WO2008129168A1 - Procédé de mesure d'au moins un paramètre géométrico- physionomique d'implantation d'une monture de lunettes de correction visuelle sur le visage d'un porteur - Google Patents

Procédé de mesure d'au moins un paramètre géométrico- physionomique d'implantation d'une monture de lunettes de correction visuelle sur le visage d'un porteur Download PDF

Info

Publication number
WO2008129168A1
WO2008129168A1 PCT/FR2008/000268 FR2008000268W WO2008129168A1 WO 2008129168 A1 WO2008129168 A1 WO 2008129168A1 FR 2008000268 W FR2008000268 W FR 2008000268W WO 2008129168 A1 WO2008129168 A1 WO 2008129168A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
angle
image capture
observation
wearer
Prior art date
Application number
PCT/FR2008/000268
Other languages
English (en)
Inventor
Michel Nauche
Jean-Pierre Chauveau
Konogan Baranton
Sébastien EVAIN
Original Assignee
Essilor International (Compagnie Generale D'optique)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Essilor International (Compagnie Generale D'optique) filed Critical Essilor International (Compagnie Generale D'optique)
Priority to ES08775613.6T priority Critical patent/ES2651022T3/es
Priority to US12/596,351 priority patent/US7950800B2/en
Priority to EP08775613.6A priority patent/EP2137569B1/fr
Publication of WO2008129168A1 publication Critical patent/WO2008129168A1/fr

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C13/00Assembling; Repairing; Cleaning
    • G02C13/003Measuring during assembly or fitting of spectacles
    • G02C13/005Measuring geometric parameters required to locate ophtalmic lenses in spectacles frames

