WO2008131262A1 - Method and apparatus for dynamic adjustment of uplink transmission time - Google Patents

Method and apparatus for dynamic adjustment of uplink transmission time Download PDF

Info

Publication number
WO2008131262A1
WO2008131262A1 PCT/US2008/060880 US2008060880W WO2008131262A1 WO 2008131262 A1 WO2008131262 A1 WO 2008131262A1 US 2008060880 W US2008060880 W US 2008060880W WO 2008131262 A1 WO2008131262 A1 WO 2008131262A1
Authority
WO
WIPO (PCT)
Prior art keywords
tti
time interval
transmission time
condition
communication link
Prior art date
Application number
PCT/US2008/060880
Other languages
English (en)
French (fr)
Inventor
Mehmet Yavuz
Bibhu P. Mohanty
Ozcan Ozturk
Sharad Deepak Sambhwani
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to JP2010504290A priority Critical patent/JP5044012B2/ja
Priority to CN200880012835.1A priority patent/CN101663852B/zh
Priority to CA2682697A priority patent/CA2682697C/en
Priority to KR1020097024260A priority patent/KR101095169B1/ko
Priority to BRPI0810371-2A2A priority patent/BRPI0810371A2/pt
Priority to EP08746318.8A priority patent/EP2143224B1/en
Publication of WO2008131262A1 publication Critical patent/WO2008131262A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • H04W28/12Flow control between communication endpoints using signalling between network elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0006Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format
    • H04L1/0007Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format by modifying the frame length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • H04W36/18Performing reselection for specific purposes for allowing seamless reselection, e.g. soft reselection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/12Access point controller devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates generally to communication, and more specifically to techniques for dynamically adjusting the transmission timing interval (TTI) in a communication system.
  • TTI transmission timing interval
  • a communication system can employ a transmission time interval (TTI) for transmission of data between communication system components (e.g., between user equipment (UE) and a base station (BS or NodeB)).
  • TTI transmission time interval
  • a NodeB may transmit one or more data packets to a receiver in a given TTI, wherein the TTI can be based on the transmission conditions, commonly referred to as the link budget.
  • the link budget refers to the gains and losses in a signal transmitted between a transmitter and a receiver in a communications system and therefore accounts for attenuated signals, antenna gains, and other gains and losses.
  • the received power is equal to the transmitted power minus losses plus gains for that NodeB.
  • all transmissions within a given NodeB can utilize a common TTI.
  • communications systems can select either a 2 millisecond (ms) or 10 ms TTI.
  • communications systems select either the 2ms or 10ms TTI when establishing a communications event (e.g., a voice call, data call, or combinations thereof, ).
  • a communications event e.g., a voice call, data call, or combinations thereof.
  • Further conventional systems typically employ the same TTI for all UE- NodeB pairs in a given communications region (e.g., a cell).
  • the high speed packet access standard allows both 10 millisecond (ms) transmission time interval (TTI) and 2ms TTI for uplink transmission operations.
  • High speed packet access encompasses high speed downlink packet access (HSDPA) technology and high speed uplink packet access (HSUPA) technology and also includes HSPA+ technology.
  • HSDPA, HSUPA and HSPA+ are part of the Third Generation Partnership Project (3GPP) specifications Release 5, Release 6, and Release 7, respectively, which specifications are expressly incorporated by reference herein.
  • 3GPP Third Generation Partnership Project
  • the 2ms TTI can provide lower transmission delays and larger hybrid automatic repeat request (HARQ) gains.
  • HARQ hybrid automatic repeat request
  • the 2ms TTI can enable longer battery life in a discontinuous transmission (DTX) mode for mobile device operation.
  • DTX discontinuous transmission
  • the 10ms TTI can provide better link budgeting (e.g., more robust transmissions) and therefore can be preferred for mobile devices located in regions of a cell with poorer communication linking conditions.
  • the TTI can be shorter, for example, where transmission conditions are good, and longer, for example, where transmission conditions are poor.
  • Two common TTFs are 2ms and 10ms, where, for example, the 2ms TTI can be employed for transmissions in good conditions (e.g., a UE is close to a BS, there is little interference, ...) and, also for example, the 10ms TTI can be employed where conditions are less optimal (e.g., a UE is located at the NodeB cell edge, there is substantial interference, ).
  • the transmitter can, for example, transmit more information over the same total time by selecting the shorter TTI when the conditions are germane to the use of the shorter TTI (e.g., there will be more 2ms TTI windows than 10ms TTI windows in a given total time window, such as, for example 200ms).
  • a transmitter can also, for example, robustly transmit data (e.g., with a better link budget) in less optimal conditions by selecting a longer TTI window.
  • Conventional communications systems typically do not dynamically select TTI windows (e.g., conventional systems do not adjust TTFs during an established communication session). Further, conventional communications systems generally do not designate TTIs for each FJE-BS pairing (e.g., one-to-one, many-to-one, or one-to- many) within a transmission region (e.g., a cell) or for FJE-BS pairings transitioning between transmission regions (e.g., in soft handoff or experiencing soft-handoff conditions). Rather, conventional communications systems generally select a static TTI when establishing a communication session and maintain that selected TTI for the duration of the communication session. This can occur where FJE capabilities indicate a preferential TTI. Thus, conventional systems may select a static TTI without deference to actual communications link conditions. Moreover, this static TTI is generally applied to every FJE-BS pairing in a given region (e.g., a cell).
  • a cell phone call can be initiated where link conditions are not optimal and a 10ms TTI can be selected.
  • the transmission conditions over the link can also improve, for example, as weather conditions improve.
  • the communications link can continue to employ the 10ms TTI, inefficiently in light of the improved link conditions that could support, for example, a 2ms TTI (e.g. , dynamically switching to a 2ms TTI could provide higher quality and more efficient communication or data transfer rates).
  • the disclosed subject matter facilitates dynamically assigning TTI rates to each UE in a cell.
  • dynamically assigning TTI rates it is meant that the TTI rate for a communications link can be adjusted within an existing communications event, for example, a cell phone can switch between 2ms and 10ms TTIs during a cell phone conversation to maintain the most optimal performance. This can provide for improved communications throughput where conditions permit and more rugged communications where conditions are less optimal.
  • each UE in the cell can be assigned the most appropriate TTI for that UE 's specific conditions.
  • a radio network controller dynamically selects the TTI to be employed for communication with UEs.
  • Selection criteria used by the RNC can include, but are not limited to, the signal to noise ratio of the pilot signal (Ecp/Nt) and/or the packet error rate (PER) of one or more UEs.
  • Ecp/Nt the signal to noise ratio of the pilot signal
  • PER packet error rate
  • a UE employing a first TTI can indicate communications link indicia (for example, the available transmission (TX) power headroom) to a NodeB (for example, by way of a scheduling information (SI) transmission).
  • the NodeB can relay this information to a RNC to facilitate a RNC determination that the communications link is sub-optimal, for example, that the UE can be TX power headroom limited.
  • the RNC can facilitate dynamic reconfiguration of the UE to use an alternate TTI that can facilitate a more optimal communications link.
  • a UE employing a first TTI can monitor communications link indicia.
  • These communications link indicia can include, but are not limited to, power headroom limitations, change in TX power headroom over time (e.g., slope), and/or HARQ early termination statistics.
  • the UE can communicate a UE request that the RNC dynamically reconfigure the UE to use an alternate TTI that can facilitate a more optimal communications link. As a non-limiting example, if the available TX power headroom goes below a predetermined threshold, the UE can request to be switched to a 10ms TTI via a layer 3 message to the RNC.
  • the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims.
  • the following description and the annexed drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed, and this description is intended to include all such aspects and their equivalents.
  • Figure 1 illustrates a wireless communication system.
  • Figure 2 illustrates a schematic diagram of one aspect of a computer device implementation of one or more of the components of Fig. 1.
  • Figures 3A-3C illustrate schematic diagrams of functional modules in accordance with aspects of the disclosed subject matter.
  • Figure 4 illustrates a timing diagram for HSUPA compliant multi-code transmission in accordance with an aspect of the disclosed subject matter.
  • Figure 5 illustrates a timing diagram for dynamic adjustment of TTI in accordance with an aspect of the disclosed subject matter.
  • Figure 6 illustrates comparative timing diagrams for dynamic TTI adjustment in accordance with aspects of the disclosed subject matter.
  • Figure 7 illustrates a depiction of elements in a communications system in accordance with an aspect of the disclosed subject matter.
  • Figure 8 illustrates a comparative depiction of non-limiting exemplary dynamic
  • TTI adjustment techniques in accordance with an aspect of the disclosed subject matter.
  • Figure 9 illustrates a method to facilitate dynamic adjustment of TTI in accordance with an aspect of the disclosed subject matter.
  • Figure 10 illustrates a method to facilitate dynamic adjustment of TTI in accordance with an aspect of the disclosed subject matter.
  • Figure 11 illustrates a method to facilitate dynamic adjustment of TTI in accordance with an aspect of the disclosed subject matter.
  • Figure 12 illustrates a method to facilitate dynamic adjustment of TTI in accordance with an aspect of the disclosed subject matter.
  • a component may be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • both an application running on a computing device and the computing device can be a component.
  • One or more components can reside within a process and/or thread of execution and a component may be localized on one computer and/or distributed between two or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • the components may communicate by way of local and/or remote processes such as in accordance with a signal having one or more data packets, such as data from one component interacting with another component in a local system, distributed system, and/or across a network such as the Internet with other systems by way of the signal.
  • a terminal can be a wired terminal or a wireless terminal.
  • a terminal can also be called a system, device, subscriber unit, subscriber station, mobile station, mobile, mobile device, remote station, remote terminal, access terminal, user terminal, terminal, communication device, user agent, user device, or user equipment (UE).
