a second reaction mixture of R-Ni comprising about 0.5 wt% NaOH wherein intermetallic Al serves as the reductant.
  • the reaction mixture may be regenerated by adding NaOH and NaH that may serve as an H source and a reductant.
  • the source of NaH such as NaOH is regenerated by addition of a source of hydrogen such as at least one of a hydride and hydrogen gas and a dissociator.
  • the hydride and dissociator may be hydrided R-Ni.
  • the source of NaH such as NaOH-doped R-Ni is regenerated by at least one of rehydriding, addition of NaH, and addition of NaOH wherein the addition may be by physical mixing.
  • the mixing may be performed mechanically by means such as by ball milling.
  • the reaction mixture further comprises oxide-forming reactants that react with NaOH or Na 2 O to form a very stable oxide and NaH.
  • Such reactants comprises a cerium, magnesium, lanthanide, titanium, or aluminum or their compounds such as AIX 3 , MgX 2 , LaX ⁇ , CeX3, and TiX n where X is a halide, preferably Br or I and a reducing compound such as an alkali or alkaline earth metal.
  • the source of NaH catalyst comprises R-Ni comprising a sodium compound such as NaOH on its surface.
  • reaction of NaOH with the oxide- forming reactants such as AIX 3 , MgX 2 , LaX 3 , CeX 3 , and TiX n , and alkali metal M forms NaH, MX, and AI 2 O 3 , MgO, La 2 O 3 , Ce 2 O 3 , and Ti 2 O 3 , respectively.
  • the reaction mixture comprises NaOH doped R-Ni and an alkaline or alkaline earth metal added to form at least one of Na and NaH molecules.
  • the Na may further react with H from a source such as H 2 gas or a hydride such as R-Ni to form NaH catalyst.
  • the subsequent catalysis reaction of NaH forms H states given by Eq. (1).
  • the addition of an alkali or alkaline earth metal M may reduce Na + to Na by the reactions:
  • the catalyst NaH may be formed by the reaction
  • Na is a preferred reductant since it is a further source of NaH.
  • Hydrogen may be added to reduce NaOH and form NaH catalyst: NaOH + H 2 to NaH + H 2 O (109)
  • the H in R-Ni may reduce NaOH to Na metal, and water that may be removed by pumping.
  • the reaction mixture comprises one or more compounds that react with a source of NaH to form NaH catalyst.
  • the source may be NaOH.
  • the compounds may comprise at least one of a LiNH 2 , Li 2 NH, and Li 3 N.
  • the reaction mixture may further comprise a source of hydrogen such as H 2 .
  • the reaction of sodium hydroxide and lithium amide to form NaH and lithium hydroxide is
  • a source of H is provided to a source of Na to form the catalyst NaH.
  • the Na source may be the metal.
  • the source of H may be a hydroxide.
  • the hydroxide may be at least one of alkali, alkaline earth hydroxide, a transition metal hydroxide, and AI(OH)3.
  • Na reacts with a hydroxide to form the corresponding oxide and NaH catalyst.
  • the hydroxide is Mg(OH) 2
  • the product is MgO.
  • the product is CaO.
  • Alkaline earth oxides may be reacted with water to regenerate the hydroxide as given in Cotton [48].
  • the hydroxide can be collected as a precipitate by means such as filtration and centrifugation.
  • reaction to form NaH catalyst and regeneration cycle for Mg(OH) 2 are given by the reactions:
  • the reaction mixture of the solid fuel comprises Na/N alloy reactants.
  • the reaction mixture, solid-fuel reactions, and regeneration reactions comprise those of the Li/N system wherein Na replaces Li and the catalyst is molecular NaH except that the solid fuel reaction generates molecular NaH rather than atomic Li and H.
  • the reaction mixture comprises one or more compounds that react with a source of NaH to form NaH catalyst.
  • the reaction mixture may comprise at least one of the group of Na, NaH, NaNH 2 , Na 2 NH, Na 3 N, MH 3 , a dissociator, a hydrogen source such as H 2 gas or a hydride, a support, and a getter such as NaX (X is a halide).
  • the dissociator is preferably Pt, Ru, or Pd/AI 2 O 3 powder.
  • the dissociator may comprise Pt or Pd on a high surface area support suitably inert to Na.
  • the dissociator may be Pt or Pd on carbon or PdZAI 2 O 3 .
  • the latter support may comprise a protective surface coating of a material such as NaAIO 2 .
  • the reactants may be present in any wt%.
  • a preferred embodiment comprises the reaction mixture of Na or NaH, NaNH 2 , and Pd on AI 2 O 3 powder wherein the reaction mixture may be regenerated by addition of H 2 .
  • NaNH 2 is added to the reaction mixture.
  • NaNH 2 generates NaH according to the reversible reactions
  • NaH of Eq. (119) is molecular such that this reaction is another to generate the catalyst.
  • the reaction of sodium amide and hydrogen to form ammonia and sodium hydride is
  • this reaction is reversible.
  • the reaction can be driven to form NaH by increasing the H 2 concentration.
  • the forward reaction can be driven via the formation of atomic H using a dissociator. The reaction is given by
  • NaH catalyst is generated from a reaction of NaNH 2 and hydrogen, preferably atomic hydrogen as given in reaction Eqs. (121-122).
  • the ratios of reactants may be any desired amount. Preferably the ratios are about stoichiometric to those of Eqs. (121-122).
  • the reactions to form catalyst are reversible with the addition of a source of H such as H 2 gas or a hydride to replace that reacted to form hydrinos wherein the catalyst reactions are given by Eqs. (88- 95), and sodium amide forms with additional NaH catalyst by the reaction of ammonia with Na:
  • a ⁇ SA material is doped with NaNH 2 .
  • the doped HSA material is reacted with a reagent that will displace the amide group to form at least one of Na and NaH.
  • the reactant is an alkali or alkaline earth metal, preferably Li.
  • the reactant is an alkaline or alkaline earth hydride, preferably LiH.
  • the reactant may be both an alkali metal and an alkaline earth hydride.
  • a source of H such as H 2 gas may be further provided in addition to that provided by any other reagent of the reaction mixture such as a hydride, HSA material, and displacing reagent.
  • sodium amide undergoes reaction with lithium to form lithium amide, imide, or nitride and Na or NaH catalyst.
  • the reaction of sodium amide and lithium to form lithium imide and NaH is
  • the reaction of the mixture forms Na
  • the reactants further comprise a source of ⁇ that reacts with Na to form catalyst NaH by a reaction such as the following: Li + NaNH 2 to LiNH 2 + Na (127) and
  • the reagents of the reaction mixture such as M, MH, NaH, NaNH 2 , HSA material, hydride, and the dissociator are in any desired molar ratio.
  • M, MH, NaNH 2 ,and the dissociator are in molar ratios of greater than 0 and less than 100%, preferably the molar ratios are similar.
  • NH 4 X can generate NaNH 2 and H 2
  • NaH catalyst can be generated according to the reaction of Eqs. (117- 129).
  • reaction mechanism for the Na/N system to form hydrino catalyst NaH is
  • NaH molecules or Na and hydrided R-Ni can be regenerated by systems and methods after those disclosed for the Li-based reactant systems.
  • Na can be regenerated from solid NaH by evacuating H 2 released from NaH.
  • the plateau temperature at about 1 Torr for NaH decomposition is about 500 0 C.
  • NaH can be decomposed at about 1 Torr and 500 0 C, below the alloy-formation and sintering temperatures of R-Ni.
  • the molten Na can be separated from R-Ni, the R-Ni may be rehydrided, and Na and hydrided R-Ni can be returned to another reaction cycle.
  • regeneration can be achieved by heating with pumping to remove Na, the hydride can be rehydrided by introducing H 2 , and Na atoms can be redeposited onto the regenerated hydride after the cell is evacuated in an embodiment.
  • the competing kinetics of the hydriding or dehydriding of one reactant over another is exploited to achieve a reaction mixture comprising hydrided and non-hydrided compounds.
  • the formation of NaH solid is thermodynamically favored over the formation of R-Ni hydride.
  • the rate of NaH formation at low temperature such as the range of about 25 0 C-IOO °C is low; whereas, the formation of R-Ni hydride proceeds at a high rate in this temperature range at modest pressures such as the range of about 100 Torr to 3000 Torr.
  • the reaction mixture of Na and hydrided R-Ni can be regenerated from NaH solid and R-Ni by pumping at about 400-500 0 C to dehydride NaH, cooling the vessel to about 25-100 0 C, adding hydrogen to preferentially hydride R-Ni for a duration that achieves the desired selectivity, and then removing the excess hydrogen by evacuating the cell.
  • the R-Ni can be used in repeated cycles by selectively hydriding alone. This can be achieved by adding hydrogen in the temperature and pressure ranges that achieve the selective hydriding of R-Ni and then by removing the excess hydrogen before the vessel is heated to initiate the reactions that form atomic H and molecular NaH and the subsequent reaction to yield H states given by Eq. (1).
  • a reaction mixture comprising Na and a hydrogen source such as R-Ni may be hydrogenated to form the hydrides, and the NaH solid can be selectively dehydrided by pumping at the temperature and pressure ranges and durations which achieve the selectivity based on differential kinetics.
  • the reductant powder is mixed with the catalyst-source powder.
  • the catalyst-source powder For example, NaOH-doped R-Ni that provides NaH catalyst is mixed with a metal or metal hydride powder such as a lanthanide or NaH, respectively.
  • the mixing may be achieved by ball milling or the method of incipient wetness.
  • the surface may be coated by immersing the surface into a solution of the species such as NaOH or NaX (X is a counter anion such as halide) followed by drying.
  • NaOH may be incorporated into Ni/AI alloy or R-Ni by etching with concentrated NaOH (deoxygenated) using the same procedure as used to etch R-Ni as is well known in the Art [49].
  • the HSA material such as R-Ni doped with a species such as NaOH is reacted with a reductant such as Na to form NaH catalyst that reacts to form hydrinos.
  • the excess reductant such as Na may be removed from the products by evaporation, preferably, under vacuum at elevated temperature.
  • the reductant may be condensed to be recycled.
  • At least one of the reductant and a product species is removed by using a transporting medium such as a gas or liquid such as a solvent, and the removed species is isolated from the transporting medium.
  • a transporting medium such as a gas or liquid such as a solvent
  • the species can be isolated by means well known in the Art such as precipitation, filtration, or centrifugation.
  • the species may be recycled directly or further reacted to a chemical form suitable for recycling.
  • the NaOH may be regenerated by H reduction or by reaction with a water-vapor gas stream. In the former case, excess Na may be removed by evaporation, preferably, under vacuum at elevated temperature.
  • the reaction products can be removed by rinsing with a suitable solvent such as water, the HSA material may be dried, and the initial reactants may be added.
  • the products may be regenerated to the original reactants by methods known to those skilled in the Art.
  • a reaction product such as NaOH separated by rinsing R-Ni can be used in the process of etching R-Ni to regenerate it.
  • the product such as an oxide may be treated with a solvent such as dilute acid to remove the product.
  • the HSA material may then be re-doped and reused while the removed product may be regenerated by known methods.
  • the reductant such as an alkali metal can be regenerated from the product comprising a corresponding compound, preferably NaOH or Na 2 ⁇ , using methods and systems known to those skilled in the Art as given in Cotton [48].
  • One method comprises electrolysis in a mixture such as a eutectic mixture.
  • the reductant product may comprise at least some oxide such as a lanthanide metal oxide (e.g. La2 ⁇ 3).
  • the hydroxide or oxide may be dissolved in a weak acid such as hydrochloric acid to form the corresponding salt such as NaCI or LaCI 3 .
  • the treatment with acid may be a gas phase reaction.
  • the gases may be streaming at low pressure.
  • the salt may be treated with a product reductant such as an alkali or alkaline earth metal to form the original reductant.
  • the second reductant is an alkaline earth metal, preferably Ca wherein NaCI or LaCI 3 is reduced to Na or La metal. Methods known to those skilled in the Art are given in Cotton [48] which is herein incorporated by reference in its entirety. The additional product of CaCI 3 is recovered and recycled as well.
  • the oxide is reduced with H 2 at high temperature.
  • the product comprises Na and Al that need not be separated from the R-Ni product.
  • the R-Ni is regenerated as a source of catalyst without separation. Regeneration may be by the addition of NaOH.
  • the NaOH may partially etch Al of R-Ni [49] which is dried [50] for reuse.
  • Na and Al are reacted insitu or separated from the reaction product mixture and reacted with H 2 to form NaAIH 4 directly as given by Cotton [51] or by reaction of the recovered NaH with Al to form NaAIH 4 .
  • R-Ni is a preferred HSA material having NaOH as a source of NaH catalyst.
  • the Na content from the manufacturer is in the range of about 0.01 mg to 100 mg per gram of R-Ni, preferably in the range of about 0.1 mg to 10 mg per gram of R-Ni, and most preferably in the range of about 1 mg to 10 mg Na per gram of R-Ni.
  • the R-Ni or an alloy of Ni may further comprise promoters such as at least one of Zn, Mo, Fe, and Cr.
  • the R-Ni or alloy may be at least one of W. R.
  • the NaOH content of the R-Ni may be increased by a factor in the range of about 1.01 to 1000 times.
  • Solid NaOH may added by mixing by means such as ball milling, or it may be dissolved in a solution to achieve a desired concentration or pH. The solution may be added to R-Ni and the water evaporated to achieve the doping.
  • the doping may be in the range of about 0.1 ⁇ g to 100 mg per gram of R-Ni, preferably in the range of about 1 ⁇ g to 100 ⁇ g per gram of R-Ni, and most preferably in the range of about 5 ⁇ g to 50 ⁇ g per gram of R-Ni.
  • 0.1 g of NaOH is dissolved in 100 ml of distilled water and 10 ml of the NaOH solution is added to 50Og of non-decanted R-Ni from W. R. Grace Chemical Company such lot
  • #2800/05310 having an initial total content of Na of about 0.1 wt%.
  • the mixture is then dried.
  • the drying may be achieved by heating at 50 0 C under vacuum for 65 hours.
  • the doping may be achieved by ball milling NaOH with the R-Ni such as about 1 to 10 mg of NaOH per gram of R-Ni.
  • the R-Ni may be dried dry according to the standard R-Ni drying procedure [50].
  • the R-Ni may be decanted and dried in the temperature range of about 10-500 °C under vacuum, preferably, it is dried at 5O 0 C.
  • the duration may be in the range of about 1 hr to 200 hours, preferably, the duration is about 65 hours.
  • the H content of the dried R-Ni is in the range of about 1 ml-100 ml H/g R-Ni, preferably the H content of the dried R-Ni is in the range of about 10-50 ml H/g R-Ni (where ml gas are at STP).
  • the drying temperature, time, vacuum pressure and flow of gases, if any, such as He, Ar, or H 2 during and after drying is controlled to achieve dryness and the desired H content.
  • the preparation of R-Ni from Ni/AI alloy comprises the step of etching the alloy with aqueous NaOH solution.
  • concentration of NaOH, etching times, and rinsing exchanges may be varied to achieve the desired level of incorporation of NaOH.
  • the NaOH solution is oxygen free.
  • the molarity is in the range of about 1 to 10 M, preferably in the range of about 5 to 8 M, and most preferably about 7 M.
  • the alloy is reacted with the NaOH for about 2 hours at about 50 0 C.
  • the solution is then diluted with water such as deionized water until AI(OH)3 precipitate forms.
  • the amphoteric reaction of NaOH with AI(OH) 3 to form water-soluble Na[AI(OH) 4 ] is at least partially prevented such that NaOH is incorporated into the R-Ni.
  • the incorporation may be achieved by drying the R-Ni without decanting.
  • the pH of the diluted solution may be in the range of 8 to 14, preferably in the range of 9 to 12, and most preferably about 10-11.
  • Argon may be bubbled through the solution for about 12 hours, and then the solution may be dried.
  • the reductant and catalyst source are regenerated.
  • the reaction products are separated.
  • the reductant product may be separated from the product of the source of catalyst.
  • the products are separated mechanically based on at least one of particle size, shape, weight, density, magnetism, or dielectric constant. Particles having a significant difference in size and shape can be mechanically separated using sieves. Particles with large differences in density can be separated by buoyancy differences. Particles having large differences in magnetic susceptibility can be separated magnetically. Particles with large differences in dielectric constant can be separated electrostatically.
  • the products are ground to reverse any sintering. The grinding may be with a ball mill.