Definitions

  • a method for measuring at least one geometric-physiognomic parameter for implanting a frame of visual correction spectacles on the face of a wearer TECHNICAL FIELD TO WHICH THE INVENTION RELATES
  • the present invention relates generally to the manufacture of visual correction glasses and more precisely the geometric-physiognomic measurements made by the optician on the wearer equipped with the frames he has chosen to determine data relating to the implantation configuration of corrective lenses facing the eyes of the wearer. These data are typically used for fitting the corrective lenses on the frame, in particular for their optical centering with respect to the eye of the wearer and / or for the personalized optical design of the corrective lenses.
  • the manufacture of a corrective spectacle lens comprises, on the one hand, the optical design and the shaping of the refractive faces of the lens and, on the other hand, the adaptation of the lens to the chosen frame.
  • the present invention deals with the measurement, on the wearer's face, of geometrical and physiognomic parameters accounting for the configuration of implantation of the spectacles on the wearer's face. These parameters are likely to be exploited in the two steps of making a corrective lens, so that the lens ultimately exercises the corrective optical function for which it was designed and prescribed. In practice, these are mainly the following parameters considered in an orthostatic posture of the wearer looking at the horizon at infinity:
  • pupillary heights substantially vertical distances from pupil projections along the primary axis of view (at infinity) on the lens relative to the lower edge of the frame or the cut-out lens (definition referred to as “datum”) or to the tangent to this edge at its lowest point (definition called “boxing”),
  • pantoscopic inclination angle that forms the general plane of the frame or the lens relative to the vertical.
  • the resulting measurement device is relatively bulky and ergonomic for use in a sales area.
  • the measurement protocol is perceived as relatively restrictive, long and tedious by both the wearer and the optician.
  • the aim of the present invention is to remedy all or some of the aforementioned drawbacks by proposing a method of measurement by frontal image capture that can be implemented with a fast and flexible measurement taking protocol. and by means of a nomadic image capture apparatus, without a stand column, while preserving a high measurement accuracy.
  • a method for measuring at least one geometric-physiognomic parameter for implanting a frame of visual correction spectacles on the face of a wearer for the purpose of mounting and / or personalized calculation of the corrective lenses associated with this frame comprising a step of capturing a substantially frontal digital image of the face of the wearer equipped at least with the frame, by means of an image capture apparatus, and a computation step of the geometric-physiognomic parameter from a processing of the captured image, characterized in that the calculation of the geometric-physiognomic parameter comprises an identification, in this image, of the image of a predetermined remarkable point, directly or indirectly associated with the face of the wearer or the mount, and takes into consideration a magnitude representative of the vertical angle of absolute observation that forms a line of observation, connecting the pupil of the image capture apparatus and the remarkable point, with its projection on a horizontal plane.
  • the image capture can thus be performed in an imperfect alignment or frontality configuration, ie with a vertical offset, of the image capture apparatus with respect to the wearer's face.
  • the error induced by the angle of view, or vertical parallax, is corrected during the calculation by taking into account directly or indirectly the vertical angle of absolute observation which is precisely generator of this error. With this correction, we can relax and accelerate the image capture protocol while preserving or even improving the overall accuracy of the measurement.
  • the geometric-physiognomic parameter typically comprises the height of a remarkable point of the eye relative to the frame and / or the pantoscopic inclination angle that forms the general plane of the frame or the lens relative to the vertical .
  • the image capture apparatus is a nomadic device held in the hand by an operator during the image capture. This greatly improves the convenience and ergonomics of the measurement.
  • a trim angle is measured that forms the optical axis of the image-capturing apparatus with its projection on the horizontal plane.
  • the measurement of the attitude angle can for example be provided by an inclinometer fitted to the image capture apparatus, adapted to provide a signal representative of the value taken by the attitude angle at the time of the capture of the image. 'picture.
  • an artificial horizon device comprising a mobile horizon reference element rotated around an axis perpendicular to the sagittal plane and adapted to maintain a fixed position by relative to the horizontal plane, this horizon reference element having a known geometric feature.
  • the image of this horizon reference element is identified on the captured image, a geometric characteristic of this image corresponding to the known geometric characteristic of this horizon reference element is measured. and calculating the attitude angle according to the measured geometric characteristic of the captured image and the known geometric characteristic of the horizon reference element.
  • the calculation of the attitude angle is furthermore a function of a relative reference observation angle formed between, on the one hand, an observation line passing through a point of the reference element d. the horizon and the pupil of the image-capturing apparatus and, secondly, the optical axis of the image-capturing apparatus, this relative observation angle being deduced from the measurement, on the captured image, a decentering of the image of the horizon reference element with respect to a center of image associated with the optical axis of the image capture apparatus.
  • the vertical angle of absolute observation it is possible, for example, to combine the angle of attitude with a relative observation angle formed between the line of observation and the optical axis of the capture device. 'picture. This relative observation angle is deduced from the measurement, on the captured image, of a decentering of the image of the remarkable point of the eye with respect to a center of image associated with the optical axis of the image. image capture apparatus.
  • the image capture apparatus is oriented so that the remarkable point is centered on a mark centering of the aiming system of the image capture apparatus.
  • the optical axis of the image capture apparatus is then merged with the line of observation, so that the vertical angle of absolute observation is equal to the attitude angle.
  • a pantoscopic identification element which has at least one known geometrical characteristic and which is arranged so that the frontal image captured by means of the capture device image incorporates an image of the pantoscopic tracking element. Since the image of the registration element is processed to measure a geometric characteristic that is dependent on the known geometric characteristic, the calculation of the geomorphophysomic parameter is a function of the measured geometrical characteristic and the known geometrical characteristic of the registration element.
  • FIG. 1 is a side view of the head of a wearer, equipped with a pair of glasses;
  • FIG. 2 is a schematic perspective view of a device for measuring geometric-physiognomic parameters of implantation of the glasses on the wearer's face according to the invention
  • FIG. 3 is a perspective view of a locating accessory equipping the frame according to a first embodiment
  • FIG. 4 is a schematic view in elevation of profile, distorted proportions to facilitate reading, illustrating the capture of a frontal image of the frame and the eye with the geometry elements used in the calculation of the geometric-physiological parameters, according to a first example of implementation of the method of measurement according to the invention, using the locating accessory of Figure 3;
  • FIG. 5 is a view similar to Figure 3, illustrating a second embodiment of the locating accessory equipping the frame;
  • FIG. 6 is a view similar to FIG. 4, illustrating the capture of a frontal image of the frame and the eye with the geometry elements used in the calculation of the geometrical-physiological parameters according to a second example of implementation. of the measuring method according to the invention, using the locating accessory of FIG.
  • FIG. 7 is a view of the captured image of the horizon reference element
  • FIG. 8 is a view similar to FIG. 7 illustrating a variant of the horizon reference element and of the method, for measuring an absolute roll angle of the wearer's head
  • Figure 9 is a view similar to Figure 8 illustrating another variant of the horizon reference element and the method for measuring an absolute roll angle of the wearer's head.
  • FIG. 10 is a view similar to Figure 3, illustrating a variant of the second embodiment of the locating accessory equipping the frame.
  • the wearer is in a sitting or standing configuration which is such that his head TP is straight, that is to say that the plane of Frankfurt PF relative to at the wearer's head is substantially horizontal.
  • the plane of Frankfurt PF is defined as the plane passing through the lower orbital points OR and the porion PO of the wearer, the porion being the highest point of the auditory canal, which corresponds to the tragedy of the hear. It is also said that the wearer takes an orthostatic position, position in which he achieves a minimum of effort.
  • the wearer's line of sight or DV line of sight is initially the horizontal DVI primary look axis, corresponding to the case where the wearer looks at the right horizon in front of him at infinity.
  • PSAG medial or sagittal plane
  • the wearer is equipped with a frame 10 that he has previously chosen and on which will be mounted lenses having an optical function of visual correction according to a prescription.
  • This frame 10 conventionally comprises two circles 11, connected by a nose bridge 13, and two branches 12.
  • Each circle 11 extends in an average plane PM which, viewed in profile, forms with a vertical plane PV (passing for example by the nasal bridge 13) a vertical tilt angle TETA about a horizontal direction perpendicular to the sagittal plane PSAG.
  • This angle TETA is commonly called pantoscopic angle.
  • this height H is in this case the distance between, on the one hand, the lowest point PB of the circle 11 of the frame and, on the other hand, the centering point or pupillary point C defined by the intersection of the primary viewing axis DVI (line of sight at infinity) with the average plane PM of the circle 11 of the frame, other known definitions of the eye height may alternatively be retained;
  • FIGS. 2 and 3 show a device for determining individual geometric-morphological parameters of a wearer equipped with a pair of presentation glasses.
  • This device comprises a digital image capture apparatus 1 which is for example, as in the example illustrated in FIG. 2, similar to a pocket-sized digital photography apparatus of the general public trade, comprising a box 2, a button 3 and a viewfinder screen 4.
  • the image capture apparatus 1 further comprises a source or target 5, such as a diode, able to attract the gaze of the wearer and to generate a reflection image by the cornea of each eye of the wearer.
  • This light pattern 5 is adjacent to the objective of the image capture apparatus 1.
  • the image of the corneal reflection may be generated by a flash associated with the image capture apparatus.
  • a video camera or a fast-action photography apparatus may advantageously be used as an image-capturing apparatus, capable of providing a plurality of shots from which an average may be calculated, or filtering may be applied, or the most relevant shot.
  • the image-capture apparatus 1 is able to be manipulated by the optician to capture in a PCI facial image-capturing plane, an image of the wearer's face equipped with the frame.
  • the image capture apparatus 1 also has means for communicating with a computer 8 equipped with corresponding communication means.
  • the communication means of the image capture apparatus 1 and the computer 8 are of the wired or wireless type and, being of any current design, will not be described.
  • these communication means are integrated with a common network architecture or point-to-point link allowing the image capture apparatus to communicate with several computers.
  • the measuring device also comprises means for measuring an angle of pitch or pitch ALPHA formed by the optical axis AO of the lens of the image-capturing apparatus 1 with its projection on the horizontal plane PF.
  • the image capture apparatus 8 is equipped with an onboard electronic inclinometer 6 adapted to provide a signal representative of the value taken by the attitude angle ALPHA at the time of the image capture.
  • a reduced-capacity inclinometer of the capacitive sensor type comprising an accelerometer or gravitometer
  • a magnetic sensor capable of measuring the earth's magnetic field
  • an artificial field it will also be possible to use a position capture system as marketed by Polhemus, or a gyroscope, etc.
  • the measuring device advantageously comprises, but not necessarily, a tracking accessory 20 which is attached to the frame 10 and which allows, as we shall see, to promote the reliability and accuracy of measurement.
  • This accessory comprises an articulated framework consisting of an inverted U-shaped stirrup 21 extending in a substantially vertical plane and two locking levers 22, 23.
  • the stirrup 21 has a horizontal crossmember 24 and two vertical uprights 25, 39 whose ends point downwards.
  • the two locking levers 22, 23 are mounted on the ends of the uprights 25, 39 to pivot in the plane of the stirrup, so around horizontal axes.
  • a spring (not shown) is mounted between each locking lever 22, 23 and the stirrup to permanently urge these levers towards the crossbar 24.
  • the locking levers 22, 23 thus bear on the circles of the frame 10 (or directly on the lenses if the glasses are of the type without circles, pierced lenses) to ensure the maintenance of the tracking accessory 20 on the frame.
  • V-shaped pads 26, 27, 28, 29 provided with an anti-slip coating equip the crossbar 24 and the levers 22, 23 to accommodate the circles of the frame (or the edges of the lenses) and cooperate without sliding with these, so as to achieve a stable attachment of the locating accessory 20 on the glasses.
  • the assembly is arranged such that the stirrup 21 has a plane of symmetry PS which, in use, is at least approximately coincident with the sagittal plane PSAG of the wearer.
  • the locating accessory 20 is provided with a plurality of locating elements, among which there are:
  • a central unicorn 30 keyed on the plane of symmetry PS of the stirrup 21, extending horizontally projecting from the crossbar 24 pointing towards the front
  • a totem 36 centered on the plane of symmetry PS, extending vertically in the upper projection of the crosspiece 24 so as to overhang the central unicorn 30 and having a front face 37 whose upper part bears a contrast mark 38, for example black or tinted disc-shaped.
  • the two lateral unicorns 31, 32 are integral with the pads 28, 29 which are themselves mounted on the crossbar 24 to rotate freely (with a limited angular movement and elastic return in a given angular position) around substantially vertical axes.
  • the shoes 28, 29 are self-orienting, thanks to their V-shape, in correspondence with the horizontal orientation (ie say around the vertical) of the average plane of the corresponding circle 11 of the mount (or the corresponding presentation lens in the case of drilled mounting glasses without circles).
  • the measuring device described above makes it possible to implement the following method of measuring geometrical-physiognomic parameters of implantation of the frame 10 on the wearer's face.
  • the image capture apparatus 1 is calibrated in order to define a characteristic function of this apparatus, making it possible to determine, for a given object point, the space in the reference frame of the apparatus of image capture 1, the coordinates of the image point associated with this object point on a captured image.
  • This calibration is performed by means of images taken by the image-capture apparatus 1 of various known planar patterns. Such methods are known and have been described in numerous documents, notably in an article entitled "Modeling and Calibration of Automated Zoom Lenses" by RG Willson, published in Proceedings of the SPIE 2350: Videometrics III, pages 170-186, in Boston, Massachusetts, USA, October 1994.
  • the calibration accessory 20 is then calibrated by determining a model of this locating accessory 20. For this, the relative positions of the contrasting marks 33, 38 are determined. 46, 47. In order to determine these relative positions, it is possible to use a minimum of four marks present on the tracking accessory 20, and, at least, three different image captures.
  • the model of the locating accessory 20 comprises, on the one hand, global parameters, common to all the images, such as parameters relating to the geometry of the locating accessory 20 and, on the other hand, intermediate variables specific to the image capture configuration such as the position and orientation of the tracking device 20 relative to the image capture apparatus 1. These parameters and variables of the model are then calculated by iteration in order to bring closer, on the one hand, the coordinates computed from the model for the contrasting marks projected on the theoretical image, and, on the other hand, the coordinates recorded on the various images captured for these same marks.
  • a reference system of the locating accessory is defined by four marks, for example the marks 46, 47, 33, 38, and an origin point O.
  • An axis (Ox) passes through the two marks 46 and 47, an axis ( Oy) passes through the mark 38 and the origin point O, which is defined as the orthogonal projection of the mark 38 on the axis (Ox), and an axis (Oz) is such that the mark (O, Ox, Oy, Oz) is a direct orthonormal Cartesian.
  • the coordinates of the four marks are then determined in the referential of the marking accessory thus defined: the mark 47 has for coordinates (d, 0, 0), the mark 46 has for coordinates (-g, 0, 0), the mark 38 has for coordinates (0, h, 0) and the mark 33 has for coordinates (a, b, c).
  • the referential of the registration accessory is changed to the reference frame of the image-capture apparatus 1 by a transformation comprising a translation and three rotations along the three axes of the reference system of the locating accessory.
  • the passage of the referential of the tracking accessory to the repository of the image capture apparatus 1 therefore implies in any one case:
  • R1 (-sin (N1) cos (N1) 0)
  • the coordinate vector Mimage of the image point associated with this object point on a captured image can be calculated from the vector of coordinates Mraci of this object point in the repository of the capture apparatus 1 by calibrating the image. capture device.
  • the characteristic function of the capture apparatus 1 may for example correspond to a polynomial function.
  • the global parameters d, g, h, a, b and c of the registration accessory and the intermediate variables N1, N2, N3, Tx, Ty, and Tz defining its position relative to the image capture apparatus during the different image captures are determined iteratively in order to match the theoretical positions of the marks of the tracking accessory on the image with their actual positions on the captured images.
  • the optician positions the pair of presentation glasses 10 equipped with the tracking accessory 20 on the wearer's face.
  • the wearer is in orthostatic posture, sitting or standing, with his head straight, that is to say, as recalled above, the plane of Frankfurt PF is substantially horizontal.
  • the optician ensures that this posture is well respected.
  • FIGS. 4 and 6 are schematic views in elevation, projected in the PS or PSAG plane in the direction of the upper boxing line HOM.
  • the optician or operator takes the image capture apparatus 1 and places the latter in front of the wearer's face and substantially at the same height, at his best convenience. The frontality is then approximate, but not perfect.
  • the optician activates the light diode 5 by pressing a first level the button 3 and asks the wearer to look at this diode.
  • the optician asks the wearer nevertheless to retain his head port in orthostatic posture as described above, which can be assumed that the latter will do without difficulty to the extent that the image capture apparatus 1 is disposed face, approximately (though imperfectly) at the height of the face.
  • the optician adjusts the image capture apparatus 1 using the viewfinder screen 4 to properly frame the wearer's face, then triggers an image capture using the button 3, as well as, simultaneously, the supply of the ALPHA attitude angle by the onboard inclinometer 6.
  • the measurement is rejected and a visual and / or audible warning message is emitted by the image-capture device 1 or by the computer 8 to invite the optician to capture a new image by positioning the image capture apparatus 1 further face to a height closer to that of the wearer.
  • a threshold value in absolute value for example 20 degrees
  • the image capture apparatus 1 transmits the image thus captured to the computer 8 which stores it in random access memory or mass memory, for processing by the processing and calculation software installed on the computer 8
  • the image capture apparatus 1 also transmits to the computer 8, which stores it in RAM or mass accessible to the processing and calculation software installed on the computer 8, the angle of attitude ALPHA. that formed the axis optical AO of the image capture apparatus 1 with its projection on the horizontal plane PF during the image capture and which was provided by the onboard inclinometer 6.
  • the software is designed to perform a calculation of approximation of the known geometric characteristics with the corresponding geometric characteristics of the captured plane image, measured by processing this image and counting its pixels, approximation of which are deduced:
  • the scaling of the image consists in calculating a scale factor giving, in the image capture configuration, the proportionality between a real dimension of a geometric element whose image is captured and the number pixels of the image of this element in the direction of the dimension considered.
  • the rescaling is for example carried out by the processing and calculation software by comparing the distance between the images, on the captured image, of two remarkable points of the reference accessory 20, such as the ends of the crosses 24 or marks 46, 47, with the known distance between these remarkable points (which is integrated into the processing and calculation software as a parameter).
  • This scaling can also be achieved by measuring, using a telemetry subset, the distance between the image pickup apparatus and the wearer's head.
  • Any other ultrasonic telemetry system, laser, triangulation, stigmometer type Dodin or the like may alternatively be used.
  • the software calculates, by counting pixels and taking into account the rescaling, the difference in height between, on the one hand, the image of the mark 38 of the totem 36 and, on the other hand, the image of the end 33 of the central unicorn 33. It is clear that the forward shift of the end 33 of the central unicorn 33 has the effect of substantially varying the altitude of this end 33 with the angle TETA pantoscopy. As a result, this difference in height is representative of a relative vertical inclination angle SIGMA formed by the average plane of the mount PM with the PCI image capture plane perpendicular to the optical axis AO of the objective of FIG. the image capture apparatus 1. The software then combines this angle SIGMA with the attitude angle ALPHA provided by the inclinometer 6 of the image capture apparatus 1, to deduce the pantoscopic angle TETA research. The software integrates the formula
  • the software calculates the eye height H. It identifies for this purpose, on the captured image, the image of a predetermined remarkable point, directly or indirectly associated with the wearer's face or the frame 10. This remarkable point can typically belong to the eye, the mount or the locating accessory. In this case, the software identifies in the image the center of the pupil of the eye considered that corresponds to the comeal reflection RC of the diode 5 of the image capture apparatus 1.
  • An observation line OD is defined connecting the pupil 7 of the image capture apparatus 1 and the comeal reflection RC.
  • the software calculates a relative observation angle BETA formed between the line of observation DO and the optical axis AO of the image-capture apparatus 1.