  • a wireless terminal may be a cellular telephone, a satellite phone, a cordless telephone, a Session Initiation Protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), a handheld device having wireless connection capability, a computing device, or other processing devices connected to a wireless modem.
  • SIP Session Initiation Protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • a base station may be utilized for communicating with wireless terminal(s) and may also be referred to as an access point, a NodeB, or some other terminology.
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a CDMA system may implement a radio technology such as Universal Terrestrial Radio Access (UTRA), Code Division Multiple Access 2000 (CDMA2000 or cdma2000®), etc.
  • UTRA includes Wideband-CDMA (W-CDMA) and other variants of CDMA.
  • CDMA2000 covers IS-2000, IS-95 and IS-856 standards.
  • a TDMA system may implement a radio technology such as Global System for Mobile Communications (GSM).
  • GSM Global System for Mobile Communications
  • An OFDMA system may implement a radio technology such as Evolved UTRA (E-UTRA), Ultra Mobile Broadband (UMB), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20 (Mobile Broadband Wireless Access (MBWA)), Fast Low-latency Access with Seamless Handoff Orthogonal Multiplexing (FOFDM or Flash-OFDM®), etc.
  • E-UTRA Evolved UTRA
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi
  • WiMAX WiMAX
  • IEEE 802.20 Mobile Broadband Wireless Access (MBWA)
  • FDM or Flash-OFDM® Flash-OFDM®
  • 3rd Generation Partnership Project Long Term Evolution (LTE) is an upcoming release of UMTS that uses E-UTRA, which employs OFDMA on the downlink and SC- FDMA on the uplink.
  • UTRA, E-UTRA, UMTS, LTE and GSM are described in documents from an organization named "3rd Generation Partnership Project” (3 GPP).
  • CDMA2000 and UMB are described in documents from an organization named "3rd Generation Partnership Project 2" (3GPP2).
  • the term "or” is intended to mean an inclusive “or” rather than an exclusive “or.” That is, unless specified otherwise, or clear from the context, the phrase “X employs A or B” is intended to mean any of the natural inclusive permutations. That is, the phrase “X employs A or B” is satisfied by any of the following instances: X employs A; X employs B; or X employs both A and B.
  • the articles “a” and “an” as used in this application and the appended claims should generally be construed to mean “one or more” unless specified otherwise or clear from the context to be directed to a singular form.
  • a base station is a fixed station used for communicating with the terminals and can also be called an access point, a base transceiver station (BTS), a NodeB, or some other terminology.
  • a terminal may be fixed or mobile and may also be called a mobile station (MS), a mobile equipment (ME), a user equipment (UE), a wireless device, a subscriber unit, or some other terminology.
  • the terminals may be dispersed throughout the system.
  • Each base station may communicate with any number of terminals at any given moment depending on various factors such as, for example, the number of terminals within the coverage (e.g., cell) of the base station, the available system resources, the data requirements of the terminals, and so on.
  • a system controller 130 provides coordination and control for the base stations.
  • the system controller may comprise a radio network controller (RNC) (not illustrated).
  • RNC radio network controller
  • Transmission protocols between the terminals and base station can include TTI widows as part of the protocol, for example, as described in the 3GPP specification releases 5, 6 and/or 7, among other specifications.
  • the 3GPP release 6 (and release 7) standard allows 10ms transmission time interval (TTI) or 2ms TTI for uplink operation, as herein described.
  • the 2ms TTI provides lower transmission delay, larger HARQ gain, longer UE battery life, or combinations thereof.
  • the 10ms TTI can provide more robust communications over, for example, less optimal communications links and may therefore be preferred for UEs at a cell edge, experiencing soft-handoff conditions, or in soft handoff.
  • the 3GPP release 6 (HSUPA) standard designates an enhanced uplink dedicated channel (EDCH), one or more EDCH dedicated physical channels (EDPDCH) (up to 4 EDPDCH channels currently allowed), and an EDCH dedicated physical control channel (EDPCCH), each of which can communicate information within a single TTI, wherein the TTI can be 2ms or 10ms in HSUPA.
  • the EDCH carries a single transport block per TTI.
  • the EDCH is mapped to the one or more (up to 4) EDPDCH.
  • the EDPDCH uplink channels can include a header, a payload, and scheduling information with the TTI.
  • the EDCH is associated with the EDPCCH.
  • the EDPCCH uplink channel can include control information (e.g., a sequence identification number and an indicator of the transport format) and a resource status indicator (e.g., indicates to the NodeB that the UE granted data rate is, or is not, satisfactory).
  • the EDCH can include data in a single transport block set (TBS).
  • TBS transport block set
  • Conventional HSUPA (and HSUPA+) networks typically employ either the 10ms TTI or 2ms TTI for a communication link with the UE.
  • the TTI is assigned to UEs by way of a reconfiguration message sent to the UE from a RNC.
  • the RNC can assign a TTI for all UEs in a cell. For example, in large cells which can have link budget problems with a 2ms TTI, a 10ms TTI can be assigned to all UE in the cell, which can improve cell performance but also can reduce transmission capacity and battery life. In any given period of time, more short TTI windows can occur than long TTI windows.
  • short TTIs e.g., 2ms TTIs
  • TBS transport block sets
  • 5 2ms TTI can be sent in the same time as one 10ms TTI.
  • shorter TTI e.g., 2ms TTI
  • longer TTI e.g., 10ms TTI
  • the components of system 100 may be embodied in a computer device 200 that includes a memory 210 in communication with a processor 220.
  • Memory 210 is operable for storing applications for execution by processor 220.
  • Memory 210 can include random access memory (RAM), read only memory (ROM), and a combination thereof.
  • RAM random access memory
  • ROM read only memory
  • processor 220 may include one or more functional modules, applications, or programs 230 operable to perform the component-specific actions described herein. Further, processor 220 is operable for carrying out processing functions associated with one or more of the components described herein. Processor 220 can include a single processor or multiple sets of processors or multi-core processors. Moreover, processor 220 can be implemented as an integrated processing system and/or a distributed processing system. [0040] Additionally, computer device 200 includes user interface 240 operable to receive inputs from a user of a UE 120, and to generate outputs for presentation to the user.
  • User interface 240 can include one or more input devices, including but not limited to a keyboard, a number pad, a mouse, a touch-sensitive display, a navigation key, a function key, a microphone, a voice recognition component, any other mechanism capable of receiving an input from a user, or any combination thereof. Further, user interface 240 can include one or more output devices, including but not limited to a display, a speaker, a haptic feedback mechanism, a printer, any other mechanism capable of presenting an output to a user, or any combination thereof. [0041] Further, computer device 200 includes a communications component 250 that provides for establishing and maintaining communications with one or more other components utilizing hardware, software, and services.
  • a communications component 250 that provides for establishing and maintaining communications with one or more other components utilizing hardware, software, and services.
  • Communications component 250 can carry communications between components on computer device 200, as well as between computer device 200 and external devices, such as access point system controller 130 or NodeB 110 (Fig. 1), other network-side or infrastructure elements, or other devices serially or locally connected to computer device 200.
  • Communications component 250 includes a receiver to receive communications and a transmitter to transmit communications.
  • communications component 250 includes the corresponding receive chain components and transmit chain components to enable exchanging messages according to one or more respective protocols.
  • computer device 200 can further include database 260, which can be any suitable combination of hardware and/or software, that provides for mass storage of data/information, data relationships, and software programs/applications employed in connection with aspects described herein when not in use in active memory 210.
  • database 260 can store one or more functional modules/programs/applications 230 when the respective applications are not in active memory 210.
  • the TTI determination component 300 can be located in an RNC (e.g., in the system controller 130 (see Fig. 1), or in the RNC of Figs. 7 and 8). In alternative embodiments, the TTI determination component 300 can be located in a NodeB, in other portions of a system controller (e.g., 130 of Fig.
  • the TTI determination component 300 can be a single component or can be formed in a distributed manner. Further, the components of the TTI determination component 300 can be embodied in shared components, for example, the communication module 250 (see Fig. 2) can function as the I/O component 315 of TTI determination component 300. Further, TTI determination component 300 can include a communications condition analyzer component 305 that can analyze the communications condition (e.g. , the link budget) of a communications link between, for example, a UE and a NodeB.
  • the communications condition e.g. , the link budget
  • the analysis can be based on indicia of communications link conditions including, among others, the Packet Error Rate (PER), transmission (TX) power level, and/or the Pilot channel signal to noise ratio (Ecp/Nt).
  • the communications condition analyzer component 305 can be communicatively coupled to a TTI selection logic component 310.
  • the TTI selection logic component 310 can determine a most optimal TTI window for the communications link between, for example, the UE and NodeB.
  • the determination can be based, at least in part, on the analysis of the communications condition from component 310. Further, the determination can be based on additional factors including, for example, business goals, inferences about future communications system conditions (e.g.
  • TTI Determination component 300 can further include an input/output (I/O) component 315.
  • the I/O component 315 can be employed to receive information into, or send information from, the TTI determination component 300.
  • the I/O component 315 can receive indicia related to the communications condition for analysis in the communications condition analyzer component 305.
  • the I/O component 315 can communicate the selected TTI from TTI selection logic component 310 to, for example a transmitter (not illustrated) to be sent to a UE.
  • the TTI determination component 330 can be located in an RNC (e.g., in the system controller 130 (see Fig. 1), or in the RNC of Figs. 7 and 8).
  • the TTI determination component 300 can be located in a NodeB, in other portions of a system controller (e.g., 130 of Fig. 1), or in similar computer implemented portion of a communications system germane to determining an optimal TTI and communicating an instruction to the UE to dynamically adjust the TTI window.
