JP2009193835A - Lead-acid battery, and manufacturing method thereof - Google Patents

Lead-acid battery, and manufacturing method thereof Download PDF

Info

Publication number
JP2009193835A
JP2009193835A JP2008033976A JP2008033976A JP2009193835A JP 2009193835 A JP2009193835 A JP 2009193835A JP 2008033976 A JP2008033976 A JP 2008033976A JP 2008033976 A JP2008033976 A JP 2008033976A JP 2009193835 A JP2009193835 A JP 2009193835A
Authority
JP
Japan
Prior art keywords
lead
active material
electrode plate
base layer
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008033976A
Other languages
Japanese (ja)
Inventor
Yoshiaki Machiyama
美昭 町山
Satoshi Minoura
敏 箕浦
Masanori Sakai
政則 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2008033976A priority Critical patent/JP2009193835A/en
Publication of JP2009193835A publication Critical patent/JP2009193835A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lead-acid battery capable of increasing output power, and extending a service life. <P>SOLUTION: This lead-acid battery includes a battery jar with an electrode plate group housed therein. In the electrode plate group, positive electrode plates 1 and negative electrode plates 2 are alternately stacked through separators. The positive electrode plate 1 and the negative electrode plate 2 have each a collector 15. In the collector 15, on one surface side of a powder rolled sheet 11 formed by rolling atomized powder 26 rapidly solidified by spraying a melted body of lead or a lead alloy, a porous layer 12 having density lower than that of the powder rolled sheet 11 is arranged. Positive electrode active material paste 17 and negative electrode active material paste 18 are applied to surfaces of the porous layers 12 formed on the collectors 15 in the positive electrode plate 1 and the negative electrode plate 2, respectively. A part of the positive electrode active material and a part of the negative electrode active material enter the porous layers 12. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は鉛電池および鉛電池の製造方法に係り、特に、集電体に活物質が保持された極板を備えた鉛電池および該鉛電池の製造方法に関する。   The present invention relates to a lead battery and a method of manufacturing the lead battery, and more particularly to a lead battery including an electrode plate in which an active material is held on a current collector and a method of manufacturing the lead battery.

リチウム二次電池、ニッケル水素電池等の二次電池のなかでも鉛電池は、特に低温特性に優れ、電池特性とコスト面とでバランスのとれた二次電池である。このため、自動車用をはじめとして、ポータブル機器用やコンピュータのバックアップ用の電源にも広く普及している。近年では、電気自動車用の主力電源としてだけでなく、ハイブリッド電気自動車や簡易ハイブリッド自動車等の起動電源や回生電流の回収用としても新たな機能が見直されている。   Among secondary batteries such as lithium secondary batteries and nickel metal hydride batteries, lead batteries are secondary batteries that are particularly excellent in low-temperature characteristics and balanced in battery characteristics and cost. For this reason, it is widely used for power supplies for portable devices and computers as well as automobiles. In recent years, new functions have been reconsidered not only as a main power source for electric vehicles but also as a starting power source and a recovery current for a hybrid electric vehicle and a simple hybrid vehicle.

一方、鉛電池は、単位体積あたりの重量がリチウム二次電池等に比べて重いため、エネルギー密度の点で遜色する。この原因は、リチウム二次電池等と比較して比重の大きい鉛電極を使用することにある。鉛電極を極力薄くして単位重量あたりの電極面積を広くすれば、鉛電池の軽量化、高エネルギー密度化を図ることが期待できる。すなわち、鉛電池を軽量化、高エネルギー密度化し、高出力化を図るためには、集電体を薄膜化し、同一重量の鉛または鉛合金でできるだけ大面積の集電体を作製し電池を構成する必要がある。   On the other hand, a lead battery is heavier than a lithium secondary battery or the like because of its heavier weight per unit volume, and is therefore inferior in terms of energy density. This is due to the use of a lead electrode having a larger specific gravity than a lithium secondary battery or the like. If the lead electrode is made as thin as possible to increase the electrode area per unit weight, it can be expected that the lead battery will be reduced in weight and energy density. In other words, in order to reduce the weight, increase the energy density, and increase the output of a lead battery, the current collector is made into a thin film, and the current collector is made as large as possible with the same weight of lead or lead alloy. There is a need to.

ところが、鉛電池では、電池使用環境で集電体が腐食して腐食伸びを生じるため、電気的なショートや電槽の貫通等のトラブルを引き起こし、最終的には電池機能停止に到る。集電体を薄膜化するほど腐食伸びが早期に生じるため、寿命低下を早め信頼性を低下させることとなる。集電体の耐食性を向上させ集電体を薄膜化する技術として、本出願人は、鉛粉末または鉛合金粉末を主体とする粉末を圧延して形成した粉末圧延シートを集電体に用いる技術を開示している(例えば、特許文献1参照)。   However, in a lead battery, the current collector corrodes in the battery usage environment and causes corrosion elongation, causing troubles such as electrical shorts and penetration of the battery case, and eventually the battery function is stopped. As the current collector becomes thinner, the corrosion elongation occurs earlier, so the life is shortened and the reliability is lowered. As a technique for improving the corrosion resistance of a current collector and reducing the thickness of the current collector, the present applicant uses a powder rolling sheet formed by rolling a powder mainly composed of lead powder or lead alloy powder as a current collector. (For example, refer to Patent Document 1).

特開2006−66173号公報JP 2006-66173 A

しかしながら、特許文献1の技術では、平板状の集電体に活物質が塗着されるため、充放電により活物質の体積が変化すると、活物質と集電体との密着性が低下することがある。このため、活物質と集電体との接触面積が小さくなり接触不良や活物質の剥落が生じ易くなるので、電子伝導性の低下や内部抵抗の増大を招き、出力や寿命を低下させるおそれがある。   However, in the technique of Patent Document 1, since the active material is applied to the flat plate current collector, when the volume of the active material changes due to charge / discharge, the adhesion between the active material and the current collector decreases. There is. For this reason, the contact area between the active material and the current collector is reduced, and contact failure and peeling of the active material are likely to occur, which may lead to a decrease in electronic conductivity and an increase in internal resistance, which may reduce output and life. is there.

本発明は上記事案に鑑み、高出力化および長寿命化を図ることができる鉛電池および該鉛電池の製造方法を提供することを課題とする。   An object of the present invention is to provide a lead battery and a method for manufacturing the lead battery that can achieve high output and long life.

上記課題を解決するために、本発明の第1の態様は、集電体に活物質が保持された極板を備えた鉛電池において、前記集電体は、鉛または鉛合金の溶融体を噴霧することで急冷凝固させたアトマイズ粉末が前記鉛または鉛合金の真密度と略同一密度となるように圧延形成またはプレス形成された基層と、前記基層の少なくとも片面側に配され前記アトマイズ粉末が前記基層より低密度で多孔状となるように圧延形成またはプレス形成された多孔層とを有することを特徴とする。   In order to solve the above problems, a first aspect of the present invention is a lead battery including an electrode plate in which an active material is held on a current collector, wherein the current collector is a molten lead or lead alloy. A base layer rolled or pressed so that the atomized powder rapidly solidified by spraying has the same density as the true density of the lead or lead alloy, and the atomized powder disposed on at least one side of the base layer And a porous layer formed by rolling or pressing so as to be porous at a lower density than the base layer.