  • This relative observation angle BETA is directly deduced by the software, while -intention of the rescaling, of the measurement, on the captured image, of a decentering of the image of the comeal reflection RC with respect to a center of image associated with the optical axis AO of the image capture apparatus 1 and corresponding to the image F 'of the intersection point F of the optical axis AO with the plane PM.
  • the software then calculates a vertical angle of absolute observation GAMMA that forms the line of observation DO with its projection on a horizontal plane PF. For this purpose, the software combines the BETA relative observation angle it has just calculated with the attitude angle ALPHA provided by the onboard inclinometer 6 during the image capture.
  • the software applies the formula
  • the software also calculates the distance Hm between, on the one hand, the lowest point PB of the circle 11 of the frame and, on the other hand, the point of intersection Cm of the observation line DO with the plane average PM of the circle 11 of the mount.
  • the software may for example measure on the captured image a distance Hm 'between the lowest point of the image of the circle 11 of the frame and the center of the image of the pupil PU (in FIG. species the center of corneal reflection RC).
  • H (Hm + d (CRO, C) .sin (GAMMA)) / cos (TETA-GAMMA), where d (CRO, C) is the distance between the center of rotation CRO of the eye in question, the right eye OD, and the point C.
  • This eye distance is determined for example from a measurement of the distance d (PU, C) between the pupil and the point C to which is added a radius of average eye or deduced approximately from the wearer's prescription.
  • the distance d (PU, C) can be easily obtained by means of a direct measurement on the wearer using a simple ruler, an automatic or manual measurement on a socket in profile, an automatic measurement or manual front with a telemetry system such as a stigmometer or prism rangefinder type Dodin or the like. It is also possible to perform an indirect measurement from a combination of two frontal images associated with a parallax calculation, the latter method making it possible to directly obtain the desired distance d (CRO, C). Alternatively, one can also use the following formula:
  • H (Hm + d (CRO, Cm) .sin (GAMMA)) / cos (TETA).
  • d CRO, C
  • TETA cos
  • H (Hm + d (PU, C) .sin (GAMMA)) / cos (TETA-GAMMA), where d (PU, C) is the distance between the pupil PU of the eye and the point C, this distance being measured in one of the ways mentioned above.
  • the image capture apparatus 1 is oriented such that the remarkable point is centered on a centering mark of the aiming system of the apparatus 1 so that the optical axis AO of the image capture apparatus 1 coincides with the observation line DO.
  • the decentering is then zero, as well as the value of the angle BETA.
  • the locating accessory 20 having at least four marks 33, 38, 46 and 47, any image of this locating accessory 20 gives eight coordinates for these four marks represented in two dimensions. These eight coordinates make it possible to define a system of eight equations thanks to the calibration steps described previously.
  • the determination of the relative position of the locating accessory 20 with respect to the image-capturing apparatus corresponds to the determination of only six unknowns (three translations and three rotations).
  • the system of eight equations with six unknowns is therefore overdetermined, and its resolution gives a residue. The calculation of this residue allows a self-diagnosis concerning the validity of the results obtained by solving this system.
  • the system issues an alert that the measurement may be false and suggests that the calibration device be recalibrated as it is before performing a new measurement.
  • a variation of this self-diagnostic method is to add two unknowns to the system. For example, it is possible to choose to measure a component in z for the two marks 46 and 47 of the ends of the stirrup 21, which corresponds to a flexural deformation of the locating accessory 20 around a vertical axis transverse to the unicorn axis 30. Two parameters zd and zg are thus introduced such that the coordinates of the marks 47 and 46 are respectively (d, 0, zd) and (-g, 0, zg) in the reference frame of the accessory of The system of eight equations has eight unknowns and is no longer overdetermined.
  • the coordinates of the z components of the marks 46 and 47 are determined during the resolution of the system, and compared to that of the model of the registration accessory determined by the calibration. If the calculated coordinates are different from those of the model, the tracking accessory has been deformed. This distortion is quantified here and the system can issue an alert if the difference in the coordinates of the z components of the marks 46 and 47 exceeds a certain threshold.
  • the principle of this method of self-diagnosis can be applied to other parts or subparts of the tracking accessory having a set of adequate marks and modeled by a set of parameters. It is based on the prior choice of a probable mode of deformation. It can be considered for example that the locating accessory does not deform in elongation in the transverse direction of the stirrup, but easily deforms by curvature or torsion.
  • This provides a measure of distance and correct scaling, which ensures accurate and accurate measurements of frame geometry and carrier morphology.
  • the model of the locating accessory can be refined by a learning method.
  • the pattern of the locating accessory contains several global parameters, including a set of fixed parameters and an adjustable set of parameters respectively corresponding to non-deformable rigid parts and deformable flexible parts of the locating accessory.
  • the principle of improving the model by learning is to use a series of images on which the tracking accessory retains the same geometry.
  • the fixed parameters are by definition the same for all the images, and the adjustable parameters determined from the images should be identical for all the series of images considered. If a sufficient number of images are captured, the system is overdetermined, and the residue can be exploited to evaluate the confidence in the measurement, or possibly increase the model by transforming fixed parameters into adjustable parameters in case the residual resulting from the resolution of the system is too important.
  • Figures 5 and 6 illustrate a second embodiment of the device and the measuring method according to the invention.
  • the measuring device is similar to that described above with reference to FIGS. 3 and 4 and the elements taken up are found with the same reference numerals.
  • Two main modifications have been made: on the one hand, the capture apparatus of image 1 is devoid of onboard inclinometer, on the other hand, the tracking device is provided with an artificial horizon device 40.
  • the artificial horizon device 40 includes a horizon reference ball 41 mounted on the yoke 21 to freely rotate about an axis 42 parallel to the crossbar 24, so horizontal. More specifically, the ball 41 is mounted between the ends of two vertical branches of a fork 43 projecting from the cross member 24 on either side of the totem 36, so that the ball 41 overhangs this totem.
  • the ball 41 is weighted or recessed asymmetrically, so that its center of gravity is offset with respect to its axis of rotation 42.
  • the ball 41 is thus made to maintain naturally, by gravity return effect, a fixed angular position relative to in the horizontal plane PF, regardless of the TETA pantoscopic inclination angle of the frame.
  • the ball 41 has a spherical surface bearing a point mark 45 which, when the sphere 41 is in a stabilized gravitational return position, is located at the top of the front hemisphere formed by the front part of the surface of the ball 41 delimited by the vertical plane containing the axis of rotation 42.
  • the optician captures an image of the wearer's face equipped with the frame and the tracking accessory, as previously indicated. On the captured image of the wearer's face, as shown in FIG. 7, appears an image 41 'of the horizon reference ball 41.
  • the software identifies, on the captured image, the image 41 'of the horizon reference ball 41, then measures the vertical distance EV between the center 42' of the image contour 41 'of the ball 41 (which corresponds to the image of the center 42 of the ball 41) and the center of the image 45 'of the mark 45, given the rescaling.
  • This spacing is representative of the attitude angle ALPHA of the image-capture apparatus 1.
  • ALPHA arcsin (EV / R) - OMEGA
  • R is the radius of the ball 41 and OMEGA the angle, said observation angle ball, formed between, on the one hand, a ball observation line DOB connecting the pupil center 7 of the image capture apparatus 1 to the center 42 of the ball 41 and, on the other hand, the optical axis AO of the image capture apparatus 1.
  • This observation angle OMEGA ball is directly deduced by the software, given the rescaling, the measuring, on the captured image, a shift of the image 42 'of the center of the ball 41 relative to a center of image associated with the optical axis AO of the image-capture apparatus 1 and corresponding to the image F 'of point F of intersection of the optical axis AO with the plane PM.
  • the software is further designed to calculate, from the captured image, an absolute rolling angle LAMBDA carrier of the reference accessory 21 and therefore the wearer's head in natural posture.
  • This angle LAMBDA is represented in FIG. 5 and corresponds to the angle formed by the upper boxing line HOM joining the vertices of the V-shaped pads 28, 29 with its orthogonal projection on the horizontal terrestrial plane HOT.
  • This LAMBDA carrier absolute roll angle in the natural posture of the wearer is useful for the optical calculation and / or the adaptation of the lenses to the wearer and to the chosen frame.
  • the absolute LAMBDA carrier roll angle is determined in the following manner by the image processing and calculation software installed on the computer 8.
  • An HOA internal horizon line is defined related to the capture device. image 1, which constitutes an internal parameter of the internal software of the apparatus 1 and which is attached to the captured image, such that this line HOA is parallel to the horizontal terrestrial plane HOT when the absolute angle of roll of the image capture apparatus 1 is zero.
  • the software determines the relative roll angle KAPPA of the reference accessory 21 in the repository of the image capture apparatus 1. As illustrated by FIGS. 8 and 9, this angle KAPPA is that formed on the captured image, between the internal HOA horizon line of the image capture apparatus 1 and the image of any horizon line connected to the carrier (directly or indirectly) such as the HOM 'image of the HOM line linked to the accessory 21 and the mount 10 or the line joining the images of the marks 46, 47.
  • This horizon line connected to the carrier is determined by a simple image processing from identifiable characteristic points by The software.
  • the software determines an absolute roll angle of the DELTA apparatus of the image capture apparatus 1 around its optical axis AO or around the projection of its optical axis on a horizontal plane. This angle is the angle formed by the HOA internal horizon with its projection on the HOT horizontal plane.
  • This angle DELTA can be determined in different ways.
  • the angle DELTA can be picked up directly by an inclinometer fitted to the image-capture device 1, as previously mentioned for determining the attitude angle of the image-capture device 1.
  • the software calculates by addition or subtraction of the absolute roll angle of the DELTA apparatus and the relative roll angle KAPPA (according to the conventions of signs) the absolute rolling angle LAMBDA carrier of the reference accessory 21 and therefore the wearer's head in natural posture.
  • the software determines the absolute roll angle of the DELTA apparatus of the image-capture apparatus 1, without its own sensor implanted on the apparatus 1, but from the captured image.
  • the horizon reference ball 41 is mounted to rotate freely about a second axis of horizontal rotation perpendicular to the axis 42. This second axis of rotation is parallel to the infinite observation line DOI.
  • the horizon reference ball is additionally weighted or asymmetrically hollowed, so that its center of gravity is shifted relative to this second axis of rotation.
  • the ball 41 is thus made to maintain naturally, by gravity return effect, a fixed angular position relative to the horizontal plane PF, regardless of the absolute angle of roll of the frame.
  • a circular bubble level of the type proposed by LEVEL DEVELOPMENT, reference AV12 230 ', associated with a 45 ° reflecting mirror may be used. The bubble is then the analog of the point mark 45.
  • the software measures, on the captured image, as shown in FIG. 8, the horizontal offset Eh (along the internal horizon line HOA) of the image 45 'of the point mark 45 with respect to the center of the image 41 'of the ball 41.
  • the software can also calculate by image processing the angle between the internal horizon line HOA and the line connecting the geometric center from the image of the ball 41 in the center of the image of the mark 45 '. The complement of this angle corresponds to the absolute roll angle desired DELTA device.
  • the surface of the reference ball 41 is, in addition to the point mark 45, provided with a linear latitude mark 48 which is parallel to the horizontal terrestrial plane HOT when the absolute angle of roll LAMBDA carrier is zero, that is to say in this case when the line HOM is substantially horizontal.
  • the orientation of the image 48 'of the latitude mark 48 on the captured image is then representative of the absolute roll angle of the DELTA apparatus of the image capture apparatus 1.
  • FIG. 9 illustrates, in this hypothesis, the image captured by the image-capture apparatus 1.
  • HOT has been noted as the tangent to the image 48 'of the latitude mark 48 at its intersection with the image 45 45.
  • This HOT tangent is representative of the terrestrial horizon.
  • Absolute roll angle The desired DELTA apparatus is the angle that the horizon tangent HOT forms with the internal horizon line HOA of the image capture apparatus 1. It is calculated as such by processing the captured image.
  • the software also calculates the angle of curvature of the frame 10. It is known that the curvature angle of the frame corresponds globally to the angle of the dihedron formed by the mean planes of the two circles (or the two presentation glasses in the case of glasses with drilled mounting, without circles).
  • the software detects for this purpose, on the captured image, the position of the end 34, 35 of each lateral unicorn 31, 32 and calculates the horizontal distance between this end 34, 35 of the lateral unicorn 31, 32 considered, on the one hand, and the base 90, 91 of this unicorn, on the other hand.
  • These respective spacings of the ends 34, 35 of the lateral unicorns 31, 32 to the plane of symmetry PS are representative of the angles of horizontal orientation, that is to say around the vertical side unicorns 31, 32.
  • the software then deduces positions of the ends 34, 35 of the lateral unicorns 31, 32, the orientation of each of the circles 11 of the frame around the vertical and, consequently, the curve of the frame .
  • the software can, on the other hand, advantageously make anamorphic corrections of the image resulting from horizontal and vertical parallelism defects of the PCI image capture plane with the plane of the stirrup 21 or, in other words, the fact that that the shooting is not done from the front.
  • the software can for this purpose for example use the image of the central unicorn 30 to quantify the lack of parallelism of this central unicorn with respect to the optical axis AO and deduce a matrix of correction of the anamorphosis of the image .
  • FIG. 10 illustrates a variant of the second embodiment of the device and the measuring method according to the invention.
  • the measuring device is similar to that described above with reference to FIGS. 3 and 4 and the elements taken up are found with the same reference numerals.
  • Two main modifications have been made: on the one hand, the horizontal cross member has been split into two elements of horizontal crosspieces 54 and 53 whose spacing is adjustable, and on the other hand, the marking accessory 20 has been provided with an artificial horizon device 60 using a two-knife pendulum device 70.
  • the locating accessory 20 can here be adapted to the width of the spectacle frame on which he is fixed.
  • the two cross members 54 and 53 extend in a substantially horizontal plane and are extended in a substantially vertical plane by two uprights 25 and 39 whose ends point downwards.
  • two locking levers 22 and 23 are mounted on the ends of the uprights 25 and 39, and pads 26, 28 and 27, 29 V-shaped and provided with a coating anti-slip respectively equip the lever 22, the horizontal cross member 54, the lever 23 and the horizontal cross member 53.
  • Side unicorns 31, 32 are mounted on the projecting portions 55, 56 horizontal cross members 54, 53 to pivot about a vertical axis A1 and A2, as in the embodiment shown in Figure 3.
  • the two cross members 53 and 54 present a threaded bore opening at their free end to allow their cooperation with a threaded rod 51.
  • This threaded rod 51 is provided with a central wheel 50 secured to said threaded rod. The actuation by rotation of this wheel 50 makes it possible to screw the threaded rod 51 inside the threaded hole of the cross members 53, 54, or to unscrew it. This therefore makes it possible to increase or reduce the length of the threaded rod 51 between the two free ends of the horizontal cross members 54 and 53.
  • the total length of the locating accessory 20 according to the common axis of the cross members horizontal can then advantageously be adjusted, so that the pads 26, 28 and 27, 29 are positioned vertically to the relevant pupil of the wearer, substantially at the center of the lenses carried by the spectacle frame. This ensures that the angles measured by the device correspond to those sought that form the plane tangent to the lens at the pupil centering point and are not distorted by a mounting fault of the tracking accessory 20 on the spectacle frame 10 .
  • the artificial horizon device 60 is a variant of the ball device presented above. It is carried by a support 60 comprising two horizontal lateral parts 61 and 62, four closure plates 81, 82, 83, 84 and a promontory 67.
  • the two horizontal U-shaped lateral parts 61, 62 surround the horizontal cross members. 53 and 54 so that the bottom of the U-shaped side parts rests on them.
  • Four closure plates 81, 82, 83, 84 close these U-shaped side portions around the cross members 53, 54. These plates are positioned on either side of the projections 55, 56 so as to define between them openings 64 and 63 where the cross members 53, 54 can slide.
  • the race of cross members 53,54 is limited by the abutment of the projecting parts 55, 56 against the closure plates 81 to 84.
  • the promontory 67 of the artificial horizon device 60 supports on the one hand a unicorn 30 provided with a contrasting mark 33 at its end, and secondly a pendulum with two knives 70.
  • the pendulum with two knives 70 comprises a frame 77 mounted to move about an axis A3 parallel to the common axis of the horizontal cross members, thanks to two fingers 75 resting in two cradles 74 formed on the promontory 67 according to the axis A3.
  • a square-based pyramid 73 whose tip is turned downward, towards the inside of the locating element 60, is mounted to pivot about the axis A4 by means of two fingers resting in two V-shaped cradles 78 of the frame 77.
  • This pyramid is such that its center of gravity is situated below the axis of rotation A4, so that it undergoes a gravitational return effect similar to that previously described in FIG. case of the artificial ball horizon.
  • the fingers 75 of the frame 77 are placed in the cradles 74 thanks to the grooves 76 which slide the frame 77 to the center of the promontory 67.
  • the pyramid 73 is placed in the cradles V 78 formed in the frame 77 and is held by a cover 71 covering the frame 77.
  • a rod 72 is fixed on the base of the pyramid 73 and points upwards. The two degrees of freedom of the rod 72 ensure that it remains substantially vertical. The orientation of this rod 72 is therefore a reference of the vertical axis on the captured images of the locating accessory 20.
  • the angle between the rod 72 and the front face of the frame 77 thus provides information on the inclination of the locating accessory 20 about the axis A4, that is to say the attitude angle.
  • the inclination of the registration accessory 20 about the axis A3, that is to say the roll angle, can be estimated by measuring the height of the front face of the frame 77 with respect to the two lateral parts. 61, 62.
  • the locating accessory 20 has five contrasting marks.
  • the mark 33 carried by the unicorn 30, and the marks 46, 47 carried by the uprights 25, 26, two other marks 65 and 66 are located at the ends of the support members 62 and 63 surrounding the elements of horizontal crosspieces 54 and 53, on their front face (substantially perpendicular to the sagittal plane PSAG).
  • the respective positions in the three-dimensional space of the marks 33, 46, 47, 65 and 66 constitute known geometric features which are stored as fixed parameters of the calculation software installed on the computer 8.
  • the present invention is not limited to the embodiments described and shown, but the skilled person will be able to make any variant within his mind.
  • the device and the method are designed to operate for an orientation of the Frankfurt plane which is not parallel to the horizontal terrestrial plane. In this case, it suffices to measure the angle of inclination of the Frankfurt plane with respect to the terrestrial horizontal and to correct the angle of attitude ALPHA and the absolute observation angle GAMMA according to this angle.
  • the processing and calculation software deduce a predictable head port of the wearer from the absolute angle of sight that forms the direction of gaze (or line of sight DV) with the horizontal during the image capture, taking into account a behavioral correlation function derived from a generic abacus or a behavioral analysis personalized of the carrier in question.
  • the measurement of the vertical angle of absolute observation is made from the measurement of the attitude angle of the image-capturing apparatus
  • it is also possible to predict the measurement of the vertical angle of absolute observation is made from the measurement of the at least relative altitude of the image-capturing apparatus with respect to the wearer's head.
  • measurement means such as for example a measurement system of the type sold by the company Polhemus or any other telemetry system using ultrasound, laser, triangulation, stigmometer type Dodin or the like, are provided for measuring the position vertical of the image capture apparatus and these means are substituted for the inclinometer or the artificial horizon which are used in the examples described above and which then become superfluous.
  • the software measures from the single image captured frontally, the position and the orientation of the image capture apparatus, and in particular its vertical inclination angle (attitude) and / or horizontal (roll), by measuring a deformation related to the perspective of at least one known object present in the field of the image taking apparatus.
  • lines typically, vertical and / or horizontal
  • the software measures on the captured image, the angle between the images of these lines on the captured image. which allows him to deduce the vertical inclination of the image capture apparatus.
  • the vertical lines remain parallel on the image only when the vertical tilt angle (attitude) of the camera is zero.
  • the pair of glasses is of rimmed type, that is to say that the lenses are mounted in the circles of the frame.
  • the pair of presentation glasses may be pierced type, that is to say that the lenses are pierced and each fixed, thanks to the holes thus made, at one end of the nose bridge and one end of the corresponding branch of the mount.
  • the described method can also be applied in the case of such a pair of pierced type glasses.
  • the locating accessory is directly attached to the corresponding presentation lens.
  • the calculations or measurements made with respect to the circles (geometry, orientation) in the description above are then made relative to the presentation lenses mounted on the pierced-type frame.
  • the system for processing and calculating the acquired image consists, in the illustrated example, of a microcomputer on which software for processing and calculating the acquired image is installed.
  • the processing and calculation system is an autonomous system which comprises, on the one hand, a display screen for communicating the results obtained and, on the other hand, a connector for making it possible to communicate these results. results to other devices. It is also possible in the case of an autonomous processing system that this system is integrated or not to the image capturing means.

