JP2009259725A - Lead storage battery - Google Patents

Lead storage battery Download PDF

Info

Publication number
JP2009259725A
JP2009259725A JP2008109785A JP2008109785A JP2009259725A JP 2009259725 A JP2009259725 A JP 2009259725A JP 2008109785 A JP2008109785 A JP 2008109785A JP 2008109785 A JP2008109785 A JP 2008109785A JP 2009259725 A JP2009259725 A JP 2009259725A
Authority
JP
Japan
Prior art keywords
lead
current collector
powder
positive electrode
tin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008109785A
Other languages
Japanese (ja)
Inventor
Takeo Sakamoto
剛生 坂本
Hisaaki Takabayashi
久顯 高林
Satoshi Minoura
敏 箕浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2008109785A priority Critical patent/JP2009259725A/en
Publication of JP2009259725A publication Critical patent/JP2009259725A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Powder Metallurgy (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To make it possible to give a lead storage battery a longer life by suppressing voltage drop during high-rate discharge and suppressing deformation of the electrode plate. <P>SOLUTION: A positive electrode current collector of an electrode plate for lead storage battery is formed by powder-rolling lead alloy powder having superior corrosion elongation performance than that of the conventional casting rolled material. The powder rolling material has a texture composed of crystal grains oriented in a specific direction having an aspect ratio of 3 to 13. The current collector is manufactured in such a manner that the tin concentration in alloy reduces as separating from the ear part. The tin concentration reduces at least in two stages. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、自動車用バッテリ、フォークリフトなどの電動車、及び無停電電源装置などの用途の鉛蓄電池に関し、特に鉛蓄電池の集電体に関する。   The present invention relates to lead-acid batteries for uses such as automobile batteries, electric vehicles such as forklifts, and uninterruptible power supplies, and more particularly to a current collector for lead-acid batteries.

鉛蓄電池はコンピュータ機器や通信用機器のバックアップ用電源、自動車や電動車の動力源、またはビルや病院などの非常用電源など幅広い需要があり、より高出力な電池の要望が高まっている。特に、自動車用や非常電源用に用いられる電池には、瞬時に大きな電力が使用されることから高率放電特性の優れた電池が用いられる。 Lead storage batteries are in wide demand, such as backup power supplies for computer equipment and communication equipment, power sources for automobiles and electric vehicles, or emergency power supplies for buildings and hospitals, and there is an increasing demand for higher output batteries. In particular, batteries having excellent high rate discharge characteristics are used for batteries used for automobiles and emergency power supplies because large electric power is instantaneously used.

高率放電特性を向上させるために、特許文献1では、電池重量を増やすことなく高率放電時の電圧低下を抑制し、放電持続時間を向上させることのできる方法として、集電体耳部(以下単に耳部と略す)から離れるにつれて集電体の鉛濃度が増大することが提案されている。一般に鉛蓄電池用極板の集電体は、集電体の強度向上のため鉛−カルシウム−錫系もしくは、鉛−アンチモン系等の組成の合金を用いている。金属は一般的に合金化するにつれて(合金の主成分が少なくなるに従い)強度及び電気抵抗は増大していく。従来の集電体はどの部分も同じ合金組成であるために、耳部から離れるにつれて集電効率が低下していく。特に高率放電時において、電池の内部抵抗による電圧低下(IR Drop)による損失が放電容量に大きく影響する。
特許文献1では、この対策として、耳部から離れるにつれて集電体の鉛濃度を高め、純鉛に近くなるようにしている。すなわち、耳部から離れるにつれ電気抵抗が小さくなることから、耳部近傍と耳部から離れた集電体端部との間の電圧低下が小さくなり、高率放電特性が向上するとされている。
In order to improve the high-rate discharge characteristics, Patent Document 1 discloses a method for suppressing the voltage drop during high-rate discharge without increasing the battery weight and improving the discharge duration. In the following, it has been proposed that the lead concentration of the current collector increases with distance from the ear. In general, the current collector of the electrode plate for a lead storage battery uses an alloy having a composition such as lead-calcium-tin or lead-antimony to improve the strength of the current collector. Metals generally increase in strength and electrical resistance as they are alloyed (as the main component of the alloy decreases). Since the conventional current collector has the same alloy composition in all portions, the current collection efficiency decreases as the distance from the ear portion increases. In particular, during high rate discharge, loss due to voltage drop (IR Drop) due to internal resistance of the battery greatly affects the discharge capacity.
In Patent Document 1, as a countermeasure against this, the lead concentration of the current collector is increased as the distance from the ear portion increases so that it approaches that of pure lead. That is, since the electrical resistance decreases as the distance from the ear portion decreases, the voltage drop between the vicinity of the ear portion and the end of the current collector away from the ear portion decreases, and the high rate discharge characteristics are improved.

