WO2008129096A1 - Exoesqueleto de seguridad y control para la práctica del esquí de nieve - Google Patents

Exoesqueleto de seguridad y control para la práctica del esquí de nieve Download PDF

Info

Publication number
WO2008129096A1
WO2008129096A1 PCT/ES2008/000242 ES2008000242W WO2008129096A1 WO 2008129096 A1 WO2008129096 A1 WO 2008129096A1 ES 2008000242 W ES2008000242 W ES 2008000242W WO 2008129096 A1 WO2008129096 A1 WO 2008129096A1
Authority
WO
WIPO (PCT)
Prior art keywords
exoskeleton
joint assembly
joint
knee
assembly
Prior art date
Application number
PCT/ES2008/000242
Other languages
English (en)
French (fr)
Inventor
Juan MORÁN
Original Assignee
Golden Crab, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Golden Crab, S.L. filed Critical Golden Crab, S.L.
Priority to EP08761489A priority Critical patent/EP2163226A1/en
Priority to US12/103,410 priority patent/US8060945B2/en
Priority to ARP080101664A priority patent/AR066228A1/es
Publication of WO2008129096A1 publication Critical patent/WO2008129096A1/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B71/00Games or sports accessories not covered in groups A63B1/00 - A63B69/00
    • A63B71/08Body-protectors for players or sportsmen, i.e. body-protecting accessories affording protection of body parts against blows or collisions
    • A63B71/12Body-protectors for players or sportsmen, i.e. body-protecting accessories affording protection of body parts against blows or collisions for the body or the legs, e.g. for the shoulders
    • A63B71/1225Body-protectors for players or sportsmen, i.e. body-protecting accessories affording protection of body parts against blows or collisions for the body or the legs, e.g. for the shoulders for the legs, e.g. thighs, knees, ankles, feet
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F5/00Orthopaedic methods or devices for non-surgical treatment of bones or joints; Nursing devices; Anti-rape devices
    • A61F5/01Orthopaedic devices, e.g. splints, casts or braces
    • A61F5/0102Orthopaedic devices, e.g. splints, casts or braces specially adapted for correcting deformities of the limbs or for supporting them; Ortheses, e.g. with articulations
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63CSKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
    • A63C9/00Ski bindings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F5/00Orthopaedic methods or devices for non-surgical treatment of bones or joints; Nursing devices; Anti-rape devices
    • A61F5/01Orthopaedic devices, e.g. splints, casts or braces
    • A61F5/0102Orthopaedic devices, e.g. splints, casts or braces specially adapted for correcting deformities of the limbs or for supporting them; Ortheses, e.g. with articulations
    • A61F2005/0132Additional features of the articulation
    • A61F2005/0144Multibar
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2244/00Sports without balls
    • A63B2244/19Skiing
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63CSKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
    • A63C2203/00Special features of skates, skis, roller-skates, snowboards and courts
    • A63C2203/50Skis, skates or boards with shoe-like cradles comprising additional leg support