第1の態様では、集電体が、アトマイズ粉末が基層より低密度で多孔状となるように圧延形成またはプレス形成された多孔層を有するため、集電体に活物質を保持させたときに活物質の一部が多孔層に入り込むことから、活物質および集電体間の接触面積が増大するので、電子伝導性が向上し高出力化を図ることができると共に、活物質および集電体間の密着性が向上するので、活物質の剥落を抑制して長寿命化を図ることができる。   In the first aspect, since the current collector has a porous layer formed by rolling or pressing so that the atomized powder is porous at a lower density than the base layer, the current collector holds the active material. Since a part of the active material enters the porous layer, the contact area between the active material and the current collector is increased, so that the electron conductivity can be improved and the output can be increased. Therefore, the active material can be prevented from peeling off and the life can be extended.

第1の態様において、多孔層が基層の表面に形成されていてもよい。また、アトマイズ粉末をスズを含む鉛合金の溶融体で形成したものとしてもよい。このとき、鉛合金が、カルシウム、アルミニウム、アンチモン、バリウム、ストロンチウム、ビスマス、銀、セレン、ヒ素から選択される一種以上の元素を含むようにしてもよい。また、アトマイズ粉末を平均粒径が数十μmで最大粒径が500μm以下の粒子とすることができる。集電体の厚さを0.1mm〜5.0mmの範囲としてもよい。   In the first aspect, the porous layer may be formed on the surface of the base layer. The atomized powder may be formed of a lead alloy melt containing tin. At this time, the lead alloy may contain one or more elements selected from calcium, aluminum, antimony, barium, strontium, bismuth, silver, selenium, and arsenic. Further, the atomized powder can be made into particles having an average particle size of several tens of μm and a maximum particle size of 500 μm or less. The thickness of the current collector may be in the range of 0.1 mm to 5.0 mm.

また、本発明の第2の態様は、集電体に活物質が保持された極板を備えた鉛電池の製造方法であって、前記極板は、鉛または鉛合金の溶融体を噴霧することで急冷凝固させたアトマイズ粉末を前記鉛または鉛合金の真密度と略同一密度となるように圧延またはプレスして基層を形成する基層形成ステップと、前記基層形成ステップで形成された基層の少なくとも片面側に前記アトマイズ粉末を略均等に積層し、前記基層より低密度で多孔状となるように圧延またはプレスして多孔層を形成する多孔層形成ステップと、前記多孔層形成ステップで形成された多孔層に活物質を塗着する活物質塗着ステップと、を有して形成されたことを特徴とする。この場合において、基層形成ステップでは水平対向した一対の押圧ローラで基層を形成し、多孔層形成ステップでは垂直対向した一対の押圧ローラで多孔層を形成することが好ましい。   According to a second aspect of the present invention, there is provided a method of manufacturing a lead battery comprising an electrode plate in which an active material is held on a current collector, the electrode plate spraying a molten lead or lead alloy. A base layer forming step of forming a base layer by rolling or pressing the atomized powder that has been rapidly solidified by solidification so as to have a density substantially equal to the true density of the lead or lead alloy; and at least a base layer formed in the base layer forming step The atomized powder is substantially uniformly laminated on one side, and is formed by a porous layer forming step in which a porous layer is formed by rolling or pressing so as to be porous at a lower density than the base layer, and the porous layer forming step. And an active material application step of applying an active material to the porous layer. In this case, it is preferable that the base layer is formed by a pair of horizontally opposed pressure rollers in the base layer forming step, and the porous layer is formed by a pair of vertically opposed pressure rollers in the porous layer forming step.

本発明によれば、集電体が、アトマイズ粉末が基層より低密度で多孔状となるように圧延形成またはプレス形成された多孔層を有するため、集電体に活物質を保持させたときに活物質の一部が多孔層に入り込むことから、活物質および集電体間の接触面積が増大するので、電子伝導性が向上し高出力化を図ることができると共に、活物質および集電体間の密着性が向上するので、活物質の剥落を抑制して長寿命化を図ることができる、という効果を得ることができる。   According to the present invention, the current collector has a porous layer that is formed by rolling or pressing so that the atomized powder has a lower density than the base layer and is porous, so that when the active material is held on the current collector, Since a part of the active material enters the porous layer, the contact area between the active material and the current collector is increased, so that the electron conductivity can be improved and the output can be increased. Therefore, it is possible to obtain an effect that the active material can be prevented from peeling off and the life can be extended.

以下、図面を参照して、本発明を適用した鉛電池の実施の形態について説明する。   Hereinafter, embodiments of a lead battery to which the present invention is applied will be described with reference to the drawings.

(構成)
図1に示すように、本実施形態の鉛電池20は、電池容器となる直方体状の電槽7を有している。電槽7には、6個の極板群(セル)4が1直列となるように収容されている。電槽7の材質には、成形性、絶縁性および耐久性等の点で優れる、例えば、ポリエチレン、ポリプロピレン等の高分子樹脂を選択することができる。電槽7の上部は、ポリエチレン等の高分子樹脂製で水平断面が長方形状の上蓋10に接着ないし溶着されている。上蓋10の上面には、一側長辺の両端部に外部へ電力を供給するための正極端子8および負極端子9がそれぞれ立設されている。なお、上蓋10には液栓(6個)が設けられており、鉛電池20は液式鉛電池である。
(Constitution)
As shown in FIG. 1, the lead battery 20 of this embodiment has a rectangular parallelepiped battery case 7 that serves as a battery container. The battery case 7 accommodates six electrode plate groups (cells) 4 in series. The material of the battery case 7 can be selected from polymer resins such as polyethylene and polypropylene which are excellent in terms of moldability, insulation and durability. The upper part of the battery case 7 is made of a polymer resin such as polyethylene and adhered or welded to the upper lid 10 having a horizontal cross section of a rectangular shape. On the upper surface of the upper lid 10, a positive electrode terminal 8 and a negative electrode terminal 9 for supplying electric power to the outside are provided on both ends of one long side. The upper lid 10 is provided with liquid stoppers (six), and the lead battery 20 is a liquid lead battery.