  • the TTI determination component 300 can be a single component or can be formed in a distributed manner. Further, the components of the TTI determination component 300 can be embodied in shared components, for example, the communication module 250 (see Fig. 2) can function as the I/O component 315 of TTI determination component 300.
  • TTI determination component 330 can include a communications condition input component 335 that can receive indicia related to an external analysis of a communications condition (e.g. , the link budget) of a communications link between, for example, a UE and a NodeB.
  • the external analysis can be based on indicia of communications link conditions including, among others, the Packet Error Rate (PER), TX power level, UE TX power headroom and/or the Pilot channel signal to noise ratio (Ecp/Nt).
  • PER Packet Error Rate
  • TX power level TX power level
  • UE TX power headroom UE TX power headroom
  • Ecp/Nt Pilot channel signal to noise ratio
  • the communications condition input component 335 can be communicatively coupled to a TTI selection logic component 340.
  • TTI selection logic component 340 can be the same as, or similar to, TTI selection logic component 310.
  • the TTI selection logic component 340 can determine a most optimal TTI window for the communications link between, for example, the UE and NodeB. The determination can be based, at least in part, on the analysis of the communications condition from component 340. Further, the determination can be based on additional factors including, for example, business goals, inferences about future communications system conditions (e.g. , determined by an artificial intelligence component (not illustrated)), or a predetermined logic pattern, among other factors related to improving communications system performance by selecting an appropriate TTI.
  • TTI Determination component 330 can further include an input/output (I/O) component 345.
  • the I/O component 345 can be employed to receive information into, or send information from, the TTI determination component 330.
  • the I/O component 345 can receive externally analyzed communications condition information and pass this to the communications condition input component 335.
  • the I/O component 345 can communicate the selected TTI from TTI selection logic component 340 to, for example a transmitter (not illustrated) to be sent to a UE.
  • FIG. 3C depicted is a schematic diagram of a functional module in one embodiment of a dynamic TTI adjustment communications system in accordance with aspects of the disclosed subject matter. .
  • the UE based TTI request component 360 can be located in a UE (e.g., in a UE 120 (see Fig. 1), in a cell phone, a PDA, a laptop computer, or other UE as herein described). In alternative embodiments, the UE based TTI request component 360 can be located in a NodeB.
  • the UE based TTI request component 360 can be a single component or can be formed in a distributed manner, for example between the UE and a NodeB. Further, the components of the UE based TTI request component 360 can be embodied in shared components, for example, the transmitter/receiver of a UE 120 (see Fig.
  • the UE based TTI request component 360 can include a communications condition analyzer component 365 that can be the same as, or similar to, communications condition analyzer component 305.
  • the communications condition analyzer component 365 can analyze the communications condition (e.g., the link budget) of a communications link between, for example, a UE and a NodeB, based at least in part on communications indicia that can be monitored by a UE.
  • the analysis can be based on indicia of communications link conditions including, among others, the TX power headroom, the rate of change over time of the TX power headroom, actual TX power level, and/or the Pilot channel signal to noise ratio (Ecp/Nt).
  • the communications condition analyzer component 365 can be communicatively coupled to a local TTI selection logic component 370.
  • Local TTI selection logic component 370 can determine a most optimal TTI window for the communications link between, for example, the UE and NodeB. This determination can be based, at least in part, on the analysis of the communications condition from component 365.
  • the local TTI determination is in general based on an analysis of the communication condition from the UE perspective.
  • UE based TTI request component 360 can further include a local TTI request generator component 375 (which can be similar to I/O component 315).
  • the local TTI request generator component 375 can be employed to receive information into, or send information from, the UE based TTI request component 360.
  • the local TTI request generator component 375 can receive communications condition information available to the UE and pass this to the communications condition analyzer component 365.
  • the local TTI request generator component 375 can communicate the selected local TTI from local TTI selection logic component 370 to, for example a transmitter (not illustrated) to be sent to the RNC.
  • the local TTI request generator component 375 also specifically can be employed to generate a TTI request that can be communicated to the RNC.
  • the TTI request can be based at least in part on the local TTI selection logic component 370 determination.
  • a local TTI determination based at least in part thereon can be formed.
  • This local TTI determination can then be employed in forming a TTI request that can be sent to, for example, the RNC.
  • the RNC can then make further determinations (not illustrated) relating to fulfilling the local TTI request and can, based on these additional determinations (not illustrated) send instructions to the UE to adjust the TTI based at least in part on the local TTI request.
  • FIG. 4 illustrated is a timing diagram 400 for HSUPA transmissions.
  • the EDCH 410 can be extended by mapping onto as many as four EDPDCH 420 under current 3GPP specifications (rel. 6).
  • the TTI can be 2ms or 10ms.
  • the 3GPP specification typically can facilitate data rates of several Mbit/s over HSPA (e.g., 3GPP rel. 6) by increasing capacity of existing mobile radio networks. This can be particularly useful for systems requiring high data throughput, for example, voice over internet protocol (VoIP), video conferencing, and mobile office applications. Further improvements are possible under HSPA+ (e.g., 3GPP rel. 7).
  • a TTI can be dynamically assigned to each UE within a communications system depending on the communication conditions specific to the respective UE.
  • the TTI can be changed within the continuing communications session events. For example, a determination can be made based in part on a UE 's link budget requirements that a transition from a first TTI to a second TTI can facilitate improved communications system performance.
  • FIG. 5 a diagram 500 for dynamic adjustment of TTIs in accordance with the disclosed subject matter is illustrated.
  • a plot of a determining factor (DF) against time is given illustrating a threshold level (Threshold 502) and a determining factor level (DF Level 504) changing with time.
  • a communications system can be employing 2ms TTIs for communicating data at 510, this can continue until the DF Level 504 exceeds the threshold level 502 at 520.
  • the communications system e.g., the RNC
  • a reconfiguration message from the RNC can be transmitted to the UE to instruct the UE to employ the new TTI.
  • the communications system can dynamically adjust the TTI from a 10ms TTI at 560 to a 2ms TTI at 570 to facilitate continued communications over the established communications link.
  • the disclosed subject matter is not limited to 2ms and/or 10ms TTIs and these specific TTI windows are used only as non- limiting examples because they comply with current industry standards (e.g., 3GPP rel. 6 and 7). Where other TTI windows comport with relevant industry or applications standards, these TTI windows are to be considered within the scope of the disclosed subject matter.
  • the transmission conditions can be sufficiently good (e.g., the conditions are able to sustain a communications link at a predetermined HARQ residual error rate, packet error rate (for example, 0% to 2%, among others), TX power headroom, ..., or combinations thereof).
  • HARQ residual error rate for example, 0% to 2%, among others
  • packet error rate for example, 0% to 2%, among others
  • TX power headroom for example, 0% to 2%, among others
  • This will prove very valuable in overcoming possible USPTO Examiner rejections against prior art that may be raised.
  • to support a 2ms TTI e.g., 510) which can be preferred over a longer TTI (for example, the 2ms TTI can be more efficient than the 10ms TTI because of higher information throughput, ).
  • the cell phone user can enter an elevator where the communications conditions are impaired (e.g., DF Level 504 exceeds Threshold 502 at 520).
  • the RNC can designate that a 10ms TTI should be used to maintain the telephone call (e.g., RNC can instruct a transition from 2ms TTI 530 to 10ms TTI 540).
  • the longer TTI can be used while the cell phone call continues in the elevator by employing conventional cell phone methods to maintain the best connection with 10ms TTI windows (e.g., increasing TX power levels to maintain the link where there is interference caused by the elevator shaft, ).
  • the transmissions can be, for example, less efficient (e.g. , more power used with higher TX power levels, less information transfer over a given total time interval, ...), but this can be preferable to, for example, not being able to close the communications link.
  • the cell phone user can then leave the elevator upon reaching their desired floor, at which time the DF Level 504 can decrease to below the Threshold 502 level (e.g., at 550).
  • the RNC can designate that the efficiency of the communication link can be improved by again transitioning the TTI (e.g., more information transferred in a given total time window, ...), this time from a 10ms TTI (e.g., 560) to a 2ms TTI (e.g., 570).
  • the disclosed subject matter can facilitate dynamically adjusting between at least two TTIs based at least in part on the communications condition (e.g., link budget) of the respective UE-NodeB pairs.
  • each UE can be instructed by the RNC to employ an appropriate TTI for each of the respective communications links.
  • the disclosed subject matter facilitates dynamic TTI transitioning over time for each individual UE in the cell.
  • a first UE 610 can employ a 10ms TTI and, over time, transition to a 2ms TTI based on changing communications conditions specific to first UE 610, while a second UE 620 employs only a 10ms TTI, a third UE 630 employs only a 2ms TTI, and a fourth UE 640 employs a 10ms TTI and transitions to a 2ms TTI then to a 10ms TTI and back to a 2ms TTI.
  • dynamic adjustment of the TTI can facilitate more optimal and efficient communications systems as compared to relegating all UEs in a cell to the "lowest common denominator" TTI.
  • dynamic adjustment of TTIs can be determined based at least in part on a determining factor (DF) transitioning a threshold level (e.g., 504), as herein disclosed.
  • the DF can be a single indicium, a combination of different indicia, or an inference based at least in part on an indicium.
  • the indicium or indicia are typically related to the communications link conditions, such that the dynamic adjustment of the TTI can facilitate more optimum data communications between a BS and a UE.
  • the more optimal TTI of the communication link can be the 2ms TTI where this facilitates faster communication of data between the UE and the BS.
  • other factors or indicia can be included in a determination for dynamically adjusting the TTI.
