WO2008110146A1 - Dispositif et procédé pour séparer le co2 d'un gaz de procédé - Google Patents

Dispositif et procédé pour séparer le co2 d'un gaz de procédé Download PDF

Info

Publication number
WO2008110146A1
WO2008110146A1 PCT/DE2008/000402 DE2008000402W WO2008110146A1 WO 2008110146 A1 WO2008110146 A1 WO 2008110146A1 DE 2008000402 W DE2008000402 W DE 2008000402W WO 2008110146 A1 WO2008110146 A1 WO 2008110146A1
Authority
WO
WIPO (PCT)
Prior art keywords
separation
permeate
membrane
feed
stage
Prior art date
Application number
PCT/DE2008/000402
Other languages
German (de)
English (en)
Inventor
Ernst Riensche
Jewgeni Nazarko
Reinhard Menzer
Ludger Blum
Original Assignee
Forschungszentrum Jülich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Jülich GmbH filed Critical Forschungszentrum Jülich GmbH
Publication of WO2008110146A1 publication Critical patent/WO2008110146A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/225Multiple stage diffusion
    • B01D53/226Multiple stage diffusion in serial connexion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2317/00Membrane module arrangements within a plant or an apparatus
    • B01D2317/02Elements in series
    • B01D2317/022Reject series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2317/00Membrane module arrangements within a plant or an apparatus
    • B01D2317/02Elements in series
    • B01D2317/025Permeate series
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the invention relates to a device and a method for CO 2 separation from a process gas, in particular for CO 2 separation from the flue gas of a coal power plant.
  • a conventional steam power plant (1) is fed with coal and air.
  • a conventional flue gas cleaning (2) is followed by a conventional flue gas cleaning (2).
  • the separation of CO 2 from the flue gas (3) after combustion is achieved by suitable washes or, in the long term, by membrane systems.
  • the disadvantage of this method is that high volume flows of flue gas with relatively low CO 2 concentration must be cleaned. Membranes for the separation of CO 2 will therefore have a high demand for membrane area.
  • Typical process parameters for the flue gas to be treated would be: 1000 mVs with 18 vol.% CO 2 .
  • IGCC Integrated Gasification Combined Cycle
  • Coal in a boiler (7) with pure oxygen and the subsequent step of flue gas cleaning (2) has a decisive advantage.
  • Combustion in pure oxygen provides as combustion products only CO 2 and water vapor, which can be separated in a very simple manner during cooling of the gas mixture by condensation of CO 2.
  • the CO 2 and the water vapor are advantageously recycled and returned to the boiler (7) together with the oxygen stream.
  • the pure oxygen can be generated either by a conventional cryogenic air separation, or by means of an O 2 membrane, wherein the recycled CO 2 / steam mixture can serve as purge gas.
  • Figure 2 shows an ideal porous CO 2 membrane according to the prior art, which is able to separate 50% of the CO 2 contained in the flue gas of a coal-fired steam power plant (post-combustion capture), with a CO 2 Purity of 90 mol%.
  • the flue gas (a) condensed to Pi-10 bar and to be treated has 14 mol% CO 2 and 69 mol% N 2 .
  • the clean gas (c) after the membrane separation has about 90 mol% CO 2 and only 8 mol% of N 2 .
  • the permeate pressure P 2 is set to 100 mbar.
  • the waste gas (concentrate stream) (b) is discharged at normal pressure.
  • Membrane inlet Feed Membrane outlet Feed:
  • the membrane power plants are said to have an extraordinarily high potential in terms of efficient CO 2 separation and sequestration. Rather than expected about 10 to 15 percentage points of efficiency loss in today starting Kraftwerkspro- With conventional gas separation methods (eg RWE plans 450 MW IGCC 2014 and power plant with MEA wash after 2014), only some 5 percentage points of efficiency loss is expected for some membrane power plant lines (after their development and optimization). However, great efforts would have to be made to come close to the outstanding high theoretical potential of membrane gas separations.
  • the gas separation tasks to be solved in the membrane power plants thus include on the one hand the separation of CO 2 from flue gases, as well as the separation of H 2 from coal gas (after CO shift) and the separation of O 2 from air.
  • the separation of CO 2 from the process gas of a cement plant can be mentioned.
  • Challenges are the achievement of the highest possible degree of separation and the highest possible purity of the separated component with the least possible expenditure of energy in the conditioning of the feed gas and the permeate stream, z. B. by pressure increase or vacuum, and thus low loss of net efficiency.
  • the object of the invention is to provide a process for a separation process for the CO 2 separation from a process gas, for. B. from the flue gas of a coal power plant, to provide, on the one hand the highest possible degree of separation and the highest possible purity of the separated component with the lowest possible energy consumption, ie, the highest possible net efficiency possible.
  • the process of the separation process should allow the highest possible flux density of the permeating component and represent the lowest possible outlay on equipment in the membrane environment.
  • it is the object of the method to provide a device suitable for carrying out the aforementioned method.
  • the entire separation process of CO 2 separation from a process gas is broken down into individual substeps, for which a targeted process optimization can now be carried out.
  • the invention will be further considered with reference to the separation of CO 2 from the flue gas of a coal power plant.
  • This can now be made very effective in the invention, since numerous procedural and membrane-specific measures are available to optimally exploit the quality characteristics of specially selected membranes under operating conditions. Elaborate measures will only be used where this is urgently required or the corresponding membrane process area is very small. For example, this could be useful to maintain a minimum permeate flux density or to selectively treat a small partial flow.
  • Typical process engineering measures include:
  • the inventive method advantageously allows a choice of the membrane types in the individual substeps z. B.
  • the method according to the invention advantageously makes it possible to extend the area, in particular into critical areas, and also allows a limitation of individual partial steps to a minimum, so that complicated measures required here impair the power plant quality only within narrow limits.
  • the basic idea of the invention is based on providing a plurality of possibly different membranes in several separation steps instead of a single membrane for the separation of the CO 2 from a process gas, of which at least one separation step comprises at least one further separation stage.
  • this procedure allows the highest possible degree of separation and, on the other hand, the highest possible purity of the separated component with the least possible expenditure of energy, ie the highest possible net efficiency.
