JP2009200020A - Lead-acid battery - Google Patents

Lead-acid battery Download PDF

Info

Publication number
JP2009200020A
JP2009200020A JP2008054279A JP2008054279A JP2009200020A JP 2009200020 A JP2009200020 A JP 2009200020A JP 2008054279 A JP2008054279 A JP 2008054279A JP 2008054279 A JP2008054279 A JP 2008054279A JP 2009200020 A JP2009200020 A JP 2009200020A
Authority
JP
Japan
Prior art keywords
lead
powder
current collector
antimony
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008054279A
Other languages
Japanese (ja)
Inventor
Takeo Sakamoto
剛生 坂本
Hisaaki Takabayashi
久顯 高林
Yoshiaki Machiyama
美昭 町山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2008054279A priority Critical patent/JP2009200020A/en
Publication of JP2009200020A publication Critical patent/JP2009200020A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a current collector of a lead-acid battery, which can enhance resistance against corrosion elongation, can suppress an early capacity drop, and can simplify a manufacturing method. <P>SOLUTION: A powder rolling current collector is used as a current collector instead of a conventional casting rolling material using a lead-calcium-tin alloy. The current collector obtained by arranging antimony powder or lead-antimony powder on the powder rolling current collector and rolling again is used. The loadings of the antimony powder or the lead-antimony powder are 0.5-5.0% to the lead powder or the lead alloy powder. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、自動車用バッテリ、フォークリフトなどの電動車、及び無停電電源装置などの用途の鉛蓄電池に関し、特に鉛蓄電池の集電体に関する。   The present invention relates to lead-acid batteries for uses such as automobile batteries, electric vehicles such as forklifts, and uninterruptible power supplies, and more particularly to a current collector for lead-acid batteries.

鉛蓄電池は安価で信頼性の高い蓄電池として、自動車用バッテリ、フォークリフトなどの電動車、及び無停電電源装置用電源などの、さまざまな用途に用いられている。この 鉛蓄電池の有する課題の一つに早期容量低下(PCL:Premature Capacity Loss)がある。早期容量低下は、正極の集電体の表面に、硫酸鉛(PbSO)等の電気伝導性のない不働体膜が生成されることによって起きる。早期容量低下は、正極集電体と反応活物質の接触界面に、一酸化鉛(PbO)が生成されても起きる。これについて説明する。 Lead storage batteries are inexpensive and highly reliable storage batteries, and are used in various applications such as automobile batteries, electric vehicles such as forklifts, and power supplies for uninterruptible power supplies. One of the problems that this lead storage battery has is an early capacity drop (PCL: Preliminary Capacity Loss). The early capacity reduction occurs when a passive film having no electrical conductivity such as lead sulfate (PbSO 4 ) is formed on the surface of the current collector of the positive electrode. The early capacity reduction occurs even if lead monoxide (PbO) is generated at the contact interface between the positive electrode current collector and the reaction active material. This will be described.

一般に、鉛蓄電池の正極集電体と反応活物質の接触界面では、集電体の表面酸化物と反応活物質が接触している。そのため正極集電体と反応活物質の密着性を高めるには、集電体表面に、反応活物質である二酸化鉛(PbO)と同一の二酸化鉛(PbO)が緻密に生成されていることが望ましい。 In general, the surface oxide of the current collector and the reactive active material are in contact with each other at the contact interface between the positive electrode current collector and the reactive active material of the lead storage battery. Therefore, in order to improve the adhesion between the positive electrode current collector and the reaction active material, the same lead dioxide (PbO 2 ) as the reaction active material lead dioxide (PbO 2 ) is densely formed on the current collector surface. It is desirable.

集電体の表面に一酸化鉛(PbO)が生成されると、正極集電体と反応活物質の間の密着性(電子伝導性)が低下する。更に一酸化鉛(PbO)は、二酸化鉛(PbO)とは異なり高い電気抵抗を有する。こうして、正極集電体と反応活物質の接触界面に一酸化鉛(PbO)が生成されると、充電電流が流れなくなり早期容量低下が起きる。 When lead monoxide (PbO) is generated on the surface of the current collector, the adhesion (electron conductivity) between the positive electrode current collector and the reaction active material decreases. Furthermore, lead monoxide (PbO) has a high electrical resistance unlike lead dioxide (PbO 2 ). Thus, when lead monoxide (PbO) is generated at the contact interface between the positive electrode current collector and the reaction active material, the charging current does not flow and an early capacity decrease occurs.

そこで集電体の表面は、二価(II)の酸化物である酸化鉛(PbO)から、四価(IV)の酸化物である二酸化鉛(PbO)まで迅速に酸化されるのが望ましい。即ち、集電体表面は早急に二酸化鉛(PbO)によって緻密に覆われることが必要である。 Therefore, it is desirable that the surface of the current collector be rapidly oxidized from lead oxide (PbO) which is a divalent (II) oxide to lead dioxide (PbO 2 ) which is a tetravalent (IV) oxide. . That is, the current collector surface needs to be covered with lead dioxide (PbO 2 ) as quickly as possible.