極板群4は、矩形状の正極板1の5枚と矩形状の負極板2の6枚とがガラス繊維製等のセパレータ3を介して交互に積層されている。セパレータ3の厚さは、10〜600μmに設定することが好ましく、本例では、約200μmに設定されている。極板群4では、電槽7内で正極板1および負極板2のそれぞれ上部に位置する一辺から上蓋10側に向けて集電タブが突出している。集電タブは、極板群4の上部の一辺で一側に正極、他側に負極がそれぞれ配列するように設けられている。正極板1の各集電タブおよび負極板2の各集電タブの各突出端部には、それぞれ正極ストラップ(不図示)、負極ストラップ6が設けられている。6個の極板群4は、図示しない接続部材で直列接続されている。電槽7内で最上位側の極板群4の正極ストラップが正極端子8に接続されており、最下位側の極板群4の負極ストラップ6が負極端子9に接続されている。   In the electrode plate group 4, five rectangular positive electrode plates 1 and six rectangular negative electrode plates 2 are alternately stacked via separators 3 made of glass fiber or the like. The thickness of the separator 3 is preferably set to 10 to 600 μm, and is set to about 200 μm in this example. In the electrode plate group 4, a current collecting tab protrudes from one side located in the upper part of each of the positive electrode plate 1 and the negative electrode plate 2 in the battery case 7 toward the upper lid 10 side. The current collecting tab is provided so that a positive electrode is arranged on one side and a negative electrode is arranged on the other side of the upper side of the electrode plate group 4. A positive electrode strap (not shown) and a negative electrode strap 6 are provided at each protruding end of each current collecting tab of the positive electrode plate 1 and each current collecting tab of the negative electrode plate 2. The six electrode plate groups 4 are connected in series by a connection member (not shown). In the battery case 7, the positive electrode strap of the uppermost electrode plate group 4 is connected to the positive electrode terminal 8, and the negative electrode strap 6 of the lowermost electrode plate group 4 is connected to the negative electrode terminal 9.

極板群4を構成する正極板1、負極板2は、それぞれ、集電体を有している。集電体は、鉛または鉛合金の溶融体を噴霧することで急冷凝固させたアトマイズ粉末でそれぞれ形成された粉末圧延シート(基層)および多孔層を有している。粉末圧延シートは、鉛または鉛合金の真密度と略同一密度となるように圧延されてシート状に形成されている。多孔層は、粉末圧延シートの少なくとも片面側に配されており、粉末圧延シートより低密度で多孔状となるように形成されている。集電体を構成する粉末圧延シートおよび多孔層は、本例では、スズ(Sn)を1.5重量%含む鉛合金(以下、Pb−Sn系合金と略記する。)のアトマイズ粉末で形成されている。正極板1、負極板2では、集電体に形成された多孔層の表面に、それぞれ正極活物質、負極活物質が塗着されている。   Each of the positive electrode plate 1 and the negative electrode plate 2 constituting the electrode plate group 4 has a current collector. The current collector has a powder rolling sheet (base layer) and a porous layer each formed of atomized powder that has been rapidly solidified by spraying a molten lead or lead alloy. The powder rolled sheet is rolled into a sheet shape so as to have substantially the same density as the true density of lead or a lead alloy. The porous layer is disposed on at least one side of the powder rolled sheet and is formed to be porous at a lower density than the powder rolled sheet. In this example, the powder rolled sheet and the porous layer constituting the current collector are formed of an atomized powder of a lead alloy (hereinafter abbreviated as a Pb—Sn alloy) containing 1.5% by weight of tin (Sn). ing. In the positive electrode plate 1 and the negative electrode plate 2, a positive electrode active material and a negative electrode active material are respectively applied to the surface of the porous layer formed on the current collector.

(製造)
鉛電池20の製造では、集電体に正極活物質、負極活物質をそれぞれ塗着して正極板1、負極板2を作製する。正極板1、負極板2は、図2に示すように、鉛または鉛合金の溶融体からアトマイズ粉末を形成する粉末形成工程、得られたアトマイズ粉末を圧延して粉末圧延シートを作製する第1圧延工程(基層形成ステップ)、粉末圧延シートの表面に多孔層を形成する第2圧延工程(多孔層形成ステップ)、多孔層の表面に正極活物質、負極活物質をそれぞれ塗着させる塗着工程(活物質塗着ステップ)を経て作製される。得られた正極板1、負極板2を配設して組み立てた後、化成することで鉛電池20を完成させる。以下、工程順に説明する。
(Manufacturing)
In the production of the lead battery 20, the positive electrode active material and the negative electrode active material are respectively applied to the current collector to produce the positive electrode plate 1 and the negative electrode plate 2. As shown in FIG. 2, the positive electrode plate 1 and the negative electrode plate 2 are a powder forming step for forming atomized powder from a lead or lead alloy melt, and the obtained atomized powder is rolled to produce a powder rolling sheet. Rolling step (base layer forming step), second rolling step (porous layer forming step) for forming a porous layer on the surface of the powder rolled sheet, and applying step for applying a positive electrode active material and a negative electrode active material to the surface of the porous layer, respectively. It is produced through (active material application step). After arranging and assembling the obtained positive electrode plate 1 and negative electrode plate 2, the lead battery 20 is completed by chemical conversion. Hereinafter, it demonstrates in order of a process.

粉末形成工程では、Pb−Sn系合金を溶融させた溶融体を空気中に噴霧することで急冷凝固させるガスアトマイズ法によりアトマイズ粉末を形成する。得られたアトマイズ粉末は、平均粒径が20〜50μm(数十μm)であり、最大粒径が500μm以下である。Pb−Sn系合金のアトマイズ粉末には、必要に応じてアンチモン、ビスマス等の粉末や酸化鉛、酸化アルミニウム等の粉末を略均一に混合するようにしてもよい。   In the powder forming step, atomized powder is formed by a gas atomization method in which a melt obtained by melting a Pb—Sn alloy is sprayed into the air to rapidly solidify. The obtained atomized powder has an average particle size of 20 to 50 μm (several tens of μm) and a maximum particle size of 500 μm or less. The atomized powder of the Pb—Sn alloy may be mixed with powders such as antimony and bismuth, and powders such as lead oxide and aluminum oxide substantially uniformly as necessary.

第1圧延工程では、正極板1、負極板2の集電体に用いる粉末圧延シートを形成する。粉末圧延シートの形成では、粉末圧延装置が使用される。粉末圧延装置は、図3に示すように、原料のアトマイズ粉末26を搬送するコンベア21、断面略三角状で上部に開口が形成され下部にスリット状の排出口を有するホッパ22、水平方向に配設され互いに押圧しあう一対の水平対向ローラ24および不図示の巻取ローラを備えている。ホッパ22はコンベア21の下流側に配置されており、水平対向ローラ24はホッパ22の下部(の排出口)に近接して配置されている。   In the first rolling step, a powder rolling sheet used for the current collector of the positive electrode plate 1 and the negative electrode plate 2 is formed. In the formation of the powder rolling sheet, a powder rolling apparatus is used. As shown in FIG. 3, the powder rolling apparatus includes a conveyor 21 for conveying the atomized powder 26 as a raw material, a hopper 22 having a substantially triangular cross section with an opening at the top and a slit-like outlet at the bottom, and a horizontal arrangement. A pair of horizontally opposed rollers 24 that are pressed against each other and a winding roller (not shown) are provided. The hopper 22 is disposed on the downstream side of the conveyor 21, and the horizontally opposed roller 24 is disposed in the vicinity of the lower portion (the discharge port) of the hopper 22.