Definitions

  • the present invention a safety device for snow skiing, concerns a device that makes skiing a safer and easier sport.
  • the device has been designed with special emphasis on the prevention of knee injuries, as this is the joint that suffers the most damage in accidents recorded during the practice of this sport.
  • the protection provided by the device of this invention is not limited to the knee joint, but can also provide protection to the entire leg, and in most preferred embodiments, also to the hip.
  • the invention relates to a device that, in addition to guaranteeing the skier's safety, allows skis to be controlled during sport, preventing them from deviating against the will of the user or skier, so that the skier you will suffer fewer accidents and therefore you will also suffer less injuries of all kinds.
  • the preferred field of application for the invention is the practice of skiing, in particular alpine skiing, although the present invention may also be useful for other sports involving risk of joint or bone injury. Therefore, everything detailed below could also be used, with the logical adaptations to the protection of other athletes and people who practice activities that involve a risk of bone injuries in general and joint injuries in particular.
  • the total number of accidents involving serious injuries, with attention and evacuation of the injured on the track is approximately between two and four per thousand. Of a thousand days skied by a skier, he will be injured between 2 and four times (in the United States it is approximately 3.5 per thousand days). Also, the practice of skiing is often hampered by the amplification of the force that any accident on the terrain exerts through the large lever of the skis exerted on the foot of the skier, causing the skier to lose his trajectory and producing instability. As mentioned, the sport of skiing carries a high risk of ligament and meniscal knee injuries (between 30% and 40% of the total), among others. Such injuries are frequently caused by the great forces to which the knees are subjected by the efforts transmitted to them through the rigid boot from the skis, which act as large levers as seen in Fig. IA.
  • the injury of the external lateral ligament usually affects beginners and middle skiers, who ski mainly in the wedge position, with their feet tilted inward, and who are injured during the fall, when they cross the skis or open the wedge. Injuries to the external lateral ligament can occur in more skilled skiers, usually when a ski is encountered by an obstacle, the ski is opened and the leg tries to hold it.
  • anterior cruciate ligament injury occurs in different conditions, especially in more skilled skiers, and can occur, for example:
  • This system also forces the skier to choose a specific setting. If the fixation is adjusted too hard, it is difficult for the ski to separate from the boot in a ski torque that is large enough for the risk of knee injury. If, on the other hand, the bindings are too soft, a skier could at one time compromise, lose a ski involuntarily, which can also cause a serious injury.
  • U.S. Patent No. 4136404-B1 describes an apparatus. one-leg brace for sport practice configured to connect to the sides of a ski boot and split into two parts along the leg by means of a knee-high joint, so that a top part is attached to the thigh and a bottom to the boot.
  • the device allows a movement of flexion and extension of the leg, restricting the lateral flexion of the two parts of the leg and allowing the transmission of the lateral forces of the skier's legs to the lateral parts of the boot. That is, the purpose of this device is to reduce the lateral flexion of the legs of a skier during skiing, so that it protects the bones of the leg, not its joints, in case of flexion.
  • this device does not protect the leg in case of torsion, which is the effort that generates the most common and important knee injuries, especially when the knee is extended.
  • Another limitation of the mechanism covered by the aforementioned US patent is that, by carrying the leg firmly attached to the boot by the mechanism of the described invention, freedom of movement is greatly compromised when the knee is flexed, negatively affecting the experience of skiing, unlike the present invention.
  • the device described in US-4136404-B1 does not have any element for fastening to or supporting the waist. All effort is located exclusively on the leg.
  • An object of several embodiments of the present invention is to use the waist as a strong area of the body to support the entire reinforcement structure and avoid leg injuries.
  • document US-4136404-B1 also does not incorporate any ski control device.
  • Another object of several embodiments of the present invention is to allow efficient and effective control of skis at all times. This is a significant improvement of active safety conditions, In addition to making the skiing experience much more satisfactory.
  • An object of the present invention is to allow optimum freedom of movement of the leg at all times, while the leg is supported by the protective structure at those times when this is necessary and particularly in the direction and direction of movement not desired In other words, it allows total freedom of desired movements and restricts unwanted movements induced by skiing.
  • US Patent No. US-3947051-B1 describes a ski boot fixation with a transmitter, located between the leg and the skier's boot, to initiate the "opening" operation of the fixation during broths, particularly falls forward. .
  • the transmitter detects excessive force between the leg and the boot thus transmitting an opening instruction to the fixation, avoiding injuries to the skier's leg.
  • the present invention is totally different from the previous one: it does not require the replacement of the ski boot fixing mechanism, but can be complemented with it; - it is not limited to the boot-ski connection, and provides a boot-leg connection element, and in several of the preferred embodiments, of the hip (exoskeleton);
  • the elements of the present invention can transmit the torque or torque generated in the foot by the lever effect of the ski, to the entire structure of the exoskeleton and through it to the strong areas of the leg and, in most preferred embodiments, to a piece located at the waist or hips of the skier, protecting from that way before a dangerous torsion of the knee joint;
  • the device, together with strong areas of the body can thus withstand the torsion or torque generated in the foot by the ski lever in extreme or extreme positions that could injure the knee, so that the resulting forces are not transmitted to the knee joint, much weaker, and so far no system or mechanism has been able to protect effectively, as the statistics mentioned above prove;
  • the present application significantly reinforces
  • an object of the present invention is a system that significantly increases the skier's resistance to unwanted movements of skiing.
  • This system derives part of the pair that an unwanted turn of the ski produces on the foot the structure formed by the exoskeleton, the strong parts of the leg to which the structure is attached and, in " several of the preferred embodiments, to waist or hips In addition to increasing safety, this significantly helps control skis
  • This feature is also not present in the device described in US-3947051-B1 or other conventional support mechanisms.
  • Publication number ÜS-2006260620-A1 details an exoskeleton for lower limbs that is attached to a person and configured in such a way that the two leg supports serve to rest on the ground when the user is detained.
  • US-2006260620-A1 which includes a hip anchor, is structured to achieve results that are different from those of the present invention.
  • document US-2006260620-A1 addresses a system to increase the capacity to withstand greater loads, rest in standing position, or replace the lack of strength of weak legs. As such, this system is not useful for practicing a sport as dynamic and in need of flexibility as skiing. Instead, it simply has the sole purpose of increasing the load capacity, while as explained in the description, the present invention is structured to increase the resistance, which does not force, against such situations as unwanted turns of a ski and other potentially dangerous movements, as well as increasing control of skis.
  • the system described in the United States patent application with publication number US-2006260620- Al is designed to work vertically with movements similar to those made when walking, counteracting the forces of gravity, but not to resist rotational movements in a horizontal plane, like the invention described herein, of particular application to snow skiing.
  • the artificial hip joint described in the United States patent application with publication number US-2006260620-A1 does not have a mechanism that allows the natural rotation of the legs with respect to all its axes and at the same time that limits angular movements potentially harmful to the knee or hip.
  • the present invention provides a mechanism specially designed to allow total freedom of movement necessary for such activities as skiing, while preventing unnatural movements that can cause injuries.
  • the present invention is especially useful for protecting against extreme turns of the foot, being specially designed to withstand the forces of rotation or pairs due to the large lever that the skier has attached to his leg, for example skiing, a situation that does not occur in the device request described in the request for US patent with publication number US- 2006260620-A1.
  • the artificial knee joint and the artificial ankle joint described in the US patent application with publication number US-2006260620-Al do not have any mechanism that allows the natural movements necessary for the practice of activities such as skiing , and that at the same time protect the joints against movements or positions of the knee in particular, and the leg in general, which can cause injuries.
  • the present invention provides these mechanisms in artificial joints, on the one hand giving all the necessary range of movements and on the other hand limiting or preventing those movements or positions that may be harmful to the leg in general and the knee. in particular, with special emphasis on protection against strong turns of the foot, or of the body around the foot, which may occur involuntarily during physical activities such as skiing.
  • document ÜS-2006260620-A1 does not have any mechanism that contributes to greater control of skis by the skier, while in certain aspects of the present invention, a mechanism is provided that is specially designed for the skier have at all times an added control of the skis, so that if by some accident of the terrain or any other circumstance, a skiing is in danger of losing the trajectory that the skier wants, this mechanism will automatically avoid such deviation.
  • the skis will always remain on the path requested by the skier regardless of terrain accidents, snow irregularities or different qualities of it.
  • the invention safety and control device for the practice of snow skiing, in particular alpine skiing, by means of its configuration and components, solves problems and disadvantages or disadvantages, not previously solved in the prior art, mainly due to the fact that such problems had not been raised or even suggested until now because the known devices do not prevent the possibility of injuring the knees or other parts of the leg, but reduce the possibility of such injuries under very particular conditions and very specific, which are specific to each device, unlike the present invention that prevents hip injuries and leg injuries and, especially, knee injuries.
  • the device of the invention makes it possible to derive potentially damaging forces for the legs in general and the knee in particular, towards strong areas of the body such as the hip and the most resistant areas of the legs.
  • the present invention allows the natural control of skis, without the need for the skier to generate an action of his own accord to activate a ski mechanism, simply with its natural movements during skiing.
  • the device of the invention allows neutralizing the torsion of the knee by absorbing part of its structure, and supporting it in areas of the body much stronger than the knee, from the unwanted rotation of the foot.
  • An objective of the present invention as practiced in certain embodiments is to provide an exoskeleton or device that avoids injury to a skier while allowing it to control skis while avoiding unwanted movements thereof.
  • the present invention as practiced in certain embodiments prevents twisting injuries, and other transverse, longitudinal forces, etc.
  • the legs in general and in several of the preferred embodiments, the hip during the practice of skiing, by the derivation through the exoskeleton or device of the efforts, and in particular by deriving the forces, for example of torsion , excessive that could result in injuries, caused by skis, through a support structure or exoskeleton that forms the device, and that is attached to strong areas of the legs and, in several of the preferred embodiments, to the waist, thus ensuring that the leg in general and the knee in particular does not suffer such efforts.
  • the device according to several embodiments of the present invention can allow those skis movements that are not desired by the skier to be avoided.
  • the device or exoskeleton of the present invention includes the following components: - a first support element configured to engage the exoskeleton either to the hip or waist or thigh of the body of the person, either to the leg or legs of a person; a second support element configured to couple the exoskeleton to the skier's boot, to the fixation, or to the same ski; a joint assembly having an upper end and a lower end, the joint assembly being coupled at its upper end to the first support element and coupled at its lower end to the second support element, the joint assembly generally extending along the leg when the person wears the exoskeleton; at least one clutch mechanism, operatively coupled between two elements of the exoskeleton, allowing the clutch or disengagement of the two elements of the exoskeleton, preferably arranged along the joint assembly, and which upon receiving a small action (force ,, momentum, movement, or similar) clutches or disengages both parts of the exoskeleton; and at least one sensor device capable of capturing foot movements and transmitting them
  • the clutch mechanism and the sensor device may have depending on its configuration, for example, two operating options with two modes each:
  • a first option in which by default the two corresponding elements or parts of the exoskeleton are disengaged or not coupled when the mechanism receives no action or signal from the sensor,
  • a clutch mechanism can work in two different ways: o When it receives the force or signal from a sensor, it blocks the rotation in one of the directions while maintaining freedom of rotation in the opposite direction. o When it receives the force or signal from a sensor, it does not block, allowing rotation in both directions. In this mode the control system is deactivated but protection is maintained by the security system.
  • a clutch mechanism can work in two different ways: o When it receives a force or signal from a sensor, it allows it to rotate in one of the directions, keeping the rotation in the opposite direction locked. o When it receives a force or signal from a sensor, it does not unlock. The exoskeleton remains attached at all times.
  • the clutch mechanism can also, depending on its configuration, perform the clutch or coupling between both parts of the exoskeleton progressively or instantaneously.
  • the following explanation refers to a device that works in one of the previously defined modes of operation, specifically the preferred mode in which the exoskeleton is disengaged by default, and clutch only in the direction of unwanted rotation.
  • the exoskeleton of the invention is preferably composed of a structure that is attached to pieces of resistant material, located around the waist and / or legs.
  • the structure which extends from the waist or legs to the skier's boots, fixings or skis, is composed of support elements and a joint assembly consisting of rigid elements and / or articulated elements, which can be both axes or elongated elements parallel to the leg as anatomical pieces hugging it, so that it allows the transmission of the torque generated in the foot by the force of the ski, as well as other longitudinal and transverse forces, which could cause injuries, to the structure itself, and subsequently to the most resistant areas of the legs and, in most preferred embodiments, to the waist.
  • These elements or parts that make up the joint assembly of the structure or exoskeleton can be both standardized and custom made or extensible, and can be made of metal, fiber, plastic or any of the materials currently available in the industry or in those who in the future can serve this purpose.
  • the first support element is preferably located at waist height, which additionally it limits the relative torsion between both feet connected by the exoskeleton through the waist, although it is possible to use a first support element on each leg or only one of the legs, the first support element can also be located on the thigh or the skier's thighs.
  • the device may have joints or mechanisms between two elements thereof that allow the transmission of the torque between said two elements, allowing said transmission of the torque regardless of the angular alignment between the torsion axes of both elements.
  • joints or mechanisms include certain elastic joints or universal joint type transmissions, cables such as those used in kilometers or odometers, among others.
  • the clutch mechanism which incorporates the brake mechanism, is preferably arranged along the joint assembly and, by applying a small action on the said mechanism (force, momentum, movement, or the like), generates a high resistant torque, and receives this action from a sensor device capable of capturing movements, preferably of the foot, to transmit them to the clutch mechanism.
  • the said mechanism or sometimes mechanisms, may be located along the joint assembly, allowing to couple (clutch) or uncouple (disengage) the structure or exoskeleton to / from the skier's boot, the fixation or the ski itself, and / or at the waist.
  • the clutch mechanism can also be located at one end of the joint assembly and coupled with one of the support elements of the exoskeleton.
  • Said sensor device is preferably constituted by a mechanism capable of capturing the direction in which the foot wants to rotate or move relative to the ski, the mechanism being able to be housed between the inner boot boot and the outer rigid boot, outside of the boot, on the toe, heel or elsewhere, as long as it is able to collect that input of information in which the movement of the foot becomes.
  • This mechanism will be mainly composed of what will be referred to as "sensors”, and sensors may be used to capture (through mechanical, hydraulic, electrical or other components, or a combination thereof) forces, angles, movements or any other relevant information on the feet, legs or hips.
  • the sensors can be placed between the boot and the clutch or brake mechanism or between the boot and the boot, outside the boot, in contact with the ski fixing or in any other place that allows them to collect the necessary information relative to the forces exerted by the body of the skier.
  • These sensors can be mechanical, hydraulic, pneumatic or electronic, and can be connected to the rest of the clutch or brake mechanisms in any of these ways or others that allow the transmission of information.
  • the sensors are located between the boot and its fixing to the ski, the pressure received by the sensors, and therefore, the information they transmit, will be that exerted by the ski on the whole of the boot plus the exoskeleton.
  • An alternative to achieve this insulation is, as detailed in the preferred embodiment, use an additional element and place it between the boot and the fastener, so that is attached to the boot with some slack and in turn connected to the exoskeleton through the clutch mechanisms. If the sensors are placed between the boot and this piece, these sensors directly measure the resistance opposite by the boot to the ski, regardless of the resistance exerted by the exoskeleton.
  • sensors are located between the boot and the inner boot, that is inside the boot, they also measure the resistance opposite by the foot to the ski, regardless of the resistance exerted by the exoskeleton.
  • the present invention can allow skiing with the toughest fixation adjustments, with greater safety and without risk of injury. Ultimately, if it reaches the extreme that the fixation must be released, it will always do so at the request of this structure and not of the knee joint.
  • the skier can safely afford, adjust the fixings as hard as appropriate, depending on his level of skiing and the difficulties he wants to assume (even extreme skiing), to be certain that you will not lose a ski, without incurring any risk of injury.
  • the result for the skier can resemble what happens when driving a car modern, in which the action of braking or turning the wheels only requires a small force on the part of the driver to exert much greater forces on the wheels, differing in the In the case of the present invention, however, in that the present mechanism does not increase the force, but the resistance, and does not require additional energy other than that generated by the skiing action itself.
  • the clutch mechanism ensures that a part of the torque generated by the ski is derived to the structure (exoskeleton, strong leg, thigh, waist and / or hips), of so that at the request of the pair exerted by the ski, the skier's leg does not have to oppose an equivalent pair, but a fraction thereof, which he would naturally exercise if he did not have a lever the size of the ski in solidarity with his foot.
  • the above translates into a much stronger structure, with the implications already explained for skiing and safety during that practice.
  • additional objects that the present invention provides in certain embodiments include: - Preventing knee and leg injuries in particular and, in most preferred embodiments, hip.
  • the safety device to avoid knee injuries also allows the control of skis in all situations, making the skiing experience more satisfactory by eliminating all unwanted movements of skis as a result of snow irregularities, or other elements.
  • the skier perceives the reactions of the ski in a very natural way; He has no limits to the movements he wishes to make, nor does he encounter forces greater than his body is accustomed to feeling. He simply feels that by applying the resistance that naturally apply it to prevent an external agent from moving his foot, he resists all the force generated by the ski lever as if it did not exist.
  • the probability of having a serious knee injury is very high, and the cost in money and suffering of it is also very high. Injuries affect both beginners and experts. They often occur even when you are not skiing, in the queues of the ski lifts, when trying to help a person get up, or in any unforeseen circumstance. Any of these eventualities is covered and protected by the present invention.
  • Figure IA shows a skier without an exoskeleton of the present invention and includes a schematic representation of certain efforts to which the skier is subjected
  • Figure IB shows a skier and a schematic representation of the same efforts shown in the previous figure, but derived to an exoskeleton by way of example according to the present invention
  • Figure 2 shows a first preferred embodiment showing only one leg, of the two preferred ones, of an exoskeleton according to the invention
  • Figure 2B shows an embodiment of an exoskeleton as shown in figure 2, where the double hinge located at the height of the hip has its two axes rotated 90 ° with respect to the hinge of said figure 2
  • Figure 3 shows a first support element for the hip / waist and elements for joining it to the joint assembly
  • Figure 4 shows certain details of a rigid belt for the first support element of Figure 3
  • Figure 5 shows a detail of the connection elements of the rigid belt of Figure 4 in a pre-connection phase
  • Figure 6 shows a detail of the connection elements of the rigid belt of Figure 4 at a later stage before connection
  • Figure 7 shows a detail of the connection elements of the rigid belt of Figure 4 once connected
  • Figure 8 shows an exploded view of the elements of Figure 3
  • Figure 9 shows the T-element of the rigid belt of Figure 3 with a double hinge joint and a length regulating mechanism (MRL)
  • Figure 10 shows the external element of the MRL
  • Figure 11 shows the internal element of the MRL
  • Figure 12 shows a sectional view of the MRL
  • Figure 13 shows an exploded view of the lower part of the lower joint assembly attached to a length regulating mechanism [CHECK THIS DESCRIPTION AGAIN]
  • Figure 14 shows a front perspective view of the lower or second clutch device of Figure 2
  • Figure 15 shows a front perspective view of the device of Figure 14
  • Figure 16 shows a top view of the clutch device of Figure 14
  • Figure 17 shows a rear perspective view of the clutch device of Figure 14 without the case which shows the clutch mechanism
  • Figure 18 shows a perspective
  • the exoskeleton or safety and control device for snow skiing to be used by a person (3) on at least one leg and includes a first support element (20, 21), a second support element (30, 31), a joint assembly (40) between the first support element and the second support element, at least one clutch or coupling mechanism (300, 400, 600, 700) to generate a strong torque when receiving a small force.
  • the clutch mechanism incorporates a brake mechanism (150, 170) and is operatively coupled between two parts, elements or components of the exoskeleton.
  • the clutch mechanism (300, 400, 600, 700) is arranged along the joint assembly (40), the clutch mechanism being in contact with a sensor device (140) that captures the movements of the skier's foot and the transmits to the clutch mechanism (300, 400, 600, 700), so that the union assembly allows the transmission of the torque from the second support element to the first and allowing the natural movements of the skier, as well as the control of skis, by deriving a significant part of the torque generated on the second support element, by the lever effect of the ski, to the first support element.
  • a sensor device 140
  • the joint assembly (40) located between the support elements, first and second (20, 30), can be divided into two sub-assemblies (41, 44), a first joint sub-assembly (41) and a second union sub-assembly (44).
  • the first joint sub-assembly (41) is an upper joint assembly (41) that connects a point above the knee (2) (for example, the first support element (21) coupled to the hip (5) or the first support element (29) coupled to the thigh (4)), to an artificial joint at the knee (2) such as a hinge (52), and the second joint sub-assembly (44) is a mounting lower joint (44) that connects the artificial joint to the knee (2), for example a hinge (52) and the second support element.
  • the joint assembly (40) can be placed on one or both legs of the skier or person using the exoskeleton.
  • a structure is provided that is attached to the body by a first support element (21) coupled to the body of the person above the knee (2), specifically a first ergonomic rigid coupling piece (21) as shown in figures 3 to 8, approximately located at the waist or hips (5) of the skier or user.
  • a first rigid support element (21) of this type can take the form of a rigid belt (21) that has two pieces (22, 23) joined together to form a rigid whole, thus allowing its opening for the coupling to the body of the skier throughout its entire contour, since it surrounds the waist with the surrounding part of the belt (22) and a front part of the belt (23).
  • the belt can be fastened by the user to the front with the help of the belt connections (24, 25) and a belt closure (26).
  • One of the belt connections (24) is located at one free end of the surrounding belt piece (22) and the other belt connection (25) is located at the free end of the front belt part (23).
  • the connections (belt 24, 25) are partially coupled together, one on top of the other forming an element and the belt closure (26) fixes both belt connections (24, 25).
  • the first support element in this exemplary embodiment, the belt (21), is connected to the rest of the exoskeleton through a T-element (27) that is attached to the surrounding belt piece (22) by means of screws (28).
  • This T-element can also be included as part of the surrounding belt piece (22).
  • the remaining components that form the exoskeleton structure can be arranged on both sides of this first support element or belt (21).
  • the lower end of the T-member (27) is coupled to the joint assembly (40), specifically to the upper end of the joint assembly (41), and more specifically in this embodiment to the upper end (42) of the joint assembly upper (41) through an artificial joint, specifically a double hinge (53) with pins (54).
  • This double hinge is preferably constructed so as to limit, in an adjustable way, the range of rotation in each of the directions of each of its two axes.
  • the upper joint assemblies (41) may have a length approximately to the length of the femur of an average man and preferably may have means that allow its length to be modified to provide an optimal fit, using for this purpose a length adjustment mechanism or MRL (60) coupled to the artificial joint, in this case a double hinge (53) preferably of limited range.
  • the MRL (60), as shown in Figures 9 to 13, is used to regulate the length of the upper joint assembly (41), or also of the lower joint assembly (44), and includes an internal MRL element (61) or shaft, with hexagonal section, coupled to the upper end of the upper joint assembly
  • the internal MRL element (61) has holes (63) or the like on surfaces facing outwards and the external element
  • This external element (62) has at least one sphere (64), preferably two, at its lower end.
  • This external element (62) also has a pressure device (65) inside it to push the sphere (s) (64) that is held in place by a sheath (66) of the external element of MRL
  • a sheath (66) of the external element of MRL When the sphere (64) is inserted into a hole (63) of the internal element (61) and the pressure device (65) is not pushed, the coupling between the belt (21) is fixed, through the T-element ( 27) and the artificial double hinge joint (53), and the upper joint assembly (41).
  • the user In order to modify the length of the joint assembly (41) and, therefore, the length of the exoskeleton, the user must press the pressure device (65) to unlock the sphere (64) from the hole (63) and allow the internal element (61) moves along the external element (62). The movement can stop when the sphere (64) is placed in the hole
  • MRL for decoupling the upper joint assembly (41) from the assembly formed by the belt (21), the T-element (27) and the artificial double hinge joint (53).
  • the exoskeleton may also have coupling systems (60), which are the same as the MRL or mechanism of length regulation, as illustrated in Figures 9 to 13, which allow the connection and disconnection between two elements or components of the device in order to help the assembly or disassembly of the exoskeleton, as well as its use or arrangement on the skier or user of it.
  • the number of coupling systems (60) as well as the characteristics of each of them can vary, the coupling systems (60) being able to be located at any point along the transmission chain that forms the exoskeleton in order to facilitate Remove or get rid of the exoskeleton.
  • the coupling systems (60) are preferably located in the lower joint assembly (44), between the second support element and the knee, since thus the exoskeleton of the second support element can be disconnected, preferably the boots (31) , but also skis (1) or ski boot fixings.
  • the coupling systems (60) are preferably fast coupling systems and can also be used as extension means of the upper or lower joint assembly, and therefore, of the exoskeleton.
  • the MRL can be used, which in turn also allows extending the length of the joint assemblies described previously.
  • the upper joint assembly (41) runs between the hip (5) and the knee (2).
  • the coupling between both elements, hip piece or T element (27) and upper joint assembly (41), is carried out as previously established by an artificial joint, preferably a double hinge (53), and which can also be a hinge (52) or a universal joint or cardan (51) or any other element that has similar dynamic characteristics and allows angular movements of the leg in the coxo-femoral joint at least in the two axes, transverse and sagittal, or in other words, allow flexion, extension, adduction and abduction, while limiting, preferably in an adjustable way by the user, the angular movements in the same axes, transversal and sagittal, or what is the same, the flexion, extension, abduction and adduction, in values that could be harmful.
  • the artificial joint located at the height of the hip is, in this preferred mode, a double hinge with limited rotation (53).
  • An alternative double hinge (53), shown in Figure 2B, has its two axes rotated 90 degrees with respect to the double hinge shown in Figure 2.
  • the upper joint assembly (41) is further subdivided into two parts, linked together by a first or upper clutch mechanism (600) operatively connected to the exoskeleton, and in this case specifically connected to it in such a way that the lower end of the upper part (411) of the upper joint assembly (41) is joins a sliding skid (131) of the first or upper clutch mechanism
  • the upper joint assembly (41) preferably has a webbing (108) that surrounds the thigh (4) to maintain the upper joint assembly (41) near the thigh (4) of the skier.
  • the upper joint assembly (41) is attached at its lower end to the lower joint assembly (44), preferably at knee height and using an artificial joint, such as a hinge type joint (52) that allows flexion and natural extension of the knee (3), but not its torsion.