Landscapes

  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Optics & Photonics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Eyeglasses (AREA)

Abstract

Le procédé comporte une étape de capture d'une image numérique sensiblement frontale du visage du porteur équipé au moins de la monture (10), au moyen d'un appareil de capture d'image (1), et une étape de calcul du paramètre géométrico-physionomique (H, TETA) à partir d'un traitement de l'image capturée. Le calcul du paramètre géométrico-physionomique (H, TETA) comporte une identification, sur cette image, de l'image d'un point remarquable prédéterminé (RC), directement ou indirectement associé au visage du porteur ou à la monture, et prend en considération une grandeur représentative de l'angle vertical d'observation absolu (GAMMA) que forme une droite d'observation (DO), reliant la pupille (7) de l'appareil de capture d'image (1) et le point remarquable (RC), avec sa projection sur un plan horizontal (PF).

Description

« Procédé de mesure d'au moins un paramètre géométrico- physionomique d'implantation d'une monture de lunettes de correction visuelle sur le visage d'un porteur » DOMAINE TECHNIQUE AUQUEL SE RAPPORTE L'INVENTION La présente invention concerne de manière générale la confection de lunettes de correction visuelle et plus précisément les mesures géométrico- physionomiques effectuées par l'opticien sur le porteur équipé des montures qu'il a choisies pour déterminer des données relatives à la configuration d'implantation des verres correcteurs en regard des yeux du porteur. Ces données sont typiquement exploitées pour le montage des lentilles correctrices sur la monture, en particulier pour leur centrage optique par rapport à l'oeil du porteur et/ou pour la conception optique personnalisée des lentilles correctrices.
ARRIÈRE-PLAN TECHNOLOGIQUE
La confection d'une lentille correctrice de lunettes comporte, d'une part, la conception optique et la mise en forme des faces de réfraction de la lentille et, d'autre part, l'adaptation de la lentille à la monture choisie. La présente invention traite de la mesure, sur le visage du porteur, de paramètres géométrico- physionomiques rendant compte de la configuration d'implantation des lunettes sur le visage du porteur. Ces paramètres sont susceptibles d'être exploités dans les deux étapes de confection d'une lentille correctrice, afin que la lentille exerce finalement la fonction optique corrective pour laquelle elle a été conçue et prescrite. Il s'agit en pratique, principalement, des paramètres suivants, considérés dans une posture orthostatique du porteur regardant l'horizon à l'infini :
- les écarts pupillaires, distances horizontales des pupilles au plan sagittal,
- les hauteurs pupillaires, distances sensiblement verticales des projections des pupilles suivant l'axe primaire de regard (à l'infini) sur la lentille par rapport au bord inférieur de la monture ou de la lentille détourée (définition dite « datum ») ou à la tangente à ce bord en son point le plus bas (définition dite « boxing »),
- la distance entre chaque lentille et l'oeil correspondant,
- l'angle d'inclinaison pantoscopique que forme le plan général de la monture ou de la lentille par rapport à la verticale.
Pour être efficacement pris en compte, ces paramètres doivent être mesurés avec soin et précision, ce qui s'avère difficile en pratique. Pour rationaliser la prise de mesure, on a proposé d'effectuer celle-ci à partir de photographies numériques du visage du porteur équipé de la monture. Les écarts et hauteurs pupillaires sont ainsi, par exemple, mesurés par traitement d'une image numérique frontale du visage du porteur. Pour obtenir la précision de mesure voulue, il a été jusqu'à présent considéré comme indispensable que l'appareil de capture d'image soit monté mobile verticalement sur une colonne de piètement assurant que l'axe optique de l'objectif de l'appareil de capture d'image reste horizontal et puisse être ajusté à la bonne hauteur. On cherche ainsi à éviter les erreurs de parallaxe verticale qui risqueraient autrement d'être commises sur les mesures des hauteurs d'oeil en particulier.
Toutefois, le dispositif de prise de mesure qui en résulte s'avère relativement encombrant et peu ergonomique pour un usage dans un espace de vente. En outre, le protocole de prise de mesure est perçu comme relativement contraignant, long et fastidieux tant par le porteur que l'opticien.
OBJET DE L'INVENTION Le but de la présente invention est de remédier à tout ou partie des inconvénients précités en proposant un procédé de mesure par capture d'image frontale susceptible d'être mis en oeuvre avec un protocole de prise de mesure rapide et souple et au moyen d'un appareil de capture d'image nomade, sans colonne de piètement, tout en préservant une précision de mesure élevée.
A cet effet, on propose selon l'invention un procédé de mesure d'au moins un paramètre géométrico-physionomique d'implantation d'une monture de lunettes de correction visuelle sur le visage d'un porteur en vue du montage et/ou du calcul personnalisé des lentilles correctrices associées à cette monture, comportant une étape de capture d'une image numérique sensiblement frontale du visage du porteur équipé au moins de la monture, au moyen d'un appareil de capture d'image, et une étape de calcul du paramètre géométrico-physionomique à partir d'un traitement de l'image capturée, caractérisé en ce que le calcul du paramètre géométrico-physionomique comporte une identification, sur cette image, de l'image d'un point remarquable prédéterminé, directement ou indirectement associé au visage du porteur ou à la monture, et prend en considération une grandeur représentative de l'angle vertical d'observation absolu que forme une droite d'observation, reliant la pupille de l'appareil de capture d'image et le point remarquable, avec sa projection sur un plan horizontal.
La capture d'image peut ainsi être effectuée dans une configuration imparfaite d'alignement ou de frontalité, c'est-à-dire avec un décalage vertical, de l'appareil de capture d'image par rapport au visage du porteur. L'erreur induite par l'angle de vue, ou parallaxe verticale, est corrigée lors du calcul grâce à la prise en compte directe ou indirecte de l'angle vertical d'observation absolu qui est précisément générateur de cette erreur. On peut grâce à cette correction assouplir et accélérer le protocole de capture d'image tout en préservant, voire améliorant, la précision globale de la mesure.
Le paramètre géométrico-physionomique comporte typiquement la hauteur d'un point remarquable de l'oeil par rapport à la monture et/ou l'angle d'inclinaison pantoscopique que forme le plan général de la monture ou de la lentille par rapport à la verticale.
Avantageusement, l'appareil de capture d'image est un appareil nomade tenu à la main par un opérateur lors de la capture d'image. On améliore ainsi considérablement la commodité et l'ergonomie de la prise de mesure.
Selon un mode de réalisation avantageux, pour mesurer l'angle vertical d'observation absolu, on mesure un angle d'assiette que forme l'axe optique de l'appareil de capture d'image avec sa projection sur le plan horizontal.
La mesure de l'angle d'assiette peut par exemple être fournie par un inclinomètre équipant l'appareil de capture d'image, adapté à fournir un signal représentatif de la valeur prise par l'angle d'assiette au moment de la capture d'image.
Alternativement, on peut aussi procéder de la façon suivante. Préalablement à la capture d'image, on équipe la tête du porteur d'un dispositif d'horizon artificiel comportant un élément de référence d'horizon mobile en rotation autour d'un axe perpendiculaire au plan sagittal et adapté à conserver une position fixe par rapport au plan horizontal, cet élément de référence d'horizon ayant une caractéristique géométrique connue. Après la capture d'image, on identifie, sur l'image capturée, l'image de cet élément de référence d'horizon, on mesure une caractéristique géométrique de cette image correspondant à la caractéristique géométrique connue de cet élément de référence d'horizon et on calcule l'angle d'assiette en fonction de la caractéristique géométrique mesurée de l'image capturée et de la caractéristique géométrique connue de l'élément de référence d'horizon. Avantageusement alors, le calcul de l'angle d'assiette est de plus fonction d'un angle d'observation relatif de référence formé entre, d'une part, une droite d'observation passant par un point de l'élément de référence d'horizon et par la pupille de l'appareil de capture d'image et, d'autre part, l'axe optique de l'appareil de capture d'image, cet angle d'observation relatif étant déduit de la mesure, sur l'image capturée, d'un décentrement de l'image de l'élément de référence d'horizon par rapport à un centre d'image associé à l'axe optique de l'appareil de capture d'image. Pour mesurer l'angle vertical d'observation absolu, on peut, par exemple, combiner l'angle d'assiette avec un angle d'observation relatif formé entre la droite d'observation et l'axe optique de l'appareil de capture d'image. Cet angle d'observation relatif est déduit de la mesure, sur l'image capturée, d'un décentrement de l'image du point remarquable de l'oeil par rapport à un centre d'image associé à l'axe optique de l'appareil de capture d'image.
Alternativement, pour mesurer l'angle vertical d'observation absolu, on peut faire en sorte que, lors de la capture d'image, l'appareil de capture d'image soit orienté de telle sorte que le point remarquable soit centré sur une marque de centrage du système de visée de l'appareil de capture d'image. L'axe optique de l'appareil de capture d'image est alors confondu avec la droite d'observation, si bien que l'angle vertical d'observation absolu est égal à l'angle d'assiette.
En variante, pour mesurer l'angle vertical d'observation absolu, on peut aussi mesurer une altitude au moins relative de l'appareil de capture d'image par rapport à la tête du porteur.
Selon un aspect particulièrement avantageux de l'invention, on dispose sur la monture un élément de repérage pantoscopique qui possède au moins une caractéristique géométrique connue et qui est disposé de telle sorte que l'image frontale capturée au moyen de l'appareil de capture d'image intègre une image de l'élément de repérage pantoscopique. L'image de l'élément de repérage étant traitée pour en mesurer une caractéristique géométrique dépendant de la caractéristique géométrique connue, le calcul du paramètre géométrico- physionomique est fonction de la caractéristique géométrique mesurée et de la caractéristique géométrique connue de l'élément de repérage. DESCRIPTION DÉTAILLÉE D'UN EXEMPLE DE RÉALISATION
La description qui va suivre, en regard des dessins annexés, donnée à titre d'exemple non limitatif, fera bien comprendre en quoi consiste l'invention et comment elle peut être réalisée.
Sur les dessins annexés : - la figure 1 est une vue de profil de la tête d'un porteur, équipée d'une paire de lunettes ;
- la figure 2 est une vue schématique en perspective d'un dispositif permettant la mesure de paramètres géométrico-physionomiques d'implantation des lunettes sur le visage du porteur conformément à l'invention ; - la figure 3 est une vue en perspective d'un accessoire de repérage équipant la monture selon un premier exemple de réalisation ;
- la figure 4 est une vue schématique en élévation de profil, aux proportions déformées pour en faciliter la lecture, illustrant la capture d'une image frontale de la monture et de l'oeil avec les éléments de géométrie exploités dans le calcul des paramètres géométrico-physiologiques, selon un premier exemple de mise en oeuvre du procédé de mesure selon l'invention, utilisant l'accessoire de repérage de la figure 3 ;
- la figure 5 est une vue analogue à la figure 3, illustrant un second mode de réalisation de l'accessoire de repérage équipant la monture ;
- la figure 6 est une vue analogue à la figure 4, illustrant la capture d'une image frontale de la monture et de l'oeil avec les éléments de géométrie exploités dans le calcul des paramètres géométrico-physiologiques selon un second exemple de mise en oeuvre du procédé de mesure selon l'invention, utilisant l'accessoire de repérage de la figure 5
- la figure 7 est une vue de l'image capturée de l'élément de référence d'horizon ; - la figure 8 est une vue analogue à la figure 7 illustrant une variante de l'élément de référence d'horizon et du procédé, pour la mesure d'un angle de roulis absolu de la tête du porteur ;
- la figure 9 est une vue analogue à la figure 8 illustrant une autre variante de l'élément de référence d'horizon et du procédé, pour la mesure d'un angle de roulis absolu de la tête du porteur.
- La figure 10 est une vue analogue à la figure 3, illustrant une variante du deuxième mode de réalisation de l'accessoire de repérage équipant la monture.
Dans la description qui suit, on considère, comme illustré par la figure 1, que le porteur est dans une configuration assise ou debout qui est telle que sa tête TP est droite, c'est-à-dire que le plan de Francfort PF relatif à la tête du porteur est sensiblement horizontal. Comme représenté sur la figure 1 , le plan de Francfort PF est défini comme le plan passant par les points orbitaires inférieurs OR et le porion PO du porteur, le porion étant le point le plus élevé du conduit auditif, qui correspond au tragion de l'oreille. On dit également que le porteur prend une position orthostatique, position dans laquelle il réalise un minimum d'efforts. L'axe de regard ou droite de visée DV du porteur est initialement l'axe de regard primaire DVI, horizontal, correspondant au cas où le porteur regarde l'horizon droit devant lui à l'infini. On définit aussi un plan médian ou sagittal PSAG de la tête du porteur
TP, parallèle au plan de la figure 1 et schématisé sur la figure 3.
Le porteur est équipé d'une monture 10 qu'il a préalablement choisie et sur laquelle seront montées des lentilles exerçant une fonction optique de correction visuelle conforme à une prescription. Cette monture 10 comporte classiquement deux cercles 11 , reliés par un pontet nasal 13, et deux branches 12. Chaque cercle 11 s'étend dans un plan moyen PM qui, vu de profil, forme avec un plan vertical PV (passant par exemple par le pontet nasal 13) un angle d'inclinaison verticale TETA autour d'une direction horizontale perpendiculaire au plan sagittal PSAG. Cet angle TETA est communément appelé angle pantoscopique.
Dans les exemples qui suivent, il s'agit principalement de déterminer les paramètres géométrico-physionomiques de la tête TP du porteur et de la monture 10 en vue de réaliser la conception personnalisée et/ou l'adaptation de la paire de lentilles correctrices à la physionomie de la tête du porteur et à la géométrie de la monture, en conformité avec la fonction optique de correction voulue. Il s'agit en particulier de déterminer avec précision : - d'une part, la hauteur H de la pupille PU de chaque oeil OD, OG par rapport au point le plus bas PB du cercle concerné 11 de la monture 10, pour permettre le centrage convenable de la lentille correctrice, c'est-à-dire le positionnement du point de centrage ou point pupillaire C de son référentiel optique par rapport à la monture, en vue de son détourage adapté au porteur et à la monture choisie ; cette hauteur H est en l'espèce la distance entre, d'une part, le point le plus bas PB du cercle 11 de la monture et, d'autre part, le point de centrage ou point pupillaire C défini par l'intersection de l'axe de regard primaire DVI (droite de visée à l'infini) avec le plan moyen PM du cercle 11 de la monture, d'autres définitions connues de la hauteur d'oeil pouvant alternativement être retenues ;
- d'autre part, l'angle d'inclinaison pantoscopique TETA du plan moyen du cercle 11 de la monture et, partant, des lentilles correctrices, pour permettre la conception optique personnalisée de l'une et/ou l'autre des deux faces de réfraction de la lentille correctrice. Aux figures 2 et 3, on a représenté un dispositif de détermination de paramètres géométrico-morphologiques individuels d'un porteur équipé d'une paire de lunettes de présentation.
Ce dispositif comporte un appareil de capture d'image numérique 1 qui est par exemple, comme dans l'exemple illustré par la figure 2, similaire à un appareil de photographie numérique de poche du commerce de grand public, comportant un boîtier 2, un bouton de déclenchement 3 et un écran viseur 4. L'appareil de capture d'image 1 comporte de plus ici une source ou mire lumineuse 5, telle qu'une diode, apte à attirer le regard du porteur et à générer une image de reflet par la cornée de chaque oeil du porteur. Cette mire lumineuse 5 est adjacente à l'objectif de l'appareil de capture d'image 1. En variante, l'image du reflet cornéen peut être générée par un flash associé à l'appareil de capture d'image.
On pourra en variante avantageusement utiliser comme appareil de capture d'image une caméra vidéo ou un appareil de photographie à déclenchement rapide, apte à fournir une pluralité de prises de vue à partir desquelles on pourra calculer une moyenne ou appliquer un filtrage ou encore sélectionner la prise de vue la plus pertinente.
Quoi qu'il en soit, l'appareil de capture d'image 1 est apte à être manipulé par l'opticien pour capturer dans un plan facial de capture d'images PCI, une image du visage du porteur équipé de la monture.
L'appareil de capture d'image 1 possède d'autre part des moyens pour sa communication avec un ordinateur 8 équipé de moyens de communication correspondants. Les moyens de communication de l'appareil de capture d'image 1 et de l'ordinateur 8 sont du type filaires ou sans fil et, étant d'une conception courante quelconque, ne seront pas décrits. Avantageusement, ces moyens de communication s'intègrent à une architecture de réseau commune ou de liaison point à point permettant à l'appareil de capture d'image de communiquer avec plusieurs ordinateurs.
Le dispositif de mesure comporte de plus des moyens de mesure d'un angle d'assiette ou tangage ALPHA que forme l'axe optique AO de l'objectif de l'appareil de capture d'image 1 avec sa projection sur le plan horizontal PF. Dans ce premier exemple, l'appareil de capture d'image 8 est équipé d'un inclinomètre électronique embarqué 6 adapté à fournir un signal représentatif de la valeur prise par l'angle d'assiette ALPHA au moment de la capture d'image. On pourra par exemple utiliser un inclinomètre à encombrement réduit du genre capteur capacitif (comprenant un accéléromètre ou gravitomètre), capteur magnétique apte à mesurer le champ magnétique terrestre, ou un champ artificiel. On pourra aussi utiliser un système de capture de position tel que commercialisé par la société Polhemus, ou encore un gyroscope, etc.
Le dispositif de mesure comporte avantageusement, mais non nécessairement, un accessoire de repérage 20 qui est rapporté sur la monture 10 et qui permet, comme nous le verrons, de favoriser la fiabilité et la précision des prises de mesure.
Un exemple d'un tel accessoire de repérage 20 est représenté sur la figure 3 et décrit ci-après en configuration de service, c'est-à-dire rapporté sur une monture qui est elle-même considérée en configuration d'implantation sur le visage du porteur observant la posture orthostatique précédemment décrite. Cet accessoire comporte une ossature articulée composée d'un étrier 21 en forme de U renversé s'étendant dans un plan sensiblement vertical et de deux leviers de verrouillage 22, 23. L'étrier 21 possède une traverse horizontale 24 et deux montants verticaux 25, 39 dont les extrémités pointent vers le bas. Les deux leviers de verrouillage 22, 23 sont montés sur les extrémités des montants 25, 39 pour pivoter dans le plan de l'étrier, donc autour d'axes horizontaux. Un ressort (non représenté) est monté entre chaque levier de verrouillage 22, 23 et l'étrier pour solliciter en permanence ces leviers vers la traverse 24. Les leviers de verrouillage 22, 23 prennent ainsi appui sur les cercles de la monture 10 (ou directement sur les lentilles si les lunettes sont du type sans cercles, à lentilles percées) pour assurer le maintien de l'accessoire de repérage 20 sur la monture. Des patins 26, 27, 28, 29 en forme de V pourvus d'un revêtement anti-dérapant équipent la traverse 24 et les leviers 22, 23 pour accueillir les cercles de la monture (ou les bords des lentilles) et coopérer sans glissement avec ceux-ci, de manière à réaliser une fixation stable de l'accessoire de repérage 20 sur les lunettes. L'ensemble est agencé de telle sorte que l'étrier 21 présente un plan de symétrie PS qui, en service, se confond, approximativement au moins, avec le plan sagittal PSAG du porteur.
L'accessoire de repérage 20 est pourvu de plusieurs éléments de repérage, parmi lesquels on distingue :
- une licorne centrale 30 calée sur le plan de symétrie PS de l'étrier 21 , s'étendant horizontalement en saillie de la traverse 24 en pointant vers l'avant
(c'est-à-dire à l'opposé du visage du porteur) et possédant une extrémité libre arrondie teintée 33,
- deux licornes latérales 31, 32 symétriques l'une de l'autre par rapport au plan de symétrie PS, s'étendant horizontalement en saillie de la traverse 24 en pointant vers l'avant et en divergeant latéralement et possédant chacune une extrémité libre arrondie 34, 35 sur laquelle est ménagée une marque contrastée, par exemple noire ou teintée,
- un totem 36 centré sur le plan de symétrie PS, s'étendant verticalement en saillie supérieure de la traverse 24 de manière à surplomber la licorne centrale 30 et possédant une face avant 37 dont la partie supérieure porte une marque contrastée 38, par exemple noire ou teintée en forme de disque.
Les positions respectives dans l'espace à trois dimensions des marques des extrémités des licornes 30, 31, 32 et de la marque 38 constituent des caractéristiques géométriques connues qui sont mémorisées en tant que paramètres fixes du logiciel de calcul installé sur l'ordinateur 8.
