WO2008110145A1 - Dispositif et procédé pour séparer le co2 d'un gaz de procédé - Google Patents

Dispositif et procédé pour séparer le co2 d'un gaz de procédé Download PDF

Info

Publication number
WO2008110145A1
WO2008110145A1 PCT/DE2008/000401 DE2008000401W WO2008110145A1 WO 2008110145 A1 WO2008110145 A1 WO 2008110145A1 DE 2008000401 W DE2008000401 W DE 2008000401W WO 2008110145 A1 WO2008110145 A1 WO 2008110145A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
separation
permeate
separation unit
feed
Prior art date
Application number
PCT/DE2008/000401
Other languages
German (de)
English (en)
Inventor
Ernst Riensche
Jewgeni Nazarko
Reinhard Menzer
Ludger Blum
Original Assignee
Forschungszentrum Jülich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Jülich GmbH filed Critical Forschungszentrum Jülich GmbH
Publication of WO2008110145A1 publication Critical patent/WO2008110145A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/225Multiple stage diffusion
    • B01D53/226Multiple stage diffusion in serial connexion
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0229Purification or separation processes
    • C01B13/0248Physical processing only
    • C01B13/0251Physical processing only by making use of membranes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/501Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2317/00Membrane module arrangements within a plant or an apparatus
    • B01D2317/02Elements in series
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0475Composition of the impurity the impurity being carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0959Oxygen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Definitions

