WO2008128857A2 - Vorrichtung zur erfassung der drehzahl eines rotierbaren teils - Google Patents

Vorrichtung zur erfassung der drehzahl eines rotierbaren teils Download PDF

Info

Publication number
WO2008128857A2
WO2008128857A2 PCT/EP2008/053871 EP2008053871W WO2008128857A2 WO 2008128857 A2 WO2008128857 A2 WO 2008128857A2 EP 2008053871 W EP2008053871 W EP 2008053871W WO 2008128857 A2 WO2008128857 A2 WO 2008128857A2
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
magnetic field
sensor elements
pole
magnetic
Prior art date
Application number
PCT/EP2008/053871
Other languages
English (en)
French (fr)
Other versions
WO2008128857A3 (de
Inventor
Kurt Beck
Steffen Haefelein
Patrick Calandrini
Claus Bischoff
Martin Gerhaeusser
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to EP08735644A priority Critical patent/EP2137498A2/de
Publication of WO2008128857A2 publication Critical patent/WO2008128857A2/de
Publication of WO2008128857A3 publication Critical patent/WO2008128857A3/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/48Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
    • G01P3/481Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals
    • G01P3/487Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals delivered by rotating magnets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields

Definitions

  • the invention relates to a device for detecting the rotational speed of a rotatable member according to the preamble of independent claim 1.
  • Devices for detecting the rotational speed of rotatable parts are used in the motor vehicle industry in various forms, for example as wheel speed sensors, camshaft sensors or crankshaft sensors.
  • the related measurement principles are diverse, with non-contact systems have proven to be robust to high temperatures and contamination and thus particularly advantageous.
  • devices which use magnetic-field-sensitive sensor elements such as, for example, Hall sensor elements, field plate sensors or magnetoresistive sensors such as AMR or GMR sensors are also used for this purpose.
  • the magnetic field-sensitive sensor element is arranged in the vicinity of a rotor which rotates at the rotational speed of that part whose speed is to be detected.
  • magnetically active Polium with alternately arranged North Poles and South Poles are used as rotors, since due to the magnetism of the own Polders the sensor element can be arranged at a greater distance from the rotor, which is more diverse applications allowed.
  • the sensors detect the change in the magnetic flux density or field direction and determine a speed from this.
  • a device for detecting the rotational speed of a rotatable member having the features of the O-term concept of claim 1 is known for example from the journal "Bosch - Yellow Series, technical information, electrical and electronics for motor vehicles, sensors in the motor vehicle", 1st edition, June 2001, ISBN-3-7782-2031-4, page 47.
  • the known device uses a magnetic pole wheel with alternately arranged north poles and south poles and sensor means comprising a Hall sensor element which is driven with a rotational movement of the pole wheel with alternating polarity and generates an electrical signal from which the speed of the rotatable part rotating with the pole wheel.
  • sensors for detecting the speed only a limited number of north and south poles can be arranged on the circumference of the flywheel.
  • the individual poles Since with a very large number of poles, the individual poles are getting smaller, the magnetic field weakens greatly in the radial direction with respect to the axis of rotation of the pole wheel. Therefore, the individual poles must be sized sufficiently large to be able to detect a sufficiently large magnetic field at a distance from the flywheel. Furthermore, it must be considered that at the same speed and an increasing number of circumferentially arranged poles, the frequency of the magnetic field change at the location of the sensor means increases sharply. However, the commonly used Hall sensor elements can not process very high frequencies reliably enough. For this reason, in practice, a minimum distance between the center of a north pole and an adjacent south pole of the pole wheel does not fall below.
  • Differential Hall sensors are also known from the publication cited above, which have two Hall sensor elements arranged at a distance from one another, which are used in combination with a magnetically passive rotor, in particular a gear wheel, as a speed sensor.
  • the distance of the Hall sensors corresponds to half the tooth spacing of the gear.
  • the differential Hall sensors used here as sensor means have a permanent magnet, which is homogenized with a thin ferromagnetic plate, which completely covers one pole of the permanent Magneten and on the surface of two magnetic field sensitive sensors are arranged.
  • the device according to the invention with the characterizing features of independent claim 1 combines the advantages of sensor means having two magnetic field sensitive sensor elements which allow by detecting the magnetic field strength difference at the location of the two sensor elements reliable determination of the speed, with the advantages of a magnetically active pole wheel which allows a magnetic field detection at a greater distance from the pole wheel.
  • the sensor means are therefore arranged with respect to the axis of rotation of the flywheel at a radial distance from the flywheel, which is at least as large that is excluded from contact with the flywheel, and which may be at most so large that the sensor elements still a sufficiently large field strength to capture.
  • the maximum distance of the sensor means from the pole wheel represents a limitation of the design freedom, which is given to the developer.
  • the invention is based on the finding that the course of the field lines of a magnetic pole wheel at the location of the two sensor elements of a sensor means, which operates on the differential measuring principle, is not optimal without further measures. This is due to the fact that on the one hand, the distance of a magnetic north pole center of an adjacent Südpolmitte on the circumference of the pole should not exceed a predetermined by the upper limit of the number of poles minimum distance of typically 10 mm and on the other hand, the two magnetic field sensitive sensor elements are not arranged at an arbitrarily large distance from each other can be.
  • the sensor elements are inexpensively manufactured on a common chip, or on the market available sensor means are used which use two arranged on a common chip, such as a Hall IC chip Hall sensors. Due to the limitation of the chip size to an economically producible maximum dimension and the distance of the two sensor elements is limited. Typical distances of the magnetic field-sensitive sensor elements are therefore in the order of magnitude of 2.5 mm and are significantly smaller than the distance of a Nordpolmitte from an adjacent Südpolmitte the pole wheel.
  • the magnetic field lines in a rotational position of the pole wheel, in which the first sensor elements facing a north pole and the second sensor element faces an adjacent south pole relatively flat. That is, the extending in the radial direction, perpendicular to the sensor surface of the sensor elements oriented and therefore relevant for the evaluation magnetic field component is relatively small, whereas the tangential to the flywheel extending magnetic field component, which is oriented parallel to the sensor surface and is less relevant for the evaluation, relatively large is.
  • the signal evaluated by the sensor means is not optimal, since the tangential field component at the location of the two sensor means is greatest at just that rotational position which should actually deliver the largest signal swing for signal evaluation.
  • the field line profile can advantageously be changed such that the magnetic field component perpendicular to the sensor surface of the two sensor elements is significantly increased in comparison to a sensor means without ferromagnetic flux guide.
  • a sensor means providing two spaced apart magnetic field sensitive sensor elements - A - and a ferromagnetic flux guide, a larger signal than without the ferromagnetic flux guide.
  • the improved signal acquisition has many beneficial effects on degrees of freedom in the application specific design of the device.
  • the sensor means form a differential signal, in particular a differential voltage signal, of the output signals generated by the two sensor elements, wherein the sensor elements are preferably Hall sensor elements.
  • the difference signal formation avoids fluctuations in the distance of the sensor means from the pole wheel leading to signal distortion.
  • the sensor elements each have a sensor surface facing the pole wheel, the magnetic field generated by the pole wheel having at least a first rotational position of the pole wheel perpendicular to the respective sensor surface and extending parallel to the sensor surface magnetic field component and wherein by the ferromagnetic Flow conductor is perpendicular to the respective sensor surface extending magnetic field component is increased at least in the first rotational position.