  • the separation of the particles is achieved by at least one of sieving and use of classifiers.
  • the size and shape of the particle may be selected in the starting materials to achieve the desired separation of the products.
  • the reductant is a powder or is converted to a powder and mechanically separated from the other components of the product reaction mixture such as a HSA material.
  • Na, NaH, and a lanthanide comprise at least one of the reductant and a source of the reductant, and a HSA material component is R-Ni.
  • the reductant product may be separated from the product mixture by converting any unreacted non-powder reductant metal to the hydride.
  • the hydride may be formed by the addition of hydrogen.
  • the metal hydride may be ground to form a powder.
  • the powder may then be separated from the other products such as that of the source of the catalyst based on a difference in the size of the particles. The separation may be by agitating the mixture over a series of sieves that are selective for certain size ranges to cause the separation.
  • the R-Ni particles are separated from the metal hydride or metal particles based on the large magnetic susceptibility difference between the particles.
  • the reduced R-Ni product may be magnetic.
  • the unreacted lanthanide metal and hydrided metal and any oxide such as La ⁇ Os are weakly paramagnetic and diamagnetic, respectively.
  • the product mixture may be agitated over a series of strong magnets alone or in combination with one or more sieves to cause the separation based on at least one of the stronger adherence or attraction of the R-Ni product particles to the magnet and a size difference of the two classes of particles.
  • the latter adds an additional force to that of gravity to draw the smaller R-Ni product particles through the sieve while the weakly paramagnetic or diamagnetic particles of the reductant product are retained on the sieve due to their larger size.
  • the alkali metal may be recovered from the corresponding hydride by heating and optionally by applying vacuum.
  • the evolved hydrogen can be reacted with alkali metal in another batch of a repetitive reaction-regeneration cycle. There may be more than one batch in the cycle at various stages.
  • the hydride and any other compound(s) may be separated, and then reacted to form the metal separately from the formation of the metal from the hydride.
  • the reaction mixture is regenerated by vapor deposition techniques, preferably in the case that the reactants are on the surface of a HSA material such as R-Ni.
  • the reactants are provided by reacting gas streams with the HSA material such as R-Ni.
  • Vapor- deposited elements, compounds, intermediates, and species that are the desired reactants or are converted into the desired reactants as well as the sequence and composition of the gas streams and the chemistry to form the reactants from the gas streams are well by those skilled in the Art of vapor deposition.
  • alkali metals can be directly vapor deposited and any metals with low vapor pressure such as Al can be vapor deposited from the gaseous halide or hydride.
  • oxide products such as Na 2 O may be reacted with a source of hydrogen to form the hydroxide such as NaOH.
  • the source of hydrogen may comprise a water-vapor gas stream to regenerate NaOH.
  • the NaOH can be formed using H 2 or a source of H 2 .
  • the hydriding of the HSA material such as R-Ni can be achieved by supplying hydrogen gas, and removing excess hydrogen by means such as pumping.
  • the NaOH may be regenerated stoichiometrically by precisely controlling the total moles of reacted H from a source such as water vapor or hydrogen gas. Any additional Na or NaH formed at this stage may be removed by evaporation, and decomposition and evaporation, respectively.
  • an oxide or hydroxide product such as Na 2 O or excess NaOH can be removed.
  • This can be achieved by conversion to a halide such as NaI which may be removed by distillation or vaporization.
  • the vaporization can be achieved with heating and by maintaining a vacuum at elevated temperature.
  • the conversion to a halide may be achieved by reaction with an acid such as HI.
  • the treatment may be by a gas stream comprising the acid gas.
  • any excess NaOH is removed by sublimation.
  • Any evaporation, distillation, transport, gas-stream process, or related processes of the reactants may further comprise a carrier gas.
  • the carrier gas may be an inert gas such as a noble gas.
  • Further steps may comprise mechanical mixing or separation.
  • NaOH and NaH can be also be deposited or removed mechanically by methods such as ball milling and sieving, respectively.
  • the redundant is an element other than a desired first element such as Na
  • the other element may be replaced by a second such as Na using methods known in the Art.
  • a step may comprise evaporation of excess reductant.
  • the large surface-area material such as R-Ni may be etched.
  • the etching may be with a base, preferably NaOH.
  • the etched product may be decanted with substantially all of any solvent such as water removed mechanically such as by decanting and possibly centrifugation.
  • the etched R-Ni may be dried under vacuum and recycled.
  • the reaction mixture comprises at least one of AI ⁇ molecules and a source of AI ⁇ molecules.
  • a source of AI ⁇ molecules may comprise Al metal and a source of hydrogen, preferably atomic hydrogen.
  • the source of hydrogen may be a hydride, preferably R-Ni.
  • the catalyst AI ⁇ is generated by the reaction of an oxide or hydroxide of Al with a reductant.
  • the reductant comprises at least one of the NaOH reductants given previously.
  • a source of ⁇ is provided to a source of Al to form the catalyst AI ⁇ .
  • the Al source may be the metal.
  • the source of ⁇ may be a hydroxide.
  • the hydroxide may be at least one of alkali, alkaline earth hydroxide, a transition metal hydroxide, and AI(O ⁇ )3.
  • Raney nickel can be prepared by the following two reaction steps:
  • Ni[AI(OH) 4 ] is readily dissolved in concentrated NaOH. It can be washed in de- oxygenated water.
  • R-Ni may be reacted with another element to cause the chemical release of AIH molecules which then undergo catalysis according to reactions given by Eqs. (133-135).
  • the AIH release is caused by a reduction reaction, etching, or alloy formation.
  • M is an alkali or alkaline earth metal which reacts with the Ni portion of R-Ni to cause the AIH x component to release AIH molecules that subsequently under go catalysis.
  • M may react with Al hydroxides or oxides to form Al metal that may further react with H to form AIH. The reaction can be initiated by heating, and the rate may be controlled by controlling the temperature.
  • M (alkali or alkaline earth metal) and R-Ni are in any desired molar ratio.
  • M and R-Ni are in molar ratios of greater than 0 and less than 100%. Preferably the molar ratio of M and R-Ni are similar.
  • Al atoms are vapor deposited on a surface.
  • the surface may support or be a source of H atoms to form AIH molecules.
  • the surface may comprise at least one of a hydride and hydrogen dissociator.
  • the surface may be R- Ni which may be hydrided.
  • the vapor deposition may be from a reservoir containing a source of Al atoms.
  • the Al source may be controlled by heating. One source that provides Al atoms when heated is Al metal.
  • the surface may be maintained at a low temperature such as room temperature during the vapor deposition.
  • the Al-coated surface may be heated to cause the reaction of Al and H to form AIH and may further cause the AIH molecules to react to form H states given by Eq. (1 ).
  • Other thin-film deposition techniques that are well known in the ART to form layers of at least one of Al and other elements such as metals comprise further embodiments of the Invention.
  • Such embodiments comprise physical spray, electro-spray, aerosol, electro-arching, Knudsen cell controlled release, dispenser-cathode injection, plasma-deposition, sputtering, and further coating methods and systems such as melting a fine dispersion of Al, electroplating Al, and chemical deposition of Al.
  • the source of AIH comprises R-Ni and other Raney metals or alloys of Al known in the Art such as R-Ni or an alloy comprising at least one of Ni, Cu, Si, Fe, Ru, Co, Pd, Pt, and other elements and compounds.
  • the R-Ni or alloy may further comprise promoters such as at least one of Zn, Mo, Fe, and Cr.
  • the R- Ni may be at least one of W. R. Grace Raney 2400, Raney 2800, Raney 2813, Raney 3201 , Raney 4200, or an etched or Na doped embodiment of these materials.
  • the source of catalyst comprises a Ni/AI alloy wherein the Al to Ni ratio is in the range of about 10-90%, preferably about 10-50%, and more preferably about 10-30%.
  • the source of catalyst may comprise palladium or platinum and further comprise Al as a Raney metal.
  • the source of AIH may further comprise AIH 3 .
  • the AIH 3 may be deposited on or with Ni to form a NiAIH x alloy.
  • the alloy may be activated by the addition of a metal such as an alkali or alkaline earth metal.
  • the reaction mixture comprises AIH3, R-Ni, and a metal such as an alkali metal.
  • the metal may be supplied by vaporization from a reservoir or by gravity feed from a source that flows down on the R-Ni at an elevated temperature.
  • AIH molecules or Al and hydrided R-Ni can be regenerated by systems and methods after those disclosed for the other reactant systems.
  • the reaction mixture comprises ⁇ CI or a source of ⁇ CI.
  • a source may be NH 4 CI or a solid acid and a chloride such as an alkali or alkaline earth chloride.
  • the solid acid may be at least one of MHSO 4 , MHCO 3 , MH 2 PO 4 , and MHPO 4 wherein M is a cation such as an alkali or alkaline earth cation.
  • Other such solid acids are known to those skilled in the Art.
  • the reactants comprise HCI catalyst in an ionic lattice such as HCI in an alkali or alkaline earth halide, preferably a chloride.
  • the reaction mixture comprises a strong acid such as HzSO 4 and an ionic compound such as NaCI.
  • the reaction of the acid with the ionic compound such as NaCI generates HCI in the crystalline lattice to serve as a hydrino catalyst and H source.
  • MH type hydrogen catalysts to produce hydrinos provided by the breakage of the M-H bond plus the ionization of t electrons from the atom M each to a continuum energy level such that the sum of the bond energy and ionization energies of the t electrons is approximately m - 27.2 eV where m is an integer are given in TABLE 2.
  • Each MH catalyst is given in the first column and the corresponding M-H bond energy is given in column two.
  • the atom M of the MH species given in the first column is ionized to provide the net enthalpy of reaction of w- 27.2 eV with the addition of the bond energy in column two.
  • the enthalpy of the catalyst is given in the eighth column where m is given in the ninth column.
  • the electrons, that participate in ionization are given with the ionization potential (also called ionization energy or binding energy).
  • the bond energy of NaH , 1.9245 eV [44] is given in column two.
  • the ionization potential of the «th electron of the atom or ion is designated by IP n and is given by the CRC [1]. That is for
  • IP 2 47.2864 eV , are given in the second and third columns, respectively.
  • H can react with each of the MH molecules given in TABLE 2 to form a hydrino having a quantum number p increased by one (Eq. (1)) relative to the catalyst reaction product of MH alone as given by exemplary Eq. (92).
  • MH type hydrogen catalysts capable of providing a net enthalpy of reaction of approximately m • 27.2 eV .
  • the reactants comprise sources of SbH, SiH, SnH, and InH.
  • the sources comprise at least one of M and a source of H 2 and MH x such as at least one of Sb, Si, Sn, and In and a source of H 2 , and SbH 3 ,, SiH 4 , SnH 4 ,and InH 3 .
  • the reaction mixture may further comprise a source of H and a source of catalyst wherein the source of at least one of H and catalyst may be a solid acid or NH 4 X where X is a halide, preferably Cl to form HCI catalyst.
  • the reaction mixture may comprise at least one of NH 4 X, a solid acid, NaX, LiX, KX, NaH, LiH, KH, Na, Li, K, a support, a hydrogen dissociator and H 2 where X is a halide, preferably Cl.
  • the solid acid may be NaHSO 4 , KHSO 4 , LiHSO 4 , NaHCO 3 , KHCO 3 , LiHCO 3 , Na 2 HPO 4 , K 2 HPO 4 , Li 2 HPO 4 , NaH 2 PO 4 , KH 2 PO 4 , and LiH 2 PO 4 .
  • the catalyst may be at least one of NaH, Li, K, and HCI.
  • the reaction mixture may further comprise at least one of a dissociator and a support.
  • Other thin-film deposition techniques that are well known in the ART comprise further embodiments of the Invention.
  • Such embodiments comprise physical spray, electro-spray, aerosol, electro-arching, Knudsen cell controlled release, dispenser- cathode injection, plasma-deposition, sputtering, and further coating methods and systems such as melting a fine dispersion of M, electroplating M, and chemical deposition of M where MH comprises a catalyst.
  • the alloy may be hydrided with a source of H 2 such as H 2 gas.
  • H 2 can be supplied to the alloy during the reaction, or H 2 may be supplied to form the alloy of a desired H content with the H pressure changed during the reaction. In this case, the initial H2 pressure may be about zero.
  • the alloy may be activated by the addition of a metal such as an alkali or alkaline earth metal.
  • the hydrogen gas may be maintained in the range of about 1 Torr to 100 atm, preferably about 100 Torr to 10 atm, more preferably about 500 Torrto 2 atm.
  • the source of hydrogen is from a hydride such as an alkali or alkaline earth metal hydride or a transition metal hydride.
  • Atomic hydrogen in high density can undergo three-body-collision reactions to form hydrinos wherein one H atom undergoes the transition to form states given by Eq. (1 ) when two additional H atoms ionize.
  • the reaction are given by
  • reaction are given by:
  • the material that provides H atoms in high density is R-Ni.
  • the atomic H may be from at least one of the decomposition of H within R-Ni and the dissociation of H 2 from an H 2 source such as H2 gas supplied to the cell.
  • R-Ni may be reacted with an alkali or alkaline earth metal M to enhance the production of layers of atomic H to cause the catalysis.
  • R-Ni can be regenerated by evaporating the metal M followed by addition of hydrogen to rehydhde the R-Ni.
  • CRC Boca Raton, Florida, (1997), p. 10-214 to 10-216; hereafter referred to as "CRC”.
  • Equation numbers, section numbers, and reference numbers given hereafter in this Experimental section refer to those given in this Experimental section of the Disclosure.
  • the product is H(I Ip), fractional Rydberg states of atomic hydrogen
  • n integer in the Rydberg equation for hydrogen excited states.
  • Raney nickel served as a dissociator when the power reaction mixture was used in chemical synthesis wherein LiBr acted as a getter of the catalysis product H(I /4) to form LiH * X as well as to trap H 2 (II 4) in the crystal.
  • the ToF-SIMs showed LiH * X peaks.
  • the 1 H MAS NMR LiH * Br and LiH * I showed a large distinct upfield resonance at about -2.5 ppm that matched /T (l / 4) in a LiX matrix.
  • a novel exothermic effect of -177 U I moleNaH was observed in the temperature range of 640 0 C to 825 0 C.
  • R-Ni having a surface area of about 100 m 2 1 g was surface-coated with NaOH and reacted with Na metal to form NaH .
  • the observed energy balance of the NaH reaction was -1.6X10 4 kJ I mole H 2 , over 66 times the -241.8 kJ I mole H 2 enthalpy of combustion.
  • the ToF-SIMs showed sodium hydrino hydride, NaH x , peaks.
  • the 1 H MAS NMR spectra of NaH * Br and NaH * Cl showed large distinct upfield resonance at -3.6 ppm and -A ppm, respectively, that matched H ' (l / 4) , and an NMR peak at 1.1 ppm matched H 2 (l / 4) .
  • NaH * Cl from reaction of NaCl and the solid acid KHSO 4 as the only source of hydrogen comprised two fractional hydrogen states.
  • the H ⁇ (l / 4) NMR peak was observed at -3.97 ppm, and the H ' (l / 3) peak was also present at -3.15 ppm.
  • H 2 (l /4) and H 2 (l / 3) peaks were observed at 1.15 ppm and 1.7 ppm, respectively.
  • the XPS spectrum recorded on NaH * Br showed the H " (l / 4) peaks at about 9.5 eV and 12.3 eV that matched the results from LiH * Br and KH * I ; whereas, sodium hydrino hydride showed two fractional hydrogen states additionally having the H " (l / 3) XPS peak at 6 eV in the
  • GUTCP predicts a reaction involving a resonant, nonradiative energy transfer from otherwise stable atomic hydrogen to a catalyst capable of accepting the energy to form hydrogen in lower-energy states than previously thought possible.
  • the product is H(I / p) , fractional Rydberg states of atomic hydrogen
  • n - -,-,—,...,— ( p ⁇ 137 is an integer) replaces the well known parameter 2 3 4 p
  • n integer in the Rydberg equation for hydrogen excited states.
  • He + , Ar + , Sr + , Li , K , and NaH are predicted to serve as catalysts since they meet the catalyst criterion — a chemical or physical process with an enthalpy change equal to an integer multiple of the potential energy of atomic hydrogen, 27.2 eV .