  • a further (horizontal) separation step when the retentate the preceding separation step is passed in a further separation step via a further membrane, whereas one speaks of a further vertical separation stage, when the permeate is passed from the previous separation step in a further separation step on a further membrane.
  • the feed / retentate is passed over a plurality of membranes, in which case both parts of the component to be separated and parts of the component to be purified are separated off as permeate.
  • the total volume of permeate thus increases from separation step to separation step.
  • the permeate is passed as a feed for the subsequent separation stage in succession over several membranes, wherein in each case a part of the component to be separated is permeated and a part of the component to be cleaned is separated as a retentate.
  • the volume of permeate thus decreases from separation stage to separation stage, but the purity of the component to be separated within the permeate increases.
  • the CO 2 -containing process gas is supplied in at least two substeps at least two successive separation steps, wherein the retentate of the first separation step is fed as a feed stream to the second separation step.
  • a further separation stage in which the permeate of the separation step is now passed as a feed through another membrane.
  • the membranes arranged in the individual separation steps or stages are permeable to CO 2 in each case and may advantageously be of different nature.
  • polymer membranes generally have a particularly high selectivity
  • ceramic membranes usually have a particularly high permeability.
  • the different membranes can be arranged in different order and with different membrane areas.
  • a compression of the permeate / feed stream may advantageously be provided between the first and the second separation stage within a separation step, so that the feed pressure of the second separation stage can be both greater than or equal to or less than that of the first separation stage.
  • the cascaded separation process according to the invention can be used in particular if a permeate stream from a separation step has only an insufficient CO 2 purity, for example of less than 80 mol%, in particular less than 70 mol%, or if for some other reason one still lower purity is accepted, for example, because in the first separation step, although a cheap, but not very selective membrane is to be used, which has a high permeability. As a further reason, due to the design, only a very small membrane area may potentially be available for the first membrane.
  • a membrane with a very high permeability can be used to keep the required membrane area within tolerable limits.
  • Such a membrane usually has only a low selectivity and would therefore not be suitable in a non-cascaded arrangement, as known from the prior art.
  • the cascaded separation process according to the invention can be used as a combination with at least two separation steps, in which the second separation step comprises at least one further separation stage.
  • the process gas is first passed as a feed stream / retentate in different separation steps over at least two membranes.
  • the cascaded separation process then follows in the second separation step, especially if it has a permeate stream with only an insufficient CO 2 purity.
  • the low separation efficiency of the first separation step, or of the first stage of the second separation step can then be compensated advantageously by at least one subsequent cascading separation stage, and thus a total clean gas flow with a high CO 2 purity can be brought about.
  • the individual separation steps or separation stages are realized in separation units. These each comprise a feed / retentate space with a feed for the feed and a discharge for the retentate, a CO 2 permeable membrane and a permeate space with a discharge for the permeate.
  • at least two separation units are formed as separation steps connected in series, in which the retentate of the first separation unit is used as feed for the second separation unit.
  • a third separation unit is connected downstream of the second separation unit, but in such a way that now the permeate of this separation unit is used as feed for the third separation unit.
  • the device advantageously has means for setting a separate permeate pressure for each separation unit and a means for compressing the permeate from separation unit 2.
  • the resulting from the separation steps permeate streams from separation unit 1 and 3 can be advantageously combined into a stream.
  • FIGS. 3 to 5 illustrate the decomposition of the entire separation process into 2 partial steps with a total of 3 membranes.
  • the selectivity requirement is not met, the CO 2 purity of the permeate I (c) is 75 mol% below the value of 80 mol% required here.
  • the second membrane in the separation unit II TE II
  • an even lower CO 2 purity is achieved for the permeate II (d), z. B. only 50 mol%.
  • This permeate is then cascaded by subsequent passage into the separation unit III (TE III) in a further separation stage.
  • a high purity can now be achieved in total by mixing with the first CO 2 permeate stream (c).
  • a total CO 2 purity of 80 mol% is achieved.
  • the CO 2 separation rate here is about 50%.
  • a pre-cleaning would also be necessary before the CO 2 can be liquefied.
  • the advantage of the arrangement is that a high CO 2 purity can be achieved with simultaneously high CO 2 separation, which would not be possible due to today's limited membrane selectivities in a simple arrangement.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • Membrane with a vacuum pump in turn the decomposition of the separation process in two steps I and II, but now in the first separation unit I, a different type of membrane is selected as in the second separation unit II.
  • a high selectivity polymer membrane is a very pure first CO 2 -permeate stream (a) with about 85 mol% CO 2 achieved.
  • the retentate stream is then passed through a high permeability ceramic membrane in a second separation step.
  • the second permeate stream (b) has only a purity of about 50 mol%.
  • This permeate is now also cascaded by separation stage III.
  • the significantly lower compared to the flue gas molten water permeate II partial stream after the second separation stage can be regularly compressed without high energy expenditure.
  • the CO 2 separation in the third separation stage in the same if a polymer membrane is used, even without a vacuum pump very efficient.
  • the following conditions prevail:
  • the permeate stream III (e) after the separation stage III then regularly has a purity of about 95 mol%. After mixing the two permeate streams (e), a high CO 2 purity of about 90 mol% is again achieved. The degree of separation is also 50% here.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Water Supply & Treatment (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