  • the first sensor element is preferably facing a magnetic north pole and the second sensor element faces an adjacent south magnetic pole of the pole wheel.
  • the sensor means advantageously comprise a sensor body, for example a chip with an integrated circuit, on which the two sensor elements are arranged.
  • the sensor elements are arranged spatially between the pole wheel and the flux guide.
  • the field lines are guided almost vertically through the sensor elements and improves the signal detection.
  • the distance between the rotor and sensor means can be increased, which allows greater freedom in the structural design of the device for detecting the speed.
  • the ferromagnetic flux guide is arranged spatially between the pole wheel and the sensor elements. This advantageously achieves that the direction of the field lines is reversed relative to the sensor elements. As a result, with sensor elements with direction of rotation output, a conversion of the signal evaluation of Counterclockwise rotation or vice versa by arranging the ferromagnetic flux guide to be adjusted. A rotation of the sensor means with respect to the pole wheel is not required for this purpose.
  • Plate-shaped flux conductors which are arranged in a plane parallel to a common plane of the sensor elements have proved particularly suitable.
  • Fig. 1 shows a schematic structure of a known from the prior art device for detecting the rotational speed of a rotatable part, not shown
  • Fig. 2a shows a device with a flywheel and two sensor elements and serves the
  • FIG. 2b shows components of the magnetic field of FIG. 2a at the location of a sensor element
  • FIG. 3 shows schematically a first embodiment of the invention
  • Fig. 4 shows schematically a second embodiment of the invention
  • Fig. 5 shows the course of the output signal for the devices shown in Fig. 2a, 3 and 4.
  • the device comprises a magnetic flywheel 2 with north poles 4 and south poles 5 arranged alternately over the circumference.
  • the flywheel is rotatably mounted about an axis of rotation 3 and coupled with that part whose rotational speed is to be determined.
  • the pole wheel can be arranged fixedly in relation to the rotatable part.
  • a Hall sensor element is used, which will be arranged at a distance from the flywheel, which must not fall below a minimum distance Cmin not to touch the pole, and a maximum distance Cmax must not exceed, so that the Hall sensor still detects a sufficiently large magnetic field and the speed can be detected without error.
  • the magnetic field is indicated in FIG. 1 by field lines 10.
  • Decisive for the size of the output signal of the Hall sensor element is the portion of the magnetic field perpendicular to the magnetic field sensitive surfaces of the Hall sensor element passes. For a single Hall sensor element, this is approximately the case when the Hall sensor element is exactly opposite the center of a north pole or south pole.
  • Fig. 2a serves to understand the invention. Shown is a sensor means 6, which has two magnetic field sensitive sensor elements 7 and 8, which are arranged at a distance a from each other.
  • the illustration is only schematic, which is why the flywheel for the sake of simplicity is not shown curved and the axis of rotation directed perpendicular to the paper plane is not shown.
  • the sensor elements 7, 8 of the sensor means 6 may in particular be Hall sensor elements. But it may also be other magnetic field sensitive elements, such as field plate sensors.
  • the sensor elements 7, 8 each deliver a voltage signal as an output signal and each have a first sensor surface 7a, 8a and a second sensor surface 7b, 8b facing away from it.
  • the sensor elements 7, 8 are arranged on a common sensor body 9, so that the first sensor surfaces 7a, 8a and the second sensor surfaces 7b, 8b are each arranged in a common plane, which is preferably oriented parallel to the rotation axis 3 of the pole wheel 2 ,
  • the output signals of the two sensor elements are voltage signals, from which a differential voltage signal is formed.
  • the electronic circuit required for this purpose can be integrated in the sensor body 9, for example in the form of an IC.
  • FIG. 2a that rotational position ⁇ O of the pole wheel is shown, in which the sensor means 6 just detect the transition region from a north pole to a south pole.
  • the first sensor element 7 is a north pole and the second sensor element 8 facing a south pole or vice versa. Due to the opposing orientation of the magnetic field lines at the location of the first sensor element 7 and the second sensor element 8, the greatest differential voltage signal, that is to say the amplitude of the differential voltage signal, is expected for this rotational position.
  • the field lines 10 at the location of the two sensor elements 7 and 8 are relatively flat at this rotational position. As shown in FIG.
  • the magnetic field has an orientation M at the location of the sensor element 7, which has a relatively large tangential component Mt and a relatively small vertical component Ms.
  • the vertical component Ms is relevant, since only this passes vertically through the magnetic field sensitive sensor surfaces 7a, 7b.
  • FIG. 5 shows the course of the differential voltage signal of the sensor means 6 for the device shown in FIG. 2 a through the course of the curve 20.
  • the abscissa represents the time t and the ordinate the differential voltage signal ⁇ U.
  • the time t2 corresponds the time at which the flywheel just assumes the rotational position shown in Fig. 2 ⁇ O with respect to the sensor elements 7 and 8.
  • the time tl corresponds to a previously traversed rotational position in which in Fig. 2 of the illustrated North Pole 4 and South Pole 5 would have to be reversed. In Fig. 5 it can be seen that the amplitude of the curve 20 is relatively small.
  • the field lines would indeed pass less flat through the sensor elements 7 and 8, but can from the already verxnten Because of this ratio can not be adjusted arbitrarily.
  • the maximum distance between the two sensor elements 7 and 8 is about 2.5 mm, whereas the distance from Nordpolmitte to Südpolmitte 10 mm barely below, and the sensor means can be arranged away from the flywheel 8.5 mm.
  • the sensor means 6 With a reduction of the distance b of the poles, the sensor means 6 would have to be arranged closer to the pole wheel 2 due to the then weaker magnetic field.
  • An increase in the distance a of the sensor elements is likewise unsuitable since the sensor means are produced on a semiconductor basis and a large increase in the distance a would considerably increase the cost of the sensor means.
  • the sensor means 6 is provided with a ferromagnetic flux guide 11.
  • the ferromagnetic flux guide 11 is plate-shaped applied to the common sensor body 9 of the sensor means 6 and with respect to the flywheel 2 behind the sensor elements 7 and 8, that is, the sensor elements 7 and 8 are between arranged the flywheel 2 and the flux conductor 11.
  • the plate-shaped ferromagnetic flux conductor 11 of soft magnetic substrate covers almost the entire side facing away from the pole wheel of the sensor body 9.
  • the flux conductor 11 is preferably formed in its lateral extent so large that it the sensor elements 7 and 8 on the side remote from the flywheel 2 back the sensor body 9 covered.
  • the magnetic field lines 10 are deformed by the plate-shaped flux guide.
  • the field lines 10 emerging from the north pole 4 are bent at the location of the first sensor element 7 to the flux conductor 11 arranged behind the sensor element 11, so that they penetrate the sensor surfaces 7a and 7b close to vertical.
  • the field lines are bundled and exit at the end in the region of the second sensor element 8 in the direction of the south pole 5 again, wherein the sensor surfaces 8a and 8b are also penetrated substantially perpendicularly.
  • the vertical component Ms of the magnetic field at the location of the sensor elements 7 and 8 is increased and the tangential component Mt is reduced.
  • the result can be seen in FIG. 5 on the basis of the curve 21.
  • the amplitude of the differential voltage signal is significantly increased by the amount d at the time t2 or t1, ie in the periodically recurring times relevant to the signal evaluation. This avoids signal errors more reliably. Furthermore, it is possible due to the stronger signal to increase the maximum distance Cmax between the flywheel and the sensor means, which allows more freedom in the structural design of the device for speed detection.
  • FIG. 1 A second embodiment of the invention is shown in FIG.
  • the ferromagnetic flux guide is arranged on the side of the sensor body 9 of the sensor means 6 facing the pole wheel 2.
  • the flux guide 11 is spatially arranged between the pole wheel 2 and the sensor elements 7, 8.
  • the ferromagnetic flux guide is plate-shaped and covers in its lateral extent the sensor elements 7 and 8.
  • the field lines 10 are bent so that from the north pole 4 exiting field lines on the side facing away from the pole 2 of the sensor means in the sensor surface 7b of the first sensor element 7 and exit from the sensor surface 7a again.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)