  • the 10ms TTI can be selected where the data transmission rate is sufficiently low so as not to need the 2ms TTI.
  • the 10ms TTI can be selected because it is determined that the UE is in soft handoff to another BS where the 10ms TTI is preferable, or because it is determined that the UE is experiencing soft-handoff conditions wherein the 10ms TTI would provide a better communication link.
  • the packet error rate (PER) can be employed as a DF such that, for example, as the PER exceeds 1% the RNC can dynamically transition to the 10ms TTI to facilitate maintaining the communications link without excessive packet errors.
  • the Pilot channel signal to noise ratio can be employed as a DF such that, for example, where the Ecp/Nt has reached a threshold through being increased to compensate for increasing error rates, the RNC can dynamically adjust to a 10ms TTI to allow a lower Ecp/Nt to be employed (e.g. , a TX power headroom limited state can be an indicator of a need to dynamically transition between TTIs).
  • PER and/or Ecp/Nt are used as indicia, they can also indicate that a transition to a shorter TTI is appropriate, for example, where the PER is below a threshold (for example below 1%), the RNC can initiate a dynamic transition to a 2ms TTI to facilitate more efficient data transmissions across the communications link.
  • the communication condition e.g., link budget
  • a similarly large number of other indicia related to the link budget can be employed to facilitate determining when to dynamically adjust the TTI, and all such communication condition indicia (e.g., link budget indicia) are considered within the scope of the disclosed subject matter.
  • System 700 can comprise multiple base stations (NodeB). Each NodeB can be communicatively coupled to an RNC (in Figure 7 the two NodeB are connected to a single RNC for simplicity of illustration, however the disclosed subject matter is not so limited).
  • the RNC can dynamically adjust the TTI of each UE in system 700 independently.
  • cell phone 710 can be instructed to employ a 2ms TTI when it is located near a NodeB and has good communications link conditions.
  • cell phone 720 can be instructed to employ a 10ms TTI because it can have poor communications link conditions due to being located near to the cell edge.
  • PDA 730 can be directed to transition from a 2ms TTI to a 10ms TTI as the PDA 730 approaches the cell edge, or when PDA 730 experiences soft-handoff conditions or is in a soft-handoff.
  • the RNC can instruct the PDA 703 to dynamically adjust its TTI to maintain a satisfactory closed link.
  • the disclosed subject matter is not limited to TTIs of 2ms and 10ms, but rather can employ TTIs of any duration where germane to the communications system. [0062] Referring now to Figure 8, illustrated are diagrams of systems 800, 820, 850 to facilitate dynamic adjustment of TTI in accordance with aspects of the disclosed subject matter.
  • System 800 can comprise one or more UEs 802, one or more NodeBs 804, and one or more RNCs 806.
  • the UEs 802 can be communicatively coupled to the NodeBs 804 by a wireless connection.
  • Information can be communicated from the UEs 802 to the RNCs 806 by way of the NodeBs 804.
  • this information can include both communication information/data (e.g., an information payload, VoIP packets, voice information, application data, Among other communication information/data, e.g., an information payload, VoIP packets, voice information, application data, Among communication information, a communication link information, e.g., Ecp/Nt, PER, quality of service data, ).
  • the RNCs 806 can monitor 810 the information communicated to it by way of the NodeBs 804.
  • Monitoring by the RNCs 806 can be done in a continuous, synchronous, or asynchronous manner. Where the monitoring is done in a continuous manner, the monitored information can be continually updated to facilitate forming a determination 810 related to indicia relating to dynamically adjusting TTI. Similarly, in synchronous monitoring 810, the indicia can be monitored on a predetermined regular schedule such that the monitored information is updated at regular intervals to facilitate forming a determination 810 related to indicia relating to dynamically adjusting TTI.
  • asynchronous monitoring 810 can be employed to update monitoring information at irregular intervals, such as, but not limited to, when a call is initiated, when a soft handoff occurs, when a particular level of data throughput occurs, when total traffic through the RNC 806 from multiple UEs 802 occurs, during specific periods of the day (e.g., high call volume periods, ...), or combinations thereof among others.
  • the indicia monitored at 810 can be employed in determining when dynamic adjustment of TTI is appropriate.
  • system 800 employs the RNC 806 to monitor and determine 810 when a dynamic adjustment of TTI should occur without placing substantial additional burden on either the NodeB 804 or the UEs 802 in the system 800. Where a determination is made at 810 that a dynamic TTI adjustment is appropriate, the RNC 806 can initiate the dynamic TTI adjustment by instructing the UE 802 to change from a first TTI to a second TTI.
  • System 800 further supports assigning a TTI to each UE 802 depending on communications link conditions.
  • system 800 can monitor indicia and determine 810 employing an initial TTI (e.g., when a communication link is formed, the RNC 806 of system 800 can instruct UE 802 to begin with the most appropriate TTI, such as a 2ms TTI or a 10ms TTI).
  • the link budget requirements of each UE 802 in system 800 can be employed in monitoring and determining 810 assignment of a TTI.
  • UEs 802 at the cell edge for example, having insufficient transmit power can be assigned 10ms TTI by the RNC 806.
  • system 800 can facilitate the RNC 806 monitoring indicia, such as, the Ecp/Nt setpoint and packet error rate (PER) of each UE 802.
  • PER packet error rate
  • RNC 806 detects that a UE 802 is currently using 2ms TTI and the Ecp/Nt setpoint has passed a certain threshold and/or the communication link PER over a certain time interval is beyond acceptable limit, then the RNC 806 can determine that UE 802 can have limited TX power headroom and can be unable to maintain closing the communications uplink (e.g. , the call is in danger of being dropped). In response, the RNC 806 can send a reconfiguration message to UE 802 (by way of NodeB 804) instructing the UE 802 to transition to a 10ms TTI from the 2ms TTI to facilitate continued communication (e.g., a dynamic adjustment of the TTI).
  • the RNC 806 can determine an optimum TTI for each UE 802 of system 800.
  • Optimum TTIs can be based on numerous system factors including, but not limited to, overall system 800 performance, highest data transfer rates, lowest overall power consumption, alignment of system 800 usage with business goals, etc. Being able to dynamically adjust the TTI can empower system administrators to base the dynamic TTI adjustments on a nearly limitless number of predetermined optimum operating conditions, and all such conditions are to be considered within the scope of the disclosed subject matter.
  • RNC 806 can monitor the Ecp/Nt setpoint and packet error rate (PER) of each UE 802. Where the RNC 806 detects that a UE 802 is currently using 10ms TTI and its Ecp/Nt setpoint is below a certain threshold and its PER is within an acceptable limit, the RNC can send a reconfiguration message to the UE 802, requesting the UE 802 to transition from the 10ms TTI to a 2ms TTI to facilitate more efficient use of system 800 resources during the continued communication link.
  • PER packet error rate
  • system 820 can comprise one or more UEs 822, one or more NodeBs 824, and one or more RNCs 826.
  • the UEs 822 can be communicatively coupled to the NodeBs 824 by a wireless connection.
  • Information can be communicated from the UEs 822 to the RNCs 826 by way of the NodeBs 824.
  • this information can include both communication information/data (e.g., an information payload, VoIP packets, voice information, application data, ).
  • the UEs 822 can collect and send specific indicia 830 through the communication channel to RNC 826 by way of NodeB 824.
  • These indicia can comprise communication link information (e.g., Ecp/Nt, PER, quality of service data, TX power headroom information, ).
  • RNC 826 can receive the indicia and form a determination 840 relating to dynamically adjusting TTI.
  • system 820 can function similar to system 800 except that system 820 can include communicating link information available to the UE 822 (e.g., link information not directly available to the RNC 826) to improve the determinations formed at 840 over the determination formed at 810.
  • system 820 can provide more information into a determination process relating to dynamically adjusting TTI.
  • an RNC 826 does not have direct access to select communications link information (e.g., a UE 's 822 TX power headroom, ...), the RNC 826 can be required to determine these indicia based on other indicia (e.g., similar to system 800). However, by communicating this information (e.g., sending indicia 830) to the RNC 826 from UE 822, the indicia can be directly relied on rather than inferred or determined. The additional indicia can be sent 830, for example, in scheduled transmission operations by way of scheduling information (SI) messages passed to the RNC 826 through NodeB 824.
  • SI scheduling information
  • RNC 826 Information passed to RNC 826 can facilitate determinations 840 made by the RNC 826.
  • System 820 therefore can improve the reliability of the determinations relating to dynamic adjustment of TTI (indicia accessible to the UE 822 but not directly available to the RNC 826 can be specifically communicated to RNC 826).
  • system 820 can require a change in current standards to incorporate gathering and communicating these additional indicia rather than relying on the RNC 826 to infer these indicia based on other monitored indicia already available to the RNC 826.
  • system 850 can comprise one or more UEs 852, one or more NodeBs 854, and one or more RNCs 856.
  • the UEs 852 can be communicatively coupled to the NodeBs 854 by a wireless connection.
  • Information can be communicated from the UEs 852 to the RNCs 856 by way of the NodeBs 854.
  • this information can include both communication information/data (e.g., an information payload, VoIP packets, voice information, application data, ).
  • the UEs 822 can monitor and determine when a dynamic adjustment of TTI would be beneficial and can send a request 860 to the RNC 856 to initiate the dynamic TTI adjustment.
  • RNC 856 can receive the request and form a determination 870 relating to dynamically adjusting TTI.
  • system 870 can function similar to system 800 except that system 850 can shift monitoring indicia and aspects of determining the appropriateness of dynamic TTI adjustment to the UEs 852.
  • system 820 can preprocess communications link information at the UE 852 and determine the need to dynamically adjust TTI (e.g., from the perspective of the UE 852), such that a request to dynamically adjust the TTI for UE 852 can be provided to the RNC 856 where the request can be included in a determination of the appropriateness of dynamically adjusting the TTI for the requesting UE 852.
  • UE 852 can have knowledge of indicia relative to the UE 852 that can be employed in forming a determination relating to dynamic adjustment of the TTI for UE 852.
  • the indicia can be UE 852 TX power headroom limitation and UE 852 HARQ early termination statistics.
  • UE 852 can send a request to the RNC 856 to dynamically adjust the UE 852 TTI.