特開平10−199538号公報JP-A-10-199538

しかしながら、上記発明は鋳造合金を用いているため、耳部から離れるにつれて集電体の合金組成が変化する。このため、電池の使用中に極板(集電体に活物質を充填したもの)の各部で腐食特性が大きく変わる。このため、極板内で腐食変形の大小が生じ、不均一な極板変形がおこり、電池が短寿命となる問題があった。
本発明の目的は、極板変形を抑制することで長寿命化でき、高率放電時の電圧低下を抑制する鉛蓄電池を提供することである。
However, since the above invention uses a cast alloy, the alloy composition of the current collector changes as the distance from the ear portion increases. For this reason, during the use of the battery, the corrosion characteristics greatly change in each part of the electrode plate (the current collector filled with the active material). For this reason, there is a problem that the size of corrosion deformation occurs in the electrode plate, non-uniform electrode plate deformation occurs, and the battery has a short life.
An object of the present invention is to provide a lead-acid battery that can extend the life by suppressing electrode plate deformation and suppress voltage drop during high rate discharge.

上記課題を解決するために、本発明の鉛蓄電池用極板の集電体は、鉛系合金粉末を粉末圧延することによって形成され、アスペクト比3〜13の特定方向に配向した結晶粒子により構成される組織を有する鉛蓄電池の正極用集電体において、集電体耳部から離れるに従い合金中のスズの濃度が減少することを特徴とする。特許文献1は、異なる湯口から組成の異なった溶融合金を集電体の鋳型に流し込む、いわゆる、重力鋳造方式を採用している。鉛蓄電池の集電体は格子状の複雑な形状をしており、格子体を形成する細い骨に溶融金属を回らせることが重要である。このために、鋳型の予熱や溶融金属の温度などを制御している。特許文献1の手法は、異なる手法の溶融合金であることから、それぞれ融点が異なり、鋳造時の制御因子は複雑になる。格子状の集電体を鋳造したとしても、組成の不連続点や凝固温度の差に起因する湯境(ゆざかい)の発生は避けられない。これらの鋳造欠陥は、鉛蓄電池の充放電によって、腐食変形の起点や変形ひずみの集中箇所になりやすい。そして、不均一な極板変形で電池の短寿命につながっていた。
本発明に係る集電体は、鉛系合金粉末を粉末圧延することによって形成するため、従来の鋳造方式に比べて組成の不均一が緩和される。また、電池の充放電による集電体の腐食変形が抑制され、電池の長寿命化が可能となる。
In order to solve the above-mentioned problems, the current collector of the electrode plate for a lead storage battery of the present invention is formed by powder rolling a lead-based alloy powder, and is composed of crystal grains oriented in a specific direction with an aspect ratio of 3 to 13. In the positive electrode current collector of the lead storage battery having the above-described structure, the concentration of tin in the alloy decreases with increasing distance from the current collector ear. Patent Document 1 employs a so-called gravity casting method in which molten alloys having different compositions are poured into different collector molds from different gates. The current collector of the lead storage battery has a complicated lattice shape, and it is important to rotate the molten metal around the thin bones forming the lattice body. For this purpose, the preheating of the mold and the temperature of the molten metal are controlled. Since the technique of Patent Document 1 is a molten alloy of a different technique, the melting points are different from each other, and the control factors during casting are complicated. Even when a grid-like current collector is cast, the occurrence of a hot water boundary due to a discontinuity in composition and a difference in solidification temperature is inevitable. These casting defects are likely to become the starting point of corrosion deformation and concentrated deformation strain due to charge / discharge of the lead storage battery. In addition, non-uniform electrode plate deformation has led to a short battery life.
Since the current collector according to the present invention is formed by powder rolling a lead-based alloy powder, the nonuniformity of the composition is reduced as compared with the conventional casting method. Further, the corrosion deformation of the current collector due to charging / discharging of the battery is suppressed, and the life of the battery can be extended.