Abstract

Die Erfindung bezieht sich auf eine Vorrichtung zur Erfassung der Drehzahl eines rotierbaren Teils, die ein mit dem rotierbaren Teil koppelbares drehbewegliches magnetisches Polrad mit über den Umfang alternierend angeordneten magnetischen Nordpolen und Südpolen, und Sensormittel umfasst, die ein magnetfeldempfindliches Sensorelement aufweisen, das das von dem Polrad erzeugte Magnetfeld erfasst. Es wird vorgeschlagen, dass die Sensormittel zwei in einem Abstand angeordnete magnetfeldempfindliche Sensorelemente und einen ferromagnetischen Flussleiter aufweisen.

Description

Beschreibung
Titel
Vorrichtung zur Erfassung der Drehzahl eines rotierbaren Teils
Stand der Technik
Die Erfindung geht aus von einer Vorrichtung zur Erfassung der Drehzahl eines rotierbaren Teils nach der Gattung des unabhängigen Anspruchs 1.
Vorrichtungen zur Erfassung der Drehzahl von rotierbaren Teilen kommen in der Kraftfahrzeugin- dustrie in vielfältiger Form beispielsweise als Raddrehzahlsensoren, Nockenwellensensoren oder Kurbelwellensensoren zum Einsatz. Die dabei verwandten Messprinzipien sind vielfältig, wobei sich berührungslos arbeitende Systeme als robust gegenüber hohen Temperaturen und Verschmutzungen und damit als besonders vorteilhaft erwiesen haben. In der Kraftfahrzeugtechnik werden hierzu auch Vorrichtungen eingesetzt, die magnetfeldempfindliche Sensorelemente wie beispiels- weise Hallsensorelemente, Feldplattensensoren oder magnetoresistive Sensoren wie AMR- oder GMR-Sensoren verwenden. Das magnetfeldempfindliche Sensorelement wird in der Nähe eines Rotors angeordnet, der mit der Drehzahl desjenigen Teiles rotiert, dessen Drehzahl erfasst werden soll. Neben den überwiegend eingesetzten magnetisch passiven Rotoren, beispielsweise Zahnrädern, werden auch magnetisch aktive Polräder mit alternierend angeordneten Nordpolen und Süd- polen als Rotoren verwandt, da aufgrund des eigenen Magnetismus der Polräder das Sensorelement in einem größeren Abstand zum Rotor angeordnet werden kann, was vielfältigere Anwendungen erlaubt. Die Sensoren erfassen die Änderung der magnetischen Flussdichte oder Feldrichtung und ermitteln hieraus eine Drehzahl.
Eine Vorrichtung zur Erfassung der Drehzahl eines rotierbaren Teils mit den Merkmalen des O- berbegriffs des Anspruchs 1 ist beispielsweise bekannt aus der Fachzeitschrift „Bosch - Gelbe Reihe, Technische Unterrichtung, Elektrik und Elektronik für Kraftfahrzeuge, Sensoren im Kraftfahrzeug", 1. Ausgabe, Juni 2001, ISBN-3-7782-2031-4, Seite 47. Die bekannte Vorrichtung verwendet ein magnetisches Polrad mit alternierend angeordneten Nordpolen und Südpolen und Sen- sormittel, die ein Hallsensorelement umfassen, das bei einer Drehbewegung des Polrades mit wechselnder Polarität angesteuert wird und ein elektrisches Signal erzeugt, aus dem die Drehzahl des mit dem Polrad drehenden rotierbaren Teiles bestimmt wird. Bei diesen Vorrichtungen zur Erfassung der Drehzahl kann nur eine begrenzte Anzahl von Nord- und Südpolen auf dem Umfang des Polrades angeordnet werden. Da bei einer sehr großen Polzahl die einzelnen Pole immer kleiner werden, schwächt sich das Magnetfeld in Bezug auf die Drehachse des Polrades in radialer Richtung stark ab. Daher müssen die einzelnen Pole ausreichend groß bemessen werden, um in einem Abstand vom Polrad noch ein ausreichend großes Magnetfeld erfassen zu können. Weiterhin muss berücksichtigt werden, dass bei gleicher Drehzahl und einer größer werdenden Anzahl der über den Umfang angeordneten Pole die Frequenz der Magnetfeldänderung am Ort der Sensormittel stark ansteigt. Die üblicherweise verwandten Hallsensorelemente können jedoch sehr hohe Frequenzen nicht mehr ausreichend zuverlässig verarbeiten. Aus diesem Grund wird in der Praxis ein Mindestabstand zwischen der Mitte eines Nordpols und eine benachbarten Südpols des Polrades nicht unterschritten.
Aus der oben zitierten Veröffentlichung sind auch Differentialhallsensoren bekannt, die zwei in einem Abstand zueinander angeordnete Hallsensorelemente aufweisen, die in Kombination mit einem magnetisch passiven Rotor, insbesondere einem Zahnrad als Drehzahlgeber verwandt werden. Der Abstand der Hallsensoren entspricht dabei dem halben Zahnabstand des Zahnrades. Die hier als Sensormittel eingesetzten Differentialhallsensoren, weisen einen Dauermagneten auf, der mit einem dünnen ferromagnetischen Plättchen homogenisiert wird, das einen Pol des Dauermag- neten vollständig abdeckt und auf dessen Oberfläche zwei magnetfeldempfindliche Sensoren angeordnet sind.
Offenbarung der Erfindung
Die erfindungsgemäße Vorrichtung mit den kennzeichnenden Merkmalen des unabhängigen Anspruchs 1 kombiniert die Vorteile von Sensormitteln, die zwei magnetfeldempfindlichen Sensorelemente aufweisen, die durch Erfassung des magnetischen Feldstärkenunterschiedes am Ort der beiden Sensorelemente eine zuverlässige Ermittlung der Drehzahl erlauben, mit den Vorteilen eines magnetisch aktiven Polrades, welches eine Magnetfelderfassung in größerem Abstand vom Polrad gestattet. Um das Drehzahlsignal zuverlässig erfassen zu können, ist es erforderlich, dass an am Ort der Sensorelemente eine ausreichend große Feldstärke vorhanden ist. Die Sensormittel werden daher in Bezug auf die Drehachse des Polrades in einem radialen Abstand vom Polrad angeordnet, der mindestens so groß bemessen ist, das eine Berührung des Polrades ausgeschlossen ist, und der höchstens so groß sein