  • the data from a broad spectrum of investigational techniques strongly and consistently support the existence of these states called hydrino, for "small hydrogen", and the corresponding diatomic molecules called dihydrino molecules.
  • Theoretical models predict that dwarfs formed from collisional debris of massive galaxies should be free of nonbaryonic dark matter. So, their gravity should tally with the stars and gas within them.
  • Bournaud et al. [42-43] have measured the gravitational masses of a series of dwarf galaxies lying in a ring around a massive galaxy that has recently experienced a collision. Contrary to the predictions of Cold-Dark-Matter (CDM) theories, their results demonstrate that they contain a massive dark component amounting to about twice the visible matter.
  • CDM Cold-Dark-Matter
  • He + fulfills the catalyst criterion — a chemical or physical process with an enthalpy change equal to an integer multiple of 27.2 eV since it ionizes at 54.417 eV , which is 2 • 27.2 eV .
  • the product of the catalysis reaction of He + , H(I / 3) may further serve as a catalyst to lead to transitions to other states H(I / p) .
  • n 1 in Eq. (2b).
  • the excited energy states of atomic hydrogen are given by Eq. (2a) for n > 1 in Eq. (2b).
  • an electron transition from the ground state to a lower-energy state may be possible by a resonant nonradiative energy transfer such as multipole coupling or a resonant collision mechanism. Processes such as hydrogen molecular bond formation that occur without photons and that require collisions are common [44]. Also, some commercial phosphors are based on resonant nonradiative energy transfer involving multipole coupling [45].
  • the reaction involves a nonradiative energy transfer followed by q • 13.6 eV emission or q ⁇ 13.6 eV transfer to H to form extraordinarily hot, excited-state H [13-17, 19-20, 32-39] and a hydrogen atom that is lower in energy than unreacted atomic hydrogen that corresponds to a fractional principal quantum number. That is
  • a catalyst provides a net positive enthalpy of reaction of m • 27.2 eV (i.e. it resonantly accepts the nonradiative energy transfer from hydrogen atoms and releases the energy to the surroundings to affect electronic transitions to fractional quantum energy levels).
  • the hydrogen atom becomes unstable and emits further energy until it achieves a lower-energy nonradiative state having a principal energy level given by Eqs. (2a) and (2c).
  • the catalyst product, H(U p) may also react with an electron to form a novel
  • ⁇ a is the permeability of vacuum
  • m e is the mass of the electron
  • H( ⁇ l p) may react with a proton and two H( ⁇ l p) may react to form
  • the total energy E 7 . of the hydrogen molecular ion having a central field of +pe at each focus of the prolate spheroid molecular orbital is
  • E D is given by Eqs. (8-9) and (7):
  • the 1 H NMR resonance of H 2 (I/ p) is predicted to be upfield from that of H 1 due to the fractional radius in elliptic coordinates [1 , 6] wherein the electrons are
  • the p 2 dependence of the rotational energies results from an inverse p dependence of the internuclear distance and the corresponding impact on the moment of inertia / .
  • the predicted internuclear distance 2c' for H 2 (I / p) is
  • a new chemically generated or assisted plasma source based on the resonant energy transfer mechanism (rt-plasma) has been developed that may be a new power source.
  • rt-plasma resonant energy transfer mechanism
  • One such source operates by incandescently heating a hydrogen dissociator and a catalyst to provide atomic hydrogen and gaseous catalyst, respectively, such that the catalyst reacts with the atomic hydrogen to produce a plasma. It was extraordinary that intense EUV emission was observed by Mills et al. [13-21 , 38-39] at low temperatures (e.g.
  • K to ZsT 3+ provides a reaction with a net enthalpy equal to three times the potential energy of atomic hydrogen. It was reported previously [13-21 , 38-39] that the presence of these gaseous atoms with thermally dissociated hydrogen formed an rt-plasma having strong EUV emission with a stationary inverted Lyman population. Other noncatalyst metals such as Mg produced no plasma. Significant line broadening of the Balmer a , ⁇ , and / lines of 18 eV was observed. Emission from rt-plasmas occurred even when the electric field applied to the plasma was zero. Since a conventional discharge power source was not present, the formation of a plasma would require an energetic reaction.
  • Doppler broadening is the relative thermal motion of the emitter with respect to the observer.
  • Line broadening is a measure of the atom temperature, and a significant increase was expected and observed for catalysts, K as well as Sr + or Ar ⁇ [13-21 , 38-39], with hydrogen.
  • An energetic chemical reaction was further implicated since it was found that the broadening is time dependent [13-14, 20]. Therefore, the thermal power balance was measured calorimetrically. The reaction was exothermic since excess power of 20 mW cm ⁇ 3 was measured by Calvet calorimetry [20].
  • KNO 3 and Raney nickel were used as a source of K catalyst and atomic hydrogen, respectively, to produce the corresponding exothermic reaction.
  • H 2 (I/ 4) trapped in the lattice of KH* Cl was investigated by windowless EUV spectroscopy on electron-beam excitation of the crystals using the 12.5 keV electron gun at pressures below which any gas could produce detectable emission ( ⁇ 10 ⁇ 5 Torr).
  • the rotational energy of H 2 (I/ 4) was confirmed by this technique as well.
  • a catalytic system used to make and analyzed predicted hydride compounds involves lithium atoms.
  • the first and second ionization energies of lithium are 5.39172 eV and 75.64018 eV, respectively [52].
  • the double ionization (t - 2 ) reaction of Li to Lj 2+ then, has a net enthalpy of reaction of 81.0319 eV , which is equivalent to 3 - 27.2 eV .
  • Lithium is a metal in the solid and liquid states, and the gas comprises covalent Li 2 molecules [53], each having a bond energy of 1 10.4 kJ/mole [54].
  • LiNH 2 was added to the reaction mixture. LiNH 2 generates atomic hydrogen as well, according to the reversible reactions [55-64]:
  • a catalytic reaction is provided by the breakage of the M - H bond plus the ionization of t electrons from the atom M each to a continuum energy level such that the sum of the bond energy and ionization energies of the t electrons is approximately m ⁇ 27.2 eV , where m is an integer.
  • One such catalytic system involves sodium.
  • the bond energy of NaH is 1.9245 eV [54]
  • the First and second ionization energies of Na are 5.13908 eV and 47.2864 eV , respectively [52].
  • the catalyst reactions are given by
  • the NaH catalyst reactions may be concerted since the sum of the bond energy of
  • H f + asl is a fast hydrogen atom having at least 13.6 eV of kinetic energy.
  • Sodium hydride is typically in the form of an ionic crystalline compound formed by the reaction of gaseous hydrogen with metallic sodium. And, in the gaseous state, sodium comprises covalent Na 2 molecules [53] with a bond energy of
  • a small amount of NaOH , Na , and atomic hydrogen serves as a catalytic source of the NaH catalyst that in turn forms a large yield of hydrinos via multiple cycles of regenerative reactions such as those given by Eqs. (31-34).
  • R-Ni having a high surface area of about 100 m 2 I g and containing H was surface coated with NaOH and reacted with Na metal to form NaH(g) . Since the energy balance in the formation of NaH (g) was negligible due to the small amounts involved, the energy and power due to the hydrino reactions given by Eqs. (23-25) were specifically measured using water-flow, batch calorimetry.
  • R-Ni 2400 was prepared such that it comprised about 0.5 wt% NaOH , and the Al of the intermetallic served as the reductant to form NaH catalyst during calorimetry measurement.
  • This exothermic reaction can drive the formation of NaH(g) and was exploited to drive the very exothermic reaction given by Eqs. (23-25) wherein the regeneration of NaH occurred from Na in the presence of atomic hydrogen.
  • reaction products H(I I p) may undergo further reaction to lower-energy states.
  • the catalyst reaction of Ar + to Ar 2 ⁇ forms H(112) , which may further serve as both a catalyst and a reactant to form H(I /4) [1 , 13-14, 28-29] and the corresponding favored molecule H 2 (1/4) , observed using different catalysts [13-14].
  • NaH catalyst from Eqs. (23-25) and Table 1 of Ref. [29] are H ⁇ (l / 3) and H 2 (I / 4) having the energies given by Eqs. (3) and (5-15), respectively. They were tested by MAS 1 H NMR and ToF-SIMs.
  • the catalyst reactions are given by
  • Alkali chlorides contain both Cl and H , typically from H 2 O contamination. Thus, some HCl can form interstitially in the crystalline matrix. Since H + can most easily substitute for Li * , and the substitution is least likely in the case of Cs + , it was anticipated that alkali chlorides may form HCl that undergoes catalysis to form H 2 (I / 4) with the trend of the rate of formation increasing in the order of the Group I elements. Due to the difference in lattice structure, MgCl 2 may not form HCl catalyst; thus, it serves as a chlorine control. This condition applies to other alkaline earth halides and transition metal halides such as those of copper that can serve as controls for the formation of H 2 (I / 4) .
  • Mg 2* in a suitable lattice is 80.1437 eV [52] which is close to 3 • 27.2 eV .
  • Figure 1 LiNH 2 hydrogen rt-plasmas was generated in the experimental set up described previously [15-21] ( Figure 1 ) comprising a thermally insulated stainless steel cell with a cap that incorporated ports for gas inlet, and outlet.
  • a titanium filament 55 cm long, 0.5 mm diameter
  • 1 g of LZNH 2 (Alfa Aesar 99.95%) was placed in the center of the cell under 1 atm of dry argon in a glove box.
  • the cell was sealed and removed from the glove box.
  • the cell was maintained at 50 0 C for 4 hours with helium flowing at 30 seem at a pressure of 1 Torr.
  • the filament power was increased to 200 W in 20 W increments every 20 minutes.
  • the filament temperature was estimated to be in the range 800 to 1000 0 C.
  • the external cell wall temperature was about 700 0 C.
  • the cell was then operated with and without an argon-hydrogen (95/5%) flow rate of 5.5 seem maintained at 1 Torr. Additionally, the cell was operated with hydrogen gas flow replacing argon-hydrogen (95/5%).
  • the LiNH 2 was vaporized by the filament heater as evidence the presence of Li lines.
  • the presence of an argon-hydrogen or hydrogen plasma was determined by recording the visible spectrum over the Balmer region with a Jobin Yvon ⁇ oriba 1250 M spectrometer with a CCD detector described previously [15-21] using entrance/exits slits of 80/80 ⁇ m and a 3 second integration time.
  • the width of the 656.3 nm Balmer a line emitted from the argon-hydrogen (95/5%)- LjNH 2 or hydrogen- LiNH 2 rt-plasma having a titanium filament was measured initially and periodically during operation. As further controls, the experiment was run with each of the flowing gases in the absence of LZNH 2 .
  • DSC Differential Scanning Calorimetry
  • an aluminum oxide sample (Alfa-Aesar, -400 Mesh powder, 99.9%) with matching weight of the sample was placed in a matched AI-23 crucible. All samples were handled in a glove box. Each alumina glove finger cell was sealed in the glove box, removed from the glove box, and then quickly attached to the Setaram calorimeter. The system was immediately evacuated to pressure of 1 mTorr or less. The cell was back filled with 1 atm of helium, evacuated again, and then refilled with helium to 760 Torn The cells were then inserted into the oven, and secured to their positions in the DSC instrument. The oven temperature was brought to the desired starting temperature of 100 0 C.
  • the oven temperature was scanned from 100 0 C to 750 0 C at a ramp rate of 0.1 degree/minute.
  • MgH 2 replaced NaH .
  • a 0.050 g MgH 2 sample (Alfa-Aesar, 90%, reminder Mg) was added to the sample cell, while a similar weight of aluminum oxide (Alfa-Aesar) was added to the reference cell. Both samples were also handled in a glove box.
  • the cylindrical stainless steel reactor of approximately 60 cm 2 volume (1.0" outside diameter (OD), 5.0" length, and 0.065" wall thickness) is shown in Figure 2.
  • the cell further comprised a welded-in 2.5" long, cylindrical thermocouple well with a wall thickness of 0.035" along the centerline that held a Type K thermocouple (Omega) read by a meter (DAS).
  • DAS Type K thermocouple
  • a 3/8" OD, 0.065" thick SS tube welded at the end of the cell 1/4" off-center served as a port to introduce combinations of the reagents comprising the group of (i) 1g Li , 0.5g LiNH 2 , 10g LiBr , and 15g PdIAl 2 O 3 , (ii) 3.28 g Na , 15g Raney (R-) Ni I Al alloy, (iii) 15g R-M doped with NaOH , and (iv) 3 wt% AZ(OH) 3 doped Ni l Al alloy .
  • the SS tube had a 1/4" OD and a 0.02" wall-thickness.
  • the reactants were loaded in a glove box, and a valve was attached to the port tube to seal the cell before it was removed from the glove box and connected to a vacuum pump.
  • the cell was evacuated to a pressure of 10 mTorr and crimped.
  • the cell was then sealed with the valve or hermetically sealed by spot-welding 1/2" from the cell with the remaining tube cut off.
  • the reactor was installed inside a cylindrical calorimeter chamber shown in
  • the stainless steel chamber had 15.2 cm ID, 0.305 cm wall thickness, and 40.4 cm length.
  • the chamber was sealed at both ends by removable stainless steel plates and Viton o-rings.
  • the space between the reactor and the inside surface of the cylindrical chamber was filled with high temperature insulation.
  • the gas composition and pressure in the chamber was controlled to modulate the thermal conductance between the reactor and the chamber.
  • the interior of the chamber was first filled with 1000 Torr helium to allow the cell to reach ambient temperature, the chamber was then evacuated during the calorimetric run to increase the cell temperature. Afterwards, 1000 Torr helium was added to increase the heat transfer rate from the hot cell to the coolant and balance any heat associated with P-V work.
  • the relative dimensions of the reactor and the chamber were such that heat flow from the reactor to the chamber was primarily radial. Heat was removed from the chamber by cooling water which flowed turbulently through 6.35 mm OD copper tubing, which was wound tightly (63 turns) onto the outer cylindrical surface of the chamber.
  • the reactor and chamber system were designed to safely absorb a thermal power pulse of 50 kW with one a minute duration. The absorbed energy was subsequently released to the cooling water stream in a controlled manner for calorimetric measurement. The temperature rise of the cooling water was measured by precision thermistor probes (Omega, OL-703-PP, 0.01 0 C) at the cooling coil inlet and exit.
  • the inlet water temperature was controlled by a Cole Parmer (digital Polystat, model 12101-41) circulating bath with 0.01 0 C temperature stability and 900 W cooling capacity at 2O 0 C.
  • a well insulated eight-liter damping tank was installed just downstream of the bath in order to reduce temperature fluctuations caused by cycling of the bath. Coolant flow through the system was maintained by an FMI model QD variable flow rate positive displacement lab pump. Cooling water flow rate was set by a variable area flow meter with a high-resolution control valve. The flow meter was calibrated directly by water collection in situ. A secondary flow rate measurement was performed by a turbine flow meter (McMillan Co., G111 Flometer, ⁇ 1 %) which continuously output the flow rate to the data acquisition system.
  • the calorimeter chamber was installed in a covered HDPE tank which was filled with melamine foam insulation to minimize heat loss from the system. Careful measurement of the thermal power release to the coolant and comparison with the measured input power indicated that thermal losses were less than 2-3 %.
  • the calorimeter was calibrated with a precision heater applied for a set time period to determine the percentage recovery of the total energy applied by the heater.
  • the energy recovery was determined by integrating the total output power P 1 . over time. The power was given by
  • helium was evacuated from the chamber by the vacuum pump, and the chamber was maintained under dynamic pumping at a pressure below 1 Torr. 100.00 W of power was supplied to the heater (50.23 V and 1.991 A) for a period of 50 minutes. During this period, the cell temperature increased to approximately 650 °C, and the maximum change in water temperature (outlet minus inlet) was approximately 1.2 0 C. After 50 minutes, the program directed the power to zero. To increase the rate of heat transfer to the coolant, the chamber was re-pressurized with 1000 Torr of helium and the assembly was allowed to fully reach equilibrium over a 24-hour period as confirmed by the observation of full equilibrium in the flow thermistors.