本発明によれば、耳部近傍と耳部から離れた集電体端部との間の電圧低下が小さくなり高率放電特性が向上し、耳からの距離によって生じる腐食変形量の差が従来の鋳造式に比べて大幅に低減でき、長寿命化が可能となる。 According to the present invention, the voltage drop between the vicinity of the ear portion and the end of the current collector away from the ear portion is reduced, the high rate discharge characteristic is improved, and the difference in the amount of corrosion deformation caused by the distance from the ear is conventionally increased. Compared to the casting type, it can be greatly reduced and the life can be extended.

以下具体例をあげ、本発明を更に詳しく説明するが、発明の主旨を越えない限り、本発明は実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to specific examples. However, the present invention is not limited to the examples unless it exceeds the gist of the invention.

図1は、本発明による鉛蓄電池の基本構成を示す。鉛蓄電池は、負極ターミナル11、正極ターミナル12、正極板13、負極板14、セパレータ15、電槽16、及び電槽蓋17を有し、電解液として硫酸が電槽16中には電解液として硫酸が蓄えられている。正極板13の集電体には、正極活物質ペーストが塗布されている。正極活物質は、公知のものが使用されてよく、鉛粉、鉛丹、硫酸鉛、添加剤等を含む正極用活物質ペーストを充填した後に、これを熟成、乾燥させて得ることができる。なお、化成によって、正極活物質は、集電体との界面において二酸化鉛(PbO)となる。以下に、正極板13の集電体の製造方法を説明する。 FIG. 1 shows a basic configuration of a lead storage battery according to the present invention. The lead acid battery has a negative electrode terminal 11, a positive electrode terminal 12, a positive electrode plate 13, a negative electrode plate 14, a separator 15, a battery case 16, and a battery case lid 17. Sulfuric acid is stored. A positive electrode active material paste is applied to the current collector of the positive electrode plate 13. A well-known thing may be used for a positive electrode active material, and after filling with the active material paste for positive electrodes containing lead powder, red lead, lead sulfate, an additive, etc., this can be obtained by aging and drying. In addition, by the chemical conversion, the positive electrode active material becomes lead dioxide (PbO 2 ) at the interface with the current collector. Below, the manufacturing method of the electrical power collector of the positive electrode plate 13 is demonstrated.