  • the request can be processed by the RNC 856 in light of other indicia not local to UE 852 (e.g., system resources, business goals, complex analytics, ...) and form a determination at 870 relating to dynamically adjusting the UE 852 TTI in response to the request.
  • UE 852 can request, for example by sending a layer 3 message, that RNC 856 switch UE 852 from a 2ms TTI to a 10ms TTI.
  • Monitoring 860 indicia at the UE 852 can further facilitate monitoring indicia in real time, for example, monitoring the change (i.e., slope) in the remaining UE 852 TX power headroom which can facilitate proactively generating a request for dynamic TTI adjustment (e.g. , requesting dynamic TTI adjustment before UE 852 actually runs out of TX power headroom).
  • the RNC can then combine this request UE 852 with additional indicia (e.g., Ecp/Nt setpoint, PER, ...) and can make the final decision to initiate dynamically adjusting UE 852 TTI, if deemed appropriate.
  • System 850 can give the best performance (as compared to system 800 and 820) however it can require standards changes (e.g., the specific UE 852 algorithms would need to be specified and new layer 3 messaging would need to be identified between UE 852 and RNC 856 by way of NodeB 854).
  • information can be received relating to a communication link condition.
  • This information can include indicia relating to the uplink portion of the communication link.
  • Indicia can include, for example, the packet error rate, pilot channel signal to noise ratio, TX power headroom information, or combinations thereof among other indicia related to the communication link. These indicia can correlate to the quality of the communications link. For example, where there is a higher than acceptable packet error rate, there can be insufficient power to transmit data packets from a UE to a NodeB.
  • the received information can be included in forming a determination of the appropriateness of dynamically adjusting TTI with a communications system.
  • the TTI can be changed within an established communication link to maintain or improve the performance of that communications link. For example, where a 2ms TTI is being employed, and received indicia indicate an excessively high PER, a determination can be formed that changing to a 10ms TTI can improve the performance of the communications link and therefore is appropriate.
  • the TTI can be dynamically adjusted in accordance with the determination of appropriateness.
  • a RNC can instruct a UE to adjust the TTI from 2ms to 10ms.
  • methodology 900 can end.
  • methodology 900 can also facilitate dynamically adjusting TTI when a communications link is established. For example, when a cell phone call is initiated, an RNC can receive information relating to the condition of the potential communications link (910) such that a determination of the most appropriate TTI can be formed (920) and the UE can be instructed to close the link with the appropriate TTI (930). Thus, for example, where a cell phone at the cell edge initiates call, a low Ecp/Nt can indicate that a 10ms TTI can be the most appropriate TTI to employ and the UE can be instructed to establish the call with the 10ms TTI.
  • TTI can be dynamically adjusted based on additional criteria in combination with the communication link condition indicia. For example, where a UE has a sufficiently good communications link condition to maintain a 2ms TTI but is entering a soft handoff to a second NodeB, the RNC can, for example, instruct the UE to default to a 10ms TTI to facilitate the soft handoff.
  • the UE can be instructed by the RNC to maintain the 2ms TTI throughout the soft handoff.
  • dynamic adjustment of the TTI is not limited to 2ms and 10ms TTI, and one of skill in the art will appreciate that all TTI times are within the scope of the disclosed subject matter where those TTI comport with established standards or specific applications.
  • a methodology 1000 facilitating dynamic adjustment of TTI in accordance with an aspect of the disclosed subject matter can be monitored at an RNC.
  • the indicia available to the RNC for monitoring can be combined to form determinations about likely communications link conditions. For example, where the PER rises above a threshold and elevating the Ecp/Nt does not correct the rising PER, a determination can be made that it is likely the UE has limited TX power headroom and the communications link is not likely to improve.
  • One of skill in the art will appreciate that a nearly limitless number of other determinations can be made about communications system characteristics based on the indicia monitored by the RNC and that all such indicia and determinations related thereto are within the scope of the disclosed subject matter.
  • the RNC can determine the appropriateness of dynamically adjusting the TTI based at least in part on the information monitored. Where, for example, it has been determined that the communications link is not likely to improve based on the monitored Ecp/Nt and PER, the RNC can determine that it can be appropriate to dynamically adjust the TTI to improve and maintain the established communication link.
  • the RNC can initiate dynamic TTI adjustment in accord with the determination. For example, where it has been determined that it is likely that a UE is TX power headroom limited and a 2ms TTI is employed, the RNC can instruct the UE to dynamically adjust to a 10ms TTI to facilitate improved communication over the link.
  • Methodology 1000 can comply with current industry standards (e.g., 3GPP rel. 6&7).
  • communication link condition information available to a UE can be received.
  • This information can be information not directly available for monitoring by an RNC.
  • an RNC can infer the available TX power headroom available for UE based on other indicia as herein disclosed, however this same information can be directly available to the UE itself.
  • the UE can communicate these indicia, for example, to a NodeB which can forward the information on to the RNC.
  • the RNC can determine the appropriateness of dynamically adjusting the TTI based at least in part on the UE information received.
  • methodology 1100 allows additional information to be communicated to the RNC to facilitate improved determinations related to dynamically adjusting TTI. As compared to methodology 800, where the RNC can be required to form determinations on the likelihood of a condition existing (e.g.
  • methodology 1100 permits gathering of these additional indicia and communication of them to the RNC for improved dynamic adjustment of TTI.
  • Methodology 1100 may not comply with current industry standards (e.g., 3GPP rel. 6&7), though the additional benefits can be an impetus for modification of the standards to incorporate the additional messaging capacity to communicate the UE available information to the RNC to facilitate improved determinations relating to dynamic TTI adjustment.
  • a UE can receive information related to communication link conditions.
  • the UE can determine the appropriateness of dynamically adjusting the TTI for that UE based at least in part on the information received by the UE.
  • the localized determination of appropriateness can cause a request for dynamic TTI adjustment to be sent to the RNC.
  • each UE in a communications system can self monitor, determine when a TTI adjustment is needed, and initiate a request for dynamic TTI adjustment based on the local communications link conditions.
  • the UE can determine that it will soon need to adjust the TTI to maintain the established link (e.g., 1220), and in response to this determination can request that the RNC dynamically adjust the TTI (e.g., 1230).
  • an increasing Ecp/Nt setpoint e.g., 1210
  • the UE can determine that it will soon need to adjust the TTI to maintain the established link (e.g., 1220), and in response to this determination can request that the RNC dynamically adjust the TTI (e.g., 1230).
  • the RNC can initiate a dynamic TTI adjustment based at least in part on the UE request.
  • the RNC can make a final determination, based on other factors in addition to the request, as to the appropriateness of dynamically adjusting the TTI.
  • the RNC can determine that the TTI adjustment is not appropriate where the overall communications system performance could be negatively affected by the dynamic TTI adjustment and in response can refuse to initiate the dynamic TTI adjustment.
  • Methodology 1200 can end.
  • Methodology 1200 in general, distributes aspects of determining the appropriateness of dynamic TTI adjustment among the different elements of a communications network.
  • Methodology 1200 can be incompatible with current industry standards (e.g., 3GPP rel. 6&7), however, methodology 1200 can provide significant benefit in regard to dynamic TTI adjustment.
  • current industry standards e.g., 3GPP rel. 6&7
  • methodology 1200 can provide significant benefit in regard to dynamic TTI adjustment.
  • any future standards development can incorporate this distributed dynamic TTI adjustment methodology but that such features would be considered within the scope of the disclosed subject matter.
  • information and signals may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor may be a microprocessor, but, in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration. Additionally, at least one processor may comprise one or more modules operable to perform one or more of the steps and/or actions described above.
  • a software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, a hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art.
  • An exemplary storage medium may be coupled to the processor, such that the processor can read information from, and write information to, the storage medium.
  • the storage medium may be integral to the processor.
  • the processor and the storage medium may reside in an ASIC.
  • the processor and the storage medium may reside in an ASIC. Additionally, the ASIC may reside in a user terminal. In the alternative, the processor and the storage medium may reside as discrete components in a user terminal. Additionally, in some aspects, the steps and/or actions of a method or algorithm may reside as one or any combination or set of codes and/or instructions on a machine readable medium and/or computer readable medium, which may be incorporated into a computer program product.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored or transmitted as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a storage medium may be any available media that can be accessed by a computer.
  • such computer-readable media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • any connection may be termed a computer-readable medium.
  • software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave
  • DSL digital subscriber line
  • wireless technologies such as infrared, radio, and microwave
  • Disk and disc includes compact disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disk and blu-ray disc where disks usually reproduce data magnetically, while discs usually reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
PCT/US2008/060880 2007-04-20 2008-04-18 Method and apparatus for dynamic adjustment of uplink transmission time WO2008131262A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2010504290A JP5044012B2 (ja) 2007-04-20 2008-04-18 アップリンク送信時間の動的な調節のための方法及び装置
CN200880012835.1A CN101663852B (zh) 2007-04-20 2008-04-18 用于动态调整上行链路传输时间的方法和装置
CA2682697A CA2682697C (en) 2007-04-20 2008-04-18 Method and apparatus for dynamic adjustment of uplink transmission time
KR1020097024260A KR101095169B1 (ko) 2007-04-20 2008-04-18 업링크 전송 시간의 동적인 조정을 위한 방법 및 장치
BRPI0810371-2A2A BRPI0810371A2 (pt) 2007-04-20 2008-04-18 Método e aparelho para ajuste dinâmico de tempo de transmissão em uplink
EP08746318.8A EP2143224B1 (en) 2007-04-20 2008-04-18 Method and apparatus for dynamic adjustment of uplink transmission time