  • the hydrino-reaction procedure followed that of the calibration run, but the cell contained the reagents.
  • the equilibration period with 1000 Torr helium in the chamber was 90 minutes. 100.00 W of power was applied to the heater, and after 10 minutes, the helium was evacuated from the chamber. The cell heated at a faster rate post evacuation, and the reagents reached a hydrino reaction threshold temperature of 190 0 C at 57 minutes. The onset of reaction was confirmed by a rapid rise in cell temperature that reached 378 °C at about 58 minutes. After ten minutes, the power was terminated, and helium was reintroduced into the cell slowly over a period of 1 hour at a rate of 150 seem.
  • the hydrogen content was determined by mass spectroscopy, quantitative gas chromatography (HP 5890 Series Il with a ShinCarbon ST 100/120 micropacked column (2 m long, 1/16" OD), N 2 carrier gas with a flow rate of 14 ml/min, an oven temperature of 80 0 C, an injector temperature of 100 °C, and thermal-conductivity detector temperature of 100 0 C), and by using the ideal gas law and the measured pressure, volume, and temperature. Hydrogen dominated each analysis with trace water only detected by mass spectroscopy, and ⁇ 2% methane was also quantified by gas chromatography.
  • the trace water of the R-Ni and controls was quantified independently of the hydrogen by liquefying the H 2 O in a liquid nitrogen trap, pumping off the hydrogen, and allowing all the water to vaporize by using a sample size of 0.5 g which is less than that which gives rise to a saturated water-vapor pressure at room temperature.
  • LiH * Br and LiH * I Lithium bromo and iodohydrinohydride ( LiH * Br and LiH * I ) were synthesized by reaction of hydrogen with Li (1 g) and LZNH 2 (0.5 g) (Alfa Aesar 99%) as a source of atomic catalyst and additional atomic H with the corresponding alkali halide (10 g), LiBr (Alfa Aesar ACS grade 99+%) or LiI (Alfa Aesar 99.9 %), as an additional reactant.
  • the compounds were prepared in a stainless steel gas cell ( Figure 4) further containing Raney Ni (15 g) (W. R. Grace Davidson) as the hydrogen dissociator according to the methods described previously [13-14].
  • the reactor was run at 500 0 C in a kiln for 72 hours with make-up hydrogen addition such that the pressure ranged cyclically between 1 Torr to 760 Torr. Then, the reactor was cooled under helium atmosphere. The sealed reactor was then opened in a glove box under an argon atmosphere. NMR samples were placed in glass ampules, sealed with rubber septa, and transferred out of the glove box to be flame sealed.
  • LiNH 2 Since the synthesis reaction comprised LiNH 2 , and Li 2 NH was a reaction product, both were run as controls alone and in a LiBr or LiI matrix.
  • the LiNH 2 was the commercial starting material, and Li 2 NH was synthesized by the reaction of LZNH 2 and LiH [67] and by decomposition of LZNH 2 [68] with the Li 2 NH product confirmed by X-ray diffraction (XRD).
  • XRD X-ray diffraction
  • the controls were prepared by mixing equimolar amounts of compounds in a glove box under argon.
  • ESR electron spin resonance spectroscopy
  • the samples were loaded into 4 mm OD Suprasil quartz tubes and evacuated to a final pressure of 10 "4 Torr.
  • ESR spectra were recorded with a Bruker ESP 300 X-band spectrometer at room temperature and 77 K.
  • the magnetic field was calibrated with a Varian E-500 gauss meter.
  • the microwave frequency was measured by a HP 5342A frequency counter.
  • Elemental analysis was performed at Galbraith Laboratories to confirm the product composition and to eliminate the possibility of NMR-detectable amounts of any transition metal hydrides or other exotic hydrides that may give rise to upfield- shifted peaks. Specifically, the abundance of all elements present in the product (Li, H, X ) and the stainless steel reaction vessel and R-Ni (M, Fe, Cr, Mo, Mn, Al ) were determined.
  • NaH * Cl and NaH * Br were synthesized by reaction of hydrogen with Na (3.28 g) and NaH (1 g) (Aldrich Chemical Company 99%) as a source of NaH catalyst and intrinsic atomic H with the corresponding alkali halide (15 g), NaCl or NaBr (Alfa Aesar ACS grade 99+%), as an additional reactant.
  • the compounds were prepared in a stainless steel gas cell ( Figure 4) further containing Pt ITi ( Pt coated Ti (15 g); Titan Metal Fabricators, platinum plated titanium mini-expanded anode, 0.089 cm x 0.5 cm x 2.5 cm with 2.54 ⁇ m of platinum) as the hydrogen dissociator.
  • NaH * Cl was also synthesized from NaCl (10 g) and the solid acid KHSO 4 (1.6 g) as the only source of hydrogen with the kiln maintained at 580 0 C. NMR was performed to test whether H " (1 / 3) formed by the reactions of Eqs. (23-25) could be observed when the rapid reaction to // " (1 /4) according to Eq. (27) was partially inhibited due to the absence of a high concentration of H from a dissociator with H 2 or a hydride.
  • a silicon wafer (2 g, 0.5 x 0.5 x 0.05 cm, Silicon Quest International, silicon (100), boron-doped, cleaned by heating to 700 0 C under vacuum) was coated by the product NaH * Cl and NaH * by placing it in reactants comprising Na (1.7 g), NaH (0.5 g), NaCl (10 g), and Pt ITi (15 g) wherein the NaCl that was initially heated to 400°C under vacuum to remove any H 2 (I / 4) .
  • the reaction was run at 55O 0 C in the kiln for 19 hours with an initial hydrogen pressure of 760 Torr.
  • XPS was performed on a spot comprising only sodium hydrino hydride coated silicon wafer (NaH *- coated Si ).
  • the NaH * Cl -coated silicon wafer ( NaH * Cl -coated Si ) was investigated by electron-beam excitation spectroscopy. An emission spectrum of a pressed pellet of the NaH * Cl crystals was also
  • ToF-SIMS Spectra.
  • the crystalline samples of LiH * Br , LiH * I , NaH * Cl , NaH * Br , and the corresponding alkali halide controls were sprinkled onto the surface of a double-sided adhesive tape and characterized using a Physical Electronics TFS-2000 ToF-SIMS instrument.
  • the primary ion gun utilized a 69 Ga + liquid metal source.
  • a region on each sample of (60 ⁇ m) 2 was analyzed.
  • the samples were sputter- cleaned for 60 seconds using a 180 ⁇ m X ⁇ 00 ⁇ m raster.
  • the aperture setting was 3, and the ion current was 600 pA resulting in a total ion dose of 10 15 ions/ cm 2 .
  • the ion gun was operated using a bunched (pulse width 4 ns bunched to 1 ns) 15 kV beam [69-70].
  • the total ion dose was 10 12 ions I cm 2 .
  • Charge neutralization was active, and the post accelerating voltage was 8000 V.
  • the positive and negative SIMS spectra were acquired. Representative post sputtering data is reported.
  • the reactions to form hydrinos are given by Eqs. (32-35). Since the surface was coated with NaOH , sodium hydrino hydride compounds with NaOH were predicted.
  • FTIR Spectroscopy FTIR analysis was performed on solid-sample- KBr pellets of LiH * Br using the transmittance mode at the Department of Chemistry, Princeton University, New Jersey using a Nicolet 730 FTIR spectrometer with DTGS detector at resolution of 4 cm '1 as described previously [13-14]. The samples were handled under an inert atmosphere. The resolution was 0.5 cm '1 .
  • Controls comprised LiNH 2 , Li 2 NH , and LZ 3 N that were commercially available except Li 2 NH that was synthesized by the reaction of LiNH 2 and LiH [67] and by decomposition of LiNH 2 [68] with the Li 2 NH product confirmed by X-ray diffraction (XRD).
  • XPS Spectra A series of XPS analyses were made on the crystalline samples using a Scienta 300 XPS Spectrometer. The fixed analyzer transmission mode and the sweep acquisition mode were used. The step energy in the survey scan was 0.5 eV , and the step energy in the high-resolution scan was 0.15 eV . In the survey scan, the time per step was 0.4 seconds, and the number of sweeps was 4. In the high-resolution scan, the time per step was 0.3 seconds, and the number of sweeps was 30. C Is at 284.5 eV was used as the internal standard.
  • UV Spectroscopy of Electron-Beam Excited Interstitial H 2 (1 / 4) Vibration- rotational emission of H 2 (l/4) trapped in the lattice of alkali halides, MgCl 2 , and in a silicon wafer was investigated via electron bombardment of the crystals. Windowless UV spectroscopy of the emission from electron-beam excitation of the crystals was recorded using a 12.5 keV electron gun at a beam current of 10-20 ⁇ A in the pressure range of ⁇ 10 "5 Torr. The UV spectrum was recorded with a photomultiplier tube (PMT). The wavelength resolution was about 2 nm (FW ⁇ M) with an entrance and exit slit width of 300 ⁇ m. The increment was 0.5 nm and the dwell time was 1 second. III. Results and Discussion
  • Argon of the argon-hydrogen mixture increased the amount of atomic ⁇ as evidenced by the significantly decreased ⁇ emission in the absence of argon.
  • the energetic hydrogen atom energies were calculated from the width of the 656.3 nm Balmer a line emitted from RF rt-plasmas.
  • the full half-width A ⁇ G of each Gaussian results from the Doppler ( ⁇ D ) and instrumental (A ⁇ f ) half-widths:
  • ⁇ 0 is the line wavelength
  • the 656.3 nm Balmer a line widths recorded on the argon-hydrogen (95/5%)- lithium rt-plasma, initially and after 70 hours of operation, are shown in Figures 5A and 5B, respectively.
  • the Balmer a line profile of the plasma emission at both time points comprised two distinct Gaussian peaks, an inner, narrower peak corresponding to a slow component of less than 0.5 eV and an outer, significantly broadened peak corresponding to a fast component of >40 eV.
  • a lithium rt-plasma also formed in the case of pure H 2 gas at a pressure of 1 Torr, except that the line broadening and populations were less, about 6 eV with only a 27% population, at the initial and 70-hour time points as shown in Figures 6A and 6B, respectively. This result was expected, since the excess H 2 can react with Li to form ZiH that catalyzes the destruction of LiNH 2 by the reaction:
  • fast H can be explained by a resonant energy transfer from hydrogen atoms to Li atoms, of three times the potential energy of atomic hydrogen, to form a short-lived intermediate H * (l / 4) having a central field equivalent to four times that of a proton and a radius of the hydrogen atom.
  • Collisional energy transfer including through- space coupling is common. For example, the exothermic chemical reaction of H + H to form H 2 does not occur with the emission of a photon.
  • the observed energy balance is -870 kJ I mole H 2 , over 3.5 times the -241.8 U I mole H 2 enthalpy of combustion, the most energetic reaction of hydrogen assuming the maximum possible H 2 inventory.
  • the cell temperature with time and the coolant power with time for the R-Ni control power test with the cell containing the reagents comprising the starting material for R-Ni, 15g R-Ni/AI alloy powder, and 3.28g of Na are shown in Figures 13 and 14, respectively.
  • the temperature and coolant power time profiles curves were very similar to the calibration.
  • the numerical integration of the input and output power curves with the calibration correction applied yielded an output energy of 384 kJ and an input energy of 385 kJ. Energy balance was obtained.
  • the composition of the reactant NaOH -doped R-Ni and the product following the reaction with the alkali metal determined by quantitative XRD was Ni with trace Bayerite and Ni with trace alkali hydroxide, respectively.
  • reaction Be + 1 /2O 2 ⁇ BeO which has a heat of combustion of 24 kJ/g, and there are very few known fuel/oxidizer systems producing greater than 10 kJ/g [65].
  • the ⁇ content of the recyclable catalyst NaH produced energy of over 300 times that of the best known solid fuel per weight.
  • the catalytic material With increased NaOH doping and a switch to R-Ni 2400, the catalytic material generated high power and energy without requiring the addition of Na .
  • the cell temperature with time and the coolant power with time for the hydrino reaction with the cell containing the catalyst material, 15g NaOH -doped R-Ni 2400, are shown in Figures 17 and 18, respectively.
  • the numerical integration of the input and output power curves with the calibration correction applied yielded an output energy of 195.7 kJ and an input energy of 184.0 kJ corresponding to an excess energy of 11.7 kJ, and the power was over 0.25 kW.
  • composition of the reactant NaOH -doped R-Ni and the product following the reaction determined by quantitative XRD was R-Ni with 3.7wt% Bayerite and R- Ni, respectively.
  • the measured H 2 O content from Bayerite decomposition of the initial R-Ni was 32.8 ⁇ moles H 2 OIg R-Ni compared to the measured H 2 O content from Bayerite decomposition of 34.0 ⁇ moles H 2 OIg for 3 wt% Al(OH) 3 doped
  • the negative ion ToF-SIMS of LiBr and the LiH * Br crystals are shown in Figures 21 and 22, respectively.
  • the LiH * Br spectrum was dominated by H ⁇ and Br ⁇ peaks with the intensity of H ' > Br ⁇ .
  • Bromide alone dominated the negative ion ToF-SIMS of the LiBr control.
  • O ⁇ , OH- , Cl ⁇ , and LiBr ' were also observed.
  • other unique peaks of the LiH * Br sample were LiHBr ' and Li 2 H 1 Br ' consistent with the formation of novel lithium bromohydride.
  • the positive ToF-SIMS spectrum obtained from LiI and the LiH * I crystals are shown in Figures 23 and 24, respectively.
  • LiH * / sample LiHI + , Li 2 H 2 I + , Li 4 H 2 I + , and LZ 6 H 2 Z + .
  • LiH * / sample LiHI ' , Li 2 H 2 F , and NaHF consistent with the formation of novel lithium iodohydride.
  • Ni from the Na/R-Ni water-flow calorimetric run that produced 36 kJ of excess heat.
  • the dominant ion on the surface was Na + consistent with NaOH doping of the surface.
  • the ions of the other major elements of R-Ni 2400 such as Al * , Ni + , Cr* , and Fe * were also observed.
  • NMR spectra of LiH * Br and L/H * / relative to external TMS are shown in Figures 3OA and 3OB, respectively.
  • None of the controls comprising LiH , equal molar mixtures of LiH and LiBr or LiI , LiNH 2 , Li 2 NH , and equal molar mixtures of LZNH 2 or LZ 2 NH and LiBr or LiI showed an upfield-shifted peak.
  • the diamagnetic shift due to the larger halide is +2.15 ppm.
  • the corrected upfield NMR peaks for LiH * X are each about -4.46 ppm which matches the predicted shift of the free ion given by Eq. (4).
  • the heat-treated samples were analyzed by FTIR spectroscopy to confirm that the amide and imide were eliminated as indicated by the absence of the amide peaks at 3314, 3259, 2079(broad), 1567, and 1541 cm '1 and the imide peaks at 3172 (broad), 1953, and 1578 cm '1 while the -2.5 ppm peak remained upon reanalysis by NMR.
  • the FTIR spectrum shown in Figure 45B shows the elimination of these species while the corresponding NMR showed the -2.5 ppm peak.
  • the -2.5 ppm peak in 1 H NMR spectrum is not associated with the U H, LzTVH 2 , Lz 2 NH , or any other known species
  • the -2.5 ppm peak in 'H ⁇ MR spectrum is assigned to the H " (l/4) ion which matches theoretical prediction and is direct evidence of a lower-energy state hydride ion.
  • H 2 has been characterized by gas-phase 1 H NMR.
  • the experimental absolute resonance shift of gas-phase TMS relative to the proton's gyromagnetic frequency is -28.5 ppm [80].
  • H 2 was observed at 0.48 ppm compared to gas phase TMS set at 0.00 ppm [81].
  • the corresponding absolute H 2 gas-phase resonance shift of -28.0 ppm (-28.5 + 0.48) ppm was in excellent agreement with the predicted absolute gas-phase shift of -28.01 ppm given by Eq. (12).
  • the absolute H 2 gas-phase shift can be used to determine the matrix shift for H 2 in a lithium-compound matrix.
  • the correction for the matrix shift can then be applied to the 1.3 ppm peak to determine the gas-phase absolute shift to compare to Eq. (12).
  • the shifts of all of the peaks were relative to liquid-phase TMS which has an experimental absolute resonance shift of — 31.5 ppm relative to the proton's gyromagnetic frequency [78-79].
  • the experimental shift of H 2 in a lithium-compound matrix of 4.06 ppm relative to liquid-phase TMS is shown in Figure 7 of Lu et al. [82] and corresponds to an absolute resonance shift of -27.44 ppm (-31.5 ppm + 4.06 ppm).
  • Lu et al. [82] also observed a peak at this position that increased in intensity relative to H 2 with the duration of in situ heating of LiH + LiNH 2 (1.1/1 ). They were unable to assign the peak labeled unknown in their Figures 6 and 7. The assignment of the peak that matched the theoretical shift of H 2 (I /4) extremely well, was confirmed by FTIR (Sec. MIG) and electron beam-excitation emission spectroscopy (Sec. III ⁇ ). The presence of the H " (l / 4) ion in LiH * X was found to depend on the
  • the experimental absolute resonance shift of TMS is -31.5 ppm relative to the proton's gyromagnetic frequency [78-79].
  • H " (1/4) is the favored hydride ion predicted by using NaH as the catalyst (Eqs. (3-4) and (23-27)).
  • the 4.3 ppm peak shown in Figure 33 is assigned to H 2
  • the 1.13 ppm peak is assigned to H 2 (1/4). The latter is commonly observed as a favored catalysis molecular product [29].
  • Helium is another catalyst that can cause a transition reaction to —
  • He * catalysis product — to — may occur via further catalysis by atomic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