L'invention concerne un dispositif servant à séparer le CO2 d'un gaz de procédé et comprenant au moins trois unités séparatrices (étapes ou étages de séparation) munies de membranes perméables au CO2 pour la séparation du CO2. Selon un mode de réalisation particulièrement avantageux de ce dispositif, au moins deux unités séparatrices sont réalisées en tant qu'étapes de séparation placées l'une derrière l'autre, le rétentat de la première unité de séparation étant utilisé comme charge pour la deuxième unité de séparation. Une troisième unité de séparation est placée en aval de la deuxième unité de séparation, de sorte que le perméat de cette unité de séparation est utilisé comme charge pour la troisième unité de séparation. Le dispositif selon l'invention comprend en outre des moyens pour le réglage d'une pression de perméat distincte pour chaque unité de séparation. Les flux de perméat résultant des étapes de séparation des unités de séparation 1 et 3 peuvent être réunis. Un tel dispositif permet de séparer le CO2 d'un gaz de procédé, le gaz de procédé étant conduit à travers plusieurs membranes et au moins un flux de perméat étant conduit à travers une autre membrane dans un autre étage de séparation, les flux de perméat résultants étant ensuite réunis. Grâce à ce procédé, on peut séparer le CO2 d'un gaz de procédé en obtenant un degré de séparation élevé et une grande pureté tout en atteignant un rendement net élevé.
PCT/DE2008/000402 2007-03-13 2008-03-06 Dispositif et procédé pour séparer le co2 d'un gaz de procédé WO2008110146A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007012069.0 2007-03-13
DE102007012069A DE102007012069A1 (de) 2007-03-13 2007-03-13 Vorrichtung und Verfahren zur CO2-Abtrennung aus einem Prozessgas

Publications (1)

Publication Number Publication Date
WO2008110146A1 true WO2008110146A1 (fr) 2008-09-18

Family

ID=39523593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2008/000402 WO2008110146A1 (fr) 2007-03-13 2008-03-06 Dispositif et procédé pour séparer le co2 d'un gaz de procédé

Country Status (2)

Country Link
DE (1) DE102007012069A1 (fr)
WO (1) WO2008110146A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008057157A1 (de) * 2008-11-13 2010-05-20 Forschungszentrum Jülich GmbH Verfahren zur CO2-Abtrennung aus dem Rauchgas eines Kraftwerkes

