WO2008105559A1 - Lead storage battery - Google Patents

Lead storage battery Download PDF

Info

Publication number
WO2008105559A1
WO2008105559A1 PCT/JP2008/053893 JP2008053893W WO2008105559A1 WO 2008105559 A1 WO2008105559 A1 WO 2008105559A1 JP 2008053893 W JP2008053893 W JP 2008053893W WO 2008105559 A1 WO2008105559 A1 WO 2008105559A1
Authority
WO
WIPO (PCT)
Prior art keywords
lead
positive electrode
surface layer
acid battery
alloy
Prior art date
Application number
PCT/JP2008/053893
Other languages
French (fr)
Japanese (ja)
Inventor
Kyoko Honbo
Yasuo Kondo
Masanori Sakai
Tokiyoshi Hirasawa
Original Assignee
Shin-Kobe Electric Machinery Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin-Kobe Electric Machinery Co., Ltd. filed Critical Shin-Kobe Electric Machinery Co., Ltd.
Publication of WO2008105559A1 publication Critical patent/WO2008105559A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/73Grids for lead-acid accumulators, e.g. frame plates
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0483Alloys based on the low melting point metals Zn, Pb, Sn, Cd, In or Ga
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C11/00Alloys based on lead
    • C22C11/06Alloys based on lead with tin as the next major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/68Selection of materials for use in lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/82Multi-step processes for manufacturing carriers for lead-acid accumulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lead storage battery, and more particularly to a lattice structure used for a positive electrode and a negative electrode of a lead storage battery.
  • Patent Document 1 describes a lattice formed by punching a sheet.
  • This sheet has a lead-calcium alloy as a base material, a lead-silver alloy layer formed on one surface of the base material, and a lead-tin alloy layer formed on the other surface.
  • the silver content in the lead-silver alloy is 0.01 to 2.0%
  • the tin content is 0 to 10%.
  • the content of tin in lead-tin alloy is 1-30%.
  • Patent Document 2 describes the use of a plate piece integrated with a lead-calcium alloy plate and a lead-tin alloy plate as an electrode substrate.
  • Patent Document 3 describes a method in which a lead-calcium-0.3% tin alloy sheet is sandwiched between 0.5 mm-thick lead 1-3% tin alloy and rolled, and an integrated alloy plate is used for the lattice. ing.
  • Patent Document 4 discloses a method in which a rolled plate in which a lead-tin-tin-based alloy layer containing 1.8% or more of tin is bonded to the surface of a lead-calcium-tin-based alloy containing 1.6% or less of tin is used as a lattice body. Is described.
  • Patent Document 5 describes that a lattice obtained by processing a rolled sheet made of pure lead containing no antimony is used in order to reduce lattice corrosion and obtain a battery having a longer life.
  • the width of this grid is more than 1.2 times the sheet thickness.
  • Patent Document 6 describes a method using a lattice body having a thin layer of high-purity lead metal rolled and integrated on the surface
  • Patent Document 7 describes a lead-tin system on the surface of a pure lead plate. A method for integrating the alloy layer is disclosed. In either case, high purity lead (99.9% or more) can avoid the passivation of the lattice and provide excellent life characteristics.
  • Patent Document 8 shows that a lattice body in which a lead-containing core member is covered with a Pb sheet having an average crystal grain size of at least 100 micrometers exhibits good erosion resistance in a battery atmosphere. ing.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 6 3-2 1 1 567
  • Patent Document 2 JP-A-1-140557
  • Patent Document 3 Japanese Unexamined Patent Publication No. 2000-195524
  • Patent Document 4 JP-A-61-124064 (Japanese Patent Publication No. 4 1 8 1307)
  • Patent Document 5 JP-A-2004-14431
  • Patent Document 6 Japanese Unexamined Patent Application Publication No. 2004-1 525 78
  • Patent Document 7 Japanese Unexamined Patent Publication No. 2003-208898
  • Patent Document 8 Japanese Patent Laid-Open No. 10-276 16 Disclosure of Invention
  • lead-acid battery UPS standby use
  • Navigation picture mounted on a car To prevent the surface from flickering, measures to prevent overdischarge on the system side, for example, frequent charging may be performed.
  • This method of use advances the lattice corrosion of the positive electrode and shortens the battery life.
  • problems such as the danger of short-circuiting due to corrosion elongation have been pointed out.
  • the expanded lattice formed by expanding the rolled sheet and the punched lattice formed by punching the rolled sheet have the advantage that the thickness of the lattice is thin and the weight can be reduced. is there.
  • the expanded lattice and the punched lattice have the disadvantage that the active material layer is easily peeled off due to poor adhesion to the active material. Therefore, the deep discharge cycle life is short.
  • the rolled sheet has a fine lamellar structure, unlike a forged grid in which intergranular corrosion mainly proceeds, the corroded layer tends to peel off in layers. Therefore, the apparent expansion rate is high, and short-circuiting due to corrosion elongation is likely to occur.
  • pure lead is used in the grid, passivation can be avoided and the life characteristics can be improved, but pure lead has the disadvantage of low strength. Therefore, if an active material is filled in an expanded lattice or a punched lattice of pure lead, it will not be deformed into a fixed shape electrode. Therefore, a structure in which a strong lead-calcium alloy is used as a base material and a thin sheet of pure lead is attached to the surface is also conceivable. However, if rolling is performed with a thin plate of pure lead having a low strength on the base material, the pure lead is more easily stretched than the base material, and the two cannot be bonded together.
  • the positive electrode grid for a lead storage battery suppresses an early capacity drop and extends the life of the lead storage battery even if the deep discharge cycle is repeated. Furthermore, it is necessary that the recovery chargeability does not deteriorate even when left in an overdischarged state at a high temperature. Also in the usage method where the charged state continues, it is desirable to suppress the lattice corrosion and extend the battery life, and to suppress the corrosion elongation and reduce the risk of short circuit. Furthermore, in expanded and punched grids, it is necessary that the adhesion with the active material is improved and the deep discharge cycle life is long, and the risk of short-circuiting can be reduced by suppressing the corrosion elongation.
  • the object of the present invention is that the deep discharge cycle life is long, the recovery chargeability is good, the corrosion elongation is suppressed and the risk of short-circuiting can be reduced, and the battery characteristics are sufficient even if the addition amount of expensive tin or silver is small Is to provide a lead storage battery and a positive electrode grid for a lead storage battery.
  • the positive electrode lattice body of the lead storage battery of the present invention includes a base material mainly containing a Pb_Ca-Sn alloy and a Pb-Sn alloy containing Sn having a lower content than Sn contained in the base material.
  • the surface layer has crystal grains oriented in a specific direction with an aspect ratio of 3 to 13, and may contain at least one of B i, A g, B a, S r and A 1.
  • the deep discharge cycle life is long, the recovery chargeability is good, the corrosion elongation is suppressed, the risk of short circuit can be reduced, and sufficient battery characteristics can be obtained even if the amount of expensive tin or silver added is small.
  • Provided lead acid battery and positive electrode grid for lead acid battery can be provided
  • FIG. 1 is a diagram showing a configuration of a single plate lead-acid battery incorporating a positive electrode grid according to the present invention.
  • FIG. 2 is a diagram showing the configuration of the positive electrode grid according to the present invention.
  • FIG. 3 is a view showing a cross-sectional structure of the rapidly solidified powder used for producing a rolled sheet used in the positive electrode grid according to the present invention.
  • FIG. 4 is an explanatory diagram of a process for producing a rolled sheet used in the positive electrode grid according to the present invention.
  • FIG. 5 is an explanatory diagram of a process for producing a rolled sheet used in the positive electrode grid according to the present invention. It is.
  • FIG. 6 is a view for explaining the configuration of the cross section of the surface layer of the rolled sheet used in the positive electrode grid according to the present invention.
  • FIG. 7 is a structural cross-sectional photograph of the surface layer of the rolled sheet used in the positive electrode grid according to the present invention.
  • FIG. 8 is a diagram for explaining an experiment for measuring the tensile strength of a rolled sheet used in the positive electrode grid according to the present invention.
  • FIG. 9 is a diagram for evaluating the adhesion of the surface layer to the substrate of the rolled sheet used in the positive electrode grid according to the present invention.
  • FIG. 10 is a view showing the corrosion amount evaluation results of the rolled sheet used in the positive electrode grid according to the present invention. .
  • FIG. 11 is a diagram showing the results of a deep discharge cycle test of a rolled sheet used in the positive electrode grid according to the present invention.
  • FIG. 12 is a partially cut perspective view for explaining the configuration of a lead-acid battery for automobiles incorporating a positive electrode grid according to the present invention.
  • FIG. 13 is a partially cut perspective view for explaining the configuration of a wound lead-acid battery incorporating the positive electrode grid according to the present invention.
  • FIG. 14 is a partially cut perspective view for explaining the configuration of a control valve type lead-acid battery incorporating a positive electrode grid according to the present invention.
  • FIG. 15 is a diagram showing the deep discharge cycle characteristics of Example 1 of the positive electrode grid according to the present invention and the single plate lead-acid battery using the same.
  • FIG. 16 is a diagram showing the deep discharge cycle characteristics of Example 2 of the positive electrode grid according to the present invention and the single plate lead-acid battery using the same.
  • FIG. 17 is a diagram showing the deep discharge cycle characteristics of Example 3 of the positive electrode grid according to the present invention and the single plate lead-acid battery using the same.
  • FIG. 18 is a diagram showing the deep discharge cycle characteristics of Example 4 of the positive electrode grid according to the present invention and the single plate lead-acid battery using the same.
  • Powder rolling sheet 22... Base rolling sheet, 23... Rolling roll, 24 ⁇ Rolling sheet, 25——Stage rolling roll, 26... Formed plate, 27... Rolling direction, 28, 29, 30 ⁇ Surface Cross section of layer, 36 ... Positive electrode plate, 37 ... Negative electrode plate, 38 ... Separator, 39 ... Laminated plate group, 40 ... Battery case, 41 ... Positive electrode ear, 42 ... Lid, 43 ⁇ Positive terminal, 44 ⁇ Negative electrode terminal, 45 ⁇ Retainer, 46 ⁇ Winding electrode plate group
  • FIG. 1 is a configuration explanatory view of a single plate lead-acid battery in which a positive electrode lattice body according to this embodiment is incorporated.
  • the single plate lead-acid battery of this example has a positive electrode plate 1, a negative electrode plate 2, and a separator 3, and these members are electrolyses containing sulfuric acid (H 2 S 0 4 ). Impregnated with liquid (not shown).
  • the positive electrode plate 1 has a positive electrode active material 4 that fills the gap between the positive electrode grid body 5 and the positive electrode grid body 5.
  • the negative electrode plate 2 fills the gap between the negative electrode grid body 7 and the negative electrode grid body 7. It has a negative electrode active material 6.
  • a positive electrode ear 8 is connected to the positive electrode plate 1, and a negative electrode ear 9 is connected to the negative electrode plate 1.
  • the positive electrode ear 8 and the negative electrode ear 9 are connected to terminals for connection to a load.
  • the positive electrode grid 5 is formed into a mesh body by machining. For example, it can be obtained by punching a rolled sheet or by an expanding process in which a rolled sheet is cut and stretched. .
  • the positive electrode active material 4 may be a known material, and after the positive electrode active material paste containing lead powder, red lead, lead sulfate, basic lead sulfate, additives, etc. is filled in the current collector of the positive electrode grid 5 This can be obtained by drying. As is well known, the positive electrode active material 4 in contact with the current collector of the positive electrode grid 5 is converted to lead dioxide (PbO 2 ) by chemical conversion.
  • FIG. 2 shows an example of a rolled sheet used for preparing the positive electrode grid 5 of the present invention.
  • the rolled sheet of this example includes a base material 10 and a surface layer 11 thereon, which are integrated. The thickness of the surface layer 11 is preferably thinner than the thickness of the substrate 10.
  • the substrate 10 is mainly composed of a P b—C a—S n alloy.
  • the surface layer 11 is a thin film of a Pb—Sn alloy containing Sn with a lower content than Sn contained in the base material 10.
  • the Pb—Sn alloy of the surface layer 11 preferably contains at least one of Bi, Ag, Ba, Sr, and A1.
  • tin diffuses easily in lead metal.
  • a positive electrode grid is produced using only the base material 10
  • a high-content tin layer is formed at the interface between the active material and the current collector of the positive electrode grid.
  • Tin layer of high content of this conductive high because rich in charging properties, the periphery of the lead is easily oxidized by / 3 becomes a P b 0 2.
  • P b 0 2 deep discharge cycles, sulfated lead content at a very early stage, to form a passivation layer. That is, the deep discharge cycle life is shortened.
  • the current collector / active material interface of the positive grid is formed by the contact interface between the surface layer 11 on the substrate and the active material.
  • the surface layer 11 is formed by thinning a Pb—Sn alloy containing Sn having a lower content than Sn contained in the base material. Therefore, the tin content contained in the tin layer formed at the interface between the current collector and the active material is lower than that of the prior art. This tin layer has low conductivity because of its low tin content. Therefore, the periphery of the lead,) 3- P b 0 2 does not change. Accordingly, it is desirable that the tin content in the surface layer 11 of the rolled sheet that extends the cycle life of the deep discharge is O.lw t% or more and less than l.Ow t%. The content of tin in the range, a remarkable effect can be suppressed around the lead] to oxidation to 3 _ P b O 2.
  • the tin content of the surface layer 11 is lower than the tin content of the base material. Therefore, tin diffuses from the substrate to the surface layer. Therefore, the greater the thickness Y of the surface layer, the greater the amount of tin that enters the surface layer from the substrate. That is, when the thickness Y of the surface layer is increased, the tin content in the base material decreases. As the tin content in the substrate decreases, the corrosion elongation increases and the risk of a short circuit increases. Therefore, the surface layer thickness Y is too large. I can't speak. On the contrary, when the thickness Y of the surface layer is small, tin enters the surface layer from the base material, so that the tin content in the surface layer increases. As a result, the effect of the surface layer on the battery characteristics, in particular, the extension of the deep discharge cycle life cannot be obtained.
  • the thickness of the substrate 10 is X
  • the thickness of the surface layer 11 is Y.
  • the ratio of the thickness Y of the surface layer to the thickness X of the substrate, that is, Y: X is preferably in the range of 1:10 to 1:60. For this, refer to the description of Example 2 shown in FIG. 16 later.
  • the base material uses a Pb—C a —Sn alloy having high mechanical strength, the strength of the positive electrode lattice can be ensured.
  • the surface layer uses a Pb—Sn alloy having a low tin content, it is inferior in mechanical strength as compared with the base material. Therefore, handling properties can be ensured by stacking a surface layer thinner than the base material on the base material.
  • the surface layer 11 a thin film of a Pb—Sn alloy containing a Sn content lower than the Sn contained in the base material is used as the surface layer 11 has been described. However, a high purity lead thin film may be used as the surface layer 11.
  • the surface layer is formed by rolling a rapidly solidified powder of Pb—Sn alloy or high-purity lead. Rapidly solidified powder is dropped by spraying a molten Pb-Sn alloy or high-purity lead in an inert gas atmosphere such as nitrogen or in dry air, or on a disk that rotates at high speed. Can be obtained.
  • the degree of oxidation of the rapidly solidified powder When the degree of oxidation of the rapidly solidified powder exceeds 2000 ppm, j3—Pb 0 2 begins to be produced, which degrades the deep discharge cycle life. Therefore, it is desirable that the degree of oxidation of the rapidly solidified powder be at least 2000 ppm. If the degree of oxidation of the rapidly solidified powder is high, the amount of corrosion of the positive electrode grid increases, which is not preferable. — Less than 500 ppm is preferred to extend the deep discharge cycle life by suppressing the formation of P b 0 2 and further to extend the battery life in the charged state by suppressing lattice corrosion. Based on the above, the degree of oxidation of the rapidly solidified powder depends on the concentration of oxygen and moisture mixed in the manufacturing process, but is preferably less than 2000 ppm, and preferably less than 500 ppm.
  • FIG. 3 (A) and Fig. 3 (B) show a cross section 14 of rapidly solidified powder of high purity lead according to the present invention.
  • FIG. 3 (C) and FIG. 3 (D) show a cross section 15 of the rapidly solidified powder of Pb—Sn alloy according to the present invention.
  • the average particle size of the rapidly solidified powder is desirably 2 micrometers or more and 50 micrometers or less.
  • crystal grains 16 exist in the rapidly solidified powder of high-purity lead, and in the rapidly solidified powder of Pb_Sn alloy, as shown in Fig. 3 (D). Confirms the presence of crystal grains 17.
  • the size of the crystal grains is in the range of 1/1 to 1/10 that of the rapidly solidified powder.
  • FIG. 4 and 5 show examples of rolling apparatuses for producing rolled sheets.
  • the rapidly solidified powder 19 put into the hopper 18 is rolled by a powder rolling roll 20 to obtain a powder rolled sheet 21 that is a raw material of the surface layer.
  • the powder rolling sheet 21 is superimposed on a base material rolling sheet 22 that is a raw material of the base material and inserted into a rolling roll 23. From the rolling nozzle 23, a two-layered rolled sheet 24 composed of a base material 10 and a surface layer 11 is formed.
  • the rapidly solidified powder 19 is put into a mold and press-molded to produce a molded plate 26.
  • This molded plate 26 is rolled by a first-stage rolling roll 25 to obtain a powder rolled sheet 21 which is a raw material for the surface layer.
  • the powder rolling sheet 21 is superposed on a base material rolling sheet 22 which is a raw material of the base material and is inserted into a rolling roll 23. From the rolling port 23, a two-layered rolled sheet 24 composed of a base material 10 and a surface layer 11 is formed.
  • the base material rolled sheet 22 mainly containing a Pb—C a —Sn alloy may be a known one, and may be a forged rolled sheet in the prior art.
  • the rolling roll 23 and the first stage rolling nozzle 25 may be a multistage roll having a plurality of rolling rolls.
  • FIG. 6 shows a cross-sectional view of a rolled sheet that is a material of the positive electrode grid of the present invention.
  • the surface layer 11 of the rolled sheet is perpendicular to the surface of the rolled sheet and is cut by a plane parallel to the rolling direction 27 and perpendicular to the surface of the rolled sheet. It has three cross sections, a cross section 29 cut by a plane perpendicular to the rolling direction and a cross section 30 cut by a plane parallel to the surface of the rolled sheet.
  • Fig. 7 (A), Fig. 7 (D), and Fig. 7 (G) are structural photographs of forged rolled sheets of Pb-Sn alloy according to the prior art.
  • Fig. 7 (B), Fig. 7 (E), Fig. 7 (H) are structural photographs of the surface layer 11 of a powder rolled sheet of rapidly solidified powder of high purity lead according to the present invention
  • Fig. 7 ( C), FIG. 7 (F), and FIG. 7 (I) are photographs of the structure of the surface layer 11 of the powder-rolled sheet of Pb—Sn alloy rapidly solidified powder according to the present invention.
  • FIG. 7 (A), Fig. 7 (B), Fig. 7 (C) are structural photographs of the cross section 29 of the surface layer 11 cut by a plane perpendicular to the surface of the rolled sheet and perpendicular to the rolling direction
  • Fig. 7 (D) are structural photographs of the cross section 30 of the surface layer 11 cut by a plane parallel to the surface of the rolled sheet
  • Fig. 7 (G) are structural photographs of the cross section 28 of the surface layer 11 cut by a plane perpendicular to the surface of the rolled sheet and parallel to the rolling direction 26.
  • the vertical direction of these structural photographs corresponds to the direction of the double arrow shown in each cross section of FIG.
  • the surface layer 11 according to the present invention shown in FIGS. 7B, 7E, 7H, 7C, 7F, and 7I the surface It has a structure consisting of aggregates of crystal grains oriented in a specific direction with a cut ratio of 3 to 13. Furthermore, the average grain size of the crystal grains is smaller than 100 micrometers, and the crystal shape is flat.
  • the composition on the surface of the crystal grains, the composition of the dispersion (hydroxyl group, carbonyl group, SnOx, P b Ox, P b COx, adsorbed water, etc.), dispersion The grain size, dispersion state, distortion, and transition of the steel are different from the crystal grains of the forged rolled sheet.
  • the surfaces of the rapidly solidified powder particles are bonded to form an interface between the particles. This interface is completely different from the grain boundaries of the forged rolled sheet, suppressing the progress of recrystallization seen in the forged rolled sheet and preventing the grain from becoming coarse.
  • Fig. 8 (A) shows the shape of the test piece used in the tensile test.
  • the longitudinal dimension of the specimen is 52 mm
  • the length of the neck is 30 mm
  • the width is 10 mm
  • the thickness is 0.2 mm.
  • Two test specimens were prepared from the powder rolled sheet according to the present invention, and two comparative test specimens were prepared from a conventional forged rolled sheet.
  • the first test piece was produced by compacting a rapidly solidified powder of Pb—Sn alloy with a mold and rolling it.
  • the second test piece was prepared by compacting rapidly solidified powder of high-purity lead with a mold and rolling it.
  • the test piece of the first comparative example was produced from a conventional Pb—Sn forged rolled sheet.
  • the test piece of the second comparative example was made from a conventional high purity lead forged sheet.
  • Figure 8 (B) shows the results of the tensile test.
  • Shimadzu Autograph AGS I H500N was used as the measuring device.
  • the gauge distance is 27mm and the strain rate is 5mmZ.
  • the tensile strength of the powder-rolled sheet of the present invention is 25 ⁇ 2 NZmm 2 or more and 46 ⁇ 2 NZmm 2 or less, taking into account variations in measurement points. Since the powder rolling sheet is an aggregate of fine crystal grains, grain boundaries increase.
  • the tensile strength is increased by the grain boundary strength as compared with the forged rolled sheet of the prior art.
  • the powder-rolled sheets are connected by a human interface formed by bonding the surfaces of the rapidly solidified powder particles, deformation is not easily transmitted even when subjected to a tensile force, and elongation is suppressed. it can.
  • FIG. 9 is a structural photograph of the surface layer 11 after peeling off the positive electrode active material 4 in order to confirm the adhesion between the surface layer 11 of the rolled sheet according to the present invention and the positive electrode active material 4.
  • FIG. 9 (A) is a photograph of a Pb—C a—S n alloy of a base material as a comparative example. That is, in order to confirm the adhesion between the Pb—Ca—Sn alloy and the positive electrode active material, the surface of the base material after the positive electrode active material was peeled was observed.
  • Fig. 9 (B) shows a photograph of the surface layer 11 of a rapidly rolled solid powder of a Pb-Sn alloy according to the present invention, and Fig.
  • Fig. 9 (C) shows Pb-S with Bi added according to the present invention.
  • Fig. 9 (D) is a photograph of surface layer 11 of n-alloy rapidly solidified powder powder rolled sheet.
  • Fig. 9 (D) shows the powder rolling of rapidly solidified powder of Pb-Sn alloy with Sr added according to the present invention. It is the photograph of the surface layer 11 by a sheet
  • the positive electrode active material 4 may be a known one, and is obtained by applying a positive electrode active material paste obtained by kneading lead powder and red lead with a sulfuric acid aqueous solution to the upper surface of the rolled sheet and then drying it.
  • the brown cathode active material remains. That is, the surface layer 11 of the powder rolled sheet according to the present invention has high adhesion to the positive electrode active material.
  • the addition of Bi or Sr has the potential to further improve the adhesion.
  • FIG. 10 shows the measurement results of the corrosion test of the surface layer 11 of the rolled sheet according to the present invention under high temperature and overcharge conditions.
  • Fig. 10 (A) is the measurement result of the P b -C a-S n alloy sheet of the base material as a comparative example
  • Fig. 10 (B) is the rapidly solidified powder of the P b _ S n alloy according to the present invention.
  • Fig. 10 (C) shows the measurement result of the surface layer 11 of the Pb—Sn alloy rapidly solidified powder powder rolled sheet added with Ag according to the present invention. is there.
  • the surface layer 11 is a pre-integrated powder rolled sheet having a thickness of 0.5 mm so that the surface layer 11 and the Pb—C a —Sn alloy as the base material have the same thickness.
  • the conditions for the corrosion test are an aqueous sulfuric acid solution with a temperature of 75 ° C and an electrolyte density of 1.28. Each sheet was charged for 6 hours at a current density of 1 OmA / cm 2 and then rested for 6 hours for 14 cycles. A known lead electrode was used as the counter electrode. The amount of corrosion was expressed as the erosion depth measured along the thickness direction.
  • the base Pb—Ca—Sn alloy has a large amount of corrosion and is inferior in corrosion resistance.
  • the surface layer 11 according to the present invention has a low corrosion amount and high corrosion resistance.
  • the addition of Ag to the Pb—Sn alloy reduces the amount of corrosion and improves the corrosion resistance.
  • Figure 11 shows the results of the deep discharge cycle experiment.
  • the corrosion layer (oxide layer) of the surface layer 11 is measured by an X-ray diffractometer, and a_P b 0 2 (1 1 1)
  • the inter-surface spacing d value was obtained.
  • RINT2500 manufactured by Rigaku was used as the X-ray diffractometer.
  • the measurement conditions were Cu ka for the X-ray source, 50kV-250mA for the X-ray output, centralized method with monochromator for the optical system, scanning speed 0.5deg / min, and sampling interval O.Oldeg / step.
  • the battery used in the deep discharge cycle test has the configuration shown in Fig. 1.
  • the battery was charged at 0.2C, then rested for 1 hour, and repeatedly discharged at 0.2C to 1.75V.
  • the number of cycles when the discharge capacity dropped to 80% of the discharge capacity at the first cycle was judged as the deep discharge cycle life.
  • the electrodes that reached the deep discharge cycle life were disassembled in a charged state, washed with water and dried, and only the corroded layer was scraped off and measured with an X-ray diffractometer.
  • the first positive electrode grid of the present invention has a surface layer of a powder rolled sheet of rapidly solidified powder of high-purity lead, and the second positive electrode grid of the present invention contains 0.05 wt% Ag. It has a surface layer 11 of a rapidly solidified powder of a Pb_Sn alloy and is a surface of a powdered rolled sheet of a rapidly solidified powder of a Pb-Sn alloy.
  • Each of the base materials is made of a Pb_C a—S n alloy sheet.
  • the positive electrode grid body of the first comparative example has a surface layer 11 of a rapidly rolled solid powder of a Pb—Sn alloy containing a high concentration of Sn, and a second comparative example.
  • This positive electrode grid is composed only of a Pb—Ca—Sn alloy as a base material that does not include a surface layer.
  • the crystal structure of the corrosion layer (oxide layer) formed on the surface layer 11 of the positive electrode lattice according to the present invention includes a_P b 0 2 , and ct_P b O 2 ( 1 1 1)
  • Surface spacing d value is 0.3140 ⁇ 0.0001 nanometers or less.
  • Fig. 11 (B) is a graph showing the relationship between the (1 1 1) plane spacing d value of a_P b O 2 in Fig. 11 (A) and the deep discharge cycle life. Therefore, to extend the life of the deep discharge cycle, the d-value between the (1 1 1) planes of a—Pb 0 2 is 0.3140. It is preferably ⁇ 0.0001 nm or less and 0.3120 ⁇ 0.0001 nm or more.
  • the adhesion evaluation test in FIG. 9 when only the Pb—Ca—Sn alloy of the base material is used as the positive electrode lattice, the adhesion to the positive electrode active material is low, the corrosion resistance is low, and the deep discharge cycle life is short.
  • the surface layer 11 is rolled on the base material by a powder rolling sheet of a rapidly solidified powder of Pb—Sn alloy containing Sn having a lower content than the base material.
  • the two-layer structure has high adhesion and corrosion resistance.
  • the deep discharge cycle life is short.
  • a positive electrode body having a surface layer 11 of a powder rolling sheet of a rapidly solidified powder of a Pb-Sn alloy containing Sn lower than the base material as in the present invention, a deep discharge cycle Long life.
  • a deep discharge cycle life is also long in the case of a positive electrode grid having a surface layer 11 of a powder-rolled sheet of rapidly solidified powder of high-purity lead.
  • Bi will be described. From the result of the evaluation of the adhesion to the positive electrode active material shown in FIG. 9 (C), when Bi is contained in the surface layer of the positive electrode grid, the adhesion between the surface layer of the positive electrode grid and the positive electrode active material is reduced. improves. Therefore, Bi has the function of extending the deep discharge cycle life even in expanded and punched lattices. Furthermore, Bi has the function of further promoting the production of ⁇ -Pb 0 2 which is essential for extending the deep discharge cycle life.
  • the Bi content of the surface layer of the positive electrode grid is 5 wt%. However, from the results of Example 3 in FIG. 17 and Example 4 in FIG. 18 described below, the Bi content is preferably It is 1% or more and 15 t% or less, More preferably, it is 0.5 wt% or more and 15 wt% or less.
