JP2005122922A - Manufacturing method of grid for lead acid battery and lead acid battery - Google Patents

Manufacturing method of grid for lead acid battery and lead acid battery Download PDF

Info

Publication number
JP2005122922A
JP2005122922A JP2003353477A JP2003353477A JP2005122922A JP 2005122922 A JP2005122922 A JP 2005122922A JP 2003353477 A JP2003353477 A JP 2003353477A JP 2003353477 A JP2003353477 A JP 2003353477A JP 2005122922 A JP2005122922 A JP 2005122922A
Authority
JP
Japan
Prior art keywords
grid
lattice
acid battery
lead
lead acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003353477A
Other languages
Japanese (ja)
Inventor
Masashi Adachi
昌司 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2003353477A priority Critical patent/JP2005122922A/en
Publication of JP2005122922A publication Critical patent/JP2005122922A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To effectively suppress early capacity drop caused in a lead acid battery using Pb or non-Sb based alloy for a grid, by uniformly covering the surface of the grid with a very small amount of Sb in a short time, to provide a manufacturing method of the grid for the lead acid battery, capable of curbing influence of self discharge caused by Sb as much as possible, and to provide the lead acid battery having stable life performance and the grid manufactured by this method. <P>SOLUTION: In this manufacturing method of the grid for the lead acid battery, Sb is electrodeposited on the surface of Pb or non-Sb based alloy grid in sulfuric acid aqueous solution in which a Sb compound is dissolved. This lead acid battery having the grid is manufactured by this method. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、鉛蓄電池用格子の製造方法および鉛蓄電池に関する。   The present invention relates to a method for producing a lead-acid battery grid and a lead-acid battery.

現在、鉛蓄電池は自動車用や産業用をはじめとしてあらゆる分野で広く用いられており、軽量化、コストダウン、メンテナンスフリー化、長寿命化、品質の安定化等が強く求められている。   At present, lead-acid batteries are widely used in various fields including automobiles and industrial use, and there is a strong demand for weight reduction, cost reduction, maintenance-free, long life, and quality stabilization.

鉛蓄電池に用いられている格子の部材には純鉛(以降「Pb」と記載)、アンチモンを含む鉛合金(以降「Sb系鉛合金」と記載)とアンチモンを含まない鉛合金(以降「非Sb系鉛合金」と記載)とに大別される。近年はメンテナンスフリー、無漏液特性が重要視されてきており、そのような特性を備えた制御弁式鉛蓄電池が広く普及してきている。鉛蓄電池が前記メンテナンスフリーおよび無漏液特性を維持するためには、Pbあるいは非Sb系鉛合金が適していることは周知である。   Lattice members used in lead-acid batteries include pure lead (hereinafter referred to as “Pb”), lead alloys containing antimony (hereinafter referred to as “Sb-based lead alloys”), and lead alloys not containing antimony (hereinafter referred to as “non- It is broadly classified as “Sb-based lead alloy”. In recent years, maintenance-free and non-leakable liquid characteristics have been regarded as important, and control valve type lead-acid batteries having such characteristics have become widespread. It is well known that Pb or a non-Sb lead alloy is suitable for the lead-acid battery to maintain the maintenance-free and leakage-free characteristics.

しかしながら、正極格子にPbあるいは非Sb系鉛合金を用いた鉛蓄電池を、サイクル使用する場合、特に放電深度が浅くしかも過充電される条件、あるいは絶えず充電を行うトリクル又はフロート使用条件では、正極格子の酸化が進み過ぎるため、放電時にその部分が優先的に放電して、正極板の格子と活物質との界面に硫酸鉛の絶縁層が形成され、早期に容量が低下することがある。   However, when a lead storage battery using Pb or a non-Sb-based lead alloy is used for the positive electrode grid, especially in a condition where the discharge depth is shallow and overcharged, or in a trickle or float usage condition where charging is constantly performed, the positive electrode grid Since the oxidation of the metal oxide proceeds excessively, the portion is preferentially discharged at the time of discharge, and an insulating layer of lead sulfate is formed at the interface between the lattice of the positive electrode plate and the active material, and the capacity may be lowered early.

一方、格子にSb系鉛合金を用いると、そのメカニズムは明確ではないが、前記早期容量低下は発生しなくなる。しかし、格子中にSbが存在すると、自己放電が大きくなり、負極板の充電不足に起因する劣化が起こり、正極で発生した酸素ガスを負極で吸収する方式で成り立っているメンテナンスフリー機能が維持できなくなるという問題を抱えている。   On the other hand, when an Sb-based lead alloy is used for the lattice, the mechanism is not clear, but the early capacity reduction does not occur. However, if Sb is present in the lattice, self-discharge increases, deterioration due to insufficient charging of the negative electrode plate occurs, and the maintenance-free function that is achieved by the method of absorbing the oxygen gas generated at the positive electrode at the negative electrode can be maintained. I have the problem of disappearing.