粉末形成工程で形成されたアトマイズ粉末26をコンベア21に載せてホッパ22に向けて搬送する。搬送されたアトマイズ粉末26をホッパ22内に上部の開口から供給する。ホッパ22内のアトマイズ粉末を下部の排出口から排出し、水平対向ローラ24間に連続的に供給する。ホッパ22の排出口の寸法は、本例では、スリット幅10〜20mm、長さ約150mmに設定されている。ホッパ22から排出されたアトマイズ粉末26を水平対向ローラ24間で略均等に押圧し、下方に引き出すことで、厚さ約0.2〜1.0mm、幅約150mmの帯状の粉末圧延シート11を形成する。このとき、粉末圧延シート11の密度がPb−Sn系合金の真密度と略同一密度となるように水平対向ローラ24間の押圧力を設定する。粉末圧延シート11の厚さは、本例では、約0.8mmに設定されている。粉末圧延シート11を不図示の巻取ローラでロール状に巻き取る。   The atomized powder 26 formed in the powder forming step is placed on the conveyor 21 and conveyed toward the hopper 22. The conveyed atomized powder 26 is supplied into the hopper 22 from the upper opening. The atomized powder in the hopper 22 is discharged from the lower discharge port and continuously supplied between the horizontally opposed rollers 24. The dimensions of the discharge port of the hopper 22 are set to a slit width of 10 to 20 mm and a length of about 150 mm in this example. By pressing the atomized powder 26 discharged from the hopper 22 approximately evenly between the horizontally opposed rollers 24 and pulling it downward, a strip-shaped powder rolled sheet 11 having a thickness of about 0.2 to 1.0 mm and a width of about 150 mm is obtained. Form. At this time, the pressing force between the horizontally opposed rollers 24 is set so that the density of the powder rolled sheet 11 is substantially the same as the true density of the Pb—Sn alloy. The thickness of the powder rolling sheet 11 is set to about 0.8 mm in this example. The powder rolling sheet 11 is wound up in a roll shape by a winding roller (not shown).

粉末圧延シート11では、Pb−Sn系合金のアトマイズ粉末26が密度の偏りなく微粒子の状態で略均一に分散している。アトマイズ粉末26同士が圧着され、アトマイズ粉末26の粒子間に金属結合部分が形成されることにより三次元ネットワーク構造を形成している。この粉末圧延シート11は、アスペクト比が3〜13の特定方向に配向した結晶粒を有している。   In the powder rolled sheet 11, the atomized powder 26 of the Pb—Sn alloy is dispersed substantially uniformly in a fine particle state with no density deviation. The atomized powders 26 are pressure-bonded to each other, and a metal bond portion is formed between the particles of the atomized powder 26 to form a three-dimensional network structure. This powder-rolled sheet 11 has crystal grains oriented in a specific direction with an aspect ratio of 3 to 13.

図2に示すように、第2圧延工程では、粉末圧延シート11の表面に粉末圧延シート11より低密度で多孔状の多孔層を形成する。図4(A)に示すように、第1圧延工程で巻き取られた粉末圧延シート11を略水平に引き出し、アトマイズ粉末26を粉末圧延シート11の表面上に略均等に積層する。アトマイズ粉末26を積層した粉末圧延シート11を、垂直方向に配設され互いに押圧しあう一対の垂直対向ローラ25間で略均等に押圧し引き出す。このとき、垂直対向ローラ25間の押圧力が水平対向ローラ24間の押圧力より小さくなるように設定する。粉末圧延シート11に積層したアトマイズ粉末26は、図4(B)に示すように、垂直対向ローラ25間の押圧力で粉末圧延シート11に圧着され、かつ、相互に圧着されるものの真密度まで圧縮されることがなく、粉末圧延シート11より低密度で多孔状を呈した多孔層12を形成する。換言すれば、多孔層の形成時には、正負極活物質が入り込むことができる程度の多孔状を呈するように、垂直対向ローラ25間の押圧力を調整する。上述したように厚さが約0.2〜1.0mmの粉末圧延シート11に、厚さが約0.01〜0.3mmの多孔層12が形成されることで、集電体15の厚さは約0.21〜1.3mmとなる。   As shown in FIG. 2, in the second rolling step, a porous porous layer having a lower density than the powder rolled sheet 11 is formed on the surface of the powder rolled sheet 11. As shown in FIG. 4 (A), the powder rolled sheet 11 wound up in the first rolling step is pulled out substantially horizontally, and the atomized powder 26 is laminated on the surface of the powder rolled sheet 11 approximately evenly. The powder rolling sheet 11 on which the atomized powder 26 is laminated is pressed and pulled out substantially evenly between a pair of vertically opposed rollers 25 that are arranged in the vertical direction and press each other. At this time, the pressing force between the vertical opposing rollers 25 is set to be smaller than the pressing force between the horizontal opposing rollers 24. As shown in FIG. 4 (B), the atomized powder 26 laminated on the powder rolled sheet 11 is pressed against the powder rolled sheet 11 by the pressing force between the vertically opposed rollers 25 and is pressed to the true density. Without being compressed, the porous layer 12 having a lower density than the powder rolled sheet 11 and having a porous shape is formed. In other words, when the porous layer is formed, the pressing force between the vertically opposed rollers 25 is adjusted so as to exhibit a porous shape in which the positive and negative electrode active materials can enter. As described above, the porous layer 12 having a thickness of about 0.01 to 0.3 mm is formed on the powder rolled sheet 11 having a thickness of about 0.2 to 1.0 mm, so that the thickness of the current collector 15 is increased. The length is about 0.21 to 1.3 mm.

塗着工程では、図4(C)に示すように、集電体15の多孔層12の表面に、正極活物質ペースト17、負極活物質ペースト18をそれぞれ塗着し正極板1、負極板2を作製する。正極活物質ペースト17は、通常の処方により調製する。多孔層12に正極活物質ペースト17を塗布した後、温度50℃、湿度95%中に18時間放置して熟成させる。更に、温度110℃で2時間放置して乾燥させることで多孔層12の表面側に正極活物質層を形成し、所望のサイズに裁断して未化成の正極板1を得る。   In the coating step, as shown in FIG. 4C, a positive electrode active material paste 17 and a negative electrode active material paste 18 are respectively applied to the surface of the porous layer 12 of the current collector 15, and the positive electrode plate 1 and the negative electrode plate 2 are applied. Is made. The positive electrode active material paste 17 is prepared by a normal formulation. After the positive electrode active material paste 17 is applied to the porous layer 12, it is left to mature for 18 hours in a temperature of 50 ° C. and a humidity of 95%. Furthermore, the positive electrode active material layer is formed on the surface side of the porous layer 12 by being left to dry at a temperature of 110 ° C. for 2 hours, and is cut into a desired size to obtain an unformed positive electrode plate 1.