  • the corrosion resistance improves when Ag is included in the surface layer of the positive electrode lattice. Ag is under high temperature conditions, Suppresses grid corrosion in overcharge conditions, extending battery life. Furthermore, from the evaluation results of the deep discharge cycle life shown in FIG. 11 (A), when the surface layer of the positive electrode grid body contains Ag, the deep discharge cycle life is prolonged. Ag has the function of suppressing the formation of lead sulfate, which is a causative substance that decreases the deep discharge cycle life. The content of Ag is 0.5 wt% in the example shown in FIG. 10 (C), and 0.005 wt% in the example shown in FIG. 11 (A).
  • the Ag content is preferably 0.005 wt% or more and 0.5 wt% or less, and more preferably 0.005 wt%. % Or more and O.Olw t% or less.
  • the adhesion between the surface layer of the positive electrode grid and the positive electrode active material is improved when the surface layer of the positive electrode grid includes Sr.
  • Sr is added to the surface layer 11 of the positive electrode grid body, fine precipitates are reacted to improve the adhesion with the positive electrode active material. For this reason, expanded and punched grids also have the effect of extending the deep discharge cycle life.
  • the Sr content is l.Ow t%.
  • the Sr content is preferably O.Olw t% or more and l.Ow t% or less.
  • FIG. 12 is a perspective view for explaining the configuration of an automotive lead-acid battery in which the positive electrode grid according to the present embodiment is incorporated, and is cut out in a battery case and a part of an electrode group.
  • FIG. -3 ⁇ 4 As shown in Fig. 12, the lead acid battery for automobile includes a positive electrode plate 36 (electrode body for lead acid battery) and a negative electrode plate 37 (electrode body for lead acid battery).
  • the positive electrode plate 36 and the negative electrode plate 37 are arranged via a separator 38 made of a resin such as polyethylene, and a plurality of pairs of the positive electrode plate 36, the negative electrode plate 37, and the separator 38 are stacked. Thus, a laminated electrode group 39 is formed. Although not shown, in the battery case 40, six laminated electrode plate groups 39 are accommodated together with the electrolytic solution containing sulfuric acid (H 2 S0 4 ).
  • the battery case 40 is provided with a lid 42.
  • the positive electrode plates 36 in the laminated electrode plate group 39 are connected to each other by positive electrode ears 41 connected to the positive electrode terminal 43. Are electrically connected in parallel. Further, the negative electrode plates 37 are electrically connected in parallel by a negative electrode ear connected to the negative electrode terminal 44.
  • the laminated electrode plate groups 39 are electrically connected in series.
  • the positive electrode plate 36 is provided with the positive electrode lattice body of the present invention.
  • the shape of the positive electrode lattice is not particularly limited, and may be a punched lattice, an expanded lattice, other shapes, or a sheet shape. According to the automotive lead storage battery of the present example as described above, the same operational effects as the single plate lead storage battery according to the first embodiment can be achieved.
  • the lead acid battery for vehicles of this embodiment has confirmed the following effects.
  • the lead acid battery for automobiles of this embodiment can extend the deep discharge cycle life.
  • recovery chargeability does not deteriorate even when left at high temperatures and in an overdischarged state.
  • the battery life can be extended by suppressing lattice corrosion, and the risk of short-circuiting can be reduced by suppressing corrosion growth.
  • adhesion to the active material is improved and the deep discharge cycle life is extended.
  • the risk of short-circuiting can be reduced by suppressing corrosion elongation.
  • a perforated plate of a sheet in which a conventional lead-calcium alloy is used as a base material and a lead-silver alloy layer is formed on one side of the base material and a lead-tin alloy layer is formed on the other side of the base material is a lattice.
  • Patent Document 1 A plate piece integrated using a method and a lead-calcium alloy plate and a lead-tin alloy plate is used as an electrode substrate (for example, Patent Documents 2, 3, and 4). Compared with the method, it is possible to suppress the decrease of the electrolyte caused by Sn or Ag, and to extend the deep discharge cycle life.
  • FIG. 13 is a perspective view for explaining the configuration of a wound lead-acid battery in which the positive electrode grid body according to the present embodiment is incorporated. It is a figure which contains a notch in a part of pole group.
  • the same components as those in the second embodiment are denoted by the same reference numerals, and detailed description thereof is omitted. As shown in FIG.
  • the wound lead-acid battery includes a positive electrode plate 36 (lead-acid battery electrode body) and a negative electrode plate 37 (lead-acid battery electrode body).
  • a retainer 45 made of glass fiber, a negative electrode plate 37, a retainer 45, and a positive electrode plate 36 are overlapped in this order and wound around a predetermined central axis to thereby form a circle.
  • a columnar wound electrode group 46 is formed.
  • six wound electrode plate groups 46 are accommodated together with the electrolyte containing sulfuric acid (H 2 S04).
  • a lid 42 is attached to the battery case 40.
  • the positive electrode plates 36 in the laminated electrode plate group 39 are electrically connected in parallel by the positive electrode ear 41 connected to the positive electrode terminal 43. Further, the negative electrode plates 37 are electrically connected in parallel by a negative electrode ear connected to the negative electrode terminal 44. Further, the wound electrode plate groups 46 are electrically connected in series.
  • the positive electrode plate 36 is provided with the positive electrode lattice body of the present invention.
  • the shape of the positive electrode lattice is not particularly limited, and may be a punched lattice, an expanded lattice, other shapes, or a sheet shape. According to the wound lead-acid battery of this example as described above, the same operational effects as the single-plate lead-acid battery according to the first embodiment can be achieved.
  • the wound lead-acid battery of this embodiment has confirmed the following effects as compared with conventional lead-acid batteries (for example, see Patent Documents 1 to 8).
  • the wound lead-acid battery of this embodiment can extend the deep discharge cycle life, and the recovery chargeability does not deteriorate even when left in an overdischarged state at a high temperature. Even in the charged state, the battery life can be extended by suppressing lattice corrosion, and the risk of short-circuiting can be reduced by suppressing corrosion growth. Even in expanded and punched grids, adhesion to the active material is improved, deep discharge cycle life is increased, and corrosion growth can be suppressed to reduce the risk of short circuits. Even if the amount of expensive tin or silver added is small, sufficient battery characteristics can be obtained, contributing to lower costs.
  • a perforated plate of a sheet in which a conventional lead-calcium alloy is used as a base material, and a lead-silver alloy layer is formed on one side of the base material and a lead-tin alloy layer is formed on the other side of the base material is a lattice.
  • the method and a plate piece integrated using a lead-calcium alloy plate and a lead-tin alloy plate are used as an electrode base (for example, refer to Patent Documents 2, 3, and 4). )
  • a fourth embodiment of the present invention will be described with reference to FIG.
  • a control valve type lead-acid battery and a positive electrode grid body incorporated therein will be described.
  • FIG. 14 is a perspective view for explaining a configuration of a control valve type lead storage battery in which a positive electrode grid body according to the present embodiment is incorporated, and is cut out in a part of a battery case and an electrode group.
  • the same components as those in the second and third embodiments are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the control valve type lead-acid battery includes a positive electrode plate 36 (lead-acid battery electrode body) and a negative electrode plate 37 (lead-acid battery electrode body).
  • a positive electrode plate 36 and a negative electrode plate 37 are arranged via a retainer 45 made of glass fiber, and a set consisting of a positive electrode plate 36, a negative electrode plate 37 and a retainer 45 is A laminated electrode plate group 47 is formed by laminating a plurality of layers.
  • a laminated electrode plate group 39 is accommodated in the battery case 40 together with an electrolytic solution containing sulfuric acid (H 2 S 0 4 ).
  • the battery case 40 is provided with a lid 42.
  • the positive electrode plates 36 in the laminated electrode plate group 39 are electrically connected in parallel by the positive electrode ear 41 connected to the positive electrode terminal 43. Further, the negative electrode plates 37 are electrically connected in parallel by a negative electrode ear connected to the negative electrode terminal 44.
  • the laminated electrode plate groups 39 are electrically connected in series. In the control valve type lead-acid battery, a control valve 46 for adjusting the pressure in the battery case 40 is attached.
  • the positive electrode plate 36 is provided with the positive electrode grid 5 of the present invention.
  • the shape of the positive electrode lattice body 5 of the present invention is not particularly limited, and may be a punched lattice, an expanded lattice, other shapes, or a sheet shape. According to the wound lead-acid battery of this example as described above, the same effects as the single plate lead-acid battery according to the first embodiment can be obtained.
  • the control valve type lead acid battery of this embodiment confirmed the following effects compared with the conventional lead acid battery (for example, refer patent documents 1-8).
  • the control valve type lead acid battery of this embodiment is Discharge cycle life can be extended, and recovery chargeability does not deteriorate even when left in an overdischarged state at high temperatures. Even in the charged state, the battery life can be extended by suppressing lattice corrosion, and the risk of short-circuiting can be reduced by suppressing corrosion growth. Even in expanded and punched grids, adhesion to the active material is improved, resulting in a longer deep discharge cycle life, reducing corrosion growth and reducing the risk of short circuits.
  • a perforated plate of a sheet in which a conventional lead-calcium alloy is used as a base material, and a lead-silver alloy layer is formed on one side of the base material and a lead-tin alloy layer is formed on the other side of the base material is used for the lattice.
  • Method or plate integrated using a lead-calcium alloy plate and a lead-tin alloy plate as an electrode substrate for example, refer to Patent Documents 2, 3, and 4
  • the present invention it is possible to provide a lead storage battery that can extend the deep discharge cycle life as compared with a conventional lead storage battery, and does not deteriorate the recovery chargeability even when left in an overdischarged state at a high temperature. Can do. Even in the charged state, the battery life can be extended by suppressing lattice corrosion, and the risk of short-circuiting can be reduced by suppressing corrosion growth. In expanded and punched grids, adhesion to the active material is improved and the life of the deep discharge cycle is extended, and the risk of short-circuiting can be reduced by suppressing corrosion growth. Further, sufficient battery characteristics can be obtained even if the amount of expensive tin or silver added is small.
  • FIG. 15 (A) shows the configuration of the base material 10 and the surface layer 11 of the rolled sheet.
  • a method for producing rolled sheets F to L according to Example 1 of the present invention will be described.
  • Sn content force A forged slab of Pb-Ca-Sn alloy having a strength of U.2 wt% or more and 2.5 wt% or less was formed.
  • the Pb_Ca-Sn alloy is a ternary alloy of Pb, Sn and Ca, and the content of Ca is 0.02 to 0.11 wt%.
  • the forged slab was sequentially rolled with a multi-stage roll to produce a substrate 10.
  • a forged slab of Pb—Sn alloy having a Sn content of 0.01 wt% or more and 0.95 wt% or less was formed.
  • the Sn content of this forged slab is less than the Sn content of the substrate 10.
  • a small amount of Ag, Al, Ba, Bi, Sr, etc. may be included to improve performance.
  • This forged slab was sequentially rolled with multi-stage rolls to produce a surface layer 11 having a thickness of 0.2 mm.
  • Rolled sheets F to L in which the base material 10 and the surface layer 11 were integrated were prepared by simultaneously superimposing the surface layer 11 on the base material 10 and rolling.
  • the rolled sheets F to L were expanded to form a mesh portion, and a positive electrode grid 5 shown in FIG. 1 was obtained.
  • the base material 10 and the surface layer 11 can also be subjected to an aging treatment.
  • a method for producing the rolled sheet M of Comparative Example 1 will be described.
  • a forged slab of Pb_C-a-Sn based alloy having a Sn content of 1.4 wt% and a Ca content of 0.09 wt% was formed.
  • P b—C a -S n alloy is a ternary alloy of P b, Sn and Ca.
  • the forged slab was sequentially rolled with a multi-stage roll to produce a substrate 10 having a thickness of 1.2 mm.
  • This substrate 10 is Comparative Example 1.
  • the rolled sheet M of Comparative Example 1 is composed of the base material 10 and does not include the surface layer 11. This rolled sheet M was expanded to form a mesh portion, and a positive electrode grid 5 shown in FIG. 1 was obtained.
  • a method for producing the rolled sheets 0 to Q of Comparative Example 2 will be described.
  • a forged slab of Pb-Ca-Sn alloy having a Sn content of 1.4 wt% and a Ca content of 0.09 wt% was formed.
  • Pb-Ca-Sn alloy is a ternary alloy of Pb, Sn, and Ca.
  • the forged slab was sequentially rolled with a multi-stage roll to produce a substrate 10.
  • a forged slab of Pb—Sn alloy having an Sn content of 1.4 wt% or more and 4 wt% or less was formed.
  • the content of Sn in this forged slab is higher than the content of Sn in the base material 10.
  • the forged slab was sequentially rolled with a multi-stage roll to produce a surface layer 11 having a thickness of 0.2 mm.
  • Rolled sheets 0 to Q in which the base material 10 and the surface layer 11 were integrated were produced by simultaneously superimposing the surface layer 11 on the base material 10 and rolling.
  • the rolled sheets 0 to Q were expanded to form a mesh portion, and a positive electrode grid 5 shown in FIG. 1 was obtained.
  • the base material 10 and the surface layer 11 can also be subjected to an aging treatment.
  • Polyester fiber was added to the mixture of lead powder and red lead, and water and dilute sulfuric acid (specific gravity 1.26, 20 ° C) were added to it. This was kneaded to produce a positive electrode active material paste.
  • This positive electrode active material paste 58 g was obtained from the positive electrode grid 5 obtained from the above-described rolled sheets F to L according to Example 1 of the present invention and the rolled sheets M and 0 to Q of Comparative Examples 1 and 2.
  • the lattice 5 was filled.
  • the size of the collector grid of the positive grid 5 was 1 16 mm X I 00 mm X 1.2 mm. These positive electrode grids 5 were left to mature for 18 hours in an atmosphere of 50 ° C and humidity of 98RH%, and then left to dry at a temperature of 110 ° C for 2 hours. Was made.
  • the single plate lead-acid battery shown in Fig. 1 was produced.
  • the electrolyte used was dilute sulfuric acid with a specific gravity of 225 (20 ° C).
  • the chemical conversion of the single plate lead-acid battery was performed at 2.4A for hours. After the chemical conversion, dilute sulfuric acid having a specific gravity of 1.4 (20 ° C) was added, and the electrolyte was adjusted to become dilute sulfuric acid having a specific gravity of 1.28 (20 ° C).
  • the obtained single plate lead-acid battery had a battery capacity of 7 Ah and an average discharge voltage of 2 V.
  • Example 1 of the present invention Using the rolled sheet M of Comparative Example 1, a single plate lead battery was produced in the same manner as Example 1 of the present invention.
  • Deep discharge cycle experiments were conducted on these single plate lead-acid batteries.
  • the charging current was 1.4 A, and 30% of the discharge capacity was charged.
  • the discharge capacity was calculated from the discharge time until the lower limit voltage reached 1.75 V at a discharge current of 1.4A.
  • Figure 15 (B) shows the deep discharge cycle characteristics.
  • the vertical axis represents the discharge capacity (Ah), and the horizontal axis represents the number of cycles (times).
  • the single plate lead-acid battery using the rolled sheets F to L according to the present invention showed an excellent deep discharge cycle life.
  • the content of C a in the base material is preferably 0.05 to 0.09 wt% considering both handling properties and corrosion resistance.
  • the content of Sn in the substrate is preferably 1.2 wt% to 1.9 wt% in consideration of both cost and suppression of the amount of electrolyte decrease.
  • Single plate lead-acid batteries using rolled sheets M, 0 to Q of Comparative Examples 1 and 2 have a short deep discharge cycle life.
  • the battery was overdischarged at a discharge current of 1.4 A until the lower limit voltage reached 1.6 V, and left at 45 ° C for 2 weeks.
  • the single plate lead-acid battery after charging was charged with 150% of the discharge capacity at a charging current of 1.4A. From the discharge time until the lower limit voltage reached 1.75V at a discharge current of 1.4A, the discharge capacity after overdischarge and left-over recovery charge was determined.
  • the single plate lead-acid battery using the rolled sheets F to L according to Example 1 of the present invention had good recovery charge characteristics, and the discharge capacity was 80% or more of the battery capacity.
  • aqueous sulfuric acid solution in which 0.01 wt% or more and 5 wt% or less of magnesium sulfate or sodium sulfate is added to the electrolyte.
  • a sulfuric acid aqueous solution By using such a sulfuric acid aqueous solution, the recovery charge performance during overdischarge can be improved.
  • FIG. 16 (A) shows the ratio of the thickness of the base material 10 and the surface layer 11 of the rolled sheet.
  • a method for producing the rolled sheets R to V according to Example 2 of the present invention will be described.
  • a forged slab of Pb_Ca—Sn alloy with a Sn content of 1.4 wt% and a Ca content of 0.09 wt% was formed.
  • P b—C a—S n alloy is a ternary alloy of P b, Sn and Ca. This forged slab was sequentially rolled with a multi-stage roll to produce a substrate 10.
  • a forged slab of Pb—Sn alloy having an Sn content of 0.1 wt% was formed.
  • the Sn content of this forged slab is less than the Sn content of the substrate 10.
  • a small amount of A g Al, Ba, Bi, Sr, etc. may be included.
  • the forged slab was sequentially rolled with a multi-stage roll to produce a surface layer 11.
  • Rolled sheets R to V were produced by superimposing the surface layer 11 on the base material 10 and rolling it simultaneously.
  • the ratio of the surface layer thickness (Y) 13 to the base material thickness (X) 12 shown in FIG. 6, that is, ⁇ : is in the range of 1: 5 to 1:70.
  • the thickness of the rolled sheet R to V is in the range of 0.7 to 3.2 mm.
  • the rolled sheets R to V were expanded to form a mesh part, and the positive electrode grid 5 shown in FIG. 1 was obtained.
  • the base material 10 and the surface layer 11 can each be subjected to an aging treatment. Using these rolled sheets R to V, a single plate lead-acid battery was produced in the same manner as in Example 1, and the deep discharge cycle life was measured under the same conditions.
  • Figure 16 (B) shows the measurement results of the deep discharge cycle life.
  • the single plate lead-acid battery using the rolled sheets R to T of Example 2 showed a relatively excellent deep discharge cycle life.
  • the single plate lead-acid battery using the rolled sheets U and V of Example 2 had a relatively short deep discharge cycle life. Therefore, when the single plate lead-acid battery using the rolled sheets U and V was disassembled, the corrosion on the surface layer of the positive electrode grid was slightly advanced.
  • the single unit using the rolled sheets R to V according to Example 2 of the present invention is used.
  • Plate lead-acid batteries have good deep discharge cycle life. From this result, the ratio of the thickness (Y) 13 of the surface layer to the thickness (X) 12 of the substrate, that is, Y: X is in the range of 1:10 to 1:60. preferable.
  • FIG. 17 shows the configuration of the base material 10 and the surface layer 11 of the rolled sheet.
  • Example 3 of this invention The manufacturing method of the rolled sheets WZ and ak by Example 3 of this invention is demonstrated.
  • a forged slab of Pb—C a—S n alloy with an Sn content of 1.4 wt% and a Ca content of 0.09 wt% was formed.
  • P b _C a—S n alloy is a ternary alloy of P b, Sn and Ca.
  • the forged slab was sequentially rolled with a multi-stage roll to produce a substrate 10.
  • the Sn content is 0.2wt%, including Ag, Al, Ba, Bi, 3 ::?
  • a forged slab of 13_Sn alloy was formed.
  • the Sn content of this forged slab is less than the Sn content of the substrate 10.
  • the forged slab was sequentially rolled with a multi-stage roll to produce a surface layer 11 having a thickness of 0.2 mm.
  • Figure 17 shows the deep discharge cycle life of single-plate lead-acid batteries using rolled sheets W to Z and a to k.
  • the number of cycles when the discharge capacity dropped to 60% of the discharge capacity at the first cycle was determined as the deep discharge cycle life.
  • Single plate lead-acid batteries using rolled sheets YW ⁇ j containing Ag, Al, Ba, Bi, or Sr showed relatively good deep discharge cycle life.
  • the single plate lead-acid battery using the rolled sheet k that does not contain Ag, Al, Ba, Bi, and Sr showed a relatively short deep discharge cycle life.
  • the single plate lead-acid battery using the rolled sheet k has good deep discharge. Indicates cycle life. From this result, the content of A l, Ba, Sr is O.Olw t% or more l.Ow t% or less, the content of Ag is 0.005 wt% or more and less than O.Olw t%, the content of B i If the amount is 0.5wt% or more and 15wt% or less, the service life is improved. As a result of disassembling these single plate lead-acid batteries and observing the positive electrode lattice, it was found that the positive electrode lattice containing Ag and A 1 had excellent corrosion resistance.
  • the positive grid produced from a rolled sheet containing Sr or Bi had very good adhesion to the active material. Therefore, if Sr or Bi is attached, sufficient battery characteristics can be obtained even if the amount of expensive tin or silver added is small, which can contribute to cost reduction.
  • FIG. 18 (A) shows the configuration of the base material 10 and the surface layer 11 of the rolled sheets 1 to t.
  • a method for producing rolled sheets 1 to t according to Example 4 of the present invention will be described.
  • a forged slab of Pb—C a—S n alloy with an Sn content of 1.4 wt% and a Ca content of 0.09 wt% was formed.
  • Pb—C a _Sn alloy is a ternary alloy of Pb, Sn and Ca. This forged slab was sequentially rolled with a multi-stage roll to produce a substrate 10.
  • the surface layer 11 of the rolled sheets 1 to q was produced by powder rolling a rapidly solidified powder of high-purity lead. However, Al, Ba, Sr, Ag, and Bi are added to the surface layer 11 of the rolled sheets 1 to p.
  • the surface layer 11 of the rolled sheet q is made of high-purity lead and does not contain additives.
  • Rolled sheet! The surface layer 11 of: to t was produced by powder rolling a rapidly solidified powder of a Pb—Sn alloy containing Sn having a lower content than Sn of the base material. Thus, a surface layer 11 having a thickness of 0.2 mm was obtained by powder rolling.
  • a surface layer 11 of a 0.2 mm forged rolled sheet was prepared by rolling high purity lead forged slabs sequentially in a multi-stage neck.
  • the surface layer 11 was superposed on the base material 10 and rolled at the same time to produce a rolling sheet u in which the base material 10 and the surface layer 11 were integrated.
  • the rolled sheet was expanded to form a mesh portion, and a positive electrode grid 5 shown in FIG. 1 was obtained.
  • Example 1 a positive electrode plate was produced from these positive electrode grids 5 in the same manner as in Example 1. Further, in the same manner as in Example 1, a negative electrode plate was produced and a single plate lead-acid battery was produced. For these single plate lead-acid batteries, a deep discharge cycle experiment was conducted in the same manner as in Example 1. The conditions of the deep discharge cycle experiment are the same as in Example 1 according to the present invention.
  • Figure 18 (B) shows the deep discharge cycle characteristics.
  • the vertical axis represents the discharge capacity (Ah), and the horizontal axis represents the number of cycles (times).
  • the single plate lead-acid battery using the rolled sheets q to t according to Example 4 of the present invention showed excellent deep discharge cycle life.
  • the single plate lead-acid battery using the rolled sheet to p according to Example 4 of the present invention showed a further excellent deep discharge cycle life.
  • the rolled sheets 1 to t according to Example 4 have high tensile strength, excellent handling properties, and excellent workability when the substrate 10 is rolled with the surface layer 11 superimposed thereon. Furthermore, there was no delamination between the substrate 10 and the surface layer 11, and an excellent deep discharge cycle life was exhibited.
  • this single plate lead-acid battery was disassembled and the positive electrode plate lattice was observed, it was found that the surface layer 11 and the base material 10 were separated, and lead sulfate formation occurred at the boundary surface.
  • the forged rolled sheet u of Comparative Example 3 has a lower tensile strength and is softer than the rolled sheets 1 to t according to Example 4 of the present invention, and is inferior in handling properties. When rolling with the 11 stacked, processing cuts occurred, making integration difficult.
  • Example 4 of the present invention The recovery charge characteristics similar to those of Example 1 were evaluated for Example 4 of the present invention. According to it, single plate lead electricity storage using rolled sheets 1 to t according to Example 4 of the present invention The battery had good recovery charge characteristics, and the discharge capacity was 80% or more of the battery capacity. On the other hand, the single plate lead-acid battery using the rolled sheet u of Comparative Example 3 had poor recovery charge characteristics, and the discharge capacity was 50% or less of the battery capacity.
  • the Ca content of the base material is 0.02 wt% or more and O.llw t% or less, and preferably 0.02 wt% or more and 0.09 wt% or less.
  • the content of Sn in the substrate is 1.2 wt% or more and 2.5 wt% or less, and preferably 1.2 wt% or more and 1.9 wt% or less.
  • the content of Sn in the surface layer is O.Olw t% or more and l.Ow t% or less, which is less than the Sn content of the substrate.
  • the content of A1 is more than O.Olw%. Ow t% or less, preferably O.Olw t% or more and 0.5 wt% or less.
  • a 1 is known to function as an antioxidant (reducing agent) during fabrication. Therefore, the addition of A1 to the forged alloy can reduce oxides and other voids. Therefore, when A 1 is added to the rapidly solidified powder of Pb—Sn alloy containing Sn lower than the base material according to the present invention, A 1 functions as an antioxidant (reducing agent). Therefore, the natural oxidation is suppressed, and a rapidly solidified powder having a low degree of oxidation is obtained.
  • _Pb 0 2 can cause a decrease in deep discharge cycle life. Therefore, preferably Rukoto reduce as much as possible i3- P b 0 2.
  • the Ba content is preferably O.Olw t% or more and l.Ow t% or less.
  • the Sr content is preferably O.Olw t% or more and l.Ow t% or less.
  • the Ag content is 0.005 wt% or more and O. Olw t% or less, preferably 0.005 wt% or more and 0.008 wt% or less. .
  • the Bi content is preferably O.lw t% or more and 15 w t% or less.
  • the contents of A1, Ba and Sr in the surface layer 11 of the positive electrode grid body may be O.Olw t% or more and l.Ow t% or less.
  • the positive electrode grid for a lead-acid battery is based on a lead-calcium alloy of the prior art (see, for example, Patent Document 1), and a lead-silver alloy layer on one side of the substrate.
  • a lead-calcium alloy of the prior art see, for example, Patent Document 1
  • a lead-silver alloy layer on one side of the substrate Compared to a perforated plate with a lead-tin alloy layer formed on each other, sufficient corrosion resistance and a long deep discharge cycle life can be obtained. In addition, sufficient recovery chargeability can be obtained even when left overdischarged at high temperatures. Furthermore, sufficient battery characteristics can be obtained even if the amount of expensive tin or silver added is small.
  • the positive electrode grid for a lead-acid battery according to the present invention has a higher tin content in a lead-tin alloy than in a lead-calcium-tin-tin alloy (for example, Patent Documents 2, 3, Compared to (4), sufficient corrosion resistance and a long deep discharge cycle life can be obtained. In addition, even when left overdischarged at high temperatures, sufficient recovery chargeability and sufficient life extension effect can be obtained.
  • the positive electrode grid for a lead storage battery of the present invention is a grid obtained by processing a rolled sheet made of pure lead containing no antimony, or a grid having a thin layer of high purity lead metal rolled and integrated on the surface. Compared to the conventional technology used, lattice corrosion is reduced and corrosion elongation is suppressed. Thus, a battery having a longer life that can reduce the risk of short circuit is obtained. Even if the grid beam width is less than 1.2 times the sheet thickness, the corrosion of the grid can be reduced compared to the conventional technology (see, for example, Patent Document 5), and the risk of short-circuiting by suppressing the corrosion elongation. And a battery with a longer life can be obtained.
  • the positive electrode grid for a lead storage battery according to the present invention is superior in handling property to lead-calcium in comparison with the prior art (see, for example, Patent Document 6) even when a pure lead rolled sheet is integrated on the surface. It can be easily integrated on the surface of the base alloy by rolling, has no cracks due to corrosion, and has a long life.
  • Patent Document 7 in which a lead-tin alloy layer is integrated on the surface of a pure lead plate, sufficient strength can be obtained as a positive electrode grid body, and the handling property is excellent.
  • it exhibits superior corrosion resistance as compared with the conventional technique in which the average crystal grain size is coated with a Pb sheet having a micrometer of at least 100 micrometers (for example, see Patent Document 8).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Powder Metallurgy (AREA)

Abstract

This invention provides a lead storage battery which has a prolonged deep discharge cycle service life, has good recovery charge properties, and can suppress corrosion elongation to reduce a possibility of shortcircuiting. The lead storage battery comprises a positive electrode lattice. The positive electrode lattice comprises a base material composed mainly of a Pb-Ca-Sn alloy and a surface layer formed by powder-rolling a rapidly cooled solidified powder of a Pb-Sn alloy having a lower Sn content than the content of Sn contained in the base material, or a surface layer formed by powder-rolling a rapidly cooled solidified powder of high-purity lead.