  • an artificial joint such as a hinge type joint (52) that allows flexion and natural extension of the knee (3), but not its torsion.
  • the lower joint assembly (44) is connected by its upper end (45) to the hinge type joint (52) at knee height (2), while at its lower end it is attached to a regulatory mechanism of the length (60) as described above, allowing the length of the lower joint assembly (44) to be varied as well as disconnecting the exoskeleton from the second support element, preferably the boot (31).
  • This length regulating mechanism (60) is integrated in the lower joint assembly (44), which is divided by means of said length regulating mechanism (60) into two parts: an upper part of the lower union assembly (441) , which extends from the knee height to the length regulating mechanism (60), and a lower part of the lower joint assembly (442), which extends from the length regulating mechanism (60) to the second support element (31).
  • the mechanism (60) has a hinge (52) at its lower end which makes the lower joint assembly (44) articulated, so that the lower lower assembly assembly part (442) is made up of said hinge and an arc-shaped piece or curved bypass element (443) that surrounds the boot shaft (31) of the skier from the outer side of the skier to the rear of the same, and an elongated connecting member (444 ).
  • the arc (443) is connected at its rear part by means of the elongated vertical connecting element (444) to the second or lower clutch mechanism (700) which is operatively connected, such as the first clutch mechanism (600), to the exoskeleton through of a second sliding skate (161) belonging to the second clutch mechanism (700) that connects the second or lower brake mechanism (170) to the exoskeleton.
  • this second clutch mechanism (700) of the exoskeleton has a body (162) that supports a rail (163) by which slides a skid (161) and connects the second brake mechanism (170) with the exoskeleton, more specifically the case (171) of the second or lower brake mechanism (170) containing the components of the second brake mechanism (170 ) and therefore, the main components of the second or lower clutch mechanism (700).
  • the second or lower clutch mechanism (700) is coupled to a clog or bottom base (32) through the body (162) and the case (171), and is attached to the boot (31) through its sole.
  • the second brake mechanism (170) is in contact with a sensor device (140) composed of elements that activate the brake mechanism (170).
  • Said skate (161) has in its lower part a section of conical round gear (164) that meshes with the brake mechanism (170) proper and located inside the housing (171).
  • the bevel or bevel round gear section (164) of the skid (161) meshes with a corresponding bevel or bevel gear (172), located in said housing (171), which in turn is integral with a first "large” pinion (173) that meshes with two second small pinions (174, 175).
  • the first large pinion (173) moves a rotor or primary (176).
  • the second small sprockets (174, 175) move the shafts (177) of "freewheel” or secondary bushings (178, 179).
  • These "freewheel” or secondary bushings are arranged to rotate, the left (178) clockwise and the right (179) counterclockwise, so that the movement of the foot results in the sliding of the skate on the rail that causes the previous components to move with the exception of one of the "freewheel” bushings (178, 179), such that the left axis only transmits the torque to the left bushing (178) when it rotates clockwise and the shaft right, only transmits the torque to the right bushing (179) when it turns counterclockwise.
  • the rotor (176) and the "freewheel” bushings (178, 179) are preferably covered with ferode friction material and have curved bands or structures (181, 182, 183) around them each with two ends .
  • the primary band (181) surrounding the rotor (176) has a left end (181a) and a right end (181b) that are separated in the lower zone of the rotor (176), and the secondary bands (182, 183 ) surrounding the bushes (178, 179) have an outer free end (182a, 183b) and an inner free end (182b, 183a), the ends of each bushing being separated in the upper area of the bushing.
  • These bands (181, 182, 183) are connected to each other, so that the inner free ends (182b, 183a) of the secondary bands (182, 183) surrounding the bushings (178, 179), press on the left ends (181a) and right (181b) of the primary band (181) surrounding the rotor (176) under certain conditions.
  • the brake mechanism (170) has a spring (184) that in this example maintains a tension, when the system is idle, of at least 100 N at each end of the primary band (181) surrounding the rotor or primary ( 176).
  • the voltage, as well as all the system parameters, will be regulated according to who uses the invention and the conditions of use.
  • a pusher (141, 142) that acts, depending on the movement received by the sensor device (140), either on the end of the left secondary band (182) of the left bushing (178 ) well over the end of the right secondary band (183) of the right bushing (179).
  • the pushers (141, 142) act each time the boot (31) exerts pressure on one of the sensors, in the form of a rocker, (143, 144) of the sensor device (140), the pressure being transmitted through the sensors ( 143, 144) directly to the pusher (141, 142).
  • the body (162) of the second clutch mechanism (700) of the exoskeleton which supports the brake mechanism housing (171) and the rail (163), extends and is attached to the lower clog or base (32) where the sole of the boot (31) is introduced, so that the rear part of the clog (32) is housed in the heel of the ski fixing as would the heel of a ski boot and on the front the clog
  • the dimensions of the clog (32) are such that they adjust to the sides of the sole of the boot (31) by its front part and it is gradually and slightly separated from it until there is preferably a maximum clearance of approximately 1 mm. on each side between the sole of the boot (31) and the clog (32), at the rear.
  • the skid (161) starts a slide on the rail (163) in the opposite direction to the direction in which the ski tends to turn, that is to say, schedule.
  • the sliding of the skid (161) induces the rotation of the main rotor (176), connected to the skid (161) by the bevel pinion (172) and the bevel gear sector (164), counterclockwise.
  • a pressure preferably not greater than 10 kg to the left pusher (141), which in turn presses the left secondary band (182) that surrounds the bushing on that side, that is, the left bushing (178).
  • pressure, exerted on the pushers (141, 142) it is preferable that it is not more than 10 kg, but it is possible to regulate it according to the characteristics of the user of the invention as well as the conditions of use Of the same.
  • the pressure produces a braking force of the bushing on the same side, that is, the left one (178), which is a function of the initial force applied by the pusher (141), the friction coefficient of the friction material of the left bushing (178 ), and the contact angle (in radians) at which the left secondary band (182) surrounds the left bushing (178), according to the formula
  • Ffi na i initial F * e ⁇ (1)
  • final F is the force exerted on the bushing
  • Fi dressinga i is the force exerted by the pusher
  • is the coefficient of friction of the friction material of the bushing
  • e is a mathematical constant
  • a is the contact angle (in radians) between the band and the friction material of the bushing.
  • the torque exerted by the ski is transmitted mostly to the first support element through all the components of the exoskeleton, since the first or upper clutch mechanism (600) acts at the same time as the second clutch mechanism or lower (700), that is, the first brake mechanism (150) acts in unison one with the second brake mechanism (170) and the other components of the clutch mechanisms.
  • the inactive pusher is the right one (142)
  • it may preferably exert a pressure of a maximum of 100 N (in this preferred embodiment, this is achieved by using a material and design for the sensor balance (144) that when the force of 100 N is exceeded the balance (144) flexes) on the end closest to it of the surrounding secondary band (183) to the right bushing (179).
  • the spring (184) that keeps the ends of the main band (181) surrounding the rotor or separate primary (176) apart exerts preferably a force of 100 N, whereby we avoid the unwanted braking effect according to which the rotor ( 176) tend to remove the band (181), so that, if amplification of the input force does not occur, the band does not touch the rotor and it does not act.
  • the “freewheel” mechanism of the bushings prevents any unwanted interlocking of the system, since on the one hand, it keeps the secondary bushing that is not activated, totally disconnected from the system, and on the other it releases the active secondary bushing immediately as soon as the direction of rotation of the system changes, regardless of the braking force it is exerting at that time. That is, the bushings are unidirectional freewheel bushings, such that the left bushing can only transmit the axle torque clockwise and the right bushing can only transmit the axle torque anti-clockwise. Additionally, it is convenient that the device incorporates safety mechanisms such as to keep the skier protected in case of failure of the primary systems. In the preferred mode explained above, this mechanism is formed by rail stops that limit the lateral movement of the skid.
  • first or upper clutch mechanism (600) located in the upper joint assembly (41) is identical to the second or lower clutch mechanism (700) described above, in this case the main body (132) being attached to the end top of bottom of the upper joint assembly (412), instead of being connected to the clog (32), and the pressure of the sensors receiving the first brake or clutch mechanism (150)
  • a single set of sensors acts on both clutches, directly on the second and through forwarding on the first.
  • the ski is always perfectly controlled by the skier, and
  • a second alternative clutch mechanism (300) as shown in Figures 22 to 25, for example, is a hydraulic device such that, depending on the direction of rotation around its vertical axis in combination with the application of a certain stimulus caused by The activated sensor when the ski "tries” to move in an undesired direction by the skier, generates a resistant torque proportional to the stimulus' that can lead to blocking the shaft (301) of the hydraulic device (300) that is operatively connected to the junction assembly (40) of the exoskeleton.
  • the hydraulic mechanism (300) is composed of a body (302) that is preferably fixed to the back of the boot, inside which there is a cylindrical cavity (303) with two diametrically opposed cavity fins (304). Within this cavity (303) a rotary actuator (306) is housed with two symmetrical actuator fins (305) in solidarity with an axis (301) which in turn is integral with the joint assembly (40) of the exoskeleton.
  • the cylindrical cavity (303) is divided into four cavities (308, 309, 310, 311).
  • a third conduit (314) and fourth conduit (315) which go through the main body (302) of the device, so that the third conduit (313) connects the first cavity (308) with the fourth cavity (311) and the fourth duct (315) connect the second cavity (309) with the third cavity (310), that is, they connect the adjacent cavities separated by the cavity fins (304).
  • Each of these two ducts (314, 315) has a non-return valve (318). The direction of the non-return valve of one conduit is opposite to the direction of the non-return valve of the other conduit.
  • the hydraulic mechanism (300) also has two sensors (316, 317) that receive pressure, which can be transmitted from the sensors (140) through hydraulic, mechanical, electronic mechanisms, etc. These sensors (316, 317) actuate the valves (319) that regulate the passage of fluid in the communication conduits (314, 315) found in the main body (302). All the cavities (308, 309, 310, 311) in the main body (302), as well as the communication conduits (312, 313, 314, 315) are filled with fluid, preferably oil, especially for high-pressure hydraulic mechanisms .
  • the hydraulic device (300) acts when one of the two skis starts a rotation, opening, closing, or any other movement that the skier does not want. When this happens, the skier's foot will apply pressure or otherwise actuate the sensor on the opposite side to the one to which the ski tries to move, which in turn causes the "clutch" or coupling of the control mechanism with the mounting of Union
  • the sensors work in pairs on opposite sides, alternatively, that is, the sensors on both sides of a couple are never activated at the same time, only one of them can be activated at any time.
  • the non-return valves (318) also work alternately, one at a time. Depending on whether the sensor is activated, it will activate one of the valves, which will block the flow of the fluid proportionally to the pressure received from one cavity to the other, exerting a braking effect on the joint assembly. (40) in one of the directions of rotation, allowing the rotation in the opposite direction.
  • This progressive braking completely blocks the movement of the shaft (301) inside the main body (302), which makes the entire exoskeleton supportive of the boot, but only in one sense, the direction of rotation unwanted by the skier , on the contrary allowing to turn the foot in the direction that the skier wants.
  • the exoskeleton achieves the effect of skiing, by operating the device described above.
  • the device incorporates safety mechanisms such as to keep the skier protected in the event of failure of the primary control ski systems.
  • safety mechanisms which could be mechanical, hydraulic, electronic, pneumatic, etc., can provide protection against injury, even if the sensors fail, or the connection between them and the actuators, or the actuators themselves, or even the brake mechanism of the clutch mechanism itself. That is, protection is maintained, ultimately, even if all links in the chain fail, except for the strong elements themselves, such as axes and the exoskeleton itself.
  • any clutch mechanism fails, or even both, the components thereof, specifically the skate and the rail, can still function as angle limiting mechanisms, so that avoid a greater turn than the one set by the user before starting to use the safety and control device.
  • a third type of clutch mechanism (400) is shown in Figures 26 and 27 and is designed to be located at the lower end of the joint assembly (46). Unlike the previous ones, this clutch mechanism is introduced in a housing (407) arranged under the boot and integral to the sole of the latter, the connection being made between the device or exoskeleton and the coupling to the boot on the back (408) of the housing (407) and therefore of the boot, specifically in the heel.
  • the union assembly (40) or the lower union assembly (44) is the one that reaches the housing (407) and connects with the clutch mechanism (400) included in the housing (407), transmitting the torque when the clutch mechanism (400) comes into operation.
  • This clutch mechanism (400) is preferably composed of: at least two "sensors” or pushbuttons (403, 404), located on both sides of each ski boot that provide the mechanism (400) with the required direction of rotation information. by the skier; and - a system that, depending on the position of the foot and its resistance, derives more or less torque to the structure formed by the exoskeleton, the strong areas of the leg and the waist through a mechanism
  • the sensors (403, 404) will be activated by the skier when skiing in a natural way, so that, if the skier wants to move his leg in one direction, he will activate one of these sensors (403, 404) automatically, by force He performs naturally to move his leg. Similarly, if a ski starts an unwanted movement by the skier, the corresponding sensor will activate the mechanism.
  • This alternative clutch mechanism (400) includes a gear train (402) and an alternative braking / locking system (401), one of whose ends is connected through the rear part (408) of the housing (407) to the lower end of the joint assembly (46) integral with the exoskeleton and the other clutch or disengagement in a discriminated manner according to the information received by the sensor (403, 404), which in this case concrete includes a button (403, 404) on each side of the housing as explained above.
  • the use of gears (402) reduces the torque generated in the foot, so that it makes braking more efficient and more precise.
  • the small sliding of the braking wheel (401) is demultiplicated by the gear train (402), which minimizes the gaps in the transmission to the exoskeleton, gaining in precision.
  • a pushbutton (403, 404) receives the pressure of the foot, it pushes a rocker (405, 406) that acts on the braking wheel (401) and automatically the system clutches or couples the boot with the joint assembly (40) and then therefore with the exoskeleton, only in the direction of unwanted rotation (interpreted by which button (403, 404), left or right, is activated) making the foot in solidarity with the entire support structure (exoskeleton, strong areas of the leg, waist), in that unwanted sense, but allowing freedom to any turn in the direction that the foot desires.
  • the boot (31) and the housing (407) of the mechanism (400) are joined by any suitable fastening mechanism, such as a screw and nut system, so that the housing (407) is joined to the bottom of the boot (31).
  • suitable fastening mechanism such as a screw and nut system
  • the mechanism that acts on the last wheel is activated once the demultiplication is made, thus managing to block the system either one way or another depending on which button (403, 404) has been activated, making solidarity in a discriminated way as we have already explained boot (31) and exoskeleton when braking this last wheel at will.
  • the clutch system (400) integrates with or forms a whole with the boot (31), so that the ski boot includes the clutch mechanism (400) integral therewith.
  • clutch mechanisms as well as the sensors and transmissions, can be others, in addition to mechanical or hydraulic, such as electronic, or different combinations of electronic components with mechanical, hydraulic, etc.
  • a second preferred embodiment construction (11), figure 28, of safety and control exoskeleton for snow skiing, incorporates a single clutch mechanism (300, 600) located in the upper joint assembly
  • an artificial joint at the knee height is used, in particular a hinge (52) in combination with an artificial torque transmission joint (51) that allows the transmission of the rotation movement regardless of the angle formed by the connecting elements, that is, the upper joint assembly (41) and the union assembly lower (44).
  • This last artificial seal (51) can be, for example, a universal or universal joint or any artificial seal with the desired characteristics.
  • This second embodiment of exoskeleton (11) has its basic components adapted to the type of clutch mechanism, the components of the exoskeleton having such a first support element (21) and second support element (31) having common or similar characteristics described above for the first embodiment (10), and of artificial joints or joints between the various components duly adapted.
  • the coupling between the upper joint assembly (41) and the First support element (21) can be performed by any torque transmission mechanism (51) or artificial joint that can transmit the pair between two elements of the exoskeleton allowing angular misalignments between them. Consequently, the torque between these two elements can be transmitted, allowing the transmission regardless of the angular alignment between the axis of both elements, as would be the case, for example, of a universal joint or cardan (51).
  • this second preferred embodiment (11) differs from the first (10), in that instead of using two clutches and a hinge type knee joint, this second embodiment can work with only one clutch (300, 400, 600, 700), thanks to the incorporation in its artificial knee joint, of a torque transmission mechanism that allows torque transmission between the axle of two joint assemblies connected by the transmission mechanism, regardless of the angular alignment between the two axes using, for example, a cardan joint train, a flexible joint, a cable that transmits rotation like those of the kilometer count, or a torque transmission mechanism (500) combined with a mechanism of clutch as detailed in figures 51 to 54 below.
  • This torque transmission mechanism (500) works in combination with a clutch mechanism actuated by sensors and whose reaction is t transmitted to the torque transmission mechanism through a cable on which the clutch acts directly (520).
  • the clutch (520) can be located in the upper union assembly or in the lower union assembly.
  • the torque transmission mechanism (500) with clutch mechanism (520) integrated in the lower joint assembly (44), is composed of a curved lower rail (502) located below the knee and surrounding part of the leg and another upper curved rail (501) located above the knee and surrounding part of the leg, that is, a lower curved rail (502) attached to the upper end (45) of the lower joint assembly (44) and another curved rail upper (501) attached to the lower end (43) of the upper joint assembly (41).
  • both lanes (501, 502) are housed two skates (503, 504) that can move along the rails (501, 502), and a cable that runs through the entire mechanism (505) and having pulleys (506) .
  • the cable (505) is arranged in such a way that a skate (503, 504) can only move through its corresponding lane (501, 502) in one direction, if the other skate (503, 504) moves in the opposite direction .
  • the skates (503, 504) are joined by a rigid articulated element (507) that flexes when the knee is flexed.
  • the cable (505) connects one skid (503) with the other (504) through the ends of the curved rails (501, 502) as follows with reference to Figure 51: The end of the cable (505) goes attached to the right end
  • the cable (505) passes through the lower skid (504) and exits on its right side (504a) towards the right end (502a) of the lower lane (502) that surrounds, returning to the center of the lower lane (502) before get to the clutch mechanism brake (520) and then reverse travel, that is, left end of the bottom rail (502b), left end of the bottom skid (504b), step up through the rigid articulated joint element (507 ) of both skates (503, 504), exit at the left end of the upper skid (503b), ending at the left end of the upper lane (501b).
  • the two rails (501, 502) By activating the clutch mechanism (520) through the sensor device (140), thereby preventing the movement of the cable, the two rails (501, 502) will maintain their relative angular positions, that is, there will be no relative rotation between them. , which means that there will be no relative torsion between the first support element and the second support element, regardless of the relative positions of the rails (501, 502) and skates (503, 504), or in other words, regardless of voluntary knee twisting.
  • the relative angular positions of the rails may vary freely, that is, there may be relative torsion between the first support element and the second support element.
  • Pulleys (506) are used for cable turns along the mechanism, but other elements such as guide tubes, bearings, etc., can be used and the components can be flexible or rigid depending on where they are located in the mechanism.
  • a third preferred embodiment (12) of exoskeleton according to the present invention and shown in Figure 29 employs a single joint assembly by removing the connection or artificial joint from the top joint assembly (41) and the bottom joint assembly (44 ) at knee height
  • the joint assembly (40) being preferably extensible, and being located between the first support element (21) located, preferably as a rigid belt, at the waist or hips (5) and the second support element located at the boot (31), fixing or skiing.
  • This exoskeleton also incorporates, like the exoskeleton described above, at least one artificial joint such that it transmits the torque between the respective axes of torsion of the elements connected by it, allowing said torque transmission regardless of the angular alignment between the respective torsion axes, being located in the joint assembly (40) between the two support elements (21, 31). It also incorporates a torque transmission joint (51) between the sensor device (140) and the clutch mechanism (700, 300, 400) located in the lower joint assembly (46) of the union assembly (40). This system automatically extends or retracts following the extension-flexion movements of the skier's leg.
  • a fourth preferred exoskeleton construction (13) according to the present invention shown in Figure 30 is similar to that described first. It uses a first support element, preferably a belt (21), located at the height of the hip or waist (5), and on its sides, and for its connection with the upper joint assembly (41) has a first joint artificial, for example a double hinge joint (53), or a universal or elastic joint (51).
  • a first support element preferably a belt (21) located at the height of the hip or waist (5), and on its sides, and for its connection with the upper joint assembly (41) has a first joint artificial, for example a double hinge joint (53), or a universal or elastic joint (51).
  • an angle limitation mechanism is used, shown in figures 31 to 36, the mechanism being located at the height of the knee (200) and sensitive to the angle with respect to the flexion thereof, so as to allow greater or lesser freedom of rotation of the upper joint assembly (41) depending on how flexed the knee is (2). If it is fully flexed, the upper joint assembly (41) has complete freedom to rotate within the limits defined by the angle limitation mechanism (200), but if the knee is fully extended, the upper joint assembly (41) is fully integral to the lower joint assembly (44), therefore turning is impossible.
  • angle-sensitive limitation mechanism (200) allows positions intermediate progressive coupling.
  • the objective of this sensitive angle limitation mechanism (200) is to allow rotation of the femur at the hip with the knee flexed, allowing pendulum movement with the knee flexed. With the extended leg the freedom or not of rotation is managed with the clutch.
  • the sensitive angle limitation mechanism (200) has a straight shaft (202) attached or that is part of the upper joint assembly (41) with the same width throughout its extension, which is housed in a hub or cylinder (201) with an internal cavity (207) with a decreasing conical shape.
  • the cavity (207) of the hub (201) has four ribs or ribs (208) that are parallel to its decreasing section and the axis (202) inserted into the hub
  • each of the projections (209) remains between two ribs (208) of the cavity (207).
  • the deeper the shaft is in the cavity the more its turning capacity is limited, reaching the total block when it is fully housed and being completely free (within the limits regulated by the user) when it is outside the cavity (207).
  • angles of rotation will depend on the amount in which the knee is flexed.
  • the lower part of the lower joint mounts are connected to each side of the skier body preferably with a quick fastener (60), of the type described above and which can also be used as an extension device for the union mountings, and for joining the lower joint mountings (44) to the second support element, for example ski boots
  • each of the skier's boots there is a clutch mechanism (700, 300, 400) of the type described above and sensor elements (140) that detect the movement of the foot.
  • a hinge at the knee height in combination with a rotation angle limiting device or angle limiting mechanism (MLA) (70, 80, 90) located in the upper joint assembly (41).
  • MLA rotation angle limiting device or angle limiting mechanism
  • the clutch mechanism (600, 300, 400) is set to the lower joint assembly, and preferably connected to the second support element and the lower end (46) of the lower joint assembly (44), for example through a length regulating mechanism or quick coupling mechanism (60).
  • the upper joint assembly (41) is connected to the first support element through a joint, for example a double hinge joint (53) or a universal joint (51) among others.
  • the limitation of the previous angle can be done using different mechanisms. It is possible to include at any point along the upper joint assembly (41), between the first rigid support element and the knee (2), an angle limitation or rotation limitation mechanism, (MLA), (70, 80, 90) in an axis parallel to the longitudinal axis of the femur allowing rotation within the limits preferably defined by the user around said longitudinal axis parallel to the femur.
  • MLA angle limitation or rotation limitation mechanism
  • An example of a preferred embodiment of an MLA (80) shown in Figures 39 and 40 includes an external element or hub (81) and an internal element or shaft (84) that rotate relative to each other in a limited range. around the longitudinal axis of the upper joint assembly (41).
  • the internal element or shaft (84) has a raised rotating element (85) on its surface and the external element or hub (81) has an internal surface (83) with a groove or guide path (82) therein.
  • the guiding path is shaped like a kidney.
  • the length of the guiding path (82) and, therefore, the rotation of one element (81, 84) with respect to the other can be adjusted, if elements such as keys (87) or pins are inserted in the holes (86) made on the surface of the guidance path (82).
  • FIG. 41 and 42 A second example of a preferred embodiment for an MLA (70) is illustrated in Figures 41 and 42.
  • the MLA (70) has an axis (72) and hub (71) system in which the hub (71) It has a groove, groove or window (73) on its surface that is perpendicular to the longitudinal axis of rotation and the axis (72) that is concentric with the hub (71), includes a stud (74) perpendicular to the longitudinal axis of rotation.
  • the shaft (72) is inserted in the hub (71) and the pin (74) in the slot (73) so that the rotation of the shaft (72) with respect to the hub (71) is thus limited by the length of the groove (73), specifically when the pin (74) abuts against one of the two ends of the groove (73).
  • the MLA can be located along the upper joint assembly (41), and therefore it is divided into two parts so that one part connects with the axis (72) of the MLA and the other with the hub ( 71) of the MLA.
  • Still another preferred alternative embodiment for an MLA (90), as illustrated in Figures 43 to 47, includes at least two partially curved plates (91, 92) that are superimposed between them.
  • Each curved plate has two rails (93, 94) at its lower edge and a groove (96) at its upper edge, and both rails (93, 94) are separated from each other by a gap or space (95).
  • the rails (93, 94) separated from the first curved plate (91) are inserted into the groove (96) of the second curved plate (92), thus allowing a rotating movement of one plate with respect to the other.
  • a stopper pin (97) can be inserted into a hole (98) that it crosses the groove (96) of the second curved plate, so that the first curved plate can only move in the length of the gap (95) between the rails (93, 94) of the first curved plate.
  • the above MLA embodiments can be placed anywhere along the upper joint assembly (41), between the hip (5) and the knee (2), the upper joint assembly being thus divided into two parts so that a part of the upper joint assembly (41) is linked to a part of the MLA (71, 80, 91) and the other part of the upper union assembly with the lower element (72, 84, 92) of the MLA.
  • the first support element located at the height of the hip (5) of the skier (3) is replaced by a support element (29) located on the thigh (4), for any one or both legs of the skier (3).
  • the first support element (29) can be attached to it by means of a clamp (29) and the knee joint is a hinge (52) with a torque transmission joint (51).
  • the clutch mechanism (170) is arranged in the lower joint assembly (46) as in the last example which included a mechanism for limiting the angle of rotation in the upper joint assembly (41). It is also possible to use a mechanism that limits the rotation at the knee height as described above, which depending on the inclination of the upper joint assembly in relation to the lower joint assembly, limits the rotation or rotation of the first support element with relation to the second support element.
  • the previously described embodiments form a protection by way of an exoskeleton attached to the individual on the hip, legs and feet, in particular avoiding knee injuries, and in general any bone injury, in the manner already described; also allows the control of skis, thus contributing to the safety of such activity.
  • the upper and lower joint assemblies (41, 44) can be fixed to different parts of the leg by mixed clamps (108) located along both joint assemblies (41 , 44).
  • These clamps (108) are preferably formed by a rigid part and a soft part, such as a belt, used to fix the rigid part to the leg.
  • the upper and lower joint assemblies (41, 44) can be replaced by ergonomic elements, that is, elements that adapt to the user's body.
  • the foregoing can be formed by two elements, an external cover (104) and an internal guide (103), which slide longitudinally with respect to each other, as illustrated in the figure 40.
  • the guide (103) has a circular section defining projections (106) and longitudinal grooves (105) within the cover (104) having a complementary section.
  • This coupling allows an extensible connection and, through the projections (106) and the grooves (105), to transmit the torque in an optimal way between the guide and the cover.
  • an internal guide with hexagonal shape (197) and an external cover in the extendable joint as shown in figure (41).
  • the different components of the safety and control device object of the present invention may be made of different materials, whether metallic, alloys or fibers, but they must be materials that can withstand the stresses to which the device is subjected.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Nursing (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Professional, Industrial, Or Sporting Protective Garments (AREA)
  • Prostheses (AREA)
  • Rehabilitation Tools (AREA)
  • Orthopedics, Nursing, And Contraception (AREA)