L'invention concerne une source d'alimentation et un réacteur d'hydrure comprenant une cellule de réaction pour la catalyse d'hydrogène atomique afin de former de nouvelles espèces d'hydrogène et des compositions de matière comprenant de nouvelles formes d'hydrogène; une source d'hydrogène atomique; une source de catalyseur d'hydrogène comprenant un mélange réactionnel d'au moins un réactif incluant le ou les éléments formant le catalyseur et au moins un autre élément, de sorte que le catalyseur est formé à partir de la source et que la catalyse d'hydrogène atomique libère de l'énergie en une quantité supérieure à approximativement 300 kJ par mole d'hydrogène pendant la catalyse de l'atome d'hydrogène.
PCT/US2008/061455 2001-11-21 2008-04-24 Réacteur à catalyseur d'hydrogène WO2008134451A1 (fr)

Priority Applications (15)

Application Number Priority Date Filing Date Title
CA002684952A CA2684952A1 (fr) 2007-04-24 2008-04-24 Reacteur a catalyseur d'hydrogene
KR1020097024516A KR101871950B1 (ko) 2007-04-24 2008-04-24 수소-촉매 반응기
JP2010506500A JP2010532301A (ja) 2007-04-24 2008-04-24 水素触媒反応器
AU2008245686A AU2008245686B2 (en) 2007-04-24 2008-04-24 Hydrogen-catalyst reactor
BRPI0810972-9A2A BRPI0810972A2 (pt) 2001-11-21 2008-04-24 Fonte de energia e reator de hidreto, catalisador, central de energia e método de produção de energia
KR1020157026590A KR20150116905A (ko) 2007-04-24 2008-04-24 수소-촉매 반응기
CN200880020310.2A CN101679025B (zh) 2007-04-24 2008-04-24 氢-催化剂反应器
MX2009011545A MX2009011545A (es) 2007-04-24 2008-04-24 Reactor con catalizador de hidrogeno.
EP08754923A EP2185468A4 (fr) 2007-04-24 2008-04-24 Réacteur à catalyseur d'hydrogène
EA200901438A EA200901438A1 (ru) 2007-04-24 2008-04-24 Реактор для водородного катализа
AP2009005030A AP3135A (en) 2007-04-24 2008-04-24 Hydrogen-catalyst reactor
IL201716A IL201716A0 (en) 2007-04-24 2009-10-22 Hydrogen-catalyst reactor
HK10108540.6A HK1142055A1 (en) 2007-04-24 2010-09-08 Hydrogen catalyst reactor
IL238038A IL238038A0 (en) 2007-04-24 2015-03-30 Catalyst-hydrogen reagent
IL249525A IL249525A0 (en) 2007-04-24 2016-12-12 Catalyst-hydrogen reagent