darf, dass die Sensorelemente noch eine ausreichend große Feldstärke erfassen. Der maximale Abstand der Sensormittel vom Polrad stellt eine Begrenzung der Gestaltungsfreiheit dar, die dem Entwickler aufgegeben ist. Der Erfindung liegt die Erkenntnis zugrunde, dass der Verlauf der Feldlinien eines magnetischen Polrades am Ort der beiden Sensorelemente eines Sensormittels, welches nach dem Differentialmessprinzip arbeitet, ohne weitere Maßnahmen nicht optimal ist. Dies ist darauf zurückzuführen, dass einerseits der Abstand einer magnetischen Nordpolmitte von einer benachbarten Südpolmitte auf dem Umfang des Polrades einen durch die Obergrenze der Polanzahl vorgegebenen Mindestabstand von typischerweise 10 mm nicht unterschreiten sollte und andererseits die beiden magnetfeldempfindlichen Sensorelemente nicht in einem beliebig großen Abstand voneinander angeordnet sei können. Letzteres ist darauf zurückzuführen, dass die Sensorelemente preisgünstig auf ei- nem gemeinsamen Chip hergestellt werden, beziehungsweise am Markt erhältliche Sensormittel verwandt werden, die zwei auf einem gemeinsamen Chip, beispielsweise einem Hall-IC-Chip angeordnete Hallsensoren verwenden. Aufgrund der Beschränkung der Chipgröße auf ein wirtschaftlich herstellbares Maximalmaß ist auch der Abstand der beiden Sensorelemente beschränkt. Typische Abstände der magnetfeldempfindlichen Sensorelemente liegen daher in der Größenordung von 2,5 mm und sind deutlich kleiner als der Abstand einer Nordpolmitte von einer benachbarten Südpolmitte des Polrades.
Aus diesem Grund verlaufen die magnetischen Feldlinien in einer Drehstellung des Polrades, in welcher das erste Sensorelemente einem Nordpol gewandt ist und das zweite Sensorelement einen benachbarten Südpol zugewandt ist, relativ flach. Das heißt, die in radialer Richtung verlaufende, senkrecht zur Sensorfläche der Sensorelemente orientierte und daher für die Auswertung relevante Magnetfeldkomponente ist relativ klein, wohingegen die tangential zum Polrad verlaufende Magnetfeldkomponente, die parallel zur Sensorfläche orientiert ist und für die Auswertung weniger relevant ist, relativ groß ist. Da es aus den genannten Gründen nicht möglich ist, die Pole zu ver- kleinern oder aber die Sensorelement weiter beabstandet voneinander auf dem Chip anzuordnen, so dass die Sensorelemente den Polmitten eines benachbarten Nordpols und Südpols genau gegenüberliegen und die magnetischen Feldlinien senkrecht zu den Sensorflächen verlaufen, ist das von den Sensormitteln ausgewertete Signal nicht optimal, da der tangentiale Feldanteil am Ort der beiden Sensormittel gerade bei derjenigen Drehstellung am größten ist, die für die Signalauswer- tung eigentlich den größten Signalhub liefern sollte.
Es wurde gefunden, dass durch einen an den Sensormitteln angeordneten ferromagnetischen Flussleiter der Feldlinienverlauf vorteilhaft derart veränderbar ist, dass die senkrecht zur Sensorfläche der beiden Sensorelemente verlaufende Magnetfeldkomponente im Vergleich zu einem Sensors- mittel ohne ferromagnetischen Flussleiter deutlich vergrößert ist. Aus diesem Grund liefert ein Sensormittel, das zwei in einem Abstand angeordnete magnetfeldempfindliche Sensorelemente - A - und einen ferromagnetischen Flussleiter aufweist, ein größeres Signal als ohne den ferromagneti- schen Flussleiter. Die verbesserte Signalerfassung hat vielfältige vorteilhafte Auswirkungen auf Freiheitsgrade bei der anwendungsspezifischen Ausgestaltung der Vorrichtung.
Vorteilhafte Ausbildungen und Weiterentwicklungen der Erfindung werden durch die in den abhängigen Ansprüchen angegebenen Maßnahmen ermöglicht.
Vorzugsweise bilden die Sensormittel ein Differenzsignal, insbesondere ein Differenzspannungssignal, der von den beiden Sensorelementen erzeugten Ausgangssignale, wobei die Sensorelemen- te vorzugsweise Hallsensorelemente sind. Vorteilhaft wird durch die Differenzsignalbildung vermieden, dass Schwankungen des Abstands der Sensormittel vom Polrad zu einer Signalverfälschung führen.
Besonders vorteilhaft weisen die Sensorelemente jeweils eine dem Polrad zugewandte Sensorflä- che auf, wobei das von dem Polrad erzeugte Magnetfeld wenigstens bei einer ersten Drehstellung des Polrades eine senkrecht zu der jeweiligen Sensorfläche verlaufende und eine parallel zu der Sensorfläche verlaufende Magnetfeldkomponente aufweist und wobei durch den ferromagnetischen Flussleiter die senkrecht zu der jeweiligen Sensorfläche verlaufende Magnetfeldkomponente zumindest in der ersten Drehstellung vergrößert wird. Hierdurch wird erreicht, dass der für die Signalauswertung relevante Signalhub vergrößert wird. In der ersten Drehstellung des Polrades ist das erste Sensorelement vorzugsweise einem magnetischen Nordpol und das zweite Sensorelement einem benachbarten magnetischen Südpol des Polrades zugewandt.
Die Sensormittel umfassen vorteilhaft einen Sensorkörper, beispielsweise einen Chip mit integrier- tem Schaltkreis, an dem die beiden Sensorelemente angeordnet sind.
In einem vorteilhaften Ausführungsbeispiel der Erfindung sind die Sensorelemente räumlich zwischen dem Polrad und dem Flussleiter angeordnet. Hierdurch werden die Feldlinien nahezu senkrecht durch die Sensorelemente geleitet und die Signalerfassung verbessert. Weiterhin kann der Abstand zwischen Polrad und Sensormitteln vergrößert werden, was eine größere Freiheit bei der konstruktiven Ausgestaltung der Vorrichtung zur Erfassung der Drehzahl erlaubt.