Description

鉛蓄電池 本明細書で引用した全ての刊行物、 特許および特許出願をそのまま参考として 本明細書にとり入れるものとする。 技術分野  Lead-acid battery All publications, patents and patent applications cited in this specification are incorporated herein by reference in their entirety. Technical field
 Light
本発明は、 鉛蓄電池に関し、 特に、 鉛蓄電池の正極及び負極に用いられる格子 体め構造に関する。  The present invention relates to a lead storage battery, and more particularly to a lattice structure used for a positive electrode and a negative electrode of a lead storage battery.
書 背景技術  Background art
鉛蓄電池の正極及び負極は、 格子体とそれを充填する活物質を有する。 特許文 献 1には、 シートを穿孔することによって形成された格子体が記載されている。 このシートは、 鉛一カルシウム系合金を基材とし、 この基材の片面に鉛一銀系合 金層を形成し、 他面に鉛一錫系合金層を形成したものである。 この例では、 鉛一 銀系合金における、 銀の含有率は 0.01〜2.0%、 錫の含有率は 0〜: 10%である。 鉛 一錫系合金における、 錫の含有率は 1〜30%である。 この格子体を使用した鉛蓄 電池では、 高温下で放置されても、 格子の腐食が抑制され、 また、 腐食された酸 化層が活物質化して活物質との密着性を維持できる。 ― 特許文献 2には、 鉛一カルシウム系合金板と鉛一錫系合金板とを用いて一体化 した板片を電極基体として用いることが記載されている。 特許文献 3には、 鉛一 カルシウム一 0.3%錫合金シートを、厚さ 0.5mmの鉛一 3%錫合金で挟み込んで圧 延し、 一体化させた合金板を格子体に用いる方法が記載されている。 特許文献 4 には、 錫を 1.6%以下含有する鉛一カルシウム一錫系合金の表面に、 錫を 1.8%以 上含有する鉛一錫系合金層を貼り合わせた圧延板を格子体に用いる方法が記載さ れている。  The positive electrode and the negative electrode of the lead storage battery have a lattice body and an active material filling it. Patent Document 1 describes a lattice formed by punching a sheet. This sheet has a lead-calcium alloy as a base material, a lead-silver alloy layer formed on one surface of the base material, and a lead-tin alloy layer formed on the other surface. In this example, the silver content in the lead-silver alloy is 0.01 to 2.0%, and the tin content is 0 to 10%. The content of tin in lead-tin alloy is 1-30%. In lead-acid batteries using this grid, even when left at high temperatures, corrosion of the grid is suppressed, and the corroded oxide layer becomes active and maintains adhesion with the active material. -Patent Document 2 describes the use of a plate piece integrated with a lead-calcium alloy plate and a lead-tin alloy plate as an electrode substrate. Patent Document 3 describes a method in which a lead-calcium-0.3% tin alloy sheet is sandwiched between 0.5 mm-thick lead 1-3% tin alloy and rolled, and an integrated alloy plate is used for the lattice. ing. Patent Document 4 discloses a method in which a rolled plate in which a lead-tin-tin-based alloy layer containing 1.8% or more of tin is bonded to the surface of a lead-calcium-tin-based alloy containing 1.6% or less of tin is used as a lattice body. Is described.
これらの例では、 長期間放置や過放電放置後の回復性が改善され、 高温使用時 の寿命が延長することができる。 特許文献 5には、 格子腐食を低減し、 より長寿命な電池を得るために、 アンチ モンを含まない純鉛からなる圧延シートを加工して得た格子を用いることが記載 されている。 この格子の桟幅は、 シート厚さの 1.2倍以上である。 In these examples, the recoverability after being left for a long period of time or being left overdischarged is improved, and the life under high temperature use can be extended. Patent Document 5 describes that a lattice obtained by processing a rolled sheet made of pure lead containing no antimony is used in order to reduce lattice corrosion and obtain a battery having a longer life. The width of this grid is more than 1.2 times the sheet thickness.
さらに、 特許文献 6には、 表面に圧延一体化された高純度鉛金属の薄層を備え た格子体を用いる方法が記載され、 特許文献 7には、 純鉛板の表面に鉛一錫系合 金層を一体化する方法が開示されている。 いずれも、 高純度鉛 (99.9%以上) に よって格子体の不働態化を回避し、 優れた寿命特性を得ることができる。  Furthermore, Patent Document 6 describes a method using a lattice body having a thin layer of high-purity lead metal rolled and integrated on the surface, and Patent Document 7 describes a lead-tin system on the surface of a pure lead plate. A method for integrating the alloy layer is disclosed. In either case, high purity lead (99.9% or more) can avoid the passivation of the lattice and provide excellent life characteristics.
また、 特許文献 8には、 鉛含有コア部材を平均結晶粒径が少なくとも 100マイ クロメートルの P bシートで被覆させた格子体により、 電池雰囲気内で良好な侵 食抵抗を示すことが示されている。  Patent Document 8 shows that a lattice body in which a lead-containing core member is covered with a Pb sheet having an average crystal grain size of at least 100 micrometers exhibits good erosion resistance in a battery atmosphere. ing.
特許文献 1 :特開昭 6 3 - 2 1 1 567号公報 Patent Document 1: Japanese Patent Application Laid-Open No. 6 3-2 1 1 567
特許文献 2 :特開平 1— 14055 7号公報 Patent Document 2: JP-A-1-140557
特許文献 3 :特開 2000— 1 95524号公報 Patent Document 3: Japanese Unexamined Patent Publication No. 2000-195524
特許文献 4 :特開昭 6 1 - 1 24064号公報 (特公平 4一 8 1 30 7号公報) 特許文献 5 :特開 2004— 1443 1号公報 Patent Document 4: JP-A-61-124064 (Japanese Patent Publication No. 4 1 8 1307) Patent Document 5: JP-A-2004-14431
特許文献 6 :特開 2004— 1 525 78号公報 Patent Document 6: Japanese Unexamined Patent Application Publication No. 2004-1 525 78
特許文献 7 :特開 2003— 208898号公報 Patent Document 7: Japanese Unexamined Patent Publication No. 2003-208898
特許文献 8 :特開平 1 0— 276 1 6号公報 発明の開示 Patent Document 8: Japanese Patent Laid-Open No. 10-276 16 Disclosure of Invention
近年の自動車では、 パワステやブレーキなど油圧駆動系の電動化に伴い、 電力 消費量が増大している。 そのため、 自動車用電源は、 深い放電サイクルに対する 耐久性が要求されている。 鉛蓄電池は、 深い放電サイクルを繰り返すと集電体界 面に硫酸鉛の不働態層、 即ち絶縁層が形成される。 これが起きると、 早期容量低 下が起き、 寿命となることが知られている。 また、 鉛蓄電池が、 高温下、 過放電 状態で放置されると、 集電体の錫含有量が低い場合、 又は、 純鉛の場合、 界面が 腐食して回復充電性が低下することが知られている。  In recent automobiles, power consumption has increased with the electrification of hydraulic drive systems such as power steering and brakes. For this reason, automotive power supplies are required to have durability against deep discharge cycles. In lead-acid batteries, when a deep discharge cycle is repeated, a passive layer of lead sulfate, that is, an insulating layer, is formed on the current collector interface. When this happens, it is known that early capacity loss occurs and life is reached. In addition, it is known that if a lead-acid battery is left in an overdischarged state at a high temperature, if the tin content of the current collector is low or pure lead, the interface corrodes and the recovery chargeability decreases. It has been.
一方、 自動車では、 鉛蓄電池の UP S (スタンバイユース) が行われる。 これ は、 常に充電状態が続く使用方法である。 自動車に搭載されたナビゲーシヨン画 面がちらつくことがないように、 システム側で過放電にしないための対策、 例え ば、 頻繁な充電が行われることがある。 このような使用方法は、 正極の格子腐食 を進行させ、 電池寿命が短くする。 更に、 腐食伸びによる短絡の危険性が発生す るなどの問題点が指摘されている。 On the other hand, lead-acid battery UPS (standby use) is performed in automobiles. This is a usage method in which the state of charge always remains. Navigation picture mounted on a car To prevent the surface from flickering, measures to prevent overdischarge on the system side, for example, frequent charging may be performed. This method of use advances the lattice corrosion of the positive electrode and shortens the battery life. In addition, problems such as the danger of short-circuiting due to corrosion elongation have been pointed out.
さらに、 自動車の燃費向上対策の一つとして、 電源の軽量化が要求されている 。 鉛蓄電池では、 従来、 正極の格子腐食の問題を回避するために、 格子厚さが厚 ぃ铸造格子を使用している。 それに対して、 圧延シートをエキスパンド加工する ことにより形成されるエキスパンド格子や、 圧延シートを穿孔することにより形 成される打ち抜き格子は、 格子の厚さが薄く、 軽量化が可能であるメリッ トがあ る。 しかしながら、 エキスパンド格子や打ち抜き格子は、 活物質との密着性が悪 く、 活物質層が剥離し易い欠点がある。 そのため、 深放電サイクル寿命が短い。 また、 圧延シートは微細層状組織であるため、 粒界腐食が主に進行する铸造格子 と異なり、 層状に腐食層が剥離し易い。 そのため、 見かけの膨張率が高く、 腐食 伸びによる短絡を起し易い。  In addition, as one of the measures to improve the fuel efficiency of automobiles, lighter power sources are required. In lead-acid batteries, in order to avoid the problem of grid corrosion of the positive electrode, a grid with a thick grid has been used. On the other hand, the expanded lattice formed by expanding the rolled sheet and the punched lattice formed by punching the rolled sheet have the advantage that the thickness of the lattice is thin and the weight can be reduced. is there. However, the expanded lattice and the punched lattice have the disadvantage that the active material layer is easily peeled off due to poor adhesion to the active material. Therefore, the deep discharge cycle life is short. In addition, since the rolled sheet has a fine lamellar structure, unlike a forged grid in which intergranular corrosion mainly proceeds, the corroded layer tends to peel off in layers. Therefore, the apparent expansion rate is high, and short-circuiting due to corrosion elongation is likely to occur.
純鉛を格子体に使用すると、 不働態化を回避し、 寿命特性を向上させることが できるが、 純鉛は強度が低い欠点がある。 そのため、 純鉛のエキスパンド格子や 打ち抜き格子に、 活物質を充填すると、 変形して一定形状の電極にならない。 そこで、 強度の高い鉛一カルシウム系合金を基材とし、 その表面に純鉛の薄板 を張り合わせる構造も考えられる。 しかしながら、 基材の上に強度が低い純鉛の 薄板を載せた状態で圧延加工すると、 純鉛が基材に比べて伸び易く、 両者を一体 的に張り合わせることはできない。  If pure lead is used in the grid, passivation can be avoided and the life characteristics can be improved, but pure lead has the disadvantage of low strength. Therefore, if an active material is filled in an expanded lattice or a punched lattice of pure lead, it will not be deformed into a fixed shape electrode. Therefore, a structure in which a strong lead-calcium alloy is used as a base material and a thin sheet of pure lead is attached to the surface is also conceivable. However, if rolling is performed with a thin plate of pure lead having a low strength on the base material, the pure lead is more easily stretched than the base material, and the two cannot be bonded together.
逆に、 純鉛を基材とし、 その表面に鉛一錫系合金層を張り合わせて一体化する 構造も考えられる。 しかしながら、 強度が低い純鉛が基材であるため、 正極格子 体として十分な強度を得ることができない。  Conversely, a structure in which pure lead is used as a base material and a lead-tin alloy layer is laminated on the surface is also conceivable. However, since pure lead with low strength is the base material, sufficient strength cannot be obtained as the positive electrode grid.
上述のように鉛蓄電池用正極格子体は、 深放電サイクルを繰り返しても、 早期 における容量低下を抑制し、 鉛蓄電池の寿命を延長させることが望ましい。 更に 、 高温下、 過放電状態で放置しても回復充電性が低下しないことが必要である。 また、 充電状態が続く使用方法においても、 格子腐食を抑えて電池寿命を延長し 、 かつ、 腐食伸びを抑えて短絡の危険性を低減できることが望ましい。 更に、 エキスパンド格子や打ち抜き格子においても、 活物質との密着性が改善 されて深放電サイクル寿命が長いことや、 腐食伸びを抑えて短絡の危険性を低減 できる必要がある。 また、 高価な錫や銀の添加量が少なくても十分な電池特性が 得られることが望ましい。 また、 製造面では、 純鉛の圧延薄板を用いても、 ハン ドリング性に優れ、 鉛一カルシウム系合金表面に容易に圧延で一体化させること ができ、 腐食による割れがなく、 寿命が長いことが望ましい。 As described above, it is desirable that the positive electrode grid for a lead storage battery suppresses an early capacity drop and extends the life of the lead storage battery even if the deep discharge cycle is repeated. Furthermore, it is necessary that the recovery chargeability does not deteriorate even when left in an overdischarged state at a high temperature. Also in the usage method where the charged state continues, it is desirable to suppress the lattice corrosion and extend the battery life, and to suppress the corrosion elongation and reduce the risk of short circuit. Furthermore, in expanded and punched grids, it is necessary that the adhesion with the active material is improved and the deep discharge cycle life is long, and the risk of short-circuiting can be reduced by suppressing the corrosion elongation. Further, it is desirable that sufficient battery characteristics can be obtained even if the amount of expensive tin or silver added is small. In terms of manufacturing, even if pure lead rolled sheet is used, it has excellent handling properties, can be easily integrated with the surface of lead-calcium alloy by rolling, has no cracks due to corrosion, and has a long life. Is desirable.
本発明の目的は、 深放電サイクル寿命が長く、 回復充電性が良好で、 腐食伸び を抑制して短絡の危険性を低減でき、 高価な錫や銀の添加量が少なくても十分な 電池特性が得られる鉛蓄電池及び鉛蓄電池用正極格子体を提供することにある。 本発明の鉛蓄電池の正極格子体は、 主として P b _ C a— S n合金を含む基材 と、 基材に含まれる S nよりも低含有量の S nを含む P b— S n合金の急冷凝固 粉を粉末圧延して得た表面層、 又は、 高純度鉛の急冷凝固粉を粉末圧延して得た 表面層、 とを有する。  The object of the present invention is that the deep discharge cycle life is long, the recovery chargeability is good, the corrosion elongation is suppressed and the risk of short-circuiting can be reduced, and the battery characteristics are sufficient even if the addition amount of expensive tin or silver is small Is to provide a lead storage battery and a positive electrode grid for a lead storage battery. The positive electrode lattice body of the lead storage battery of the present invention includes a base material mainly containing a Pb_Ca-Sn alloy and a Pb-Sn alloy containing Sn having a lower content than Sn contained in the base material. A surface layer obtained by powder rolling of a rapidly solidified powder of, or a surface layer obtained by powder rolling of a rapidly solidified powder of high purity lead.
表面層は、 アスペク ト比が 3〜1 3の特定方向に配向した結晶粒子を有し、 B i , A g , B a , S r , A 1のうち少なくとも一つを含有してよい。  The surface layer has crystal grains oriented in a specific direction with an aspect ratio of 3 to 13, and may contain at least one of B i, A g, B a, S r and A 1.
本発明によると、 深放電サイクル寿命が長く、 回復充電性が良好で、 腐食伸び を抑制して短絡の危険性を低減でき、 高価な錫や銀の添加量が少なくても十分な 電池特性が得られる鉛蓄電池及び鉛蓄電池用正極格子体を提供することができる  According to the present invention, the deep discharge cycle life is long, the recovery chargeability is good, the corrosion elongation is suppressed, the risk of short circuit can be reduced, and sufficient battery characteristics can be obtained even if the amount of expensive tin or silver added is small. Provided lead acid battery and positive electrode grid for lead acid battery can be provided
図面の簡単な説明 Brief Description of Drawings
図 1は、 本発明による正極格子体が組み込まれた単板鉛蓄電池の構成を示す図 である。  FIG. 1 is a diagram showing a configuration of a single plate lead-acid battery incorporating a positive electrode grid according to the present invention.
図 2は、 本発明による正極格子体の構成を示す図である。  FIG. 2 is a diagram showing the configuration of the positive electrode grid according to the present invention.
図 3は、 本発明による正極格子体に用いる圧延シートを作製するために用いた 急冷凝固粉の断面組織を示す図である。  FIG. 3 is a view showing a cross-sectional structure of the rapidly solidified powder used for producing a rolled sheet used in the positive electrode grid according to the present invention.
図 4は、 本発明による正極格子体に用いる圧延シートの製造プロセスの説明図 である。  FIG. 4 is an explanatory diagram of a process for producing a rolled sheet used in the positive electrode grid according to the present invention.
図 5は、 本発明による正極格子体に用いる圧延シートの製造プロセスの説明図 である。 FIG. 5 is an explanatory diagram of a process for producing a rolled sheet used in the positive electrode grid according to the present invention. It is.
図 6は、 本発明による正極格子体に用いる圧延シートの表面層の断面の構成を 説明する図である。  FIG. 6 is a view for explaining the configuration of the cross section of the surface layer of the rolled sheet used in the positive electrode grid according to the present invention.
図 7は、 本発明による正極格子体に用いる圧延シートの表面層の組織断面写真 である。  FIG. 7 is a structural cross-sectional photograph of the surface layer of the rolled sheet used in the positive electrode grid according to the present invention.
図 8は、 本発明による正極格子体に用いる圧延シートの引張り強度の測定実験 を説明する図である。  FIG. 8 is a diagram for explaining an experiment for measuring the tensile strength of a rolled sheet used in the positive electrode grid according to the present invention.
図 9は、 本発明による正極格子体に用いる圧延シートの基材に対する表面層の 密着性を評価のための図である。  FIG. 9 is a diagram for evaluating the adhesion of the surface layer to the substrate of the rolled sheet used in the positive electrode grid according to the present invention.
図 1 0は、 本発明による正極格子体に用いる圧延シートの腐食量評価結果を示 す図である。 .  FIG. 10 is a view showing the corrosion amount evaluation results of the rolled sheet used in the positive electrode grid according to the present invention. .
図 1 1は、 本発明による正極格子体に用いる圧延シートの深放電サイクル試験 の結果を示す図である。  FIG. 11 is a diagram showing the results of a deep discharge cycle test of a rolled sheet used in the positive electrode grid according to the present invention.
図 1 2は、 本発明による正極格子体が組み込まれた自動車用鉛蓄電池の構成を 説明するための一部切開斜視図である。  FIG. 12 is a partially cut perspective view for explaining the configuration of a lead-acid battery for automobiles incorporating a positive electrode grid according to the present invention.
図 1 3は、 本発明による正極格子体が組み込まれた捲回式鉛蓄電池の構成を説 明するための一部切開斜視図である。  FIG. 13 is a partially cut perspective view for explaining the configuration of a wound lead-acid battery incorporating the positive electrode grid according to the present invention.
図 1 4は、 本発明による正極格子体が組み込まれた制御弁式鉛蓄電池の構成を 説明するための一部切開斜視図である。  FIG. 14 is a partially cut perspective view for explaining the configuration of a control valve type lead-acid battery incorporating a positive electrode grid according to the present invention.
図 1 5は、 本発明による正極格子体及びそれを用いた単板鉛蓄電池の実施例 1 の深放電サイクル特性を表す図である。  FIG. 15 is a diagram showing the deep discharge cycle characteristics of Example 1 of the positive electrode grid according to the present invention and the single plate lead-acid battery using the same.
図 1 6は、 本発明による正極格子体及びそれを用いた単板鉛蓄電池の実施例 2 の深放電サイクル特性を表す図である。  FIG. 16 is a diagram showing the deep discharge cycle characteristics of Example 2 of the positive electrode grid according to the present invention and the single plate lead-acid battery using the same.
図 1 7は、 本発明による正極格子体及びそれを用いた単板鉛蓄電池の実施例 3 の深放電サイクル特性を表す図である。  FIG. 17 is a diagram showing the deep discharge cycle characteristics of Example 3 of the positive electrode grid according to the present invention and the single plate lead-acid battery using the same.
図 1 8は、 本発明による正極格子体及びそれを用いた単板鉛蓄電池の実施例 4 の深放電サイクル特性を表す図である。 符号の説明 1…正極板、 2…負極板、 3…セパレータ、 4…正極活物質、 5…正極格子体、 6…負 極活物質、 7…負極格子体、 8…正極耳、 9…負極耳、 10…基材、 11…表面層、 14, 15 …急冷凝固粉の断面、 16, 17…急冷凝固粉の結晶粒、 18…ホツバ、 19…急冷凝固 粉、 20···粉末圧延ロール、 21…粉末圧延シート、 22…基材圧延シート、 23…圧延 ロール、 24···圧延シート、 25——段目圧延ロール、 26…成型板、 27…圧延方向、 28, 29, 30···表面層の断面、 36…正極板、 37…負極板、 38···セパレ一タ、 39·· · 積層極板群、 40···電槽、 41…正極耳、 42···蓋、 43···正極端子、 44···負極端子、 45···リテーナ、 46…捲回極板群 発明を実施するための最良の形態 FIG. 18 is a diagram showing the deep discharge cycle characteristics of Example 4 of the positive electrode grid according to the present invention and the single plate lead-acid battery using the same. Explanation of symbols 1 ... Positive electrode plate, 2 ... Negative electrode plate, 3 ... Separator, 4 ... Positive electrode active material, 5 ... Positive electrode active material, 6 ... Negative active material, 7 ... Negative electrode active material, 8 ... Positive electrode ear, 9 ... Negative electrode ear, 10 ... Substrate, 11 ... Surface layer, 14, 15 ... Cross-section of rapidly solidified powder, 16, 17 ... Crystal grains of rapidly solidified powder, 18 ... Hotsuba, 19 ... Quick solidified powder, 20 ... Powder rolling roll, 21 ... Powder rolling sheet, 22… Base rolling sheet, 23… Rolling roll, 24 ··· Rolling sheet, 25——Stage rolling roll, 26… Formed plate, 27… Rolling direction, 28, 29, 30 ··· Surface Cross section of layer, 36 ... Positive electrode plate, 37 ... Negative electrode plate, 38 ... Separator, 39 ... Laminated plate group, 40 ... Battery case, 41 ... Positive electrode ear, 42 ... Lid, 43 ··· Positive terminal, 44 ··· Negative electrode terminal, 45 ··· Retainer, 46 ··· Winding electrode plate group
以下に、 本発明の第 1実施形態について適宜図面を参照しながら詳細に説明す る。 まず、 本発明の一例として、 簡素な構造である単板鉛蓄電池と、 これに組み 込まれる正極格子体とについて説明する。 参照する図面において、 図 1は、 本実 施形態に係る正極格子体が組み込まれた単板鉛蓄電池の構成説明図である。  Hereinafter, a first embodiment of the present invention will be described in detail with reference to the drawings as appropriate. First, as an example of the present invention, a single plate lead-acid battery having a simple structure and a positive electrode grid body incorporated therein will be described. In the drawings to be referred to, FIG. 1 is a configuration explanatory view of a single plate lead-acid battery in which a positive electrode lattice body according to this embodiment is incorporated.
図 1に示すように、 本例の単板鉛蓄電池は、 正極板 1、 負極板 2、 及び、 セパレ ータ 3を有し、 これらの部材は、 硫酸 (H 2 S 0 4 ) を含む電解液 (図示せず) に よって含浸されている。 正極板 1は、 正極格子体 5と正極格子体 5の隙間を充填す る正極活物質 4を有し、 同様に、 負極板 2は、 負極格子体 7と負極格子体 7の隙間を 充填する負極活物質 6を有する。 正極板 1には正極耳 8が接続され、 負極板 1には負 極耳 9が接続されている。 正極耳 8及び負極耳 9は、 負荷に接続するための端子に 接続される。 As shown in FIG. 1, the single plate lead-acid battery of this example has a positive electrode plate 1, a negative electrode plate 2, and a separator 3, and these members are electrolyses containing sulfuric acid (H 2 S 0 4 ). Impregnated with liquid (not shown). The positive electrode plate 1 has a positive electrode active material 4 that fills the gap between the positive electrode grid body 5 and the positive electrode grid body 5. Similarly, the negative electrode plate 2 fills the gap between the negative electrode grid body 7 and the negative electrode grid body 7. It has a negative electrode active material 6. A positive electrode ear 8 is connected to the positive electrode plate 1, and a negative electrode ear 9 is connected to the negative electrode plate 1. The positive electrode ear 8 and the negative electrode ear 9 are connected to terminals for connection to a load.
正極格子体 5は、 機械加工により網状体に形成される。 例えば、 圧延シートに 打ち抜き加工をすることによって、 又は、 圧延シートに切込を入れて引き伸ばす エキスパンド加工によって得られる。 .  The positive electrode grid 5 is formed into a mesh body by machining. For example, it can be obtained by punching a rolled sheet or by an expanding process in which a rolled sheet is cut and stretched. .
正極活物質 4は、 公知のものでよく、 鉛粉、 鉛丹、 硫酸鉛、 塩基性硫酸鉛、 添 加剤等を含む正極用活物質ペーストを正極格子体 5の集電体に充填した後に、 こ れを乾燥させて得ることができる。 なお、 正極格子体 5の集電体に接する正極活 物質 4は、 周知のとおり、 化成化することによって、 二酸化鉛 (P b O 2 ) となる 図 2は本発明の正極格子体 5を作成するのに用いる圧延シートの例を示す。 本 例の圧延シートは基材 10とその上の表面層 11を含み、 両者は一体化されている。 表面層 11の厚さは基材 10の厚さより薄いことが望ましい。 The positive electrode active material 4 may be a known material, and after the positive electrode active material paste containing lead powder, red lead, lead sulfate, basic lead sulfate, additives, etc. is filled in the current collector of the positive electrode grid 5 This can be obtained by drying. As is well known, the positive electrode active material 4 in contact with the current collector of the positive electrode grid 5 is converted to lead dioxide (PbO 2 ) by chemical conversion. FIG. 2 shows an example of a rolled sheet used for preparing the positive electrode grid 5 of the present invention. The rolled sheet of this example includes a base material 10 and a surface layer 11 thereon, which are integrated. The thickness of the surface layer 11 is preferably thinner than the thickness of the substrate 10.
基材 10は主として P b— C a— S n合金で構成されている。 本発明によると、 表面層 11は基材 10に含まれる S nよりも低含有量の S nを含む P b— S n合金 の薄膜である。 尚、 表面層 11の P b - S n合金には、 B i, A g , B a , S r , A 1のうち少なくとも一つを含有していることが望ましい。 これらの元素を添加 することによって、 耐食性、 密着性等の様々な特性が向上する。 これについては 、 後に説明する。  The substrate 10 is mainly composed of a P b—C a—S n alloy. According to the present invention, the surface layer 11 is a thin film of a Pb—Sn alloy containing Sn with a lower content than Sn contained in the base material 10. The Pb—Sn alloy of the surface layer 11 preferably contains at least one of Bi, Ag, Ba, Sr, and A1. By adding these elements, various properties such as corrosion resistance and adhesion are improved. This will be explained later.