Les deux licornes latérales 31, 32 sont solidaires des patins 28, 29 qui sont eux-mêmes montés sur la traverse 24 pour pivoter librement (avec un débattement angulaire limité et un rappel élastique dans une position angulaire donnée) autour d'axes sensiblement verticaux. Ainsi, lorsque l'accessoire de repérage 20 est monté sur la monture 10, les patins 28, 29 s'orientent d'eux- mêmes, grâce à leur forme en V, en correspondance avec l'orientation horizontale ( c'est-à-dire autour de la verticale) du plan moyen du cercle 11 correspondant de la monture (ou du verre de présentation correspondant dans le cas de lunettes à montage percé, sans cercles).
Le dispositif de mesure décrit ci-dessus permet de mettre en œuvre le procédé suivant de mesure de paramètres géométrico-physionomiques d'implantation de la monture 10 sur le visage du porteur.
Avant toute mesure, deux étapes d'étalonnage doivent être réalisées. Ces étapes d'étalonnage sont faites avant la première mesure, et il n'est pas nécessaire de les renouveler avant chaque mesure.
On réalise tout d'abord l'étalonnage de l'appareil de capture d'image 1 afin de définir une fonction caractéristique de cet appareil, permettant de déterminer, pour un point objet donné de l'espace dans le référentiel de l'appareil de capture d'image 1 , les coordonnées du point image associé à ce point objet sur une image capturée.
Cet étalonnage est réalisé grâce à des images prises par l'appareil de capture d'image 1 de différentes mires planes connues. De telles méthodes sont connues et ont été décrites dans de nombreux documents, notamment dans un article intitulé « Modeling and Calibration of Automated Zoom Lenses », de R.G. Willson, publié dans Proceedings of the SPIE 2350: Videometrics III, pages.170- 186, à Boston, Massachussetts, USA, en octobre 1994. On réalise ensuite l'étalonnage de l'accessoire de repérage 20 en déterminant un modèle de cet accessoire de repérage 20. Pour cela, on détermine les positions relatives des marques contrastées 33, 38, 46, 47. Afin de déterminer ces positions relatives, on peut utiliser un minimum de quatre marques présentes sur l'accessoire de repérage 20, et, au minimum, trois captures d'image différentes. Le modèle de l'accessoire de repérage 20 comporte, d'une part, des paramètres globaux, communs à toutes les images, tels que des paramètres relatifs à la géométrie de l'accessoire de repérage 20 et, d'autre part, des variables intermédiaires propres à la configuration de capture d'image telles que la position et l'orientation de l'accessoire de repérage 20 par rapport à l'appareil de capture d'image 1. Ces paramètres et variables du modèle sont alors calculés par itération de manière à rapprocher, d'une part, les coordonnées calculées à partir du modèle pour les marques contrastées projetées sur l'image théorique, et, d'autre part, les coordonnées relevées sur les différentes images capturées pour ces mêmes marques.
Une fois l'appareil de capture d'image 1 et l'accessoire de repérage 20 étalonnés, on dispose des informations (équations, constantes, paramètres) nécessaires au traitement des images enregistrées par la suite. Ces informations permettent de relier la position des marques contrastées en deux dimensions sur une image quelconque et leurs positions réelles en trois dimensions. A titre d'exemple, le processus suivant peut être suivi. Un référentiel de l'accessoire de repérage est définit grâce à quatre marques, par exemple les marques 46, 47, 33, 38, et un point origine O. Un axe (Ox) passe par les deux marques 46 et 47, un axe (Oy) passe par la marque 38 et le point origine O, qui est défini comme le projeté orthogonal de la marque 38 sur l'axe (Ox), et un axe (Oz) est tel que le repère (O, Ox, Oy, Oz) soit cartésien orthonormé direct. Les coordonnées des quatre marques sont alors déterminées dans le référentiel de l'accessoire de repérage ainsi défini: la marque 47 a pour coordonnées (d, 0, 0), la marque 46 a pour coordonnées (-g, 0, 0), la marque 38 a pour coordonnées (0, h, 0) et la marque 33 a pour coordonnées (a, b, c).
On passe du référentiel de l'accessoire de repérage au référentiel de l'appareil de capture d'image 1 par une transformation comprenant une translation et trois rotations selon les trois axes du référentiel de l'accessoire de repérage. Le passage du référentiel de l'accessoire de repérage au référentiel de l'appareil de capture d'image 1 implique donc dans un cas quelconque:
- une rotation d'un angle N1 autour de l'axe (Oz), correspondant à la matrice de transformation R1: ( cos(N1) sin(N1) 0 )
R1 = (-sin(N1) cos(N1) 0 )
( 0 0 1 )
- une rotation d'un angle N2 autour de l'axe (Ox), correspondant à la matrice de transformation R2: ( 1 0 0 )
R2 = ( 0 cos(N2) sin(N2) )
( 0 -sin(N2) cos(N2) ) - une rotation d'un angle N3 autour de l'axe (Oy), correspondant à la matrice de transformation R3:
( -cos(N3) 0 sin(N3) ) R3 = ( 0 1 0 )
(-sin(N3) 0 -cos(N3) )
- et une translation T = [Tx Ty Tz].
Le vecteur de coordonnées Mraci d'un point objet M de l'accessoire de repérage 20 dans le référentiel de l'appareil de capture d'image 1 peut alors être calculé à partir du vecteur de coordonnées connu Mrar de ce point dans le référentiel de l'accessoire de repérage 20 grâce à l'expression: Mraci = T + Mrar.R1.R2.R3.
Enfin, le vecteur de coordonnées Mimage du point image associé à ce point objet sur une image capturée peut être calculé à partir du vecteur de coordonnées Mraci de ce point objet dans le référentiel de l'appareil de capture 1 grâce à l'étalonnage de l'appareil de capture. La fonction caractéristique de l'appareil de capture 1 peut par exemple correspondre à une fonction polynômiale. On obtient alors les coordonnées (u,v) du point image associé à un point de coordonnées (x, y, z) de l'espace par une transformation pouvant s'écrire sous la forme: u = k1.XΛ5 + k2.XM.Y +... + kn et v = k1'.XΛ5 + k2'.XM.Y +... + krï, où X= x/z et Y= y/z. Avec un appareil de capture d'image de type trou sténopique, la transformation s'écrirait: u = f.x/z + uO et v = f.y/z + vO. Les paramètres de la fonction caractéristique de l'appareil de capture d'image utilisé, par exemple (k1 , k2, ..., kn, k1\ k2', ..., kn'), ou (f, uO, vO), sont déterminés lors de l'étalonnage de l'appareil de capture d'image 1.
Les paramètres globaux d, g, h, a, b et c de l'accessoire de repérage et les variables intermédiaires N1 , N2, N3, Tx, Ty, et Tz définissant sa position par rapport à l'appareil de capture d'image lors des différentes captures d'image sont déterminés de façon itérative afin de faire coïncider les positions théoriques des marques de l'accessoire de repérage sur l'image avec leurs positions réelles sur les images capturées.
L'opticien positionne la paire de lunettes de présentation 10 équipée de l'accessoire de repérage 20 sur le visage du porteur. Le porteur est en posture orthostatique, assis ou debout, avec sa tête droite, c'est-à-dire, comme rappelé ci- avant, que le plan de Francfort PF est sensiblement horizontal. L'opticien veille à ce que cette posture soit bien respectée.
On définit une droite boxing supérieure HOM joignant les sommets des patins en V 28, 29. Cette droite est sensiblement tangente aux sommets des deux cercles 11 de la monture et est donc sensiblement perpendiculaire au plan de symétrie de PS de la monture 10.
Dans la description qui suit du procédé de mesure, mis en oeuvre par le logiciel installé sur l'ordinateur 8, les règles de calcul appliquées par le logiciel et données à titre d'exemples font appel à des grandeurs géométriques définies en relation avec les figures. En particulier, les figures 4 et 6 sont des vues schématiques en élévation, en projection dans le plan PS ou PSAG suivant la direction de la droite boxing supérieure HOM. L'opticien ou opérateur se saisit de l'appareil de capture d'image 1 et place ce dernier en face du visage du porteur et sensiblement à la même hauteur, à sa meilleure convenance. La frontalité est alors approximative, mais pas parfaite. L'opticien active la diode lumineuse 5 en enfonçant d'un premier niveau le bouton 3 et demande au porteur de regarder cette diode. On peut alors considérer, sans commettre d'erreur significative, que le porteur observe la pupille d'entrée de l'appareil de capture d'image 1 , c'est-à-dire que l'axe de regard DV est confondu avec la droite d'observation DO. L'opticien demande au porteur de conserver néanmoins son port de tête en posture orthostatique comme décrit ci- dessus, ce que l'on peut supposer que ce dernier fera sans difficulté dans la mesure où l'appareil de capture d'image 1 est disposé de face, approximativement (bien qu'imparfaitement) à la hauteur du visage.
L'opticien ajuste l'appareil de capture d'image 1 à l'aide de l'écran viseur 4 pour cadrer convenablement le visage du porteur, puis déclenche une capture d'image au moyen du bouton 3, ainsi que, simultanément, la fourniture de l'angle d'assiette ALPHA par l'inclinomètre embarqué 6.
Si l'angle ALPHA excède une valeur seuil en valeur absolue, par exemple de 20 degrés, la mesure est rejetée et un message d'alerte visuel et/ou sonore est émis par l'appareil de capture d'image 1 ou par l'ordinateur 8 pour inviter l'opticien à capturer une nouvelle image en positionnant l'appareil de capture d'image 1 davantage de face à une hauteur plus proche de celle du porteur.
L'appareil de capture d'image 1 transmet l'image ainsi capturée à l'ordinateur 8 qui l'enregistre en mémoire vive ou de masse, en vue de son traitement par le logiciel de traitement et de calcul installé sur l'ordinateur 8. L'appareil de capture d'image 1 transmet également à l'ordinateur 8, qui l'enregistre en mémoire vive ou de masse accessible au logiciel de traitement et de calcul installé sur l'ordinateur 8, l'angle d'assiette ALPHA que formait l'axe optique AO de l'appareil de capture d'image 1 avec sa projection sur le plan horizontal PF lors de la capture d'image et qui a été fourni par l'inclinomètre embarqué 6.
Le logiciel est conçu pour réaliser un calcul de rapprochement des caractéristiques géométriques connues avec les caractéristiques géométriques correspondantes de l'image plane capturée, mesurées par traitement de cette image et comptage de ses pixels, rapprochement duquel sont déduits :
- d'une part, compte-tenu d'une remise à l'échelle dimensionnelle de l'image capturée et d'un comptage de pixels sur cette image, les positions des pupilles des yeux du porteur par rapport à la monture (ou inversement), les dimension de la monture, etc., vues en projection dans le plan de capture d'image (qui est perpendiculaire à l'axe optique de l'appareil de capture d'image et qui peut être incliné par rapport au plan général de la monture),
- d'autre part, les valeurs des composantes horizontale et verticale de l'orientation relative de l'accessoire de repérage 20 par rapport à l'axe optique de l'appareil de capture d'image 1 , le calcul de ces angles ne nécessitant pas nécessairement de remise à l'échelle.
La remise à l'échelle dimensionnelle de l'image consiste à calculer un facteur d'échelle donnant, dans la configuration de capture d'image, la proportionnalité entre une dimension réelle d'un élément géométrique dont l'image est capturée et le nombre de pixels de l'image de cet élément suivant la direction de la dimension considérée.
La remise à l'échelle est par exemple réalisée par le logiciel de traitement et de calcul en comparant la distance entre les images, sur l'image capturée, de deux points remarquables de l'accessoire de référence 20, tels que les extrémités de la traverse 24 ou les marques 46, 47, avec la distance réelle connue entre ces points remarquables (qui est intégrée au logiciel de traitement et de calcul en tant que paramètre).
Cette mise à l'échelle peut aussi être réalisée par la mesure, à l'aide d'un sous-ensemble de télémétrie, de la distance séparant l'appareil de capture d'image de la tête du porteur. On peut par exemple utiliser des systèmes de capture de position équipant, d'une part, le porteur ou la monture et, d'autre part, l'appareil de capture d'image 1 pour fournir la distance relative entre l'appareil de capture d'image 1 et la tête du porteur. On peut alternativement utiliser tout autre système de télémétrie par ultrason, laser, triangulation, stigmomètre type Dodin ou analogue.
Pour calculer l'angle pantoscopique TETA de la monture, le logiciel calcule, par décompte de pixels et compte-tenu de la remise à l'échelle, l'écart de hauteur entre, d'une part, l'image de la marque 38 du totem 36 et, d'autre part, l'image de l'extrémité 33 de la licorne centrale 33. On comprend en effet que le décalage vers l'avant de l'extrémité 33 de la licorne centrale 33 a pour effet de faire sensiblement varier l'altitude de cette extrémité 33 avec l'angle pantoscopique TETA. Il en résulte que cet écart de hauteur est représentatif d'un angle d'inclinaison verticale relative SIGMA que forme le plan moyen de la monture PM avec le plan de capture d'image PCI perpendiculaire à l'axe optique AO de l'objectif de l'appareil de capture d'image 1. Le logiciel combine alors cet angle SIGMA avec l'angle d'assiette ALPHA fourni par l'inclinomètre 6 de l'appareil de capture d'image 1 , pour en déduire l'angle pantoscopique TETA recherché. Le logiciel intègre la formule
TETA = ALPHA + SIGMA ou TETA = ALPHA - SIGMA selon la convention de signe des angles orientés. Le logiciel calcule ensuite la hauteur d'oeil H. Il identifie à cet effet, sur l'image capturée, l'image d'un point remarquable prédéterminé, directement ou indirectement associé au visage du porteur ou à la monture 10. Ce point remarquable peut, typiquement, appartenir à l'oeil considéré, à la monture ou à l'accessoire de repérage. En l'espèce, le logiciel identifie sur l'image le centre de la pupille de l'oeil considéré qui correspond au reflet coméen RC de la diode 5 de l'appareil de capture d'image 1.
On définit une droite d'observation DO reliant la pupille 7 de l'appareil de capture d'image 1 et le reflet coméen RC. Le logiciel calcule un angle d'observation relatif BETA formé entre la droite d'observation DO et l'axe optique AO de l'appareil de capture d'image 1. Cet angle d'observation relatif BETA est directement déduit par le logiciel, compte-tenu de la remise à l'échelle, de la mesure, sur l'image capturée, d'un décentrement de l'image du reflet coméen RC par rapport à un centre d'image associé à l'axe optique AO de l'appareil de capture d'image 1 et correspondant à l'image F' du point F d'intersection de l'axe optique AO avec le plan PM.
Le logiciel calcule alors un angle vertical d'observation absolu GAMMA que forme la droite d'observation DO avec sa projection sur un plan horizontal PF. A cet effet, le logiciel combine l'angle d'observation relatif BETA qu'il vient de calculer avec l'angle d'assiette ALPHA fourni par l'inclinomètre embarqué 6 lors de la capture d'image. Le logiciel applique la formule
GAMMA = BETA - ALPHA OU GAMMA = BETA + ALPHA selon la convention de signe des angles orientés. Le logiciel calcule par ailleurs la distance Hm entre, d'une part, le point le plus bas PB du cercle 11 de la monture et, d'autre part, le point d'intersection Cm de la droite d'observation DO avec le plan moyen PM du cercle 11 de la monture.
A cet effet, le logiciel peut par exemple mesurer sur l'image capturée une distance Hm' entre le point le plus bas de l'image du cercle 11 de la monture et le centre de l'image de la pupille PU (en l'espèce le centre du reflet cornéen RC). Le logiciel en déduit alors la hauteur Hm dans le plan PM au moyen de la formule : Hm = Hm' / cos(GAMMA-TETA).
Enfin, le logiciel calcule la hauteur d'oeil H au moyen de la formule suivante :
H = (Hm + d(CRO,C).sin(GAMMA)) / cos(TETA-GAMMA) , où d(CRO,C) est la distance entre le centre de rotation CRO de l'oeil considéré, en l'espèce l'oeil droit OD, et le point C. Cette distance d'oeil est déterminée par exemple à partir d'une mesure de la distance d(PU,C) entre la pupille et le point C auquel on ajoute un rayon d'oeil moyen ou déduit approximativement de la prescription du porteur. La distance d(PU,C), généralement appelée distance lentille-oeil, peut être aisément obtenue au moyen d'une mesure directe sur le porteur à l'aide d'un simple réglet, d'une mesure automatique ou manuelle sur une prise de vue de profil, d'une mesure automatique ou manuelle de face avec un système de télémétrie tel qu'un stigmomètre ou télémètre à prisme du type Dodin ou analogue. On peut aussi réaliser une mesure indirecte à partir d'une combinaison de deux prises de vues frontales associée à un calcul de parallaxe, cette dernière méthode permettant d'obtenir directement la distance d(CRO,C) recherchée. En alternative, on peut aussi utiliser la formule suivante :
H = (Hm + d(CRO,Cm).sin(GAMMA)) / cos(TETA). En variante, on peut aussi déduire de la distance d(CRO,C) la position du centre de rotation CRO de l'oeil sur la droite d'observation DO, puis en déduire l'intersection de la droite de visée à l'infini DVI avec le plan moyen PM du cercle 11 de la monture, ce qui correspond au point C recherché.
En variante, on pourrait aussi prévoir que, lors de la capture d'image, le porteur ne regarde pas l'appareil de capture d'image, mais regarde droit devant lui, suivant la droite de visée à l'infini DVI. Ceci favoriserait le respect par le porteur de la posture orthostatique définie précédemment. Dans ce cas, on procède comme exposé ci-dessus, mais en appliquant in fine la formule suivante pour le calcul de la hauteur d'oeil H :
H = (Hm + d(PU,C).sin(GAMMA)) / cos(TETA-GAMMA) , où d(PU,C) est la distance entre la pupille PU de l'oeil et le point C, cette distance étant mesurée de l'une des manières mentionnées précédemment.
En variante, on pourrait encore prévoir que, lors de la capture d'image, l'appareil de capture d'image 1 soit orienté de telle sorte que le point remarquable soit centré sur une marque de centrage du système de visée de l'appareil de capture d'image 1 de telle sorte que l'axe optique AO de l'appareil de capture d'image 1 soit confondu avec la droite d'observation DO. Le décentrement est alors nul, ainsi que la valeur de l'angle BETA.
Il est de plus avantageusement prévu une méthode d'auto-diagnostique de l'intégrité géométrique de l'accessoire de repérage et, partant, de la validité des calculs effectués. En effet, l'accessoire de repérage 20 possédant au moins quatre marques 33, 38, 46 et 47, une image quelconque de cet accessoire de repérage 20 donne huit coordonnées pour ces quatre marques représentées en deux dimensions. Ces huit coordonnées permettent de définir un système de huit équations grâce aux étapes d'étalonnage décrites précédemment. La détermination de la position relative de l'accessoire de repérage 20 par rapport à l'appareil de capture d'image correspond à la détermination de seulement six inconnues (trois translations et trois rotations). Le système de huit équations à six inconnues est donc surdéterminé, et sa résolution donne un résidu. Le calcul de ce résidu permet un auto-diagnostique portant sur la validité des résultats obtenus par résolution de ce système. En effet, si le modèle déterminé lors de l'étalonnage de l'accessoire de repérage représente correctement la géométrie de cet accessoire de repérage au moment de la mesure, la valeur de ce résidu est très faible. Un résidu très petit montre donc que l'accessoire de repérage n'a pas été déformé depuis l'étape d'étalonnage. En revanche, si la valeur du résidu est grande, l'accessoire de repérage ne correspond plus au modèle déterminé lors de l'étalonnage, ce qui signifie que l'accessoire de repérage a été déformé. Dans ce cas, le système émet une alerte signalant que la mesure risque d'être fausse et suggère d'effectuer un nouvel étalonnage de l'accessoire de repérage en l'état avant de réaliser une nouvelle mesure.
Une variante de cette méthode d'auto-diagnostique consiste à ajouter deux inconnues au système. On peut choisir par exemple de mesurer une composante en z pour les deux marques 46 et 47 des extrémités de l'étrier 21 , ce qui correspond à une déformation en flexion de l'accessoire de repérage 20 autour d'un axe vertical transversal à l'axe de la licorne 30. On introduit alors deux paramètres zd et zg tel que les coordonnées des marques 47 et 46 s'écrivent respectivement (d, 0, zd) et (-g, 0, zg) dans le référentiel de l'accessoire de repérage 20. Le système de huit équations possède ainsi huit inconnues et n'est plus surdéterminé. Les coordonnées des composantes en z des marques 46 et 47 sont déterminées lors de la résolution du système, et comparées à celle du modèle de l'accessoire de repérage déterminé par l'étalonnage. Si les coordonnées calculées sont différentes de celles du modèle, l'accessoire de repérage à été déformé. Cette déformation est ici quantifiée et le système peut émettre une alerte si la différence des coordonnées des composantes en z des marques 46 et 47 dépasse un certain seuil.
Le principe de cette méthode d'auto-diagnostique peut être appliqué à d'autres parties ou sous-parties de l'accessoire de repérage comportant un jeu de marques adéquates et modélisées par un jeu de paramètres. Elle repose sur le choix préalable d'un mode de déformation probable. On peut considérer par exemple que l'accessoire de repérage ne se déforme pas en élongation selon la direction transversale de l'étrier, mais se déforme facilement par courbure ou torsion.
On obtient ainsi une mesure de distance et de remise à l'échelle correcte, ce qui permet d'assurer des mesures de géométrie de monture et de morphologie du porteur exactes et précises.