In einem anderen Ausführungsbeispiel der Erfindung ist das ferromagnetische Flussleitstück räumlich zwischen dem Polrad und den Sensorelementen angeordnet. Hierdurch wird vorteilhaft er- reicht, dass die Richtung der Feldlinien relativ zu den Sensorelementen umgekehrt wird. Dadurch kann bei Sensorelementen mit Drehrichtungsausgabe eine Umstellung der Signalauswertung von Linkslauf auf Rechtslauf oder umgekehrt durch Anordnung des ferromagnetischen Flussleitstückes angepasst werden. Eine Drehung der Sensormittel in Bezug auf das Polrad ist hierzu nicht erforderlich.
Als besonders geeignet haben sich plattenförmige Flussleiter erwiesen, die in einer zu einer gemeinsamen Ebene der Sensorelemente parallelen Ebene angeordnet ist.
Kurze Beschreibung der Zeichnungen
Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden in der nachfolgenden Beschreibung näher erläutert. Es zeigen
Fig. 1 einen schematisch Aufbau einer aus dem Stand der Technik bekannten Vorrichtung zur Erfassung der Drehzahl eines nicht dargestellten rotierbaren Teils, Fig. 2a zeigt eine Vorrichtung mit einem Polrad und zwei Sensorelementen und dient dem
Verständnis der Erfindung,
Fig. 2b zeigt Komponenten des Magnetfeldes aus Fig. 2a am Ort eines Sensorelementes, Fig. 3 zeigt schematisch ein erstes Ausführungsbeispiel der Erfindung,
Fig. 4 zeigt schematisch ein zweites Ausführungsbeispiel der Erfindung, Fig. 5 zeigt den Verlauf des Ausgangssignals für die in Fig. 2a, 3 und 4 dargestellten Vorrichtungen.
Ausführungsformen der Erfindung
Fig. 1 zeigt eine aus dem Stand der Technik bekannte Vorrichtung zur Erfassung der Drehzahl eines rotierbaren Teiles, beispielsweise einer Getriebewelle, Nockenwelle, Radwelle oder Kurbelwelle. Die Vorrichtung umfasst ein magnetisches Polrad 2 mit über den Umfang alternierend angeordneten Nordpolen 4 und Südpolen 5. Das Polrad ist um eine Drehachse 3 drehbeweglich gelagert und mit demjenigen Teil, dessen Drehzahl bestimmt werden soll, gekoppelt. Insbesondere kann das Polrad in Bezug auf das rotierbare Teil fest an diesem angeordnet sein. Als Sensormittel 6 wird ein Hallsensorelement verwandt, das in einem Abstand vom Polrad angeordnet werden wird, der einen Mindestabstand Cmin nicht unterschreiten darf, um das Polrad nicht zu berühren, und einen Maximalabstand Cmax nicht überschreiten darf, damit der Hallsensor noch ein ausreichend großes Magnetfeld erfasst und die Drehzahl fehlerfrei erfasst werden kann. Das Magnetfeld ist in Fig. 1 durch Feldlinien 10 angedeutet. Maßgeblich für die Größe des Ausgangssignals des Hallsensorelementes ist derjenige Anteil des Magnetfeldes der senkrecht durch die magnetfeld- empfindlichen Flächen des Hallsensorelementes durchtritt. Bei einem einzelnen Hallsensorelement ist dies näherungsweise dann der Fall, wenn das Hallsensorelement der Mitte eines Nordpols oder Südpols genau gegenüberliegt.
Fig. 2a dient dem Verständnis der Erfindung. Dargestellt ist ein Sensormittel 6, welches zwei magnetfeldempfindliche Sensorelemente 7 und 8 aufweist, die in einem Abstand a voneinander angeordnet sind. Die Darstellung ist nur schematisch, weshalb das Polrad der Einfachheit halber nicht gekrümmt dargestellt ist und die senkrecht zur Papierebene gerichtete Drehachse nicht dargestellt ist. Die Sensorelemente 7, 8 des Sensormittels 6 können insbesondere Hallsensorelemente sein. Es kann sich aber auch um andere magnetfeldempfindliche Elemente handeln, beispielsweise Feldplattensensoren. Die Sensorelemente 7, 8 liefern jeweils als Ausgangssignal ein Spannungssignal und weisen jeweils eine erste Sensorfläche 7a, 8a und eine von dieser abgewandte zweite Sensorfläche 7b, 8b auf. Die Sensorelemente 7, 8 sind an einem gemeinsamen Sensorkörper 9 angeordnet, so dass die ersten Sensorflächen 7a, 8a und die zweiten Sensorflächen 7b, 8b in je- weils einer gemeinsamen Ebene angeordnet sind, die vorzugsweise parallel zu der Drehachse 3 des Polrades 2 orientiert ist. Die Ausgangssignale der beiden Sensorelemente sind Spannungssignale, aus denen ein Differenzspannungssignal gebildet wird. Die hierzu benötigte elektronische Schaltung kann in den Sensorkörper 9 beispielsweise in Form eines ICs integriert sein.
Es wird angenommen, dass das Polrad mit einer Drehzahl φ rotiert. In Fig. 2a ist diejenige Drehstellung φO des Polrades dargestellt, bei welcher die Sensormittel 6 gerade den Übergangsbereich von einem Nordpol zu einem Südpol erfassen. In dieser Drehstellung ist das erste Sensorelement 7 einem Nordpol und das zweite Sensorelement 8 einem Südpol zugewandt oder umgekehrt. Aufgrund der gegensätzlichen Ausrichtung der magnetischen Feldlinien am Ort des ersten Sensorele- mentes 7 und des zweiten Sensorelementes 8 wird gerade für diese Drehstellung das größte Differenzspannungssignal, also die Amplitude des Differenzspannungssignals erwartet. Wie in Fig. 2a erkennbar ist, verlaufen die Feldlinien 10 am Ort der beiden Sensorelemente 7 und 8 jedoch bei dieser Drehstellung relativ flach. Wie in Fig. 2b für das Sensorelement 7 dargestellt ist, weist das Magnetfeld eine Ausrichtung M am Ort des Sensorelementes 7 auf, die eine relativ große tangenti- ale Komponente Mt und eine relativ kleine senkrechte Komponente Ms besitzt. Für die Größe der Hallspannung ist jedoch die senkrechte Komponente Ms maßgeblich, da nur diese senkrecht durch die magnetfeldempfindlichen Sensorflächen 7a, 7b hindurchtritt.