Applications Claiming Priority (70)

Application Number Priority Date Filing Date Title
US91355607P 2007-04-24 2007-04-24
US60/913,556 2007-04-24
US95230507P 2007-07-27 2007-07-27
US60/952,305 2007-07-27
US95442607P 2007-08-07 2007-08-07
US60/954,426 2007-08-07
US93537307P 2007-08-09 2007-08-09
US60/935,373 2007-08-09
US95546507P 2007-08-13 2007-08-13
US60/955,465 2007-08-13
US95682107P 2007-08-20 2007-08-20
US60/956,821 2007-08-20
US95754007P 2007-08-23 2007-08-23
US60/957,540 2007-08-23
US97234207P 2007-09-14 2007-09-14
US60/972,342 2007-09-14
US97419107P 2007-09-21 2007-09-21
US60/974,191 2007-09-21
US97533007P 2007-09-26 2007-09-26
US60/975,330 2007-09-26
US97600407P 2007-09-28 2007-09-28
US60/976,004 2007-09-28
US97843507P 2007-10-09 2007-10-09
US60/978,435 2007-10-09
US98755207P 2007-11-13 2007-11-13
US60/987,552 2007-11-13
US98794607P 2007-11-14 2007-11-14
US60/987,946 2007-11-14
US98967707P 2007-11-21 2007-11-21
US60/989,677 2007-11-21
US99143407P 2007-11-30 2007-11-30
US60/991,434 2007-11-30
US99197407P 2007-12-03 2007-12-03
US60/991,974 2007-12-03
US99260107P 2007-12-05 2007-12-05
US60/992,601 2007-12-05
US1271707P 2007-12-10 2007-12-10
US61/012,717 2007-12-10
US1486007P 2007-12-19 2007-12-19
US61/014,860 2007-12-19
US1679007P 2007-12-26 2007-12-26
US61/016,790 2007-12-26
US2002308P 2008-01-09 2008-01-09
US61/020,023 2008-01-09
US2120508P 2008-01-15 2008-01-15
US61/021,205 2008-01-15
US2180808P 2008-01-17 2008-01-17
US61/021,808 2008-01-17
US2211208P 2008-01-18 2008-01-18
US61/022,112 2008-01-18
US2294908P 2008-01-23 2008-01-23
US61/022,949 2008-01-23
US2329708P 2008-01-24 2008-01-24
US61/023,297 2008-01-24
US2368708P 2008-01-25 2008-01-25
US61/023,687 2008-01-25
US2473008P 2008-01-30 2008-01-30
US61/024,730 2008-01-30
US2552008P 2008-02-01 2008-02-01
US61/025,520 2008-02-01
US2860508P 2008-02-14 2008-02-14
US61/028,605 2008-02-14
US3046808P 2008-02-21 2008-02-21
US61/030,468 2008-02-21
US6445308P 2008-03-06 2008-03-06
US61/064,453 2008-03-06
US6472308P 2008-03-21 2008-03-21
US61/064,723 2008-03-21
US7119108P 2008-04-17 2008-04-17
US61/071,191 2008-04-17