  • the invention relates to a device and a method for CO 2 separation from a process gas, in particular for CO 2 - separation from the flue gas of a coal power plant.
  • a conventional steam power plant (1) is fed with coal and air.
  • a conventional flue gas cleaning (2) is followed by a conventional flue gas cleaning (2).
  • the separation of CO 2 from the flue gas (3) after combustion is realized by suitable washes or long term by membrane systems.
  • the disadvantage of this method is that high volume flows of flue gas with relatively low CO 2 concentration must be cleaned.
  • Membranes for the separation of CO 2 will therefore have a high demand for membrane area.
  • Typical process parameters for the flue gas to be treated would be: 1000 m 3 / s with 18 vol.% CO 2 .
  • an integrated gasification combined cycle (IGCC) process is shown in which the separation of CO 2 (3) takes place in an intermediate step after the coal gasification (4), or the natural gas reforming, the process step of gas purification (5) ( CO shift), but before combustion with air (6).
  • the various previously developed coal gasification processes are preferably operated with oxygen or enriched air (and steam) under pressure (about 20 to 30 bar). Therefore, coal gas has two key advantages in terms of CO 2 separation.
  • the real volume flow (with little nitrogen and at high pressure) is about 100 times lower than at the flue gases of conventional steam power plants. This leads directly to high partial pressures of the main components CO and H 2 .
  • Typical process parameters after gas purification would be: 10 m 3 / s with 45 vol.% CO 2 .
  • the simple CO 2 separation (3) by condensation after combustion of the coal in a boiler (7) with pure oxygen and the subsequent step of a flue gas cleaning (2) has a decisive advantage.
  • Combustion in pure oxygen provides as combustion products only CO 2 and water vapor, which can be separated in a very simple manner during cooling of the gas mixture by condensation of CO 2.
  • the CO 2 and the water vapor are advantageously recycled and returned to the boiler (7) together with the oxygen stream.
  • the pure oxygen can be generated either by a conventional cryogenic air separation, or by means of a 0 2 membrane, wherein the recycled CO 2 / steam mixture can serve as purge gas.
  • Figure 2 shows an ideal porous CO 2 membrane according to the prior art, which is able to separate 50% of the CO 2 contained in the flue gas of a coal-fired steam power plant (post-combustion capture), with a CO 2 Purity of 90 mol%.
  • the clean gas (c) after the membrane separation has about 90 mol% CO 2 and only 8 mol% of N 2 .
  • the permeate pressure P 2 is set to 100 mbar.
  • the waste gas (concentrate stream) (b) is discharged at normal pressure.
  • Membrane inlet Feed Membrane outlet Feed:
  • the membrane power plants are said to have an extraordinarily high potential in terms of efficient CO 2 separation and sequestration. Rather than expected about 10 to 15 percentage points of efficiency loss in today starting Krafttechnikspro- E2008 / 000401
  • the gas separation tasks to be solved in the membrane power plants thus include on the one hand the separation of CO 2 from flue gases, as well as the separation of H 2 from coal gas (after CO shift) and the separation of O 2 from air.
  • the separation of CO 2 from the process gas of a cement plant can be mentioned.
  • Challenges are the achievement of the highest possible degree of separation and the highest possible purity of the separated component with the least possible expenditure of energy in the conditioning of the feed gas and the permeate stream, z. B. by pressure increase or vacuum, and thus low loss of net efficiency.
  • the object of the invention is to provide a process for a separation process for the CO 2 separation from a process gas, for. B from the flue gas of a coal power plant to make available, which allows the highest possible degree of separation and the highest possible purity of the separated component with the lowest possible energy consumption, ie the highest possible net efficiency.
  • the process of the separation process should allow the highest possible flux density of the permeating component and represent the lowest possible outlay on equipment in the membrane environment.
  • it is the object of the method to provide a device suitable for carrying out the aforementioned method.
  • the entire separation process of CO 2 separation from a process gas is broken down into individual substeps, for which a targeted process optimization can now be carried out.
  • the invention will be further considered with reference to the separation of CO 2 from the flue gas of a coal power plant.
  • This can now be made very effective in the invention, since numerous procedural and membrane-specific measures are available to optimally exploit the quality characteristics of specially selected membranes under operating conditions. Elaborate measures will only be used where this is urgently required or the corresponding membrane process area is very small. For example, this could be useful to maintain a minimum permeate flux density or to selectively treat a small partial flow.
  • the method according to the invention it is possible to find an optimum solution for the critical process end adapted to the specific power plant conditions.
  • a high-permeability membrane in particular a porous ceramic membrane, or a highly selective membrane, for example a polymer membrane
  • special procedural measures such as the use of a vacuum pump on the permeate side, on the one hand an increase in the flux densities and thus a reduction of the required Membrane surface or / and on the other hand, the slippage of undesirable components are limited to the permeate side.
  • Typical process engineering measures include:
  • the erfmdungswashe method advantageously allows a choice of the types of membranes in the individual sub-steps z. B.
  • the method according to the invention advantageously makes it possible to extend the area, in particular into critical areas, and also allows a limitation of individual partial steps to a minimum, so that expensive measures required here impair the power plant quality only within narrow limits.
  • the basic idea of the invention is based on instead of a single membrane for the separation of CO 2 from a process gas for the entire separation process to provide a plurality of possibly different separation steps, on the one hand the highest possible degree of separation and on the other hand the highest possible purity of the separated component at a As low as possible energy expenditure, ie to enable the highest possible net efficiency.
  • the CO 2 -containing process gas is therefore supplied in at least two sub-steps at least two consecutively arranged membranes, wherein the retentate of the first separation step is fed as a feed stream to the second or further separation steps.
  • the membranes arranged in the individual separation units are for 2008/000401
  • CO 2 permeable may advantageously be of different nature.
  • polymer membranes generally have a particularly high selectivity
  • ceramic membranes usually have a particularly high permeability.
  • the different membranes can be arranged in different order and with different membrane surfaces.
  • the permeate pressure in the second separation step is advantageously set lower than in the first separation step.
  • the individual separation steps are each realized by a separation unit. These each comprise a feed / retentate space with a supply for the feed gas and a discharge for the retentate, a CO 2 permeable membrane and a permeate space with a discharge for the permeate.
  • FIGS 3 and 4 illustrate the separation of the separation process according to the invention into two partial steps I and IL thereby advantageously makes it possible to set approximately equal CO 2 partial pressure differences along the entire separation process.
  • a lower permeate pressure is set in the second separation unit (TE II) with 30 mbar, than in the first separation unit (TE I) with 60 mbar.
  • the achieved CO 2 purity in the second permeate stream (d) is about 75 mol% lower than in the first permeate stream (c) with about 85 mol%.
  • the product stream (e) but can be achieved by mixing with the first CO 2 stream overall high purity. In the example chosen a total CO 2 purity of 80 mol% is achieved.
  • the degree of CO 2 separation is 30%. In this case, a pre-cleaning would also be necessary before the CO 2 can be liquefied.
  • DE2008 / 000401 a pre-cleaning would also be necessary before the CO 2 can be liquefied.
  • ApCO 2 80 60 90 70 mbar pCO 2 (feed) 140 120 120 100 mbar pCO 2 (permeate) 60 60 30 30 mbar
  • a further embodiment of the invention again shows the separation according to the invention of the separation process into two partial steps I and II, but now a different membrane type is selected for the first separation step in separation unit I than for the second separation step in Separation Unit IL
  • a very pure first CO 2 permeate stream (c) with about 95 mol% CO 2 is achieved with a polymer membrane of high selectivity.
  • a ceramic membrane with high permeability is used.
  • the second permeate stream (d) has only a purity of about 65 mol%.
  • the degree of separation is also here 30%.
  • a reverse order of the membranes used in the individual separation units is selected, as described in Example 2.
  • the further advantage of this arrangement would be that the second permeate stream would have an equivalent or even higher CO 2 purity than the first, so that after mixing a total product flow with very high purity would be achieved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