従来、正極板13の集電体の製造方法としては、鉛−アンチモン系または鉛−カルシウム系合金を材料とした鋳造方式、鉛−カルシウム系合金を材料としたエキスパンド方式がある。前者は溶融状態の鉛合金を鋳型に流し込み、凝固させて格子状の集電体を作製する手法で、図2に集電体の概略図を示す。後者は合金シートを伸張し、カッターで刻みを入れダイヤモンド状の格子を展開させるもので、図3に集電体の概略図を示す。それぞれの集電体本体から突出した部分が耳部と呼ばれる部分で、この耳部が数枚一括で溶接され集電部となる。
次に本発明による正極集電体の材料を説明する。本発明では鉛系合金粉末を用いる。
鉛系合金粉末は、鉛をベースとして、スズ、カルシウム、アンチモン、バリウム、銀、ビスマスのうちの少なくとも一つ以上の合金元素を含む。鉛系合金粉末は鉛−スズ−カルシウム系合金であってよく、鉛−スズ系合金粉末であってよい。鉛系合金粉末は、乾燥空気中に溶融金属を噴霧することによって急冷凝固粉末を生成するガスアトマイズ法によって作製する。鉛含有粉末を粉末圧延によって成形しシートにする。こうして形成された圧延シートは、アスペクト比3〜13の特定方向に配向した結晶粒子により構成される組織を有する。この圧延シートを切り出して、集電体を形成する。また、圧延シートをエキスパンド加工することにより格子構造を有する集電体を形成してもよい。
Conventionally, as a method for producing the current collector of the positive electrode plate 13, there are a casting method using a lead-antimony or lead-calcium alloy material and an expanding method using a lead-calcium alloy material. The former is a technique in which a molten lead alloy is poured into a mold and solidified to produce a grid-like current collector. FIG. 2 shows a schematic diagram of the current collector. In the latter, an alloy sheet is stretched and cut with a cutter to develop a diamond-like lattice. FIG. 3 shows a schematic diagram of the current collector. A portion protruding from each current collector main body is a portion called an ear portion, and these ear portions are welded together to form a current collector portion.
Next, the material of the positive electrode current collector according to the present invention will be described. In the present invention, lead-based alloy powder is used.
The lead-based alloy powder contains at least one alloy element of tin, calcium, antimony, barium, silver, and bismuth based on lead. The lead-based alloy powder may be a lead-tin-calcium-based alloy or a lead-tin-based alloy powder. The lead-based alloy powder is produced by a gas atomizing method in which a rapidly solidified powder is produced by spraying molten metal into dry air. The lead-containing powder is formed into a sheet by powder rolling. The rolled sheet thus formed has a structure composed of crystal grains oriented in a specific direction with an aspect ratio of 3 to 13. The rolled sheet is cut out to form a current collector. Moreover, you may form the electrical power collector which has a lattice structure by expanding a rolled sheet.

図4に本発明による集電体の製造に用いる粉末圧延装置の基本構成を示す。図2(A)は装置上面図であり、同(B)は装置側面図である。粉末圧延装置は、ホッパー23、水平対向圧延ロール24a、24b、送りロール25a、25b、送りコンベア26、及び
図示しない圧延シート巻き取り機を有する。
FIG. 4 shows a basic configuration of a powder rolling apparatus used for manufacturing a current collector according to the present invention. 2A is a top view of the apparatus, and FIG. 2B is a side view of the apparatus. The powder rolling apparatus includes a hopper 23, horizontally opposed rolling rolls 24a and 24b, feed rolls 25a and 25b, a feed conveyor 26, and a rolled sheet winder (not shown).

正極板13の集電体材料である粉末圧延シートの製造方法を以下に示す。ホッパー23は二重構造で、外装部と、内側にスリットで三区画の通路を設けた内装部で構成されている。ホッパー23の各区画に組成の異なる鉛合金粉末を投入し、水平対向圧延ロール24a、24bで前記粉末を圧延する。続いて送りロール25a、25bを通過させ、送りコンベア26上で調整ロール27にて所定の厚みに調整され、圧延シート28を作製する。この圧延シート28は、図示しない圧延シート巻き取り機によってロール状に巻き取られる。   A method for producing a powder rolled sheet that is a current collector material of the positive electrode plate 13 will be described below. The hopper 23 has a double structure, and is composed of an exterior part and an interior part provided with a three-section passage by slits on the inside. Lead alloy powder having a different composition is put into each section of the hopper 23, and the powder is rolled by horizontally opposed rolling rolls 24a and 24b. Subsequently, the feed rolls 25 a and 25 b are passed through, adjusted to a predetermined thickness by the adjustment roll 27 on the feed conveyor 26, and the rolled sheet 28 is produced. The rolled sheet 28 is wound into a roll by a rolled sheet winder (not shown).

図5を参照して、本発明による鉛蓄電池用の正極集電体の製造方法を説明する。ステップS101にて鉛含有粉末を用意する。鉛含有粉末は、鉛系合金粉末からなる。本発明では組成の異なる複数の鉛系合金粉末を調製する。鉛系合金粉末は、ガスアトマイズ法によって作製する。   With reference to FIG. 5, the manufacturing method of the positive electrode electrical power collector for lead acid batteries by this invention is demonstrated. In step S101, lead-containing powder is prepared. The lead-containing powder is composed of a lead-based alloy powder. In the present invention, a plurality of lead-based alloy powders having different compositions are prepared. The lead-based alloy powder is produced by a gas atomization method.