In Fig. 5 ist der Verlauf des Differenzspannungssignals des Sensormittels 6 für die in Fig. 2a dar- gestellte Vorrichtung durch den Verlauf der Kurve 20 dargestellt. Auf der Abszisse ist die Zeit t und auf der Ordinate das Differenzspannungssignal ΔU aufgetragen. Der Zeitpunkt t2 entspricht dem Zeitpunkt, an dem das Polrad gerade die in Fig. 2 dargestellte Drehstellung φO in Bezug auf die Sensorelemente 7 und 8 einnimmt. Der Zeitpunkt tl entspricht einer früher durchlaufenen Drehstellung in der in Fig. 2 der dargestellte Nordpol 4 und Südpol 5 vertauscht werden müsste. In Fig. 5 ist zu erkennen, dass die Amplitude der Kurve 20 relativ klein ist.
Bei einer Vergrößerung des Abstandsmaßes a der beiden Sensorelemente 7, 8 oder bei einer Verkleinerung des Abstandes b der Mittelpunkte eines benachbarten Nordpols und Südpols in Fig. 2a würden die Feldlinien zwar weniger flach durch die Sensorelemente 7 und 8 hindurchtreten, jedoch kann aus den bereits verwähnten Gründen dieses Verhältnis nicht beliebig angepasst werden. In der Praxis beträgt der maximale Abstand der beiden Sensorelemente 7 und 8 etwa 2,5 mm, wohingegen der Abstand von Nordpolmitte zu Südpolmitte 10 mm kaum unterschreitet, und das Sensormittel 8,5 mm vom Polrad entfernt angeordnet werden kann. Bei einer Verkleinerung des Abstandes b der Pole müssten die Sensormittel 6 aufgrund des dann schwächeren Magnetfeldes näher am Polrad 2 angeordnet werden. Eine Vergrößerung des Abstandes a der Sensorelemente ist eben- falls nicht geeignet, da die Sensormittel auf Halbleiterbasis herstellt werden und eine starke Vergrößerung des Abstandes a die Sensormittel erheblich verteuern würde.
Erfindungsgemäß wird das Sensormittel 6 mit einem ferromagnetischen Flussleiter 11 versehen. In dem in Fig. 3 dargestellten ersten Ausführungsbeispiel der Erfindung ist der ferromagnetische Flussleiter 11 plattenförmig auf den gemeinsamen Sensorkörper 9 der Sensormittel 6 und in Bezug auf das Polrad 2 hinter den Sensorelementen 7 und 8 aufgebracht, das heißt, die Sensorelemente 7 und 8 sind zwischen dem Polrad 2 und dem Flussleiter 11 angeordnet. Der plattenförmige ferromagnetische Flussleiter 11 aus weichmagnetischen Substrat bedeckt dabei nahezu die gesamte von dem Polrad abgewandte Seite des Sensorkörpers 9. Der Flussleiter 11 ist vorzugsweise in seiner lateralen Ausdehnung so groß ausgebildet, dass er die Sensorelemente 7 und 8 auf der von dem Polrad 2 abgewandte Rückseite des Sensorköpers 9 überdeckt. In Fig. 3 ist die gleiche Drehstellung φO des Polrads wie in Fig. 2a dargestellt. Es ist zu erkennen, dass die magnetischen Feldlinien 10 durch den plattenförmigen Flussleiter verformt werden. Die aus dem Nordpol 4 austretenden Feldlinien 10 werden am Ort des ersten Sensorelementes 7 zu dem hinter dem Sensorelement 11 angeordneten Flussleiter 11 abgebogen, so dass sie die Sensorflächen 7a und 7b nahe senkrecht durchdringen. Im Flussleiter 11 werden die Feldlinien gebündelt und treten endseitig im Bereich des zweiten Sensorelementes 8 in Richtung Südpol 5 wieder aus, wobei die Sensorflächen 8a und 8b ebenfalls im wesentlichen senkrecht durchdrungen werden. Als Resultat wird die senkrechte Komponente Ms des Magnetfeldes am Ort der Sensorelemente 7 und 8 vergrößert und die tangen- tiale Komponente Mt verkleinert. Das Ergebnis ist in Fig. 5 anhand der Kurve 21 erkennbar. Die Amplitude des Differenzspannungssignals ist um den Betrag d zum Zeitpunkt t2 oder tl, also in zu den für die Signalauswertung relevanten, periodisch wiederkehrenden Zeiten, signifikant vergrößert. Dadurch werden Signalfehler zuverlässiger vermieden. Weiterhin ist es aufgrund des stärkeren Signals möglich, den Maximalabstand Cmax zwischen dem Polrad und den Sensormitteln zu vergrößern, was mehr Freiheiten bei der konstruktiven Ausgestaltung der Vorrichtung zur Drehzahlerfassung erlaubt.
Ein zweites Ausführungsbeispiel der Erfindung ist in Fig. 4 dargestellt. Bei diesem Ausführungsbeispiel ist der ferromagnetische Flussleiter auf der dem Polrad 2 zugewandten Seite des Sensor- körpers 9 der Sensormittel 6 angeordnet. In diesem Fall ist der Flussleiter 11 räumlich zwischen dem Polrad 2 und den Sensorelementen 7, 8 angeordnet. Wie in dem Ausführungsbeispiel aus Fig. 3 ist der ferromagnetische Flussleiter plattenförmig ausgebildet und überdeckt in seiner lateralen Ausdehnung die Sensorelemente 7 und 8. Wie in Fig. 4 zu erkennen ist, werden in diesem Fall die Feldlinien 10 so abgebogen, dass die aus dem Nordpol 4 austretenden Feldlinien auf der von dem Polrad 2 abgewandten Seite der Sensormittel in die Sensorfläche 7b des ersten Sensorelementes 7 eintreten und aus der Sensorfläche 7a wieder austreten. Anschließend treten sie durch die Sensorfläche 8a in das Sensorelement 8 ein und durch die Sensorfläche 8b wieder aus und werden schließlich in Richtung Südpol 5 umgebogen. In Vergleich mit dem Ausführungsbeispiel aus Fig. 3 stellt sich daher eine Umkehrung der Richtung ein, in der die Feldlinien die beiden Sensorele- mente 7 und 8 durchdringen. Das Ausgangssignal der Sensormittel 6 wird durch die Kurve 22 in Fig. 5 angegeben. Man erkennt die Umkehrung des Vorzeichens des Differenzspannungssignals. Dieser Effekt kann beispielsweise bei Drehzahlsensoren mit Drehrichtungsauswertung, die in einem ASIC integriert dargestellt sind, zum Umstellen der Drehrichtungsausgabe verwendet werden, ohne die Notwendigkeit, die gesamten Sensormittel um 180° zu drehen oder zwei Bauvarianten zu bevorraten.