Publications (1)

Publication Number Publication Date
WO2008134451A1 true WO2008134451A1 (fr) 2008-11-06

Family

ID=39926078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2008/061455 WO2008134451A1 (fr) 2001-11-21 2008-04-24 Réacteur à catalyseur d'hydrogène

Country Status (11)

Country Link
EP (1) EP2185468A4 (fr)
JP (3) JP2010532301A (fr)
KR (2) KR101871950B1 (fr)
CN (1) CN101679025B (fr)
AU (1) AU2008245686B2 (fr)
CA (1) CA2684952A1 (fr)
EA (1) EA200901438A1 (fr)
HK (1) HK1142055A1 (fr)
IL (3) IL201716A0 (fr)
MX (1) MX2009011545A (fr)
WO (1) WO2008134451A1 (fr)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010014684A2 (fr) * 2008-07-30 2010-02-04 Blacklight Power, Inc. Réacteur hydrogène-catalyseur hétérogène
WO2011016878A1 (fr) * 2009-08-07 2011-02-10 Blacklight Power, Inc. Système d’alimentation à catalyseur d’hydrogène hétérogène
JP2012505810A (ja) * 2008-07-30 2012-03-08 ブラックライト パワー インコーポレーティド 不均一系水素触媒反応器
TWI497809B (zh) * 2009-07-30 2015-08-21 Blacklight Power Inc 非均勻氫催化劑反應器
TWI612717B (zh) * 2012-05-21 2018-01-21 明亮光源能源公司 觸媒誘導亞氫遷移電力系統
CN110061279A (zh) * 2018-03-01 2019-07-26 荷派克电源有限两合公司 重组器
CN113479844A (zh) * 2021-06-04 2021-10-08 中国原子能科学研究院 一种氚化水样品转化制备氢化钛的方法
CN113748524A (zh) * 2019-09-09 2021-12-03 松下知识产权经营株式会社 热电转换材料、热电转换元件、使用热电转换材料获得电的方法以及输送热的方法
US12005391B2 (en) 2019-12-11 2024-06-11 Brookhaven Science Associates, Llc Method for trapping noble gas atoms and molecules in oxide nanocages