早期容量低下対策として、正極集電体にアンチモン含有鉛系合金を使用することが有効であることが知られており幾つかの研究報告がある。例えば非特許文献1を参照。   It is known that it is effective to use an antimony-containing lead-based alloy for the positive electrode current collector as an early capacity reduction measure, and there are several research reports. For example, see Non-Patent Document 1.

これまでの知見によれば、アンチモン含有鉛系合金の効果は主に以下の2つがある。
(1)α−PbOの生成
正極集電体にアンチモン含有鉛系合金を用いると、正極の高電位によって集電体のアンチモン含有鉛系合金からアンチモンイオンが溶出し、反応活物質である二酸化鉛(PbO)に浸入する。それによって、集電体と反応活物質の接触界面において、反応活物質であるβ−PbOが、放電電位が低いα−PbOに変化する。こうして、集電体と反応活物質の接触界面にα−PbOが生成されると、反応活物質は放電が起こりにくい状態となり、不働体膜の生成が抑制される。
According to the knowledge so far, there are mainly the following two effects of the antimony-containing lead-based alloy.
(1) Formation of α-PbO 2 When an antimony-containing lead-based alloy is used for the positive electrode current collector, antimony ions are eluted from the antimony-containing lead-based alloy of the current collector by the high potential of the positive electrode, and the reaction active material is dioxide dioxide. Penetration into lead (PbO 2 ). Thereby, at the contact interface between the current collector and the reaction active material, β-PbO 2 that is the reaction active material changes to α-PbO 2 having a low discharge potential. Thus, when α-PbO 2 is generated at the contact interface between the current collector and the reaction active material, the reaction active material is unlikely to discharge, and the formation of a passive film is suppressed.

(2)電子伝導性酸化物、界面の密着性
集電体のアンチモン含有鉛系合金からアンチモンイオンが溶出すると、集電体と反応活物質の接触界面にて、鉛アンチモン複合酸化物(PbxSbyOz)が生成される。この複合酸化物は、集電体と反応活物質の接触界面において電子的に密着性を高めるため、電子伝導性が高くなる。
(2) Electroconductive oxide, adhesion at the interface When antimony ions are eluted from the antimony-containing lead-based alloy of the current collector, lead antimony complex oxide (PbxSbyOz) at the contact interface between the current collector and the reactive active material Is generated. Since this composite oxide electronically improves the adhesion at the contact interface between the current collector and the reaction active material, the electron conductivity is increased.

このように、正極集電体にアンチモン含有鉛系合金(Pb−Sb、Pb−Sb−Sn)を用いると早期容量低下対策に有効である。しかしながら、アンチモンの水素過電圧は鉛の水素過電圧よりも低いため、電解液の水分解反応が促進される弱点がある。すなわち自己放電反応によって水が減少するため、アンチモンの添加量に比例して給水の頻度を高くしなければならない、というメンテナンス上の課題がある。   Thus, when antimony-containing lead-based alloys (Pb—Sb, Pb—Sb—Sn) are used for the positive electrode current collector, it is effective as a measure against early capacity reduction. However, since the hydrogen overvoltage of antimony is lower than the hydrogen overvoltage of lead, there is a weakness that promotes the water decomposition reaction of the electrolyte. That is, since water is reduced by the self-discharge reaction, there is a maintenance problem that the frequency of water supply must be increased in proportion to the amount of antimony added.

鉛蓄電池の正極集電体には、強度及び耐食性が必要である。強度及び耐食性に優れた鉛系合金に、鉛−錫−カルシウム(Pb−Sn−Ca)系合金がある。鉛−錫−カルシウム(Pb−Sn−Ca)系合金は、アンチモン含有鉛系合金(Pb−Sb、Pb−Sb−Sn)と比較して自己放電反応が少なく、メンテナンス上も有利である。しかしながら、正極格子としてアンチモン含有鉛(Pb−Sb、Pb−Sb−Sn)系合金の代わりに鉛−錫−カルシウム(Pb−Sn−Ca)系合金を使用すると、早期容量低下の問題が生じる。   A positive electrode current collector of a lead storage battery needs strength and corrosion resistance. Lead-tin-calcium (Pb-Sn-Ca) -based alloys are among the lead-based alloys having excellent strength and corrosion resistance. The lead-tin-calcium (Pb-Sn-Ca) -based alloy has less self-discharge reaction than the antimony-containing lead-based alloys (Pb-Sb, Pb-Sb-Sn), and is advantageous in terms of maintenance. However, when a lead-tin-calcium (Pb-Sn-Ca) -based alloy is used instead of the antimony-containing lead (Pb-Sb, Pb-Sb-Sn) -based alloy as the positive electrode lattice, there is a problem of early capacity reduction.