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US91326207P 2007-04-20 2007-04-20
US60/913,262 2007-04-20
US12/104,795 US8811335B2 (en) 2007-04-20 2008-04-17 Method and apparatus for dynamic adjustment of uplink transmission time
US12/104,795 2008-04-17

Publications (1)

Publication Number Publication Date
WO2008131262A1 true WO2008131262A1 (en) 2008-10-30

Family

ID=39639118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2008/060880 WO2008131262A1 (en) 2007-04-20 2008-04-18 Method and apparatus for dynamic adjustment of uplink transmission time

Country Status (10)

Country Link
US (3) US8811335B2 (zh)
EP (1) EP2143224B1 (zh)
JP (1) JP5044012B2 (zh)
KR (1) KR101095169B1 (zh)
CN (1) CN101663852B (zh)
BR (1) BRPI0810371A2 (zh)
CA (1) CA2682697C (zh)
RU (1) RU2443059C2 (zh)
TW (1) TWI422186B (zh)
WO (1) WO2008131262A1 (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010145553A1 (zh) * 2009-06-19 2010-12-23 华为技术有限公司 传输时间间隔的调整方法和网络设备
CN102106171A (zh) * 2009-04-27 2011-06-22 华为技术有限公司 切换方法和设备
EP2341739A1 (en) * 2009-12-31 2011-07-06 Cellco Partnership D/B/A Verizon Wireless Enhanced power headroom reporting
EP2384064A1 (en) * 2009-01-22 2011-11-02 Huawei Technologies Co., Ltd. Method, system and device for enhancing the uplink coverage capacity of the user equipment
GB2496828A (en) * 2011-04-01 2013-05-22 Renesas Mobile Corp TTI Adaptation in E-DCH
EP2753137A1 (en) * 2011-11-04 2014-07-09 Huawei Technologies Co., Ltd. Method, base station and radio network controller for determining transmission time interval
CN104521281A (zh) * 2013-04-12 2015-04-15 华为技术有限公司 一种tti切换方法、基站及用户设备
CN104620656A (zh) * 2012-09-27 2015-05-13 瑞典爱立信有限公司 便于在移动通信网络中使用多个发送时间间隔的方法和装置
CN105264950A (zh) * 2013-04-12 2016-01-20 华为技术有限公司 一种tti切换方法、基站及用户设备
EP3078225A4 (en) * 2013-12-27 2016-11-23 Huawei Tech Co Ltd SYSTEM AND METHOD FOR ADAPTIVE TTI COEXISTENCE WITH LTE
WO2017077179A1 (en) * 2015-11-02 2017-05-11 Nokia Technologies Oy Scheduling ues with mixed tti length
US11165532B2 (en) 2016-11-02 2021-11-02 Telefonaktiebolaget Lm Ericsson (Publ) Controlling the impact of SRS switching on uplink transmissions
US11191040B2 (en) 2015-05-01 2021-11-30 Qualcomm Incorporated Low latency uplink power control
US11234289B2 (en) 2016-09-28 2022-01-25 Telefonaktiebolaget Lm Ericsson (Publ) Methods, network node and wireless device for discontinuous transmission

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8811335B2 (en) 2007-04-20 2014-08-19 Qualcomm Incorporated Method and apparatus for dynamic adjustment of uplink transmission time
JP5108450B2 (ja) * 2007-10-22 2012-12-26 株式会社エヌ・ティ・ティ・ドコモ 無線通信システム、無線通信方法、基地局及び無線端末
US8339962B2 (en) * 2007-11-01 2012-12-25 Telefonaktiebolaget L M Ericsson (Publ) Limiting RLC window size in the HSDPA flow control
EP2204017B1 (en) 2007-11-01 2012-05-16 Telefonaktiebolaget L M Ericsson (publ) Efficient flow control in an rnc
US7649839B2 (en) * 2007-11-21 2010-01-19 Motorola, Inc. Method and device for managing data rate in a communication system
CN101459936B (zh) * 2008-02-04 2010-08-18 华为技术有限公司 一种触发资源配置的方法、装置及系统
CN101610235A (zh) * 2009-07-17 2009-12-23 中兴通讯股份有限公司南京分公司 一种发射端及数据发射方法
WO2012034278A1 (zh) * 2010-09-15 2012-03-22 中兴通讯股份有限公司 一种e-tti选择的方法及系统
CN102740468A (zh) * 2011-04-02 2012-10-17 华为技术有限公司 分配信道资源的方法、基站设备、终端设备和通信系统
US20130083738A1 (en) * 2011-10-03 2013-04-04 Renesas Mobile Corporation Method and apparatus for modifying resource allocation
US9131498B2 (en) 2012-09-12 2015-09-08 Futurewei Technologies, Inc. System and method for adaptive transmission time interval (TTI) structure
CN105340328B (zh) 2013-05-01 2019-04-02 Lg电子株式会社 用于执行无线对接服务的方法和设备
WO2014189430A1 (en) * 2013-05-21 2014-11-27 Telefonaktiebolaget L M Ericsson (Publ) Improved tti switching
US9468036B2 (en) * 2013-06-18 2016-10-11 Qualcomm Incorporated Reduced circuit-switched voice user equipment current using discontinuous transmissions on dedicated channels
US9456427B1 (en) * 2013-07-09 2016-09-27 Sprint Communications Company L.P. Dynamic power optimization to increase coverage
TWI507075B (zh) * 2013-07-26 2015-11-01 Accton Technology Corp 具動態調整當前空閒通道評估門檻值能力的存取點及其運作方法
KR102141854B1 (ko) * 2014-02-21 2020-08-06 삼성전자주식회사 푸시 메시지 전송 제어 방법 및 장치
JP6375726B2 (ja) 2014-06-30 2018-08-22 カシオ計算機株式会社 無線通信装置及びプログラム
US10306601B2 (en) * 2014-09-03 2019-05-28 Telefonaktiebolaget Lm Ericsson (Publ) Handling the ambiguity of the sending of HS-SCCH order in node B
US10727983B2 (en) * 2014-10-29 2020-07-28 Qualcomm Incorporated Variable length transmission time intervals (TTI)
US10027462B2 (en) * 2014-10-31 2018-07-17 Qualcomm Incorporated Unified frame structure
US10536957B2 (en) 2015-03-08 2020-01-14 Lg Electronics Inc. Time delay adaptive signal transmission/reception method in wireless communication system and device therefor
US20160360550A1 (en) * 2015-06-03 2016-12-08 Qualcomm Incorporated Low latency under time division duplex and flexible frequency division duplex
US10383105B2 (en) 2015-07-12 2019-08-13 Lg Electronics Inc. Method and device for transmitting control information in wireless communication system
EP3641413B1 (en) * 2015-08-27 2021-08-18 Huawei Technologies Co., Ltd. Uplink channel transmission method, ue, and base station
KR102340499B1 (ko) * 2015-09-04 2021-12-17 삼성전자 주식회사 무선통신 시스템에서 상향링크 전송전력 제어 방법 및 장치
CN106550465B (zh) * 2015-09-22 2022-04-19 中兴通讯股份有限公司 发送、接收短传输时间间隔通信的资源分配信息的方法和装置
US10873420B2 (en) 2015-10-07 2020-12-22 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and terminal for data transmission
MX2018005499A (es) * 2015-11-03 2018-08-01 Ericsson Telefon Ab L M Metodos y aparatos para programacion en enlace ascendente.
EP3361776A4 (en) * 2015-11-09 2018-10-03 Huawei Technologies Co., Ltd. Transmission time interval switching method, communication system, user equipment and evolved node b
US9681395B2 (en) 2015-11-13 2017-06-13 Apple Inc. Radio link monitoring for link-budget-limited devices
CN111641476A (zh) * 2015-12-18 2020-09-08 Oppo广东移动通信有限公司 用于数据传输的方法和终端
US20170208575A1 (en) * 2016-01-18 2017-07-20 Qualcomm Incorporated Low latency control overhead reduction
WO2017132978A1 (en) * 2016-02-05 2017-08-10 Panasonic Intellectual Property Corporation Of America Base station, terminal, and communication method
EP3427525B1 (en) * 2016-03-08 2021-10-13 IPCom GmbH & Co. KG Transmission time interval control
CN107231692B (zh) * 2016-03-25 2020-02-18 电信科学技术研究院 一种确定传输时间间隔长度的方法及装置
WO2017166177A1 (zh) * 2016-03-31 2017-10-05 华为技术有限公司 传输时间间隔的切换方法和装置
CN107295660B (zh) * 2016-04-01 2020-09-04 中国移动通信有限公司研究院 一种资源调度及数据检测方法、装置、相关设备和系统
CN107371269B (zh) * 2016-05-13 2020-06-05 展讯通信(上海)有限公司 传输调度的方法、用户设备及基站
CN107404767B (zh) * 2016-05-20 2020-10-20 展讯通信(上海)有限公司 基站及其调度用户设备的方法
US10172150B2 (en) 2016-05-20 2019-01-01 Apple Inc. TTI scheduling for improved ramp up of TCP throughput in cellular networks
CN107666715B (zh) * 2016-07-28 2019-12-24 上海朗帛通信技术有限公司 一种无线传输中的方法和装置
WO2018027540A1 (en) * 2016-08-09 2018-02-15 Panasonic Intellectual Property Corporation Of America Terminal and communication method
WO2018027949A1 (zh) * 2016-08-12 2018-02-15 华为技术有限公司 一种通信方法、网络设备及终端
EP3536057B1 (en) * 2016-11-04 2021-07-28 Telefonaktiebolaget LM Ericsson (PUBL) Apparatus and method for transition time interval switching in an uplink multicarrier system
US10397915B2 (en) * 2016-11-09 2019-08-27 Qualcomm Incorporated Latency reduction in shared or unlicensed spectrum
RU2713377C9 (ru) 2016-11-14 2020-02-18 Телефонактиеболагет Лм Эрикссон (Пабл) Извлечение сконфигурированной выходной мощности для последовательных интервалов времени передачи (ттi) в сокращенных ттi-шаблонах
EP3562234A4 (en) * 2017-01-19 2019-12-18 Huawei Technologies Co., Ltd. DATA TRANSFER METHOD AND ELECTRONIC TERMINAL
CN108541065B (zh) * 2017-03-03 2021-09-10 上海诺基亚贝尔股份有限公司 用于发送和接收数据的方法、网络设备和终端设备
WO2018175528A1 (en) * 2017-03-23 2018-09-27 Intel Corporation User equipment (ue) and methods for vehicle-to-vehicle (v2v) sidelink communication in accordance with a short transmission time interval (tti)
EP4090087A1 (en) 2017-03-23 2022-11-16 Telefonaktiebolaget LM Ericsson (publ) Method and device for determining timer configuration
WO2018174807A1 (en) * 2017-03-24 2018-09-27 Telefonaktiebolaget Lm Ericsson (Publ) Scheduling request handling with multiple configured ttis
US20180309489A1 (en) * 2017-04-21 2018-10-25 Qualcomm Incorporated Physical downlink control channel structure in low latency systems
US20190141730A1 (en) * 2017-11-09 2019-05-09 Qualcomm Incorporated Uplink transmission techniques in low-latency wireless communication
KR102599966B1 (ko) * 2018-01-11 2023-11-09 노키아 테크놀로지스 오와이 방법, 장치 및 컴퓨터 프로그램
US10925007B2 (en) * 2018-11-02 2021-02-16 Apple Inc. Dynamic power reduction requests for wireless communications