一方、負極活物質ペースト18は、通常の処方により調製する。正極板1の作製と同様に、多孔層12に負極活物質ペースト18を塗布した後、温度50℃、湿度95%中に18時間放置して熟成させる。更に、温度110℃で2時間放置して乾燥させることで多孔層12の表面側に負極活物質層を形成し、所望のサイズに裁断して未化成の負極板2を得る(図4(C)参照)。正極板1、負極板2の作製時において、集電体15が粉末圧延シート11と多孔層12とで形成されているため、熟成時間を短縮ないし省略することができる。これは、以下の理由によるものである。すなわち、通常、従来の正極板および負極板では、熟成中の高温多湿下で集電体を酸化させて活物質層と集電体との界面に適切な腐食層を生成させる。この腐食層が活物質層と集電体との界面の密着性および導電性に大きく影響する。ところが本例では、多孔層12に活物質ペースト17、18が入り込むため、活物質層と集電体との界面の密着性および導電性がそもそも優れており、腐食層を最少限または不要とすることができるためである。   On the other hand, the negative electrode active material paste 18 is prepared by a normal formulation. Similarly to the production of the positive electrode plate 1, the negative electrode active material paste 18 is applied to the porous layer 12, and then left to mature for 18 hours in a temperature of 50 ° C. and a humidity of 95%. Furthermore, the negative electrode active material layer is formed on the surface side of the porous layer 12 by being left to dry at a temperature of 110 ° C. for 2 hours, and cut to a desired size to obtain an unformed negative electrode plate 2 (FIG. 4C )reference). When the positive electrode plate 1 and the negative electrode plate 2 are produced, the current collector 15 is formed of the powder-rolled sheet 11 and the porous layer 12, so that the aging time can be shortened or omitted. This is due to the following reason. That is, in general, in the conventional positive electrode plate and negative electrode plate, the current collector is oxidized under high temperature and high humidity during aging, and an appropriate corrosion layer is generated at the interface between the active material layer and the current collector. This corrosive layer greatly affects the adhesion and conductivity of the interface between the active material layer and the current collector. However, in this example, since the active material pastes 17 and 18 enter the porous layer 12, the adhesiveness and conductivity at the interface between the active material layer and the current collector are originally excellent, and the corrosion layer is minimized or unnecessary. Because it can.

電池組立では、極板群4を作製し電槽7に収容した後、化成することで鉛電池20を完成させる。すなわち、未化成の正極板1の5枚と負極板2の6枚とを、正極板1および負極板2が直接接触しないようにセパレータ3を介して交互に積層し、同極性の極板同士を正極ストラップ5、負極ストラップ6でそれぞれ連結して極板群4を作製する。極板群4の6個を電槽7内に収容し6直列に接続して未化成電池を作製する。電槽7内に比重1.05(20℃)の希硫酸電解液を注液する。この未化成電池を9Aで42時間化成した後に電解液を排出し、再び比重1.28(20℃)の希硫酸電解液を注液する。正極端子8および負極端子9をそれぞれ溶接し、上蓋10で密閉して鉛電池20を完成させた。各極板群4の電圧(セル電圧)は2.0Vに設定されており、極板群4を6直列に接続した鉛電池20では公称電圧が12V、容量が28Ahである。   In battery assembly, the electrode group 4 is prepared and accommodated in the battery case 7, and then the lead battery 20 is completed by chemical conversion. That is, 5 sheets of unformed positive electrode plate 1 and 6 sheets of negative electrode plate 2 are alternately stacked via separator 3 so that positive electrode plate 1 and negative electrode plate 2 are not in direct contact with each other. Are connected by a positive electrode strap 5 and a negative electrode strap 6, respectively, to produce an electrode plate group 4. Six pieces of the electrode plate group 4 are accommodated in the battery case 7 and connected in series 6 to produce an unformed battery. A dilute sulfuric acid electrolyte solution having a specific gravity of 1.05 (20 ° C.) is poured into the battery case 7. After this unformed battery is formed at 9A for 42 hours, the electrolytic solution is discharged, and a diluted sulfuric acid electrolytic solution having a specific gravity of 1.28 (20 ° C.) is injected again. The positive electrode terminal 8 and the negative electrode terminal 9 were welded and sealed with the upper lid 10 to complete the lead battery 20. The voltage (cell voltage) of each electrode group 4 is set to 2.0 V, and the lead battery 20 in which the electrode groups 4 are connected in series 6 has a nominal voltage of 12 V and a capacity of 28 Ah.

(作用等)
次に、本実施形態の鉛電池20の作用等について、集電体15(多孔層12、粉末圧延シート11)の作用を中心に説明する。
(Action etc.)
Next, the operation and the like of the lead battery 20 of the present embodiment will be described focusing on the operation of the current collector 15 (the porous layer 12 and the powder rolling sheet 11).

従来鉛電池では、集電体として、鉛または鉛合金をスラブ状に鋳造した後圧延ロールでシート状に形成された金属シートが用いられている。鉛合金等の融点の低い金属では再結晶化により結晶粒が粗大化し、粒子同士が結合して大粒子になりやすいため、得られる金属シート中では粒子の分散状態が変化する。このため、正極板の作製時には、図5(A)に示すように、金属シートの集電体31に正極活物質ペースト17が塗布された後、図5(B)に示すように、高温、多湿の環境下で熟成させるときに、正極活物質ペースト17中の水分と環境雰囲気中の酸素との反応が進行し、集電体31の鉛合金等が正極活物質ペースト17との境界面で酸化、腐食される。この結果、熟成後には、図5(C)に示すように、集電体31の正極活物質層側の境界に酸化鉛の腐食層32が形成される。また、集電体31に用いた金属シートでは、電池使用時に、結晶粒界での腐食が進行しやすくなり、腐食伸びや腐食減肉が生じることで、セパレータや電槽を破損して出力や寿命を低下させることがある。すなわち、正極板では、使用中の充放電の繰り返しにより硫酸鉛や二酸化鉛等を生成し腐食が進行する。これにより、集電体31が変形して電気的なショートや電槽の貫通等のトラブルを引き起こし、最終的には電池機能を停止させる。また、腐食層32が電子伝導性を低下させることから、出力低下を招くこととなる。更に、充放電により活物質の体積が変化すると、活物質と集電体31との密着性が低下し、活物質の剥落が生じることで、出力や寿命の低下を招く。本実施形態の鉛電池20は、これらの問題を解決することができるものである。   In a conventional lead battery, as a current collector, a metal sheet formed in a sheet shape with a rolling roll after casting lead or a lead alloy into a slab shape is used. In the case of a metal having a low melting point such as a lead alloy, the crystal grains are coarsened by recrystallization, and the particles are likely to be joined together to become large particles. For this reason, at the time of producing the positive electrode plate, as shown in FIG. 5A, after the positive electrode active material paste 17 is applied to the current collector 31 of the metal sheet, as shown in FIG. When aging in a humid environment, the reaction between the moisture in the positive electrode active material paste 17 and oxygen in the environmental atmosphere proceeds, so that the lead alloy of the current collector 31 and the like are at the interface with the positive electrode active material paste 17. Oxidized and corroded. As a result, after aging, as shown in FIG. 5C, a lead oxide corrosion layer 32 is formed at the boundary of the current collector 31 on the positive electrode active material layer side. In addition, the metal sheet used for the current collector 31 is more likely to corrode at the grain boundaries when the battery is used, causing corrosion elongation and corrosion thinning. May reduce life. That is, in the positive electrode plate, lead sulfate, lead dioxide, and the like are generated by repeated charge and discharge during use, and corrosion progresses. As a result, the current collector 31 is deformed to cause troubles such as an electrical short and penetration of the battery case, and finally the battery function is stopped. Moreover, since the corrosive layer 32 reduces the electronic conductivity, the output is reduced. Furthermore, when the volume of the active material changes due to charging / discharging, the adhesion between the active material and the current collector 31 is reduced, and the active material is peeled off, leading to a reduction in output and life. The lead battery 20 of this embodiment can solve these problems.