早期容量低下の対策として、特許文献1には、母材である鉛−錫−カルシウム系合金の表面に、鉛−錫−アンチモン系合金の薄膜を重ね合わせ、冷間圧延によって一体化した鉛系合金シートを集電体として使用することが記載されている。この技術は、母材である鉛−錫−カルシウム系合金の上に、鉛−アンチモン系合金の薄膜を重ねて冷間圧延することにより、2層構造の合金の集電体シートを得るものである。このような2層構造では、表面のアンチモン含有鉛系合金薄膜からのアンチモンイオンの溶出によって、集電体と反応活物質の間の界面において、上述の(1)α−PbOの生成と(2)鉛アンチモン複合酸化物(PbxSbyOz)の生成が起きる。尚、集電体の形状は、2層構造合金シートに切開部を入れて左右から引っ張って網目状にした、いわゆるエキスパンド格子である。 As a countermeasure against early capacity reduction, Patent Document 1 describes a lead-based alloy in which a thin film of lead-tin-antimony alloy is superposed on the surface of a lead-tin-calcium alloy that is a base material and integrated by cold rolling. The use of an alloy sheet as a current collector is described. In this technology, a lead-antimony alloy thin film is superimposed on a base material of lead-tin-calcium alloy and cold-rolled to obtain a current collector sheet of a two-layer structure. is there. In such a two-layer structure, the elution of antimony ions from the antimony-containing lead-based alloy thin film on the surface causes the generation of (1) α-PbO 2 described above at the interface between the current collector and the reactive active material ( 2) Formation of lead antimony composite oxide (PbxSbyOz) occurs. The shape of the current collector is a so-called expanded lattice in which an incision is made in a two-layer structure alloy sheet and pulled from the left and right to form a mesh.

特許文献2には、カーボン粒子と酸化物(SiO、Al、ZrO、SnO、BaPbO)を鉛粉末中に混合させ、粉末冶金技術により正極集電体を作製する方法が示されている。 Patent Document 2 discloses a method in which carbon particles and an oxide (SiO 2 , Al 2 O 3 , ZrO 2 , SnO 2 , BaPbO 3 ) are mixed in a lead powder, and a positive electrode current collector is produced by powder metallurgy technology. It is shown.

特許文献3には、粉末圧延技術を用いてアンチモン合金である鉛−錫−アンチモン系合金集電体を作製することにより、腐食伸びを抑制することが記載されている。   Patent Document 3 describes that corrosion elongation is suppressed by producing a lead-tin-antimony alloy collector that is an antimony alloy using a powder rolling technique.

T. Laitinen 他4名. 「The Effect of Antimony on The Anodic Behaviour of Lead in Sulphuric Acid SolutionsI. Voltammetric Measurements」Electrochimica Acta, Vol.36, No3/4, pp.605−614,(1991)T.A. Laitinen and 4 others. “The Effect of Antimony on The Anodical Behavior of Lead in Sulfur Acid Solutions I. Voltammetric Measurements. 36, No 3/4, pp. 605-614, (1991) 特許第3156333号Japanese Patent No. 3156333 特開2005−32532号公報JP 2005-32532 A 特開2006−66173号公報JP 2006-66173 A

上述のように、正極集電体にアンチモン含有鉛系合金を用いると、早期容量低下対策に有効である。しかしながらアンチモン含有鉛系合金は、アンチモンの添加量に比例して水素過電圧を低下させ自己分解を促進させる。このため、アンチモンの添加量をできるだけ低減する必要がある。   As described above, when an antimony-containing lead-based alloy is used for the positive electrode current collector, it is effective for an early capacity reduction measure. However, an antimony-containing lead-based alloy reduces hydrogen overvoltage in proportion to the amount of antimony added and promotes self-decomposition. For this reason, it is necessary to reduce the addition amount of antimony as much as possible.

これに対して従来技術では、鉛−アンチモン系合金、鉛−錫−アンチモン系合金等のアンチモン含有鉛系合金の薄膜を、母材のアンチモンを含まない合金の上に張り合わせる、いわゆるクラッド化して集電体を形成している。この場合、集電体の腐食伸び性能は母材の性能に起因する。また、鉛−アンチモンなどの合金薄膜を一度作製し、再び張り合わせるために冷間圧延を行う必要がある。   On the other hand, in the prior art, a thin film of an antimony-containing lead-based alloy such as a lead-antimony alloy or a lead-tin-antimony alloy is laminated on an alloy containing no antimony as a so-called cladding. A current collector is formed. In this case, the corrosion elongation performance of the current collector results from the performance of the base material. In addition, it is necessary to cold-roll in order to produce an alloy thin film such as lead-antimony once and bond it again.

本発明の目的は、従来よりも腐食伸び性能が向上し、早期容量低下を抑制し、かつ製造方法が簡素化できる鉛蓄電池の集電体を提供することにある。   An object of the present invention is to provide a current collector for a lead-acid battery that has improved corrosion elongation performance compared to the prior art, suppresses early capacity reduction, and can simplify the manufacturing method.

本発明では、鉛系合金粉末を用いた粉末圧延集電体表面に、アンチモン粉あるいは鉛−アンチモン合金粉を配して、再圧延して正極集電体を作製する。 In the present invention, an antimony powder or a lead-antimony alloy powder is arranged on the surface of a powder rolling current collector using a lead-based alloy powder, and re-rolled to produce a positive electrode current collector.