L'invention concerne un dispositif servant à séparer le CO<SUB>2</SUB> d'un gaz de procédé et comprenant deux unités séparatrices (étapes de séparation) placées l'une derrière l'autre et munies de membrane perméables au CO<SUB>2</SUB> pour la séparation du CO<SUB>2</SUB>, des moyens pour le réglage d'une pression de perméat distincte du côté perméat de chaque membrane, ainsi qu'une conduite collectrice pour la réunion des flux de perméat provenant des étapes de séparation individuelles. Un tel dispositif permet de séparer le CO<SUB>2</SUB> d'un gaz de procédé, le gaz de procédé étant d'abord conduit à travers une première membrane lors d'une première étape de séparation I, le rétentat de la première étape de séparation I étant conduit en tant que charge à travers une deuxième membrane lors d'une deuxième étape de séparation II et les flux de perméat provenant de la première et de la deuxième étape de séparation étant réunis. Grâce à ce procédé, on peut séparer le CO<SUB>2</SUB> d'un gaz de procédé en obtenant un degré de séparation élevé et une grande pureté tout en atteignant un rendement net élevé.
PCT/DE2008/000401 2007-03-13 2008-03-06 Dispositif et procédé pour séparer le co2 d'un gaz de procédé WO2008110145A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007011879A DE102007011879A1 (de) 2007-03-13 2007-03-13 Vorrichtung und Verfahren zur CO2-Abtrennung aus einem Prozessgas
DE102007011879.3 2007-03-13

Publications (1)

Publication Number Publication Date
WO2008110145A1 true WO2008110145A1 (fr) 2008-09-18

Family

ID=39534914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2008/000401 WO2008110145A1 (fr) 2007-03-13 2008-03-06 Dispositif et procédé pour séparer le co2 d'un gaz de procédé

Country Status (2)

Country Link
DE (1) DE102007011879A1 (fr)
WO (1) WO2008110145A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8114191B2 (en) 2008-12-11 2012-02-14 General Electric Company Energy efficient approach to CO2 capture process

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4130403A (en) * 1977-08-03 1978-12-19 Cooley T E Removal of H2 S and/or CO2 from a light hydrocarbon stream by use of gas permeable membrane
US4589896A (en) * 1985-01-28 1986-05-20 Air Products And Chemicals, Inc. Process for separating CO2 and H2 S from hydrocarbons
US4597777A (en) * 1983-02-15 1986-07-01 Monsanto Company Membrane gas separation processes
US5401300A (en) * 1993-10-25 1995-03-28 Membrane Technology And Research, Inc. Sour gas treatment process including dehydration of the gas stream
US20030131726A1 (en) * 2001-09-07 2003-07-17 Exxonmobil Upstream Research Company High-pressure separation of a multi-component gas
US6648944B1 (en) * 2003-01-28 2003-11-18 Membrane Technology And Research, Inc. Carbon dioxide removal process