通常、 錫は鉛金属中を容易に拡散する。 基材 10のみで正極格子体を作製した場 合、 活物質と正極格子体の集電体の界面に、 高含有量の錫の層が形成される。 こ の高含有量の錫層は導電性が高く、 充電性に富むため、 周囲の鉛は容易に酸化さ れて /3— P b 0 2となる。 )3— P b 0 2は深放電サイクルにおいて、 極めて早い段 階で硫酸鉛化し、 不働態層を形成する。 即ち、 深放電サイクル寿命が短くなる。 本発明によると、 正極格子体の集電体と活物質の界面は、 基材の上の表面層 11 と活物質の間の接触界面によって形成される。 表面層 11は、 基材に含まれる S n よりも低含有量の S nを含む P b— S n合金を薄膜化したものである。 従って、 集電体と活物質の界面に形成される錫層に含まれる錫の含有量は、 従来技術と比 ベて低い。 この錫層は、 錫の含有量が低いため、 導電性が低い。 そのため、 周囲 の鉛は、 )3— P b 0 2に変化しない。 従って、 深放電のサイクル寿命が延長する 圧延シートの表面層 11における錫の含有量は O.lw t %以上 l.Ow t %未満であ ることが望ましい。 この範囲の錫の含有量では、 周囲の鉛が ]3 _ P b O 2へ酸化 することを抑制できる効果が顕著である。 Usually, tin diffuses easily in lead metal. When a positive electrode grid is produced using only the base material 10, a high-content tin layer is formed at the interface between the active material and the current collector of the positive electrode grid. Tin layer of high content of this conductive high, because rich in charging properties, the periphery of the lead is easily oxidized by / 3 becomes a P b 0 2. ) 3 in P b 0 2 deep discharge cycles, sulfated lead content at a very early stage, to form a passivation layer. That is, the deep discharge cycle life is shortened. According to the present invention, the current collector / active material interface of the positive grid is formed by the contact interface between the surface layer 11 on the substrate and the active material. The surface layer 11 is formed by thinning a Pb—Sn alloy containing Sn having a lower content than Sn contained in the base material. Therefore, the tin content contained in the tin layer formed at the interface between the current collector and the active material is lower than that of the prior art. This tin layer has low conductivity because of its low tin content. Therefore, the periphery of the lead,) 3- P b 0 2 does not change. Accordingly, it is desirable that the tin content in the surface layer 11 of the rolled sheet that extends the cycle life of the deep discharge is O.lw t% or more and less than l.Ow t%. The content of tin in the range, a remarkable effect can be suppressed around the lead] to oxidation to 3 _ P b O 2.
本例によると、 表面層 11の錫の含有量は基材の錫の含有量より低い。 従って、 錫は、 基材から表面層に拡散する。 そのため、 表面層の厚さ Yが大きいほど、 基 材から表面層に進入する錫の量が多くなる。 即ち、 表面層の厚さ Yを大きくする と、 基材中の錫の含有量が減少する。 基材中の錫の含有量が減少すると、 腐食伸 びが大きくなり、 短絡の危険性が高くなる。 従って、 表面層の厚さ Yはあまり大 きくすることができない。 逆に、 表面層の厚さ Yが小さいと、 基材から表面層に 錫が進入することによって、 表面層の錫の含有量が高くなる。 それによつて、 表 面層の電池特性に及ぼす効果、 特に、 深放電サイクル寿命の延長が得られなくな る。 According to this example, the tin content of the surface layer 11 is lower than the tin content of the base material. Therefore, tin diffuses from the substrate to the surface layer. Therefore, the greater the thickness Y of the surface layer, the greater the amount of tin that enters the surface layer from the substrate. That is, when the thickness Y of the surface layer is increased, the tin content in the base material decreases. As the tin content in the substrate decreases, the corrosion elongation increases and the risk of a short circuit increases. Therefore, the surface layer thickness Y is too large. I can't speak. On the contrary, when the thickness Y of the surface layer is small, tin enters the surface layer from the base material, so that the tin content in the surface layer increases. As a result, the effect of the surface layer on the battery characteristics, in particular, the extension of the deep discharge cycle life cannot be obtained.
基材 10の厚さを X、 表面層 11の厚さを Yとする。 表面層の厚さ Yと基材の厚さ X の比、 即ち、 Y: Xは 1 : 1 0〜 1 : 6 0の範囲であることが望ましい。 尚、 これ については後に図 1 6に示した実施例 2の説明を参照されたい。  The thickness of the substrate 10 is X, and the thickness of the surface layer 11 is Y. The ratio of the thickness Y of the surface layer to the thickness X of the substrate, that is, Y: X is preferably in the range of 1:10 to 1:60. For this, refer to the description of Example 2 shown in FIG. 16 later.
本発明によると、 基材は機械的強度の高い P b— C a - S n合金を用いるため 、 正極格子体の強度を確保することができる。 一方、 表面層は、 錫含有量の低い P b— S n合金を用いるため、 基材に比べて機械的強度に劣る。 そのために、 基 材の上に、 基材より薄い表面層を重ねることによって、 ハンドリング性を確保す ることができる。  According to the present invention, since the base material uses a Pb—C a —Sn alloy having high mechanical strength, the strength of the positive electrode lattice can be ensured. On the other hand, since the surface layer uses a Pb—Sn alloy having a low tin content, it is inferior in mechanical strength as compared with the base material. Therefore, handling properties can be ensured by stacking a surface layer thinner than the base material on the base material.
ここでは、 表面層 11として、 基材に含まれる S nよりも低含有量の S nを含む P b— S n合金の薄膜を用いる場合を説明した。 しかしながら、 表面層 11として 、 高純度鉛の薄膜を用いてもよい。  Here, the case where a thin film of a Pb—Sn alloy containing a Sn content lower than the Sn contained in the base material is used as the surface layer 11 has been described. However, a high purity lead thin film may be used as the surface layer 11.
次に、 表面層の製造方法を説明する。 表面層は、 P b— S n合金又は高純度鉛 の急冷凝固粉を圧延加工することによって形成される。 急冷凝固粉は、 P b— S n合金又は高純度鉛の溶湯を、 窒素等の不活性ガス雰囲気中、 又は、 乾燥空気中 に、 噴霧することによって、 又は、 高速で回転する円盤上に滴下させることによ り得ることができる。  Next, a method for manufacturing the surface layer will be described. The surface layer is formed by rolling a rapidly solidified powder of Pb—Sn alloy or high-purity lead. Rapidly solidified powder is dropped by spraying a molten Pb-Sn alloy or high-purity lead in an inert gas atmosphere such as nitrogen or in dry air, or on a disk that rotates at high speed. Can be obtained.
急冷凝固粉の酸化度が 2000 p p mを超えると j3— P b 0 2が生成し始め、 深放 電サイクル寿命を劣化させる。 従って、 急冷凝固粉の酸化度は、 少なくも、 2000 p p m未満とすることが望ましい。 急冷凝固粉の酸化度が高いと、 正極格子体の 腐食量が増加し、 好ましくない。 — P b 0 2の生成抑制によって深放電サイク ル寿命を延長し、 更に、 格子腐食抑制によって充電状態での電池寿命を延長する には、 500 p p m未満が好ましい。 以上より、 急冷凝固粉の酸化度は、 製造プロ セスで混入する酸素や水分の濃度に依存するが、 2000 p p m未満とすることが望 ましく、 好ましくは 500 p p m未満である。 When the degree of oxidation of the rapidly solidified powder exceeds 2000 ppm, j3—Pb 0 2 begins to be produced, which degrades the deep discharge cycle life. Therefore, it is desirable that the degree of oxidation of the rapidly solidified powder be at least 2000 ppm. If the degree of oxidation of the rapidly solidified powder is high, the amount of corrosion of the positive electrode grid increases, which is not preferable. — Less than 500 ppm is preferred to extend the deep discharge cycle life by suppressing the formation of P b 0 2 and further to extend the battery life in the charged state by suppressing lattice corrosion. Based on the above, the degree of oxidation of the rapidly solidified powder depends on the concentration of oxygen and moisture mixed in the manufacturing process, but is preferably less than 2000 ppm, and preferably less than 500 ppm.
図 3 ( A) 及び図 3 ( B ) は本発明による高純度鉛の急冷凝固粉の断面 14を示 し、 図 3 ( C ) 及び図 3 ( D ) は、 本発明による P b— S n合金の急冷凝固粉の 断面 15を示す。 急冷凝固粉の平均粒径は 2マイクロメートル以上、 50マイクロメ 一トル以下であることが望ましい。 また、 図 3 ( B ) に示すように高純度鉛の急 冷凝固粉には結晶粒 16が存在し、 図 3 ( D ) に示すように、 P b _ S n合金の急 冷凝固粉には結晶粒 17が存在することが確認できる。 結晶粒の大きさは急冷凝固 粉の粒径の 1/1〜1/10の範囲である。 Fig. 3 (A) and Fig. 3 (B) show a cross section 14 of rapidly solidified powder of high purity lead according to the present invention. FIG. 3 (C) and FIG. 3 (D) show a cross section 15 of the rapidly solidified powder of Pb—Sn alloy according to the present invention. The average particle size of the rapidly solidified powder is desirably 2 micrometers or more and 50 micrometers or less. As shown in Fig. 3 (B), crystal grains 16 exist in the rapidly solidified powder of high-purity lead, and in the rapidly solidified powder of Pb_Sn alloy, as shown in Fig. 3 (D). Confirms the presence of crystal grains 17. The size of the crystal grains is in the range of 1/1 to 1/10 that of the rapidly solidified powder.
図 4及び図 5は、 圧延シートを製造する圧延装置の例を示す。 図 4に示す例で は、 ホッパ 18に投入された急冷凝固粉 19は、 粉末圧延ロール 20によって圧延され 、 表面層の原材料である粉末圧延シート 21が得られる。 粉末圧延シート 21は、 基 材の原材料である基材圧延シート 22に重ね合わされて圧延ロール 23に挿入され る。 圧延口一ル 23からは、 基材 10と表面層 11からなる 2層の圧延シート 24が形成 される。  4 and 5 show examples of rolling apparatuses for producing rolled sheets. In the example shown in FIG. 4, the rapidly solidified powder 19 put into the hopper 18 is rolled by a powder rolling roll 20 to obtain a powder rolled sheet 21 that is a raw material of the surface layer. The powder rolling sheet 21 is superimposed on a base material rolling sheet 22 that is a raw material of the base material and inserted into a rolling roll 23. From the rolling nozzle 23, a two-layered rolled sheet 24 composed of a base material 10 and a surface layer 11 is formed.
図 5に示す例では、 先ず、 急冷凝固粉 19を型に入れ、 加圧成型することによつ て成型板 2 6を製造する。 この成型板 26は、 一段目圧延ロール 25によって圧延さ れ、 表面層の原材料である粉末圧延シート 21が得られる。 粉末圧延シート 21は、 基材の原材料である基材圧延シート 22に重ね合わされて圧延ロール 23に揷入さ れる。圧延口—ル 23からは、 基材 10と表面層 11からなる 2層の圧延シート 24が形 成される。  In the example shown in FIG. 5, first, the rapidly solidified powder 19 is put into a mold and press-molded to produce a molded plate 26. This molded plate 26 is rolled by a first-stage rolling roll 25 to obtain a powder rolled sheet 21 which is a raw material for the surface layer. The powder rolling sheet 21 is superposed on a base material rolling sheet 22 which is a raw material of the base material and is inserted into a rolling roll 23. From the rolling port 23, a two-layered rolled sheet 24 composed of a base material 10 and a surface layer 11 is formed.
P b - C a - S n合金を主として含む基材圧延シート 22は、 公知のものでよく 、 従来技術にある铸造圧延シートでよい。 圧延ロール 23や一段目圧延口—ル 25は 複数の圧延ロールを有する多段ロールであってもよい。  The base material rolled sheet 22 mainly containing a Pb—C a —Sn alloy may be a known one, and may be a forged rolled sheet in the prior art. The rolling roll 23 and the first stage rolling nozzle 25 may be a multistage roll having a plurality of rolling rolls.
図 6は本発明の正極格子体の材料である圧延シートの断面図を示す。 図示のよ うに、 圧延シートの表面層 11は、 圧延シートの表面に直交し、 且つ、 圧延方向 2 7に対して平行な面によって切断した断面 28と、 圧延シートの表面に直交し、 且 つ、 圧延方向に対し垂直な面によって切断した断面 29と、 圧延シートの表面に平 行な面によって切断した断面 30の 3つの断面を有している。  FIG. 6 shows a cross-sectional view of a rolled sheet that is a material of the positive electrode grid of the present invention. As shown in the figure, the surface layer 11 of the rolled sheet is perpendicular to the surface of the rolled sheet and is cut by a plane parallel to the rolling direction 27 and perpendicular to the surface of the rolled sheet. It has three cross sections, a cross section 29 cut by a plane perpendicular to the rolling direction and a cross section 30 cut by a plane parallel to the surface of the rolled sheet.
図 7 (A)、 図 7 ( D )、 図 7 ( G ) は、 従来技術による P b— S n合金の铸造 圧延シートの組織写真である。 図 7 ( B )、 図 7 ( E )、 図 7 (H) は、 本発明に よる高純度鉛の急冷凝固粉の粉末圧延シートによる表面層 11の組織写真、 図 7 ( C)、 図 7 (F)、 図 7 ( I ) は、 本発明による P b— S n合金の急冷凝固粉の粉 末圧延シートによる表面層 11の組織写真である。 Fig. 7 (A), Fig. 7 (D), and Fig. 7 (G) are structural photographs of forged rolled sheets of Pb-Sn alloy according to the prior art. Fig. 7 (B), Fig. 7 (E), Fig. 7 (H) are structural photographs of the surface layer 11 of a powder rolled sheet of rapidly solidified powder of high purity lead according to the present invention, Fig. 7 ( C), FIG. 7 (F), and FIG. 7 (I) are photographs of the structure of the surface layer 11 of the powder-rolled sheet of Pb—Sn alloy rapidly solidified powder according to the present invention.
図 7 (A)、 図 7 (B)、 図 7 (C) は、 圧延シートの表面に直交し、 且つ、 圧 延方向に対し垂直な面によって切断した表面層 11の断面 29の組織写真、 図 7 (D )、 図 7 (E)、 図 7 (F) は、 圧延シートの表面に平行な面によって切断した表 面層 11の断面 30の組織写真、 図 7 (G)、 図 7 (H)、 図 7 ( I ) は、 圧延シート の表面に直交し、 且つ、 圧延方向 26に対して平行な面によって切断した表面層 11 の断面 28の組織写真である。 尚、 これらの組織写真の上下方向は、 図 6の各断面 に示した両矢印の方向に対応している。  Fig. 7 (A), Fig. 7 (B), Fig. 7 (C) are structural photographs of the cross section 29 of the surface layer 11 cut by a plane perpendicular to the surface of the rolled sheet and perpendicular to the rolling direction, Fig. 7 (D), Fig. 7 (E), Fig. 7 (F) are structural photographs of the cross section 30 of the surface layer 11 cut by a plane parallel to the surface of the rolled sheet, Fig. 7 (G), Fig. 7 ( H) and FIG. 7 (I) are structural photographs of the cross section 28 of the surface layer 11 cut by a plane perpendicular to the surface of the rolled sheet and parallel to the rolling direction 26. The vertical direction of these structural photographs corresponds to the direction of the double arrow shown in each cross section of FIG.
図 7 (A)、 図 7 (D)、 図 7 (G) に示す従来技術による P b— S n合金の鎳 造圧延シートの組織写真と、 図 7 (B)、 図 7 (E)、 図 7 (H) 及び図 7 (C) 、 図 7 (F)、 図 7 ( I ) に示す本発明による表面層 11の組織写真を比較すると 明らかなように、 両者は結晶粒子の状態が異なる。 即ち、 図 7 (A)、 図 7 (D) 、 図 7 (G) に示す従来技術では、 铸造圧延シートは再結晶化しているため、 結 晶形状は等方的に結晶成長した大きな結晶粒の集合体からなり、 塊状である。 結 晶粒の平均粒径は 100マイクロメートルを超える。 一方、 図 7 (B)、 図 7 (E) 、 図 7 (H) 及び図 7 (C)、 図 7 (F)、 図 7 ( I ) に示す本発明による表面層 11では、 ァスぺク ト比が 3〜1 3の特定方向に配向した結晶粒の集合体からなる 組織を有する。 更に、 結晶粒の平均粒径は、 100マイクロメートルよりも小さく 、 結晶形状は扁平状である。  Fig. 7 (A), Fig. 7 (D), Fig. 7 (G), a structural photograph of a Pb-Sn alloy forged rolled sheet according to the prior art, and Fig. 7 (B), Fig. 7 (E), As can be seen by comparing the structure photographs of the surface layer 11 according to the present invention shown in FIG. 7 (H), FIG. 7 (C), FIG. 7 (F), and FIG. 7 (I), both have different crystal grain states. . That is, in the prior art shown in FIGS. 7 (A), 7 (D), and 7 (G), the forged rolled sheet is recrystallized, so that the crystal shape is large crystal grains that are isotropically grown. It is an aggregate of and is a lump. The average grain size is over 100 micrometers. On the other hand, in the surface layer 11 according to the present invention shown in FIGS. 7B, 7E, 7H, 7C, 7F, and 7I, the surface It has a structure consisting of aggregates of crystal grains oriented in a specific direction with a cut ratio of 3 to 13. Furthermore, the average grain size of the crystal grains is smaller than 100 micrometers, and the crystal shape is flat.
急冷凝固粉の粉末圧延シートによる表面層 11の場合、 結晶粒の表面における組 成、 分散物の組成 (水酸基、 カルボニル基、 S nOx、 P b Ox、 P b COx、 吸着水など)、 分散物の粒径及び分散状態、 歪や転移の状況が、 铸造圧延シートの 結晶粒とは異なる。 本発明による表面層 11では、 急冷凝固粉の粒子の表面同士が 結合して粒子と粒子の界面を形成している。 この界面は、 铸造圧延シートの結晶 粒の粒界とは全く異なっており、 铸造圧延シートにて見られた再結晶の進行を抑 制し、 粒子の粗大化を防いでいる。 更に、 この界面は、 圧延によって受ける変形 に対する抵抗を生成し、 圧延方向に伸ばされた結晶形状を維持するように作用す る。 図 8を参照して、 本発明による圧延シートの表面層 11の引っ張り試験の測定結 果を説明する。 図 8 (A) は、 引っ張り試験に用いた試験片の形状を示す。 試験 片の長手方向の寸法は 5 2 m m、 縊れ部の長さは 3 0 mm、 幅は 1 0 m m、 厚さ は 0 . 2 mmである。 本発明による粉末圧延シートから 2つの試験片を作成し、 従来の铸造圧延シートから 2つの比較例の試験片を作成した。 In the case of the surface layer 11 of the rapidly solidified powder powder rolled sheet, the composition on the surface of the crystal grains, the composition of the dispersion (hydroxyl group, carbonyl group, SnOx, P b Ox, P b COx, adsorbed water, etc.), dispersion The grain size, dispersion state, distortion, and transition of the steel are different from the crystal grains of the forged rolled sheet. In the surface layer 11 according to the present invention, the surfaces of the rapidly solidified powder particles are bonded to form an interface between the particles. This interface is completely different from the grain boundaries of the forged rolled sheet, suppressing the progress of recrystallization seen in the forged rolled sheet and preventing the grain from becoming coarse. In addition, this interface acts to create a resistance to deformation caused by rolling and to maintain the crystal shape stretched in the rolling direction. With reference to FIG. 8, the measurement results of the tensile test of the surface layer 11 of the rolled sheet according to the present invention will be described. Fig. 8 (A) shows the shape of the test piece used in the tensile test. The longitudinal dimension of the specimen is 52 mm, the length of the neck is 30 mm, the width is 10 mm, and the thickness is 0.2 mm. Two test specimens were prepared from the powder rolled sheet according to the present invention, and two comparative test specimens were prepared from a conventional forged rolled sheet.
即ち、 第 1の試験片は、 P b — S n合金の急冷凝固粉を金型によって圧粉成型 し、 これを圧延して作製した。 第 2の試験片は、 高純度鉛の急冷凝固粉を金型に よって圧粉成型し、 これを圧延して作製した。 第 1の比較例の試験片は、 従来の P b— S n铸造圧延シートより作製した。 第 2の比較例の試験片は、 従来の高純 度鉛铸造シ一トより作成した。  That is, the first test piece was produced by compacting a rapidly solidified powder of Pb—Sn alloy with a mold and rolling it. The second test piece was prepared by compacting rapidly solidified powder of high-purity lead with a mold and rolling it. The test piece of the first comparative example was produced from a conventional Pb—Sn forged rolled sheet. The test piece of the second comparative example was made from a conventional high purity lead forged sheet.
図 8 ( B ) は、 引っ張り試験の結果を示す。 測定装置は島津オートグラフ AGS 一 H500Nを使用した。 標点距離は 27mmであり、 歪速度は 5mmZ分である。 図示 のように、 本発明による圧延シートから作成した 2つの試験片では、 従来技術に よる铸造圧延シートから作成した 2つの比較例と比較して、 明らかに引張り強度 が増加し、 伸び率が減少している。 本発明の粉末圧延シートの引張り強度は、 測 定点のばらつきも考慮に入れると、 25±2NZmm2以上、 46±2NZmm2以下であ る。 粉末圧延シートは、 微細結晶粒の集合体であるため、 粒界が増加する。 その ため、 粒界強度によって従来技術の铸造圧延シートに比べて引張り強度が増す。 また、 粉末圧延シートは、 急冷凝固粉の粒子の表面同士が結合して形成された人 ェ的な界面で連結されているから、 引っ張り力を受けても、 変形が伝達され難く 、 伸びも抑制できる。 Figure 8 (B) shows the results of the tensile test. Shimadzu Autograph AGS I H500N was used as the measuring device. The gauge distance is 27mm and the strain rate is 5mmZ. As shown in the figure, in the two test pieces made from the rolled sheet according to the present invention, the tensile strength is clearly increased and the elongation rate is reduced compared with the two comparative examples made from the forged rolled sheet according to the prior art. is doing. The tensile strength of the powder-rolled sheet of the present invention is 25 ± 2 NZmm 2 or more and 46 ± 2 NZmm 2 or less, taking into account variations in measurement points. Since the powder rolling sheet is an aggregate of fine crystal grains, grain boundaries increase. Therefore, the tensile strength is increased by the grain boundary strength as compared with the forged rolled sheet of the prior art. In addition, since the powder-rolled sheets are connected by a human interface formed by bonding the surfaces of the rapidly solidified powder particles, deformation is not easily transmitted even when subjected to a tensile force, and elongation is suppressed. it can.
図 9は、 本発明による圧延シートの表面層 11と正極活物質 4との密着性を確認 するため、 正極活物質 4を剥した後の表面層 11の組織写真である。 図 9 ( A) は 、 比較例である基材の P b—C a— S n合金の写真である。 即ち、 P b— C a— S n合金と正極活物質の密着性を確認するために、 正極活物質を剥した後の基材 の表面を観察した。 図 9 ( B ) は、 本発明による P b— S n合金の急冷凝固粉の 粉末圧延シートによる表面層 11の写真、 図 9 ( C ) は、 本発明による B iを添加 した P b— S n合金の急冷凝固粉の粉末圧延シートによる表面層 11の写真、 図 9 ( D ) は、 本発明による S rを添加した P b— S n合金の急冷凝固粉の粉末圧延 シートによる表面層 11の写真、 である。 正極活物質 4は、 公知のものでよく、 鉛 粉と鉛丹を硫酸水溶液で練合した正極用活物質ペーストを圧延シート上面に塗布 した後に、 これを乾燥させて得ている。 FIG. 9 is a structural photograph of the surface layer 11 after peeling off the positive electrode active material 4 in order to confirm the adhesion between the surface layer 11 of the rolled sheet according to the present invention and the positive electrode active material 4. FIG. 9 (A) is a photograph of a Pb—C a—S n alloy of a base material as a comparative example. That is, in order to confirm the adhesion between the Pb—Ca—Sn alloy and the positive electrode active material, the surface of the base material after the positive electrode active material was peeled was observed. Fig. 9 (B) shows a photograph of the surface layer 11 of a rapidly rolled solid powder of a Pb-Sn alloy according to the present invention, and Fig. 9 (C) shows Pb-S with Bi added according to the present invention. Fig. 9 (D) is a photograph of surface layer 11 of n-alloy rapidly solidified powder powder rolled sheet. Fig. 9 (D) shows the powder rolling of rapidly solidified powder of Pb-Sn alloy with Sr added according to the present invention. It is the photograph of the surface layer 11 by a sheet | seat. The positive electrode active material 4 may be a known one, and is obtained by applying a positive electrode active material paste obtained by kneading lead powder and red lead with a sulfuric acid aqueous solution to the upper surface of the rolled sheet and then drying it.
図 9 (A) に示すように、 基材の P b— C a— S n合金の場合、 茶色の正極活 物質の残存がほとんど認められず、 正極活物質が完全に剥れている。 従って、 基 材の P b -C a - S n合金は、 正極活物質に対する密着性が低い。  As shown in Fig. 9 (A), in the case of the Pb—C a—Sn alloy of the base material, the remaining of the brown cathode active material is hardly observed, and the cathode active material is completely peeled off. Therefore, the Pb—C a —Sn alloy as the base material has low adhesion to the positive electrode active material.
これに対して、 図 9 (B)、 図 9 C、 図 9 (D) に示す、 本発明による粉末圧延 シートによる表面層 11の場合、 茶色の正極活物質の残存が認められる。 即ち、 本 発明による粉末圧延シートによる表面層 11は、 正極活物質に対する密着性が高い 。 特に、 B i又は S rを添加することによって、 さらに密着性が向上することが わ力 る。  On the other hand, in the case of the surface layer 11 of the powder rolled sheet according to the present invention shown in FIGS. 9B, 9C, and 9D, the brown cathode active material remains. That is, the surface layer 11 of the powder rolled sheet according to the present invention has high adhesion to the positive electrode active material. In particular, the addition of Bi or Sr has the potential to further improve the adhesion.
図 1 0は、 高温度、 且つ、 過充電条件下における、 本発明による圧延シートの 表面層 11の腐食試験の測定結果を示す。 図 1 0 (A) は、 比較例である基材の P b -C a - S n合金シートの測定結果、 図 1 0 (B) は、 本発明による P b _ S n合金の急冷凝固粉の粉末圧延シートによる表面層 11の測定結果、 図 1 0 (C) は、 本発明による A gを添加した P b— S n合金の急冷凝固粉の粉末圧延シート による表面層 11の測定結果である。 表面層 11と基材の P b -C a - S n合金の厚 さが同一となるように、 表面層 11は、 厚さ 0.5mmの一体化前の粉末圧延シートで ある。  FIG. 10 shows the measurement results of the corrosion test of the surface layer 11 of the rolled sheet according to the present invention under high temperature and overcharge conditions. Fig. 10 (A) is the measurement result of the P b -C a-S n alloy sheet of the base material as a comparative example, and Fig. 10 (B) is the rapidly solidified powder of the P b _ S n alloy according to the present invention. Fig. 10 (C) shows the measurement result of the surface layer 11 of the Pb—Sn alloy rapidly solidified powder powder rolled sheet added with Ag according to the present invention. is there. The surface layer 11 is a pre-integrated powder rolled sheet having a thickness of 0.5 mm so that the surface layer 11 and the Pb—C a —Sn alloy as the base material have the same thickness.
腐食試験の条件は、 温度が 75°C、 電解液が比重 1.28の硫酸水溶液である。 各 シートに対して、 電流密度 1 OmA/cm2にて 6時間充電し、 次に、 6時間休止す るサイクルを 14サイクル実施した。 対極には、 公知の鉛電極を用いた。 腐食量 は、 厚さ方向に沿って測定した浸食深さで表した。 The conditions for the corrosion test are an aqueous sulfuric acid solution with a temperature of 75 ° C and an electrolyte density of 1.28. Each sheet was charged for 6 hours at a current density of 1 OmA / cm 2 and then rested for 6 hours for 14 cycles. A known lead electrode was used as the counter electrode. The amount of corrosion was expressed as the erosion depth measured along the thickness direction.