ステップS102にて、前記粉末を粉末圧延することによって、正極用集電体の集電体耳部が存在する側から離れるに従い合金中のスズの濃度が減少する圧延シートを作製する。圧延シートは、図2に示した粉末圧延装置を使用して作製する。   In step S102, the powder is subjected to powder rolling to produce a rolled sheet in which the concentration of tin in the alloy decreases with increasing distance from the side where the current collector ear portion of the positive electrode current collector exists. A rolled sheet is produced using the powder rolling apparatus shown in FIG.

ステップS103にて、圧延シートから集電体を形成する。圧延シートを矩形に切り出し、平板状の正極板を作製する。こうして、製造された集電板に正極活物質のペーストを塗布し、熟成乾燥させることによって正極板を形成する。   In step S103, a current collector is formed from the rolled sheet. The rolled sheet is cut into a rectangular shape to produce a flat plate-like positive electrode plate. Thus, the positive electrode active material paste is applied to the manufactured current collector plate and aged and dried to form the positive electrode plate.

図6は、圧延シートの組織例を示す写真である。このような組織像は、圧延シートを圧延方向に対して平行に切断し、切断面をエッチング液に浸した後に撮像することによって得られる。図示のように、圧延シートの組織は、粉末圧延の原料であるガスアトマイズ粉末の微粒子からなり、粒子径の縦横比であるアスペクト比は、3〜13である。   FIG. 6 is a photograph showing an example of the structure of a rolled sheet. Such a structure image is obtained by cutting the rolled sheet in parallel to the rolling direction and imaging the cut surface after immersing the cut surface in an etching solution. As shown in the figure, the structure of the rolled sheet is composed of fine particles of gas atomized powder which is a raw material for powder rolling, and the aspect ratio which is the aspect ratio of the particle diameter is 3 to 13.

図7を参照して、本発明による鉛蓄電池用の集電体を評価するために行った実験の手順を説明する。ステップS201にて、正極集電体を作製した。ステップS202にて、正極、負極、及びセパレータ等を組み立てて、単セルを作製した。ステップS203にて、正負極の化成を行った。ステップS204にて、高率放電試験及び過充電試験を行った。過充電試験は集電体の腐食を加速させる試験である。   With reference to FIG. 7, the procedure of the experiment performed in order to evaluate the electrical power collector for lead acid batteries by this invention is demonstrated. In step S201, a positive electrode current collector was produced. In step S202, the positive electrode, the negative electrode, the separator, and the like were assembled to produce a single cell. In step S203, positive and negative electrodes were formed. In step S204, a high rate discharge test and an overcharge test were performed. The overcharge test is a test that accelerates the corrosion of the current collector.

図8は、実験に使用した正極板の集電体の構造の例を示す。平板状の正極板は、反応活物質が塗布された正極活物質塗布部62と耐硫酸性粘着性絶縁テープでマスキングされたマスキング部61を有する。正極活物質塗布部62には、直径5mmの5つの貫通孔63を設ける。これは、熟成乾燥時に正極活物質と集電体との密着性を上げ、かつ塗布量を一定に保つためである。マスキング部61には、鉛製のリード線64をはんだ付けする。リード線64は図示しない試験用外部電源との接続部となる。   FIG. 8 shows an example of the structure of the current collector of the positive electrode plate used in the experiment. The flat positive electrode plate has a positive electrode active material application part 62 coated with a reaction active material and a masking part 61 masked with a sulfuric acid resistant adhesive insulating tape. The positive electrode active material application part 62 is provided with five through holes 63 having a diameter of 5 mm. This is to increase the adhesion between the positive electrode active material and the current collector during aging and to keep the coating amount constant. A lead wire 64 made of lead is soldered to the masking portion 61. The lead wire 64 serves as a connection portion with a test external power source (not shown).