本実施形態では、集電体15が粉末圧延シート11と、粉末圧延シート11より低密度で多孔状の多孔層12とで形成されている。多孔層12の表面に正極活物質ペースト17、負極活物質ペースト18を塗布することで正極板1、負極板2がそれぞれ形成されている。このため、正極活物質の一部、負極活物質の一部が多孔層12に入り込むこととなる。これにより、正負極活物質と集電体15(多孔層12)との接触面積が増大するので、電子伝導性が向上し出力の向上を図ることができる。また、正負極活物質と集電体15との密着性が向上するので、正負極活物質の剥落を抑制して寿命の向上を図ることができる。   In the present embodiment, the current collector 15 is formed of a powder rolled sheet 11 and a porous layer 12 having a lower density than the powder rolled sheet 11 and having a porous shape. A positive electrode plate 1 and a negative electrode plate 2 are formed by applying a positive electrode active material paste 17 and a negative electrode active material paste 18 to the surface of the porous layer 12. For this reason, a part of the positive electrode active material and a part of the negative electrode active material enter the porous layer 12. Thereby, the contact area between the positive and negative electrode active materials and the current collector 15 (the porous layer 12) is increased, so that the electron conductivity is improved and the output can be improved. In addition, since the adhesion between the positive and negative electrode active materials and the current collector 15 is improved, the positive and negative electrode active materials can be prevented from peeling off and the life can be improved.

また、本実施形態では、正極板1、負極板2をそれぞれ構成する集電体15の粉末圧延シート11がPb−Sn系合金のアトマイズ粉末26を直接圧延することで形成されている。このため、粉末圧延シート11ではアトマイズ粉末26が密度の偏りなく微粒子の状態で略均一に分散している。アトマイズ粉末26同士はPb−Sn系合金の真密度と略同一密度となるように圧着されており、アトマイズ粉末26間に金属結合部分が形成されることにより三次元ネットワーク構造が形成されている。このため、再結晶化や結晶粒界の影響が抑制されるので、粉末圧延シート11、ひいては集電体15の耐食性が向上し、腐食伸び等の変形を抑制することができる。これにより、鉛電池20では、集電体15の変形が抑制される分で寿命低下が抑制され、長期にわたり入出力性能を発揮することができる。   Moreover, in this embodiment, the powder rolling sheet | seat 11 of the collector 15 which each comprises the positive electrode plate 1 and the negative electrode plate 2 is formed by directly rolling the atomized powder 26 of a Pb-Sn type alloy. For this reason, in the powder rolling sheet 11, the atomized powder 26 is dispersed substantially uniformly in a fine particle state without unevenness in density. The atomized powders 26 are pressure-bonded so as to have substantially the same density as the true density of the Pb—Sn alloy, and a metal bond portion is formed between the atomized powders 26 to form a three-dimensional network structure. For this reason, since the influence of recrystallization and a crystal grain boundary is suppressed, the corrosion resistance of the powder rolling sheet 11 and by extension, the electrical power collector 15 can improve, and deformations, such as corrosion elongation, can be suppressed. Thereby, in the lead battery 20, a lifetime fall is suppressed by the part which the deformation | transformation of the collector 15 is suppressed, and input / output performance can be exhibited over a long term.

更に、従来の金属シートの集電体では、結晶粒界が外部の腐食因子の影響を受けると粒界腐食が進行しやすくなり、特に、金属偏析物等が存在すると、偏析元素、偏析化合物接触部を起点として腐食反応が進行しやすくなる。これに対して、本実施形態で用いた集電体15、特に、粉末圧延シート11では、アトマイズ粉末26が直接圧延されるため、アスペクト比3〜13の特定方向に配向した結晶粒を有している。このため、アトマイズ粉末26間に金属結合部分が形成され、アトマイズ粉末26同士の境界には偏析元素が極端に少ない境界層が形成される。これにより、集電体15の腐食や腐食に伴う変形を抑えることができる。   Furthermore, in the current collector of the metal sheet, when the grain boundary is affected by an external corrosion factor, the intergranular corrosion is likely to proceed. In particular, when there is a metal segregated material, the segregation element and the segregation compound contact. The corrosion reaction is likely to proceed starting from the part. On the other hand, in the current collector 15 used in the present embodiment, in particular, the powder rolling sheet 11, the atomized powder 26 is directly rolled, and thus has crystal grains oriented in a specific direction with an aspect ratio of 3 to 13. ing. For this reason, a metal bond portion is formed between the atomized powders 26, and a boundary layer with extremely few segregating elements is formed at the boundary between the atomized powders 26. Thereby, the deformation | transformation accompanying corrosion and corrosion of the electrical power collector 15 can be suppressed.

なお、本実施形態では、集電体15の作製に粉末圧延装置を用い、水平対向ローラ24、垂直対向ローラ25で粉末圧延シート11、多孔層12をそれぞれ形成する例を示したが、本発明はこれに限定されるものではない。アトマイズ粉末26を押圧してシート状に形成することができ、押圧力を調整することができる装置であればいかなる装置も使用することができる。例えば、一定形状の金型にアトマイズ粉末26を充填してプレス成型することで形成するようにしてもよく、塑性変形可能な容器にアトマイズ粉末26を充填して容器ごとプレス成型するようにしてもよい。   In the present embodiment, an example in which a powder rolling device is used to manufacture the current collector 15 and the powder rolling sheet 11 and the porous layer 12 are formed by the horizontal facing roller 24 and the vertical facing roller 25 is shown. Is not limited to this. Any device can be used as long as it can press the atomized powder 26 to form a sheet and can adjust the pressing force. For example, the atomized powder 26 may be filled in a mold having a fixed shape and press molded, or the plastically deformable container may be filled with the atomized powder 26 and pressed together with the container. Good.