図示のように、 基材の P b— Ca— S n合金は、 腐食量が多く、 耐食性に劣る ことがわかる。 これに対して、 本発明による表面層 11では腐食量が少なく、 耐食 性が高いことがわかる。 更に、 P b— S n合金に A gを添加することによって腐 食量が低減し、 耐食性が向上することがわかる。  As shown in the figure, the base Pb—Ca—Sn alloy has a large amount of corrosion and is inferior in corrosion resistance. On the other hand, it can be seen that the surface layer 11 according to the present invention has a low corrosion amount and high corrosion resistance. Furthermore, it can be seen that the addition of Ag to the Pb—Sn alloy reduces the amount of corrosion and improves the corrosion resistance.
図 1 1は、 深放電サイクル実験の結果を示す。 深放電サイクル試験後に、 X線 回折装置によって、 .表面層 11の腐食層 (酸化層) を測定し、 a_P b 02の (1 1 1) 面の面間隔 d値を得た。 X線回折装置は、 リガク製、 RINT2500を用いた 。 測定条件は、 X線源が Cu k a、 X線出力が 50kV— 250mA、 光学系がモノク 口メータ付集中法、 走査速度が 0.5deg/min、 サンプリング間隔が O.Oldeg/stepで あった。 Figure 11 shows the results of the deep discharge cycle experiment. After the deep discharge cycle test, the corrosion layer (oxide layer) of the surface layer 11 is measured by an X-ray diffractometer, and a_P b 0 2 (1 1 1) The inter-surface spacing d value was obtained. RINT2500 manufactured by Rigaku was used as the X-ray diffractometer. The measurement conditions were Cu ka for the X-ray source, 50kV-250mA for the X-ray output, centralized method with monochromator for the optical system, scanning speed 0.5deg / min, and sampling interval O.Oldeg / step.
深放電サイクル試験に使用した電池は、 図 1に示す構成を有する。 深放電サイ クルでは、 0.2Cで充電し、 それから 1時間休止し、 0.2Cで 1.75Vまで放電するこ とを繰り返した。 放電容量が、 1サイクル目の放電容量の 80%まで低下したと きのサイクル数を深放電サイクル寿命と判定した。 深放電サイクル寿命に達した 電極を充電状態で解体し、 水洗乾燥して、 腐食層のみを搔き落して X線回折装置 によって測定した。  The battery used in the deep discharge cycle test has the configuration shown in Fig. 1. In the deep discharge cycle, the battery was charged at 0.2C, then rested for 1 hour, and repeatedly discharged at 0.2C to 1.75V. The number of cycles when the discharge capacity dropped to 80% of the discharge capacity at the first cycle was judged as the deep discharge cycle life. The electrodes that reached the deep discharge cycle life were disassembled in a charged state, washed with water and dried, and only the corroded layer was scraped off and measured with an X-ray diffractometer.
本発明による圧延シートを用いて 3つの正極格子体を用意し、 従来技術による 2つの比較例の正極格子体を用意した。 本発明の第 1の正極格子体は、 高純度鉛 の急冷凝固粉の粉末圧延シートによる表面層を有し、 本発明の第 2の正極格子体 は、 0. 05 w t %の A gを含む P b _ S n合金の急冷凝固粉の粉末圧延シート による表面層 11を有し、 本発明の第 3の正極格子体は、 P b— S n合金の急冷凝 固粉の粉末圧延シートによる表面層 11を有し、 基材はいずれも P b_C a— S n 合金シートからなる。  Three positive grids were prepared using the rolled sheet according to the present invention, and two comparative positive grids according to the prior art were prepared. The first positive electrode grid of the present invention has a surface layer of a powder rolled sheet of rapidly solidified powder of high-purity lead, and the second positive electrode grid of the present invention contains 0.05 wt% Ag. It has a surface layer 11 of a rapidly solidified powder of a Pb_Sn alloy and is a surface of a powdered rolled sheet of a rapidly solidified powder of a Pb-Sn alloy. Each of the base materials is made of a Pb_C a—S n alloy sheet.
第 1の比較例の正極格子体は、 基材ょりも高濃度の S nを含む P b— S n合金 の急冷凝固粉の粉末圧延シートによる表面層 11を有し、 第 2の比較例の正極格子 体は、 表面層を含まない基材の P b—C a— S n合金のみからなる。 これらの粉 末圧延シートは、 図 4に示す製造プロセスによつて作製した。  The positive electrode grid body of the first comparative example has a surface layer 11 of a rapidly rolled solid powder of a Pb—Sn alloy containing a high concentration of Sn, and a second comparative example. This positive electrode grid is composed only of a Pb—Ca—Sn alloy as a base material that does not include a surface layer. These powder-rolled sheets were produced by the manufacturing process shown in Fig. 4.
図 1 1 (A) に示すように、 本発明による正極格子体の表面層 11に形成された 腐食層 (酸化層) の結晶構造は a_P b 02を含み、 且つ、 ct_P b O2の (1 1 1) 面の面間隔 d値が 0.3140±0.0001ナノメートル以下である。 本発明による圧 延シートを正極格子体に使用した場合、 深放電サイクル寿命が向上する。 一方、 比較例の正極格子体は、 深放電サイクル寿命が短かった。 As shown in FIG. 11 (A), the crystal structure of the corrosion layer (oxide layer) formed on the surface layer 11 of the positive electrode lattice according to the present invention includes a_P b 0 2 , and ct_P b O 2 ( 1 1 1) Surface spacing d value is 0.3140 ± 0.0001 nanometers or less. When the rolled sheet according to the present invention is used for the positive electrode grid, the deep discharge cycle life is improved. On the other hand, the positive electrode grid of the comparative example had a short deep discharge cycle life.
図 1 1 (B) は、 図 1 1 (A) の a_P b O2の ( 1 1 1) 面の面間隔 d値と 、 深放電サイクル寿命の関係をグラフに表したものである。 これより、 深放電サ ィクル寿命を延長するには、 a— P b〇2の (1 1 1) 面の面間隔 d値が 0.3140 ±0.0001ナノメ一トル以下且つ 0.3120±0.0001ナノメ一トル以上であることが 好ましい。 Fig. 11 (B) is a graph showing the relationship between the (1 1 1) plane spacing d value of a_P b O 2 in Fig. 11 (A) and the deep discharge cycle life. Therefore, to extend the life of the deep discharge cycle, the d-value between the (1 1 1) planes of a—Pb 0 2 is 0.3140. It is preferably ± 0.0001 nm or less and 0.3120 ± 0.0001 nm or more.
図 9の密着性の評価試験、 図 1 0の耐食性の評価試験、 及び、 図 1 1の深放電 サイクル寿命の評価試験の結果から、 以下のことがわかる。 先ず、 正極格子体と して、 基材の P b— C a— S n合金のみを用いると、 正極活物質に対する密着性 が低く、 耐食性が低く、 更に、 深放電サイクル寿命が短い。 一方、 本発明の正極 格子体のように、 基材の上に、 基材よりも低含有量の S nを含む P b— S n合金 の急冷凝固粉の粉末圧延シートによる表面層 11を圧延した 2層構造の場合、 密着 性及び耐食性が高い。 更に、 基材よりも高含有量の S nを含む P b— S n合金の 急冷凝固粉の粉末圧延シートによる表面層 11を有する正'極格子体の場合、 深放電 サイクル寿命が短い。 一方、 本発明のように、 基材よりも低含有量の S nを含む P b - S n合金の急冷凝固粉の粉末圧延シートによる表面層 11を有する正極格 子体の場合、 深放電サイクル寿命が長い。 また、 高純度鉛の急冷凝固粉の粉末圧 延シートによる表面層 11を有する正極格子体の場合も深放電サイクル寿命が長 い。  The following can be seen from the results of the adhesion evaluation test in FIG. 9, the corrosion resistance evaluation test in FIG. 10, and the deep discharge cycle life evaluation test in FIG. First, when only the Pb—Ca—Sn alloy of the base material is used as the positive electrode lattice, the adhesion to the positive electrode active material is low, the corrosion resistance is low, and the deep discharge cycle life is short. On the other hand, like the positive electrode grid of the present invention, the surface layer 11 is rolled on the base material by a powder rolling sheet of a rapidly solidified powder of Pb—Sn alloy containing Sn having a lower content than the base material. The two-layer structure has high adhesion and corrosion resistance. Further, in the case of a positive electrode grid having a surface layer 11 of a powder rolling sheet of a rapidly solidified powder of a Pb—Sn alloy containing Sn higher than the base material, the deep discharge cycle life is short. On the other hand, in the case of a positive electrode body having a surface layer 11 of a powder rolling sheet of a rapidly solidified powder of a Pb-Sn alloy containing Sn lower than the base material as in the present invention, a deep discharge cycle Long life. A deep discharge cycle life is also long in the case of a positive electrode grid having a surface layer 11 of a powder-rolled sheet of rapidly solidified powder of high-purity lead.
次に、 本発明による表面層に、 B i、 Ag、 S rを添加した場合を説明する。 基材よりも低含有量の S nを含む P b _S n合金の急冷凝固粉に、 B i、 Ag、 S rを添加することによって、 表面層の特性が向上する。  Next, the case where Bi, Ag, and Sr are added to the surface layer according to the present invention will be described. The characteristics of the surface layer are improved by adding Bi, Ag, and Sr to the rapidly solidified powder of the Pb_Sn alloy containing Sn lower than the base material.
先ず B iについて説明する。 図 9 (C) に示す正極活物質に対する密着性の評 価結果から、 正極格子体の表面層に、 B iが含まれると、 正極格子体の表面層と 正極活物質の間の密着性が向上する。 そのため、 B iは、 エキスパンド格子や打 ち抜き格子においても、 深放電サイクル寿命を延長させる働きがある。 更に、 B iは、 深放電サイクル寿命を延長させる上で不可欠な α— P b 02の生成をさら に促進させる働きがある。 図 9 (C) の例では、 正極格子体の表面層の B iの含 有量は 5w t%である。 しかしながら、 以下に説明する図 1 7の実施例 3及び図 1 8の実施例 4の結果から、 B iの含有量は、 好ましくは、
Figure imgf000016_0001
1 %以上15 t%以下であり、 より好ましくは、 0.5w t %以上 15w t %以下である。
First, Bi will be described. From the result of the evaluation of the adhesion to the positive electrode active material shown in FIG. 9 (C), when Bi is contained in the surface layer of the positive electrode grid, the adhesion between the surface layer of the positive electrode grid and the positive electrode active material is reduced. improves. Therefore, Bi has the function of extending the deep discharge cycle life even in expanded and punched lattices. Furthermore, Bi has the function of further promoting the production of α-Pb 0 2 which is essential for extending the deep discharge cycle life. In the example of Fig. 9 (C), the Bi content of the surface layer of the positive electrode grid is 5 wt%. However, from the results of Example 3 in FIG. 17 and Example 4 in FIG. 18 described below, the Bi content is preferably
Figure imgf000016_0001
It is 1% or more and 15 t% or less, More preferably, it is 0.5 wt% or more and 15 wt% or less.
次に、 Agについて説明する。 図 1 0 (C) に示す耐食性の評価結果から、 正 極格子体の表面層に、 A gが含まれると、 耐食性が向上する。 A gは高温条下、 過充電条件における格子腐食を抑えるので、 電池寿命を延長させる。 更に、 図 1 1 (A) に示す深放電サイクル寿命の評価結果から、 正極格子体の表面層に、 A gが含まれると、 深放電サイクル寿命が長くなる。 A gは、 深放電サイクル寿命 を低下させる原因物質である硫酸鉛の生成を抑制する働きがある。 A gの含有量 は、 図 1 0 ( C ) に示す例では 0.5w t %、 図 1 1 (A) に示す例では、 0.005w t %である。 しかしながら、 図 1 7の実施例 3及び図 1 8の実施例 4の結果から 、 A gの含有量は、 好ましくは、 0.005w t %以上 0.5w t %以下であり、 より好 ましくは、 0.005w t %以上 O.Olw t %以下である。 Next, Ag will be described. From the evaluation results of the corrosion resistance shown in Fig. 10 (C), the corrosion resistance improves when Ag is included in the surface layer of the positive electrode lattice. Ag is under high temperature conditions, Suppresses grid corrosion in overcharge conditions, extending battery life. Furthermore, from the evaluation results of the deep discharge cycle life shown in FIG. 11 (A), when the surface layer of the positive electrode grid body contains Ag, the deep discharge cycle life is prolonged. Ag has the function of suppressing the formation of lead sulfate, which is a causative substance that decreases the deep discharge cycle life. The content of Ag is 0.5 wt% in the example shown in FIG. 10 (C), and 0.005 wt% in the example shown in FIG. 11 (A). However, from the results of Example 3 in FIG. 17 and Example 4 in FIG. 18, the Ag content is preferably 0.005 wt% or more and 0.5 wt% or less, and more preferably 0.005 wt%. % Or more and O.Olw t% or less.
次に、 S rについて説明する。 図 9 (D ) に示す正極活物質に対する密着性の 評価結果から、 正極格子体の表面層に、 S rが含まれると、 正極格子体の表面層 と正極活物質の間の密着性が向上する。 正極格子体の表面層 11に S rを添加する と、 微細な析出物を反応させて正極活物質との密着性を高める。 そのため、 ェキ スパン.ド格子や打ち抜き格子においても、 深放電サイクル寿命を延長させる働き がある。 図 9 ( D ) に示す例では、 S rの含有量は l.Ow t %である。 しかしなが ら、 図 1 7の実施例 3及び図 1 8の実施例 4の結果から、 S rの含有量は、 好ま しくは、 O.Olw t %以上 l.Ow t %以下である。  Next, S r will be described. From the evaluation results of the adhesion to the positive electrode active material shown in Fig. 9 (D), the adhesion between the surface layer of the positive electrode grid and the positive electrode active material is improved when the surface layer of the positive electrode grid includes Sr. To do. When Sr is added to the surface layer 11 of the positive electrode grid body, fine precipitates are reacted to improve the adhesion with the positive electrode active material. For this reason, expanded and punched grids also have the effect of extending the deep discharge cycle life. In the example shown in Fig. 9 (D), the Sr content is l.Ow t%. However, from the results of Example 3 in FIG. 17 and Example 4 in FIG. 18, the Sr content is preferably O.Olw t% or more and l.Ow t% or less.
図 1 2を参照して本発明の第 2実施形態について詳細に説明する。 ここでは、 本発明の一例として、 自動車用鉛蓄電池と、 これに組み込まれる正極格子体につ いて説明する。 参照する図面において、 図 1 2は、 本実施形態に係る正極格子体 が組み込まれた自動車用鉛蓄電池の構成を説明するための斜視図であり、 電槽ぉ よび電極群の一部に切欠きを含む図である。 -¾ 図 1 2に示すように、 自動車用鉛蓄電池は、 正極板 36 (鉛蓄電池用電極体) お よび負極板 37 (鉛蓄電池用電極体) とを備えている。 正極板 36と負極板 37は、 ポ リエチレン等の樹脂からなるセパレ一タ 38を介して配置されており、 正極板 36、 負極板 37およびセパレ一タ 38からなる組が、複数積層されることによって積層極 板群 39を形成している。 そして、 図示しないが、 電槽 40内には、 硫酸 (H2S04) を含む電解液とともに、 6つの積層極板群 39が収納されている。 電槽 40には蓋 42 が装着されている。 A second embodiment of the present invention will be described in detail with reference to FIG. Here, as an example of the present invention, an automotive lead-acid battery and a positive electrode grid body incorporated therein will be described. In the drawings to be referred to, FIG. 12 is a perspective view for explaining the configuration of an automotive lead-acid battery in which the positive electrode grid according to the present embodiment is incorporated, and is cut out in a battery case and a part of an electrode group. FIG. -¾ As shown in Fig. 12, the lead acid battery for automobile includes a positive electrode plate 36 (electrode body for lead acid battery) and a negative electrode plate 37 (electrode body for lead acid battery). The positive electrode plate 36 and the negative electrode plate 37 are arranged via a separator 38 made of a resin such as polyethylene, and a plurality of pairs of the positive electrode plate 36, the negative electrode plate 37, and the separator 38 are stacked. Thus, a laminated electrode group 39 is formed. Although not shown, in the battery case 40, six laminated electrode plate groups 39 are accommodated together with the electrolytic solution containing sulfuric acid (H 2 S0 4 ). The battery case 40 is provided with a lid 42.
積層極板群 39における正極板 36同士は、正極端子 43に接続された正極耳 41によ つて電気的に並列に接続されている。 また、 負極板 37同士は、 負極端子 44に接続 された負極耳によって電気的に並列に接続されている。 積層極板群 39同士は電気 的に直列に接続されている。 The positive electrode plates 36 in the laminated electrode plate group 39 are connected to each other by positive electrode ears 41 connected to the positive electrode terminal 43. Are electrically connected in parallel. Further, the negative electrode plates 37 are electrically connected in parallel by a negative electrode ear connected to the negative electrode terminal 44. The laminated electrode plate groups 39 are electrically connected in series.
正極板 36には、 本発明の正極格子体が設けられている。 正極格子体の形状は特 に限定されず、 打ち抜き格子でもエキスパンド格子でも、 その他の形状でも、 シ ート状でもよい。 以上のような本例の自動車用鉛蓄電池によれば、 第 1実施形態 に係る単板鉛蓄電池と同様の作用効果を奏することができる。  The positive electrode plate 36 is provided with the positive electrode lattice body of the present invention. The shape of the positive electrode lattice is not particularly limited, and may be a punched lattice, an expanded lattice, other shapes, or a sheet shape. According to the automotive lead storage battery of the present example as described above, the same operational effects as the single plate lead storage battery according to the first embodiment can be achieved.
本実施形態の自動車用鉛蓄電池は、 従来の鉛蓄電池 (例えば、 特許文献 1〜8 参照) と比較して以下の効果を確認した。 本実施形態の自動車用鉛蓄電池は、 深 放電サイクル寿命を延長することができる。 また、 高温下、 及び、 過放電状態で 放置しても回復充電性が低下しない。 また、 充電状態においても、 格子腐食を抑 えて電池寿命を延長し、 かつ、 腐食伸びを抑えて短絡の危険性を低減できる。 ェ キスパンド格子や打ち抜き格子においても、 活物質との密着性が改善されて深放 電サイクル寿命が長くなる。 また、 腐食伸びを抑えて短絡の危険性を低減できる 。  Compared with the conventional lead acid battery (for example, refer to patent documents 1-8), the lead acid battery for vehicles of this embodiment has confirmed the following effects. The lead acid battery for automobiles of this embodiment can extend the deep discharge cycle life. In addition, recovery chargeability does not deteriorate even when left at high temperatures and in an overdischarged state. Even in a charged state, the battery life can be extended by suppressing lattice corrosion, and the risk of short-circuiting can be reduced by suppressing corrosion growth. Even in expanded and punched lattices, adhesion to the active material is improved and the deep discharge cycle life is extended. In addition, the risk of short-circuiting can be reduced by suppressing corrosion elongation.
高価な錫や銀の添加量が少なくても十分な電池特性が得られ、 低コスト化に貢 献できる。 製造面では、 純鉛の圧延薄板を用いても、 ハンドリ ング性に優れ、 鉛 一カルシウム系合金表面に容易に圧延で一体化させることができる。 また、 腐食 による割れがなく、 耐食性に優れ、 寿命が長い。 さらに、 従来の鉛—カルシウム 系合金を基材とし、 この基材の片面に鉛一銀系合金層を他面に鉛一錫合金層をそ れぞれ形成させたシートの穿孔板を格子体に用いる (例えば、 特許文献 1参照) 方法や鉛一カルシウム系合金板と鉛一錫系合金板とを用いて一体化した板片を電 極基体として用いる (例えば、 特許文献 2、 3、 4参照) 方法に比べて、 S nや A gが引き金となって起こる電解液の減液を抑制でき、 深放電サイクル寿命を延 長させることができる。  Even if the amount of expensive tin or silver added is small, sufficient battery characteristics can be obtained, contributing to cost reduction. In terms of manufacturing, even if a pure lead rolled sheet is used, it is easy to handle and can easily be integrated with the surface of lead-calcium alloy by rolling. In addition, there is no cracking due to corrosion, excellent corrosion resistance, and long life. Furthermore, a perforated plate of a sheet in which a conventional lead-calcium alloy is used as a base material and a lead-silver alloy layer is formed on one side of the base material and a lead-tin alloy layer is formed on the other side of the base material is a lattice. (For example, refer to Patent Document 1) A plate piece integrated using a method and a lead-calcium alloy plate and a lead-tin alloy plate is used as an electrode substrate (for example, Patent Documents 2, 3, and 4). Compared with the method, it is possible to suppress the decrease of the electrolyte caused by Sn or Ag, and to extend the deep discharge cycle life.
図 1 3を参照して、 本発明の第 3実施形態について説明する。 ここでは、 本発 明の一例として、 捲回式鉛蓄電池と、 これに組み込まれる正極格子体とについて 説明する。 参照する図面において、 図 1 3は、 本実施形態に係る正極格子体が組 み込まれた捲回式鉛蓄電池の構成を説明するための斜視図であり、 電槽および電 極群の一部に切欠きを含む図である。 なお、 本実施形態において、 第 2実施形態 と同様の構成要素については同じ符号を付して、 その詳細な説明は省略する。 図 1 3に示すように、 捲回式鉛蓄電池は、 正極板 36 (鉛蓄電池用電極体) およ び負極板 37 (鉛蓄電池用電極体) とを備えている。 捲回式鉛蓄電池では、 ガラス 繊維からなるリリテ—ナ 45、 負極板 37、 リテーナ 45、 及び、 正極板 36がこの順に 、 重ね合わせられるとともに、 所定の中心軸線周りに捲回されることによって円 柱状の捲回極板群 46が形成されている。 そして、 図示しないが、 電槽 40内には、 硫酸 (H2S04) を含む電解液とともに、 6つの捲回極板群 46が収納されている。 電槽 40には蓋 42が装着されている。 A third embodiment of the present invention will be described with reference to FIG. Here, as an example of the present invention, a wound lead-acid battery and a positive electrode grid body incorporated therein will be described. In the drawings to be referred to, FIG. 13 is a perspective view for explaining the configuration of a wound lead-acid battery in which the positive electrode grid body according to the present embodiment is incorporated. It is a figure which contains a notch in a part of pole group. In the present embodiment, the same components as those in the second embodiment are denoted by the same reference numerals, and detailed description thereof is omitted. As shown in FIG. 13, the wound lead-acid battery includes a positive electrode plate 36 (lead-acid battery electrode body) and a negative electrode plate 37 (lead-acid battery electrode body). In a wound lead-acid battery, a retainer 45 made of glass fiber, a negative electrode plate 37, a retainer 45, and a positive electrode plate 36 are overlapped in this order and wound around a predetermined central axis to thereby form a circle. A columnar wound electrode group 46 is formed. Although not shown, in the battery case 40, six wound electrode plate groups 46 are accommodated together with the electrolyte containing sulfuric acid (H 2 S04). A lid 42 is attached to the battery case 40.
積層極板群 39における正極板 36同士は、正極端子 43に接続された正極耳 41によ つて電気的に並列に接続されている。 また、 負極板 37同士は、 負極端子 44に接続 された負極耳によって電気的に並列に接続されている。 また、 捲回極板群 46同士 は電気的に直列に接続されている。  The positive electrode plates 36 in the laminated electrode plate group 39 are electrically connected in parallel by the positive electrode ear 41 connected to the positive electrode terminal 43. Further, the negative electrode plates 37 are electrically connected in parallel by a negative electrode ear connected to the negative electrode terminal 44. Further, the wound electrode plate groups 46 are electrically connected in series.
正極板 36には、 本発明の正極格子体が設けられている。 正極格子体の形状は特 に限定されず、 打ち抜き格子でもエキスパンド格子でも、 その他の形状でも、 シ ート状でも良い。 以上のような本例の捲回式鉛蓄電池によれば、 第 1実施形態に 係る単板鉛蓄電池と同様の作用効果を奏することができる。  The positive electrode plate 36 is provided with the positive electrode lattice body of the present invention. The shape of the positive electrode lattice is not particularly limited, and may be a punched lattice, an expanded lattice, other shapes, or a sheet shape. According to the wound lead-acid battery of this example as described above, the same operational effects as the single-plate lead-acid battery according to the first embodiment can be achieved.
本実施形態の捲回式鉛蓄電池は、 従来の鉛蓄電池 (例えば、 特許文献 1〜 8参 照) と比較して以下の効果を確認した。 本実施形態の捲回式鉛蓄電池は、 深放電 サイクル寿命を延長でき、 高温下、 過放電状態で放置しても回復充電性が低下し ない。 また、 充電状態においても、 格子腐食を抑えて電池寿命を延長し、 かつ、 腐食伸びを抑えて短絡の危険性を低減できる。 エキスパンド格子や打ち抜き格子 においても、 活物質との密着性が改善されて深放電サイクル寿命が長く、 腐食伸 びを抑えて短絡の危険性を低減できる。 高価な錫や銀の添加量が少なくても十分 な電池特性が得られ、 低コス ト化に貢献できる。 製造面では、 純鉛の圧延薄板を 用いても、 ハンドリング性に優れ、 鉛一カルシウム系合金表面に容易に圧延で一 体化させることができる。 また、 腐食による割れがなく、 耐食性に優れ、 寿命が 長い。 さらに、 従来の鉛一カルシウム系合金を基材とし、 この基材の片面に鉛一 銀系合金層を他面に鉛一錫合金層をそれぞれ形成させたシートの穿孔板を格子体 に用いる (例えば、 特許文献 1参照) 方法や鉛一カルシウム系合金板と鉛一錫系 合金板とを用いて一体化した板片を電極基体として用いる (例えば、 特許文献 2 、 3、 4参照) 方法に比べて、 S nや A gが引き金となって起こる電解液の減液 を抑制でき、 深放電サイクル寿命を延長させることができる。 The wound lead-acid battery of this embodiment has confirmed the following effects as compared with conventional lead-acid batteries (for example, see Patent Documents 1 to 8). The wound lead-acid battery of this embodiment can extend the deep discharge cycle life, and the recovery chargeability does not deteriorate even when left in an overdischarged state at a high temperature. Even in the charged state, the battery life can be extended by suppressing lattice corrosion, and the risk of short-circuiting can be reduced by suppressing corrosion growth. Even in expanded and punched grids, adhesion to the active material is improved, deep discharge cycle life is increased, and corrosion growth can be suppressed to reduce the risk of short circuits. Even if the amount of expensive tin or silver added is small, sufficient battery characteristics can be obtained, contributing to lower costs. In terms of manufacturing, even if a pure lead rolled sheet is used, it has excellent handling properties and can be easily integrated into the surface of lead-calcium alloy by rolling. In addition, there is no cracking due to corrosion, excellent corrosion resistance, and long life. Furthermore, a perforated plate of a sheet in which a conventional lead-calcium alloy is used as a base material, and a lead-silver alloy layer is formed on one side of the base material and a lead-tin alloy layer is formed on the other side of the base material is a lattice. (For example, refer to Patent Document 1) The method and a plate piece integrated using a lead-calcium alloy plate and a lead-tin alloy plate are used as an electrode base (for example, refer to Patent Documents 2, 3, and 4). ) Compared to the method, it is possible to suppress the decrease of the electrolyte caused by Sn and Ag, and to extend the deep discharge cycle life.