Abstract

Exoesqueleto de seguridad y control para la practica del esqui de nieve, para prevenir lesiones de rodilla, pierna y cadera, evitando la torsión excesiva de la rodilla, y otros movimientos que pudiesen resultar lesivos para la persona que lo lleva, además de permitir un control sobre los esquís durante la práctica de dicho deporte. El exoesqueleto incluye al menos un primer elemento soporte para acoplar el exoesqueleto al cuerpo por encima de la rodilla; al menos un segundo elemento soporte para acoplar el exoesqueleto al cuerpo por debajo de la rodilla; estando ambos enlazados entre si mediante un montaje de unión que impide que los miembros inferiores alcancen posiciones lesivas; al menos un mecanismo de embrague acoplado operativamente entre dos elementos del exoesqueleto; y al menos un sensor que capta movimiento o/y presión de alguna parte del cuerpo del esquiador para transmitir una señal al mecanismo de embrague.

Description

EXOESQUELETO DE SEGURIDAD Y CONTROL PARA IA PRÁCTICA DEL ESQUÍ DE NIEVE
Sector' de la técnica La presente invención, un dispositivo de seguridad para la práctica del esqui de nieve, concierne a un dispositivo que hace de la práctica del esqui un deporte más seguro y más fácil. El dispositivo ha sido diseñado con especial énfasis en la prevención de lesiones de rodilla, por ser esta la articulación que más daño sufre en los accidentes registrados durante la práctica de este deporte. No obstante, la protección que el dispositivo de esta invención brinda, no se limita a la articulación de la rodilla, sino que también puede brindar protección a toda la pierna, y en la mayoría de los modos preferentes de realización, también a la cadera.
Asimismo, la invención se refiere a un dispositivo que además de garantizar la seguridad del esquiador permite el control de los esquís durante la práctica del deporte, evitando que los mismos se desvien en contra de la voluntad del usuario o esquiador, de manera que el esquiador sufrirá menos accidentes y por lo tanto también sufrirá menos lesiones de todo tipo .
El campo de aplicación preferido para la invención es la práctica del esqui, en particular del esqui alpino, si bien la presente invención puede ser de utilidad también para otros deportes que involucren riesgo de lesión articular ú ósea. Por ello, todo lo que a continuación se detalla, podría ser igualmente utilizado, con las lógicas adaptaciones a la protección de otros deportistas y personas que practiquen actividades que implican un riesgo de lesiones óseas en general y articulares en particular.
Antecedentes
La práctica del esquí alpino produce todos los años un gran número de lesiones graves de rodilla involucrando rotura ligamentosa y de menisco, a pesar de los esfuerzos de la industria por mejorar las fijaciones, dispositivos de sujeción de la bota al esqui, y por tanto del esquiador o deportista a los esquís. Estas lesiones a menudo enfrentan al paciente a la decisión de dejar de esquiar y de practicar muchos otros deportes, o someterse a una cirugía mayor, con ciertos riesgos e incertidumbres, recuperaciones a menudo muy dolorosas y largas, cambios en el modo de vida con los respectivos inconvenientes laborales, familiares, profesionales, psicológicos y económicos derivados de la lesión.
Otras lesiones posibles durante la práctica del esqui, y que siguen en número a las de rodilla, son las lesiones de cabeza y cara, pero para proteger de estas lesiones el uso de casco está cada vez más difundido.
En la actualidad, el total anual de esquiadores por año entre Estados Unidos y Europa es de aproximadamente 20 millones .
El total de accidentes que involucran lesiones graves, con atención y evacuación de los heridos en pista es de aproximadamente entre un dos y un cuatro por mil. De mil dias esquiados por un esquiador, se lesionarla entre 2 y cuatro veces (en Estados Unidos es de un 3,5 por mil dias aproximadamente) . Asimismo, la práctica del esqui se ve a menudo dificultada por la amplificación de la fuerza que cualquier accidente del terreno ejerce a través de la gran palanca de los esquís ejerce sobre el pié del esquiador, haciendo que el esquiador pierda su trayectoria y produciendo inestabilidad. Como se ha mencionado, el deporte del esqui conlleva un riesgo alto de lesiones de rodilla ligamentosas y de menisco (entre un 30% y un 40% del total), entre otras. Dichas lesiones son frecuentemente provocadas por las grandes fuerzas a las que son sometidas las rodillas por los esfuerzos transmitidos hasta ellas a través de la bota rigida desde los esquís, que actúan como grandes palancas tal y como se observa en la Fig. IA.
Existen diferentes lesiones de rodilla, pero las más habituales en el esquí son la rotura del ligamento lateral externo (entre un 20 y un 25% de las lesiones) y la rotura del ligamento cruzado anterior (entre un 10 y un 15% de las lesiones) .
La lesión del ligamento lateral externo afecta habitualmente a principiantes y a esquiadores medios, que esquían principalmente en la posición de cuña, con los pies inclinados hacia dentro, y que se lesionan durante la caída, cuando se cruzan los esquís o se abre la cuña. Lesiones del ligamento lateral externo pueden ocurrir en esquiadores más expertos habitualmente cuando al toparse un esquí con un obstáculo, se abre el esquí y la pierna trata de sujetarlo.
La lesión del ligamento cruzado anterior se da en diferentes condiciones, especialmente en esquiadores más expertos, y puede producirse, por ejemplo:
Cuando la parte posterior del esquí hace palanca con la bota ejerciendo una fuerza de torsión, retorciendo y doblando la rodilla;
Cuando el esquiador se desequilibra hacia atrás durante un salto e instintivamente estira una pierna y por ello cae sobre la parte posterior del esquí forzando la parte trasera de la bota contra la pantorrilla desviando de ese modo la tibia bajo el fémur y rompiendo el ligamento cruzado; o Cuando un esquiador está de pie y es golpeado por detrás en la parte inferior de la pierna, forzando a la tibia hacia delante con el consiguiente daño en el ligamento cruzado.
Otras lesiones incluyen daños en el menisco (entre un 5 y un 10% de todas las lesiones) , provocadas por esfuerzos de torsión aplicados a la rodilla flexionada, y habitualmente motivados al encontrarse un obstáculo a gran velocidad. Actualmente, las fijaciones que sujetan la bota al esqui son el dispositivo al que se recurre para reducir el riesgo de lesión pero no previenen adecuadamente tal riesgo. Las fijaciones están diseñadas para que la bota se suelte del esqui cuando se sobrepase un límite de presión concreto y previamente determinado. Sin embargo, dependiendo de la postura de la pierna en el momento de la solicitación de la fuerza y de otros factores, tales como la violencia del impacto, es posible que la fijación no se comporte como se esperaba. En tales casos, la fijación no salta y la bota no se suelta del esquí en el momento apropiado o no lo hace nunca, causando con frecuencia que se rompan los ligamentos de la rodilla antes de que el mecanismo pueda soltar la bota.
Este sistema, además, obliga al esquiador a elegir un ajuste determinado. Si la fijación se regula demasiado dura, es difícil que el esquí se separe de la bota en una torsión del esquí que es lo suficientemente grande para que haya riesgo de lesión de la rodilla. Si, por el contrario, las fijaciones están demasiado blandas, un esquiador podría en un momento comprometido, perder un esquí involuntariamente, lo que también puede provocar una grave lesión.
Tampoco contribuyen las fijaciones actuales, a la estabilidad de los esquís, ni al mantenimiento de la trayectoria deseada por el esquiador. Como se ha mencionado, estas lesiones de rodilla obligan habitualmente a una intervención quirúrgica costosa, de recuperación larga e incómoda, resultados no siempre satisfactorios e importantes repercusiones laborales, familiares, etc. Los dispositivos conocidos del estado de la técnica, no proporcionan una protección y control sobre los esquís tal y como el exoesqueleto de la presente invención.
Son conocidos diferentes dispositivos para prevenir lesiones en el esquí. Por ejemplo, el documento de patente estadounidense número US-4136404-B1, describe un aparato abrazadera para una pierna para la práctica de deporte configurado para conectarse a los lados de una bota de esqui y divido en dos partes a lo largo de la pierna mediante una articulación a la altura de la rodilla, de manera que una parte superior queda sujeta al muslo y una parte inferior a la bota. El dispositivo permite un movimiento de flexión y extensión de la pierna, restringiendo la flexión lateral de las dos partes de la pierna y permitiendo la transmisión de las fuerzas laterales de las piernas del esquiador a las partes laterales de la bota. Es decir, el fin de este dispositivo es reducir la flexión lateral de las piernas de un esquiador durante el esqui, de modo que proteja los huesos de la pierna, que no sus articulaciones, en caso de flexión. Además, este dispositivo no protege la pierna en caso de torsión, que es el esfuerzo que genera las lesiones de rodilla más habituales e importantes, especialmente cuando la rodilla se encuentra extendida. Otra limitación del mecanismo amparado por la citada patente estadounidense es que, al llevar la pierna firmemente sujeta a la bota por el mecanismo de la invención descrita, la libertad de movimiento se ve muy comprometida cuando la rodilla se encuentra flexionada, afectando negativamente a la experiencia de la práctica del esqui, a diferencia de la presente invención. Adicionalmente, el dispositivo descrito en el documento US-4136404-B1, no tiene ningún elemento para la sujeción a o apoyo por la cintura. Todo el esfuerzo se localiza exclusivamente sobre la pierna. Un objeto de varios ejemplos de realización de la presente invención, por el contrario, es usar la cintura como zona fuerte del cuerpo para apoyar toda la estructura de refuerzo y evitar lesiones de las piernas. Asimismo, el documento US-4136404-B1 tampoco incorpora ningún dispositivo de control de los esquís. Otro objeto de varias realizaciones de la presente invención, en cambio, es permitir un control eficiente y eficaz de los esquís en todo momento. Esto supone una importante mejora de las condiciones de seguridad activa, además de hacer mucho más satisfactoria la experiencia de esquiar.
Otra limitación del documento US-4136404-B1 es que al llevar la pierna "abrazada" en el muslo y sujeta a la bota de la manera descrita en esa patente, la libertad de movimiento se ve muy comprometida, afectando negativamente a la experiencia de la práctica del esqui, a diferencia del dispositivo según la presente invención.
Un objeto de la presente invención es permitir una libertad de movimiento óptima de la pierna en todo momento, mientras que la pierna está soportada por la estructura de protección en aquellos momentos en que esto es necesario y particularmente en la dirección y el sentido de movimientos no deseados. En otras palabras, permite una libertad total de movimientos deseados y restringe los movimientos no deseados inducidos por el esqui.
La patente estadounidense número US-3947051-B1, describe una fijación para bota de esquiar con un transmisor, situado entre la pierna y la bota del esquiador, para iniciar la operación de "apertura" de la fijación durante caldas, en particular caídas hacia delante. El transmisor detecta una fuerza excesiva entre la pierna y la bota transmitiendo así una instrucción de apertura a la fijación, evitando lesiones en la pierna del esquiador. En cualquier caso, tal y como se comprenderá a continuación, la presente invención es totalmente diferente de la anterior: no requiere la sustitución del mecanismo de fijación bota esquí, sino que puede complementarse con él; - no se limita a la unión bota - esquí, y proporciona un elemento de conexión bota - pierna, y en varios de los modos preferentes de realización, de cadera (exoesqueleto) ; los elementos de la presente invención pueden transmitir la torsión o el par generado en el pie por el efecto palanca del esqui, a toda la estructura del exoesqueleto y a través de él a las zonas fuertes de la pierna y, en la mayoría de los modos preferentes de realización, a una pieza situada en la cintura o caderas del esquiador, protegiendo de ese modo ante una torsión peligrosa de la articulación de la rodilla; el dispositivo, unido a zonas fuertes del cuerpo, puede soportar de ese modo la torsión o el par generado en el pie por la palanca del esquí en posiciones límite o extremas que pudieran lesionar la rodilla, de manera que las fuerzas resultantes no se transmitan a la articulación de la rodilla, mucho más débil, y que hasta la fecha ningún sistema o mecanismo ha conseguido proteger eficazmente, como prueban las estadísticas mencionadas; la presente solicitud refuerza significativamente la estructura corporal en las zonas del cuerpo más involucradas con la práctica del esquí, permitiendo ajustar el "setting" o ajuste más duro de las fijaciones con la garantía de que no se va a producir lesión, pues en la mayoría de los casos el esquiador se soportará por la estructura reforzada del exoesqueleto, y en casos extremos, saltaría la fijación sin afectar a la estructura de la rodilla o cualquier otra articulación o hueso de la pierna. Ninguna de las características anteriores o funcionalidades están presentes en la patente US-3947051-B1, mientras que la presente invención permite conseguir estas funcionalidades .
Adicionalmente, un objeto de la presente invención es un sistema que aumenta significativamente la resistencia del esquiador a movimientos indeseados del esquí. Este sistema deriva parte del par que un giro no deseado del esqui produce sobre el pie a la estructura formada por el exoesqueleto, a las partes fuertes de la pierna a las que va unida la estructura y, en " varios de los modos preferentes de realización, a la cintura o caderas. Además de incrementar la seguridad, esto ayuda significativamente al control de los esquís. Esta característica tampoco está presente en el dispositivo descrito en el documento US-3947051-B1 ni otros mecanismos de apoyo convencionales. La solicitud de patente estadounidense con número de publicación ÜS-2006260620-A1, detalla un exoesqueleto para extremidades inferiores que es acoplado a una persona y configurado de tal manera que los dos soportes de las piernas sirven para apoyar en el suelo cuando el usuario está detenido. El exoesqueleto está formado por un acoplamiento en el muslo, otro en la pantorrilla y dos articulaciones a la altura de la rodilla, estas articulaciones permiten la extensión y flexión del acoplamiento del muslo y del acoplamiento de la pantorrilla. El exoesqueleto se une a la cadera a través de articulaciones que permiten la extensión y flexión. La energía para mover el exoesqueleto la aporta el usuario del mismo. Este dispositivo es de aplicación a personas que precisen ayuda para andar o que necesiten estar parados soportando y transportando cargas y pesos, es decir, el fin del dispositivo es aumentar la capacidad del usuario para soportar grandes pesos cuando anda o está parado. La solicitud de patente internacional número PCT/US2006/014227, describe una variante del anterior dispositivo que incorpora, además, un motor para conseguir un mayor aumento de la fuerza de la persona empleando el exoesqueleto.
La invención de la solicitud de patente en Estados Unidos número US-2006260620-A1, que incluye un anclaje a la cadera, está estructurada para conseguir resultados que son diferentes de aquellos de la presente invención. Como se ha mencionado, el documento US-2006260620-A1 se dirige a un sistema para incrementar la capacidad para soportar mayores cargas, descansar en posición de pie, o suplir la falta de fuerza de unas piernas débiles. Como tal, este sistema no es útil para la práctica de un deporte tan dinámico y necesitado de flexibilidad como el esqui. En su lugar, simplemente tiene el único objetivo del incremento de la capacidad de carga, mientras que como se explica en la descripción, la prsente invención está estructurada para incrementar la resistencia, que no fuerza, contra tales situaciones como giros indeseados de un esqui y otros movimientos potencialmente peligrosos, asi como incrementar el control de los esquís.
El sistema descrito en la solicitud de patente de Estados Unidos con número de publicación número US-2006260620- Al está diseñado para trabajar en vertical con movimientos similares a los realizados al andar, contrarrestando las fuerzas de la gravedad, pero no para resistir movimientos giratorios en un plano horizontal, como la invención descrita en el presente documento, de aplicación particular al esqui de nieve. La articulación artificial de cadera descrita en la solicitud de patente en Estados Unidos con número de publicación US-2006260620-A1 no dispone de un mecanismo que permita el giro natural de las piernas respecto a todos sus ejes y al mismo tiempo que limite los movimientos angulares potencialmente lesivos para la rodilla o la cadera. La presente invención, por el contrario, proporciona un mecanismo especialmente diseñado para permitir una total libertad de movimiento necesaria para dichas actividades como la práctica del esqui, mientra que impide movimientos antinaturales que puedan causar lesiones. La presente invención es especialmente útil para proteger contra giros extremos del pie, estando especialmente concebida para soportar las fuerzas de giro o pares debidos a la gran palanca que el esquiador lleva sujeta a su pierna, por ejemplo el esqui, situación que no se da en la solicitud del dispositivo descrito en la solicitud de patente en Estados Unidos con número de publicación US- 2006260620-A1.
La articulación artificial de rodilla y la articulación artificial de tobillo descrita en la solicitud de patente en Estados Unidos con número de publicación US-2006260620-Al, no disponen de ningún mecanismo que permita los movimientos naturales necesarios para la práctica de actividades tales como el esqui, y que al mismo tiempo proteja las articulaciones ante movimientos o posiciones de la rodilla en particular, y la pierna en general, que pueden causar lesiones. La presente invención, por el contrario, proporciona estos mecanismos en las articulaciones artificiales, para por un lado dar toda la amplitud de movimientos necesaria y por otro lado limitar o impedir aquellos movimientos o posiciones que puedan resultar lesivos para la pierna en general y la rodilla en particular, haciendo especial énfasis en la protección ante los fuertes giros del pie, o del cuerpo en torno al pie, que pueden producirse involuntariamente durante actividades físicas tal como el esqui. Adicionalmente, el documento ÜS-2006260620-A1 no dispone de mecanismo alguno que contribuya a un mayor control de los esquís por parte del esquiador, mientras que en ciertos aspectos de la presente invención, se proporciona un mecanismo que está especialmente diseñado para que el esquiador tenga en todo momento un control añadido de los esquís, de modo que si por algún accidente del terreno o cualquier otra circunstancia, un esqui corriese peligro de perder la trayectoria que el esquiador desea, éste mecanismo automáticamente evitarla tal desviación. Los esquís siempre se mantendrán en la trayectoria solicitada por el esquiador con independencia de accidentes del terreno, irregularidades de la nieve o diferentes calidades de la misma.
Nada parecido a lo anterior se encuentra descrito en el documento US-2006260620-Al, ni ningún elemento de la misma puede ser útil en circunstancias similares, ni mucho menos resuelve este problema planteado por la presente invención.
No se conocen dispositivos de protección anteriores que ofrezcan una mínima garantía para evitar tales lesiones, permitiendo a su vez la libertad de movimientos necesaria para la práctica del esquí, ni adicionalmente un control de los mismos durante la práctica del esquí de nieve.
Explicación de la invención La invención, dispositivo de seguridad y control para la práctica del esquí de nieve, en particular el esquí alpino, mediante su configuración y componentes, soluciona problemas e inconvenientes o desventajas, no resueltos previamente en el estado de la técnica, principalmente debido a que tales problemas no habían sido planteados ni siquiera sugeridos hasta ahora en el mismo debido a que los dispositivos conocidos no evitan la posibilidad de lesionarse las rodillas ni otras partes de la pierna, sino que reducen la posibilidad de tales lesiones en condiciones muy particulares y muy determinadas, que son específicas para cada dispositivo, a diferencia de la presente invención que evita las lesiones de cadera y lesiones de la pierna y, especialmente, lesiones de rodilla. El dispositivo de la invención permite derivar las fuerzas potencialmente lesivas para las piernas en general y la rodilla en particular, hacia zonas fuertes del cuerpo como la cadera y las zonas más resistentes de las piernas. Cuando el movimiento llega a una posición anatómicamente peligrosa, es el exoesqueleto el que resiste las fuerzas generadas y las deriva a las zonas más fuertes de pierna y cadera. Especialmente, aunque no exclusivamente, aquellas fuerzas producidas por la gran palanca que forma el esquí, que de otro modo causarían importantes lesiones en la rodilla.
Asimismo, la presente invención permite el control natural de los esquís, sin necesidad de que el esquiador genere una acción por voluntad propia para accionar un mecanismo, simplemente con sus movimientos naturales durante la práctica del esqui. El dispositivo de la invención permite neutralizar la torsión de la rodilla mediante la absorción por parte de su estructura, y del apoyo de esta en zonas del cuerpo mucho más fuertes que la rodilla, del giro no deseado del pie.
Un objetivo de la presente invención tal como se pone en práctica en ciertos ejemplos de realización es proporcionar un exoesqueleto o dispositivo que evite las lesiones a un esquiador a la vez que permita al mismo controlar los esquís evitando movimientos de los mismos no deseados. En particular, la presente invención tal como se pone en práctica en ciertos ejemplos de realización evita las lesiones por torsión, y otras fuerzas transversales, longitudinales, etc. de las rodillas, las piernas en general y en varios de los modos preferentes de realización, la cadera durante la práctica del esquí, mediante la derivación a través del exoesqueleto o dispositivo de los esfuerzos, y en particular derivando las fuerzas, por ejemplo de torsión, excesivas que podrían resultar en lesiones, provocadas por los esquís, a través de una estructura de soporte o exoesqueleto que forma el dispositivo, y que se sujeta a zonas fuertes de las piernas y, en varios de los modos preferentes de realización, a la cintura, asegurando así que la pierna en general y la rodilla en particular no sufra dichos esfuerzos. Asimismo, el dispositivo según varios ejemplos de realización de la presente invención puede permitir que se eviten aquellos movimientos de los esquís que no sean deseados por el esquiador. Estos objetos se logran en varios ejemplos de realización de la presente invención proporcionando un dispositivo que transmite una parte significativa de la torsión o el par y otras fuerzas potencialmente lesivas producidas durante la práctica del esquí desde la bota rígida, la fijación, o el mismo esquí, a zonas fuertes del cuerpo a través de la estructura del dispositivo de seguridad, liberando de esta forma a los ligamentos de la rodilla en particular, y de las demás zonas de la pierna o cadera, en general, de la sobrecarga producida por la palanca (el esqui) , asi como disponiendo en el dispositivo de elementos que detectan y bloquean los movimientos indeseados de los esquis.
En ciertos ejemplos de realización, el dispositivo o exoesqueleto de la presente invención incluye los siguientes componentes : - un primer elemento soporte configurado para acoplar el exoesqueleto bien a la cadera o cintura o muslo del cuerpo de la persona, bien a la pierna o piernas de una persona; un segundo elemento soporte configurado para acoplar el exoesqueleto a la bota del esquiador, a la fijación, o al mismo esqui; un montaje de unión que tiene un extremo superior y un extremo inferior, estando el montaje de unión acoplado en su extremo superior al primer elemento soporte y acoplado en su extremo inferior al segundo elemento soporte, extendiéndose el montaje de unión generalmente a lo largo de la pierna cuando la persona lleva el exoesqueleto; al menos un mecanismo de embrague, acoplado operativamente entre dos elementos del exoesqueleto, permitiendo el embrague o desembrague de los dos elementos del exoesqueleto, dispuesto preferiblemente a lo largo del montaje de unión, y que al recibir una acción pequeña (fuerza,, momento, movimiento, o similar) embraga o desembraga ambas partes del exoesqueleto; y al menos un dispositivo sensor capaz de captar los movimientos del pie y transmitirlos al mecanismo de embrague. El mecanismo de embrague arriba mencionado se refiere a un mecanismo que conecta y desconecta dos partes en que puede dividirse el exoesqueleto.
El mecanismo de embrague y el dispositivo sensor, puede tener dependiendo de su configuración, por ejemplo, dos opciones de funcionamiento con dos modos cada una:
Un primera opción en la que por defecto los dos elementos o partes correspondientes del exoesqueleto están desembragados o no están acoplados cuando el mecanismo no recibe ninguna acción o señal desde el sensor,
Un mecanismo de embrague según esta opción, puede funcionar de dos modos diferentes : o Cuando recibe la fuerza o señal de un sensor, bloquea el giro en uno de los sentidos manteniendo libertad de giro en el sentido opuesto . o Cuando recibe la fuerza o señal de un sensor, no bloquea, permitiendo el giro en ambos sentidos. En este modo está desactivado el sistema de control pero se mantiene la protección mediante el sistema de seguridad.
Una segunda opción en el que el mecanismo de embrague mantiene por defecto los dos elementos o partes del exoesqueleto embragados o acoplados cuando el mecanismo no recibe ninguna acción o señal desde el sensor.
Un mecanismo de embrague según esta opción puede funcionar de dos modos diferentes: o Cuando recibe una fuerza o señal de un sensor, permite girar en uno de los sentidos, manteniendo bloqueado el giro en sentido contrario. o Cuando recibe una fuerza o señal de un sensor, no desbloquea. El exoesqueleto se mantiene acoplado en todo momento .
El mecanismo de embrague también puede, dependiendo de su configuración realizar el embrague o acoplamiento entre ambas partes del exoesqueleto de manera progresiva o instantánea.
La siguiente explicación se refiere a un dispositivo que trabaja en uno de los previamente definidos modos de funcionamiento, específicamente el modo preferido en el que el exoesqueleto está desembragado por defecto, y embraga únicamente en el sentido de giro no deseado.
Por tanto, el exoesqueleto de la invención se compone preferiblemente de una estructura que se sujeta a piezas de material resistente, ubicada en torno a la cintura y/o a las piernas. La estructura, que se extiende desde la cintura o piernas hasta las botas del esquiador, fijaciones o esquís, está compuesta de elementos de soporte y un montaje de unión compuesto por elementos rígidos y/o elementos articulados, que pueden ser tanto ejes o elementos alargados paralelos a la pierna como piezas anatómicas abrazando la misma, de manera que permita la transmisión del par torsor generado en el pie por la fuerza del esqui, asi como otras fuerzas longitudinales y transversales, que pudieran causar lesiones, a la propia estructura, y posteriormente a las zonas más resistentes de las piernas y, en la mayoría de los modos preferentes de realización, a la cintura. Estos elementos o piezas que componen el montaje de unión de la estructura o exoesqueleto pueden ser tanto estandarizadas como hechas a medida o extensibles, y pueden estar fabricadas en metal, fibra, en plástico o en cualquiera de los materiales hoy disponibles en la industria o en los que en el futuro puedan servir para este fin.
El primer elemento de soporte está situado preferiblemente a la altura de la cintura, lo cual adicionalmente limita la torsión relativa entre ambos pies conectados por el exoesqueleto a través de la cintura, aunque es posible usar un primer elemento de soporte en cada pierna o sólo en una de las piernas, pudiendo asimismo el primer elemento de soporte estar situado en el muslo o los muslos del esquiador.
El dispositivo puede tener juntas o mecanismos entre dos elementos del mismo tales que permitan la transmisión del par de torsión entre dichos dos elementos, permitiendo dicha transmisión del par indpendientemente del alineamiento angular entre los ejes de torsión de ambos elementos. Ejemplos de estas juntas o mecanismos incluyen ciertas juntas elásticas o transmisiones de tipo junta universal, los cables del tipo de los empleados en los cuenta kilómetros u odómetros, entre otros.
El mecanismo de embrague, que incorpora el mecanismo de freno, se dispone preferiblemente a lo largo del montaje de unión y, al aplicar sobre el citado mecanismo una acción pequeña (fuerza, momento, movimiento, o similar) , genera un par resistente elevado, y recibe esta acción de un dispositivo sensor capaz de captar movimientos, preferiblemente del pie, para transmitirlos al mecanismo de embrague. El citado mecanismo, o en ocasiones mecanismos, puede estar situado a lo largo del montaje de unión, permitiendo acoplar (embragar) o desacoplar (desembragar) la estructura o exoesqueleto a/de la bota del esquiador, la fijación o el propio esqui, y/o a la cintura. El mecanismo de embrague también puede situarse en un extremo del montaje de unión y acoplarse con uno de los elementos soportes del exoesqueleto. El citado dispositivo sensor está constituido preferiblemente por un mecanismo capaz de captar el sentido en que el pie quiere girar o desplazarse con relación al esqui, pudiendo estar el mecanismo alojado entre el botin interior de la bota y la bota rígida exterior, en el exterior de la bota, en la puntera, el talón o en otro lugar, siempre y cuando sea capaz de recoger esa entrada de información en la que se convierte el movimiento del pie. Este mecanismo estará principalmente compuesto por lo que en lo sucesivo se denominará "sensores", y podrán utilizarse sensores para captar (a través de componentes mecánicos, hidráulicos, eléctricos u otros, o una combinación de los mismos) fuerzas, ángulos, movimientos o cualquier otra información relevante en los pies, las piernas o caderas.
Los sensores se pueden situar entre la bota y el mecanismo de embrague o freno o entre la bota y el botin de la misma, fuera de la bota, en contacto con la fijación del esqui o en cualquier otro lugar que les permita recoger la información necesaria relativa a las fuerzas ejercidas por el cuerpo del, esquiador. Estos sensores pueden ser mecánicos, hidráulicos, neumáticos o electrónicos, y pueden estar conectados con el resto de los mecanismos de embrague o freno de cualquiera de estas maneras u otras que permitan transmitir la información.
Dependiendo de la ubicación de los mecanismos sensores el tratamiento de la información recogida por los sensores será diferente:
1) Si los sensores se ubican entre la bota y la fijación de la misma al esqui, la presión que reciban los sensores, y por lo tanto, la información que transmiten, será la ejercida por el esqui sobre el conjunto de la bota más el exoesqueleto. Para el correcto funcionamiento del sistema, es necesario aislar la resistencia ejercida por el pie, a través de la cual se manifiestan las intenciones del esquiador, de la resistencia ejercida por el exoesqueleto. Una alternativa para conseguir este aislamiento es, como se detalla en la forma preferente de realización, utilizar un elemento adicional y situarlo entre la bota y la fijación, de manera que quede sujeto a la bota con cierta holgura y a su vez conectado al exoesqueleto a través de los mecanismos de embrague. Si los sensores se sitúan entre la bota y esta pieza, estos sensores miden directamente la resistencia opuesta por la bota al esqui, con independencia de la resistencia ejercida por el exoesqueleto.
2) Si los sensores se sitúan entre la bota y el botin interior, o sea dentro de la bota, también miden la resistencia opuesta por el pié al esqui, con independencia de la resistencia ejercida por el exoesqueleto.
3) Si los sensores toman como dato la flexión de la rodilla, se podrá actuar sobre los embragues en función de esta flexión.
Es posible combinar los anteriores elementos y mecanismos entre diferentes articulaciones y posiciones en la estructura del dispositivo.
En cualquier momento durante la práctica del esqui, en el que uno o ambos esquís, debido a irregularidades en la nieve o cualquier otra circunstancia, corriese peligro de perder la trayectoria deseada por el esquiador, o bien una pierna se acercase a una posición peligrosa para su integridad se producirla una tensión en la pierna que activarla los sensores, los cuales enviarían la información o fuerza al mecanismo de embrague provocando el acoplamiento de la estructura del exoesqueleto, o montajes de unión, a las botas y primer elemento soporte dispuesto en la cintura o caderas, y en algunas formas preferentes en el muslo, del esquiador, asi como a las zonas más resistentes de las piernas, protegiendo de ese modo las zonas más débiles, como son las rodillas, entre otras .
De esta manera se consigue incrementar significativamente la resistencia de las piernas de un esquiador, que en lugar de tener su eslabón más débil en la rodilla, dispone de una cadena de eslabones fuertes que le permite esquiar con más energía y a la vez más confianza, seguro de que sus rodillas no van a soportar esfuerzos que pudiesen lesionarlas. A su vez, la presente invención puede permitir esquiar con los ajustes de las fijaciones más duros, con mayor seguridad y sin riesgo de lesiones. En última instancia, si se llega al extremo de que la fijación debe soltarse, siempre lo hará bajo la solicitación de esta estructura y no de la articulación de la rodilla.
La posibilidad de un óptimo ajuste de las fijaciones, arriba mencionada, es de extrema importancia. En el estado actual de la técnica, las fijaciones existentes obligan al esquiador a optar por un ajuste "blando" o uno "duro", siendo muy difícil dar con el óptimo. Un ajuste demasiado blando hará que el esquiador pueda perder un esqui en una situación comprometida, lo que podría provocar una lesión. Un ajuste demasiado duro, conlleva el riesgo de que la pierna pueda sufrir graves lesiones porque la fijación no suelte el esqui antes de llegar al punto de lesión y lo peor es que, en ningún caso, aún con los ajustes "blandos", se tiene la garantía de que las fijaciones se suelten en determinadas circunstancias.
Con un dispositivo según ciertos ejemplos de realización de la presente invención, el esquiador puede permitirse sin riesgo, ajustar las fijaciones tan duras como sea conveniente, en función de su nivel de esqui y de las dificultades que quiera asumir (incluso esqui extremo) , para tener la certeza de que no va a perder un esquí, sin incurrir por ello en riesgo alguno de lesión Con el dispositivo según ciertos ejemplos de realización de la presente invención, el resultado para el esquiador, puede asemejarse a lo que ocurre al conducir un coche moderno, en el que la acción de frenar o girar las ruedas sólo requiere una pequeña fuerza por parte del conductor para ejercer fuerzas mucho mayores sobre las ruedas, diferenciándose en el caso de la presente invención, sin embargo, en que el presente mecanismo no incrementa la fuerza, sino la resistencia, y que no requiere de energía adicional más que la generada por la propia acción de esquiar. El funcionamiento del exoesqueleto al esquiar se refleja en que, si uno o los dos esquís inicia una rotación, apertura, cierre, o cualquier otro movimiento que el esquiador no desea, automáticamente se produce una presión en el sensor del lado opuesto a aquel hacia el que el esquí intenta moverse, lo que a su vez provoca el "embrague" o acoplamiento del mecanismo de embrague con el eje de la estructura o montaje de unión del exoesqueleto .
En este caso, el mecanismo, o mecanismos, de embrague, se encargan de que una parte del par torsor generado por el esquí se derive a la estructura (exoesqueleto, zonas fuertes de la pierna, muslo, cintura y/o caderas) , de modo que ante la solicitación del par ejercido por el esquí, la pierna del esquiador no tenga que oponer un par equivalente, sino una fracción del mismo, la que ejercería naturalmente si no tuviese una palanca del tamaño del esquí solidaria a su pie.
De esta manera nos encontraremos con dos efectos, a saber:
Un efecto multiplicador de la resistencia de la pierna ante solicitaciones de giro no deseadas, lo que se traduce en un gran incremento en la capacidad de control del esquí, y