また、本実施形態では、集電体15を形成する粉末圧延シート11、多孔層12としてPb−Sn系合金のアトマイズ粉末26を圧延した例を示したが、本発明はこれに限定されるものではない。鉛のアトマイズ粉末を圧延してもよく、スズ以外に、カルシウム、アルミニウム、アンチモン、バリウム、ストロンチウム、ビスマス、銀、セレン、ヒ素から選択される一種以上の元素を含む鉛合金のアトマイズ粉末を圧延するようにしてもよい。また、集電体15の形成時に、鉛または鉛合金のアトマイズ粉末26に加えて、酸化鉛や酸化アルミニウム等の粉末を混合するようにしてもよい。このようにすれば、結晶粒の粗大化が抑制されるため、集電体15の耐食性を向上させることができる。   Moreover, although the example which rolled the powder-rolled sheet 11 which forms the electrical power collector 15, and the atomized powder 26 of the Pb-Sn type alloy as the porous layer 12 was shown in this embodiment, this invention is limited to this. is not. Atomized powder of lead may be rolled. In addition to tin, the atomized powder of lead alloy containing one or more elements selected from calcium, aluminum, antimony, barium, strontium, bismuth, silver, selenium, and arsenic is rolled. You may do it. Further, when the current collector 15 is formed, a powder such as lead oxide or aluminum oxide may be mixed in addition to the atomized powder 26 of lead or lead alloy. In this way, since the coarsening of the crystal grains is suppressed, the corrosion resistance of the current collector 15 can be improved.

更に、本実施形態では、集電体15の片面に多孔層12を形成し正極活物質ペースト17、負極活物質ペースト18をそれぞれ塗布することで正極板1、負極板2を作製する例を示したが、本発明はこれに制限されるものではなく、集電体15の両面に多孔層12を形成するようにしてもよい。このようにすれば、集電体15の両面側に正極活物質ペースト17、負極活物質ペースト18を塗布することで電極反応面積が増大するので、出力、容量の向上を図ることができる。また、本実施形態では、粉末圧延シート11の厚さを約0.2〜1.0mm、多孔層12の厚さを約0.01〜0.3mmとし、集電体15の表面部分に多孔層12が形成される例を示したが、本発明はこれに制限されるものではなく、例えば、多孔層12の厚さが粉末圧延シート11より大きくなるようにしてもよい。集電体15の厚さについても約0.21〜1.3mmとする例を示したが、これに制限されるものではなく、0.1〜5.0mmの範囲で設定することができる。   Furthermore, this embodiment shows an example in which the positive electrode plate 1 and the negative electrode plate 2 are produced by forming the porous layer 12 on one surface of the current collector 15 and applying the positive electrode active material paste 17 and the negative electrode active material paste 18 respectively. However, the present invention is not limited to this, and the porous layer 12 may be formed on both surfaces of the current collector 15. In this way, since the electrode reaction area is increased by applying the positive electrode active material paste 17 and the negative electrode active material paste 18 to both sides of the current collector 15, the output and capacity can be improved. In this embodiment, the thickness of the powder rolled sheet 11 is about 0.2 to 1.0 mm, the thickness of the porous layer 12 is about 0.01 to 0.3 mm, and the surface portion of the current collector 15 is porous. Although the example in which the layer 12 is formed is shown, the present invention is not limited to this, and for example, the thickness of the porous layer 12 may be larger than that of the powder rolled sheet 11. Although the example which sets it as about 0.21-1.3 mm about the thickness of the electrical power collector 15 was shown, it is not restrict | limited to this but can set in the range of 0.1-5.0 mm.

また更に、本実施形態では、アトマイズ粉末26を圧延した粉末圧延シート11の表面に、多孔層12を形成した集電体15をそのまま用いる例を示したが、本発明はこれに制限されるものではない。例えば、活物質保持量の増大を考慮すれば、集電体15に穴あけ加工やエキスパンド加工を施すようにすることが好ましい。このようにすれば、集電体15に正極活物質、負極活物質を確実に保持することができ、格子骨格間に形成された空隙に充填される分で活物質保持量が増大するので、鉛電池20の出力向上を図ることができる。   Furthermore, in this embodiment, although the example which uses the electrical power collector 15 which formed the porous layer 12 as it is on the surface of the powder rolling sheet | seat 11 which rolled the atomized powder 26 was shown, this invention is restrict | limited to this. is not. For example, in consideration of an increase in the active material holding amount, it is preferable that the current collector 15 be subjected to drilling or expanding. In this way, the positive electrode active material and the negative electrode active material can be reliably held in the current collector 15, and the amount of active material retained increases by the amount filled in the voids formed between the lattice skeletons. The output of the lead battery 20 can be improved.

更にまた、本実施形態では、公称電圧が12Vの鉛電池20を例示したが、本発明は電圧域に制限されるものではない。直列接続する極板群4の数を変えることで、例えば、公称電圧が36Vの鉛電池も作製可能であり、本発明の種々の特性は電圧域で変るものではない。また、鉛電池20の容量を28Ahとする例を示したが、本発明は電池容量についても特に制限されるものではない。   Furthermore, in the present embodiment, the lead battery 20 having a nominal voltage of 12 V is illustrated, but the present invention is not limited to the voltage range. By changing the number of electrode groups 4 connected in series, for example, a lead battery having a nominal voltage of 36V can be produced, and various characteristics of the present invention do not change in the voltage range. Moreover, although the example which sets the capacity | capacitance of the lead battery 20 to 28 Ah was shown, this invention is not restrict | limited in particular also about a battery capacity.

本発明は高出力化および長寿命化を図ることができる鉛電池および該鉛電池の製造方法を提供するため、鉛電池の製造、販売に寄与するので、産業上の利用可能性を有する。   The present invention contributes to the manufacture and sale of lead batteries in order to provide a lead battery and a method of manufacturing the lead battery that can achieve high output and long life, and thus has industrial applicability.

本発明を適用した実施形態の鉛電池を一部破断して示す斜視図である。1 is a perspective view showing a partially broken lead battery according to an embodiment to which the present invention is applied. 実施形態の鉛電池の製造方法の要部を示す工程図である。It is process drawing which shows the principal part of the manufacturing method of the lead battery of embodiment. 鉛電池に用いた集電体を構成する粉末圧延シートの作製手順を模式的に示す説明図である。It is explanatory drawing which shows typically the preparation procedure of the powder rolling sheet | seat which comprises the electrical power collector used for the lead battery. 鉛電池の正負極板の作製手順を模式的に示す断面図であり、(A)は粉末圧延シートにアトマイズ粉末を積層し圧延するときの状態、(B)は粉末圧延シートの表面に多孔層が形成された集電体の状態、(C)は集電体に活物質ペーストを塗布した状態をそれぞれ示す。It is sectional drawing which shows the preparation procedure of the positive / negative electrode board of a lead battery typically, (A) is a state when laminating and rolling an atomized powder on a powder rolling sheet, (B) is a porous layer on the surface of a powder rolling sheet. (C) shows a state where the active material paste is applied to the current collector. 従来の鉛電池の正極板作製時における集電体の腐食の進行を模式的に示す断面図であり、(A)は集電体に活物質ペーストを塗布した状態、(B)は1日熟成させた状態、(C)は熟成後の状態をそれぞれ示す。It is sectional drawing which shows typically advancing of the corrosion of a collector at the time of positive electrode plate preparation of a conventional lead battery, (A) is a state where an active material paste is applied to the collector, and (B) is aged for 1 day. (C) shows the state after aging.