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060034285A1 (en) * 2004-08-13 2006-02-16 Nokia Corporation WCDMA uplink HARQ operation during the reconfiguration of the TTI length
US20060057978A1 (en) * 2004-09-16 2006-03-16 Love Robert T Wireless transmitter configuration
US20060176869A1 (en) * 2005-02-09 2006-08-10 Lucent Technologies, Inc. Dynamic switching of a transmission time interval in a wireless system

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100387034B1 (ko) 2000-02-01 2003-06-11 삼성전자주식회사 무선통신 시스템의 패킷데이타 서비스를 위한스케듈링장치 및 방법
US7233577B2 (en) * 2000-04-10 2007-06-19 Samsung Electronics Co., Ltd. Method for measuring confusion rate of a common packet channel in a CDMA communication system
US6813284B2 (en) 2001-01-17 2004-11-02 Qualcomm Incorporated Method and apparatus for allocating data streams given transmission time interval (TTI) constraints
CA2450234C (en) * 2001-06-25 2011-09-13 Nokia Corporation Optimization of mcs and multicode with tfci signaling
US6983166B2 (en) * 2001-08-20 2006-01-03 Qualcomm, Incorporated Power control for a channel with multiple formats in a communication system
KR20080049830A (ko) * 2001-10-19 2008-06-04 인터디지탈 테크날러지 코포레이션 다운링크에서 전체 dtx 동작 모드 동안 개선된 전력절감을 위한 시스템
FR2834152B1 (fr) * 2001-12-26 2004-04-30 Nortel Networks Ltd Procede de traitement de symboles numeriques dans un systeme de communication et emetteur et recepteur pour la mise en oeuvre du procede
FR2834604B1 (fr) * 2002-01-07 2004-04-30 Nortel Networks Ltd Procede de controle de canaux de communication et station de base et terminal mettant en oeuvre le procede
CN100579320C (zh) * 2002-02-08 2010-01-06 皇家飞利浦电子股份有限公司 无线电通信系统
KR100630128B1 (ko) * 2002-03-23 2006-09-27 삼성전자주식회사 고속 순방향 패킷 접속 방식을 사용하는 이동통신시스템에서 역방향 전력 제어를 위한 파일럿 신호필드 위치정보 결정장치 및 방법
US7162262B2 (en) * 2002-09-23 2007-01-09 Telefonaktiebolaget Lm Ericsson (Publ) Methods, systems and computer program products for requesting received power levels based on received block error rates utilizing an anti-windup and/or emergency procedure
CN1685666B (zh) * 2002-09-30 2010-05-12 美商内数位科技公司 参考载送频道开/关状态侦测及再选择的方法与装置
DE20318137U1 (de) * 2002-11-26 2004-04-15 Interdigital Technology Corporation, Wilmington Drahtlose Sende-/Empfangs-Einheit
KR100584431B1 (ko) * 2003-02-14 2006-05-26 삼성전자주식회사 부호 분할 다중 접속 통신 시스템에서 역방향 데이터재전송 시스템 및 방법
US7242953B2 (en) * 2003-04-22 2007-07-10 Lucent Technologies Inc. Transmitting a control message on a forward access channel (FACH) in a network for mobile telecommunications
US20050073985A1 (en) * 2003-10-04 2005-04-07 Samsung Electronics Co., Ltd. System and method for controlling a TTI in a W-CDMA communication system supporting enhanced uplink dedicated transport channel
GB2408419B (en) 2003-11-21 2006-02-22 Motorola Inc Communications power control
KR100575925B1 (ko) * 2003-12-04 2006-05-02 삼성전자주식회사 이동통신시스템에서 상이한 전송시간간격들을 가지는채널들을 다중화하는 전송률 정합 방법 및 장치
SE0303462D0 (sv) * 2003-12-22 2003-12-22 Ericsson Telefon Ab L M Arrangements and method for handling macro diversity in UTRAN
US7388848B2 (en) * 2004-03-26 2008-06-17 Spyder Navigations L.L.C. Method and apparatus for transport format signaling with HARQ
KR100735346B1 (ko) * 2004-05-04 2007-07-04 삼성전자주식회사 향상된 상향 링크 전용 채널에서 harq 동작을 고려한tti 변경 방법 및 장치
CN1722733B (zh) * 2004-07-13 2010-04-14 华为技术有限公司 Iu接口时间调整实现方法
KR20060006725A (ko) 2004-07-16 2006-01-19 삼성전자주식회사 향상된 상향링크 전용채널을 지원하는 이동통신시스템에서자율전송을 위한 파라미터 결정 방법 및 장치
EP1643788B1 (en) * 2004-09-30 2017-06-14 Samsung Electronics Co., Ltd. Method and apparatus for supporting voice service through radio channel in mobile telecommunication system
US7796505B2 (en) * 2005-01-26 2010-09-14 M-Stack Limited Method for processing traffic data in a wireless communications system
EP1708413A1 (en) * 2005-03-29 2006-10-04 Lg Electronics Inc. Multimedia broadcast/multicast service (MBMS) cells reconfigurations
US20060281417A1 (en) * 2005-05-10 2006-12-14 Ntt Docomo, Inc. Transmission rate control method and mobile station
US7649661B2 (en) 2005-07-13 2010-01-19 Inphase Technologies, Inc. Holographic storage device having a reflective layer on one side of a recording layer
ATE450945T1 (de) 2005-07-25 2009-12-15 Panasonic Corp Einschränkung eines harq verfahrens und übertragung von ungeplanten steuerdaten auf aufwärtskanäle
EP2267929B1 (en) * 2005-08-16 2012-10-24 Panasonic Corporation Method and apparatuses for activation of Hybrid Automatic Request (HARQ) processes
US8644292B2 (en) 2005-08-24 2014-02-04 Qualcomm Incorporated Varied transmission time intervals for wireless communication system
EP2665219A1 (en) 2005-08-24 2013-11-20 Qualcomm Incorporated Varied transmission time intervals for wireless communication system
KR100946901B1 (ko) * 2006-02-07 2010-03-09 삼성전자주식회사 통신 시스템에서 자원 할당 방법 및 시스템
KR101240503B1 (ko) * 2006-02-24 2013-03-08 삼성전자주식회사 비동기식 이동통신 시스템에서 방송 채널의 동기 검출 방법및 장치
US7808951B2 (en) 2006-07-05 2010-10-05 Infineon Technologies Ag Method and apparatus for handover of wireless communication between networks
US8422382B2 (en) 2006-08-21 2013-04-16 Telefonaktiebolaget Lm Ericsson (Publ) Method and arrangement for adapting transmission of encoded media
US7899158B2 (en) * 2006-08-22 2011-03-01 Verizon Services Organization Inc. Method and apparatus for measurement of service disruption interval
US8811335B2 (en) 2007-04-20 2014-08-19 Qualcomm Incorporated Method and apparatus for dynamic adjustment of uplink transmission time
HUE044315T2 (hu) * 2007-05-01 2019-10-28 Nokia Technologies Oy Feltöltés irányú kapcsolati szállítási formátum kiválasztás
US20090268707A1 (en) * 2008-04-25 2009-10-29 Interdigital Patent Holdings, Inc. Method to implement transmission time interval bundling
US8416741B2 (en) * 2010-09-07 2013-04-09 Verizon Patent And Licensing Inc. Machine-to-machine communications over fixed wireless networks