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4130403A (en) * 1977-08-03 1978-12-19 Cooley T E Removal of H2 S and/or CO2 from a light hydrocarbon stream by use of gas permeable membrane
US6630011B1 (en) * 2002-09-17 2003-10-07 Membrane Technology And Research, Inc. Nitrogen removal from natural gas using two types of membranes
WO2005079960A1 (fr) * 2004-02-17 2005-09-01 Basf Aktiengesellschaft Procede ameliore de separation de substances au moyen de membranes

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0945163A1 (fr) * 1997-10-09 1999-09-29 Gkss-Forschungszentrum Geesthacht Gmbh Un procédé de séparation/récupération des gazes

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4130403A (en) * 1977-08-03 1978-12-19 Cooley T E Removal of H2 S and/or CO2 from a light hydrocarbon stream by use of gas permeable membrane
US6630011B1 (en) * 2002-09-17 2003-10-07 Membrane Technology And Research, Inc. Nitrogen removal from natural gas using two types of membranes
WO2005079960A1 (fr) * 2004-02-17 2005-09-01 Basf Aktiengesellschaft Procede ameliore de separation de substances au moyen de membranes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008057157A1 (de) * 2008-11-13 2010-05-20 Forschungszentrum Jülich GmbH Verfahren zur CO2-Abtrennung aus dem Rauchgas eines Kraftwerkes

Also Published As

Publication number Publication date
DE102007012069A1 (de) 2008-09-18

Similar Documents

Publication Publication Date Title
EP2588217B1 (fr) Procédé de séparation de gaz
EP3034466B1 (fr) Procédé combiné d'adsorption modulée en pression pour membrane destiné à la récupération d'hélium
DE69926526T2 (de) Wiedergewinnung von c02 und h2 aus psa-abgasen in einer h2-produktionsanlage
DE60102788T2 (de) Integriertes Verfahren zur Luftzerlegung und Energieerzeugung und Anlage zur Ausführung des Verfahrens
WO2017137581A1 (fr) Procédé de synthèse de méthanol
EP2214806B1 (fr) Centrale électrique à membrane, et procédé pour faire fonctionner une telle centrale
WO2010072305A1 (fr) Procédé et dispositif de traitement d'un courant de gaz contenant du dioxyde de carbone provenant d'une grande installation de combustion
EP4001734B1 (fr) Procédé de transport de l'hydrogène
AT513644B1 (de) Permeatorsystem zur Trennung von Gasgemischen
DE60013212T2 (de) Verfahren zur Konzentrationsregelung einer Gasmischung
WO2011026587A1 (fr) Procédé et dispositif pour traiter un flux gazeux chargé en dioxyde de carbone et utilisation de l'énergie du gaz de ventilation (travail et froid par expansion)
AT507891B1 (de) Vorrichtung und verfahren zur auftrennung eines gasgemisches
EP1517852A1 (fr) Procede et dispositif de separation par membrane pour enrichir un flux de gaz en au moins un composant gazeux
WO2008110146A1 (fr) Dispositif et procédé pour séparer le co2 d'un gaz de procédé
EP3541751B1 (fr) Procédé de production d'ammoniac et d'urée dans un complexe d'installations commun
WO2008110145A1 (fr) Dispositif et procédé pour séparer le co2 d'un gaz de procédé
WO2006128426A1 (fr) Centrale electrique equipee d'un systeme de recyclage des gaz chauds a base de co2 et procede pour faire fonctionner cette centrale
EP2708275B1 (fr) Procede de fonctionnement de deux procedes partiels ayant des exigeances différentes en termes de vapeur d'eau dans un procédé global avec une membrane sélective à la vapeur d'eau
AT412706B (de) Verfahren zur gewinnung von stickstoff aus luft
DE102012007832A1 (de) Verfahren zum Betrieb einer Gasturbineneinheit
EP3674261B1 (fr) Procédé de synthèse d'un composé contenant de l'hydrogène
DE102010012601A1 (de) Vorrichtung und Verfahren zum Trennen eines fluiden Stoffgemisches
EP3247483A1 (fr) Dispositif et procédé de séparation de dioxyde de carbone d'un flux gazeux
WO2024032929A1 (fr) Procédé et système d'élimination de dioxyde de carbone d'un mélange gazeux contenant du dioxyde de carbone
DE3032799A1 (de) Verfahren und vorrichtung zur erzeugung von ammoniaksynthesegasgemischen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08715549

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 08715549

Country of ref document: EP

Kind code of ref document: A1