Avantageusement, le modèle de l'accessoire de repérage peut être affiné par une méthode d'apprentissage. Le modèle de l'accessoire de repérage contient plusieurs paramètres globaux, dont un jeu de paramètres fixes et un jeu de paramètres ajustables correspondant respectivement à des parties rigides non déformables et à des parties souples déformables de l'accessoire de repérage. Le principe de l'amélioration du modèle par apprentissage consiste à utiliser une série d'images sur lesquelles l'accessoire de repérage conserve la même géométrie. Les paramètres fixes sont par définition les mêmes pour toutes les images, et les paramètres ajustables déterminés à partir des images devraient être identiques pour toute la série d'images considérée. Si l'on capture un nombre suffisant d'images, le système est surdéterminé, et le résidu peut être exploité pour évaluer la confiance dans la mesure, ou augmenter éventuellement le modèle en transformant des paramètres fixes en paramètres ajustables dans le cas où le résidu résultant de la résolution du système est trop important.
Les figures 5 et 6 illustrent un second mode de réalisation du dispositif et du procédé de mesure selon l'invention. Le dispositif de mesure est similaire à celui qui a été décrit précédemment en référence aux figures 3 et 4 et les éléments repris se retrouvent avec les mêmes références numériques. Deux modifications principales ont été apportées : d'une part, l'appareil de capture d'image 1 est dépourvu d'inclinomètre embarqué, d'autre part, l'accessoire de repérage est pourvu d'un dispositif d'horizon artificiel 40.
Le dispositif d'horizon artificiel 40 comporte une bille de référence d'horizon 41 montée sur l'étrier 21 pour tourner librement autour d'un axe 42 parallèle à la traverse 24, donc horizontal. Plus précisément, la bille 41 est montée entre les extrémités de deux branches verticales d'une fourche 43 s'élevant en saillie de la traverse 24 de part et d'autre du totem 36, de telle sorte que la bille 41 surplombe ce totem.
La bille 41 est lestée ou évidée asymétriquement, de telle sorte que son centre de gravité soit décalé par rapport à son axe de rotation 42. La bille 41 est donc amenée à conserver naturellement, par effet de rappel gravitaire, une position angulaire fixe par rapport au plan horizontal PF, quelle que soit l'angle d'inclinaison pantoscopique TETA de la monture.
La bille 41 présente une surface sphérique portant une marque ponctuelle 45 qui, lorsque la sphère 41 est en position stabilisée de rappel gravitaire, est située au sommet de l'hémisphère avant formée par la partie avant de la surface de la bille 41 délimitée par le plan vertical contenant l'axe de rotation 42.
En service, l'opticien capture une image du visage du porteur équipé de la monture et de l'accessoire de repérage, comme indiqué précédemment. Sur l'image capturée du visage du porteur, comme représenté sur la figure 7, apparaît une image 41' de la bille de référence d'horizon 41.
Le logiciel identifie, sur l'image capturée, l'image 41' de la bille de référence d'horizon 41 , puis mesure l'écart vertical EV entre le centre 42' du contour de l'image 41' de la bille 41 (qui correspond à l'image du centre 42 de la bille 41) et le centre de l'image 45' de la marque 45, compte-tenu de la remise à l'échelle. Cet écartement est représentatif de l'angle d'assiette ALPHA de l'appareil de capture d'image 1. On a en effet la relation : ALPHA = arcsin (EV/R) - OMEGA où R est le rayon de la bille 41 et OMEGA l'angle, dit angle d'observation bille, formé entre, d'une part, une droite d'observation bille DOB reliant le centre de pupille 7 de l'appareil de capture d'image 1 au centre 42 de la bille 41 et, d'autre part, l'axe optique AO de l'appareil de capture d'image 1. Cet angle d'observation bille OMEGA est directement déduit par le logiciel, compte-tenu de la remise à l'échelle, de la mesure, sur l'image capturée, d'un décentrement de l'image 42' du centre de la bille 41 par rapport à un centre d'image associé à l'axe optique AO de l'appareil de capture d'image 1 et correspondant à l'image F' du point F d'intersection de l'axe optique AO avec le plan PM.
Le logiciel est de plus conçu pour calculer, à partir de l'image capturée, un angle de roulis absolu porteur LAMBDA de l'accessoire de référence 21 et donc de la tête du porteur en posture naturelle. Cet angle LAMBDA est représenté sur la figure 5 et correspond à l'angle formé par la droite boxing supérieure HOM joignant les sommets des patins en V 28, 29 avec sa projection orthogonale sur le plan horizontal terrestre HOT. Cet angle de roulis absolu porteur LAMBDA en posture naturelle du porteur est utile pour le calcul optique et/ou l'adaptation des lentilles au porteur et à la monture choisie. L'angle de roulis absolu porteur LAMBDA est déterminé de la façon suivante par le logiciel de traitement d'image et de calcul installé sur l'ordinateur 8. On définit une ligne d'horizon interne HOA liée à l'appareil de capture d'image 1 , qui constitue un paramètre interne du logiciel interne de l'appareil 1 et qui est attachée à l'image capturée, de telle manière que cette ligne HOA soit parallèle au plan horizontal terrestre HOT lorsque l'angle absolu de roulis de l'appareil de capture d'image 1 est nul.
Le logiciel détermine l'angle de roulis relatif KAPPA de l'accessoire de référence 21 dans le référentiel de l'appareil de capture d'image 1. Comme illustré par les figures 8 et 9, cet angle KAPPA est celui formé, sur l'image capturée, entre la ligne d'horizon interne HOA de l'appareil de capture d'image 1 et l'image d'une droite d'horizon quelconque liée au porteur (directement ou indirectement) telle que l'image HOM' de la droite HOM liée à l'accessoire 21 et à la monture 10 ou encore la droite joignant les images des marques 46, 47. Cette droite d'horizon liée au porteur est déterminée par un simple traitement d'image à partir de points caractéristiques identifiables par le logiciel.
Le logiciel détermine ensuite un angle de roulis absolu appareil DELTA de l'appareil de capture d'image 1 autour de son axe optique AO ou autour de la projection de son axe optique sur un plan horizontal. Cet angle est celui que forme la ligne d'horizon interne HOA avec sa projection sur le plan horizontal terrestre HOT.
Cet angle DELTA peut être déterminé de différentes manières. L'angle DELTA peut par exemple être capté directement par un inclinomètre équipant l'appareil de capture d'image 1 , comme mentionné précédemment pour la détermination de l'angle d'assiette de l'appareil de capture d'image 1.
Le logiciel calcule alors par addition ou soustraction de l'angle de roulis absolu appareil DELTA et de l'angle de roulis relatif KAPPA (selon les conventions de signes) l'angle de roulis absolu porteur LAMBDA de l'accessoire de référence 21 et donc de la tête du porteur en posture naturelle.
Dans un perfectionnement illustré par la figure 8, on peut prévoir que le logiciel détermine l'angle de roulis absolu appareil DELTA de l'appareil de capture d'image 1 , sans capteur propre implanté sur l'appareil 1 , mais à partir de l'image capturée. Pour cela, on peut par exemple prévoir les. aménagements suivants. La bille de référence d'horizon 41 est montée pour tourner librement autour d'un second axe de rotation horizontal perpendiculaire à l'axe 42. Ce second axe de rotation est parallèle à la droite d'observation à l'infini DOI. La bille de référence d'horizon est de plus lestée ou évidée asymétriquement, de telle sorte que son centre de gravité soit décalé par rapport à ce second axe de rotation. La bille 41 est donc amenée à conserver naturellement, par effet de rappel gravitaire, une position angulaire fixe par rapport au plan horizontal PF, quelle que soit l'angle absolu de roulis de la monture. En variante, on peut utiliser un niveau à bulle circulaire, du type proposé par la société LEVEL DEVELOPMENT, de référence AV12 230', associé à un miroir de renvoi à 45°. La bulle est alors l'analogue de la marque ponctuelle 45.
Pour calculer l'angle de roulis absolu appareil DELTA, le logiciel mesure, sur l'image capturée, telle que représentée sur la figure 8, le décalage horizontal Eh (suivant la ligne d'horizon interne HOA) de l'image 45' de la marque ponctuelle 45 par rapport au centre de l'image 41' de la bille 41. Alternativement, le logiciel peut aussi calculer par traitement de l'image l'angle entre la ligne d'horizon interne HOA et la droite reliant le centre géométrique de l'image de la bille 41 au centre de l'image de la marque 45'. Le complémentaire de cet angle correspond à l'angle de roulis absolu appareil DELTA recherché.
En variante illustrée par la figure 9, on peut aussi prévoir avantageusement que la surface de la bille de référence 41 est, en plus de la marque ponctuelle 45, pourvue d'une marque linéaire de latitude 48 qui est parallèle au plan horizontal terrestre HOT lorsque l'angle de roulis absolu porteur LAMBDA est nul, c'est-à-dire en l'espèce lorsque la droite HOM est sensiblement horizontale. L'orientation de l'image 48' de la marque de latitude 48 sur l'image capturée est alors représentative de l'angle de roulis absolu appareil DELTA de l'appareil de capture d'image 1.
La figure 9 illustre, dans cette hypothèse, l'image capturée par l'appareil de capture d'image 1. On a noté HOT la tangente à l'image 48' de la marque de latitude 48 en son intersection avec l'image 45' de la marque ponctuelle 45. Cette tangente HOT est représentative de l'horizon terrestre. L'angle de roulis absolu appareil DELTA recherché est l'angle que forme la tangente d'horizon HOT avec la ligne d'horizon interne HOA de l'appareil de capture d'image 1. Il est calculé en tant que tel par traitement de l'image capturée.
Le logiciel calcule par ailleurs l'angle de galbe de la monture 10. On sait que l'angle de galbe de la monture correspond globalement à l'angle du dièdre formé par les plans moyens des deux cercles (ou des deux verres de présentation dans le cas de lunettes à montage percé, sans cercles).
Le logiciel détecte à cet effet, sur l'image capturée, la position de l'extrémité 34, 35 de chaque licorne latérale 31 , 32 et calcule la distance horizontale entre cette extrémité 34, 35 de la licorne latérale 31 , 32 considérée, d'une part, et l'embase 90, 91 de cette licorne, d'autre part. Ces écartements respectifs des extrémités 34, 35 des licornes latérales 31 , 32 au plan de symétrie PS sont représentatifs des angles d'orientation horizontale, c'est-à-dire autour de la verticale, des licornes latérales 31 , 32. Comme les licornes latérales 31 , 32 sont solidaires des patins 28, 29 qui s'orientent d'eux-mêmes autour de la verticale en correspondance avec le plan moyen de chacun des cercles 11 de la monture (ou des verres de présentation correspondant dans le cas de lunettes à montage percé, sans cercles), le logiciel déduit alors des positions des extrémités 34, 35 des licornes latérales 31 , 32, l'orientation de chacun des cercles 11 de la monture autour de la verticale et, partant, le galbe de la monture.
Le logiciel peut d'autre part, avantageusement opérer des corrections d'anamorphose de l'image résultant des défauts horizontal et vertical de parallélisme du plan de capture d'image PCI avec le plan de l'étrier 21 ou, autrement dit, du fait que la prise de vue n'est pas effectuée de face. Le logiciel peut à cet effet par exemple exploiter l'image de la licorne centrale 30 pour quantifier le défaut de parallélisme de cette licorne centrale par rapport à l'axe optique AO et en déduire une matrice de correction de l'anamorphose de l'image.
La figure 10 illustre une variante du second mode de réalisation du dispositif et du procédé de mesure selon l'invention. Le dispositif de mesure est similaire à celui qui a été décrit précédemment en référence aux figures 3 et 4 et les éléments repris se retrouvent avec les mêmes références numériques. Deux modifications principales ont été apportées: d'une part, la traverse horizontale a été scindée en deux éléments de traverses horizontaux 54 et 53 dont l'écartement est réglable, et d'autre part, l'accessoire de repérage 20 a été pourvu d'un dispositif d'horizon artificiel 60 utilisant un dispositif de pendule à deux couteaux 70.
L'accessoire de repérage 20 peut être ici adapté à la largeur de la monture de lunettes sur laquelle il est fixé. Les deux éléments de traverses 54 et 53 s'étendent dans un plan sensiblement horizontal et sont prolongés dans un plan sensiblement vertical par deux montants 25 et 39 dont les extrémités pointent vers le bas. Comme dans le mode de réalisation représenté sur la figure 3, deux leviers de verrouillage 22 et 23 sont montés sur les extrémités des montants 25 et 39, et des patins 26, 28 et 27, 29 en forme de V et pourvus d'un revêtement antidérapant équipent respectivement le levier 22, l'élément de traverse horizontal 54, le levier 23 et l'élément de traverse horizontal 53. Des licornes latérales 31 , 32, sont montées sur des parties saillantes 55, 56 des éléments de traverses horizontaux 54, 53 pour pivoter autour d'un axe vertical A1 et A2, comme dans le mode de réalisation représenté sur la figure 3. La fixation de l'accessoire de repérage 20 et la détermination de la composante horizontale de l'orientation de ce dispositif grâce aux licornes 31 et 32 se font donc ici de la même manière que dans le mode de réalisation rattaché à la figure 3. Dans la variante de l'accessoire de repérage 20 décrit sur la figure 10, les deux éléments de traverses 53 et 54 présentent un perçage taraudé débouchant à leur extrémité libre pour permettre leur coopération avec une tige filetée 51. Cette tige filetée 51 est pourvue d'une molette centrale 50, solidaire de ladite tige filetée. L'actionnement par rotation de cette molette 50 permet de visser la tige filetée 51 à l'intérieur du perçage taraudé des éléments de traverse 53, 54, ou de la dévisser. Ceci permet donc d'augmenter ou de réduire la longueur de la tige filetée 51 comprise entre les deux extrémités libres des éléments de traverses horizontaux 54 et 53. La longueur totale de l'accessoire de repérage 20 selon l'axe commun des éléments de traverses horizontaux peut alors avantageusement être ajustée, de sorte que les patins 26, 28 et 27, 29 soient positionnés à la verticale de la pupille concernée du porteur, sensiblement au niveau du centre des lentilles portées par la monture de lunettes. Ceci assure que les angles mesurés par le dispositif correspondent bien à ceux recherchés que forme le plan tangent à la lentille au point de centrage pupillaire et ne soient pas faussés par un défaut de montage de l'accessoire de repérage 20 sur la monture de lunettes 10.
Le dispositif d'horizon artificiel 60 est une variante du dispositif à bille présenté précédemment. Il est porté par un support 60 comprenant deux parties latérales horizontales 61 et 62, quatre plaquettes de fermeture 81 , 82, 83, 84 et un promontoire 67. Les deux parties latérales horizontales 61 , 62 en forme de U entourent les éléments de traverses horizontaux 53 et 54 de façon à ce que le fond des parties latérales en U repose sur eux. Quatre plaquettes de fermeture 81 , 82, 83, 84 ferment ces parties latérales en U autour des éléments de traverses 53, 54. Ces plaquettes sont positionnées de part et d'autre des parties saillantes 55, 56 de manière à délimiter entre elles des ouvertures 64 et 63 où les éléments de traverses 53, 54 peuvent coulisser. La course dès éléments de traverses 53,54 est limitée par la venue en butée des parties saillantes 55, 56 contre les plaquettes de fermeture 81 à 84. Le promontoire 67 du dispositif d'horizon artificiel 60 supporte d'une part une licorne 30 munie d'une marque contrastée 33 à son extrémité, et d'autre part un pendule à deux couteaux 70.
Le pendule à deux couteaux 70 comprend un cadre 77 monté mobile autour d'un axe A3 parallèle à l'axe commun des éléments de traverses horizontaux, grâce à deux doigts 75 reposant dans deux berceaux en V 74 ménagés sur le promontoire 67 selon l'axe A3. A l'intérieur de ce cadre 77, une pyramide à base carrée 73 dont la pointe est tournée vers le bas, vers l'intérieur de l'élément de repérage 60, est montée pour pivoter autour de l'axe A4 grâce à deux doigts reposant dans deux berceaux en V 78 du cadre 77. Cette pyramide est telle que son centre de gravité est situé en dessous de l'axe de rotation A4, si bien qu'elle subit un effet de rappel gravitaire similaire à celui décrit précédemment dans le cas de l'horizon artificiel à bille. Les doigts 75 du cadre 77 sont mis en place dans les berceaux 74 grâce aux rainures 76 qui permettent de faire glisser le cadre 77 au centre du promontoire 67. La pyramide 73 est mise en place dans les berceaux en V 78 ménagés dans le cadre 77 et est maintenue par un couvercle 71 recouvrant le cadre 77. Une tige 72 est fixée sur la base de la pyramide 73 et pointe vers le haut. Les deux degrés de liberté de la tige 72 assurent que celle-ci reste sensiblement verticale. L'orientation de cette tige 72 est donc un repère de l'axe vertical sur les images capturées de l'accessoire de repérage 20. L'angle entre la tige 72 et la face avant du cadre 77 renseigne donc sur l'inclinaison de l'accessoire de repérage 20 autour de l'axe A4, c'est-à-dire l'angle d'assiette. L'inclinaison de l'accessoire de repérage 20 autour de l'axe A3, c'est-à-dire l'angle de roulis, peut être estimé en mesurant la hauteur de la face avant du cadre 77 par rapport aux deux parties latérales 61 , 62. L'accessoire de repérage 20 porte cinq marques contrastées. En plus de celles décrites sur la figure 3, la marque 33 portée par la licorne 30, et les marques 46, 47 portées par les montants verticaux 25, 26, deux autres marques 65 et 66 sont situées aux extrémités des éléments de support 62 et 63 entourant les éléments de traverses horizontaux 54 et 53, sur leur face avant (sensiblement perpendiculaire au plan sagittale PSAG). Les positions respectives dans l'espace à trois dimensions des marques 33, 46, 47, 65 et 66 constituent des caractéristiques géométriques connues qui sont mémorisées en tant que paramètres fixes du logiciel de calcul installé sur l'ordinateur 8.
La présente invention n'est nullement limitée aux modes de réalisation décrits et représentés, mais l'homme du métier saura y apporter toute variante conforme à son esprit. On pourra en particulier avantageusement prévoir que le dispositif et le procédé soient conçus pour fonctionner pour une orientation du plan de Francfort qui n'est pas parallèle au plan horizontal terrestre. Il suffit dans cette hypothèse de mesurer l'angle d'inclinaison du plan de Francfort par rapport à l'horizontale terrestre et de corriger en fonction de cet angle l'angle d'assiette ALPHA et l'angle d'observation absolu GAMMA. On peut en particulier, à cet effet prévoir que le logiciel de traitement et de calcul déduit un port de tête prévisible du porteur à partir de l'angle absolu de visée que forme la direction de regard (ou droite de visée DV) avec l'horizontale lors de la capture d'image, compte tenu d'une fonction de corrélation comportementale tirée d'un abaque générique ou d'une analyse comportementale personnalisée du porteur en question.
Bien que, dans les exemples donnés précédemment, la mesure de l'angle vertical d'observation absolu soit réalisée à partir de la mesure de l'angle d'assiette de l'appareil de capture d'image, il est également possible de prévoir que la mesure de l'angle vertical d'observation absolu soit réalisée à partir de la mesure de l'altitude au moins relative de l'appareil de capture d'image par rapport à la tête du porteur. Dans ce cas, des moyens de mesure, comme par exemple un système de mesure du type de ceux commercialisés par la société Polhemus ou tout autre système de télémétrie par ultrason, laser, triangulation, stigmomètre type Dodin ou analogue, sont prévus pour mesurer la position verticale de l'appareil de capture d'image et ces moyens se substituent à l'inclinomètre ou à l'horizon artificiel qui sont utilisés dans les exemples précédemment décrits et qui deviennent alors superflus.
De manière plus générale, on peut prévoir que le logiciel mesure, à partir de la seule image capturée frontalement, la position et l'orientation de l'appareil de capture d'image, et en particulier son angle d'inclinaison verticale (assiette) et/ou horizontale (roulis), en mesurant une déformation liée à la perspective d'au moins un objet connu présent dans le champ de l'appareil de prise d'image. Par exemple, des lignes (typiquement, verticales et/ou horizontales) et parallèles entre elles sont positionnées derrière le porteur et le logiciel mesure, sur l'image capturée, l'angle entre les images de ces droites sur l'image capturée, ce qui lui permet d'en déduire l'inclinaison verticale de l'appareil de capture d'image. A titre d'exemple, les lignes verticales restent parallèles sur l'image uniquement quand l'angle d'inclinaison verticale (assiette) de l'appareil photo est nul.
Dans l'exemple illustré, la paire de lunettes est de type cerclée, c'est-à- dire que les lentilles sont montées dans les cercles de la monture. En variante, la paire de lunettes de présentation peut être de type percée, c'est-à-dire que les lentilles sont percées et fixées chacune, à la faveur des perçages ainsi réalisés, à une extrémité du pontet nasal et une extrémité de la branche correspondante de la monture. Le procédé décrit peut également être appliqué dans le cas d'une telle paire de lunettes de type percée. Dans ce cas, l'accessoire de repérage est directement fixé sur la lentille de présentation correspondante. Les calculs ou mesures réalisés relativement aux cercles (géométrie, orientation) dans la description ci-dessus sont alors réalisés relativement aux lentilles de présentation montées sur la monture de type percée.
Le système de traitement et de calcul de l'image acquise consiste, dans l'exemple illustré, en un microordinateur sur lequel est installé un logiciel de traitement et de calcul de l'image acquise. En variante, on peut prévoir que le système de traitement et de calcul soit un système autonome qui comporte, d'une part, un écran d'affichage pour communiquer les résultats obtenus et, d'autre part, une connectique pour permettre de communiquer ces résultats à d'autres appareils. On peut également prévoir dans le cas d'un système autonome de traitement que ce système soit intégré ou non aux moyens de capture d'images.
Enfin, l'ordre d'exécution des étapes n'est pas limitatif et l'homme du métier saura le modifier à sa guise tout en préservant la cohérence d'ensemble du procédé.