本発明によれば、従来よりも腐食伸び性能が向上し、早期容量低下を抑制し、かつ製造方法が簡素化できる鉛蓄電池の集電体を提供することにある。   According to the present invention, it is an object of the present invention to provide a lead-acid battery current collector that has improved corrosion elongation performance compared to the prior art, suppresses early capacity reduction, and can simplify the manufacturing method.

以下具体例をあげ、本発明を更に詳しく説明するが、発明の主旨を越えない限り、本発明は実施例に限定されるものではない。
鉛蓄電池の基本構成を図1に示す。鉛蓄電池は、負極ターミナル11、正極ターミナル12、正極板13、負極板14、セパレータ15、電槽16、及び電槽蓋17を有し、電槽16中には電解液として硫酸が蓄えられている。正極板13の集電体には、正極活物質ペーストが塗布されている。正極活物質は、公知のものが使用されてよく、鉛粉、鉛丹、硫酸鉛、添加剤等を含む正極用活物質ペーストを充填した後に、これを熟成、乾燥させて得ることができる。なお、正極活物質は、化成により集電体との界面において二酸化鉛(PbO)となる。
以下、正極板13の集電体の製造方法を説明する。先ず、本発明による正極集電体の材料を説明する。本発明によると、鉛含有粉末として鉛粉末又は鉛系合金粉末を用いる。
鉛系合金粉末は、鉛をベースとして、錫、カルシウム、アンチモン、バリウム、銀、ビスマスのうちの少なくとも一つ以上の合金元素を含む。鉛系合金粉末は鉛−錫−カルシウム(Pb−Sn−Ca)系合金であってよく、鉛−錫(Pb−Sn)系合金粉末であってよい。鉛系合金粉末は、乾燥空気中に溶融金属を噴霧して急冷凝固粉末を生成するガスアトマイズ法によって作製することができる。鉛含有粉末を粉末圧延によって成形し、シートにする。こうして形成された圧延シートは、アスペクト比3〜13の特定方向に配向した結晶粒子により構成される組織を有する。この圧延シートを所定サイズに切り出して集電体を形成する。圧延シートをエキスパンド加工することにより、格子構造を有する集電体を形成してもよい。
Hereinafter, the present invention will be described in more detail with reference to specific examples. However, the present invention is not limited to the examples unless it exceeds the gist of the invention.
The basic configuration of the lead storage battery is shown in FIG. The lead acid battery has a negative electrode terminal 11, a positive electrode terminal 12, a positive electrode plate 13, a negative electrode plate 14, a separator 15, a battery case 16, and a battery case cover 17. In the battery case 16, sulfuric acid is stored as an electrolytic solution. Yes. A positive electrode active material paste is applied to the current collector of the positive electrode plate 13. A well-known thing may be used for a positive electrode active material, and after filling with the active material paste for positive electrodes containing lead powder, red lead, lead sulfate, an additive, etc., this can be obtained by aging and drying. The positive electrode active material becomes lead dioxide (PbO 2 ) at the interface with the current collector due to chemical conversion.
Hereinafter, a method for manufacturing the current collector of the positive electrode plate 13 will be described. First, the material of the positive electrode current collector according to the present invention will be described. According to the present invention, lead powder or lead alloy powder is used as the lead-containing powder.
The lead-based alloy powder contains at least one alloy element of tin, calcium, antimony, barium, silver, and bismuth based on lead. The lead-based alloy powder may be a lead-tin-calcium (Pb-Sn-Ca) -based alloy, or may be a lead-tin (Pb-Sn) -based alloy powder. The lead-based alloy powder can be produced by a gas atomization method in which a molten metal is sprayed into dry air to produce a rapidly solidified powder. The lead-containing powder is formed by powder rolling into a sheet. The rolled sheet thus formed has a structure composed of crystal grains oriented in a specific direction with an aspect ratio of 3 to 13. The rolled sheet is cut into a predetermined size to form a current collector. A current collector having a lattice structure may be formed by expanding a rolled sheet.

本発明による集電体の製造に用いる粉末圧延装置の基本構成を図2(A)に示す。本例の粉末圧延装置は、第一ホッパー21、第一ベルトコンベア22、第二ホッパー23、水平対向第一圧延ロール24a、24b、第三ホッパー25、垂直対向第二圧延ロール26a、26b、及び、図示しない圧延シート巻き取り機を有する。   FIG. 2A shows a basic configuration of a powder rolling apparatus used for manufacturing a current collector according to the present invention. The powder rolling apparatus of this example includes a first hopper 21, a first belt conveyor 22, a second hopper 23, horizontally opposed first rolling rolls 24a and 24b, a third hopper 25, vertically opposed second rolling rolls 26a and 26b, and And a rolled sheet winder (not shown).