図 1 4を参照して、 本発明の第 4実施形態について説明する。 ここでは、 本発 明の一例として、 制御弁式鉛蓄電池と、 これに組み込まれる正極格子体とについ て説明する。  A fourth embodiment of the present invention will be described with reference to FIG. Here, as an example of the present invention, a control valve type lead-acid battery and a positive electrode grid body incorporated therein will be described.
参照する図面において、 図 1 4は、 本実施形態に係る正極格子体が組み込まれ た制御弁式鉛蓄電池の構成を説明するための斜視図であり、 電槽および電極群の 一部に切欠きを含む図である。 なお、 本実施形態において、 第 2、 第 3実施形態 と同様の構成要素については同じ符号を付して、 その詳細な説明は省略する。 図 1 4に示すように、 制御弁式鉛蓄電池は、 正極板 36 (鉛蓄電池用電極体) お よび負極板 37 (鉛蓄電池用電極体) とを備えている。 制御弁式鉛蓄電池では、 正 極板 36と負極板 37とがガラス繊維からなるリテ一ナ 45を介して配置されており、 正極板 36、負極板 37およびリテ一ナ 45からなる組が、複数積層されることによつ て積層極板群 47を形成している。 そして、 図示しないが、 電槽 40内には、 硫酸 ( H 2 S 04) を含む電解液とともに、 積層極板群 39が収納されている。 電槽 40には 蓋 42が装着されている。 In the drawings to be referred to, FIG. 14 is a perspective view for explaining a configuration of a control valve type lead storage battery in which a positive electrode grid body according to the present embodiment is incorporated, and is cut out in a part of a battery case and an electrode group. FIG. In the present embodiment, the same components as those in the second and third embodiments are denoted by the same reference numerals, and detailed description thereof is omitted. As shown in FIG. 14, the control valve type lead-acid battery includes a positive electrode plate 36 (lead-acid battery electrode body) and a negative electrode plate 37 (lead-acid battery electrode body). In a control valve type lead-acid battery, a positive electrode plate 36 and a negative electrode plate 37 are arranged via a retainer 45 made of glass fiber, and a set consisting of a positive electrode plate 36, a negative electrode plate 37 and a retainer 45 is A laminated electrode plate group 47 is formed by laminating a plurality of layers. Although not shown, a laminated electrode plate group 39 is accommodated in the battery case 40 together with an electrolytic solution containing sulfuric acid (H 2 S 0 4 ). The battery case 40 is provided with a lid 42.
積層極板群 39における正極板 36同士は、正極端子 43に接続された正極耳 41によ つて電気的に並列に接続されている。 また、 負極板 37同士は、 負極端子 44に接続 された負極耳によって電気的に並列に接続されている。 積層極板群 39同士は電気 的に直列に接続されている。 制御弁式鉛蓄電池では、 電槽 40内の圧力を調整する ための制御弁 46が取り付けられている。  The positive electrode plates 36 in the laminated electrode plate group 39 are electrically connected in parallel by the positive electrode ear 41 connected to the positive electrode terminal 43. Further, the negative electrode plates 37 are electrically connected in parallel by a negative electrode ear connected to the negative electrode terminal 44. The laminated electrode plate groups 39 are electrically connected in series. In the control valve type lead-acid battery, a control valve 46 for adjusting the pressure in the battery case 40 is attached.
正極板 36には本発明の正極格子体 5が設けられている。本発明の正極格子体 5の 形状は特に限定されず、 打ち抜き格子でもエキスパンド格子でも、 その他の形状 でも、 シート状でも良い。 以上のような本例の捲回式鉛蓄電池によれば、 第 1実 施形態に係る単板鉛蓄電池と同様の作用効果を奏することができる。  The positive electrode plate 36 is provided with the positive electrode grid 5 of the present invention. The shape of the positive electrode lattice body 5 of the present invention is not particularly limited, and may be a punched lattice, an expanded lattice, other shapes, or a sheet shape. According to the wound lead-acid battery of this example as described above, the same effects as the single plate lead-acid battery according to the first embodiment can be obtained.
本実施形態の制御弁式鉛蓄電池は、 従来の鉛蓄電池 (例えば、 特許文献 1〜8 参照) と比較して以下の効果を確認した。 本実施形態の制御弁式鉛蓄電池は、 深 放電サイクル寿命を延長でき、 高温下、 過放電状態で放置しても回復充電性が低 下しない。 また、 充電状態においても、 格子腐食を抑えて電池寿命を延長し、 か つ、 腐食伸びを抑えて短絡の危険性を低減できる。 エキスパンド格子や打ち抜き 格子においても、 活物質との密着性が改善されて深放電サイクル寿命が長く、 腐 食伸びを抑えて短絡の危険性を低減できる。 The control valve type lead acid battery of this embodiment confirmed the following effects compared with the conventional lead acid battery (for example, refer patent documents 1-8). The control valve type lead acid battery of this embodiment is Discharge cycle life can be extended, and recovery chargeability does not deteriorate even when left in an overdischarged state at high temperatures. Even in the charged state, the battery life can be extended by suppressing lattice corrosion, and the risk of short-circuiting can be reduced by suppressing corrosion growth. Even in expanded and punched grids, adhesion to the active material is improved, resulting in a longer deep discharge cycle life, reducing corrosion growth and reducing the risk of short circuits.
高価な錫や銀の添加量が少なくても十分な電池特性が得られ、低コスト化に貢献 できる。 製造面では、 純鉛の圧延薄板を用いても、 ハンドリング性に優れ、 鉛一 カルシウム系合金表面に容易に圧延で一体化させることができる。 また、 腐食に よる割れがなく、 耐食性に優れ、 寿命が長い。  Even if the amount of expensive tin or silver added is small, sufficient battery characteristics can be obtained, which can contribute to cost reduction. In terms of manufacturing, even if a pure lead rolled sheet is used, it is easy to handle and can be easily integrated with the lead-calcium alloy surface by rolling. In addition, there is no cracking due to corrosion, excellent corrosion resistance, and long life.
さらに、 従来の鉛一カルシウム系合金を基材とし、 この基材の片面に鉛一銀系 合金層を他面に鉛一錫合金層をそれぞれ形成させたシートの穿孔板を格子体に用 いる (例えば、 特許文献 1参照) 方法や鉛一カルシウム系合金板と鉛一錫系合金 板とを用いて一体化した板片を電極基体として用いる (例えば、 特許文献 2、 3 、 4参照) 方法に比べて、 S nや A gが引き金となって起こる電解液の減液を抑 制でき、 深放電サイクル寿命を延長させることができるので、 注水が必要なくな り、 メンテナンスフリ一を実現できる。  Furthermore, a perforated plate of a sheet in which a conventional lead-calcium alloy is used as a base material, and a lead-silver alloy layer is formed on one side of the base material and a lead-tin alloy layer is formed on the other side of the base material is used for the lattice. (For example, refer to Patent Document 1) Method or plate integrated using a lead-calcium alloy plate and a lead-tin alloy plate as an electrode substrate (for example, refer to Patent Documents 2, 3, and 4) Compared to the above, it is possible to suppress the decrease of the electrolyte caused by Sn and Ag, and to extend the life of the deep discharge cycle, eliminating the need for water injection and realizing maintenance-free operation. .
本発明によれば、 従来の鉛蓄電池と比較して深放電サイクル寿命を延長させる ことが可能であり、 高温下、 過放電状態で放置しても回復充電性が低下しない鉛 蓄電池を提供することができる。 また、 充電状態においても、 格子腐食を抑えて 電池寿命を延長し、 かつ、 腐食伸びを抑えて短絡の危険性を低減できる。 エキス パンド格子や打ち抜き格子においても、 活物質との密着性が改善されて深放電サ ィクル寿命が長いことや、 腐食伸びを抑えて短絡の危険性を低減できる。 さらに 、 高価な錫や銀の添加量が少なくても十分な電池特性が得られる。 また、 製造面 では、 純鉛の圧延薄板を用いても、 ハンドリング性に優れ、 鉛一カルシウム系合 金表面に容易に圧延で一体化させることができ、 腐食による割れがなく、 耐食性 に優れ、 寿命が長い鉛蓄電池を提供することができる。 次に、 本発明の実施例を 説明する。  According to the present invention, it is possible to provide a lead storage battery that can extend the deep discharge cycle life as compared with a conventional lead storage battery, and does not deteriorate the recovery chargeability even when left in an overdischarged state at a high temperature. Can do. Even in the charged state, the battery life can be extended by suppressing lattice corrosion, and the risk of short-circuiting can be reduced by suppressing corrosion growth. In expanded and punched grids, adhesion to the active material is improved and the life of the deep discharge cycle is extended, and the risk of short-circuiting can be reduced by suppressing corrosion growth. Further, sufficient battery characteristics can be obtained even if the amount of expensive tin or silver added is small. In terms of manufacturing, even with pure lead rolled sheets, it has excellent handling properties, can be easily integrated with the lead-calcium alloy surface by rolling, has no cracking due to corrosion, and has excellent corrosion resistance. A lead-acid battery having a long life can be provided. Next, examples of the present invention will be described.
[実施例 1 ] ぐ正極格子体の作製 > [Example 1] Of the positive electrode grid>
図 1 5 (A) に示すように、 本発明の実施例 1による圧延シート F〜Lと比較例 1 の圧延シート Mと比較例 2の圧延シート 0〜Qを製造した。 図 1 5 ( A) は、 圧延 シートの基材 10と表面層 11の構成を示す。 As shown in FIG. 15 (A), rolled sheets F to L according to Example 1 of the present invention, rolled sheet M of Comparative Example 1 and rolled sheets 0 to Q of Comparative Example 2 were produced. FIG. 15 (A) shows the configuration of the base material 10 and the surface layer 11 of the rolled sheet.
本発明の実施例 1による圧延シート F〜Lの製造方法を説明する。 S nの含有量 力 U.2wt%以上、 2.5wt%以下の P b - C a - S n系合金の铸造スラブを形成した 。 P b _ C a— S n系合金は P bと S nと C aの三元合金であり、 C aの含有量 は 0.02〜0.11wt%である。 この铸造スラブを多段ロールで順次に圧延して基材 10 を作製した。  A method for producing rolled sheets F to L according to Example 1 of the present invention will be described. Sn content force A forged slab of Pb-Ca-Sn alloy having a strength of U.2 wt% or more and 2.5 wt% or less was formed. The Pb_Ca-Sn alloy is a ternary alloy of Pb, Sn and Ca, and the content of Ca is 0.02 to 0.11 wt%. The forged slab was sequentially rolled with a multi-stage roll to produce a substrate 10.
次に、 S nの含有量が 0.01wt%以上、 0.95wt%以下の P b— S n系合金の铸造 スラブを形成した。 この铸造スラブの S nの含有量は、 基材 10の S nの含有量よ りも少ない。 性能改善のため、 A gや A l、 B a、 B i、 S rなどを微量含んで もよい。 この铸造スラブを多段ロールで順次に圧延して厚さ 0.2m mの表面層 11 を作製した。  Next, a forged slab of Pb—Sn alloy having a Sn content of 0.01 wt% or more and 0.95 wt% or less was formed. The Sn content of this forged slab is less than the Sn content of the substrate 10. A small amount of Ag, Al, Ba, Bi, Sr, etc. may be included to improve performance. This forged slab was sequentially rolled with multi-stage rolls to produce a surface layer 11 having a thickness of 0.2 mm.
基材 10に表面層 11を重ね合わせて同時に圧延することにより、基材 10と表面層 11が一体化した圧延シート F〜Lを作製した。 この圧延シート F〜Lをエキスパン ド加工して網目部を形成し、 図 1に示す正極格子体 5を得た。 尚、 基材 10と表面 層 11はそれぞれ時効処理を施すこともできる。  Rolled sheets F to L in which the base material 10 and the surface layer 11 were integrated were prepared by simultaneously superimposing the surface layer 11 on the base material 10 and rolling. The rolled sheets F to L were expanded to form a mesh portion, and a positive electrode grid 5 shown in FIG. 1 was obtained. The base material 10 and the surface layer 11 can also be subjected to an aging treatment.
比較例 1の圧延シート Mの製造方法を説明する。 S nの含有量が 1.4wt%、 C a の含有量が 0.09wt%の P b _ C- a— S n系合金の鍀造スラブを形成した。 P b— C a - S n系合金は P bと S nと C aの三元合金である。 この铸造スラブを多段 ロールで順次に圧延して厚さ 1.2m mの基材 10を作製した。 この基材 10が比較例 1である。 比較例 1の圧延シート Mは基材 10からなり、 表面層 11は含まれない。 この圧延シート Mをエキスパンド加工して網目部を形成し、 図 1に示す正極格子 体 5を得た。  A method for producing the rolled sheet M of Comparative Example 1 will be described. A forged slab of Pb_C-a-Sn based alloy having a Sn content of 1.4 wt% and a Ca content of 0.09 wt% was formed. P b—C a -S n alloy is a ternary alloy of P b, Sn and Ca. The forged slab was sequentially rolled with a multi-stage roll to produce a substrate 10 having a thickness of 1.2 mm. This substrate 10 is Comparative Example 1. The rolled sheet M of Comparative Example 1 is composed of the base material 10 and does not include the surface layer 11. This rolled sheet M was expanded to form a mesh portion, and a positive electrode grid 5 shown in FIG. 1 was obtained.
比較例 2の圧延シート 0〜Qの製造方法を説明する。 S nの含有量が 1.4wt%、 C aの含有量が 0.09wt%の P b - C a - S n系合金の铸造スラブを形成した。 P b - C a - S n系合金は P bと S nと C aの三元合金である。 この铸造スラブを 多段ロールで順次に圧延して基材 10を作製した。 次に、 S nの含有量が 1.4wt%以上、 4wt%以下の P b— S n系合金の铸造スラ ブを形成した。 この铸造スラブの S nの含有量は、 基材 10の S nの含有量より多 い。この鐯造スラブを多段ロールで順次に圧延して厚さ 0.2mmの表面層 11を作製 した。 A method for producing the rolled sheets 0 to Q of Comparative Example 2 will be described. A forged slab of Pb-Ca-Sn alloy having a Sn content of 1.4 wt% and a Ca content of 0.09 wt% was formed. Pb-Ca-Sn alloy is a ternary alloy of Pb, Sn, and Ca. The forged slab was sequentially rolled with a multi-stage roll to produce a substrate 10. Next, a forged slab of Pb—Sn alloy having an Sn content of 1.4 wt% or more and 4 wt% or less was formed. The content of Sn in this forged slab is higher than the content of Sn in the base material 10. The forged slab was sequentially rolled with a multi-stage roll to produce a surface layer 11 having a thickness of 0.2 mm.
基材 10に表面層 11を重ね合わせて同時に圧延することにより、基材 10と表面層 11が一体化した圧延シート 0〜Qを作製した。 この圧延シート 0〜Qをエキスパン ド加工して網目部を形成し、 図 1に示す正極格子体 5を得た。 尚、 基材 10と表面 層 11はそれぞれ時効処理を施すこともできる。  Rolled sheets 0 to Q in which the base material 10 and the surface layer 11 were integrated were produced by simultaneously superimposing the surface layer 11 on the base material 10 and rolling. The rolled sheets 0 to Q were expanded to form a mesh portion, and a positive electrode grid 5 shown in FIG. 1 was obtained. The base material 10 and the surface layer 11 can also be subjected to an aging treatment.
ぐ正極板の作製 >  Of the positive electrode plate>
鉛粉と鉛丹との混合物に、 ポリエステル繊維を添加し、 それに水と希硫酸 (比 重 1. 26、 20°C) とを加えた。 これを混練して正極用活物質ペース トを作製 した。 この正極用活物質ペース ト 58 gを、 上述の本発明の実施例 1による圧延 シート F〜Lから得た正極格子体 5と比較例 1、 2の圧延シート M、 0〜Qから得た 正極格子体 5に充填した。 正極格子 5の集電体格子の寸法は 1 1 6 mm X I 00 mmX 1.2 mmであった。 これらの正極格子 5を、 温度 50 ° C、 湿度 98RH %の雰囲気下で 1 8時間放置して熟成した後に、 温度 1 1 0°Cで 2時間放置して 乾燥させ、 未化成の正極板 1を作製した。  Polyester fiber was added to the mixture of lead powder and red lead, and water and dilute sulfuric acid (specific gravity 1.26, 20 ° C) were added to it. This was kneaded to produce a positive electrode active material paste. This positive electrode active material paste 58 g was obtained from the positive electrode grid 5 obtained from the above-described rolled sheets F to L according to Example 1 of the present invention and the rolled sheets M and 0 to Q of Comparative Examples 1 and 2. The lattice 5 was filled. The size of the collector grid of the positive grid 5 was 1 16 mm X I 00 mm X 1.2 mm. These positive electrode grids 5 were left to mature for 18 hours in an atmosphere of 50 ° C and humidity of 98RH%, and then left to dry at a temperature of 110 ° C for 2 hours. Was made.
<負極板の作製 >  <Preparation of negative electrode plate>
鉛粉に対して、 0. 3 質量%のリグニン、 0. 2質量%の硫酸バリウム、 及び 0 . 1質量%のカーボン粉末を加えた。 これにポリエステル繊維を添加して混練機 で約 1 0分混練した。 そして、 得られた混合物に、 さらに前記鉛粉に対して、 1 2質量%の水を加えて混合し、 さらに前記鉛粉に対して 1 3質量%の希硫酸 (比 重 1. 26、 20°C) を加えて負極用活物質ペース トを調製した。 この負極用活 物質ペースト 47 gを、寸法が 1 1 6mmX 1 0 OmmX 0.9 mmの鉛一カルシ ゥムー錫合金からなる集電体格子に充填した。 この負極板を、 温度 50°C、 湿度 98 RH%の雰囲気下で 1 8時間放置して熟成した後に、 温度 1 1 0°Cで 2時間 放置して乾燥させ、 未化成の負極板 2を作製した。 To the lead powder, 0.3% by mass of lignin, 0.2% by mass of barium sulfate, and 0.1% by mass of carbon powder were added. Polyester fiber was added thereto and kneaded for about 10 minutes with a kneader. Then, 12% by mass of water is further added to and mixed with the obtained mixture, and further 13% by mass of diluted sulfuric acid (specific gravity 1.26, 20). ° C) was added to prepare a negative electrode active material paste. 47 g of this negative electrode active material paste was filled into a current collector grid made of a lead-calcium-muum alloy having dimensions of 1 16 mm × 10 Omm × 0.9 mm. This negative electrode plate was left to mature for 18 hours in an atmosphere of 50 ° C and humidity of 98 RH%, then left to dry for 2 hours at a temperature of 10 ° C, and the unformed negative electrode plate 2 was removed. Produced.
く単板鉛蓄電池の作製 >  Manufacturing of single plate lead acid battery>
作製した正極板 1および負極板 2を使用して、 図 1に示す単板鉛蓄電池を作製した 。 電解液には、 比重 225 ( 20 °C) の希硫酸が使用された。 なお、 単板鉛 蓄電池の化成は、 2.4Aで時間行った。 そして、 化成後に比重 1. 4 ( 20 °C) の希硫酸を追加して、 電解液が比重 1. 28 ( 20 °C) の濃度の希硫酸となるよ うに調整した。 得られた単板鉛蓄電池の電池容量は 7 Ahであり、 平均放電電圧 は 2 Vであった。 Using the produced positive electrode plate 1 and negative electrode plate 2, the single plate lead-acid battery shown in Fig. 1 was produced. . The electrolyte used was dilute sulfuric acid with a specific gravity of 225 (20 ° C). In addition, the chemical conversion of the single plate lead-acid battery was performed at 2.4A for hours. After the chemical conversion, dilute sulfuric acid having a specific gravity of 1.4 (20 ° C) was added, and the electrolyte was adjusted to become dilute sulfuric acid having a specific gravity of 1.28 (20 ° C). The obtained single plate lead-acid battery had a battery capacity of 7 Ah and an average discharge voltage of 2 V.
比較例 1の圧延シート Mを用いて、 本発明の実施例 1と同様にして単板鉛蓄電 池を作製した。  Using the rolled sheet M of Comparative Example 1, a single plate lead battery was produced in the same manner as Example 1 of the present invention.
<深放電サイクル寿命の評価 >  <Evaluation of deep discharge cycle life>
これらの単板鉛蓄電池に対して深放電サイクル実験を行った。 充電電流は 1.4 A で放電容量の 1 30%を充電した。 放電電流 1.4Aで下限電圧が 1.75 Vに到達 するまでの放電時間から、 放電容量を求めた。 Deep discharge cycle experiments were conducted on these single plate lead-acid batteries. The charging current was 1.4 A, and 30% of the discharge capacity was charged. The discharge capacity was calculated from the discharge time until the lower limit voltage reached 1.75 V at a discharge current of 1.4A.
図 1 5 (B) は、 深放電サイクル特性を示す。 縦軸は放電容量 (Ah)、 横軸は サイクル数 (回) を表す。 図 15 (B) に示すように、 本発明による圧延シート F〜Lを用いた単板鉛蓄電池は優れた深放電サイクル寿命を示した。基材中の C a の含有量は、 ハンドリング性と耐食性の両者を考慮すると、 0.05〜ひ .09wt%が好 ましい。 また、 基材中の S nの含有量は、 コストと電解液の減液量抑制の両者を 考慮すると、 1.2wt%〜1.9wt%が好ましい。 比較例 1、 2の圧延シート M、 0〜 Qを用いた単板鉛蓄電池は深放電サイクル寿命が短い。  Figure 15 (B) shows the deep discharge cycle characteristics. The vertical axis represents the discharge capacity (Ah), and the horizontal axis represents the number of cycles (times). As shown in FIG. 15 (B), the single plate lead-acid battery using the rolled sheets F to L according to the present invention showed an excellent deep discharge cycle life. The content of C a in the base material is preferably 0.05 to 0.09 wt% considering both handling properties and corrosion resistance. Further, the content of Sn in the substrate is preferably 1.2 wt% to 1.9 wt% in consideration of both cost and suppression of the amount of electrolyte decrease. Single plate lead-acid batteries using rolled sheets M, 0 to Q of Comparative Examples 1 and 2 have a short deep discharge cycle life.
ぐ回復充電特性の評価 >  Recovery Charging Characteristics Evaluation>
放電電流 1.4 Aで下限電圧が 1.6 Vに到達するまで過放電し、 45 °Cで 2週間放 置した。 放置後の単板鉛蓄電池を充電電流 1.4Aで放電容量の 150%充電した 。 放電電流 1.4Aで下限電圧が 1.75Vに到達するまでの放電時間から、 過放電 放置回復充電後の放電容量を求めた。本発明の実施例 1による圧延シート F〜Lを 用いた単板鉛蓄電池は回復充電特性が良く、 放電容量は電池容量の 80%以上で あった。 The battery was overdischarged at a discharge current of 1.4 A until the lower limit voltage reached 1.6 V, and left at 45 ° C for 2 weeks. The single plate lead-acid battery after charging was charged with 150% of the discharge capacity at a charging current of 1.4A. From the discharge time until the lower limit voltage reached 1.75V at a discharge current of 1.4A, the discharge capacity after overdischarge and left-over recovery charge was determined. The single plate lead-acid battery using the rolled sheets F to L according to Example 1 of the present invention had good recovery charge characteristics, and the discharge capacity was 80% or more of the battery capacity.
本発明の単板鉛蓄電池では、 電解液に 0.01 w t %以上且つ 5w t %以下の硫酸 マグネシウム、 又は、 硫酸ナトリウムを添加した硫酸水溶液を用いることが望ま しい。 このような硫酸水溶液を用いることにより、 過放電時における回復充電性 能を向上させることができる。 [実施例 2 ] In the single plate lead-acid battery of the present invention, it is desirable to use an aqueous sulfuric acid solution in which 0.01 wt% or more and 5 wt% or less of magnesium sulfate or sodium sulfate is added to the electrolyte. By using such a sulfuric acid aqueous solution, the recovery charge performance during overdischarge can be improved. [Example 2]
図 1 6 ( A) に示すように、 本発明の実施例 2による圧延シート R〜Vを製造 した。 図 1 6 (A) は、 圧延シートの基材 10と表面層 11の厚さの比を示す。 本発明の実施例 2による圧延シート R〜Vの製造方法を説明する。 S nの含有 量が 1.4wt%、 C aの含有量が 0.09wt%の P b _ C a— S n系合金の铸造スラブ を形成した。 P b— C a— S n系合金は P bと S nと C aの三元合金である。 こ の铸造スラブを多段ロールで順次に圧延して基材 10を作製した。  As shown in FIG. 16 (A), rolled sheets R to V according to Example 2 of the present invention were manufactured. FIG. 16 (A) shows the ratio of the thickness of the base material 10 and the surface layer 11 of the rolled sheet. A method for producing the rolled sheets R to V according to Example 2 of the present invention will be described. A forged slab of Pb_Ca—Sn alloy with a Sn content of 1.4 wt% and a Ca content of 0.09 wt% was formed. P b—C a—S n alloy is a ternary alloy of P b, Sn and Ca. This forged slab was sequentially rolled with a multi-stage roll to produce a substrate 10.
次に、 S n含有量が 0.1wt%の P b— S n系合金の鎳造スラブを形成した。 こ の铸造スラブの S nの含有量は、 基材 10の S nの含有量より少ない。 性能改善の ため、 A g A l、 B a、 B i、 S rなどを微量含んでもよい。 この铸造スラブ を多段ロールで順次に圧延して表面層 11を作製した。  Next, a forged slab of Pb—Sn alloy having an Sn content of 0.1 wt% was formed. The Sn content of this forged slab is less than the Sn content of the substrate 10. In order to improve performance, a small amount of A g Al, Ba, Bi, Sr, etc. may be included. The forged slab was sequentially rolled with a multi-stage roll to produce a surface layer 11.
基材 10に表面層 11を重ね合わせて同時に圧延することにより、 圧延シート R〜 Vを作製した。 これらの圧延シート R〜Vにおいて、 図 6に示す表面層の厚さ (Y ) 13と基材の厚さ (X) 12の比、 即ち、 ¥ : は 1 : 5〜1 : 7 0の範囲にあり、 圧延シート R〜Vの厚さは 0.7〜3.2mmの範囲にある。 この圧延シート R〜Vをェ キスパンド加工して網目部を形成し、 図 1に示した正極格子体 5を得た。 基材 10 と表面層 11はそれぞれ時効処理を施すこともできる。この圧延シート R〜Vを用い て、 実施例 1と同様にして単板鉛蓄電池を作製し、 同一条件で深放電サイクル寿 命を測定した。  Rolled sheets R to V were produced by superimposing the surface layer 11 on the base material 10 and rolling it simultaneously. In these rolled sheets R to V, the ratio of the surface layer thickness (Y) 13 to the base material thickness (X) 12 shown in FIG. 6, that is, ¥: is in the range of 1: 5 to 1:70. The thickness of the rolled sheet R to V is in the range of 0.7 to 3.2 mm. The rolled sheets R to V were expanded to form a mesh part, and the positive electrode grid 5 shown in FIG. 1 was obtained. The base material 10 and the surface layer 11 can each be subjected to an aging treatment. Using these rolled sheets R to V, a single plate lead-acid battery was produced in the same manner as in Example 1, and the deep discharge cycle life was measured under the same conditions.