Una derivación a la estructura o montaje de unión del exoesqueleto, zonas fuertes de las piernas, muslo, cintura (en la mayoría de los modos preferentes de realización) y, en la mayoría de los modos preferentes de realización al otro esquí (en la medida en que está conectado con el primero a través de toda la estructura) , pero no a la rodilla, de una parte del par torsor ejercido sobre el pie por el efecto palanca del esquí, o cualquier otra fuerza no deseada y/o potencialrαente lesiva. En la práctica, lo anterior se traduce en una estructura mucho más resistente, con las implicaciones ya explicadas para la práctica del esqui y la seguridad durante dicha práctica.
Por lo tanto, los objetos adicionales que la presente invención proporciona en ciertos ejemplos de realización incluyen: - Prevenir las lesiones de rodilla en particular y pierna y, en la mayoría de los modos preferentes de realización, cadera.
Un mayor control sobre los esquís por parte de esquiador, - La posibilidad para el esquiador de ajustar fuertemente sus fijaciones sin miedo a lesionarse, y
Una mayor libertad de movimientos durante la práctica del esqui, al no existir más limites al movimiento que los que en cada momento el esquiador desee y transmita a través de sus pies.
De esta manera, el dispositivo de seguridad para evitar las lesiones de rodilla permite además el control de los esquís en todas las situaciones, haciendo la experiencia del esqui más satisfactoria al eliminar todos los movimientos indeseados de los esquís como consecuencia de irregularidades de la nieve, u otros elementos. Como se ha mencionado, el esquiador percibe las reacciones del esqui de un modo muy natural; no tiene limites a los movimientos que desee hacer, ni se encuentra con fuerzas mayores que las que su cuerpo está acostumbrado a sentir. Simplemente siente que aplicando la resistencia que naturalmente aplicarla para impedir que un agente externo moviese su pie, este resiste toda la fuerza generada por la palanca del esqui como si la misma no existiese. En la actualidad, como ya se ha citado al comienzo de la descripción, la probabilidad de tener una lesión grave de rodilla es muy alta, y el coste en dinero y sufrimiento de la misma es asimismo muy alto. Las lesiones afectan tanto a principiantes como a expertos. A menudo se producen incluso cuando no se está esquiando, en las colas de los remontes mecánicos, al intentar ayudar a una persona a levantarse, o en cualquier circunstancia no prevista. Cualquiera de esas eventualidades, está cubierta y protegida por la presente invención.
Por último, todo lo anterior redunda en otro concepto de seguridad, la seguridad activa, en la medida en que el dispositivo ya no sólo protege la articulación cuando se produce un accidente (seguridad pasiva) , sino que contribuye a evitar accidentes (seguridad activa) al permitir un control sobre los esquís, disminuyendo por tanto el número de lesiones no sólo en las rodillas, piernas y, en la mayoría de los modos preferentes de realización, caderas, sino también en otras partes del cuerpo.
Breve descripción de las figuras
Con el fin de facilitar la comprensión de la invención, a continuación se hace referencia a las siguientes figuras que acompañan a la descripción de una manera no limitativa: La figura IA muestra un esquiador sin un exoesqueleto de la presente invención e incluye una representación esquemática de ciertos esfuerzos a los que se ve sometido el esquiador; la figura IB muestra un esquiador y una representación esquemática de los mismos esfuerzos mostrados en la figura anterior, pero derivados a un exoesqueleto a modo de ejemplo según la presente invención; la figura 2 muestra un primer modo preferente de realización que muestra únicamente una pierna, de las dos preferidas, de un exoesqueleto según la invención; la figura 2B muestra una realización de un exoesqueleto como el mostrado en la figura 2, donde la doble bisagra situada a la altura de la cadera tiene sus dos ejes girados 90° respecto a la bisagra de dicha figura 2; la figura 3 muestra un primer elemento soporte para la cadera/cintura y elementos para unirlo al montaje de unión; la figura 4 muestra ciertos detalles de un cinturón rígido para el primer elemento soporte de la figura 3; la figura 5 muestra un detalle de los elementos de conexión del cinturón rígido de la figura 4 en una fase previa a la conexión;
La figura 6 muestra un detalle de los elementos de conexión del cinturón rígido de la figura 4 en una fase posterior antes de la conexión; la figura 7 muestra un detalle de los elementos de conexión del cinturón rígido de la figura 4 una vez conectada; la figura 8 muestra una vista en despiece ordenado de los elementos de la figura 3; la figura 9 muestra el elemento en T del cinturón rígido de la figura 3 con una junta de doble bisagra y un mecanismo regulador de longitud (MRL) ; la figura 10 muestra el elemento externo del MRL; la figura 11 muestra el elemento interno del MRL; la figura 12 muestra una vista en sección del MRL; la figura 13 muestra una vista en despiece ordenado de la parte inferior del montaje de unión inferior unida a un mecanismo regulador de longitud [COMPROBAR ESTA DESCRIPCIÓN DE NUEVO] ; la figura 14 muestra una vista en perspectiva frontal del dispositivo de embrague inferior o segundo de la figura 2; la figura 15 muestra una vista en perspectiva frontal del dispositivo de la figura 14; la figura 16 muestra una vista desde arriba del dispositivo de embrague de la figura 14; la figura 17 muestra una vista en perspectiva posterior del dispositivo de embrague de la figura 14 sin la caja que muestra el mecanismo de embrague; la figura 18 muestra una vista en perspectiva del mecanismo de freno incorporado en el mecanismo de embrague; la figura 19 muestra una vista ampliada diferente de la figura 18; la figura 20 muestra un diagrama de funcionamiento de un modo preferente de realización del mecanismo de embrague; la figura 21 muestra una extremidad inferior de un esquiador con el primer ejemplo de realización de la invención; la figura 22 muestra un segundo ejemplo de realización de un mecanismo de embrague, específicamente un mecanismo de embrague hidráulico; la figura 23 muestra una vista en despiece ordenado parcial del mecanismo de embrague hidráulico de la figura 22; la figura 24 muestra un diagrama de funcionamiento cuando el mecanismo de embrague hidráulico está en posición de espera; la figura 25 muestra un diagrama de funcionamiento cuando el mecanismo de embrague hidráulico de la figura 22 está funcionando; la figura 26 muestra una vista en perspectiva de un tercer ejemplo de realización del mecanismo de embrague, específicamente un mecanismo de embrague de tren de engranajes; la figura 27 muestra una vista en perspectiva diferente del mecanismo de la figura 26; la figura 28 una extremidad inferior de un esquiador con una representación esquemática de un segundo ejemplo de realización de la invención; la figura 29 muestra una extremidad inferior de un esquiador con una representación esquemática de un tercer ejemplo de realización de la invención; la figura 30 muestra una extremidad inferior de un esquiador con una representación esquemática de un cuarto ejemplo de realización de la invención; la figura 31 muestra una vista en despiece ordenado de un mecanismo de limitación de ángulo sensible a la flexión de la rodilla; la figura 32 muestra una vista superior y la sección del elemento principal del mecanismo de la figura 31; la figura 33 muestra una vista en perspectiva, con una sección a través de AA en la figura 34, del mecanismo de la figura 31 cuando la rodilla no se encuentra flexionada; la figura 34 muestra una vista en sección del mecanismo de limitación de ángulo de la rodilla cuando la rodilla no se encuentra flexionada; la figura 35 muestra una vista en perspectiva, con una sección a través de BB en la figura 36, del mecanismo de la figura 31 cuando la rodilla se encuentra flexionada; la figura 36 muestra una vista en sección del mecanismo de limitación de ángulo de la rodilla cuando la rodilla se encuentra flexionada; la figura 37 muestra una extremidad inferior de un esquiador con una representación esquemática de un quinto ejemplo de realización de la invención; la figura 38 muestra una extremidad inferior de un esquiador con una representación esquemática de un sexto ejemplo de realización de la invención; la figura 39 muestra un primer ejemplo de realización de un mecanismo de limitación de ángulo (MLA) ; la figura 40 muestra una vista en despiece ordenado de los elementos en la figura 39; las figuras 41 y 42 muestran otro ejemplo de realización de un MLA; las figuras 43 a 47 muestran aún otro ejemplo de realización de un MLA y sus componentes; la figura 48 muestra un ejemplo de una junta universal o cardan; la figura 49 muestra un ejemplo de realización de un montaje de unión extensible; la figura 50 muestra otro ejemplo de realización de un montaje de unión extensible; la figura 51 muestra un diagrama de funcionamiento de un mecanismo de transmisión de par; la figura 52 muestra una vista en perspectiva de un mecanismo de transmisión de par; la figura 53 muestra otra vista en perspectiva de un mecanismo de transmisión de par; y la figura 54 muestra aún otra vista en perspectiva de un mecanismo de transmisión de par.
Descripción de realizaciones no limitativas a modo de ejemplo de la invención A continuación se realizará una descripción de diferentes formas preferentes de realización de la invención para uso en esqui de nieve. Con referencia a las figuras 2, 2B, 28, 29, 30, 37 y 38 el exoesqueleto o dispositivo de seguridad y control para la práctica del esquí de nieve para ser utilizado por una persona (3) en al menos una pierna e incluye un primer elemento soporte (20, 21) , un segundo elemento soporte (30, 31), un montaje de unión (40) entre el primer elemento soporte y el segundo elemento soporte, al menos un mecanismo de embrague o acoplamiento (300, 400, 600, 700) para generar un par resistente al recibir una pequeña fuerza. El mecanismo de embrague incorpora un mecanismo de freno (150, 170) y está acoplado operativamente entre dos partes, elementos o componentes del exoesqueleto. El mecanismo de embrague (300, 400, 600, 700) está dispuesto a lo largo del montaje de unión (40) , estando en contacto el mecanismo de embrague con un dispositivo sensor (140) que capta los movimientos del pie del esquiador y los transmite al mecanismo de embrague (300, 400, 600, 700) , de manera que el montaje de unión posibilita la transmisión del par desde el segundo elemento soporte hasta el primero y permitiendo los movimientos naturales del esquiador, asi como el control de los esquís, al derivar una parte significativa del par generado sobre el segundo elemento soporte, por el efecto palanca del esqui, al primer elemento soporte. El montaje de unión (40) situado entre los elementos de soporte, primero y segundo (20, 30) , puede quedar dividido en dos sub-montajes (41, 44) , un primer sub-montaje de unión (41) y un segundo sub-montaje de unión (44) . El primer sub-montaje de unión (41) es un montaje de unión superior (41) que conecta un punto por encima de la rodilla (2) (por ejemplo, el primer elemento soporte (21) acoplado a la cadera (5) o el primer elemento soporte (29) acoplado al muslo (4) ) , a una articulación artificial a la altura de la rodilla (2) tal como una bisagra (52) , y el segundo sub-montaje de unión (44) es un montaje de unión inferior (44) que conecta la articulación artificial a la altura de la rodilla (2) , por ejemplo una bisagra (52) y el segundo elemento soporte.
El montaje de unión (40) puede situarse en una o en las dos piernas del esquiador o persona que utilice el exoesqueleto.
En una primera forma preferente de realización (10) del exoesqueleto o dispositivo de seguridad y control para la práctica del esqui de nieve según la presente invención, mostrada en las figuras 2 a 21, se dispone una estructura que se sujeta al cuerpo mediante un primer elemento soporte (21) acoplado al cuerpo de la persona por encima de la rodilla (2) , específicamente una primera pieza ergonómica de acoplamiento rígida (21) como la mostrada en las figuras 3 a 8, aproximadamente situada a la altura de la cintura o caderas (5) del esquiador o usuario.
Si se proporciona un primer elemento rigido de soporte (21) de este tipo, puede adoptar la forma de un cinturón rigido (21) que tiene dos piezas (22, 23) unidas juntas para formar un todo rigido, permitiendo asi su apertura para el acoplamiento al cuerpo del esquiador a lo largo de todo su contorno, puesto que rodea la cintura con la pieza circundante del cinturón (22) y una pieza frontal del cinturón (23) . El cinturón puede sujetarla el usuario en la parte frontal con la ayuda de las conexiones de cinturón (24, 25) y un cierre de cinturón (26) . Una de las conexiones de cinturón (24) está situada en un extremo libre de la pieza circundante de cinturón (22) y la otra conexión de cinturón (25) está situada en el extremo libre de la pieza (23) frontal de cinturón. Las conexiones (de cinturón 24, 25) se acoplan entre si parcialmente, una encima de la otra formando un elemento y el cierre de cinturón (26) fija entre si ambas conexiones de cinturón (24, 25) .
El primer elemento soporte, en este ejemplo de realización el cinturón (21) , está conectado al resto del exoesqueleto a través de un elemento en T (27) que se sujeta a la pieza circundante de cinturón (22) mediante tornillos (28) . Este elemento en T también puede incluirse como parte de la pieza circundante de cinturón (22) .
Los componentes restantes que forman la estructura del exoesqueleto pueden disponerse en ambos lados de este primer elemento soporte o cinturón (21) . El extremo inferior del elemento en T (27) está acoplado al montaje de unión (40), específicamente al extremo superior del montaje de unión (41) , y más específicamente en este ejemplo de realización al extremo superior (42) del montaje de unión superior (41) a través de una articulación artificial, específicamente una doble bisagra (53) con pasadores (54) .
Esta doble bisagra está construida, preferentemente, de modo que limite, de modo regulable, el rango de giro en cada uno de los sentidos de cada uno de sus dos ejes.
Los montajes de unión superiores (41) pueden tener una longitud aproximada a la longitud del fémur de un hombre medio y preferiblemente puede disponer de medios que permiten modificar su longitud para proporcionar un ajuste óptimo, usando para este fin un mecanismo de regulación de longitud o MRL (60) acoplado a la articulación artificial, en este caso una doble bisagra (53) preferiblemente de rango limitado.
El MRL (60) , tal como se muestra en las figuras 9 a 13, se usa para regular la longitud del montaje de unión superior (41), o también del montaje de unión inferior (44), e incluye un elemento interno de MRL (61) o eje, con sección hexagonal, acoplado al extremo superior del montaje de unión superior
(42) y un elemento externo de MRL (62) o cubo, también con sección hexagonal, acoplado a la articulación artificial o doble bisagra (53) sujeta al elemento en T (27) . El elemento interno de MRL (61) tiene orificios (63) o similares en superficies orientadas hacia el exterior y el elemento externo
(62) tiene al menos una esfera (64), preferiblemente dos, en su extremo inferior. Este elemento externo (62) también tiene un dispositivo de presión (65) en su interior para empujar la(s) esfera (s) (64) que se mantiene (n) en su sitio mediante una funda (66) del elemento externo de MRL. Cuando se introduce la esfera (64) en un orificio (63) del elemento interno (61) y no se empuja el dispositivo de presión (65), se fija el acoplamiento entre el cinturón (21) , a través del elemento en T (27) y la articulación artificial de doble bisagra (53) , y el montaje de unión superior (41) . Con el fin de modificar la longitud del montaje de unión (41) y, por tanto, la longitud del exoesqueleto, el usuario debe presionar el dispositivo de presión (65) para desbloquear la esfera (64) del orificio (63) y permitir que el elemento interno (61) se mueva a lo largo del elemento externo (62) . El movimiento puede detenerse cuando se sitúa la esfera (64) en el orificio
(63) deseado del elemento interno (61) cuando se ha alcanzando la longitud deseada por el usuario. También puede usarse este
MRL para desacoplar el montaje de unión superior (41) del conjunto formado por el cinturón (21) , el elemento en T (27) y la articulación artificial de doble bisagra (53) .
El exosesqueleto también puede tener sistemas (60) de acoplamiento, que son los mismos que el MRL o mecanismo de regulación de longitud, tal como se ilustra en las figuras 9 a 13, que permiten la conexión y desconexión entre dos elementos o componentes del dispositivo con el fin de ayudar al montaje o desmontaje del exoesqueleto, asi como su uso o disposición sobre el esquiador o usuario del mismo. El número de sistemas (60) de acoplamiento asi como las características de cada uno de ellos puede variar, pudiendo situarse los sistemas (60) de acoplamiento en cualquier punto a lo largo de la cadena de transmisión que conforma el exoesqueleto con el fin de facilitar quitarse o librarse del exoesqueleto. Los sistemas (60) de acoplamiento se encuentran preferiblemente situados en el montaje (44) de unión inferior, entre el segundo elemento de soporte y la rodilla, ya que asi se puede desconectar el exoesqueleto del segundo elemento soporte, preferiblemente las botas (31) , aunque también los esquís (1) o las fijaciones de las botas al esqui. Los sistemas (60) de acoplamiento son preferiblemente sistemas de acoplamiento rápidos y pueden utilizarse también como medios de extensión del montaje de unión superior o inferior, y por tanto, del exoesqueleto. Como mecanismo (60) de acoplamiento puede utilizarse el MRL que a su vez también permite extender la longitud de los montajes de unión descrito previamente.
Como se muestra en la figura 2, el montaje de unión superior (41) discurre entre la cadera (5) y la rodilla (2) . El acoplamiento entre ambos elementos, pieza de cadera o elemento en T (27) y montaje de unión superior (41), se lleva a cabo como se estableció previamente mediante una articulación artificial, preferiblemente una doble bisagra (53) , y que también puede ser una bisagra (52) o una junta universal o cardan (51) o cualquier otro elemento que tenga características dinámicas similares y permita los movimientos angulares de la pierna en la articulación coxo-femoral como minimo en los dos ejes, transversal y sagital, o dicho de otro modo, permita la flexión, extensión, adducción y abducción, al mismo tiempo que limita, preferentemente de modo regulable por el usuario, los movimientos angulares en los mismos ejes, transversal y sagital, o lo que es lo mismo, la flexión, extensión, abducción y adducción, en valores que pudiesen resultar lesivos. Como se ha mencionado, la articulación artificial situada a la altura de la cadera es, en este modo preferente una doble bisagra de giro limitado (53) .
Una doble bisagra alternativa (53) , mostrada en la figura 2B, tiene sus dos ejes girados 90 grados respecto a la doble bisagra mostrada en la figura 2. El montaje de unión superior (41) , se subdivide a su vez en dos partes, unidas entre si por un mecanismo de embrague primero o superior (600) conectado operativamente al exoesqueleto, y en este caso conectado especificamente a él de forma tal que el extremo inferior de la parte superior (411) del montaje de unión superior (41) se une a un patin deslizador (131) del mecanismo de embrague primero o superior
(600), y el extremo superior de la parte inferior (412) del montaje de unión superior (41) , se une al cuerpo (132) del primer mecanismo de embrague (600) que soporta un carril (133) por el que desliza el patin (131) , que incorpora una caja (151) con los componentes del mecanismo de freno (150) .
El montaje de unión superior (41) tiene preferiblemente una cincha (108) que rodea el muslo (4) para mantener el montaje de unión superior (41) cerca del muslo (4) del esquiador.
El montaje de unión superior (41) está unido en su extremo inferior al montaje de unión inferior (44) , preferiblemente a la altura de la rodilla y usando una articulación artificial, tal como una articulación de tipo bisagra (52) que permite la flexión y extensión natural de la rodilla (3) , pero no su torsión.
Como se ha mencionado, el montaje de unión inferior (44) está unido por su extremo superior (45) a la junta tipo bisagra (52) a la altura de la rodilla (2) , mientras que por su extremo inferior queda unido a un mecanismo regulador de la longitud (60) como el anteriormente descrito, permitiendo variar la longitud del montaje de unión inferior (44) asi como desconectar el exoesqueleto del segundo elemento soporte, preferiblemente la bota (31) . Este mecanismo regulador de longitud (60) se encuentra integrado en el montaje de unión inferior (44), que queda dividido por medio de dicho mecanismo regulador de longitud (60) en dos partes: una parte superior del montaje de unión inferior (441) , que se extiende desde la altura de la rodilla hasta el mecanismo regulador de longitud (60), y una parte inferior del montaje de unión inferior (442) , que se extiende desde el mecanismo regulador de longitud (60) hasta el segundo elemento soporte (31) . El mecanismo (60) dispone de una bisagra (52) en su extremo inferior que convierte en articulado el montaje de unión inferior (44), de manera que la parte inferior de montaje de unión inferior (442) se compone de la citada bisagra y una pieza con forma de arco o elemento curvo de derivación (443) que rodea la caña de la bota (31) del esquiador desde la parte lateral exterior de la misma hasta la parte trasera de la misma, y un miembro alargado de conexión (444) . El arco (443) está unido en su parte trasera mediante el elemento vertical alargado de conexión (444) al mecanismo de embrague segundo o inferior (700) que está conectado operativamente, como el primer mecanismo de embrague (600), al exoesqueleto a través de un segundo patín deslizador (161) perteneciente al segundo mecanismo de embrague (700) que conecta el mecanismo de freno segundo o inferior (170) al exoesqueleto. La articulación artificial en forma de bisagra (52) situada en el montaje de unión inferior (44) y que hace al mismo articulado es necesaria para poder absorber los movimientos hacia atrás y hacia delante de la pierna dentro de la bota, de manera que el segundo mecanismo de embrague (700) no se vea arrastrado por el resto del exoesqueleto cuando la pierna se mueva, aislando así los movimientos de la pierna dentro de la bota del exoesqueleto. Al igual que en el primer mecanismo de embrague (600) , este segundo mecanismo de embrague (700) del exoesqueleto, tal como se muestra en las figuras 14 a 20, dispone de un cuerpo (162) que soporta un carril (163) por el que desliza un patin (161) y conecta el segundo mecanismo de freno (170) con el exoesqueleto, más concretamente la caja (171) del mecanismo de freno segundo o inferior (170) que contiene los componentes del segundo mecanismo de freno (170) y por tanto, los componentes principales del mecanismo de embrague segundo o inferior (700) . El mecanismo de embrague segundo o inferior (700) está acoplado a un zueco o base inferior (32) a través del cuerpo (162) y la caja (171), y se unen a la bota (31) a través de su suela. El segundo mecanismo de freno (170) está en contacto con un dispositivo sensor (140) compuesto de elementos que activan el mecanismo de freno (170) .
A continuación se describe el funcionamiento del mecanismo de embrague segundo o inferior (700) empleado en esta forma preferente de realización y que se puede hacer extensivo al mecanismo de embrague primero o superior (600) . El citado patin (161) lleva en su parte inferior una sección de engranaje redondo cónico (164) que engrana con el mecanismo de freno (170) propiamente dicho y situado en el interior de la caja (171) . En concreto, la sección de engranaje redondo cónico o biselado (164) del patin (161) engrana con un piñón o engranaje cónico o biselado (172) correspondiente, situado en dicha caja (171), el cual a su vez es solidario con un primer piñón "grande" (173) que engrana con dos segundos piñones pequeños (174, 175) . El primer piñón grande (173) mueve un rotor o primario (176) . Los segundos piñones pequeños (174, 175) mueven los ejes (177) de casquillos "rueda libre" o secundarios (178, 179) . Estos casquillos "rueda libre" o secundarios están dispuestos para girar, el izquierdo (178) en sentido horario y el derecho (179) en sentido anti-horario, de manera que el movimiento del pie resulta en el deslizamiento del patin sobre el carril que hace que los componentes anteriores se muevan con excepción de uno de los casquillos "rueda libre" (178, 179) , de tal modo que el eje izquierdo, sólo transmite el par al casquillo izquierdo (178) cuando gira en sentido horario y el eje derecho, sólo transmite el par al casquillo derecho (179) cuando gira en sentido anti-horario.
El rotor (176) y los casquillos "rueda libre" (178, 179) están recubiertos preferiblemente de material de fricción tipo ferodo y llevan bandas o estructuras curvadas (181, 182, 183) en torno a ellos cada una de ellas con dos extremos. La banda primaria (181) que rodea el rotor (176) dispone de un extremo izquierdo (181a) y de un extremo derecho (181b) que quedan separados en la zona inferior del rotor (176) , y las bandas secundarias (182, 183) que rodean a los casquillos (178, 179) disponen de un extremo libre exterior (182a, 183b) y un extremo libre interior (182b, 183a) , quedando los extremos de cada casquillo separados en la zona superior del casquillo. Estas bandas (181, 182, 183) están conectadas entre si, de modo que los extremos libres interiores (182b, 183a) de las bandas secundarias (182, 183) que rodean los casquillos (178, 179), presionen a los extremos izquierdo (181a) y derecho (181b) de la banda primaria (181) que rodea el rotor (176) bajo ciertas condiciones.
El mecanismo de freno (170) dispone de un muelle (184) que en este ejemplo mantiene una tensión, cuando el sistema está inactivo, de al menos 100 N en cada extremo de la banda primaria (181) que rodea al rotor o primario (176) . La tensión, asi como todos los parámetros del sistema, se regulará en función de quien emplee la invención y las condiciones de utilización.
A cada lado de la caja (171) se dispone un empujador (141, 142) que actúa, dependiendo del movimiento recibido por el dispositivo sensor (140), bien sobre el extremo de la banda secundaria izquierda (182) del casquillo izquierdo (178) bien sobre el extremo de la banda secundaria derecha (183) del casquillo derecho (179) . Los empujadores (141, 142) actúan cada vez que la bota (31) ejerce presión sobre uno de los sensores, en forma de balancín, (143, 144) del dispositivo sensor (140) , transmitiéndose la presión a través de los sensores (143, 144) directamente hasta el empujador (141, 142) .
El cuerpo (162) del segundo mecanismo de embrague (700) del exoesqueleto, que da soporte a la caja del mecanismo de freno (171) y al carril (163) , se extiende y queda unido al zueco o base inferior (32) donde se introduce la suela de la bota (31) , de manera que la parte trasera del zueco (32) se aloja en la talonera de la fijación del esqui como lo haria el talón de una bota de esqui y por su parte delantera el zueco
(32) se fija a la puntera de la fijación del esqui como lo haria la puntera de una bota. Las dimensiones del zueco (32) son tales que se ajustan a los lados de la suela de la bota (31) por su parte delantera y se va separando progresiva y ligeramente de la misma hasta que exista preferentemente una holgura máxima de aproximadamente 1 mm. por cada lado entre la suela de la bota (31) y el zueco (32), en la parte trasera.
A continuación se describe el funcionamiento del sistema durante su utilización por un esquiador, de manera que en cualquier momento en que sobre el esqui se ejerza una presión en uno de sus extremos contrario al ejercido por la bota (31), por ejemplo, cuando el esqui intenta girar en sentido antihorario y la bota en sentido horario, suceden las siguientes acciones en el mecanismo de embrague inferior (700) :
1) El patin (161) inicia un deslizamiento sobre el carril (163) en sentido contrario al sentido en el que el esqui tiende a girar, es decir, horario. El deslizamiento del patin (161) induce el giro del rotor principal (176) , conectado al patin (161) mediante el piñón cónico (172) y el sector de engranaje cónico (164), en sentido anti-horario. 2) Se producen el giro en sentido horario del eje (177a) del casquillo rueda libre izquierdo (178) y del propio caequillo rueda libre izquierdo (178)
3) El sensor izquierdo con forma de balancín (143) , dado que la bota (31) gira en sentido horario debido a la holgura existente entre la parte posterior de la suela de la bota (31) y la parte posterior del zueco (32) , transmite una presión preferiblemente no mayor de 10 kg al empujador izquierdo (141) , el cual presiona a su vez la banda secundaria izquierda (182) que rodea al casquillo de ese lado, es decir, el casquillo izquierdo (178) . En el presente ejemplo esa presión, ejercida sobre los empujadores (141, 142) , es preferible que no sea mayor de 10 kg, pero es posible regular la misma en función de las características del usuario de la invención asi como de las condiciones de uso de la misma. La presión produce una fuerza de frenado del casquillo del mismo lado, es decir, el izquierdo (178), que es función de la fuerza inicial aplicada por el empujador (141) , el coeficiente de rozamiento del material de fricción del casquillo izquierdo (178), y el ángulo de contacto (en radianes) en que la banda secundaria izquierda (182) rodea al casquillo izquierdo (178) , según la fórmula
Ffinai = Finicial * eμα (1) donde "Ffinal" es la fuerza ejercida sobre el casquillo; "Finiciai" es la fuerza ejercida por el empujador; "μ" es el coeficiente de rozamiento del material de fricción del casquillo; "e" es una constante matemática; y "a" es el ángulo de contacto (en radianes) entre la banda y el material de fricción del casquillo.
4) A su vez, dado que el apoyo del extremo opuesto al extremo donde el empujador izquierdo (141) presiona la banda secundaria (182) que rodea al casquillo izquierdo (178) , la unión de la banda secundaria izquierda (182) con el extremo izquierdo de la banda principal (181) que rodea al rotor principal (176) , y por el modo en que el sistema está construido, aplica toda la fuerza final de frenado generada en el casquillo izquierdo (178) como fuerza inicial en la banda principal (181) del rotor principal (176) induciendo en este una fuerza de frenado mucho mayor de acuerdo con la siguiente fórmula :
W — TP * αμ (αl+ 0(2 ) / Q V z final - H inicial 6 \ ¿ ) donde "Ffinai" es la fuerza ejercida sobre el rotor/ "Finicial" es la fuerza de frenado del casquillo; λΛμ" es el coeficiente de rozamiento del material de fricción del rotor; "e" es una constante matemática; αl es el ángulo de contacto (en radianes) entre la banda y el material de fricción del casquillo; y "α2" es el ángulo de contacto (en radianes) entre la banda y el material de fricción del rotor. 5) De esta manera, cuando el rotor (176) frena provoca que el piñón cónico (172) solidario con este y por tanto el sector de engranaje (164) que forma parte del patin (161) frene también, impidiendo de ese modo que el patin (161) deslice a lo largo del carril (163) , de manera que "acopla" el exoesqueleto a la bota (31) . De esta manera, el par ejercido por el esquí, es transmitido en su mayor parte al primer elemento soporte a través de todos los componentes del exoesqueleto, dado que el mecanismo de embrague primero o superior (600) actúa al mismo tiempo que el mecanismo de embrague segundo o inferior (700) . Es decir, el primer mecanismo de freno (150) actúa al unísono con el segundo mecanismo de freno (170) y el resto de componentes de los mecanismos de embrague.
No obstante, si la bota (31) se mueve en la misma dirección del par ejercido por el esquí, nada en el sistema se opone a tal movimiento, por lo que el esquiador no verá limitados sus movimientos deliberados por el dispositivo. En este caso, y suponiendo que el empujador inactivo es el derecho (142) , este podrá ejercer una presión preferiblemente de un máximo de 100 N (en este modo preferente de realización, esto se consigue utilizando para el balancin (144) del sensor un material y un diseño tales que cuando se sobrepasa la fuerza de 100 N el balancin (144) flexa) sobre el extremo más cercano a él de la banda secundaria (183) que rodea al casquillo derecho (179) . El muelle (184) que mantiene separados los extremos de la banda principal (181) que rodea al rotor o primario (176) separado ejerce preferiblemente una fuerza de 100 N, con lo que evitamos el efecto de frenado indeseado según el cual el rotor (176) tenderla a quitarse la banda (181) , de tal modo que, si no se produce la amplificación de la fuerza de entrada, la banda no toca el rotor y este no actúa.
El mecanismo de "rueda libre" de los casquillos (178, 179) impide cualquier enclavamiento indeseado del sistema, pues por una parte, mantiene al casquillo secundario que no está activado, totalmente desconectado del sistema, y por otra libera al casquillo secundario activo inmediatamente en cuanto el sentido de giro del sistema cambia, con independencia de la fuerza de frenado que esté ejerciendo en ese momento. Es decir, los casquillos son casquillos del tipo rueda libre unidireccional, de tal manera que el casquillo izquierdo solo puede transmitir el par del eje en sentido horario y el casquillo derecho solo puede transmitir el par del eje en sentido anti-horario. Adicionalmente, es conveniente que el dispositivo incorpore mecanismos de seguridad tales que mantengan al esquiador protegido en caso de fallo de los sistemas primarios. En el modo preferente arriba explicado, este mecanismo lo forman los topes del carril que limitan el desplazamiento lateral del patin.
El funcionamiento del mecanismo de embrague primero o superior (600) situado en el montaje de unión superior (41) es idéntico al mecanismo de embrague segundo o inferior (700) anteriormente descrito, estando en este caso el cuerpo principal (132) unido al extremo superior de la parte inferior del montaje de unión superior (412), en lugar de estar unido al zueco (32) , y recibiendo los empuj adores de este primer mecanismo de freno o embrague (150) la presión de los sensores
(140) a través de un mecanismo de direccionamiento o reenvió de presión formado por componentes rígidos (190) y flexibles, ejemplo ejes y cables (191) transmisores de la presión que discurren en el interior de los componentes rígidos o flexibles (190, 191) .
El funcionamiento de ambos mecanismos de embrague (600, 700) puede coordinarse de varias formas, por ejemplo:
Mediante la disposición de un juego de sensores que actúan a la vez sobre los dos mecanismos de embrague, primero y segundo;
Mediante la disposición de dos juegos de sensores, de manera que el primer juego de sensores actúe sobre el primer mecanismo de embrague y el segundo juego de sensores actúe sobre el segundo mecanismo de embrague; y
Mediante la disposición de un juego de sensores 'que actúan sobre los sensores del segundo mecanismo de embrague, mientras el mecanismo de embrague opera a su vez como sensor y actúa sobre el primer mecanismo de embrague.
En un modo preferente de realización, un solo juego de sensores actúa sobre ambos embragues, directamente sobre el segundo y a través de reenvíos sobre el primero.
Con el dispositivo explicado como modo preferente de realización, se consiguen los siguientes objetivos:
El esqui está siempre perfectamente controlado por el esquiador, y
Antes de llegar a una posición que pudiese causar una lesión, los mecanismos de embrague impiden girar a la bota; y
Si la fuerza producida por el esqui pasa de los valores de ajuste de la fijación, esta se soltaría por la acción del exoesqueleto y su apoyo en las zonas fuertes del cuerpo, protegiendo las articulaciones y huesos.
Con el dispositivo anterior, el esquiador sentirá en todo momento un gran control sobre los esquís, precisión en los movimientos que elija efectuar, y lo más importante, la seguridad de que toda la estructura corporal de la cintura hasta los pies, está protegida contra cualquier movimiento que pudiese causar una lesión ósea o articular. A continuación se detalla el funcionamiento de otros mecanismos de embrague alternativos.