正極板13の集電体の材料である圧延シートを製造する方法を以下に示す。本例で原料粉末20は、水平対向第一圧延ロール24a、24bを通過することによって、厚さ100μmの圧延シートとなる。この圧延シート29上に第2の粉末であるアンチモン粉あるいは鉛−アンチモン粉を第三ホッパー25から供給し、垂直対向第二圧延ロール26a、26bを通過させる。それによって、厚さ0.5mmの集電体用の圧延シート30となる。この圧延シート30は、母材の上に第二の粉末が圧延され一体化され形成される。こうして作製された圧延シート30は、図示しない巻き取り機により、ロール状にして保管する。   A method for producing a rolled sheet that is a material for the current collector of the positive electrode plate 13 will be described below. In this example, the raw material powder 20 becomes a rolled sheet having a thickness of 100 μm by passing through the horizontally opposed first rolling rolls 24a and 24b. On the rolled sheet 29, antimony powder or lead-antimony powder as the second powder is supplied from the third hopper 25 and passed through the vertically opposed second rolling rolls 26a and 26b. Thereby, a rolled sheet 30 for a current collector having a thickness of 0.5 mm is obtained. The rolled sheet 30 is formed by rolling and integrating a second powder on a base material. The rolled sheet 30 thus produced is stored in a roll shape by a winder (not shown).

図3を参照して、本発明による鉛蓄電池用の正極集電体の製造方法を説明する。ステップS101にて、第1の粉末である鉛含有粉末を用意する。鉛含有粉末は、鉛粉末又は鉛系合金粉末からなる。ステップS102にて、第2の粉末であるアンチモン粉あるいは鉛−アンチモン粉を用意する。鉛系合金粉末は、ガスアトマイズ法によって作製することができる。ガスアトマイズ法は、乾燥空気中に溶融金属を噴霧することによって急冷凝固粉を生成する方法である。   With reference to FIG. 3, the manufacturing method of the positive electrode electrical power collector for lead acid batteries by this invention is demonstrated. In step S101, a lead-containing powder that is a first powder is prepared. The lead-containing powder is composed of lead powder or lead-based alloy powder. In step S102, antimony powder or lead-antimony powder which is the second powder is prepared. The lead-based alloy powder can be produced by a gas atomization method. The gas atomization method is a method of generating rapidly solidified powder by spraying molten metal into dry air.

ステップS103にて、第1の粉末を粉末圧延することによって圧延シートを生成する。ステップS104にて、第2の粉末であるアンチモン粉あるいは鉛−アンチモン粉をステップS103において生成した圧延シート上に配し、再圧延し、第2の粉末がシート表面に圧延された圧延シートを作製する。圧延シートは、図2(A)に示した粉末圧延装置を使用して作製する。   In step S103, a rolled sheet is generated by powder rolling the first powder. In step S104, the antimony powder or lead-antimony powder, which is the second powder, is placed on the rolled sheet generated in step S103 and re-rolled to produce a rolled sheet in which the second powder is rolled on the sheet surface. To do. The rolled sheet is produced using the powder rolling apparatus shown in FIG.

ステップS105にて、圧延シートから集電体を形成する。平板状の正極板を作製する場合には、圧延シートを矩形に切り出す。格子状の正極板を作成する場合には、矩形に切り出した圧延シートにカッタにより切り込みを入れ、両端を均等に引っ張る。こうして製造された集電体に正極活物質のペーストを塗布し、熟成乾燥させることによって、正極板が形成される。   In step S105, a current collector is formed from the rolled sheet. When producing a flat positive plate, the rolled sheet is cut into a rectangle. When creating a grid-like positive electrode plate, a rolled sheet cut into a rectangle is cut with a cutter, and both ends are pulled evenly. A positive electrode plate is formed by applying a paste of a positive electrode active material to the current collector manufactured in this manner and then aging and drying the paste.

図4は、圧延シートの組織例を示す写真である。このような組織像は、圧延シートを圧延方向に対して平行に切断し、切断面をエッチング液に浸した後に撮像することによって得られる。図4のように、圧延シートの組織は、粉末圧延の原料であるガスアトマイズ粉末の微粒子からなり、粒子径の縦横比であるアスペクト比は、3〜13である。この圧延シート表面付近に第2の粉末であるアンチモン粉あるいは鉛−アンチモン粉粒子が存在している例である。   FIG. 4 is a photograph showing an example of the structure of a rolled sheet. Such a structure image is obtained by cutting the rolled sheet in parallel to the rolling direction and imaging the cut surface after immersing the cut surface in an etching solution. As shown in FIG. 4, the structure of the rolled sheet is composed of fine particles of gas atomized powder, which is a raw material for powder rolling, and the aspect ratio, which is the aspect ratio of the particle diameter, is 3 to 13. This is an example in which antimony powder or lead-antimony powder particles as the second powder are present near the surface of the rolled sheet.