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060034285A1 (en) * 2004-08-13 2006-02-16 Nokia Corporation WCDMA uplink HARQ operation during the reconfiguration of the TTI length
US20060057978A1 (en) * 2004-09-16 2006-03-16 Love Robert T Wireless transmitter configuration
US20060176869A1 (en) * 2005-02-09 2006-08-10 Lucent Technologies, Inc. Dynamic switching of a transmission time interval in a wireless system

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2384064A1 (en) * 2009-01-22 2011-11-02 Huawei Technologies Co., Ltd. Method, system and device for enhancing the uplink coverage capacity of the user equipment
EP2384064A4 (en) * 2009-01-22 2012-04-18 Huawei Tech Co Ltd METHOD, SYSTEM AND DEVICE FOR IMPROVING UPLINK COVER CAPACITY OF USER EQUIPMENT
CN102301798A (zh) * 2009-01-22 2011-12-28 华为技术有限公司 提高用户设备上行覆盖能力的方法、系统和装置
RU2497312C2 (ru) * 2009-04-27 2013-10-27 Хуавэй Текнолоджиз Ко., Лтд. Способ и устройство переключения
EP2426986A4 (en) * 2009-04-27 2012-07-11 Huawei Tech Co Ltd PROCESS AND DEVICE FOR SWITCHING
CN102106171A (zh) * 2009-04-27 2011-06-22 华为技术有限公司 切换方法和设备
EP2426986A1 (en) * 2009-04-27 2012-03-07 Huawei Technologies Co., Ltd. Method and device for switching
US9007952B2 (en) 2009-04-27 2015-04-14 Huawei Technologies Co., Ltd. Method and device for switching
US8824369B2 (en) 2009-04-27 2014-09-02 Huawei Technologies Co., Ltd. Method and device for switching
EP2445294A1 (en) * 2009-06-19 2012-04-25 Huawei Technologies Co., Ltd. Method and network device for adjusting transmission timing interval
CN101932101A (zh) * 2009-06-19 2010-12-29 华为技术有限公司 传输时间间隔的调整方法和网络设备
WO2010145553A1 (zh) * 2009-06-19 2010-12-23 华为技术有限公司 传输时间间隔的调整方法和网络设备
CN101932101B (zh) * 2009-06-19 2015-03-11 华为技术有限公司 传输时间间隔的调整方法和网络设备
EP2445294A4 (en) * 2009-06-19 2012-04-25 Huawei Tech Co Ltd METHOD AND NETWORK DEVICE FOR ADJUSTING TRANSMISSION TIME INTERVAL
EP2341739A1 (en) * 2009-12-31 2011-07-06 Cellco Partnership D/B/A Verizon Wireless Enhanced power headroom reporting
GB2496828B (en) * 2011-04-01 2013-11-13 Renesas Mobile Corp TTI Adaptation in E-DCH
GB2496828A (en) * 2011-04-01 2013-05-22 Renesas Mobile Corp TTI Adaptation in E-DCH
US9019883B2 (en) 2011-04-01 2015-04-28 Broadcom Corporation TTI adaptation in E-DCH
EP2753137A1 (en) * 2011-11-04 2014-07-09 Huawei Technologies Co., Ltd. Method, base station and radio network controller for determining transmission time interval
EP2753137A4 (en) * 2011-11-04 2014-08-27 Huawei Tech Co Ltd METHOD, BASE STATION AND RADIOCOMMUNICATION NETWORK CONTROLLER FOR DETERMINING TRANSMISSION TIME INTERVAL
JP2014533024A (ja) * 2011-11-04 2014-12-08 ▲ホア▼▲ウェイ▼技術有限公司 送信時間間隔を決定するための方法、基地局、及び無線ネットワーク制御装置
US9538527B2 (en) 2011-11-04 2017-01-03 Huawei Technologies Co., Ltd Method for determining transmission time interval, base station, and radio network controller
CN104620656A (zh) * 2012-09-27 2015-05-13 瑞典爱立信有限公司 便于在移动通信网络中使用多个发送时间间隔的方法和装置
CN104620656B (zh) * 2012-09-27 2018-05-04 瑞典爱立信有限公司 在移动通信网络中使用的无线网络控制器装置及方法
CN104521281A (zh) * 2013-04-12 2015-04-15 华为技术有限公司 一种tti切换方法、基站及用户设备
CN105264950A (zh) * 2013-04-12 2016-01-20 华为技术有限公司 一种tti切换方法、基站及用户设备
CN110380836A (zh) * 2013-12-27 2019-10-25 华为技术有限公司 自适应tti与lte共存的系统和方法
US10903963B2 (en) 2013-12-27 2021-01-26 Huawei Technologies Co., Ltd. System and method for adaptive TTI coexistence with LTE
US11606179B2 (en) 2013-12-27 2023-03-14 Huawei Technologies Co., Ltd. System and method for adaptive TTI coexistence with LTE
EP3324676A3 (en) * 2013-12-27 2018-09-12 Huawei Technologies Co., Ltd. System and method for adaptive tti coexistence with lte
US10200137B2 (en) 2013-12-27 2019-02-05 Huawei Technologies Co., Ltd. System and method for adaptive TTI coexistence with LTE
EP3078225A4 (en) * 2013-12-27 2016-11-23 Huawei Tech Co Ltd SYSTEM AND METHOD FOR ADAPTIVE TTI COEXISTENCE WITH LTE
CN110380836B (zh) * 2013-12-27 2021-08-31 华为技术有限公司 自适应tti与lte共存的系统和方法
RU2645879C2 (ru) * 2013-12-27 2018-03-01 Хуавэй Текнолоджиз Ко., Лтд. Система и способ для совместимости адаптивного tti с lte
US11191040B2 (en) 2015-05-01 2021-11-30 Qualcomm Incorporated Low latency uplink power control
US11722969B2 (en) 2015-05-01 2023-08-08 Qualcomm Incorporated Low latency uplink power control
US10904903B2 (en) 2015-11-02 2021-01-26 Nokia Technologies Oy Scheduling UEs with mixed TTI length
WO2017077179A1 (en) * 2015-11-02 2017-05-11 Nokia Technologies Oy Scheduling ues with mixed tti length
US11234289B2 (en) 2016-09-28 2022-01-25 Telefonaktiebolaget Lm Ericsson (Publ) Methods, network node and wireless device for discontinuous transmission
US11165532B2 (en) 2016-11-02 2021-11-02 Telefonaktiebolaget Lm Ericsson (Publ) Controlling the impact of SRS switching on uplink transmissions

Also Published As

Publication number Publication date
KR101095169B1 (ko) 2011-12-16
BRPI0810371A2 (pt) 2014-10-29
JP2010525682A (ja) 2010-07-22
KR20100005720A (ko) 2010-01-15
EP2143224B1 (en) 2018-10-17
CN101663852A (zh) 2010-03-03
US20140321440A1 (en) 2014-10-30
US20140321286A1 (en) 2014-10-30
US9521585B2 (en) 2016-12-13
RU2443059C2 (ru) 2012-02-20
US8811335B2 (en) 2014-08-19
EP2143224A1 (en) 2010-01-13
CN101663852B (zh) 2015-11-25
RU2009142811A (ru) 2011-05-27
CA2682697C (en) 2014-02-04
US20090034474A1 (en) 2009-02-05
TW200901707A (en) 2009-01-01
TWI422186B (zh) 2014-01-01
CA2682697A1 (en) 2008-10-30
JP5044012B2 (ja) 2012-10-10

Similar Documents

Publication Publication Date Title
US9521585B2 (en) Method and apparatus for dynamic adjustment of uplink transmission time
US11743832B2 (en) Uplink power control for power limited terminals
US9407563B2 (en) Methods and apparatuses for adapting application uplink rate to wireless communications network
US9826430B2 (en) Controlling uplink congestion in a wireless communication network
JP4880687B2 (ja) 不連続制御チャネル送信のためのプリアンブル長
US9629030B2 (en) Data rate control in soft handoff and during cell-switching
US8537786B2 (en) Method and apparatus for improving continuous packet connectivity in a wireless communications system
EP2465237A1 (en) System and method for modulation and coding scheme adaptation and power control in a relay network
CN103988455A (zh) 移动通信系统中用于发送反向控制信号的方法和设备
JP2007159055A (ja) 呼受付制御装置、呼受付制御方法
JP2009506637A (ja) 無線通信システムにおいて破棄されるスロット及びフレームを低減する方法
WO2011019919A1 (en) System and method for association and uplink adaptation in a relay network
Aho et al. User equipment energy efficiency versus LTE network performance
WO2022027307A1 (en) Method and apparatus for carrier control
US20150358859A1 (en) Apparatus and methods for reducing round trip time delay of reverse link transmission
RU2337506C2 (ru) Способ и устройство управления скоростью передачи данных при мягкой передаче обслуживания и во время переключения между ячейками

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880012835.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08746318

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2682697

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 5876/CHENP/2009

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010504290

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008746318

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20097024260

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009142811

Country of ref document: RU

ENP Entry into the national phase

Ref document number: PI0810371

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20091016