符号の説明Explanation of symbols

1 正極板
2 負極板
11 粉末圧延シート(基層)
12 多孔層
15 集電体
20 鉛電池
26 アトマイズ粉末
DESCRIPTION OF SYMBOLS 1 Positive electrode plate 2 Negative electrode plate 11 Powder rolling sheet (base layer)
12 Porous layer 15 Current collector 20 Lead battery 26 Atomized powder

Claims (8)

集電体に活物質が保持された極板を備えた鉛電池において、前記集電体は、鉛または鉛合金の溶融体を噴霧することで急冷凝固させたアトマイズ粉末が前記鉛または鉛合金の真密度と略同一密度となるように圧延形成またはプレス形成された基層と、前記基層の少なくとも片面側に配され前記アトマイズ粉末が前記基層より低密度で多孔状となるように圧延形成またはプレス形成された多孔層とを有することを特徴とする鉛電池。   In a lead battery including an electrode plate in which an active material is held on a current collector, the current collector is made of an atomized powder that is rapidly solidified by spraying a molten lead or lead alloy. A base layer rolled or press-formed so as to have substantially the same density as the true density, and a roll-formed or press-formed so that the atomized powder disposed at least on one side of the base layer is porous at a lower density than the base layer. A lead-acid battery. 前記多孔層は、前記基層の表面に形成されていることを特徴とする請求項1に記載の鉛電池。   The lead battery according to claim 1, wherein the porous layer is formed on a surface of the base layer. 前記アトマイズ粉末は、スズを含む鉛合金の溶融体で形成したものであることを特徴とする請求項1に記載の鉛電池。   The lead battery according to claim 1, wherein the atomized powder is formed of a molten lead alloy containing tin. 前記鉛合金は、カルシウム、アルミニウム、アンチモン、バリウム、ストロンチウム、ビスマス、銀、セレン、ヒ素から選択される一種以上の元素を含むことを特徴とする請求項3に記載の鉛電池。   4. The lead battery according to claim 3, wherein the lead alloy contains one or more elements selected from calcium, aluminum, antimony, barium, strontium, bismuth, silver, selenium, and arsenic. 前記アトマイズ粉末は、平均粒径が数十μmで最大粒径が500μm以下の粒子であることを特徴とする請求項1に記載の鉛電池。   2. The lead battery according to claim 1, wherein the atomized powder is a particle having an average particle diameter of several tens of μm and a maximum particle diameter of 500 μm or less. 前記集電体は、厚さが0.1mm〜5.0mmの範囲であることを特徴とする請求項2に記載の鉛電池。   The lead battery according to claim 2, wherein the current collector has a thickness in a range of 0.1 mm to 5.0 mm. 集電体に活物質が保持された極板を備えた鉛電池の製造方法であって、前記極板は、
鉛または鉛合金の溶融体を噴霧することで急冷凝固させたアトマイズ粉末を前記鉛または鉛合金の真密度と略同一密度となるように圧延またはプレスして基層を形成する基層形成ステップと、
前記基層形成ステップで形成された基層の少なくとも片面側に前記アトマイズ粉末を略均等に積層し、前記基層より低密度で多孔状となるように圧延またはプレスして多孔層を形成する多孔層形成ステップと、
前記多孔層形成ステップで形成された多孔層に活物質を塗着する活物質塗着ステップと、
を有して形成されたことを特徴とする鉛電池の製造方法。
A method of manufacturing a lead battery comprising an electrode plate in which an active material is held on a current collector, the electrode plate comprising:
A base layer forming step of forming a base layer by rolling or pressing the atomized powder rapidly solidified by spraying a lead or lead alloy melt so as to have substantially the same density as the true density of the lead or lead alloy;
The porous layer forming step of forming the porous layer by laminating the atomized powder substantially evenly on at least one side of the base layer formed in the base layer forming step, and rolling or pressing so as to be porous at a lower density than the base layer When,
An active material application step of applying an active material to the porous layer formed in the porous layer formation step;
A method of manufacturing a lead battery, characterized by comprising:
前記基層形成ステップでは水平対向した一対の押圧ローラで前記基層を形成し、前記多孔層形成ステップでは垂直対向した一対の押圧ローラで前記多孔層を形成することを特徴とする請求項7に記載の鉛電池の製造方法。   The said base layer formation step forms the said base layer with a pair of horizontally opposed pressure rollers, and the said porous layer formation step forms the said porous layer with a pair of vertically opposed pressure rollers. A method of manufacturing a lead battery.
JP2008033976A 2008-02-15 2008-02-15 Lead-acid battery, and manufacturing method thereof Pending JP2009193835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008033976A JP2009193835A (en) 2008-02-15 2008-02-15 Lead-acid battery, and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008033976A JP2009193835A (en) 2008-02-15 2008-02-15 Lead-acid battery, and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2009193835A true JP2009193835A (en) 2009-08-27

Family

ID=41075673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008033976A Pending JP2009193835A (en) 2008-02-15 2008-02-15 Lead-acid battery, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2009193835A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114293128A (en) * 2021-03-19 2022-04-08 骆驼集团襄阳蓄电池有限公司 Process for spraying lead belt on positive electrode of lead-acid storage battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114293128A (en) * 2021-03-19 2022-04-08 骆驼集团襄阳蓄电池有限公司 Process for spraying lead belt on positive electrode of lead-acid storage battery

Similar Documents

Publication Publication Date Title
EP2471129B1 (en) Electrical storage device and electrode thereof
EP1713142B1 (en) Lead storage battery
US8232005B2 (en) Lead acid battery with titanium core grids and carbon based grids
EP1801902A2 (en) Lead acid battery
JP5087950B2 (en) Lead acid battery
WO2017047054A1 (en) Lead storage battery
WO2006049295A1 (en) Negative electrode current collector for lead storage battery and lead storage battery including the same
JP7296016B2 (en) Lead alloy foil, positive electrode for lead-acid battery, lead-acid battery, and power storage system
JP5050564B2 (en) Current collector for positive electrode or negative electrode of lead acid battery and method for producing the same, lead acid battery and method for producing the same
JP6125515B2 (en) A flooded lead acid battery with an electrode having a pasting substrate
JP2017188477A (en) Lead storage battery
JP2009193835A (en) Lead-acid battery, and manufacturing method thereof
CN111295779A (en) Separator for lead-acid battery and lead-acid battery
JP3511476B2 (en) Lithium secondary battery
JP2004119061A (en) Lead acid storage battery
JP2003338310A (en) Lead storage battery
JP4487505B2 (en) Lead acid battery
JP4655657B2 (en) Winded lead acid battery
JP5600940B2 (en) Lead battery
JP2002075433A (en) Cell
JP5088666B2 (en) Lead-acid battery, lead-acid battery current collector and method for producing the same
KR100721638B1 (en) Method of producing lattice body for lead storage battery, and lead storage battery
JP4364054B2 (en) Lead acid battery
WO2009113166A1 (en) Lead storage battery
JPH08203500A (en) Manufacture of electrode plate for nonaqueous electrolyte battery