図5を参照して、本発明による鉛蓄電池用の集電体を評価するために行った実験の手順を説明する。ステップS201にて、正極集電体を作製した。ステップS202にて、正極、負極、及びセパレータ等を組み立てて、単セルを作製した。ステップS203にて、正負極の化成を行った。ステップS204にて、深放電サイクルおよび過充電試験を行った。深放電サイクルの条件は表1、過充電試験の条件は表2に示し、深放電サイクル及び過充電試験の結果は表3に示す。   With reference to FIG. 5, the procedure of the experiment performed in order to evaluate the electrical power collector for lead acid batteries by this invention is demonstrated. In step S201, a positive electrode current collector was produced. In step S202, the positive electrode, the negative electrode, the separator, and the like were assembled to produce a single cell. In step S203, positive and negative electrodes were formed. In step S204, a deep discharge cycle and an overcharge test were performed. The conditions of the deep discharge cycle are shown in Table 1, the conditions of the overcharge test are shown in Table 2, and the results of the deep discharge cycle and the overcharge test are shown in Table 3.

図6は、実験に使用した正極板の集電体の構造の例を示す。平板状の正極板は、反応活物質が塗布された正極活物質塗布部62と耐硫酸性粘着性絶縁テープでマスキングされたマスキング部61を有する。正極活物質塗布部62には、直径5mmの5つの貫通孔63が設ける。これは、熟成乾燥時に正極活物質と集電体との密着性を上げ、かつ塗布量を一定に保つためである。マスキング部61には、鉛製のリード線64をはんだ付けする。リード線64は図示しない試験用外部電源との接続部となる。   FIG. 6 shows an example of the structure of the current collector of the positive electrode plate used in the experiment. The flat positive electrode plate has a positive electrode active material application part 62 coated with a reaction active material and a masking part 61 masked with a sulfuric acid resistant adhesive insulating tape. The positive electrode active material application part 62 is provided with five through holes 63 having a diameter of 5 mm. This is to increase the adhesion between the positive electrode active material and the current collector during aging and to keep the coating amount constant. A lead wire 64 made of lead is soldered to the masking portion 61. The lead wire 64 serves as a connection portion with a test external power source (not shown).

以下、実施の一例を説明する。
第1の粉末として、鉛−0.05%カルシウム−1.5%錫合金の粒径75μmアンダーの空気冷却ガスアトマイズ粉末を用意し、第2の粉末として、粒径75μmアンダーのガスアトマイズ法による鉛−5%アンチモン粉末を用意した。これら粉末から、図2(A)に示す粉末圧延装置を用いて、圧延シートを作製した。また、比較として従来から用いられている鋳造圧延の2層構造圧延シートを用いた。
Hereinafter, an example of implementation will be described.
Air-cooled gas atomized powder of lead-0.05% calcium-1.5% tin alloy with a particle size under 75 μm is prepared as the first powder, and lead by the gas atomization method with particle size of under 75 μm as the second powder— 5% antimony powder was prepared. From these powders, a rolled sheet was produced using a powder rolling apparatus shown in FIG. Further, as a comparison, a cast-rolled two-layer structure rolled sheet conventionally used was used.

本発明の集電体は、図6に示す板状の集電体である。先ず、図3に示した方法によって圧延シートを作製した。上述のように、第1の粉末として鉛−0.05%カルシウム−1.5%錫合金のガスアトマイズ粉末を、水平対向第一圧延ロール24a、24bを通すことによって、厚さ1mmの圧延シート29を作製する。続いて第2の粉末として、粒径75μmアンダーの鉛−5%アンチモン粉末を、第1の粉末に対して3.0%(質量比)となるように第3ホッパー25に供給する。第3ホッパー25から鉛−アンチモン合金粉末を定量供給して、垂直対向第二圧延ロール26a、26bによって再圧延し、0.5mmの厚さの圧延シート30を作製し、図示しない巻き取り機によりロール状に巻き取る。
圧延シートの送り速度は後工程との調整によって、0.5〜10m/secまで適宜かえる。次に前記ロール状圧延シート30から板状に切り出して、図6に示す集電体を作製した。
また、第2の粉末は、鉛−アンチモン合金粉末の他にガスアトマイズ法によるアンチモン粉末でも良い。
The current collector of the present invention is a plate-like current collector shown in FIG. First, a rolled sheet was produced by the method shown in FIG. As described above, a gas atomized powder of lead-0.05% calcium-1.5% tin alloy as the first powder is passed through the horizontally opposed first rolling rolls 24a, 24b, thereby rolling the sheet 29 having a thickness of 1 mm. Is made. Subsequently, as a second powder, a lead-5% antimony powder having a particle size of under 75 μm is supplied to the third hopper 25 so as to be 3.0% (mass ratio) with respect to the first powder. A fixed amount of lead-antimony alloy powder is supplied from the third hopper 25 and re-rolled by the vertically opposed second rolling rolls 26a and 26b to produce a rolled sheet 30 having a thickness of 0.5 mm. Take up in a roll.
The feeding speed of the rolled sheet can be appropriately changed from 0.5 to 10 m / sec by adjusting with the post-process. Next, it cut out into plate shape from the said roll-shaped rolling sheet 30, and produced the electrical power collector shown in FIG.
The second powder may be an antimony powder by a gas atomizing method in addition to the lead-antimony alloy powder.