図 1 6 ( B ) は、 深放電サイクル寿命の測定結果を示す。 図示のように実施例 2の圧延シート R〜Tを用いた単板鉛蓄電池は、比較的優れた深放電サイクル寿命 を示した。 しかしながら、 実施例 2の圧延シート U、 Vを用いた単板鉛蓄電池は 、 深放電サイクル寿命が比較的短かった。 そこで、 圧延シート U、 Vを用いた単 板鉛蓄電池を解体したところ、 正極格子体の表面層における腐食がやや進行して いた。 尚、 図 1 5 ( B ) に示す比較例 1、 2の圧延シート M、 0〜Qを用いた単板 鉛蓄電池と比べると、 本発明の実施例 2による圧延シート R〜 Vを用いた単板鉛 蓄電池は、 深放電サイクル寿命は良い。 この結果から、 表面層の厚さ (Y) 13と 基材の厚さ (X) 12の比、 即ち、 Y : Xは 1 : 1 0〜1 : 6 0の範囲にあることが 好ましい。 Figure 16 (B) shows the measurement results of the deep discharge cycle life. As shown in the figure, the single plate lead-acid battery using the rolled sheets R to T of Example 2 showed a relatively excellent deep discharge cycle life. However, the single plate lead-acid battery using the rolled sheets U and V of Example 2 had a relatively short deep discharge cycle life. Therefore, when the single plate lead-acid battery using the rolled sheets U and V was disassembled, the corrosion on the surface layer of the positive electrode grid was slightly advanced. Compared with the single plate lead-acid battery using the rolled sheets M and 0 to Q of Comparative Examples 1 and 2 shown in FIG. 15 (B), the single unit using the rolled sheets R to V according to Example 2 of the present invention is used. Plate lead-acid batteries have good deep discharge cycle life. From this result, the ratio of the thickness (Y) 13 of the surface layer to the thickness (X) 12 of the substrate, that is, Y: X is in the range of 1:10 to 1:60. preferable.
[実施例 3] [Example 3]
図 1 7に示すように、 本発明の実施例 3による jl延シート W〜Z、 a〜kを製 造した。 図 1 7は、 圧延シートの基材 10と表面層 11の構成を示す。  As shown in FIG. 17, jl-rolled sheets W to Z and a to k according to Example 3 of the present invention were manufactured. FIG. 17 shows the configuration of the base material 10 and the surface layer 11 of the rolled sheet.
本発明の実施例 3による圧延シート W〜Z、 a〜kの製造方法を説明する。 S nの含有量が 1.4wt%、 C aの含有量が 0.09wt%の P b— C a— S n系合金の铸 造スラブを形成した。 P b _C a— S n系合金は P bと S nと C aの三元合金で ある。 この铸造スラブを多段ロールで順次に圧延して基材 10を作製した。  The manufacturing method of the rolled sheets WZ and ak by Example 3 of this invention is demonstrated. A forged slab of Pb—C a—S n alloy with an Sn content of 1.4 wt% and a Ca content of 0.09 wt% was formed. P b _C a—S n alloy is a ternary alloy of P b, Sn and Ca. The forged slab was sequentially rolled with a multi-stage roll to produce a substrate 10.
次に、 S nの含有量が 0.2wt%、 A g、 A l、 B a、 B i、 3 ::を含む? 13 _ S n系合金の铸造スラブを形成した。 この铸造スラブの S nの含有量は、 基材 10 の S nの含有量より少ない。 この铸造スラブを多段ロールで順次に圧延して厚さ 0.2mmの表面層 11を作製した。  Next, the Sn content is 0.2wt%, including Ag, Al, Ba, Bi, 3 ::? A forged slab of 13_Sn alloy was formed. The Sn content of this forged slab is less than the Sn content of the substrate 10. The forged slab was sequentially rolled with a multi-stage roll to produce a surface layer 11 having a thickness of 0.2 mm.
基材 10に表面層 11を重ね合わせて同時に圧延することにより、基材 10と表面層 11の一体化した圧延シート W〜Z、 a〜kを作製した。 この圧延シートをエキス パンド加工して網目部を形成し、 図 1に示す正極格子体 5を得た。 基材 10と表面 層 11はそれぞれ時効処理を施すこともできる。 これを用いて実施例 1と同様にし て単板鉛蓄電池を作製し、 同一条件で深放電サイクル試験を実施した。  Rolled sheets W to Z and a to k in which the base material 10 and the surface layer 11 were integrated were produced by superimposing the surface layer 11 on the base material 10 and rolling it simultaneously. The rolled sheet was expanded to form a mesh portion, and a positive electrode grid 5 shown in FIG. 1 was obtained. The base material 10 and the surface layer 11 can each be subjected to an aging treatment. Using this, a single plate lead-acid battery was produced in the same manner as in Example 1, and a deep discharge cycle test was conducted under the same conditions.
図 1 7には、 圧延シート W〜Z、 a〜kを用いた単板鉛蓄電池の深放電サイク ル寿命を表記した。 放電容量が、 1サイクル目の放電容量の 6 0%まで低下した ときのサイクル数を深放電サイクル寿命と判定した。 A g、 A l、 B a、 B i、 又は S rを含む圧延シー YW〜 j を用いた単板鉛蓄電池は、 比較的優れた深放電 サイクル寿命を示した。 しかしながら、 Ag、 A l、 B a、 B i、 S rを含まな い圧延シート kを用いた単板鉛蓄電池は、 比較的短い深放電サイクル寿命を示し た。 しかしながら、 図 1 5 (B) に示す比較例 1、 2の圧延シート M、 0〜Qを用 いた単板鉛蓄電池と比べると、 圧延シート kを用いた単板鉛蓄電池は、 良好な深 放電サイクル寿命を示す。 この結果より、 A l、 B a、 S rの含有量は O.Olw t %以上 l.Ow t %以下、 A gの含有量は 0.005w t %以上 O.Olw t %未満、 B i の 含有量は 0.5w t %以上 15w t %以下であると、 寿命が向上する。 これらの単板鉛蓄電池を解体して正極格子を観察した結果、 Ag、 A 1を含む 正極格子は耐食性に優れていることが判った。 正極格子に B aが含まれると、 格 子伸びが抑制できることが判った。 B iを含む圧延シートを用いた単板鉛蓄電池 を解体して正極格子表面を X線回折により測定したところ、 ひ一 P b o2のピ一 ク強度比が高かった。 これは、 より多くの a— P b O2が生成していることが判 つた。 Figure 17 shows the deep discharge cycle life of single-plate lead-acid batteries using rolled sheets W to Z and a to k. The number of cycles when the discharge capacity dropped to 60% of the discharge capacity at the first cycle was determined as the deep discharge cycle life. Single plate lead-acid batteries using rolled sheets YW ~ j containing Ag, Al, Ba, Bi, or Sr showed relatively good deep discharge cycle life. However, the single plate lead-acid battery using the rolled sheet k that does not contain Ag, Al, Ba, Bi, and Sr showed a relatively short deep discharge cycle life. However, compared with the single plate lead-acid battery using the rolled sheets M and 0 to Q of Comparative Examples 1 and 2 shown in Fig. 15 (B), the single plate lead-acid battery using the rolled sheet k has good deep discharge. Indicates cycle life. From this result, the content of A l, Ba, Sr is O.Olw t% or more l.Ow t% or less, the content of Ag is 0.005 wt% or more and less than O.Olw t%, the content of B i If the amount is 0.5wt% or more and 15wt% or less, the service life is improved. As a result of disassembling these single plate lead-acid batteries and observing the positive electrode lattice, it was found that the positive electrode lattice containing Ag and A 1 had excellent corrosion resistance. It was found that lattice elongation can be suppressed when Ba is included in the positive electrode lattice. A single plate lead-acid battery using a rolled sheet containing Bi was disassembled and the surface of the positive electrode grid was measured by X-ray diffraction. As a result, the peak strength ratio of Hi Pbo 2 was high. This indicates that more a—P b O 2 is produced.
S r又は B iを含む圧延シートから作製した正極格子では、 活物質との密着性 が非常に良かった。 従って、 S r又は B iを添付すると、 高価な錫や銀の添加量 が少なくても十分な電池特性が得られるため、 低コスト化に貢献できる。  The positive grid produced from a rolled sheet containing Sr or Bi had very good adhesion to the active material. Therefore, if Sr or Bi is attached, sufficient battery characteristics can be obtained even if the amount of expensive tin or silver added is small, which can contribute to cost reduction.
[実施例 4] [Example 4]
図 1 8 (A) に示すように、 本発明の実施例 4による圧延シート 1〜 tを製造 した。 図 1 8 (A) は、 圧延シート 1〜 tの基材 10と表面層 11の構成を示す。 本発明の実施例 4による圧延シート 1〜 tの製造方法を説明する。 S nの含有 量が 1.4wt%、 C aの含有量が 0.09wt%の P b—C a— S n系合金の鎵造スラブ を形成した。 P b— C a _ S n系合金は P bと S nと C aの三元合金である。 こ の铸造スラブを多段ロールで順次に圧延して基材 10を作製した。  As shown in FIG. 18 (A), rolled sheets 1 to t according to Example 4 of the present invention were manufactured. FIG. 18 (A) shows the configuration of the base material 10 and the surface layer 11 of the rolled sheets 1 to t. A method for producing rolled sheets 1 to t according to Example 4 of the present invention will be described. A forged slab of Pb—C a—S n alloy with an Sn content of 1.4 wt% and a Ca content of 0.09 wt% was formed. Pb—C a _Sn alloy is a ternary alloy of Pb, Sn and Ca. This forged slab was sequentially rolled with a multi-stage roll to produce a substrate 10.
圧延シート 1〜 qの表面層 11は、 高純度鉛の急冷凝固粉を粉末圧延加工するこ とによって作製された。 但し、 圧延シート 1〜pの表面層 11には、 A l、 B a、 S r、 Ag、 B iが添加されている。 圧延シート qの表面層 11は、 高純度鉛から なり、 添加物を含まない。 圧延シート!:〜 tの表面層 11は、 基材の S nより低含 有量の S nを含む P b— S n合金の急冷凝固粉を粉末圧延加工することによって 作製された。 こうして、 粉末圧延加工によって、 厚さ 0.2mmの表面層 11を得た。 基材 10に表面層 11を重ね合わせて同時に圧延することにより、基材 10と表面層 11が一体化した圧延シート 1〜 tを作製した。 この圧延シートをエキスパンド加 ェして網目部を形成し、 図 1に示す正極格子体 5を得た。  The surface layer 11 of the rolled sheets 1 to q was produced by powder rolling a rapidly solidified powder of high-purity lead. However, Al, Ba, Sr, Ag, and Bi are added to the surface layer 11 of the rolled sheets 1 to p. The surface layer 11 of the rolled sheet q is made of high-purity lead and does not contain additives. Rolled sheet! The surface layer 11 of: to t was produced by powder rolling a rapidly solidified powder of a Pb—Sn alloy containing Sn having a lower content than Sn of the base material. Thus, a surface layer 11 having a thickness of 0.2 mm was obtained by powder rolling. Rolled sheets 1 to t in which the base material 10 and the surface layer 11 were integrated were produced by superimposing the surface layer 11 on the base material 10 and rolling it simultaneously. The rolled sheet was expanded to form a mesh part, and a positive electrode grid 5 shown in FIG. 1 was obtained.
これらの圧延シート!:〜 tの表面層 11は、 図 7 (B)、 図 7 (E)、 図 7 (H) 、 図 7 (C)、 図 7 (F)、 図 7 ( I ) に示した粉末圧延シートに特徴的な組織断 面を有していた。 比較例 3の圧延シート uの製造方法を説明する。 S nの含有量が 1.4wt%、 C aの含有量が 0.09wt%の P b - C a - S n系合金の铸造スラブを形成した。 P b 一 C a— S n系合金は P bと S nと C aの三元合金である。 この铸造スラブを多 段ロールで順次に圧延して基材 10を作製した。 高純度鉛の铸造スラブを多段口一 ルで順次に圧延して 0.2mmの铸造圧延シートの表面層 11を作製した。 基材 10に 表面層 11を重ね合わせて同時に圧延することにより、基材 10と表面層 11が一体化 した圧延シ一ト uを作製した。 この圧延シ一トをエキスパンド加工して網目部を 形成し、 図 1に示す正極格子体 5を得た。 These rolled sheets! : Surface layer 11 of t is the powder rolling sheet shown in Fig. 7 (B), Fig. 7 (E), Fig. 7 (H), Fig. 7 (C), Fig. 7 (F), Fig. 7 (I) It had a characteristic organizational section. A method for producing the rolled sheet u of Comparative Example 3 will be described. A forged slab of Pb-Ca-Sn alloy having a Sn content of 1.4 wt% and a Ca content of 0.09 wt% was formed. Pb-Ca-Sn alloy is a ternary alloy of Pb, Sn and Ca. The forged slab was sequentially rolled with a multi-stage roll to produce a substrate 10. A surface layer 11 of a 0.2 mm forged rolled sheet was prepared by rolling high purity lead forged slabs sequentially in a multi-stage neck. The surface layer 11 was superposed on the base material 10 and rolled at the same time to produce a rolling sheet u in which the base material 10 and the surface layer 11 were integrated. The rolled sheet was expanded to form a mesh portion, and a positive electrode grid 5 shown in FIG. 1 was obtained.
次に、 これらの正極格子体 5より、 実施例 1 と同様に、 正極板を作製した。 更 に、 実施例 1と同様に、 負極板を作製し、 単板鉛蓄電池を作製した。 これらの単 板鉛蓄電池について、 実施例 1と同様に、 深放電サイクル実験を行った。 深放電 サイクル実験の条件は、 本発明による実施例 1の場合と同様である。  Next, a positive electrode plate was produced from these positive electrode grids 5 in the same manner as in Example 1. Further, in the same manner as in Example 1, a negative electrode plate was produced and a single plate lead-acid battery was produced. For these single plate lead-acid batteries, a deep discharge cycle experiment was conducted in the same manner as in Example 1. The conditions of the deep discharge cycle experiment are the same as in Example 1 according to the present invention.
図 1 8 ( B ) は、 深放電サイクル特性を示す。 縦軸は放電容量 (Ah)、 横軸は サイクル数 (回) を表す。 本発明の実施例 4による圧延シート q〜 tを用いた単 板鉛蓄電池は優れた深放電サイクル寿命を示した。 また、 図 1 8 ( B ) には示し ていないが、 本発明の実施例 4による圧延シート 〜 pを用いた単板鉛蓄電池は 、 さらに優れた深放電サイクル寿命を示した。 特に実施例 4による圧延シート 1 〜 tは、 引張り強度が高く、 ハンドリング性に優れ、 更に、 基材 10に表面層 11を 重ね合わせて圧延する際の加工性に優れる。 さらに、 基材 10と表面層 11との間の 剥離がなく、 優れた深放電サイクル寿命を示した。  Figure 18 (B) shows the deep discharge cycle characteristics. The vertical axis represents the discharge capacity (Ah), and the horizontal axis represents the number of cycles (times). The single plate lead-acid battery using the rolled sheets q to t according to Example 4 of the present invention showed excellent deep discharge cycle life. Further, although not shown in FIG. 18 (B), the single plate lead-acid battery using the rolled sheet to p according to Example 4 of the present invention showed a further excellent deep discharge cycle life. In particular, the rolled sheets 1 to t according to Example 4 have high tensile strength, excellent handling properties, and excellent workability when the substrate 10 is rolled with the surface layer 11 superimposed thereon. Furthermore, there was no delamination between the substrate 10 and the surface layer 11, and an excellent deep discharge cycle life was exhibited.
一方、 比較例 3の圧延シート uを用いた単板鉛蓄電池では、 サイクルの初期に 容量が急激に低下し、 短い深放電サイクル寿命を示した。 この単板鉛蓄電池を解 体して、 正極板格子を観察したところ、 表面層 11と基材 10とが剥離し、 その境界 面で硫酸鉛化が起こっていることが判った。 特に比較例 3の铸造圧延シート uで は、 本発明の実施例 4による圧延シート 1〜 tと比べて、 引張り強度が低く、 や わらかいのでハンドリング性に劣り、 更に、 基材 10に表面層 11を重ね合わせて圧 延する際、 加工切れを起し、 一体化が困難であった。  On the other hand, in the single plate lead-acid battery using the rolled sheet u of Comparative Example 3, the capacity rapidly decreased at the beginning of the cycle, and a short deep discharge cycle life was shown. When this single plate lead-acid battery was disassembled and the positive electrode plate lattice was observed, it was found that the surface layer 11 and the base material 10 were separated, and lead sulfate formation occurred at the boundary surface. In particular, the forged rolled sheet u of Comparative Example 3 has a lower tensile strength and is softer than the rolled sheets 1 to t according to Example 4 of the present invention, and is inferior in handling properties. When rolling with the 11 stacked, processing cuts occurred, making integration difficult.
本発明の実施例 4に対して、 実施例 1と同様な回復充電特性の評価を実施した 。 それによると、 本発明の実施例 4による圧延シート 1〜 tを用いた単板鉛蓄電 池では、 回復充電特性が良く、 放電容量は電池容量の 8 0 %以上であった。 一方 、 比較例 3の圧延シート uを用いた単板鉛蓄電池では、 回復充電特性が悪く、 放 電容量は電池容量の 5 0 %以下であった。 The recovery charge characteristics similar to those of Example 1 were evaluated for Example 4 of the present invention. According to it, single plate lead electricity storage using rolled sheets 1 to t according to Example 4 of the present invention The battery had good recovery charge characteristics, and the discharge capacity was 80% or more of the battery capacity. On the other hand, the single plate lead-acid battery using the rolled sheet u of Comparative Example 3 had poor recovery charge characteristics, and the discharge capacity was 50% or less of the battery capacity.
図 1 5の実施例 1、 図 1 6の実施例 2、 図 1 7の実施例 3、 及び、 図 1 8の実 施例 4から、 以下のことがわかる。 先ず図 1 5の実施例 1から、 基材の C aの含 有量は、 0.02w t %以上 O.llw t %以下であり、好ましくは、 0.02w t %以上 0.09 w t %以下である。 基材の S nの含有量は、 1.2w t %以上 2.5w t %以下であり 、 好ましくは、 1.2w t %以上 1.9w t %以下である。 表面層の S nの含有量は、 O.Olw t %以上 l.Ow t %以下であり、 基材の S nの含有量より少ない。  From Example 1 in FIG. 15, Example 2 in FIG. 16, Example 3 in FIG. 17 and Example 4 in FIG. First, from Example 1 in FIG. 15, the Ca content of the base material is 0.02 wt% or more and O.llw t% or less, and preferably 0.02 wt% or more and 0.09 wt% or less. The content of Sn in the substrate is 1.2 wt% or more and 2.5 wt% or less, and preferably 1.2 wt% or more and 1.9 wt% or less. The content of Sn in the surface layer is O.Olw t% or more and l.Ow t% or less, which is less than the Sn content of the substrate.
図 1 6の実施例 2から、 表面層の厚さ (Y) と基材の厚さ (X) の比、 即ち、 Y : Xは 1 : 5〜 1 : 7 0の範囲であり、 好ましくは、 1 : 1 0〜: 1 : 6 0の範囲 である。  From Example 2 in FIG. 16, from the ratio of surface layer thickness (Y) to substrate thickness (X), ie Y: X is in the range of 1: 5 to 1:70, preferably , 1: 1 0 ~: 1: 60 range.
次に、 A 1について説明する。 図 1 7の実施例 3から、 S nの含有量が基材の S nより少ない P b— S n系合金の表面層の場合、 A 1の含有量は O.Olwも%以 上 l.Ow t %以下であり、 好ましくは、 O.Olw t %以上 0.5w t %以下である。  Next, A 1 will be described. From Example 3 in Fig. 7, from the surface layer of Pb-Sn alloy whose Sn content is lower than the Sn content of the base material, the content of A1 is more than O.Olw%. Ow t% or less, preferably O.Olw t% or more and 0.5 wt% or less.
A 1は、 铸造時の酸化防止剤 (還元剤) として機能することが知られている。 そのため铸造合金に A 1を添加すると、 酸化物などのボイ ドを低減できる。 従つ て、 本発明による、 基材よりも低含有量の S nを含む P b— S n合金の急冷凝固 粉に A 1を添加すると、 A 1は、 酸化防止剤 (還元剤) として機能するため、 自 然酸化が抑制され、 酸化度の低い急冷凝固粉が得られる。  A 1 is known to function as an antioxidant (reducing agent) during fabrication. Therefore, the addition of A1 to the forged alloy can reduce oxides and other voids. Therefore, when A 1 is added to the rapidly solidified powder of Pb—Sn alloy containing Sn lower than the base material according to the present invention, A 1 functions as an antioxidant (reducing agent). Therefore, the natural oxidation is suppressed, and a rapidly solidified powder having a low degree of oxidation is obtained.
急冷凝固粉内に自然酸化によって生成する酸化物や酸化物のボイ ドは、 腐食の 原因となるため、 低減するのが望ましい。 特に _ P b 0 2は深放電サイクル寿 命を低下させる原因となり得る。 そのため、 i3— P b 0 2を可能な限り低減させ ることが好ましい。 Oxides and oxide voids generated by natural oxidation in the rapidly solidified powder cause corrosion and should be reduced. In particular, _Pb 0 2 can cause a decrease in deep discharge cycle life. Therefore, preferably Rukoto reduce as much as possible i3- P b 0 2.
表面層 11に A 1を添加すると、 高価な錫や銀の添加量が少なくても、 腐食を抑 制でき、 十分な電池特性が得られる。 また、 正極格子体の表面層を、 純鉛の圧延 薄板によって生成する場合でも、 A 1を添加すると、 自然酸化による酸化物等の 生成を抑制する。 そのため、 純鉛の圧延薄板を、 鉛一カルシウム系合金表面に、 容易に圧延で一体化させることができる。 こうして、 腐食による割れがなく、 耐 食性に優れ、 寿命が長い鉛蓄電池を提供することができる。 When A 1 is added to the surface layer 11, corrosion can be suppressed even when the amount of expensive tin or silver added is small, and sufficient battery characteristics can be obtained. Moreover, even when the surface layer of the positive electrode grid is formed by a pure lead rolled sheet, the addition of A 1 suppresses the formation of oxides and the like due to natural oxidation. Therefore, the rolled sheet of pure lead can be easily integrated with the lead-calcium alloy surface by rolling. In this way, there is no cracking due to corrosion, It can provide lead-acid batteries with excellent food quality and long life.
次に、 B aについて説明する。 図 1 7の実施例 3及び図 1 8の実施例 4から、 B aの含有量は、 好ましくは、 O.Olw t %以上 l.Ow t %以下である。 正極格子体 の表面層 11に B aを添加すると、 腐食粒子同士の密着性が低くなり、 腐食が進行 しても体積膨張に伴う歪が緩和され易い。 さらに腐食伸びを抑えて短絡の危険性 を低減できる。  Next, Ba will be described. From Example 3 in FIG. 17 and Example 4 in FIG. 18, the Ba content is preferably O.Olw t% or more and l.Ow t% or less. When Ba is added to the surface layer 11 of the positive electrode grid, the adhesion between the corroded particles is lowered, and even when the corrosion progresses, the strain accompanying the volume expansion is easily relaxed. In addition, the risk of short-circuiting can be reduced by suppressing corrosion growth.
次に、 S rについて説明する。 図 1 7の実施例 3及び図 1 8の実施例 4から、 S rの含有量は、 好ましくは、 O.Olw t %以上 l.Ow t %以下である。  Next, S r will be described. From Example 3 in FIG. 17 and Example 4 in FIG. 18, the Sr content is preferably O.Olw t% or more and l.Ow t% or less.
次に、 A gについて説明する。 図 1 7の実施例 3及び図 1 8の実施例 4から、 A gの含有量は、 0.005w t %以上 O.Olw t %以下であり、 好ましくは、 0.005w t %以上 0.008w t %以下である。  Next, Ag will be described. From Example 3 in FIG. 7 and Example 4 in FIG. 18, the Ag content is 0.005 wt% or more and O. Olw t% or less, preferably 0.005 wt% or more and 0.008 wt% or less. .
次に、 B iについて説明する。 図 1 7の実施例 3及び図 1 8の実施例 4から、 B iの含有量は、 好ましくは、 O.lw t %以上 15w t %以下である。  Next, B i will be described. From Example 3 in FIG. 17 and Example 4 in FIG. 18, the Bi content is preferably O.lw t% or more and 15 w t% or less.
以上より、 正極格子体の表面層 11の A 1、 B a、 S rの含有量は、 O.Olw t % 以上 l.Ow t %以下であってよい。  From the above, the contents of A1, Ba and Sr in the surface layer 11 of the positive electrode grid body may be O.Olw t% or more and l.Ow t% or less.
本発明によると、 鉛蓄電池用の正極格子体は、 従来技術 (例えば、 特許文献 1 参照) の鉛一カルシウム系合金を基材とし、 この基材の片面に鉛一銀系合金層を 他面に鉛一錫合金層をそれぞれ形成させたシートの穿孔板に比べて、 十分な耐食 性と長い深放電サイクル寿命が得られる。 また、 高温下で過放電放置した場合に も、 十分な回復充電性が得られる。 さらに高価な錫や銀の添加量が少なくても十 分な電池特性が得られる。  According to the present invention, the positive electrode grid for a lead-acid battery is based on a lead-calcium alloy of the prior art (see, for example, Patent Document 1), and a lead-silver alloy layer on one side of the substrate. Compared to a perforated plate with a lead-tin alloy layer formed on each other, sufficient corrosion resistance and a long deep discharge cycle life can be obtained. In addition, sufficient recovery chargeability can be obtained even when left overdischarged at high temperatures. Furthermore, sufficient battery characteristics can be obtained even if the amount of expensive tin or silver added is small.
本発明の鉛蓄電池用の正極格子体は、 鉛一カルシウム一錫系合金の錫含有量よ りも鉛一錫系合金の錫含有量の方が高い従来技術 (例えば、 特許文献 2、 3、 4 参照) に比べて、 十分な耐食性と長い深放電サイクル寿命が得られる。 また、 高 温下で過放電放置した場合にも、 十分な回復充電性と十分な寿命延長効果が得ら れる。  The positive electrode grid for a lead-acid battery according to the present invention has a higher tin content in a lead-tin alloy than in a lead-calcium-tin-tin alloy (for example, Patent Documents 2, 3, Compared to (4), sufficient corrosion resistance and a long deep discharge cycle life can be obtained. In addition, even when left overdischarged at high temperatures, sufficient recovery chargeability and sufficient life extension effect can be obtained.
本発明の鉛蓄電池用の正極格子体は、 アンチモンを含まない純鉛からなる圧延 シートを加工して得た格子や、 表面に圧延一体化された高純度鉛金属の薄層を備 えた格子を用いる従来技術に比べて、 格子腐食が低減され、 かつ、 腐食伸びを抑 えて短絡の危険性を低減できるより長寿命な電池が得られる。 格子の桟幅がシー ト厚さの 1 . 2倍未満であっても従来技術 (例えば、 特許文献 5参照) に比べて格 子腐食が低減できる上に、 腐食伸びを抑えて短絡の危険性を低減でき、 より'長寿 命な電池が得られる。 The positive electrode grid for a lead storage battery of the present invention is a grid obtained by processing a rolled sheet made of pure lead containing no antimony, or a grid having a thin layer of high purity lead metal rolled and integrated on the surface. Compared to the conventional technology used, lattice corrosion is reduced and corrosion elongation is suppressed. Thus, a battery having a longer life that can reduce the risk of short circuit is obtained. Even if the grid beam width is less than 1.2 times the sheet thickness, the corrosion of the grid can be reduced compared to the conventional technology (see, for example, Patent Document 5), and the risk of short-circuiting by suppressing the corrosion elongation. And a battery with a longer life can be obtained.
本発明の鉛蓄電池用の正極格子体は、 純鉛の圧延薄板を表面に一体化させる場 合においても、 従来技術 (例えば、 特許文献 6参照) に比べて、 ハンドリング性 に優れ、 鉛一カルシウム系合金表面に容易に圧延で一体化させることができ、 腐 食による割れがなく、 寿命が長い。 純鉛板の表面に鉛一錫系合金層を一体化した 従来技術 (例えば、 特許文献 7参照) に比べても正極格子体として十分な強度が 得られ、 ハンドリング性に優れる。 また、 平均結晶粒径が少なくとも 1 0 0マイ クロメートルの P bシートで被覆させる従来技術 (例えば、 特許文献 8参照) と 比べて、 さらに優れた耐食性を示す。  The positive electrode grid for a lead storage battery according to the present invention is superior in handling property to lead-calcium in comparison with the prior art (see, for example, Patent Document 6) even when a pure lead rolled sheet is integrated on the surface. It can be easily integrated on the surface of the base alloy by rolling, has no cracks due to corrosion, and has a long life. Compared to the prior art (for example, see Patent Document 7) in which a lead-tin alloy layer is integrated on the surface of a pure lead plate, sufficient strength can be obtained as a positive electrode grid body, and the handling property is excellent. In addition, it exhibits superior corrosion resistance as compared with the conventional technique in which the average crystal grain size is coated with a Pb sheet having a micrometer of at least 100 micrometers (for example, see Patent Document 8).
以上本発明の例を説明したが、 本発明は上述の例に限定されるものではなく、 請求の範囲に記載された発明の範囲にて様々な変更が可能であることは当業者に よって容易に理解されよう。  The example of the present invention has been described above, but the present invention is not limited to the above-described example, and various modifications can be easily made by those skilled in the art within the scope of the invention described in the claims. Will be understood.