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5809348B2 (ja) * 2011-04-05 2015-11-10 ブラックライト パワー インコーポレーティド H2oベース電気化学的水素−触媒パワーシステム
JP5922372B2 (ja) 2011-10-24 2016-05-24 日揮触媒化成株式会社 水素化処理触媒及びその製造方法
US10753275B2 (en) * 2013-11-20 2020-08-25 Brilliant Light Power, Inc. Power generation systems and methods regarding same
BR112016020409B1 (pt) * 2014-03-03 2022-06-21 Brilliant Light Power, Inc Sistema de potência, método para produzir potência elétrica e método para gerar potência
CA3011972A1 (fr) * 2016-01-19 2017-07-27 Brilliant Light Power, Inc. Generateur d'energie electrique thermophotovoltaique
KR102564577B1 (ko) * 2016-08-16 2023-08-04 한화오션 주식회사 금속 연료 수소발생장치용 금속 연료 공급장치
KR102564578B1 (ko) * 2016-08-17 2023-08-04 한화오션 주식회사 금속 연료 수소 발생장치용 금속 연료 공급장치
RU2019108040A (ru) * 2016-08-31 2020-10-01 Ван Сайнтифик, Инк. Сша Системы, устройства и способы для получения электрической энергии посредством преобразования воды в водород и кислород
JP6827254B2 (ja) * 2019-01-04 2021-02-10 ブリリアント ライト パワー インコーポレーティド パワー発生システム及び同システムに関する方法
CN112037958B (zh) * 2020-09-09 2022-09-23 中国工程物理研究院核物理与化学研究所 一种高浓氚水处理装置
CN112117020B (zh) * 2020-09-09 2022-11-22 中国工程物理研究院核物理与化学研究所 一种光热协同催化处理氚水的方法
CN112723878B (zh) * 2020-12-29 2022-09-23 苏州金宏气体股份有限公司 能量收集多孔陶瓷Pt-BaTiO3其制法及高效制氢
CN113117675B (zh) * 2021-04-10 2022-04-08 福州大学 一种铑铒复合金属光热催化剂及其制备方法和应用
KR102368521B1 (ko) * 2022-01-04 2022-02-25 순천대학교 산학협력단 액상 플라즈마 반응을 이용한 수소생성용 복합 금속산화물 촉매의 제조방법 및 복합 금속산화물 촉매

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2829950A (en) * 1954-12-01 1958-04-08 Callery Chemical Co Preparation of sodium hydride from sodium amalgam and hydrogen
US6693060B2 (en) * 2001-05-18 2004-02-17 Korea Research Institute Of Chemical Technology Modified θ-Al2O3-supported nickel reforming catalyst and its use for producing synthesis gas from natural gas
US20060233699A1 (en) * 2003-04-15 2006-10-19 Mills Randell L Plasma reactor and process for producing lower-energy hydrogen species

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3359422A (en) * 1954-10-28 1967-12-19 Gen Electric Arc discharge atomic particle source for the production of neutrons
US3300345A (en) * 1964-09-03 1967-01-24 Jr Ernest H Lyons Electrolytic cell for producing electricity and method of operating the cell
US3377265A (en) * 1964-11-16 1968-04-09 Mobil Oil Corp Electrochemical electrode
DE2855413A1 (de) * 1978-12-21 1980-07-10 Siemens Ag Speichermaterial fuer wasserstoff
US4353871A (en) * 1979-05-10 1982-10-12 The United States Of America As Represented By The United States Department Of Energy Hydrogen isotope separation
US4512966A (en) * 1983-12-02 1985-04-23 Ethyl Corporation Hydride production at moderate pressure
US4986887A (en) * 1989-03-31 1991-01-22 Sankar Das Gupta Process and apparatus for generating high density hydrogen in a matrix
US5139895A (en) * 1991-07-19 1992-08-18 General Electric Company Hydrogen thermal electrochemical converter
EP1684311A2 (fr) * 1993-06-11 2006-07-26 Hydrocatalysis Power Corporation Procédés et structures de conversion énergie/matière
JP2001523331A (ja) * 1995-06-06 2001-11-20 ブラック ライト パワー インコーポレイテッド より低エネルギー水素の方法と構造
TR200301483T2 (tr) * 2001-03-07 2004-11-22 Black Light Power Inc. Mikrodalga güç bataryası, kimyasal reaktör ve güç değiştirici.
KR100488726B1 (ko) * 2002-12-13 2005-05-11 현대자동차주식회사 연료전지 시스템의 수소 공급장치
US7904065B2 (en) * 2004-06-21 2011-03-08 Varia Holdings Llc Serving data/applications from a wireless mobile phone

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2829950A (en) * 1954-12-01 1958-04-08 Callery Chemical Co Preparation of sodium hydride from sodium amalgam and hydrogen
US6693060B2 (en) * 2001-05-18 2004-02-17 Korea Research Institute Of Chemical Technology Modified θ-Al2O3-supported nickel reforming catalyst and its use for producing synthesis gas from natural gas
US20060233699A1 (en) * 2003-04-15 2006-10-19 Mills Randell L Plasma reactor and process for producing lower-energy hydrogen species

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA031711B1 (ru) * 2008-07-30 2019-02-28 Блэклайт Пауэр, Инк. Реактор, содержащий гетерогенный катализатор конверсии водорода
WO2010014684A2 (fr) * 2008-07-30 2010-02-04 Blacklight Power, Inc. Réacteur hydrogène-catalyseur hétérogène
JP2017014098A (ja) * 2008-07-30 2017-01-19 ブラックライト パワー インコーポレーティド 不均一系水素触媒反応器
JP2012505810A (ja) * 2008-07-30 2012-03-08 ブラックライト パワー インコーポレーティド 不均一系水素触媒反応器
WO2010014684A3 (fr) * 2008-07-30 2010-12-02 Blacklight Power, Inc. Réacteur hydrogène-catalyseur hétérogène
AU2009276601B2 (en) * 2008-07-30 2014-12-18 Blacklight Power, Inc. Heterogeneous hydrogen-catalyst reactor
AP3363A (en) * 2008-07-30 2015-07-31 Blacklight Power Inc Heterogeneous hydrogen-catalyst reactor
TWI497809B (zh) * 2009-07-30 2015-08-21 Blacklight Power Inc 非均勻氫催化劑反應器
JP2013501602A (ja) * 2009-08-07 2013-01-17 ブラックライト パワー インコーポレーティド 不均一系水素触媒反応器
JP2017185479A (ja) * 2009-08-07 2017-10-12 ブラックライト パワー インコーポレーティド パワーシステム
EP3441359A1 (fr) * 2009-08-07 2019-02-13 Brilliant Light Power, Inc. Système de puissance à catalyseur hydrogène hétérogène
WO2011016878A1 (fr) * 2009-08-07 2011-02-10 Blacklight Power, Inc. Système d’alimentation à catalyseur d’hydrogène hétérogène
EA032676B1 (ru) * 2009-08-07 2019-07-31 Блэклайт Пауэр, Инк. Гетерогенная водородно-катализаторная энергетическая система
TWI612717B (zh) * 2012-05-21 2018-01-21 明亮光源能源公司 觸媒誘導亞氫遷移電力系統
CN110061279A (zh) * 2018-03-01 2019-07-26 荷派克电源有限两合公司 重组器
CN110061279B (zh) * 2018-03-01 2023-04-11 荷派克电源有限两合公司 重组器
CN113748524A (zh) * 2019-09-09 2021-12-03 松下知识产权经营株式会社 热电转换材料、热电转换元件、使用热电转换材料获得电的方法以及输送热的方法
US12005391B2 (en) 2019-12-11 2024-06-11 Brookhaven Science Associates, Llc Method for trapping noble gas atoms and molecules in oxide nanocages
CN113479844A (zh) * 2021-06-04 2021-10-08 中国原子能科学研究院 一种氚化水样品转化制备氢化钛的方法

Also Published As

Publication number Publication date
CN101679025A (zh) 2010-03-24
KR20100017342A (ko) 2010-02-16
EP2185468A4 (fr) 2012-02-01
IL238038A0 (en) 2015-05-31
HK1142055A1 (en) 2010-11-26
IL249525A0 (en) 2017-02-28
CA2684952A1 (fr) 2008-11-06
JP2010532301A (ja) 2010-10-07
MX2009011545A (es) 2010-01-28
JP2015071536A (ja) 2015-04-16
EA200901438A1 (ru) 2010-06-30
AU2008245686B2 (en) 2014-01-09
IL201716A0 (en) 2010-05-31
CN101679025B (zh) 2014-10-22
JP2018027888A (ja) 2018-02-22
KR20150116905A (ko) 2015-10-16
KR101871950B1 (ko) 2018-06-27
AU2008245686A1 (en) 2008-11-06
EP2185468A1 (fr) 2010-05-19

Similar Documents

Publication Publication Date Title
US20190389723A1 (en) Hydrogen-catalyst reactor
AU2008245686B2 (en) Hydrogen-catalyst reactor
JP2015071536A5 (fr)
US11333069B2 (en) Power generation systems and methods regarding same
JP2019071276A (ja) H2oベース電気化学的水素−触媒パワーシステム
AU705379B2 (en) Lower-energy hydrogen methods and structures
KR100604483B1 (ko) 무기 수소 화합물, 분리 방법, 및 연료 적용
US20030026757A1 (en) Method of production of pure hydrogen near room temperature from aluminum-based hydride materials
CA2483780A1 (fr) Synthese de diamant
JP2019117792A (ja) パワー発生システム及び同システムに関する方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880020310.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08754923

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008754923

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2684952

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 201716

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 2010506500

Country of ref document: JP

Ref document number: MX/A/2009/011545

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008245686

Country of ref document: AU

Ref document number: 7078/DELNP/2009

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 200901438

Country of ref document: EA

ENP Entry into the national phase

Ref document number: 20097024516

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: A200911896

Country of ref document: UA

ENP Entry into the national phase

Ref document number: 2008245686

Country of ref document: AU

Date of ref document: 20080424

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: PI0810972

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20091027

WWE Wipo information: entry into national phase

Ref document number: 238038

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 249525

Country of ref document: IL