Un segundo mecanismo de embrague alternativo (300) como se muestra en las figuras 22 a 25, por ejemplo, es un dispositivo hidráulico tal que, dependiendo del sentido de giro alrededor de su eje vertical en combinación con la aplicación de un determinado estimulo provocado por el sensor activado cuando el esqui "intenta" moverse en una dirección no deseada por el esquiador, genera un par resistente proporcional al estimulo 'que puede llegar a provocar el bloqueo del eje (301) del dispositivo hidráulico (300) que está conectado operativamente al montaje de unión (40) del exoesqueleto. Este bloqueo del eje (301) del dispositivo hidráulico conectado operativamente al montaje de unión (40), el montaje de unión superior (41), el montaje de unión inferior (44), o los dos, fija o acopla el segundo elemento soporte, específicamente la bota (31) , al exoesqueleto para evitar el giro no deseado en un solo sentido, dejando libertad para el movimiento de la bota, en el sentido deseado por el esquiador . El mecanismo hidráulico (300) está compuesto por un cuerpo (302) que queda preferiblemente fijado a la parte posterior de la bota, en cuyo interior hay una cavidad cilindrica (303) con dos aletas de cavidad (304) opuestas diametralmente . Dentro de esta cavidad (303) se aloja un actuador rotativo (306) con dos aletas de actuador simétricas (305) solidarias con un eje (301) que a su vez es solidario con el montaje de unión (40) del exoesqueleto. Estas aletas de actuador o eje simétricas (305) forman un cierre hermético con las paredes (307) de la cavidad cilindrica (303) , del mismo modo que las aletas de cavidad (304) en el cuerpo principal (302) cierran herméticamente contra el eje o actuador (301). De este modo, la cavidad cilindrica (303) queda dividida en cuatro cavidades (308, 309, 310, 311) . Hay dos conductos, un primer conducto (312) y un segundo conducto (313) que atraviesan el actuador rotativo (306) en diagonal, tales que comunican cada una de las cuatro cavidades con su opuesta diagonalmente, es decir, el primer conducto (312) comunica la primera cavidad (308) con la tercera cavidad (310) y el segundo conducto (313) comunica la segunda cavidad (309) con la cuarta cavidad (311) , manteniendo la presión igual en cada pareja de cavidades opuestas diagonalmente.
Existen otros dos conductos de comunicación, un tercer conducto (314) y cuarto conducto (315) , que van a través del cuerpo principal (302) del dispositivo, de modo que el tercer conducto (313) conecta la primera cavidad (308) con la cuarta cavidad (311) y el cuarto conducto (315) conecta la segunda cavidad (309) con la tercera cavidad (310) , es decir, que conectan las cavidades contiguas separadas por las aletas de cavidad (304) . Cada uno de estos dos conductos (314, 315) lleva una válvula anti-retorno (318) . El sentido de la válvula anti-retorno de un conducto es opuesto al sentido de la válvula anti-retorno del otro conducto.
El mecanismo hidráulico (300) dispone asimismo de dos sensores (316, 317) que reciben presión, que puede ser transmitida desde los sensores (140) a través de mecanismos hidráulicos, mecánicos, electrónicos, etc. Estos sensores (316, 317) accionan las válvulas (319) que regulan el paso de fluido en los conductos de comunicación (314, 315) que se encuentran en el cuerpo principal (302) . Todas las cavidades (308, 309, 310, 311) en el cuerpo principal (302) , asi como los conductos de comunicación (312, 313, 314, 315) están llenos de fluido, preferiblemente aceite, especial para mecanismos hidráulicos de alta presión. El dispositivo hidráulico (300) actúa cuando uno de los dos esquís inicie una rotación, apertura, cierre, o cualquier otro movimiento que el esquiador no desea. Cuando esto suceda, el pie del esquiador aplicará presión o accionará de otro modo el sensor del lado opuesto a aquel hacia el que el esqui intenta moverse, lo que a su vez provoca el "embrague" o acoplamiento del mecanismo de control con el montaje de unión
(40) de la estructura de exoesqueleto de modo discriminado, es decir, que la estructura del exoesqueleto se acopla al mecanismo e impide que el pie se mueva acompañando al esqui en la dirección indeseada, pero permite que si se mueva o gire en el sentido que el esquiador quiere girar.
Cuando el pie ejerce una presión en el interior de la bota (31) se genera una fuerza entre el pie y la bota. En algún punto entre el pié y la bota, por ejemplo entre la bota y el botin interior, donde esta presión es recibida, se sitúan los sensores o mecanismos hidráulicos o electrónicos que enviarán la señal al dispositivo (300) que estará unido firmemente a la bota (31) y al exoesqueleto.
Los sensores trabajan por parejas en lados opuestos, de modo alternativo, esto es, nunca se activan al mismo tiempo los sensores de ambos lados de una pareja, sólo uno de ellos puede estar activado en cada momento. Asi, las válvulas antiretorno (318) también trabajan alternativamente, una cada vez. Según sea uno u otro el sensor activado, este activará a su vez una de las válvulas, lo que bloqueará el paso del fluido de modo proporcional a la presión recibida de una cavidad a la otra, ejerciendo un efecto de frenado sobre el montaje de unión (40) en uno de los sentidos de giro, permitiendo el giro en sentido contrario. Este frenado progresivo, llega a bloquear del todo el movimiento del eje (301) dentro del cuerpo principal (302) , lo que hace solidario todo el exoesqueleto con la bota, pero sólo en un sentido, el sentido del giro no deseado por el esquiador, permitiendo por el contrario girar el pie en el sentido que el esquiador quiere.
Asi, el exoesqueleto consigue el efecto de que el esqui, mediante el funcionamiento del dispositivo arriba descrito
(sensor -> actuador -> válvula antirretorno -> fluido -> rotor / cavidad -> exoesqueleto) sigue los movimientos insinuados por el esquiador, ayudándole a vencer la resistencia ejercida por el esqui, mientras que está bloqueado por todo el dispositivo, a efectos de cualquier movimiento no deseado por el esquiador. Este bloqueo de los montajes de unión (40), fija o acopla la bota al exoesqueleto, en el sentido de giro no deseado, dejando libre de moverse la bota, en el sentido deseado por el esquiador.
Asimismo, si los sensores se encuentran entre la bota y la fijación, como ya se ha mencionado, es necesario aislar la presión ejercida por el pie de la presión total ejercida por el pie más el exoesqueleto. En tal caso, una manera de conseguirlo es mediante la inclusión de una conexión hidráulica adicional sin válvula entre cada sensor (hidráulico en este caso) y la cámara del mecanismo hidráulico o embrague. Esta conexión es independiente de la ya explicada que transmite la presión del sensor a la válvula que regula la acción de embrague - desembrague. Su función es restar o neutralizar la presión que el exoesqueleto ejerce sobre el sensor, permitiendo que el mecanismo hidráulico o embrague actúe dirigido por la presión neta ejercida por el pié sobre el sensor. Existen, no obstante, muchas otras formas de resolver este problema no sólo mediante mecanismos hidráulicos si no también mecánicos o electrónicos, por citar sólo algunos . Mediante este segundo mecanismo de embrague alternativo se consiguen objetivos similares que se logran con el primer mecanismo de embrague anteriormente descrito en la forma preferente de realización. Al igual que en el ejemplo anterior, el embrague funcionarla de manera similar si intercambiamos los acoplamientos o las conexiones o extremos del mismo, por ejemplo, el cuerpo principal del mecanismo de embrague, principalmente el mecanismo de freno, se sitúa en el extremo del montaje de unión y el eje en el segundo elemento de soporte, la bota en este caso. También se podría utilizar igualmente en el montaje de unión superior y primer elemento de soporte.
Adicionalmente, es conveniente que el dispositivo incorpore mecanismos de seguridad tales que mantengan al esquiador protegido en caso de fallo de los sistemas del esquí de control primarios. Estos mecanismos de seguridad, que podrían ser mecánicos, hidráulicos, electrónicos, neumáticos, etc., pueden proporcionar protección contra lesiones, aún en el caso de que fallen los sensores, o la conexión entre estos y los actuadores, o los propios actuadores, o incluso el mecanismo de freno del propio mecanismo de embrague. Es decir, se mantiene la protección, en última instancia, aunque fallen todos los eslabones de la cadena, a excepción de los propios elementos fuertes, como ejes y el propio exoesqueleto.
Por ejemplo, en la primera forma preferente de realización en el caso de que falle algún mecanismo de embrague, o incluso ambos, los componentes del mismo, específicamente el patín y el carril, todavía pueden funcionar como mecanismos de limitación de ángulo, de modo que evitarán un mayor giro que el establecido por el usuario antes de empezar a usar el dispositivo de seguridad y control.
Un tercer tipo de mecanismo de embrague (400) se muestra en las figuras 26 y 27 y está diseñado para situarse en el extremo inferior del montaje de unión (46) . A diferencia de los anteriores, este mecanismo de embrague se introduce en un alojamiento (407) dispuesto bajo la bota y solidario a la suela de esta, realizándose la conexión entre el dispositivo o exoesqueleto y el acoplamiento a la bota en la parte posterior (408) del alojamiento (407) y por tanto de la bota, en concreto en el talón. El montaje de unión (40) o el montaje de unión inferior (44) es el que llega hasta el alojamiento (407) y se conecta con el mecanismo de embrague (400) incluido en el alojamiento (407), transmitiendo el par cuando el mecanismo de embrague (400) entre en funcionamiento.
Este mecanismo de embrague (400) está compuesto, preferiblemente por: al menos dos "sensores" o pulsadores (403, 404) , situados a ambos lados de cada bota de esqui que proporcionan al mecanismo (400) la información de sentido de giro requerida por el esquiador; y - un sistema que, según la posición del pie y su resistencia, deriva más o menos par a la estructura formada por el exoesqueleto, las zonas fuertes de la pierna y la cintura a través de un mecanismo
(400) que actúa como un embrague eficaz acoplando o desacoplando el extremo inferior del montaje de unión (46) a o desde el mecanismo (400) que está acoplado a la bota (31) a través de la parte trasera (408) del alojamiento (407) .
Los sensores (403, 404) serán activados por el esquiador cuando esquié de una forma natural, de modo tal que, si el esquiador quiere mover su pierna en un sentido, accionará uno de estos sensores (403, 404) automáticamente, mediante la fuerza que realiza de manera natural para mover su pierna. Del mismo modo, si un esqui inicia un movimiento no deseado por el esquiador, el sensor correspondiente activará el mecanismo.
Este mecanismo de embrague (400) alternativo incluye un tren de engranajes (402) y un sistema de frenado/bloqueo (401) alternativo, uno de cuyos extremos se conecta a través de la parte trasera (408) del alojamiento (407) al extremo inferior del montaje de unión (46) solidario con el exoesqueleto y el otro embraga o desembraga de modo discriminado según la información recibida por el sensor (403, 404) , que en este caso concreto incluye un pulsador (403, 404) en cada lado del alojamiento del modo explicado anteriormente. La utilización de engranajes (402) reduce el par que se genera en el pie, de modo que hace un frenado más eficaz y más preciso. Los pequeños deslizamientos de la rueda frenante (401) son desmultiplicados por el tren de engranajes (402), lo que minimiza las holguras en la transmisión al exoesqueleto, ganando en precisión.
Si un pulsador (403, 404) recibe la presión del pie, empuja un balancín (405, 406) que actúa sobre la rueda frenante (401) y automáticamente el sistema embraga o acopla la bota con el montaje de unión (40) y por lo tanto con el exoesqueleto, sólo en el sentido de giro no deseado (interpretado por según qué pulsador (403, 404) , izquierdo o derecho, esté activado) haciendo solidario el pie con toda la estructura de soporte (exoesqueleto, zonas fuertes de la pierna, cintura) , en ese sentido no deseado, pero permitiendo toral libertad a cualquier giro en el sentido que el pie desee .
La bota (31) y el alojamiento (407) del mecanismo (400) quedan unidos mediante cualquier mecanismo de sujeción adecuado, como por ejemplo, un sistema de tornillo y tuerca, de manera que se solidariza el alojamiento (407) a la parte inferior de la bota (31) . La unión con la fijación en los esquís se realiza a través del alojamiento (407) y no de la bota. En funcionamiento, cada pulsador o sensor (403, 404), situado en la parte exterior delantera del alojamiento (407) , entre el alojamiento (407) y la fijación, actúa sobre un balancín (405, 406) , de manera que el balancín (405, 406) entra en contacto con la rueda frenante (401) que engrana con la primera rueda del tren de engranajes (402) , (pudiendo el contacto ser estriado, feródico o dentado) , lo que provoca el frenado únicamente en uno de los sentidos, y amplificando la resistencia hasta la última rueda dentada.
Mediante las fuerzas que crea el esquiador al moverse sobre los pulsadores (403, 404) , se acciona el mecanismo que actúa sobre la última rueda una vez hecha la desmultiplicación, logrando asi bloquear el sistema bien en un sentido o en otro dependiendo de que pulsador (403, 404) se haya activado, consiguiendo hacer solidarios de modo discriminado según ya hemos explicado bota (31) y exoesqueleto al frenar esta última rueda a voluntad.
Es posible que el sistema de embrague (400) se integre con o forme un todo con la bota (31) , de manera que la bota de esquí incluya el mecanismo de embrague (400) solidario con la misma.
Asimismo, los mecanismos de embrague, al igual que los sensores y las transmisiones, pueden ser otros, además de mecánicos o hidráulicos, como por ejemplo electrónicos, o diferentes combinaciones de componentes electrónicos con mecánicos, hidráulicos, etc.
La utilización de los citados elementos electrónicos, tales como sensores de contacto, presión, movimiento, acelerómetros, medidores de desplazamiento, válvulas de accionamiento electrónico, pequeños ordenadores programables, etcétera, alimentados por una pequeña batería, permite un más fácil control sobre los mecanismos de embrague, más capacidad de ajustes a la vez que simplifican muchos mecanismos al gestionar electrónicamente funciones que de otro modo hay que gestionar mediante mecanismos hidráulicos, neumáticos, etc. Todos los mecanismos anteriores, embrague, sensores y/o transmisión (electrónicos, mecánicos, hidráulicos, etc.) se pueden combinar de diferentes formas para conseguir los mencionados objetivos de la presente invención.
Los mecanismos de embragues (300, 400, 600, 700) descritos pueden combinarse con otros ejemplos de exoesqueleto, además del detallado en la primera forma preferente de realización anteriormente, tal y como se detallan a continuación.
Una segunda construcción preferente de realización (11) , figura 28, de exoesqueleto de seguridad y control para la práctica del esqui de nieve, incorpora un solo mecanismo de embrague (300, 600) situado en el montaje de unión superior
(41) o un solo mecanismo de embrague (300, 400, 700) en el montaje de unión inferior (44), siendo su funcionamiento similar al descrito en la primera forma preferente de realización pero únicamente limitado a un mecanismo de embrague (600, 700, 300, 400) . El mecanismo de embrague (300, 400, 600, 700) estará debidamente conectado con el correspondiente dispositivo sensor (140) . En esta segunda forma preferida de realización de exoesqueleto, y como dispositivo de acoplamiento entre el montaje de unión superior (41) y el montaje de unión inferior (44) , se utiliza una junta artificial a la altura de la rodilla, en concreto una bisagra (52) en combinación con una junta artificial de transmisión del par (51) que permite la transmisión del movimiento de rotación independientemente del ángulo formado por los elementos que conecta, es decir, el montaje de unión superior (41) y el montaje de unión inferior (44) . Esta última junta artificial (51) puede ser, por ejemplo, una junta cardan o universal o cualquier junta artificial con las características deseadas .
Esta segunda forma de realización de exoesqueleto (11) dispone de sus componentes básicos adaptados al tipo de mecanismo de embrague, disponiendo los componentes del exoesqueleto tales como primer elemento soporte (21) y segundo elemento soporte (31) de características comunes o similares a las descritas anteriormente para la primera forma de realización (10) , y de juntas artificiales o uniones entre los distintos componentes debidamente adaptadas. Por ejemplo, el acoplamiento entre el montaje de unión superior (41) y el primer elemento soporte (21) se puede realizar mediante cualquier mecanismo de transmisión de par (51) o junta artificial que pueda trasmitir el par entre dos elementos del exoesqueleto permitiendo desalineamientos angulares entre ellos. En consecuencia, puede transmitirse el par entre esos dos elementos, permitiendo la transmisión con independencia de la alineación angular entre el eje de ambos elementos, como seria el caso, por ejemplo, de una junta universal o cardan (51) . Pero como se ha dicho, se diferencia este segundo modo preferente de realización (11) del primero (10), en que en lugar de utilizar dos embragues y una articulación de rodilla tipo bisagra, este segundo modo de realización, puede funcionar con un solo embrague (300, 400, 600, 700), gracias a la incorporación en su articulación artificial de rodilla, de un mecanismo de transmisión de par que permite la transmisión de par entre el eje de dos montajes de unión conectados por el mecanismo de transmisión, con independencia del alineamiento angular entre los dos ejes usando, por ejemplo un tren de juntas cardánicas, una junta flexible, un cable que transmita la rotación como los de los cuenta kilómetros, o un mecanismo de transmisión de par (500) combinado con un mecanismo de embrague como se detalla a continuación en las figuras 51 a 54. Este mecanismo de transmisión de par (500) trabaja en combinación con un mecanismo de embrague accionado por sensores y cuya reacción es transmitida hasta el mecanismo de transmisión de par a través de un cable sobre el que actúa directamente el embrague (520) . El embrague (520) puede emplazarse en el montaje de unión superior o en el montaje de unión inferior.
El mecanismo de transmisión de par (500) con mecanismo de embrague (520) integrado en el montaje de unión inferior (44), está compuesto por un carril curvo inferior (502) situado por debajo de la rodilla y rodeando parte de la pierna y otro carril curvo superior (501) situado por encima de la rodilla y rodeando parte de la pierna, es decir, un carril curvo inferior (502) unido al extremo superior (45) del montaje de unión inferior (44) y otro carril curvo superior (501) unido al extremo inferior (43) del montaje de unión superior (41) .
En ambos carriles (501, 502) se alojan sendos patines (503, 504) que pueden desplazarse a lo largo de los carriles (501, 502) , y un cable que recorre todo el mecanismo (505) y disponiendo de poleas (506) . El cable (505) se dispone de tal modo que un patin (503, 504) sólo puede desplazarse a través de su correspondiente carril (501, 502) en un sentido, si el otro patin (503, 504) se desplaza en sentido contrario.
Los patines (503, 504) se encuentran unidos por un elemento rígido articulado (507) que se flexiona al flexionarse la rodilla. El cable (505) conecta un patin (503) con el otro (504) a través de los extremos de los carriles curvos (501, 502) de la manera siguiente con referencia a la figura 51: El extremo del cable (505) va unido al extremo derecho
(503a) del carril superior (501) , pasando al patin superior (503) pasando a través del mismo, para posteriormente llegar al patin inferior (504) a través del elemento rígido articulado (507) . El cable (505) pasa a través del patin inferior (504) y sale por su lado derecho (504a) hacia el extremo derecho (502a) del carril inferior (502) que rodea, volviendo al centro del carril inferior (502) antes de llegar al freno del mecanismo de embrague (520) y posteriormente realizar el recorrido inverso, es decir, extremo izquierdo del carril inferior (502b) , extremo izquierdo del patin inferior (504b) , paso hacia arriba atravesando el elemento rigido articulado de unión (507) de ambos patines (503, 504), salida por el extremo izquierdo del patin superior (503b) , finalizando en el extremo izquierdo del carril superior (501b) . Al activar el mecanismo de embrague (520) a través del dispositivo sensor (140) , impidiendo de ese modo el movimiento del cable, los dos carriles (501, 502) mantendrán sus posiciones angulares relativas, esto es, no existirá giro relativo entre ellos, lo que significa que no se dará una torsión relativa entre el primer elemento soporte y el segundo elemento soporte, con independencia de las posiciones relativas de los carriles (501, 502) y patines (503, 504), o dicho de otro modo, con independencia de la torsión voluntaria de la rodilla.
Sin embargo, si el mecanismo de embrague (520) está desactivado, las posiciones angulares relativas de los carriles pueden variar libremente, esto es, puede haber torsión relativa entre el primer elemento soporte y el segundo elemento soporte.
Para los giros del cable a lo largo del mecanismo se emplean poleas (506) , pero pueden usarse otros elementos tales como tubos guia, cojinetes, etc., y los componentes pueden ser flexibles o rigidos dependiendo del lugar en el que se sitúen en el mecanismo.
Asimismo, es posible invertir el mecanismo y hacer que los patines sean móviles y los carriles fijos.
Una tercera forma preferente de realización (12) de exoesqueleto según la presente invención y mostrado en la figura 29 emplea un único montaje de unión al eliminar la conexión o junta artificial del montaje de unión superior (41) y el montaje de unión inferior (44) a la altura de la rodilla
(2), siendo el montaje de unión (40) preferiblemente extensible, y estando situado entre el primer elemento soporte (21) situado, preferiblemente como un cinturón rígido, en la cintura o caderas (5) y el segundo elemento soporte situado en la bota (31), fijación o esqui.
Este exoesqueleto también incorpora, al igual que el exoesqueleto descrito anteriormente, al menos una junta artificial tal que transmite el par entre los respectivos ejes de torsión de los elementos conectados por ella, permitiendo dicha transmisión del par con independencia del alineamiento angular entre los respectivos ejes de torsión, estando situada en el montaje de unión (40) entre los dos elementos soporte (21, 31) . Además incorpora una junta de transmisión de par (51) entre el dispositivo sensor (140) y el mecanismo de embrague (700, 300, 400) situado en el montaje de unión inferior (46) del montaje de unión (40) . Este sistema se extiende o retrae automáticamente siguiendo los movimientos de extensión- flexión de la pierna del esquiador.
Una cuarta construcción preferida (13) de exoesqueleto según la presente invención mostrada en la figura 30 es similar a la descrita en primer lugar. Emplea un primer elemento soporte, preferiblemente un cinturón (21) , situado a la altura de la cadera o cintura (5) , y que en sus lados, y para su unión con el montaje de unión superior (41) dispone de una primera junta artificial, por ejemplo una junta de doble bisagra (53) , o una junta universal o elástica (51) . En el extremo inferior (43) del dicho de unión superior, a la altura de la rodilla (2) del esquiador o usuario, y como nexo de unión al montaje de unión inferior, (44) se emplea un mecanismo de limitación de ángulo, mostrado en las figuras 31 a 36, estando localizado el mecanismo a la altura de la rodilla (200) y sensible al ángulo con respecto a la flexión de la misma, de manera que permite una mayor o menor libertad de giro del montaje de unión superior (41) en función de lo flexionada que se encuentre la rodilla (2) . Si la misma se encuentra totalmente flexionada el montaje de unión superior (41) tiene total libertad para girar dentro de los limites definidos por el mecanismo de limitación de ángulo (200) , pero si la rodilla se encuentra totalmente extendida, el montaje de unión superior (41) es totalmente solidario al montaje de unión inferior (44), siendo por tanto imposible el giro. Evidentemente entre ambas posiciones limite el mecanismo de limitación sensible al ángulo (200) permite posiciones intermedias de acoplamiento progresivo. El objetivo de este mecanismo de limitación de ángulo sensible (200) es permitir la rotación del fémur en la cadera con la rodilla flexionada, permitiendo el movimiento de péndulo con la rodilla flexionada. Con la pierna extendida la libertad o no de giro se gestiona con el embrague.
Como se ve en las figuras 31 a 36, el mecanismo de limitación de ángulo sensible (200) dispone de un eje (202) recto acoplado o que forma parte del montaje de unión superior (41) con la misma anchura a lo largo de toda su extensión, que está alojado en un cubo o cilindro (201) con una cavidad interna (207) con una forma cónica decreciente.
Específicamente, la cavidad (207) del cubo (201) tiene cuatro nervaduras o nervios (208) que son paralelos a su sección decreciente y el eje (202) introducido en el cubo
(201) tiene dos salientes (209) opuestos al final del eje
(202) , de modo que, cuando se introduce el eje (202) en la cavidad (207) cada uno de los salientes (209) permanece entre dos nervios (208) de la cavidad (207) . Cuanto más profundo esté el eje en la cavidad, más se limita su capacidad de giro, llegando al bloqueo total cuando está totalmente alojado y quedando completamente libre (dentro de los limites regulados por el usuario) cuando está fuera de la cavidad (207) .
Con referencia a las figuras 33 y 34, cuando la rodilla no se encuentra flexionada, el extremo superior (45) del montaje de unión inferior (44) empuja un saliente de cubo
(205) situado sobre la superficie inferior externa del cubo
(201) y debido a la acción de un muelle (204) que empuja los salientes (209) del eje (202) permanece cerca del fondo de la cavidad (207) en el cubo (201) . En esta posición, la trayectoria que los salientes (209) pueden desplazar entre dos nervios (208) es nula como se muestra en la figura 33.
Por otro lado, con referencia a las- figuras 33 y 34, cuando la rodilla se encuentra flexionada, el extremo superior (45) del montaje de unión inferior (44), dotado con un perfil curvo (210) , hace que el saliente de cubo (205) discurra sobre el perfil (210) haciendo que el eje (202) y por tanto, los salientes (209) se muevan hacia arriba dentro de la cavidad
(207) del cubo (201) . En esta posición, la trayectoria entre los nervios (208) de la cavidad (207) es suficiente para permitir el giro de los salientes (209) entre dichos nervios.
En consecuencia, los ángulos de giro dependerán de la cantidad en que esté flexionada la rodilla.
Al igual que en la primera forma de realización de exoesqueleto descrita, la parte inferior de los montajes de unión inferiores se enlazan a cada lado del cuerpo del esquiador preferiblemente con elemento de fijación rápida (60), del tipo anteriormente descrito y que también puede ser utilizado como dispositivo extensor de los montajes de unión, y para la unión a los montajes de unión inferiores (44) al segundo elemento de soporte, por ejemplo las botas de esquí
(31) o la fijación de la bota al esqui o el propio esquí.
Asimismo, en cada una de las botas del esquiador se dispone un mecanismo de embrague (700, 300, 400) del tipo de los anteriormente descritos y elementos sensores (140) que detectan el movimiento del pie.
En una quinta forma preferente de realización (14) de un exoesqueleto según la presente invención y mostrado en la figura 37, en lugar de utilizar un mecanismo de articulación de rodilla (200) sensible al ángulo de flexión de la misma como el descrito previamente, es posible utilizar a la altura de la rodilla una bisagra en combinación con un dispositivo limitador del ángulo de rotación o mecanismo limitador del ángulo (MLA) (70, 80, 90) situado en el montaje de unión superior (41) . El MLA (70, 80, 90) limita la rotación del extremo superior (42) del montaje de unión superior (41) respecto al extremo inferior (43) del montaje de unión superior (41) , alrededor de un eje que pasa a través de los extremos superior e inferior del montaje de unión. En este ejemplo, el mecanismo de embrague (600, 300, 400) se sitúa en el montaje de unión inferior, y preferiblemente conectado al segundo elemento soporte y al extremo inferior (46) del montaje de unión inferior (44) , por ejemplo a través de un mecanismo regulador de longitud o mecanismo de acoplamiento rápido (60) . El montaje de unión superior (41) queda unido al primer elemento soporte a través de una junta, por ejemplo una junta de doble bisagra (53) o una junta universal (51) entre otros .
La limitación del ángulo anterior puede realizarse usando diferentes mecanismos. Es posible incluir en cualquier punto a lo largo del montaje (41) de unión superior, entre el primer elemento soporte rígido y la rodilla (2), un mecanismo de limitación de ángulo o de limitación de giro, (MLA) , (70, 80, 90) en un eje paralelo al eje longitudinal del fémur permitiendo el giro dentro de los limites preferentemente definidos por el usuario alrededor de dicho eje longitudinal paralelo al fémur. Este MLA limita el giro o torsión relativa del extremo superior (42) del montaje de unión superior (41) y el extremo inferior (46) del montaje de unión superior (41) alrededor de un eje que pasa a través del extremo superior (42) y el extremo inferior (46) del montaje de unión superior (40) .
Un ejemplo de una forma preferente de realización de un MLA (80) mostrado en las figuras 39 y 40 incluye un elemento externo o cubo (81) y un elemento interno o eje (84) que giran uno con respecto al otro en un rango limitado alrededor del eje longitudinal del montaje de unión superior (41). El elemento interno o eje (84) tiene un elemento giratorio elevado (85) en su superficie y el elemento externo o cubo (81) tiene una superficie interna (83) con una ranura o trayectoria de guiado (82) en la misma. La trayectoria de guiado tiene forma de riñon. Cuando se introduce el elemento interno (84) o eje en el elemento externo (81) o cubo, el elemento giratorio elevado (85) únicamente se puede mover en la trayectoria de guiado (82) de la superficie interna (83) del elemento externo (81) o cubo. Por tanto, se limita el giro mediante la longitud de la trayectoria de guiado (82) . Puede ajustarse la longitud de la trayectoria de guiado (82) y, por tanto, el giro de un elemento (81, 84) con respecto al otro, si se introducen elementos como chavetas (87) o clavijas en los orificios (86) practicados en la superficie de la trayectoria de guiado (82) .
Se ilustra un segundo ejemplo de una forma preferente de realización para un MLA (70) en las figuras 41 y 42. El MLA (70) tiene un sistema de eje (72) y cubo (71) en el que el cubo (71) tiene una ranura, hendidura o ventana (73) en su superficie que es perpendicular al eje longitudinal de giro y el eje (72) que es concéntrico con el cubo (71), incluye un tetón (74) perpendicular al eje longitudinal de giro. El eje (72) se introduce en el cubo (71) y el tetón (74) en la ranura (73) de manera que el giro del eje (72) con respecto del cubo (71) se ve limitado asi por la longitud de la ranura (73) , específicamente cuando el tetón (74) hace tope contra uno de los dos extremos de la ranura (73) . El MLA puede estar situado a lo largo del montaje de unión superior (41) , y, por tanto, el mismo queda dividido en dos partes de modo que una parte conecta con el eje (72) del MLA y la otra con el cubo (71) del MLA.
Aún otra forma preferente de realización alternativa para un MLA (90), tal como se ilustra en las figuras 43 a 47, incluye al menos dos placas curvadas parcialmente (91, 92) que están superpuestas entre ellas. Cada placa curvada tiene dos carriles (93, 94) en su borde inferior y una ranura (96) en su borde superior, y ambos carriles (93, 94) están separados entre ellos por un hueco o espacio (95) . Los carriles (93, 94) separados de la primera placa curvada (91) se introducen en la ranura (96) de la segunda placa curvada (92) , permitiendo asi un movimiento giratorio de una placa con respecto a la otra. Con el fin de limitar el movimiento giratorio, puede introducirse una clavija de tope (97) en un orificio (98) que atraviesa la ranura (96) de la segunda placa curvada, de modo que la primera placa curvada sólo puede moverse en la longitud del hueco (95) existente entre los carriles (93, 94) de la primera placa curvada. Las realizaciones de MLA anteriores pueden situarse en cualquier lugar a lo largo del montaje de unión superior (41), entre la cadera (5) y la rodilla (2), quedando dividido de esa manera el montaje de unión superior en dos partes de modo que una parte del montaje de unión superior (41) se enlaza con una parte del MLA (71, 80, 91) y la otra parte del montaje de unión superior con el elemento inferior (72, 84, 92) del MLA.
En otra forma de realización (15) del exoesqueleto según la presente invención e ilustrada esquemáticamente en la figura 29, el primer elemento soporte situado a la altura de la cadera (5) del esquiador (3) se sustituye por un elemento soporte (29) situado en el muslo (4) , para una cualquiera o en ambas piernas del esquiador (3) . En esta construcción, el primer elemento soporte (29) puede sujetarse al mismo mediante una abrazadera (29) y la articulación en la rodilla es una bisagra (52) con una junta de transmisión del par (51) . El mecanismo de embrague (170) está dispuesto en el montaje de unión inferior (46) como en el último ejemplo que incluia un mecanismo de limitación del ángulo de giro en el montaje de unión superior (41) . También es posible usar un mecanismo que limite el giro a la altura de la rodilla como se describió anteriormente, que dependiendo de la inclinación del montaje de unión superior con relación al montaje de unión inferior, limita el giro o la rotación del primer elemento soporte con relación al segundo elemento soporte.
Las formas de realización descritas previamente conforman una protección a modo de exoesqueleto sujeto al individuo en la cadera, piernas y pies, evitando en particular las lesiones en las rodillas, y en general cualquier lesión ósea, del modo ya descrito; también permite el control de los esquís, contribuyendo por tanto a la seguridad de tal actividad.
En general, y aplicable a todas las formas preferentes de realización, los montajes de unión superior e inferior (41, 44) pueden fijarse a diferentes partes de la pierna mediante abrazaderas mixtas (108) situadas a lo largo de ambos montajes de unión (41, 44). Estas abrazaderas (108) están formadas preferiblemente por una parte rígida y una parte blanda, como una cinturón, usada para fijar la parte rigida a la pierna. Los montajes de unión superior e inferior (41, 44) pueden sustituirse por elementos ergonómicos, es decir elementos que se adaptan al cuerpo del usuario.
Es posible usar elementos anatómicos ergonómicos independientes de los montajes de unión, tales como placas compuestas por material rígido y ligero situadas entre la pierna y los montajes de unión, para proteger o aislar la pierna del movimiento de los mismos, haciendo más cómodo el uso del exoesqueleto . Lo anterior es particularmente útil cuando el exoesqueleto se introduce o inserta en un pantalón de esqui, o una funda compuesta por un material flexible y junto al acolchado en las zonas donde se produce roce con el cuerpo, y el dispositivo no será ni visible ni incómodo durante la práctica del esquí.
Tal como se mencionó previamente en la primera realización, es posible sustituir el montaje de unión superior (41) y el montaje de unión inferior (44) de cualquiera de las diferentes formas preferentes de realización por elementos extensibles o uniones con el fin de adaptarlos así a las medidas específicas de cada usuario, excepto en el caso descrito de un solo montaje de unión extensible que se ajusta automáticamente (100) . La adaptación a las medidas específicas del esquiador o usuario puede realizarse mediante el MRL (60) descrito previamente.
Otra forma de conseguir la extensión del montaje de unión (40) o de los montajes de unión superior e inferior (41, 42) , es mediante un elemento telescópico, es decir, los anteriores pueden estar formados por dos elementos, una cubierta externa (104) y una guia interna (103), que deslizan uno respecto del otro longitudinalmente, tal como se ilustra en la figura 40. Preferiblemente, la guia (103) tiene una sección circular que define salientes (106) y ranuras (105) longitudinales dentro de la cubierta (104) que tiene una sección complementaria. Este acoplamiento permite realizar una unión extensible y, por medio de los salientes (106) y las ranuras (105) , trasmitir el par de torsión de una forma óptima entre la guia y la cubierta. También es posible utilizar otras configuraciones que permitan ajustar la unión a las medidas de cada usuario. También es posible utilizar, en lugar de salientes (106) y ranuras (105) , una guia interna con forma hexagonal (197) y una cubierta externa en la unión extensible, tal como se muestra en la figura (41) .
Los distintos componentes del dispositivo de seguridad y control objeto de la presente invención, pueden estar fabricados en distintos materiales, bien sean metálicos, aleaciones o fibras pero deben ser materiales que puedan resistir los esfuerzos a los que el dispositivo se ve sometido.