鉛系合金粉末として、鉛−スズ−カルシウム系合金をベースとした粒径75μmアンダーの空気冷却ガスアトマイズ粉末を調製する。集電体耳部から離れるに従い合金中の前記正極用集電体の集電体耳部が存在する側から離れるに従い合金中のスズの濃度を減少させるため、図2の粉末圧延装置において三種類の粉末を用いることにする。すなわち、基準組成に対して、スズ濃度の減少が二段階あることになる。 As the lead-based alloy powder, an air-cooled gas atomized powder having a particle size of less than 75 μm based on a lead-tin-calcium alloy is prepared. In order to reduce the concentration of tin in the alloy as it moves away from the side where the current collector ear part of the positive electrode current collector in the alloy exists as it moves away from the current collector ear part, there are three types in the powder rolling apparatus of FIG. This powder will be used. That is, there are two stages of tin concentration reduction with respect to the reference composition.

具体的には、鉛−0.05%カルシウムをベースとして、スズの量を0.5%、1.0%、1.5%と組成を変えた三種類の粉末を用意する。これらの粉末を図2(A)のホッパー23に投入する。本実施例で作製する集電体は紙面手前に耳部を形成するので、図2(A)において、ホッパー23の各区画に投入する組成は、上からスズ量0.5%、1.0%、1.5%とした。なお、目視では各粉末の色差は見分けられないが、説明の都合上、グレーの諧調で粉体のスズの濃度差を表現することにする(スズ濃度が高いほど濃い色で示した)。各粉末は重力によってホッパー23内の通路を通過し、水平対向圧延ロール24a、24bによって圧延される。続いて圧延体は送りロール25a、25bを通過して、送りコンベア26上で調製ロール27にて調厚され、厚さ0.5mmの圧延シート28を得る。この圧延シート28は、図示しない圧延シート巻き取り機によってロール状に巻き取られる。この圧延シートを切り出して、図6に示す板状の集電体を作製する。   Specifically, based on lead-0.05% calcium, three kinds of powders having different tin compositions of 0.5%, 1.0%, and 1.5% are prepared. These powders are put into the hopper 23 of FIG. Since the current collector produced in this example forms an ear portion in front of the paper surface, in FIG. 2 (A), the composition introduced into each section of the hopper 23 has a tin content of 0.5% and 1.0% from the top. %, 1.5%. In addition, although the color difference of each powder cannot be discerned visually, for convenience of explanation, the difference in tin concentration of the powder will be expressed in gray tone (the higher the tin concentration, the darker the color). Each powder passes through a passage in the hopper 23 by gravity and is rolled by horizontally opposed rolling rolls 24a and 24b. Subsequently, the rolled body passes through the feed rolls 25a and 25b, and is adjusted by the preparation roll 27 on the feed conveyor 26 to obtain a rolled sheet 28 having a thickness of 0.5 mm. The rolled sheet 28 is wound into a roll by a rolled sheet winder (not shown). This rolled sheet is cut out to produce a plate-like current collector shown in FIG.

比較例1として、母材として鉛−0.05%カルシウム−1.5%スズ系合金の鋳造圧延シートを用意する。
比較例2として、圧延シートの幅方向に三等分で組成に差をつけた鋳造圧延シートを作製する。具体的には、母材として鉛−0.05%カルシウム系合金を用い、スズの添加量を0.5%、1.0%、1.5%とした三種類の合金を用意する。これらの合金を特許文献1の手法で三種の濃度をもった鋳造圧延シートを作製する。
比較例1、2は本発明と同様に切り出して、図6に示す板状の集電体を作製した。前記集電体に鉛ペーストを充填し、定法により熟成、乾燥する。続いて、図5のフローチャートで試験に供した。
As Comparative Example 1, a cast-rolled sheet of lead-0.05% calcium-1.5% tin-based alloy is prepared as a base material.
As Comparative Example 2, a cast and rolled sheet having a difference in composition in three equal parts in the width direction of the rolled sheet is produced. Specifically, lead-0.05% calcium-based alloy is used as a base material, and three types of alloys with tin addition amounts of 0.5%, 1.0%, and 1.5% are prepared. A cast-rolled sheet having three concentrations of these alloys is prepared by the method of Patent Document 1.
Comparative Examples 1 and 2 were cut out in the same manner as in the present invention to produce a plate-like current collector shown in FIG. The current collector is filled with lead paste, aged and dried by a conventional method. Then, it used for the test with the flowchart of FIG.