Claims

Ansprüche
1. Vorrichtung zur Erfassung der Drehzahl eines rotierbaren Teils umfassend ein mit dem rotierbaren Teil koppelbares drehbewegliches magnetisches Polrad (2) mit über den Umfang alternierend angeordneten magnetischen Nordpolen (4) und Südpolen (5), und mit Sensormitteln (6), die ein magnetfeldempfindliches Sensorelement aufweisen, das das von dem Polrad (2) erzeugte Magnet- feld erfasst, dadurch gekennzeichnet, dass die Sensormittel (6) zwei in einem Abstand (a) angeordnete magnetfeldempfindliche Sensorelemente (7, 8) und einen ferromagnetischen Flussleiter (11) aufweisen.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Sensormittel (6) ein Differenz- signal, insbesondere ein Differenzspannungssignal, der von den beiden Sensorelementen (7, 8) erzeugten Ausgangssignale bilden, wobei die Sensorelemente (7, 8) vorzugsweise Hallsensorelemente sind.
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Sensorelemente (7, 8) jeweils eine dem Polrad (2) zugewandte Sensorfläche (7a, 8a) aufweisen und dass das von dem
Polrad (2) erzeugte Magnetfeld wenigstens bei einer ersten Drehstellung (φO) des Polrades eine senkrecht zu der jeweiligen Sensorfläche (7a, 8a) verlaufende Magnetfeldkomponente (Ms) und eine parallel zu der Sensorfläche verlaufende Magnetfeldkomponente (Mt) aufweist und dass durch den ferromagnetischen Flussleiter (11) die senkrecht zu der jeweiligen Sensorfläche verlau- fende Magnetfeldkomponente (Ms) zumindest in der ersten Drehstellung (φO) vergrößert wird.
4. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass in der ersten Drehstellung (φO) des Polrades (2) ein erstes Sensorelement (7) einem magnetischen Nordpol (4) zugewandt ist und ein zweites Sensorelement (8) dem magnetischen Südpol (5) des Polrades zugewandt ist.
5. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Sensormittel (6) einen Sensorkörper (9), insbesondere einen Hall-IC-Chip aufweisen, an dem die beiden Sensorelemente (7, 8) angeordnet sind.
6. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Sensorelemente (7, 8) räumlich zwischen dem Polrad (2) und dem Flussleiter (11) angeordnet sind.
7. Vorrichtung nach Ansprach 1, dadurch gekennzeichnet, dass der ferromagnetische Flussleiter (11) räumlich zwischen dem Polrad (2) und den Sensorelementen (7, 8) angeordnet ist.
8. Vorrichtung nach Ansprach 1, dadurch gekennzeichnet, dass der ferromagnetische Flussleiter (11) eine plattenförmige Struktur besitzt.
9. Vorrichtung nach Ansprach 1, dadurch gekennzeichnet, dass die Sensorelemente (7, 8) mit ihren dem Polrad (2) zugewandten Flächen (7a, 8a) in einer gemeinsamen Ebene angeordnet sind.
10. Vorrichtung nach Ansprach 8 und 9, dadurch gekennzeichnet, dass der plattenförmige Flussleiter (11) in einer zu der gemeinsamen Ebene der Sensorflächen (7a, 8a) parallelen Ebene angeordnet ist.
PCT/EP2008/053871 2007-04-18 2008-04-01 Vorrichtung zur erfassung der drehzahl eines rotierbaren teils WO2008128857A2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP08735644A EP2137498A2 (de) 2007-04-18 2008-04-01 Vorrichtung zur erfassung der drehzahl eines rotierbaren teils

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007018238.6 2007-04-18
DE200710018238 DE102007018238A1 (de) 2007-04-18 2007-04-18 Vorrichtung zur Erfassung der Drehzahl eines rotierbaren Teils

Publications (2)

Publication Number Publication Date
WO2008128857A2 true WO2008128857A2 (de) 2008-10-30
WO2008128857A3 WO2008128857A3 (de) 2009-02-05

Family

ID=39767834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/053871 WO2008128857A2 (de) 2007-04-18 2008-04-01 Vorrichtung zur erfassung der drehzahl eines rotierbaren teils

Country Status (3)

Country Link
EP (1) EP2137498A2 (de)
DE (1) DE102007018238A1 (de)
WO (1) WO2008128857A2 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105683762A (zh) * 2013-10-29 2016-06-15 舍弗勒技术股份两合公司 具有带线性化磁场的磁极转子的用于转速测量的传感器系统
GB2542144A (en) * 2015-09-08 2017-03-15 Airbus Operations Ltd Determining rotational speed or direction of a body

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7816772B2 (en) 2007-03-29 2010-10-19 Allegro Microsystems, Inc. Methods and apparatus for multi-stage molding of integrated circuit package
US9823090B2 (en) 2014-10-31 2017-11-21 Allegro Microsystems, Llc Magnetic field sensor for sensing a movement of a target object
US8486755B2 (en) 2008-12-05 2013-07-16 Allegro Microsystems, Llc Magnetic field sensors and methods for fabricating the magnetic field sensors
DE102009026531A1 (de) 2009-05-28 2010-12-02 Robert Bosch Gmbh Verfahren zur Erfassung einer Drehung eines rotierbaren Teils
DE102011081222B4 (de) 2011-08-19 2022-12-15 Zf Friedrichshafen Ag Sensorbaugruppe
US8629539B2 (en) 2012-01-16 2014-01-14 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having non-conductive die paddle
US10234513B2 (en) 2012-03-20 2019-03-19 Allegro Microsystems, Llc Magnetic field sensor integrated circuit with integral ferromagnetic material
US9666788B2 (en) 2012-03-20 2017-05-30 Allegro Microsystems, Llc Integrated circuit package having a split lead frame
US9812588B2 (en) 2012-03-20 2017-11-07 Allegro Microsystems, Llc Magnetic field sensor integrated circuit with integral ferromagnetic material
US9494660B2 (en) 2012-03-20 2016-11-15 Allegro Microsystems, Llc Integrated circuit package having a split lead frame
US10215550B2 (en) 2012-05-01 2019-02-26 Allegro Microsystems, Llc Methods and apparatus for magnetic sensors having highly uniform magnetic fields
US9817078B2 (en) 2012-05-10 2017-11-14 Allegro Microsystems Llc Methods and apparatus for magnetic sensor having integrated coil
US10725100B2 (en) 2013-03-15 2020-07-28 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having an externally accessible coil
US9411025B2 (en) 2013-04-26 2016-08-09 Allegro Microsystems, Llc Integrated circuit package having a split lead frame and a magnet
US9810519B2 (en) 2013-07-19 2017-11-07 Allegro Microsystems, Llc Arrangements for magnetic field sensors that act as tooth detectors
US10145908B2 (en) 2013-07-19 2018-12-04 Allegro Microsystems, Llc Method and apparatus for magnetic sensor producing a changing magnetic field
US10495699B2 (en) 2013-07-19 2019-12-03 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having an integrated coil or magnet to detect a non-ferromagnetic target
US10712403B2 (en) 2014-10-31 2020-07-14 Allegro Microsystems, Llc Magnetic field sensor and electronic circuit that pass amplifier current through a magnetoresistance element
US9823092B2 (en) 2014-10-31 2017-11-21 Allegro Microsystems, Llc Magnetic field sensor providing a movement detector
US9720054B2 (en) 2014-10-31 2017-08-01 Allegro Microsystems, Llc Magnetic field sensor and electronic circuit that pass amplifier current through a magnetoresistance element
US9719806B2 (en) 2014-10-31 2017-08-01 Allegro Microsystems, Llc Magnetic field sensor for sensing a movement of a ferromagnetic target object
US10012518B2 (en) 2016-06-08 2018-07-03 Allegro Microsystems, Llc Magnetic field sensor for sensing a proximity of an object
US10260905B2 (en) 2016-06-08 2019-04-16 Allegro Microsystems, Llc Arrangements for magnetic field sensors to cancel offset variations
US10041810B2 (en) 2016-06-08 2018-08-07 Allegro Microsystems, Llc Arrangements for magnetic field sensors that act as movement detectors
DE102016215635B4 (de) 2016-08-19 2022-02-03 Robert Bosch Gmbh Vorrichtung und Verfahren zur Bestimmung einer Drehzahl eines rotierenden Walzenkörpers
US10324141B2 (en) 2017-05-26 2019-06-18 Allegro Microsystems, Llc Packages for coil actuated position sensors
US11428755B2 (en) 2017-05-26 2022-08-30 Allegro Microsystems, Llc Coil actuated sensor with sensitivity detection
US10641842B2 (en) 2017-05-26 2020-05-05 Allegro Microsystems, Llc Targets for coil actuated position sensors
US10837943B2 (en) 2017-05-26 2020-11-17 Allegro Microsystems, Llc Magnetic field sensor with error calculation
US10996289B2 (en) 2017-05-26 2021-05-04 Allegro Microsystems, Llc Coil actuated position sensor with reflected magnetic field
US10310028B2 (en) 2017-05-26 2019-06-04 Allegro Microsystems, Llc Coil actuated pressure sensor
US10866117B2 (en) 2018-03-01 2020-12-15 Allegro Microsystems, Llc Magnetic field influence during rotation movement of magnetic target
US10921391B2 (en) 2018-08-06 2021-02-16 Allegro Microsystems, Llc Magnetic field sensor with spacer
US11255700B2 (en) 2018-08-06 2022-02-22 Allegro Microsystems, Llc Magnetic field sensor
US10823586B2 (en) 2018-12-26 2020-11-03 Allegro Microsystems, Llc Magnetic field sensor having unequally spaced magnetic field sensing elements
US11061084B2 (en) 2019-03-07 2021-07-13 Allegro Microsystems, Llc Coil actuated pressure sensor and deflectable substrate
US10955306B2 (en) 2019-04-22 2021-03-23 Allegro Microsystems, Llc Coil actuated pressure sensor and deformable substrate
US10991644B2 (en) 2019-08-22 2021-04-27 Allegro Microsystems, Llc Integrated circuit package having a low profile
DE102019216839A1 (de) * 2019-10-31 2021-05-06 Infineon Technologies Ag Erfassen eines drehwinkels einer welle
US11237020B2 (en) 2019-11-14 2022-02-01 Allegro Microsystems, Llc Magnetic field sensor having two rows of magnetic field sensing elements for measuring an angle of rotation of a magnet
US11280637B2 (en) 2019-11-14 2022-03-22 Allegro Microsystems, Llc High performance magnetic angle sensor
US11262422B2 (en) 2020-05-08 2022-03-01 Allegro Microsystems, Llc Stray-field-immune coil-activated position sensor
US11493361B2 (en) 2021-02-26 2022-11-08 Allegro Microsystems, Llc Stray field immune coil-activated sensor
US11578997B1 (en) 2021-08-24 2023-02-14 Allegro Microsystems, Llc Angle sensor using eddy currents