Claims

REIVINDICACIONES
1. Exoesqueleto para ser llevado por una persona para proporcionarle protección y control de los esquíes durante la práctica del esqui de nieve, caracterizado porque comprende : al menos un primer elemento soporte (20, 21) configurado para acoplar el exoesqueleto al cuerpo de la persona por encima de la rodilla, al menos un segundo elemento soporte (30, 31) configurado para acoplar el exoesqueleto al cuerpo de la persona por debajo de la rodilla, un montaje de unión (40) que comprende un extremo superior (42) y un extremo inferior (46) , el montaje de unión (40) acoplado en el extremo superior (42) al primer elemento soporte y acoplado en el extremo inferior (46) al segundo elemento soporte, extendiéndose el montaje de unión (40) generalmente a lo largo de la pierna cuando la persona lleva el exoesqueleto; - al menos un mecanismo de embrague (300, 400, 600,
700) acoplado operativamente entre dos elementos del exoesqueleto, permitiendo el embrague y desembrague de dichos dos elementos del exoesqueleto; y - al menos un sensor (140) que capta movimiento o presión, o movimiento y presión de alguna parte del cuerpo del esquiador y que transmite una señal correspondiente al mecanismo de embrague (300, 400, 600, 700) .
2. Exoesqueleto según la reivindicación 1, caracterizado porque dicho al menos un sensor (140) está situado entre el pie y el esquí y capta movimiento, o presión, o movimiento y presión, del pie con respecto al esquí y transmite una señal correspondiente al mecanismo de embrague (300, 400, 600, 700) .
3. Exoesqueleto según la reivindicación 1, caracterizado porque comprende además al menos una junta artificial situada entre dos partes del exoesqueleto tal que la junta artificial transmite el par entre las dos partes, permitiendo dicha transmisión del par, con independencia del alineamiento angular entre los respectivos ejes de par de ambas partes.
4. Exoesqueleto según la reivindicación 1, caracterizado porque el montaje de unión comprende un montaje de unión superior (41) con un respectivo extremo superior (42) y un extremo inferior (43), y un montaje de unión inferior (44) con un respectivo extremo superior (45) y un extremo inferior (46) , y en el que, cuando la persona lleva el exoesqueleto, el montaje de unión superior (41) se extiende desde el primer elemento soporte hasta aproximadamente la rodilla de la persona, y el montaje de unión inferior se extiende desde aproximadamente la rodilla de la persona hasta el segundo elemento soporte.
5. Exoesqueleto según la reivindicación 4, caracterizado porque el extremo inferior (43) del montaje de unión superior (41) se enlaza al extremo superior (45) del montaje de unión inferior (44) mediante una junta artificial situada aproximadamente a la altura de la rodilla de la persona, y en el que la junta permite el movimiento de flexión-extensión de la rodilla.
6. Exoesqueleto, según la reivindicación 5, caracterizado porque la junta artificial es una bisagra (52) .
7. Exoesqueleto según la reivindicación 5, caracterizado porque la junta artificial está configurada para transmitir el par entre los respectivos ejes de torsión de ambos montajes de unión, permitiendo dicha transmisión del par con independencia del alineamiento angular entre los respectivos ejes del par de ambos montajes de unión.
8. Exoesqueleto según la reivindicación 7, caracterizado porque la junta artificial incorpora adicionalmente una bisagra (52) .
9. Exoesqueleto según la reivindicación 1, caracterizado porque el primer elemento soporte (21) está configurado para acoplar el exoesqueleto al cuerpo de la persona en la cintura o cadera.
10. Exoesqueleto según la reivindicación 1, caracterizado porque el primer elemento soporte (29) está configurado para acoplar el exoesqueleto al muslo de la persona.
11. Exoesqueleto según la reivindicación 3, caracterizado porque la junta enlaza el primer elemento soporte con el montaje de unión (40) .
12. Exoesqueleto, según la reivindicación 11, caracterizado porque la junta limita el movimiento o giro en los ejes sagital y transversal de la articulación coxo-femoral, es decir, limita la flexión, extensión, abducción y adducción de la pierna a los rangos naturales o no lesivos.
13. Exoesqueleto, según la reivindicación 12 en el que los rangos de giro permitidos por la junta en los ejes sagital y transversal son regulables.
14. Exoesqueleto según la reivindicación 11, caracterizado porque junta es una doble bisagra (53) que permite que el exoesqueleto se doble alrededor de dos ejes diferentes.
15. Exoesqueleto según la reivindicación 1, caracterizado porque el extremo inferior (46) del montaje de unión se enlaza al segundo elemento de soporte a través de un mecanismo de acoplamiento rápido (60) que permite que el usuario conecte y desconecte rápidamente el segundo elemento de soporte a y del montaje de unión.
16. Exoesqueleto según la reivindicación 1, caracterizado porque comprende además uno o más mecanismos de acoplamiento rápido (60) que permiten que el usuario conecte y desconecte rápidamente cualesquiera dos elementos del exoesqueleto entre sí.
17. Exoesqueleto según la reivindicación 4, caracterizado porque el mecanismo de embrague (300, 600) se sitúa en el montaje de unión superior (41) .
18. Exoesqueleto según la reivindicación 17, caracterizado porque el mecanismo de embrague (300, 600) se sitúa entre una parte superior del montaje de unión superior
(411) y una parte inferior del montaje de unión superior (412) , en las que se divide el montaje de unión superior.
19. Exoesqueleto según la reivindicación 4, caracterizado porque el mecanismo de embrague (400, 700) se sitúa en el montaje de unión inferior (44) .
20. Exoesqueleto según la reivindicación 19, caracterizado porque el montaje de unión inferior (44) está articulado en dos partes, disponiendo de una parte superior de montaje de unión inferior (441) y una parte inferior de montaje de unión inferior (442) .
21. Exoesqueleto según la reivindicación 20, caracterizado porque el mecanismo de unión inferior (44) está articulado por una bisagra (52) .
22. Exoesqueleto según la reivindicación 4, caracterizado porque dispone de dos mecanismos de embrague, un mecanismo de embrague (300, 600) en el montaje de unión superior (41) y un mecanismo de embrague (300, 400, 700) en el montaje de unión inferior (44) .
23. Exoesqueleto según reivindicación 1, caracterizado porque el mecanismo de embrague (600, 700) comprende: un patín (161) , un carril (163) que define una trayectoria curva por la que se desliza el patín (161) , siendo los limites ajustables para variar la longitud de la trayectoria curva, disponiendo dicho patín (161) de una sección de engranaje cónico (164) , un rotor (176) que comprende en uno de sus dos lados un primer piñón (172) que engrana con la sección de engranaje cónico (164) del patin (161), y en el lado opuesto comprende dicho rotor (176) un segundo engranaje (173), y un eje izquierdo (177a) que comprende un engranaje izquierdo (174) y un eje derecho (177b) que comprende un engranaje derecho (175) , engranando dicho segundo engranaje (173) del rotor (176) con dicho engranaje izquierdo (174) y dicho engranaje derecho (175), soportando estos dos ejes (177a, 177b) , izquierdo y derecho, a sendos casquillos izquierdo (178) y derecho (179), que giran alrededor de los ejes (Illa, 11Ih) , donde el rotor (176) y los casquillos (178, 179) se encuentran cada uno de ellos rodeados, al menos parcialmente, por respectivas bandas (181, 182, 183) con dos extremos libres cada una, de tal modo que los extremos izquierdo (181a) y derecho (181b) de la banda
(181) del rotor (176) quedan separados en la zona inferior del mismo y los extremos (182a, 182b, 183a,
183b) de las bandas (182, 183) de los casquillos izquierdo (178) y derecho (179) quedan separados en la zona superior de los mismos, disponiendo cada una de las bandas (182, 183) de los casquillos un extremo libre exterior (182a, 183b) y un extremo libre interior (182b,
183a) , de modo que el extremo interior (182b) de la banda (182) del caequillo izquierdo (178) puede estar en contacto con el extremo izquierdo (181a) de la banda
(181) del rotor (176) , y el extremo interior (183a) de la banda (183) del casquillo derecho (179) puede estar en contacto con el extremo derecho (181b) de la banda (181) del rotor (176) , quedando libres los extremos exteriores (182a, 182b) de la bandas (182, 183) que rodean los casquillos izquierdo y derecho (178, 179) .
24. Exoesqueleto según la reivindicación 23, caracterizado porque comprende un muelle (184) entre los dos casquillos, izquierdo (178) y derecho (179) , y que actúa sobre los dos extremos (181a, 181b) de la banda (181) que rodea el rotor (176) , manteniendo dicha banda en tensión.
25. Exoesqueleto según la reivindicación 23, caracterizado porque los casquillos izquierdo (178) y derecho (179) son casquillos del tipo rueda libre unidireccional, de tal manera que el casquillo izquierdo solo puede transmitir el par del eje en sentido horario y el casquillo derecho solo puede transmitir el par del eje en sentido anti-horario.
26. Exoesqueleto, según reivindicación 23, caracterizado porque comprende además empuj adores (141, 142) conectados al sensor (140) y en el que los extremos exteriores (182a, 183b) de las bandas (182, 183) de los casquillos (178, 179) son desplazados por la acción de dichos empujadores (141, 142) .
27. Exoesqueleto, según reivindicación 26, caracterizado porque el sensor (140) comprende al menos un balancín
(144) con dos extremos, tal que recibe en uno de sus dos extremos un movimiento de una bota del usuario que se transmite hasta el empuj ador.
28. Exoesqueleto, según reivindicación 27, caracterizado porque dispone de un zueco (32) conectado al carril
(163) por el que desliza el patin (161) , dicho zueco
(32) configurado para rodear la base o suela de la bota
(31) y encontrándose ajustado a la misma en su parte delantera, disponiendo de holgura en su parte trasera, tal que la parte anterior del zueco o puntera y parte posterior o talonera se ajusta a la fijación del esqui.
29. Exoesqueleto, según reivindicación 28, caracterizado porque el segundo elemento soporte (30) es la bota (31) y el balancín (144) recibe una señal de presión del movimiento de la bota (31) en el zueco (32) acoplado a la fijación del esqui, debido al juego existente entre ambas partes posteriores del zueco (32) y de la suela de la bota (31) .
30. Exoesqueleto según la reivindicación 1, caracterizado porque el mecanismo de embrague (300) comprende un eje
(301) conectado al montaje de unión, dicho eje (301) situado en el interior de un cuerpo (302) que dispone de una cavidad cilindrica (303) con dos aletas de cavidad (304) opuestas diametralmente en cuyo interior se dispone un actuador rotativo (306) solidario al eje
(301) con dos aletas de actuador (305) simétricas solidarias que forman un cierre hermético contra las paredes (307) de la cavidad cilindrica (303) , formando también un cierre hermético las aletas de cavidad (304) situadas en el interior del cuerpo contra el actuador rotativo (306) , quedando dividida asi la cavidad cilindrica (303) en cuatro cavidades (308, 309, 310, 311), de manera que dos cavidades enfrentadas (308, 310) quedan conectadas por un primer conducto (313) y las otras dos cavidades enfrentadas (309, 311) quedan conectadas por un segundo conducto (312) que atraviesan el actuador rotativo (306) en diagonal, manteniendo la misma presión en cavidades opuestas, y las cavidades contiguas (308, 311; 309, 310) separadas por las dos aletas de cavidad (304) opuestas diametralmente quedan conectadas por un tercer (314) y un cuarto (315) conducto que atraviesan el cuerpo, y en el que las cavidades y conductos están llenos de un fluido para la transmisión de fuerza en mecanismos hidráulicos.
31. Exoesqueleto según la reivindicación 30, caracterizado porque el tercer (314) y cuarto conducto (315) presentan válvulas anti-retorno (318) de manera que el sentido anti-retorno de una de las válvulas es opuesto al sentido de la válvula anti-retorno del otro conducto, siendo dichas válvulas activadas por el al menos un sensor (316, 317) .
32. Exoesqueleto según la reivindicación 1, caracterizado porque el mecanismo de embrague (400) comprende un tren de engranajes (402) con un extremo trasero (408) conectado con el montaje de unión (40) del exoesqueleto, y un extremo frontal del tren que comprende una rueda frenante (401) con un engranaje o piñón solidario; y en el que la rueda frenante (401) está configurada para contactar con pulsadores (403, 404) conectados con el sensor, de manera que la actuación de uno de los pulsadores (403, 404) sobre la rueda frenante (401) a través de un balancín (406, 407) provoca que el montaje de unión (40) se solidarice con el tren de engranajes (402) a través del extremo trasero (408) conectado con el extremo inferior (46) del montaje de unión.
33. Exoesqueleto según la reivindicación 32, caracterizado porque el tren de engranajes (402) se encuentra contenido en un alojamiento (407) que a su vez se acopla a una parte inferior del segundo elemento soporte.
34. Exoesqueleto según la reivindicación 4, caracterizado porque comprende además un mecanismo de transmisión de par (500) a la altura de la rodilla y entre el montaje de unión superior (41) y el montaje de unión inferior (44) , comprendiendo dicho mecanismo de transmisión de par un carril (501) superior situado por encima de la rodilla, un carril inferior (502) situado por debajo de la rodilla, un patin superior (503) e inferior (504) en los carriles superior (501) e inferior (502) respectivamente, cada patin (503, 504) con movimiento a lo largo de cada carril respectivo, unidos ambos patines (503, 504) por un elemento rigido-articulado (507) , y un cable (505) que discurre por todo el mecanismo y que atraviesa el mecanismo de. embrague (520) .
35. Exoesqueleto según la reivindicación 34, caracterizado porque el cable (505) se extiende desde el primer extremo (501a) del carril superior, continúa a través del patin superior (503) , luego el elemento rígido articulado (507) , luego el patin inferior (504) , luego hasta el primer extremo del carril inferior (502a) , luego contacta con el mecanismo de embrague (520) , se extiende adicionalmente hasta el segundo extremo (502b) del carril inferior (502) opuesto al primer extremo (502a) , de nuevo a través del patin inferior (504) , luego el elemento rígido articulado (507) , luego el patin superior (503) y termina en el segundo extremo del carril superior (501b) .
36. Exoesqueleto según la reivindicación 5, caracterizado porque comprende al menos un mecanismo de limitación de ángulo (70, 80, 90) que limita la torsión relativa entre el acoplamiento al cuerpo del primer elemento soporte y el acoplamiento a la junta artificial a la altura de la rodilla del extremo inferior de dicho montaje de unión superior, de manera que se evita la torsión relativa fuera de un rango de giro predeterminado al tiempo que permite un giro relativo libre sin limitación dentro del rango de giro predeterminado.
37. Exoesqueleto según la reivindicación 36, caracterizado porque el mecanismo de limitación de ángulo es parte de una junta artificial (200) a la altura de la rodilla, comprendiendo medios para acoplar el montaje de unión superior (41) y el montaje de unión inferior (44) , de manera que cuando la rodilla está extendida el montaje de unión superior es solidario al montaje de unión inferior y cuando la rodilla está totalmente flexionada el montaje de unión superior tiene total libertad para girar respecto del montaje de unión inferior dentro de unos limites establecidos por dicho mecanismo de limitación de ángulo (200) .
38. Exoesqueleto según la reivindicación 37, caracterizado porque el mecanismo de limitación de ángulo (200) en la rodilla tiene un cubo (201) con una cavidad cónica (207) con cuatro nervios (208) en su interior y un eje (202) con dos salientes (209) en un extremo, de modo que dependiendo de la posición de los salientes (209) del eje (202) en la cavidad del cubo (207) el rango de movimiento giratorio de los salientes (209) del eje
(202) respecto de los nervios (208) de la cavidad (207) varia, y por tanto el rango de movimiento giratorio del extremo superior (45) del montaje de unión inferior (44) .
39. Exoesqueleto según la reivindicación 36, caracterizado porque el mecanismo de limitación de ángulo (70) comprende un cubo (71) que comprende una ranura (73) y un eje (72) que gira dentro del cubo y además comprende un tetón (74) , pudiéndose mover el tetón (74) dentro de la ranura de manera que extremos de la ranura limitan la cantidad de giro relativo entre el eje y el cubo.
40. Exoesqueleto, según reivindicación 39, caracterizado porque el mecanismo de limitación de giro (70) comprende elementos ajustables para cambiar el rango de rotación de un elemento respecto del otro, estando los elementos ajustables situados bien en la ranura o en el tetón.
41. Exoesqueleto según la reivindicación 36, caracterizado porque el mecanismo de limitación de ángulo (90) comprende al menos dos placas curvadas parcialmente y superpuestas entre ellas y enlazadas mediante carriles que permiten que las dos placas curvadas deslicen una con respecto a otra.
42. Exoesqueleto según la reivindicación 41, caracterizado porque las placas comprenden topes ajustables que limitan la cantidad en la que deslizan las placas una con respecto a la otra.
43. Exoesqueleto según la reivindicación 36, caracterizado porque el mecanismo de limitación de ángulo (80) comprende un elemento externo (81) que comprende una superficie interna (83) que define una trayectoria de guiado (82) y un elemento interno (84) que comprende un elemento giratorio elevado (85) dispuesto en la trayectoria de guiado de modo que se limita el giro del elemento interno mediante el movimiento del elemento giratorio elevado en la trayectoria de guiado.
44. Exoesqueleto según la reivindicación 43, caracterizado porque el mecanismo de limitación de ángulo (80) comprende al menos un elemento limitante (87) o clavija introducido en al menos un orificio (86) practicado en la superficie de la trayectoria de guiado (82) para ajustar la longitud de la trayectoria de guiado (82) y asi, el giro de un elemento (81, 84) con respecto al otro.
45. Exoesqueleto según la reivindicación 1, caracterizado porque el montaje de unión es extensible dinámicamente de modo que se alarga o encoge.
46. Exoesqueleto según la reivindicación 45, caracterizado porque el montaje de unión comprende elementos telescópicos .
47. Exoesqueleto según la reivindicación 1, caracterizado porque comprende al menos un mecanismo de regulación de longitud (60) a lo largo del montaje de unión que hace extensible el montaje de unión y permite al usuario conectar y desconectar rápidamente las dos partes del exoesqueleto, comprendiendo dicho mecanismo de regulación de longitud un elemento interno (61) que comprende una pluralidad de orificios (63) y un elemento externo (62) que comprende al menos una esfera (64) que puede insertarse selectivamente usando un pulsador en uno de los orificios, de modo que se ajuste la posición relativa del elemento interno y el elemento externo.
48. Exoesqueleto según la reivindicación 1, caracterizado porque comprende al menos un segundo elemento soporte para cada pierna, al menos un montaje de unión para cada pierna, y al menos un mecanismo de embrague para cada pierna.
49. Exoesqueleto según la reivindicación 3, caracterizado porque la junta artificial es una junta elástica.
50. Exoesqueleto según la reivindicación 3, caracterizado porque la junta artificial es una junta universal o cardan.
51. Exoesqueleto según la reivindicación 1, caracterizado porque el segundo elemento soporte es una bota (31) .
52. Exoesqueleto según la reivindicación 1, caracterizado porque el segundo elemento soporte es una fijación del esqui.
53. Exoesqueleto según la reivindicación 1, caracterizado porque el segundo elemento soporte es un esqui.
54. Exoesqueleto según la reivindicación 33, caracterizado porque el rango de giro predeterminado puede ajustarlo la persona que lleva el exoesqueleto.
55. Exoesqueleto según la reivindicación 1, caracterizado porque el primer elemento soporte es rigido.
56. Exoesqueleto según la reivindicación 55, caracterizado porque el primer elemento soporte es un cinturón (21) .
57. Exoesqueleto según la reivindicación 56, caracterizado porque el cinturón (21) comprende dos partes (22, 23) , una parte circundante (22) y una parte frontal (23) , enlazadas entre si para formar un todo rigido mediante conexiones de cinturón (24, 25) que están situadas en los extremos libres de la parte circundante (22) y la parte frontal (23) , de modo que dichas conexiones de cinturón (23, 24) se superponen una encima de la otra para formar un elemento, y se fijan mediante un cierre de cinturón (26) .
58. Exoesqueleto según la reivindicación 1, caracterizado porque el sensor (140) se sitúa entre el segundo elemento soporte (44) y el mecanismo de embrague (300, 400, 700) .
59. Exoesqueleto según la reivindicación 1, caracterizado porque el sensor (140) se sitúa entre la bota (31) del esquiador y el botín de la bota del mismo.
60. Exoesqueleto según la reivindicación 1, caracterizado porque el sensor se sitúa entre la bota (31) del esquiador y la fijación del esquí.
61. Exoesqueleto según la reivindicación 1, caracterizado porque comprende al menos dos sensores, un primer sensor izquierdo (143) que capta los movimientos de un pie hacia el lado izquierdo y un segundo sensor derecho (144) que capta los movimientos de dicho pie hacia el lado derecho.
62. Exoesqueleto según la reivindicación 1, caracterizado porque el sensor es mecánico.
63. Exoesqueleto según la reivindicación 1, caracterizado porque el sensor es eléctrico.
64. Exoesqueleto, según la reivindicación 1, caracterizado porque el sensor es hidráulico.
65. Exoesqueleto, según la reivindicación 2, caracterizado porque se sitúa un mecanismo entre el pie y el exoesqueleto para evitar la acción directa del exoesqueleto sobre el sensor.
66. Exoesqueleto, según la reivindicación 1, caracterizado porque los dos elementos del exoesqueleto se embragan o acoplan por defecto cuando el mecanismo no recibe ninguna acción desde el sensor.
67. Exoesqueleto, según la reivindicación 1, caracterizado porque los dos elementos del exoesqueleto se desembragan o no se acoplan por defecto cuando el mecanismo no recibe ninguna acción desde el sensor.
68. Exoesqueleto, según la reivindicación 1, caracterizado porque el mecanismo de embrague embraga o acopla los dos elementos del exoesqueleto cuando se recibe una acción desde el sensor, generando un elevado par de resistencia sólo en un sentido de giro especifico, dejando libre el sentido contrario.
69. Exoesqueleto, según la reivindicación 1, caracterizado porque el mecanismo de embrague embraga o acopla los dos elementos del exoesqueleto cuando se recibe una acción desde el sensor, generando un elevado par de resistencia en ambos sentidos de giro.
70. Exoesqueleto, según la reivindicación 1, caracterizado porque el mecanismo de embrague es del tipo que hace dicho embrague o desembrague entre ambos elementos del exoesqueleto de manera progresiva.
71. Exoesqueleto, según la reivindicación 1, caracterizado porque el embrague o desembrague de dichos dos elementos del exoesqueleto se basan en una señal procedente del al menos un sensor.
72. Exoesqueleto para ser llevado por una persona para proporcionarle protección y control de los esquís durante la práctica del esqui de nieve, caracterizado porque comprende :
- primer medio de soporte para acoplar el exoesqueleto al cuerpo de la persona por encima de la rodilla;
- segundo medio de soporte para acoplar el exoesqueleto al cuerpo de la persona por debajo de la rodilla;
- un montaje de unión que comprende un extremo superior y un extremo inferior, estando el montaje de unión acoplado en el extremo superior al primer medio de soporte y acoplado en el extremo inferior al segundo medio de soporte, extendiéndose el montaje de unión generalmente a lo largo de la pierna cuando la persona lleva el exoesqueleto; - medios de embrague para embragar y desembragar dos elementos del exoesqueleto; y
- medios sensores para captar movimiento, o presión, o movimiento y presión de un pie del esquiador y para transmitir una señal correspondiente a los medios de embrague .
73. Método para proporcionar protección y control durante la práctica del esqui de nieve, caracterizado porque comprende : - proporcionar un exoesqueleto que comprende un montaje de unión que comprende un extremo superior y un extremo inferior;
- acoplar el extremo superior del montaje de unión por encima de la rodilla; - acoplar el extremo inferior del montaje de unión por debajo de la rodilla;
- captar movimiento, o presión, o movimiento y presión de un pie y transmitir una señal correspondiente; y
- embragar y desembragar dos elementos del exoesqueleto basado en la señal transmitida.
PCT/ES2008/000242 2007-04-23 2008-04-14 Exoesqueleto de seguridad y control para la práctica del esquí de nieve WO2008129096A1 (es)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP08761489A EP2163226A1 (en) 2007-04-23 2008-04-14 Exoskeleton for safety and control while skiing
US12/103,410 US8060945B2 (en) 2007-04-23 2008-04-15 Safety and control exoskeleton for snow skiing
ARP080101664A AR066228A1 (es) 2007-04-23 2008-04-21 Exoesqueleto de seguridad y control para practica del esqui de nieve