表1は本例の実験にて使用した高率放電試験及び過充電試験の条件で、表2は表1の試験結果である。   Table 1 shows the conditions of the high rate discharge test and overcharge test used in the experiment of this example, and Table 2 shows the test results of Table 1.

Figure 2009259725
Figure 2009259725

Figure 2009259725
Figure 2009259725

この結果より、高率放電性能は、本発明品≒比較例2>比較例1、過充電性能は、本発明品>比較例1>比較例2となり、本発明品は高率放電、過充電寿命性能とも優れた性能を示す。
実施例ではホッパー23を三区画にした。前述のようにホッパー23は二重構造なので内装部の交換が可能である。これにより濃度の分離帯を適宜変更でき、極板のサイズや用途によって、濃度の変更が選択可能になる。三区画ではスズ濃度の減少が二段階あることになるので、スズ濃度の減少は少なくとも二段階以上必要となる。
また、スズの添加範囲としては、0.5%以上2.5%未満が望ましい。これは、0.5%未満では所望の効果が認められないこと、2.5%以上では集電体の腐食量が変わらないか、増加する傾向が出るためである。
From this result, the high rate discharge performance is the product of the present invention≈Comparative Example 2> Comparative Example 1, and the overcharge performance is the product of the present invention> Comparative Example 1> Comparative Example 2. Excellent lifetime performance.
In the embodiment, the hopper 23 is divided into three sections. As described above, since the hopper 23 has a double structure, the interior portion can be replaced. Thereby, the density separation band can be changed as appropriate, and the change in density can be selected depending on the size and application of the electrode plate. In three compartments, there will be two stages of tin concentration reduction, so at least two stages of tin concentration reduction are required.
Further, the addition range of tin is desirably 0.5% or more and less than 2.5%. This is because the desired effect is not observed at less than 0.5%, and the corrosion amount of the current collector does not change or tends to increase at 2.5% or more.

鉛蓄電池の構成を示す図である。It is a figure which shows the structure of a lead acid battery. 鋳造方法の集電体の概略図である。It is the schematic of the electrical power collector of a casting method. エキスパンド方法の集電体の概略図である。It is the schematic of the electrical power collector of an expanding method. 本発明による正極集電体の製造に用いる粉末圧延装置の構成を示す図である。It is a figure which shows the structure of the powder rolling apparatus used for manufacture of the positive electrode electrical power collector by this invention. 本発明による正極集電体の製造方法を説明する図である。It is a figure explaining the manufacturing method of the positive electrode electrical power collector by this invention. 本発明による圧延シートの組織を示す図である。It is a figure which shows the structure | tissue of the rolled sheet by this invention. 本発明による正極集電体の評価実験の手順を示す図である。It is a figure which shows the procedure of the evaluation experiment of the positive electrode electrical power collector by this invention. 本発明による評価用正極集電体を示す図である。It is a figure which shows the positive electrode electrical power collector for evaluation by this invention.

符号の説明Explanation of symbols

11…負極ターミナル、12…正極ターミナル、13…正極板、14…負極板、15…セパレータ、16…電槽、17…電槽蓋、23…ホッパー、24a、24b…水平対向圧延ロール、25a、25b…送りロール、26…送りコンベア、27…調整ロール、28…圧延シート、61…マスキング部、62…正極活物質塗布部、63…貫通孔、64…リード線 DESCRIPTION OF SYMBOLS 11 ... Negative electrode terminal, 12 ... Positive electrode terminal, 13 ... Positive electrode plate, 14 ... Negative electrode plate, 15 ... Separator, 16 ... Battery case, 17 ... Battery case cover, 23 ... Hopper, 24a, 24b ... Horizontally opposed rolling roll, 25a, 25b ... feed roll, 26 ... feed conveyor, 27 ... adjustment roll, 28 ... rolled sheet, 61 ... masking section, 62 ... positive electrode active material coating section, 63 ... through hole, 64 ... lead wire