Claims

REVENDICATIONS
1. Procédé de mesure d'au moins un paramètre géométrico- physionomique (H, TETA) d'implantation d'une monture (10) de lunettes de correction visuelle sur le visage d'un porteur en vue du montage et/ou du calcul personnalisé des lentilles correctrices associées à cette monture, comportant une étape de capture d'une image numérique sensiblement frontale du visage du porteur équipé au moins de la monture (10), au moyen d'un appareil de capture d'image (1), et une étape de calcul du paramètre géométrico-physionomique (H, TETA) à partir d'un traitement de l'image capturée, caractérisé en ce que le calcul du paramètre géométrico-physionomique (H, TETA) comporte une identification, sur cette image, de l'image d'un point remarquable prédéterminé (RC), directement ou indirectement associé au visage du porteur ou à la monture, et prend en considération une grandeur représentative de l'angle vertical d'observation absolu (GAMMA) que forme une droite d'observation (DO), reliant la pupille (7) de l'appareil de capture d'image (1) et le point remarquable (RC), avec sa projection sur un plan horizontal (PF).
2. Procédé selon la revendication précédente, dans lequel l'appareil de capture d'image (1) est un appareil nomade tenu à la main par un opérateur lors de la capture d'image.
3. Procédé selon l'une des revendications précédentes, dans lequel, pour mesurer l'angle vertical d'observation absolu (GAMMA), on mesure un angle d'assiette (ALPHA) que forme l'axe optique (AO) de l'appareil de capture d'image (1) avec sa projection sur le plan horizontal (PF).
4. Procédé selon la revendication 3, dans lequel, la mesure de l'angle d'assiette (ALPHA) est fournie par un inclinomètre équipant l'appareil de capture d'image, adapté à fournir un signal représentatif de la valeur prise par l'angle d'assiette (ALPHA) au moment de la capture d'image.
5. Procédé selon la revendication 3, dans lequel, préalablement à la capture d'image, on équipe la tête du porteur (TP) d'un dispositif d'horizon artificiel (40) comportant un élément de référence d'horizon (41) mobile en rotation autour d'un axe (42) perpendiculaire au plan sagittal (PSAG) et adapté à conserver une position fixe par rapport au plan horizontal (PF), cet élément de référence d'horizon ayant une caractéristique géométrique connue, et dans lequel, après la capture d'image, on identifie, sur l'image capturée, l'image de cet élément de référence d'horizon (41), on mesure une caractéristique géométrique (Ev) de cette image correspondant à la caractéristique géométrique connue de cet élément de référence d'horizon et on calcule l'angle d'assiette (ALPHA) en fonction de la caractéristique géométrique mesurée de l'image capturée et de la caractéristique géométrique connue de l'élément de référence d'horizon.
6. Procédé selon la revendication précédente, dans lequel le calcul de l'angle d'assiette (ALPHA) est de plus fonction d'un angle d'observation relatif de référence (OMEGA) formé entre, d'une part, une droite d'observation (DOB) passant par un point de l'élément de référence d'horizon (41) et par la pupille (7) de l'appareil de capture d'image (1) et, d'autre part, l'axe optique (AO) de l'appareil de capture d'image (1), cet angle d'observation relatif (BETA) étant déduit de la mesure, sur l'image capturée, d'un décentrement de l'image de l'élément de référence d'horizon (41) par rapport à un centre d'image associé à l'axe optique (AO) de l'appareil de capture d'image (1).
7. Procédé selon l'une des revendications 3 à 6, dans lequel, pour mesurer l'angle vertical d'observation absolu (GAMMA), on combine l'angle d'assiette (ALPHA) avec un angle d'observation relatif (BETA) formé entre la droite d'observation (DO) et l'axe optique (AO) de l'appareil de capture d'image (1), cet angle d'observation relatif (BETA) étant déduit de la mesure, sur l'image capturée, d'un décentrement de l'image du point remarquable (RC) de l'oeil par rapport à un centre d'image associé à l'axe optique de l'appareil de capture d'image (1).
8. Procédé selon l'une des revendications 3 à 6, dans lequel, pour mesurer l'angle vertical d'observation absolu (GAMMA), on fait en sorte que, lors de la capture d'image, l'appareil de capture d'image (1) soit orienté de telle sorte que le point remarquable (RC) soit centré sur une marque de centrage du système de visée de l'appareil de capture d'image (1), l'angle vertical d'observation absolu (GAMMA) étant alors égal à l'angle d'assiette (ALPHA).
9. Procédé selon l'une des revendications 1 et 2, dans lequel, pour mesurer l'angle vertical d'observation absolu (GAMMA), on mesure une altitude au moins relative de l'appareil de capture d'image (1) par rapport à la tête du porteur.
10. Procédé selon l'une des revendications précédentes, dans lequel le paramètre géométrico-physionomique comporte la hauteur (H) d'un point remarquable (PU) de l'oeil par rapport à la monture et/ou l'angle d'inclinaison pantoscopique (TETA) que forme le plan général de la monture ou de la lentille (PM) par rapport à la verticale.
11. Procédé selon l'une des revendications précédentes, dans lequel on dispose sur la monture un élément de repérage pantoscopique (30, 33, 36, 38) qui possède au moins une caractéristique géométrique connue et qui est disposé de telle sorte que l'image frontale capturée au moyen de l'appareil de capture d'image (1) intègre une image de l'élément de repérage pantoscopique (30, 33, 36, 38) et dans lequel, l'image de l'élément de repérage (30, 33, 36, 38) étant traitée pour en mesurer une caractéristique géométrique dépendant de la caractéristique géométrique connue, le calcul du paramètre géométrico-physionomique est fonction de la caractéristique géométrique mesurée et de la caractéristique géométrique connue de l'élément de repérage.
12. Procédé selon l'une des revendications précédentes, dans lequel le calcul du paramètre géométrico-physionomique (H, TETA) prend en compte un facteur d'échelle donnant, dans la configuration de capture d'image, la proportionnalité entre une dimension réelle d'un élément géométrique dont l'image est capturée et le nombre de pixels de l'image de cet élément suivant la direction de la dimension considérée.
PCT/FR2008/000268 2007-04-18 2008-02-29 Procédé de mesure d'au moins un paramètre géométrico- physionomique d'implantation d'une monture de lunettes de correction visuelle sur le visage d'un porteur WO2008129168A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
ES08775613.6T ES2651022T3 (es) 2007-04-18 2008-02-29 Procedimiento de medición de al menos un parámetro geométrico-fisonómico de implantación de una montura de gafas de corrección visual sobre la cara de un usuario
US12/596,351 US7950800B2 (en) 2007-04-18 2008-02-29 Method of measuring at least one geometrico-physiognomic parameter for positioning a vision correcting eyeglass frame on the face of a wearer
EP08775613.6A EP2137569B1 (fr) 2007-04-18 2008-02-29 Procédé de mesure d'au moins un paramètre géométrico- physionomique d'implantation d'une monture de lunettes de correction visuelle sur le visage d'un porteur

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR0702800A FR2915290B1 (fr) 2007-04-18 2007-04-18 Procede de mesure d'au moins un parametre geometrico- physionomique d'implantation d'une monture de lunettes de correction visuelle sur le visage d'un porteur
FR07/02800 2007-04-18
FR0704406A FR2915291B3 (fr) 2007-04-18 2007-06-20 Procede de mesure d'au moins un parametre geometrico-physionomique d'implantation d'une monture de lunettes de correction visuelle sur le visage d'un porteur
FR07/04406 2007-06-20

Publications (1)

Publication Number Publication Date
WO2008129168A1 true WO2008129168A1 (fr) 2008-10-30

Family

ID=38617543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2008/000268 WO2008129168A1 (fr) 2007-04-18 2008-02-29 Procédé de mesure d'au moins un paramètre géométrico- physionomique d'implantation d'une monture de lunettes de correction visuelle sur le visage d'un porteur