Claims

請 求 の 範 囲 The scope of the claims
I . 正極格子体と該正極格子体を充填する正極活物質とを有する正極板と、 負 極格子体と該負極格子体を充填する負極活物質を有する負極板と、 上記正極板と 上記負極板の間に設けられたセパレータと、 を有する鉛蓄電池において、 前記正極格子体は P b— C a— S n合金を主として含む基材と該基材に含まれ る S nよりも低含有量の S nを含む P b— S n合金を含む表面層とを有すること を特徴とする鉛蓄電池。  I. A positive electrode plate having a positive electrode lattice body and a positive electrode active material filling the positive electrode lattice body, a negative electrode plate having a negative electrode lattice body and a negative electrode active material filling the negative electrode lattice body, the positive electrode plate, and the negative electrode In the lead storage battery having a separator provided between the plates, the positive electrode lattice body includes a base material mainly containing a Pb—C a—S n alloy and S having a lower content than Sn contained in the base material. A lead-acid battery comprising a surface layer containing a Pb—Sn alloy containing n.
2 . 前記表面層は P b— S n合金の急冷凝固粉の圧延層で構成されることを特 徴とする請求項 1に記載の鉛蓄電池。  2. The lead-acid battery according to claim 1, wherein the surface layer is composed of a rolled layer of rapidly solidified powder of a Pb—Sn alloy.
3 . 前記表面層と前記基材との厚さの比率が 1 : 1 0〜 1 : 6 0の範囲である ことを特徴とする請求項 1記載の鉛蓄電池。 3. The lead storage battery according to claim 1, wherein the thickness ratio between the surface layer and the substrate is in the range of 1:10 to 1:60.
4 . 前記表面層中の S n含有量が 0.1 w t %以上 l.Ow t %未満であることを特 徴とする請求項 1に記載の鉛蓄電池。  4. The lead acid battery according to claim 1, wherein the Sn content in the surface layer is not less than 0.1 wt% and less than l wt%.
5 . 正極格子体と該正極格子体に充填された正極活物質とを有する正極板と、 負極格子体と該負極格子体に充填された負極活物質を有する負極板と、 上記正極 板と上記負極板の間に設けられたセパレータと、 を有する鉛蓄電池において、 上記正極格子体は、 P b— C a _ S n合金を主として含む基材と、 高純度鉛の 急冷凝固粉の圧延層で構成された表面層とを有することを特徴とする鉛蓄電池。 5. A positive electrode plate having a positive electrode lattice body and a positive electrode active material filled in the positive electrode lattice body, a negative electrode lattice body, a negative electrode plate having a negative electrode active material filled in the negative electrode lattice body, the positive electrode plate, and the above In the lead storage battery having a separator provided between the negative electrode plates, the positive electrode grid is composed of a base material mainly containing a Pb—C a _Sn alloy and a rolled layer of rapidly solidified powder of high-purity lead. Lead acid battery characterized by having a surface layer.
6 . 前記急冷凝固粉の酸化度が 2000 p p m未満、 好ましくは 500 p p m未満で あることを特徴とする請求項 2又は 5に記載の鉛蓄電池。 6. The lead-acid battery according to claim 2 or 5, wherein the rapidly solidified powder has an oxidation degree of less than 2000 ppm, preferably less than 500 ppm.
7 . 前記急冷凝固粉の平均粒径が 2マイクロメートル以上、 50マイクロメート ル以下であることを特徴とする請求項 2又は 5に記載の鉛蓄電池。  7. The lead acid battery according to claim 2 or 5, wherein the rapidly solidified powder has an average particle diameter of 2 micrometers or more and 50 micrometers or less.
8 . 前記表面層は、 アスペク ト比が 3〜 1 3の特定方向に配向した結晶粒子を 有することを特徴とする請求項 1、 2又は 5に記載の鉛蓄電池。  8. The lead-acid battery according to claim 1, 2 or 5, wherein the surface layer has crystal particles oriented in a specific direction having an aspect ratio of 3 to 13.
9 . 前記表面層は B i , A g , B a, S r , A 1のうち少なくとも一つを含有 していることを特徴とする請求項 1〜8のいずれか 1項に記載の鉛蓄電池。 9. The lead acid battery according to any one of claims 1 to 8, wherein the surface layer contains at least one of Bi, Ag, Ba, Sr, and A1. .
1 0 . 前記表面層中の A 1 , B a, S rの含有量が O.Ol w t %以上 l.Ow t %以 下であることを特徴とする請求項 9記載の鉛蓄電池。 10. The lead-acid battery according to claim 9, wherein the content of A 1, Ba, Sr in the surface layer is O.Ol w t% or more and l.Ow t% or less.
I I . 前記表面層中の A gの含有量が 0.005w t %以上 O.Olw t %未満であるこ とを特徴とする請求項 9記載の鉛蓄電池。 II. The Ag content in the surface layer is 0.005 wt% or more and less than O.Olw t%. The lead acid battery according to claim 9, wherein:
1 2 . 前記表面層中の B iの含有量が 0.5w t %以上 15w t %以下であること を特徴とする請求項 9記載の鉛蓄電池。  10. The lead-acid battery according to claim 9, wherein the Bi content in the surface layer is 0.5 wt% or more and 15 wt% or less.
1 3 . 前記表面層として、 引張り強度が 25 ±
Figure imgf000033_0001
2NZmm2以下 の圧延板を用いることを特徴とする請求項 1、 2又は 5に記載の鉛蓄電池。
1 3. The surface layer has a tensile strength of 25 ±
Figure imgf000033_0001
The lead-acid battery according to claim 1, 2 or 5, wherein a rolled sheet of 2NZmm 2 or less is used.
1 4 . 前記正極板と前記負極板と前記セパレータに含浸させる電解液として硫 酸マグネシウム、 もしくは、 硫酸ナトリウムを添加した硫酸水溶液を用いること を特徴とする請求項 1、 2又は 5に記載の鉛蓄電池。 14. The lead according to claim 1, 2, or 5, wherein magnesium sulfate or an aqueous sulfuric acid solution to which sodium sulfate is added is used as an electrolytic solution impregnated in the positive electrode plate, the negative electrode plate, and the separator. Storage battery.
1 5 . 自動車用式鉛蓄電池、 捲回式鉛蓄電池又は制御弁式鉛蓄電池であること を特徴とする請求項 1〜 1 4のいずれか 1項に記載の鉛蓄電池。  15. The lead acid battery according to any one of claims 1 to 14, which is an automotive lead acid battery, a wound lead acid battery, or a control valve type lead acid battery.
1 6 . 前記表面層に形成される酸化層の結晶構造が α— P b〇2を含み、 且つ 、 ct — P b 0 2の (1 1 1 ) 面の面間隔 d値が 0·3140± 0.0001ナノメートル以下 0.3120±0.0001ナノメートル以上であることを特徴とする請求項 1、 2又は 5に 記載の鉛蓄電池。 . 1 6 wherein comprises a crystal structure alpha-P B_〇 second oxide layer formed on the surface layer, and, ct - P b 0 2 (1 1 1) plane spacing d value of the surface is 0 · 3140 ± The lead-acid battery according to claim 1, 2 or 5, characterized in that it is 0.0001 nanometer or less 0.3120 ± 0.0001 nanometer or more.
1 7 . 正極格子体と該正極格子体を充填する正極活物質とを有する鉛蓄電池用 の正極板において、 前記正極格子体は P b— C a— S n合金を主として含む基材 と該基材の上に圧延加工によって重ねられるように配置された表面層を有し、 該 表面層は、 前記基材に含まれる S nよりも低含有量の S nを含む P b— S n合金 の急冷凝固粉の圧延層、 又は、 高純度鉛の急冷凝固粉の圧延層で構成されている ことを特徴とする鉛蓄電池用の正極板。 1 7. A positive electrode plate for a lead storage battery having a positive electrode grid and a positive electrode active material filling the positive grid, wherein the positive electrode grid includes a base material mainly containing a Pb—Ca—Sn alloy and the substrate. A surface layer arranged so as to be stacked by rolling on the material, and the surface layer is made of a Pb—Sn alloy containing Sn having a lower content than Sn contained in the base material. A positive electrode plate for a lead-acid battery, comprising a rolled layer of rapidly solidified powder or a rolled layer of rapidly solidified powder of high-purity lead.
1 8 . 前記表面層は、 アスペク ト比が 3〜 1 3の特定方向に配向した結晶粒子 を有し、 前記急冷凝固粉の酸化度が 2000 p p m未満、 好ましくは 500 p p m未満 であることを特徴とする請求項 1 7に記載の鉛蓄電池用の正極板。  18. The surface layer has crystal particles oriented in a specific direction having an aspect ratio of 3 to 13, and the degree of oxidation of the rapidly solidified powder is less than 2000 ppm, preferably less than 500 ppm. The positive electrode plate for a lead storage battery according to claim 17.
1 9 . P b— C a— S n合金を主として含む基材圧延シートを作製することと 、  1 9. Making a base rolled sheet mainly containing P b—C a—S n alloy;
該基材に含まれる S nよりも低含有量の S nを含む P b— S n合金の急冷凝固粉 の粉末圧延シート、 又は、 高純度鉛の急冷凝固粉の粉末圧延シートを作製するこ とと、 A powder rolled sheet of a rapidly solidified powder of Pb—Sn alloy containing Sn having a lower content than Sn contained in the base material or a powder rolled sheet of a rapidly solidified powder of high-purity lead is prepared. And
上記基材圧延シートの上に上記粉末圧延シートを重ねて、 圧延ロールによって 圧延加工して圧延シートを作製することと、 The powder rolling sheet is stacked on the base material rolling sheet, Rolling to produce a rolled sheet;
該圧延シートを切り出して正極格子体を作製することと、  Cutting the rolled sheet to produce a positive electrode grid;
上記正極格子体に正極活物質を塗布して乾燥させて正極板を作成することと、 負極板とセパレータと前記正極板を組み合わせることと、  Applying a positive electrode active material to the positive electrode grid and drying to create a positive electrode plate; combining a negative electrode plate, a separator and the positive electrode plate;
を含む鉛蓄電池の製造方法。 A method for producing a lead-acid battery comprising:
2 0 . 前記粉末圧延シートは、 アスペク ト比が 3〜1 3の特定方向に配向した 結晶粒子を有し、 前記急冷凝固粉の酸化度が 2000 p p m未満、 好ましくは 500 p p m未満であることを特徴とする請求項 1 9に記載の鉛蓄電池の製造方法。  20. The rolled powder sheet has crystal particles oriented in a specific direction with an aspect ratio of 3 to 13, and the degree of oxidation of the rapidly solidified powder is less than 2000 ppm, preferably less than 500 ppm. The method for producing a lead-acid battery according to claim 19, wherein the lead-acid battery is produced.
PCT/JP2008/053893 2007-02-27 2008-02-27 Lead storage battery WO2008105559A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-047581 2007-02-27
JP2007047581A JP5087950B2 (en) 2007-02-27 2007-02-27 Lead acid battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/554,480 Continuation US7938655B2 (en) 2007-03-07 2009-09-04 Lever-type connector

Publications (1)

Publication Number Publication Date
WO2008105559A1 true WO2008105559A1 (en) 2008-09-04

Family

ID=39721379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/053893 WO2008105559A1 (en) 2007-02-27 2008-02-27 Lead storage battery

Country Status (2)

Country Link
JP (1) JP5087950B2 (en)
WO (1) WO2008105559A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106636737A (en) * 2016-12-21 2017-05-10 河南超威电源有限公司 Power type lead accumulator positive grid alloy and preparation method thereof
CN108467968A (en) * 2018-02-06 2018-08-31 天能电池集团有限公司 A kind of preparation method of lead accumulator grid alloy
CN113312714A (en) * 2021-05-06 2021-08-27 湘潭大学 Simulation analysis method for lead-acid battery grid strength considering substance expansion effect

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6077884B2 (en) * 2012-04-13 2017-02-08 Dowaホールディングス株式会社 Nonferrous metal electrowinning method and anode manufacturing method used therefor
JP6392601B2 (en) * 2014-09-16 2018-09-19 Dowaホールディングス株式会社 Nonferrous metal electrowinning method and anode manufacturing method used therefor
CN116034175B (en) * 2020-08-05 2024-04-12 古河电气工业株式会社 Lead alloy, positive electrode for lead storage battery, and power storage system
BR112023001414A2 (en) * 2020-08-05 2023-02-14 Furukawa Electric Co Ltd LEAD ALLOY, POSITIVE ELECTRODE FOR LEAD STORAGE BATTERY, LEAD STORAGE BATTERY AND ENERGY STORAGE SYSTEM
WO2022202443A1 (en) * 2021-03-26 2022-09-29 古河電池株式会社 Current collection sheet for lead storage battery, lead storage battery, and bipolar lead storage battery

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0322352A (en) * 1989-06-19 1991-01-30 Aisin Seiki Co Ltd Electrode plate for lead-acid battery
JP2000512429A (en) * 1996-06-19 2000-09-19 王萬喜 High energy battery electrolyte and method for producing the electrolyte
JP2000340252A (en) * 1999-05-31 2000-12-08 Shin Kobe Electric Mach Co Ltd Lead-acid battery and its manufacture
JP2001202967A (en) * 2000-01-17 2001-07-27 Matsushita Electric Ind Co Ltd Lead battery and its manufacturing method
JP2002151137A (en) * 2000-11-07 2002-05-24 Emiko Mitsuyama Electrolyte for lead-acid battery
JP2002324573A (en) * 2001-04-25 2002-11-08 Japan Storage Battery Co Ltd Sealed lead storage battery
JP2005123028A (en) * 2003-10-16 2005-05-12 Japan Storage Battery Co Ltd Manufacturing method of lead-acid storage battery
JP2006066173A (en) * 2004-08-26 2006-03-09 Shin Kobe Electric Mach Co Ltd Current collector for lead-acid storage battery and lead-acid storage battery
JP2006156371A (en) * 2004-11-08 2006-06-15 Gs Yuasa Corporation:Kk Negative electrode collector for lead-acid battery
JP2007172999A (en) * 2005-12-21 2007-07-05 Shin Kobe Electric Mach Co Ltd Lead-acid battery

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0322352A (en) * 1989-06-19 1991-01-30 Aisin Seiki Co Ltd Electrode plate for lead-acid battery
JP2000512429A (en) * 1996-06-19 2000-09-19 王萬喜 High energy battery electrolyte and method for producing the electrolyte
JP2000340252A (en) * 1999-05-31 2000-12-08 Shin Kobe Electric Mach Co Ltd Lead-acid battery and its manufacture
JP2001202967A (en) * 2000-01-17 2001-07-27 Matsushita Electric Ind Co Ltd Lead battery and its manufacturing method
JP2002151137A (en) * 2000-11-07 2002-05-24 Emiko Mitsuyama Electrolyte for lead-acid battery
JP2002324573A (en) * 2001-04-25 2002-11-08 Japan Storage Battery Co Ltd Sealed lead storage battery
JP2005123028A (en) * 2003-10-16 2005-05-12 Japan Storage Battery Co Ltd Manufacturing method of lead-acid storage battery
JP2006066173A (en) * 2004-08-26 2006-03-09 Shin Kobe Electric Mach Co Ltd Current collector for lead-acid storage battery and lead-acid storage battery
JP2006156371A (en) * 2004-11-08 2006-06-15 Gs Yuasa Corporation:Kk Negative electrode collector for lead-acid battery
JP2007172999A (en) * 2005-12-21 2007-07-05 Shin Kobe Electric Mach Co Ltd Lead-acid battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106636737A (en) * 2016-12-21 2017-05-10 河南超威电源有限公司 Power type lead accumulator positive grid alloy and preparation method thereof
CN108467968A (en) * 2018-02-06 2018-08-31 天能电池集团有限公司 A kind of preparation method of lead accumulator grid alloy
US11851732B2 (en) 2018-02-06 2023-12-26 Tianneng Battery Group Co., Ltd. Method for preparing grid alloy of lead battery
CN113312714A (en) * 2021-05-06 2021-08-27 湘潭大学 Simulation analysis method for lead-acid battery grid strength considering substance expansion effect

Also Published As

Publication number Publication date
JP5087950B2 (en) 2012-12-05
JP2008210698A (en) 2008-09-11

Similar Documents

Publication Publication Date Title
WO2008105559A1 (en) Lead storage battery
US7678496B2 (en) Current collector of lead-acid storage battery, and lead-acid storage battery
EP3059791B1 (en) Valve-regulated lead-acid battery
WO2005107004A1 (en) Lead acid battery
JP5050309B2 (en) Lead acid battery
JP5050564B2 (en) Current collector for positive electrode or negative electrode of lead acid battery and method for producing the same, lead acid battery and method for producing the same
JPH10284085A (en) Grid for lead-acid battery
JP2003338310A (en) Lead storage battery
WO2009113166A1 (en) Lead storage battery
JP4292666B2 (en) Sealed lead acid battery
JP4904686B2 (en) Lead acid battery
JP5088666B2 (en) Lead-acid battery, lead-acid battery current collector and method for producing the same
JP4364054B2 (en) Lead acid battery
JP5044888B2 (en) Liquid lead-acid battery
JP5115107B2 (en) Lead acid battery
JP3764978B2 (en) Manufacturing method of lead acid battery
JP5088679B2 (en) Lead acid battery
KR20190077321A (en) Nano-scale / nano-structured Si coating on valve metal substrate for LIB anode
JP3637603B2 (en) Lead acid battery
JP5600940B2 (en) Lead battery
JP2004186013A (en) Electrode collector, its manufacturing method and sealed lead-acid battery
JP2009193835A (en) Lead-acid battery, and manufacturing method thereof
JP2009200020A (en) Lead-acid battery
JP2001202967A (en) Lead battery and its manufacturing method
JP5040047B2 (en) Lead-acid battery grid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08721313

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08721313

Country of ref document: EP

Kind code of ref document: A1