Claims (3)

スズを含有する鉛系合金粉末を粉末圧延することによって形成され、アスペクト比3〜13の特定方向に配向した結晶粒子により構成される組織を有する鉛蓄電池の正極用集電体において、前記正極用集電体の集電体耳部が存在する側から離れるに従い合金中のスズの濃度が減少することを特徴とする鉛蓄電池。 In the current collector for a positive electrode of a lead storage battery formed by powder rolling of a lead-based alloy powder containing tin and having a structure composed of crystal particles oriented in a specific direction with an aspect ratio of 3 to 13, A lead-acid battery, characterized in that the concentration of tin in the alloy decreases as the current collector away from the side where the current collector ears are present. スズ濃度の減少が少なくとも二段階あることを特徴とする請求項1記載の鉛蓄電池 The lead acid battery according to claim 1, wherein the tin concentration is reduced in at least two stages. 前記スズの添加範囲が0.5%以上2.5%未満であることを特徴とする請求項2記載の鉛蓄電池 The lead storage battery according to claim 2, wherein the tin addition range is 0.5% or more and less than 2.5%.
JP2008109785A 2008-04-21 2008-04-21 Lead storage battery Pending JP2009259725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008109785A JP2009259725A (en) 2008-04-21 2008-04-21 Lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008109785A JP2009259725A (en) 2008-04-21 2008-04-21 Lead storage battery

Publications (1)

Publication Number Publication Date
JP2009259725A true JP2009259725A (en) 2009-11-05

Family

ID=41386878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008109785A Pending JP2009259725A (en) 2008-04-21 2008-04-21 Lead storage battery

Country Status (1)

Country Link
JP (1) JP2009259725A (en)

Similar Documents

Publication Publication Date Title
JP5325358B1 (en) ELECTRODE FOR BATTERY AND METHOD FOR MANUFACTURING THE SAME
US20210391573A1 (en) Anode active material for nonaqueous electrolyte secondary battery, anode, battery, and aluminum clad metal laminate
JP5087950B2 (en) Lead acid battery
CA2493792C (en) Lead-based alloy for lead-acid battery grid
EP3886221A1 (en) Negative-electrode active material for non-aqueous electrolyte secondary cell, negative electrode, cell, and laminate
KR101830825B1 (en) Manufacturing method of ldad-acid battery for prevent power failure
JP2006202635A (en) Copper foil for lithium secondary battery electrode, manufacturing method of copper foil, electrode for lithium secondary battery using copper foil, and lithium secondary battery
JPH1021928A (en) Electrode material for secondary battery
JP2011048911A (en) Grid substrate for lead-acid battery and lead-acid battery using the same
JP5772497B2 (en) Lead acid battery
JP2007123244A (en) Cylindrical alkaline battery
JP4293130B2 (en) Positive electrode plate for lead acid battery and lead acid battery
JP2009259725A (en) Lead storage battery
JPH10284085A (en) Grid for lead-acid battery
JP5145644B2 (en) Lead acid battery
JP2017069123A (en) Punched lattice for lead acid battery, positive electrode for lead acid battery, and lead acid battery using the same
JPS63279568A (en) Lead storage battery
JP5088666B2 (en) Lead-acid battery, lead-acid battery current collector and method for producing the same
JP2005122922A (en) Manufacturing method of grid for lead acid battery and lead acid battery
JP5182464B2 (en) Negative electrode current collector for lead acid battery and method for producing lead acid battery using the current collector
JP2009200020A (en) Lead-acid battery
JP5088679B2 (en) Lead acid battery
JP2004186013A (en) Electrode collector, its manufacturing method and sealed lead-acid battery
JPH0850896A (en) Manufacture of lead-acid battery
JP2007213896A (en) Lead-acid storage battery