第2の粉末は、第1の粉末に対して0.5%以上5.0%以下(質量比)とする。これは、5.0%より少ないと所望の効果が見られないためであり、5.0%をこえると効果が飽和して、これ以上添加するとアンチモン含有による鉛蓄電池のメンテナンス性能が低下するためである。   The second powder is 0.5% to 5.0% (mass ratio) with respect to the first powder. This is because if the amount is less than 5.0%, the desired effect is not seen. If the amount exceeds 5.0%, the effect is saturated, and if added more than this, the maintenance performance of the lead storage battery containing antimony is lowered. It is.

比較の正極集電体は、従来から用いられている集電体で、母材として鉛−0.05%カルシウム−1.5%錫を用いている。図2(B)の圧延装置を用い、この母材31に鉛−5%アンチモン鋳造圧延材32を張り合わせ、厚み0.5mmの集電体33を作製し、切り出して図6に示す板状の集電体を作製した。   The positive electrode current collector for comparison is a current collector conventionally used, and uses lead-0.05% calcium-1.5% tin as a base material. Using the rolling device of FIG. 2 (B), a lead-5% antimony cast rolled material 32 is bonded to the base material 31 to produce a current collector 33 having a thickness of 0.5 mm, and the plate-like shape shown in FIG. A current collector was produced.

表1に本例の実験の深放電サイクルの条件、過充電試験を示す。深放電サイクルは充電放電とも、温度25℃、電流36mAである。過充電試験は温度75℃、電流3.6mAである。   Table 1 shows the conditions of the deep discharge cycle and the overcharge test of the experiment of this example. In the deep discharge cycle, both charging and discharging are performed at a temperature of 25 ° C. and a current of 36 mA. In the overcharge test, the temperature is 75 ° C. and the current is 3.6 mA.

Figure 2009200020
Figure 2009200020

表2に、表1の試験での本発明品および比較例の結果を示す。この結果より本発明品は比較例に比べ、深放電サイクル試験および過充電試験において優れた性能を示す。本発明品では、鉛−アンチモン粉末を母体である粉末圧延集電体に圧延、一体化することで、早期容量低下が抑制され、集電体の腐食変形による活物質の脱落も抑制されることで、深放電サイクル試験性能が向上し、また、母体の粉末圧延集電体の腐食変形が小さいことで、過充電寿命性能が向上したと考えられる。   Table 2 shows the results of the product of the present invention and the comparative example in the test of Table 1. From this result, the product of the present invention exhibits superior performance in the deep discharge cycle test and the overcharge test as compared with the comparative example. In the present invention product, by rolling and integrating the lead-antimony powder into the base powder rolling current collector, the early capacity reduction is suppressed, and the active material falling off due to the corrosion deformation of the current collector is also suppressed. Thus, the deep discharge cycle test performance was improved, and the overcharge life performance was considered to be improved by the small corrosion deformation of the base powder rolling current collector.

Figure 2009200020
Figure 2009200020

本実施例においては、圧延シート29の片面のみにアンチモン粉あるいは鉛−アンチモン粉を圧延しているが、これは片面のみでも十分な効果があるためである。製造工程が増えるが、圧延シート29の両面にアンチモン粉あるいは鉛−アンチモン粉を圧延すると、さらに顕著な効果が得られる。   In this embodiment, the antimony powder or the lead-antimony powder is rolled only on one side of the rolled sheet 29. This is because only one side has a sufficient effect. Although the number of manufacturing steps is increased, when the antimony powder or the lead-antimony powder is rolled on both surfaces of the rolled sheet 29, a more remarkable effect is obtained.

鉛蓄電池の構成を示す図である。It is a figure which shows the structure of a lead acid battery. (A)本発明による正極集電体の製造に用いる粉末圧延装置の構成を示す図である。(B)従来の正極集電体の製造に用いる圧延装置の構成を示す図である。(A) It is a figure which shows the structure of the powder rolling apparatus used for manufacture of the positive electrode electrical power collector by this invention. (B) It is a figure which shows the structure of the rolling apparatus used for manufacture of the conventional positive electrode electrical power collector. 本発明による正極集電体の製造方法を説明する図である。It is a figure explaining the manufacturing method of the positive electrode electrical power collector by this invention. 本発明による圧延シートの組織を示す図である。It is a figure which shows the structure | tissue of the rolled sheet by this invention. 本発明による正極集電体の評価実験の手順を示す図である。It is a figure which shows the procedure of the evaluation experiment of the positive electrode electrical power collector by this invention. 本発明による評価用正極集電体を示す図である。It is a figure which shows the positive electrode electrical power collector for evaluation by this invention.