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US90791407P 2007-04-23 2007-04-23
US90791307P 2007-04-23 2007-04-23
US60/907,913 2007-04-23
US60/907,914 2007-04-23
US3591808P 2008-03-12 2008-03-12
US3592408P 2008-03-12 2008-03-12
US61/035,924 2008-03-12
US61/035,918 2008-03-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/103,410 Continuation US8060945B2 (en) 2007-04-23 2008-04-15 Safety and control exoskeleton for snow skiing

Publications (1)

Publication Number Publication Date
WO2008129096A1 true WO2008129096A1 (es) 2008-10-30

Family

ID=39875119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2008/000242 WO2008129096A1 (es) 2007-04-23 2008-04-14 Exoesqueleto de seguridad y control para la práctica del esquí de nieve

Country Status (4)

Country Link
US (2) US8060945B2 (es)
EP (1) EP2163226A1 (es)
AR (2) AR066228A1 (es)
WO (1) WO2008129096A1 (es)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2335337A1 (es) * 2009-04-02 2010-03-24 Ikerlan, S.Coop Dispositivo de deteccion de la intencion de movimiento de un usuario, adaptado a un exoesqueleto.
WO2016004855A1 (zh) * 2014-07-07 2016-01-14 罗云 膝关节矫形器
EA031367B1 (ru) * 2016-12-05 2018-12-28 Закрытое Акционерное Общество Научно-Производственный Центр "Огонек" Аппарат ротационно-корригирующий для нижних конечностей
US20210177686A1 (en) * 2019-12-13 2021-06-17 Roam Robotics Inc. Powered device to benefit a wearer during skiing

Families Citing this family (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6966882B2 (en) * 2002-11-25 2005-11-22 Tibion Corporation Active muscle assistance device and method
DE102008024748A1 (de) * 2008-05-20 2009-12-03 Otto Bock Healthcare Gmbh Knieorthese sowie Verfahren zum Steuern einer Knieorthese
US8096965B2 (en) * 2008-10-13 2012-01-17 Argo Medical Technologies Ltd. Locomotion assisting device and method
FR2942587B1 (fr) * 2009-02-27 2012-04-20 Hubert Fievet Chaussure de ski permettant de supporter au moins en partie le poids d'un skieur et ensemble chaussures de ski et skis associe.
US10004937B2 (en) 2009-06-19 2018-06-26 Tau Orthopedics Llc Wearable modular resistance unit
US8986177B2 (en) 2009-06-19 2015-03-24 Tau Orthopedics, Llc Low profile passive exercise garment
US9656117B2 (en) 2009-06-19 2017-05-23 Tau Orthopedics, Llc Wearable resistance garment with power measurement
US9433814B2 (en) * 2009-06-19 2016-09-06 Tau Orthopedics, Llc Toning garment with integrated damper
US10124205B2 (en) * 2016-03-14 2018-11-13 Tau Orthopedics, Llc Toning garment with modular resistance unit docking platforms
EP2556010B1 (en) 2010-04-09 2015-11-25 Lockheed Martin Corporation Portable load lifting system
US9095417B2 (en) * 2011-02-07 2015-08-04 Bioness Neuromodulation Ltd. Adjustable orthosis for electrical stimulation of a limb
US11324621B2 (en) * 2011-03-21 2022-05-10 B-Temia Inc. Supportive belt assembly for lower extremity orthotic devices
US8876123B2 (en) 2011-04-05 2014-11-04 Erik Gawain BRADSHAW Exoskeleton and footwear attachment system
US9655762B2 (en) 2011-06-10 2017-05-23 The Regents Of The University Of California Trunk supporting exoskeleton and method of use
US9022956B2 (en) 2011-06-10 2015-05-05 U.S. Bionics, Inc. Trunk supporting exoskeleton and method of use
US9744066B2 (en) 2011-06-10 2017-08-29 The Regents Of The University Of California Trunk supporting exoskeleton and method of use
US8868217B2 (en) 2011-06-27 2014-10-21 Bioness Neuromodulation Ltd. Electrode for muscle stimulation
US11400010B2 (en) 2011-07-29 2022-08-02 Leonis Medical Corporation Method and system for control and operation of motorized orthotic exoskeleton joints
US10278885B1 (en) 2011-07-29 2019-05-07 Leonis Medical Corporation Method and system for control and operation of motorized orthotic exoskeleton joints
US9545353B2 (en) * 2011-07-29 2017-01-17 Leonis Medical Corporation Methods of operating an exoskeleton for gait assistance and rehabilitation
US8986228B2 (en) * 2011-09-19 2015-03-24 Trimanus Medical, Inc. Method and apparatus for monitoring surgical traction
US20130145530A1 (en) * 2011-12-09 2013-06-13 Manu Mitra Iron man suit
US9095981B2 (en) * 2012-01-11 2015-08-04 Garrett W. Brown Load and torque resistant caliper exoskeleton
EP2827809B1 (en) 2012-03-22 2017-09-06 Ekso Bionics, Inc. Human machine interface for lower extremity orthotics
US9582072B2 (en) 2013-09-17 2017-02-28 Medibotics Llc Motion recognition clothing [TM] with flexible electromagnetic, light, or sonic energy pathways
US9588582B2 (en) 2013-09-17 2017-03-07 Medibotics Llc Motion recognition clothing (TM) with two different sets of tubes spanning a body joint
US10602965B2 (en) 2013-09-17 2020-03-31 Medibotics Wearable deformable conductive sensors for human motion capture including trans-joint pitch, yaw, and roll
US10321873B2 (en) 2013-09-17 2019-06-18 Medibotics Llc Smart clothing for ambulatory human motion capture
US10716510B2 (en) 2013-09-17 2020-07-21 Medibotics Smart clothing with converging/diverging bend or stretch sensors for measuring body motion or configuration
EP2877130B1 (fr) * 2012-07-27 2017-02-22 Proteor Système hydraulique d'ensemble genou-cheville controlé par microprocesseur
WO2014093470A1 (en) * 2012-12-11 2014-06-19 Ekso Bionics, Inc. Reconfigurable exoskeleton
US8894595B2 (en) * 2012-12-28 2014-11-25 Stephen Hennessy Traction hip brace
US9033754B2 (en) * 2013-05-20 2015-05-19 Craig D Gates Releasable binding systems
US20150032040A1 (en) * 2013-07-24 2015-01-29 Gregory Cadichon Garment-Based System, Construction, and Method for Controllably Bracing a Knee
US9333107B2 (en) * 2013-08-15 2016-05-10 Google Inc. Brace system
US10611020B2 (en) 2013-12-19 2020-04-07 Roam Robotics Inc. Pneumatic exomuscle system and method
US9498691B2 (en) 2014-01-17 2016-11-22 Justin Douglas Antoine Training apparatus for athletes and others
FR3016821B1 (fr) * 2014-01-29 2019-08-02 Robotiques 3 Dimensions Exosquelette a port frontal et procede d'utilisation d'un tel exosquelette.
US9867985B2 (en) 2014-03-24 2018-01-16 Bioness Inc. Systems and apparatus for gait modulation and methods of use
WO2015187258A2 (en) 2014-05-02 2015-12-10 Ekso Bionics, Inc. Exoskeleton and method of increasing the flexibility of an exoskeleton joint
WO2015195310A2 (en) * 2014-06-04 2015-12-23 Ekso Bionics, Inc. Exoskeleton and method of increasing the flexibility of an exoskeleton hip joint
US10561568B1 (en) 2014-06-19 2020-02-18 Lockheed Martin Corporation Exoskeleton system providing for a load transfer when a user is standing and kneeling
DE102014009028A1 (de) 2014-06-24 2015-12-24 Otto Bock Healthcare Gmbh Beinorthese und Orthese
US9682277B2 (en) 2014-12-10 2017-06-20 Fit-Novation, Inc. Exercise device
US10561881B2 (en) 2015-03-23 2020-02-18 Tau Orthopedics, Inc. Dynamic proprioception
WO2016154287A1 (en) * 2015-03-23 2016-09-29 Tau Orthopedics, Llc Toning garment with modular resistance unit docking platforms
WO2016160624A1 (en) 2015-03-27 2016-10-06 Other Lab Llc Lower-leg exoskeleton system and method
US10548800B1 (en) 2015-06-18 2020-02-04 Lockheed Martin Corporation Exoskeleton pelvic link having hip joint and inguinal joint
US9782322B2 (en) 2015-07-16 2017-10-10 Honda Motor Co., Ltd. Resistive exoskeleton control design framework
US10518404B2 (en) 2015-07-17 2019-12-31 Lockheed Martin Corporation Variable force exoskeleton hip joint
US10195736B2 (en) 2015-07-17 2019-02-05 Lockheed Martin Corporation Variable force exoskeleton hip joint
JP6571869B2 (ja) * 2015-11-18 2019-09-04 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 体幹支持外骨格
US10046197B2 (en) 2015-11-19 2018-08-14 Fitnovation, Inc. Exercise device
US10912346B1 (en) 2015-11-24 2021-02-09 Lockheed Martin Corporation Exoskeleton boot and lower link
US10124484B1 (en) 2015-12-08 2018-11-13 Lockheed Martin Corporation Load-bearing powered exoskeleton using electromyographic control
EP3402404B1 (en) 2016-01-11 2021-07-21 Bioness Inc. Apparatus for gait modulation
CN105769510B (zh) * 2016-03-26 2017-11-14 北京工业大学 一种基于并联构型的髋关节助力机构
CN109070355A (zh) * 2016-03-30 2018-12-21 国立大学法人香川大学 肌力辅助装置
JP2020506030A (ja) 2017-02-03 2020-02-27 ローム ロボティクス インコーポレイテッド ユーザ意図認識のシステム及び方法
WO2018191710A1 (en) * 2017-04-13 2018-10-18 Other Lab, Llc Leg exoskeleton system and method
WO2019046489A1 (en) 2017-08-29 2019-03-07 Roam Robotics Inc. SYSTEM AND METHOD FOR EVALUATING THE ADJUSTMENT OF AN EXOSQUELET
JP7225215B2 (ja) 2017-08-29 2023-02-20 ローム ロボティクス インコーポレイテッド 半教師あり意図認識システム及び方法
US11207014B2 (en) 2017-08-30 2021-12-28 Lockheed Martin Corporation Automatic sensor selection
US11202954B2 (en) 2017-12-21 2021-12-21 Rawlings Sporting Goods Company, Inc. Hinged leg guard
DE102018103300A1 (de) * 2018-02-14 2019-08-14 Noonee Ag Tragbare Sitzhaltungshilfevorrichtung
US11235458B2 (en) * 2018-08-13 2022-02-01 Boston Dynamics, Inc. Manipulating boxes using a zoned gripper
JP7274846B2 (ja) * 2018-09-28 2023-05-17 Ntn株式会社 リンク作動装置
CN109330754B (zh) * 2018-11-21 2024-02-09 太原中西医结合医院 可调式足部多功能固定器
US11337878B1 (en) 2019-04-10 2022-05-24 Lockheed Martin Corporation Mechanical joint for exoskeleton ankle
FR3096135A1 (fr) * 2019-05-15 2020-11-20 Universite Grenoble Alpes Système et procédé de mesure du couple généré par une articulation
CN110253625B (zh) * 2019-07-11 2020-10-16 北京理工大学 仿人机器人腰关节和仿人机器人
US20210022940A1 (en) * 2019-07-26 2021-01-28 Marshall University Research Corporation Knee extender devices and related methods
US11642857B2 (en) 2020-02-25 2023-05-09 Roam Robotics Inc. Fluidic actuator manufacturing method
USD986422S1 (en) * 2020-03-26 2023-05-16 Ossur Iceland Ehf Orthopedic frame
USD986423S1 (en) * 2020-03-26 2023-05-16 Ossur Iceland Ehf Orthopedic Frame
US11793703B2 (en) * 2020-03-30 2023-10-24 Virginia Tech Intellectual Properties, Inc. Lift-assistance exoskeleton
WO2021242974A1 (en) * 2020-05-27 2021-12-02 Roam Robotics Inc. Fit and suspension systems and methods for a mobile robot
WO2022006384A1 (en) * 2020-07-01 2022-01-06 Georgia Tech Research Corporation Exoskeleton systems and methods of use
DE202021103991U1 (de) 2021-07-27 2022-11-04 Elysium Industries UG (haftungsbeschränkt) Exoskelett
USD1011398S1 (en) 2021-08-13 2024-01-16 Festool Gmbh Wearable robotic exoskeleton
CN114712822B (zh) * 2022-05-19 2023-02-21 沈阳体育学院 基于单板滑雪的重心辅助支撑教具及构造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1549497A (es) * 1967-10-31 1968-12-13
US3928872A (en) * 1974-09-18 1975-12-30 Albert F Johnson Leg support device for skiing
US4136404A (en) * 1977-03-14 1979-01-30 Lange Robert B Athletic leg brace apparatus
ES295785Y (es) * 1984-02-10 1988-05-16 Carsalade Charles Aparato para facilitar la practica del esqui alpino
US20020110793A1 (en) * 1999-07-03 2002-08-15 Owen Eastwood Body weight supports and teaching aid
WO2006113520A2 (en) * 2005-04-13 2006-10-26 The Regents Of The University Of California Semi-powered lower extremity exoskeleton

Family Cites Families (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1007223B (de) 1952-01-29 1957-04-25 Fritz Von Opel Dipl Ing Einrichtung zum Loesen von Skiverbindungen
ES295785A3 (es) 1964-01-18 1964-04-01 Basculas Y Arcas Pibernat Soc Cabezal para basculas de cuadrante
US3614119A (en) 1969-07-03 1971-10-19 John D Wilkes Releasable ski bindings and accessories
US3826509A (en) 1970-07-08 1974-07-30 Gertsch Ag Safety ski binding
CH555189A (fr) 1971-06-03 1974-10-31 Salomon Francois Sa Et Fils Ensemble pour fixer un corps sur un ski.
FR2218913B1 (es) 1973-02-22 1978-01-06 Ver Baubeschlag Gretsch Co
FR2462116A1 (fr) 1979-07-27 1981-02-13 Baumann Peter Chaussure de ski
US4408600A (en) 1980-05-02 1983-10-11 Davis Edward P Leg aid device and method
FR2559394B1 (fr) * 1984-02-10 1986-07-11 Carsalade Charles Appareil pour faciliter la pratique du ski alpin notamment
US4568296A (en) 1984-03-08 1986-02-04 Newell Stanley G Single and multiple plane contoured water ski corrective wedges secured or formed between water ski bindings and water skis
GB2177603B (en) * 1985-07-09 1989-07-19 David Ernest Young Modular lower limb bracing system
FR2589360B1 (fr) 1985-10-30 1987-12-24 Chareire Jean Louis Appareil d'assistance mecanique de la propulsion par les jambes
US4967734A (en) 1987-08-31 1990-11-06 Rennex Brian G Energy-efficient running brace
US5011136A (en) 1988-11-09 1991-04-30 Rennex Brian G Energy-efficient running brace
US5016869A (en) * 1989-07-05 1991-05-21 Applied Motion Human bipedal locomotion device
US5295704A (en) * 1990-12-06 1994-03-22 Flock Thomas P Ski binding with knee flex sensor
GB9108497D0 (en) * 1991-04-20 1991-06-05 Ind Limited W Human/computer interface
US5376139A (en) * 1992-09-21 1994-12-27 Pitkin; Mark R. Artificial foot and ankle
US5362288A (en) 1993-03-26 1994-11-08 Eli Razon Device for assisting running, walking or jumping
US5405408A (en) 1993-05-14 1995-04-11 Pitkin; Mark R. Artificial knee having dual flexion action during locomotion
DE69434390T2 (de) * 1993-07-09 2006-04-27 Kinetecs, Inc. Übungsvorrichtung sowie technik
US5625576A (en) * 1993-10-01 1997-04-29 Massachusetts Institute Of Technology Force reflecting haptic interface
AU6480096A (en) 1995-06-30 1997-02-05 Ross-Hime Designs, Inc. Robotic manipulator
US5961541A (en) 1996-01-02 1999-10-05 Ferrati; Benito Orthopedic apparatus for walking and rehabilitating disabled persons including tetraplegic persons and for facilitating and stimulating the revival of comatose patients through the use of electronic and virtual reality units
GB9808874D0 (en) * 1998-04-27 1998-06-24 Univ Coventry Item of footwear
US6746248B2 (en) 1999-07-03 2004-06-08 Owen Eastwood Body weight supports and teaching aid
ATE345100T1 (de) 1999-07-03 2006-12-15 Owen Eastwood Stützvorrichtung zum abfangen des körpergewichts und trainingshilfe
US6666796B1 (en) * 1999-09-16 2003-12-23 Aerovironment, Inc. Walking assisting apparatus
US7164967B2 (en) * 2000-05-04 2007-01-16 Iguana Robotics, Inc. Biomorphic rhythmic movement controller
US20020094919A1 (en) 2000-07-26 2002-07-18 Rennex Brain G. Energy-efficient running aid
US7153242B2 (en) * 2001-05-24 2006-12-26 Amit Goffer Gait-locomotor apparatus
US7774177B2 (en) 2001-06-29 2010-08-10 Honda Motor Co., Ltd. Exoskeleton controller for a human-exoskeleton system
FR2839916B1 (fr) * 2002-05-22 2004-10-15 Agence Spatiale Europeenne Exosquelette pour bras humain, notamment pour des applications spatiales
US7004494B2 (en) 2002-05-22 2006-02-28 Wulf Elmer B Ski boot and ski boot binding
US6971267B2 (en) 2002-09-23 2005-12-06 Honda Giken Kogyo Kabushiki Kaisha Method and processor for obtaining moments and torques in a biped walking system
US7396337B2 (en) * 2002-11-21 2008-07-08 Massachusetts Institute Of Technology Powered orthotic device
US20050108900A1 (en) 2003-06-19 2005-05-26 Knowles Stephen C. Performance-enhancing footwear that augments human biomechanics of the leg, ankle, and foot
WO2005025464A2 (en) * 2003-09-11 2005-03-24 The Cleveland Clinic Foundation Apparatus for assisting body movement
ITTO20040032U1 (it) 2004-03-10 2004-06-10 Dario Giaretto Dispositivo per la protezione degli arti inferiori durante la pratica di attivita' sportive
US7393335B2 (en) 2004-05-06 2008-07-01 Carvey Matthew R Metabolically efficient leg brace
US7571839B2 (en) * 2004-05-19 2009-08-11 Hrl Laboratories, Llc Passive exoskeleton
CN1325229C (zh) 2004-07-02 2007-07-11 浙江大学 一种可穿戴式的柔性外骨骼机械手
US7445606B2 (en) * 2004-08-11 2008-11-04 Omnitek Partners Llc Methods and devices for selective exercising of muscles
US20060046910A1 (en) * 2004-08-11 2006-03-02 Rastegar Jahangir S Methods and devices for reducing stance energy for rehabilitation and to enhance physical performance
US7645246B2 (en) 2004-08-11 2010-01-12 Omnitek Partners Llc Method for generating power across a joint of the body during a locomotion cycle
US8579771B2 (en) 2004-08-11 2013-11-12 Omnitek Partners Llc Walk-assist devices and methods
US7845017B2 (en) * 2004-08-25 2010-12-07 Travel Caddy, Inc. Knee pad constructions
US7429253B2 (en) * 2004-09-21 2008-09-30 Honda Motor Co., Ltd. Walking assistance system
US7947004B2 (en) * 2005-01-18 2011-05-24 The Regents Of The University Of California Lower extremity exoskeleton
US20070123997A1 (en) 2005-03-31 2007-05-31 Massachusetts Institute Of Technology Exoskeletons for running and walking
US20070061016A1 (en) 2005-08-03 2007-03-15 Regents Of The University Of Michigan Foot prosthetic and methods of use
US7645215B2 (en) * 2005-08-11 2010-01-12 Gordon Joel D Exercise device
US7190141B1 (en) * 2006-01-27 2007-03-13 Villanova University Exoskeletal device for rehabilitation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1549497A (es) * 1967-10-31 1968-12-13
US3928872A (en) * 1974-09-18 1975-12-30 Albert F Johnson Leg support device for skiing
US4136404A (en) * 1977-03-14 1979-01-30 Lange Robert B Athletic leg brace apparatus
ES295785Y (es) * 1984-02-10 1988-05-16 Carsalade Charles Aparato para facilitar la practica del esqui alpino
US20020110793A1 (en) * 1999-07-03 2002-08-15 Owen Eastwood Body weight supports and teaching aid
WO2006113520A2 (en) * 2005-04-13 2006-10-26 The Regents Of The University Of California Semi-powered lower extremity exoskeleton

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2335337A1 (es) * 2009-04-02 2010-03-24 Ikerlan, S.Coop Dispositivo de deteccion de la intencion de movimiento de un usuario, adaptado a un exoesqueleto.
WO2016004855A1 (zh) * 2014-07-07 2016-01-14 罗云 膝关节矫形器
US10765548B2 (en) 2014-07-07 2020-09-08 Yun Luo Knee joint orthosis
EA031367B1 (ru) * 2016-12-05 2018-12-28 Закрытое Акционерное Общество Научно-Производственный Центр "Огонек" Аппарат ротационно-корригирующий для нижних конечностей
US20210177686A1 (en) * 2019-12-13 2021-06-17 Roam Robotics Inc. Powered device to benefit a wearer during skiing

Also Published As

Publication number Publication date
AR066229A1 (es) 2009-08-05
AR066228A1 (es) 2009-08-05
US8171570B2 (en) 2012-05-08
US20080294080A1 (en) 2008-11-27
US8060945B2 (en) 2011-11-22
US20080287850A1 (en) 2008-11-20
EP2163226A1 (en) 2010-03-17

Similar Documents

Publication Publication Date Title
WO2008129096A1 (es) Exoesqueleto de seguridad y control para la práctica del esquí de nieve
US7941873B2 (en) Protective helmet with cervical spine protection and additional brain protection
US7430767B2 (en) Protective helmet with motion restrictor
WO2008129097A1 (es) Exoesqueleto
US7927299B2 (en) Knee brace
EP2613744B1 (en) Hinge for orthopedic devices
US6691434B1 (en) Sports shoe, especially for downhill skiing ski-touring, cross-country skiing, snow-boarding, roller-skating or ice-skating
US20080146981A1 (en) Dynamic body protector
US10765548B2 (en) Knee joint orthosis
KR100848169B1 (ko) 보행 보조기
US8776402B2 (en) Ankle inversion and eversion prevention shoe
US4245629A (en) Knee and elbow joint protector
EP2773300B1 (en) Ankle stabilization/sprain prevention in a shoe
JP2014532495A (ja) スキーブーツと係合可能な膝関節保護用装置
KR101092307B1 (ko) 점탄성부재를 이용한 스마트 스트랩 발목 보조기
US6279159B1 (en) Protection aid for protecting the hands and wrists of sketers
JPH08506747A (ja) 肢プロテクタ
EP4129248B1 (en) Tibial stabilization and protection orthosis
CN110192944A (zh) 一种足踝关节韧带保护具
US20110204597A1 (en) Safety Binding for a Snowboard
ES2631830B2 (es) Sistema de protección integral de la pierna
EP2420211A1 (en) Joint for orthopedic articulations, such as ankle, knee and elbow braces or the like
ES2631853B2 (es) Tobillera-rodillera
US20170216074A1 (en) Multifunctional brace
ES1286389U (es) Aparato para facilitar la práctica deportiva

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08761489

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2008761489

Country of ref document: EP