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5070298A (en) * 1989-04-19 1991-12-03 Diesel Kiki Co., Ltd. Magnetic sensor, with sensor gap adjusting high permeable flux collecting chip, for detecting rotation
US20020021124A1 (en) * 2000-08-21 2002-02-21 Christian Schott Sensor for the detection of the direction of a magnetic field
US20030145663A1 (en) * 1999-12-06 2003-08-07 David Heisenberg Device for measuring the angle and/or the angular velocity of a rotatable body and/or the torque acting upon said body
JP2004045177A (ja) * 2002-07-11 2004-02-12 Nsk Ltd 回転検出装置
JP2005147970A (ja) * 2003-11-19 2005-06-09 Hamamatsu Kagaku Gijutsu Kenkyu Shinkokai 回転検出装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5070298A (en) * 1989-04-19 1991-12-03 Diesel Kiki Co., Ltd. Magnetic sensor, with sensor gap adjusting high permeable flux collecting chip, for detecting rotation
US20030145663A1 (en) * 1999-12-06 2003-08-07 David Heisenberg Device for measuring the angle and/or the angular velocity of a rotatable body and/or the torque acting upon said body
US20020021124A1 (en) * 2000-08-21 2002-02-21 Christian Schott Sensor for the detection of the direction of a magnetic field
JP2004045177A (ja) * 2002-07-11 2004-02-12 Nsk Ltd 回転検出装置
JP2005147970A (ja) * 2003-11-19 2005-06-09 Hamamatsu Kagaku Gijutsu Kenkyu Shinkokai 回転検出装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105683762A (zh) * 2013-10-29 2016-06-15 舍弗勒技术股份两合公司 具有带线性化磁场的磁极转子的用于转速测量的传感器系统
CN105683762B (zh) * 2013-10-29 2020-03-27 舍弗勒技术股份两合公司 具有带线性化磁场的磁极转子的用于转速测量的传感器系统
GB2542144A (en) * 2015-09-08 2017-03-15 Airbus Operations Ltd Determining rotational speed or direction of a body

Also Published As

Publication number Publication date
WO2008128857A3 (de) 2009-02-05
DE102007018238A1 (de) 2008-10-23
EP2137498A2 (de) 2009-12-30

Similar Documents

Publication Publication Date Title
WO2008128857A2 (de) Vorrichtung zur erfassung der drehzahl eines rotierbaren teils
EP0857292B1 (de) Messvorrichtung zur berührungslosen erfassung eines drehwinkels
WO2005088259A1 (de) Magnetsensoranordnung
DE19851839B4 (de) Magnetfelddetektor
WO2005088258A1 (de) Magnetsensoranordnung
DE102006000046B4 (de) Rotationswinkelerfassungsvorrichtung
DE102004028855A1 (de) Drehwinkeldetektor
DE102004017191A1 (de) Vorrichtung und Verfahren zur Ermittlung einer Richtung eines Objekts
WO2011085833A2 (de) Magnetfeldsensoranordnung zur wegerfassung an beweglichen bauteilen
DE102007016133A1 (de) Messeinrichtung zur berührungslosen Erfassung eines Drehwinkels mit in einer Ausnehmung des Magneten angeordnetem magnetempfindlichen Element
DE102004063539A1 (de) Magnetsensoranordnung
EP2764340B1 (de) Sensoranordnung
DE102008017857A1 (de) Induktiver Drehwinkelsensor und Verfahren zum Betrieb eines induktiven Drehwinkelsensors
EP3207337B1 (de) Sensor zur bestimmung mindestens einer rotationseigenschaft eines rotierenden elements
EP2596318A1 (de) Ermittlung der ankopplung von teilen an einer maschine
DE102022201890A1 (de) Differenzgeschwindigkeitssensor zum verdrehungsunempfindlichen anbringen mit richtungsdetektion
EP3695194B1 (de) Elektromagnetisches messsystem für die erfassung von länge und winkel basierend auf dem magnetoimpedanzeffekt
DE102012221327A1 (de) Sensorvorrichtung zur Bestimmung mindestens einer Rotationseigenschaft eines rotierenden Elements
EP1998147A2 (de) Messeinrichtung zur berührungslosen Erfassung eines Drehwinkels mit radial polarisiertem Magneten
DE102007043480A1 (de) Anordnung zur Erfassung eines Drehwinkels
AT520709B1 (de) Elektromagnetisches Messsystem für die Erfassung von Länge und Winkel basierend auf dem Magnetoimpedanzeffekt
WO2018149712A1 (de) Sensoreinrichtung
DE102007000597A1 (de) Verfahren und Vorrichtung zum berührungslosen Messen einer relativen Verstellung von Bauteilen zueinander
DE102005042616A1 (de) Drehstellungssensor
WO2012076408A1 (de) Vorrichtung und verfahren zur messung eines torsionswinkels

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08735644

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2008735644

Country of ref document: EP