符号の説明Explanation of symbols

11…負極ターミナル、12…正極ターミナル、13…正極板、14…負極板、15…セパレータ、16…電槽、17…電槽蓋、21…第一ホッパー、22…第一ベルトコンベア、23…第二ホッパー、24a、24b…水平対向第一圧延ロール、25…第三ホッパー、26a、26b…垂直対向第二圧延ロール、29、31…圧延シート、61…マスキング部、62…正極活物質塗布部、63…貫通孔、64…リード線 DESCRIPTION OF SYMBOLS 11 ... Negative electrode terminal, 12 ... Positive electrode terminal, 13 ... Positive electrode plate, 14 ... Negative electrode plate, 15 ... Separator, 16 ... Battery case, 17 ... Battery case cover, 21 ... First hopper, 22 ... First belt conveyor, 23 ... 2nd hopper, 24a, 24b ... Horizontally opposed first rolling roll, 25 ... 3rd hopper, 26a, 26b ... Vertically opposed 2nd rolling roll, 29, 31 ... Rolled sheet, 61 ... Masking part, 62 ... Positive electrode active material application 63, through hole, 64 ... lead wire

Claims (2)

鉛粉末又は鉛系合金粉末を粉末圧延することによって形成され、アスペクト比3〜13の特定方向に配向した結晶粒子により構成される組織を有する鉛蓄電池の正極用集電体において、表面層にアンチモン粉あるいは鉛−アンチモン粉を圧延した組織が存在することを特徴とする鉛蓄電池。 In a current collector for a positive electrode of a lead storage battery formed by powder rolling of a lead powder or a lead-based alloy powder and having a structure composed of crystal particles oriented in a specific direction with an aspect ratio of 3 to 13, an antimony is formed on the surface layer A lead storage battery characterized in that a structure obtained by rolling powder or lead-antimony powder exists. 前記表面層を形成するアンチモン粉あるいは鉛−アンチモン粉の添加量は、鉛粉末又は鉛系合金粉末に対して0.5%以上5.0%以下であることを特徴とする請求項1記載の鉛蓄電池。 2. The addition amount of antimony powder or lead-antimony powder forming the surface layer is 0.5% or more and 5.0% or less with respect to lead powder or lead-based alloy powder. Lead acid battery.
JP2008054279A 2008-01-21 2008-03-05 Lead-acid battery Pending JP2009200020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008054279A JP2009200020A (en) 2008-01-21 2008-03-05 Lead-acid battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008010078 2008-01-21
JP2008054279A JP2009200020A (en) 2008-01-21 2008-03-05 Lead-acid battery

Publications (1)

Publication Number Publication Date
JP2009200020A true JP2009200020A (en) 2009-09-03

Family

ID=41143292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008054279A Pending JP2009200020A (en) 2008-01-21 2008-03-05 Lead-acid battery

Country Status (1)

Country Link
JP (1) JP2009200020A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016006420A1 (en) * 2014-07-10 2016-01-14 株式会社村田製作所 Method of manufacturing power storage device and method of manufacturing electrode

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016006420A1 (en) * 2014-07-10 2016-01-14 株式会社村田製作所 Method of manufacturing power storage device and method of manufacturing electrode
JPWO2016006420A1 (en) * 2014-07-10 2017-05-25 株式会社村田製作所 Storage device manufacturing method and electrode manufacturing method
JP2017152395A (en) * 2014-07-10 2017-08-31 株式会社村田製作所 Method of manufacturing power storage device, and method of manufacturing electrode

Similar Documents

Publication Publication Date Title
JP4899467B2 (en) Lead acid battery
JP5087950B2 (en) Lead acid battery
EP1261049B1 (en) Electrode grid for lead acid batteries coated with a conductive polymeric matrix and method of manufacture
US9871254B2 (en) Electrode material and manufacturing method thereof
JP5050564B2 (en) Current collector for positive electrode or negative electrode of lead acid battery and method for producing the same, lead acid battery and method for producing the same
JPH1021928A (en) Electrode material for secondary battery
JP5116331B2 (en) Lead acid battery
US20110200869A1 (en) Lithium secondary battery and method for fabricating the same
JP5088666B2 (en) Lead-acid battery, lead-acid battery current collector and method for producing the same
JP2009200020A (en) Lead-acid battery
JP5145644B2 (en) Lead acid battery
JP6921037B2 (en) Lead-acid battery
JP2017069123A (en) Punched lattice for lead acid battery, positive electrode for lead acid battery, and lead acid battery using the same
JP2009199846A (en) Lead-acid battery
JP5073403B2 (en) Lead-acid battery grid and lead-acid battery using the grid
JP2005122922A (en) Manufacturing method of grid for lead acid battery and lead acid battery
JP5600940B2 (en) Lead battery
JP5115107B2 (en) Lead acid battery
WO2009113166A1 (en) Lead storage battery
JP2009193835A (en) Lead-acid battery, and manufacturing method thereof
JP5088679B2 (en) Lead acid battery
JPH0837001A (en) Positive electrode plate for lead-acid battery and manufacture of the electrode plate
JPH0850896A (en) Manufacture of lead-acid battery
JP2009259725A (en) Lead storage battery
JP2002319409A (en) Lead acid storage battery anode current collector and lead acid storage battery using the same