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0945163A1 (fr) * 1997-10-09 1999-09-29 Gkss-Forschungszentrum Geesthacht Gmbh Un procédé de séparation/récupération des gazes

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4130403A (en) * 1977-08-03 1978-12-19 Cooley T E Removal of H2 S and/or CO2 from a light hydrocarbon stream by use of gas permeable membrane
US4597777A (en) * 1983-02-15 1986-07-01 Monsanto Company Membrane gas separation processes
US4589896A (en) * 1985-01-28 1986-05-20 Air Products And Chemicals, Inc. Process for separating CO2 and H2 S from hydrocarbons
US5401300A (en) * 1993-10-25 1995-03-28 Membrane Technology And Research, Inc. Sour gas treatment process including dehydration of the gas stream
US20030131726A1 (en) * 2001-09-07 2003-07-17 Exxonmobil Upstream Research Company High-pressure separation of a multi-component gas
US6648944B1 (en) * 2003-01-28 2003-11-18 Membrane Technology And Research, Inc. Carbon dioxide removal process

Also Published As

Publication number Publication date
DE102007011879A1 (de) 2008-09-18

Similar Documents

Publication Publication Date Title
EP2588217B1 (fr) Procédé de séparation de gaz
EP3034466B1 (fr) Procédé combiné d&#39;adsorption modulée en pression pour membrane destiné à la récupération d&#39;hélium
DE69926526T2 (de) Wiedergewinnung von c02 und h2 aus psa-abgasen in einer h2-produktionsanlage
DE60102788T2 (de) Integriertes Verfahren zur Luftzerlegung und Energieerzeugung und Anlage zur Ausführung des Verfahrens
EP2214806B1 (fr) Centrale électrique à membrane, et procédé pour faire fonctionner une telle centrale
EP4001734B1 (fr) Procédé de transport de l&#39;hydrogène
WO2010072305A1 (fr) Procédé et dispositif de traitement d&#39;un courant de gaz contenant du dioxyde de carbone provenant d&#39;une grande installation de combustion
WO2011026587A1 (fr) Procédé et dispositif pour traiter un flux gazeux chargé en dioxyde de carbone et utilisation de l&#39;énergie du gaz de ventilation (travail et froid par expansion)
DE60013212T2 (de) Verfahren zur Konzentrationsregelung einer Gasmischung
DE102011102923A1 (de) Anlage und Verfahren zur Aufbereitung von Biogas
AT507891B1 (de) Vorrichtung und verfahren zur auftrennung eines gasgemisches
EP1517852A1 (fr) Procede et dispositif de separation par membrane pour enrichir un flux de gaz en au moins un composant gazeux
WO2008110145A1 (fr) Dispositif et procédé pour séparer le co2 d&#39;un gaz de procédé
WO2008110146A1 (fr) Dispositif et procédé pour séparer le co2 d&#39;un gaz de procédé
EP3541751B1 (fr) Procédé de production d&#39;ammoniac et d&#39;urée dans un complexe d&#39;installations commun
DE102012018163A1 (de) Verfahren zum Betreiben zweier Teilprozesse mit unterschiedlichen Wasserdampfanforderungen in einem Gesamtprozess
WO2020229261A1 (fr) Procédé et installation de synthèse de méthanol
WO2009106026A2 (fr) Installation de chauffe et procédé pour faire fonctionner cette dernière
EP3333123B1 (fr) Procédé et installation de production de gaz de synthèse
WO2015177051A1 (fr) Production de gaz de synthèse avec deux reformeurs autothermes
DE102010025819A1 (de) Verfahren und Einrichtung zur Regeneration aus Gaswäschen stammender aminhaltiger Waschmittellösungen
DE102010012601A1 (de) Vorrichtung und Verfahren zum Trennen eines fluiden Stoffgemisches
EP3674261B1 (fr) Procédé de synthèse d&#39;un composé contenant de l&#39;hydrogène
WO2016155929A1 (fr) Dispositif et procédé de séparation de dioxyde de carbone d&#39;un flux gazeux
DE102012007832A1 (de) Verfahren zum Betrieb einer Gasturbineneinheit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08734353

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 08734353

Country of ref document: EP

Kind code of ref document: A1