Country Status (5)

Country Link
US (1) US7950800B2 (fr)
EP (1) EP2137569B1 (fr)
ES (1) ES2651022T3 (fr)
FR (2) FR2915290B1 (fr)
WO (1) WO2008129168A1 (fr)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202012000167U1 (de) 2012-01-10 2012-02-24 Hans-Joachim Ollendorf Mobiles Videozentriersystem zur Bestimmung von Zentrierdaten für Brillengläser
FR2980592A1 (fr) * 2011-09-28 2013-03-29 Essilor Int Procede de mesure de parametres morpho-geometriques d'un individu porteur de lunettes
FR2980591A1 (fr) * 2011-09-28 2013-03-29 Essilor Int Procede de mesures de parametres morpho-geometriques d'un individu porteur de lunettes
WO2013121128A1 (fr) * 2012-02-16 2013-08-22 Essilor International (Compagnie Générale d'Optique) Dispositif de repérage destiné à être fixé sur une monture de lunette
WO2014016502A1 (fr) * 2012-07-24 2014-01-30 Essilor International (Compagnie Générale d'Optique) Procede de mesure de parametres morpho-geometriques d'un individu porteur de lunettes
WO2016150885A1 (fr) 2015-03-20 2016-09-29 Essilor International (Compagnie Générale d'Optique) Procédé permettant d'évaluer un indice d'exposition d'un œil à un rayonnement ultraviolet et système associé
WO2017149346A1 (fr) 2016-03-04 2017-09-08 Essilor International (Compagnie Générale d'Optique) Procédé de commande d'une lentille ophtalmique et système correspondant
WO2017149335A1 (fr) 2016-03-04 2017-09-08 Essilor International (Compagnie Générale d'Optique) Procédé de détermination de valeur de puissance de réfraction caractérisant une lentille ophtalmique, et dispositif électronique correspondant
US10022044B2 (en) 2014-05-20 2018-07-17 Essilor International (Compagnie Generale D'optique Method of visual testing of an individual and associated device
US10685457B2 (en) 2018-11-15 2020-06-16 Vision Service Plan Systems and methods for visualizing eyewear on a user

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009024681A2 (fr) * 2007-07-26 2009-02-26 Essilor International (Compagnie Générale d'Optique) Procédé de mesure d'au moins un paramètre géométrico-physionomique d'implantation d'une monture de lunettes de correction visuelle sur le visage d'un porteur
FR2939915B1 (fr) * 2008-12-12 2011-01-14 Essilor Int Procede de preparation d'une lentille ophtalmique en vue de son montage sur une monture de lunettes cambree
FR2944609B1 (fr) * 2009-04-17 2011-04-22 Essilor Int Procede de determination d'au moins un parametre geomerico-postural d'implantation d'une monture de lunettes de correction visuelle sur le visage d'un porteur dans sa posture anatomique
JP5351691B2 (ja) * 2009-10-01 2013-11-27 ホーヤ レンズ マニュファクチャリング フィリピン インク 眼球下転量測定装置及び眼球下転量測定方法
DE102011009646B4 (de) * 2011-01-27 2018-02-08 Hans-Joachim Ollendorf Videozentriersystem und Verfahren zur Bestimmung von Zentrierdaten für Brillengläser
FR2971860B1 (fr) * 2011-02-21 2013-08-30 Essilor Int Procede de determination, en posture naturelle, d'au moins un parametre geometrico-physionomique associe au montage d'une lentille ophtalmique dans une monture de lunettes
FR2971861B1 (fr) * 2011-02-21 2013-02-22 Essilor Int Procede de determination d'au moins un parametre geometrico-physionomique associe au montage d'une lentille ophtalmique dans une monture de lunettes portee par un porteur
FR2980681A3 (fr) * 2011-09-29 2013-04-05 Fittingbox Procede de determination des mesures oculaires et optiques d'interet pour la fabrication et le montage de verre de lunettes correcteurs, a l'aide d'une camera en contexte non controle
US9282888B2 (en) * 2012-04-24 2016-03-15 Vsp Labs, Inc. Digital measurement system and method for optical applications
PT106430B (pt) * 2012-07-03 2018-08-07 Cesar Augusto Dos Santos Silva Sistema para medição da distância interpupilar usando um dispositivo equipado com um ecrã e uma câmara
FR2992844B1 (fr) * 2012-07-06 2016-03-18 Essilor Int Dispositif et procede de mesure d'au moins une caracteristique de refraction oculaire objective d'un sujet pour une pluralite de distances de vision
WO2014030154A2 (fr) * 2012-08-21 2014-02-27 Shamir Optical Industry Ltd. Procédé, dispositif et système de mesure des inclinaisons horizontale et verticale d'un verre de lunettes
FR2995411B1 (fr) * 2012-09-07 2014-09-19 Tipheret Procede et dispositif pour preparer une monture de lunettes
US9507175B2 (en) * 2012-10-16 2016-11-29 3M Innovative Properties Company Methods and devices for evaluating eyewear fit
FR2998385B1 (fr) * 2012-11-22 2016-01-08 Interactif Visuel Systeme I V S Accessoire pour l'optimisation de caracteristiques optiques de verres correcteurs d'une monture
US9733490B2 (en) 2013-02-28 2017-08-15 Hoya Corporation Spectacle lens design system, supply system, design method and manufacturing method
JP6164739B2 (ja) * 2013-09-24 2017-07-19 ホヤ レンズ タイランド リミテッドHOYA Lens Thailand Ltd 眼鏡装用パラメータ測定装置、眼鏡装用パラメータ測定プログラムおよび画像取得方法
DE102016113374B3 (de) * 2016-07-20 2017-10-26 Carl Zeiss Vision International Gmbh Fern-Durchblickpunkt-Bestimmung für ein Brillenglas
DE102014200637A1 (de) * 2014-01-15 2015-07-16 Carl Zeiss Vision International Gmbh Anpassparameter-Bestimmung für ein Brillenglas in eine Brillenfassung
US9971172B2 (en) 2014-01-15 2018-05-15 Carl Zeiss Vision International Gmbh Method for determining the far visual point for a spectacle lens and system therefor
US9699123B2 (en) 2014-04-01 2017-07-04 Ditto Technologies, Inc. Methods, systems, and non-transitory machine-readable medium for incorporating a series of images resident on a user device into an existing web browser session
DE102014015345A1 (de) 2014-10-18 2016-04-21 Hans-Joachim Ollendorf Verfahren zur messgenauen Bestimmung von optisch-physiognomischen Parametern eines Probanden zur Anpassung von Brillengläsern an den Probanden für die Nahsichtsituation
US10288910B2 (en) 2014-11-14 2019-05-14 ESSILOR INTERNATIONAL Charenton-le-Pont Devices and methods for determining the position of a characterizing point of an eye and for tracking the direction of the gaze of a wearer of spectacles
US9557583B2 (en) * 2015-01-09 2017-01-31 Fortunato Farache System, method and device for measuring pupillary distances
JP2016167038A (ja) * 2015-03-10 2016-09-15 ホヤ レンズ タイランド リミテッドHOYA Lens Thailand Ltd 眼鏡装用パラメータ測定装置、眼鏡装用パラメータ測定プログラムおよび撮像制御方法
FR3042400A1 (fr) 2015-10-15 2017-04-21 Essilor Int Dispositif de test du comportement visuel d'un individu et methode de determination d'au moins un parametre de conception optique d'une lentille ophtalmique utilisant un tel dispositif
DE102016212761B4 (de) * 2016-07-13 2018-05-03 Fielmann Ventures GmbH Messbügel zur lösbaren Befestigung an einer Brillenfassung
CN110234267B (zh) 2017-01-24 2022-05-10 T·R·卡萨格兰德 用于验证光学测量值的方法和设备
US11036066B2 (en) 2017-01-24 2021-06-15 Casagrande Thomas R Methods and apparatus for verifying optical measurements
JP6611768B2 (ja) * 2017-08-31 2019-11-27 キヤノン株式会社 画像表示装置
WO2020064747A1 (fr) * 2018-09-26 2020-04-02 Essilor International Procédé de détermination d'au moins un paramètre géométrico-morphologique d'un sujet
US11215849B2 (en) * 2019-06-17 2022-01-04 Marko Teodorovic Pantoscopic tilt measurement device
EP3913424A1 (fr) 2020-05-22 2021-11-24 Carl Zeiss Vision International GmbH Procédé mis en oeuvre par ordinateur de détermination des paramètres de centrage pour terminaux mobiles, terminal mobile et programme informatique

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2719463A1 (fr) * 1994-05-03 1995-11-10 Essilor Int Procédé de métrologie optique.
FR2860887A1 (fr) * 2003-10-13 2005-04-15 Interactif Visuel Systeme Ivs Mesure de configuration du visage et de montures de lunettes placees sur ce visage a une efficacite amelioree
DE102004063160A1 (de) * 2004-12-29 2006-07-13 Ollendorf, Hans-Joachim, Dipl.-Ing. Verfahren und Einrichtung zum Anpassen einer Brille
WO2007036288A1 (fr) * 2005-09-28 2007-04-05 Carl Zeiss Vision Gmbh Procede et dispositif permettant de determiner l'angle d'inclinaison en avant d'une monture de lunettes

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4517049B2 (ja) * 2003-12-25 2010-08-04 国立大学法人静岡大学 視線検出方法および視線検出装置
US7384147B1 (en) * 2006-07-28 2008-06-10 Hossein Ameri Apparatus and method for ophthalmometery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2719463A1 (fr) * 1994-05-03 1995-11-10 Essilor Int Procédé de métrologie optique.
FR2860887A1 (fr) * 2003-10-13 2005-04-15 Interactif Visuel Systeme Ivs Mesure de configuration du visage et de montures de lunettes placees sur ce visage a une efficacite amelioree
DE102004063160A1 (de) * 2004-12-29 2006-07-13 Ollendorf, Hans-Joachim, Dipl.-Ing. Verfahren und Einrichtung zum Anpassen einer Brille
WO2007036288A1 (fr) * 2005-09-28 2007-04-05 Carl Zeiss Vision Gmbh Procede et dispositif permettant de determiner l'angle d'inclinaison en avant d'une monture de lunettes

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103827735A (zh) * 2011-09-28 2014-05-28 埃西勒国际通用光学公司 用于测量佩戴眼镜的个体的形态几何参数的方法
FR2980592A1 (fr) * 2011-09-28 2013-03-29 Essilor Int Procede de mesure de parametres morpho-geometriques d'un individu porteur de lunettes
FR2980591A1 (fr) * 2011-09-28 2013-03-29 Essilor Int Procede de mesures de parametres morpho-geometriques d'un individu porteur de lunettes
WO2013045133A1 (fr) * 2011-09-28 2013-04-04 Essilor International (Compagnie Générale d'Optique) Procédé de mesure de paramètres morpho-géométriques d'une personne portant des lunettes
WO2013045789A1 (fr) * 2011-09-28 2013-04-04 Essilor International (Compagnie Générale d'Optique) Procede de mesures de parametres morpho-geometriques d'un individu porteur de lunettes
CN103827735B (zh) * 2011-09-28 2015-11-25 埃西勒国际通用光学公司 用于测量佩戴眼镜的个体的形态几何参数的方法
WO2013104353A1 (fr) * 2012-01-10 2013-07-18 Hans-Joachim Ollendorf Système de centrage vidéo mobile pour la détermination de données de centrage pour des verres de lunettes
DE202012000167U1 (de) 2012-01-10 2012-02-24 Hans-Joachim Ollendorf Mobiles Videozentriersystem zur Bestimmung von Zentrierdaten für Brillengläser
US10101598B2 (en) 2012-02-16 2018-10-16 Essilor International Locating device intended to be fixed to a spectacle frame
WO2013121128A1 (fr) * 2012-02-16 2013-08-22 Essilor International (Compagnie Générale d'Optique) Dispositif de repérage destiné à être fixé sur une monture de lunette
FR2987142A1 (fr) * 2012-02-16 2013-08-23 Essilor Int Dispositif de reperage pour une monture de lunette
FR2993996A1 (fr) * 2012-07-24 2014-01-31 Essilor Int Procede de mesure de parametres morpho-geometriques d'un individu porteur de lunettes
WO2014016502A1 (fr) * 2012-07-24 2014-01-30 Essilor International (Compagnie Générale d'Optique) Procede de mesure de parametres morpho-geometriques d'un individu porteur de lunettes
US10022044B2 (en) 2014-05-20 2018-07-17 Essilor International (Compagnie Generale D'optique Method of visual testing of an individual and associated device
WO2016150885A1 (fr) 2015-03-20 2016-09-29 Essilor International (Compagnie Générale d'Optique) Procédé permettant d'évaluer un indice d'exposition d'un œil à un rayonnement ultraviolet et système associé
US10416075B2 (en) 2015-03-20 2019-09-17 Essilor International Method for evaluating an index of exposure of an eye to ultraviolet radiation and associated system
WO2017149346A1 (fr) 2016-03-04 2017-09-08 Essilor International (Compagnie Générale d'Optique) Procédé de commande d'une lentille ophtalmique et système correspondant
WO2017149335A1 (fr) 2016-03-04 2017-09-08 Essilor International (Compagnie Générale d'Optique) Procédé de détermination de valeur de puissance de réfraction caractérisant une lentille ophtalmique, et dispositif électronique correspondant
US11262596B2 (en) 2016-03-04 2022-03-01 Essilor International Method of determining a refractive power value characterising an ophthalmic lens and corresponding electronic device
US11327339B2 (en) 2016-03-04 2022-05-10 Essilor International Method of ordering an ophthalmic lens and corresponding system
US10685457B2 (en) 2018-11-15 2020-06-16 Vision Service Plan Systems and methods for visualizing eyewear on a user

Also Published As

Publication number Publication date
US20100195045A1 (en) 2010-08-05
FR2915291B3 (fr) 2009-07-03
FR2915291A1 (fr) 2008-10-24
EP2137569B1 (fr) 2017-09-13
FR2915290A1 (fr) 2008-10-24
ES2651022T3 (es) 2018-01-23
FR2915290B1 (fr) 2009-07-03
US7950800B2 (en) 2011-05-31
EP2137569A1 (fr) 2009-12-30

Similar Documents

Publication Publication Date Title
EP2137569B1 (fr) Procédé de mesure d'au moins un paramètre géométrico- physionomique d'implantation d'une monture de lunettes de correction visuelle sur le visage d'un porteur
EP3659109B1 (fr) Procédé de détermination d'au moins un paramètre associé à un dispositif ophtalmique
EP2822451B1 (fr) Procede de determination d'au moins une caracteristique de posture de la tete d'un porteur d'une paire de lunettes
EP2134249B1 (fr) Procédé de mesure de la position suivant une direction horizontale du plan sagittal du centre de rotation d'un oeil d'un sujet
EP2171527B1 (fr) Procédé de mesure d'au moins un paramètre géométrico-physionomique d'implantation d'une monture de lunettes de correction visuelle sur le visage d'un porteur
EP2760329B1 (fr) Procede de determination de mesures oculaires et optiques
EP2822449B1 (fr) Procede de determination d'une caracteristique geometrico-morphologique, de posture ou comportementale d'un porteur d'une paire de lunettes
CA2929942C (fr) Methode de determination d'au moins un parametre de conception optique d'une lentille ophtalmique progressive
EP2822450B1 (fr) Procede d'estimation d'une distance separant une paire de lunettes et un oil du porteur de la paire de lunettes
EP2419783B1 (fr) Procédé de détermination d'au moins un paramètre géométrico-postural d'implantation d'une monture de lunettes de correction visuelle sur le visage d'un porteur dans sa posture anatomique
EP2486444B1 (fr) Procede et equipement de mesures pour la personnalisation et le montage de lentilles ophtalmiques correctrices
CA3001990C (fr) Methode de determination d'un parametre de comportement visuel d'un individu et dispositif de test associe
FR2919395A1 (fr) Procede de mesure d'au moins un parametre geometrico- physionomique d'implantation d'une monture de lunettes de correction visuelle sur le visage d'un porteur.
EP4304450A1 (fr) Procede de determination de parametres metrologiques d'un individu equipe d'une paire de lunettes
FR2971929A1 (fr) Methode et dispositif de mesure des parametres necessaires a la fabrication de lunettes a la morphologie d'un individu donne

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08775613

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2008775613

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008775613

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12596351

Country of ref document: US