その対策の一つとして、特許文献1〜4で提案されているように、Pbあるいは非Sb系鉛合金格子を用い、Sb又はその化合物を正極活物質に含有させる、あるいは前記格子表面にSbを付着させることによって上述した早期容量低下を低減できることが知られている。   As one of the countermeasures, as proposed in Patent Documents 1 to 4, a Pb or non-Sb lead alloy lattice is used, Sb or a compound thereof is contained in the positive electrode active material, or Sb is added to the lattice surface. It is known that the above-mentioned early capacity reduction can be reduced by making it adhere.

特開昭58−209865号公報JP 58-209865 A 特開平07−147160号公報JP 07-147160 A 特開平10−112324号公報Japanese Patent Laid-Open No. 10-112324 特開2002−216774号公報JP 2002-216774 A

正極格子にPbあるいは非Sb系鉛合金を用いた鉛蓄電池において、早期容量低下の原因が活物質と格子との界面にあるので、正極活物質にSbを添加する方法は、添加量が多くないと十分な効果が得られない。しかし、添加量が多いと、上述したSb系鉛合金格子と同じ問題が発生する。   In a lead storage battery using Pb or a non-Sb-based lead alloy for the positive electrode lattice, the cause of the early capacity reduction is the interface between the active material and the lattice, so the method of adding Sb to the positive electrode active material does not have much addition amount. And sufficient effect is not obtained. However, if the addition amount is large, the same problem as the above-described Sb-based lead alloy lattice occurs.

一方、格子表面にSb又はその化合物を吹き付ける、あるいは前記物質を溶解した溶液に格子を浸漬する方法は、正極活物質に前記物質を添加する方法に比べて効果的であるが、Sb又はその化合物を格子表面に均一に被覆させることが容易でなく、Sbで格子表面が完全に被覆されていないと効果が十分でなく、そのような状態にするとSbの量が多くなり過ぎて、上記と同じSbの有害作用が発生する。したがって、微量のSbで格子表面を均一に被覆する方法が所望されていた。   On the other hand, the method of spraying Sb or a compound thereof on the lattice surface or dipping the lattice in a solution in which the substance is dissolved is more effective than the method of adding the substance to the positive electrode active material. It is not easy to uniformly coat the lattice surface, and if the lattice surface is not completely coated with Sb, the effect is not sufficient. In such a state, the amount of Sb becomes too large and the same as above. Adverse effects of Sb occur. Therefore, a method for uniformly coating the lattice surface with a small amount of Sb has been desired.

本発明の目的は、Sbに起因する自己放電を極力押さえることが可能な鉛蓄電池用格子の製造方法および前記格子を用いた寿命性能の安定した鉛蓄電池を提供することにある。   The objective of this invention is providing the manufacturing method of the grid for lead acid batteries which can suppress the self-discharge resulting from Sb as much as possible, and the lead acid battery with the stable lifetime performance using the said grating | lattice.

本願発明者は、微量のSbで格子表面を均一に被覆する方法について検討し、Sb化合物を溶解させた硫酸水溶液中でPbあるいは非Sb系鉛合金格子の表面にSbを電析させる方法が有効であることを見出した。   The inventor of the present application has studied a method for uniformly coating the lattice surface with a small amount of Sb, and an effective method is to deposit Sb on the surface of Pb or a non-Sb lead alloy lattice in an aqueous sulfuric acid solution in which an Sb compound is dissolved. I found out.

請求項1の発明は、Sb化合物を溶解させた硫酸水溶液中で、Pbあるいは非Sb系鉛合金格子の表面にSbを電析させることを特徴とする。   The invention of claim 1 is characterized in that Sb is electrodeposited on the surface of Pb or a non-Sb lead alloy lattice in a sulfuric acid aqueous solution in which an Sb compound is dissolved.

請求項2の発明は、請求項1に記載の製造方法により製造された蓄電池用格子を備えたことを特徴とする鉛蓄電池である。   The invention of claim 2 is a lead storage battery comprising the storage battery grid manufactured by the manufacturing method of claim 1.

以上、説明したように、Sb化合物を溶解させた硫酸水溶液中で、Pbあるいは非Sb系鉛合金格子の表面にSbを電析させる方法を採用することによって、格子表面が微量のSbで均一にしかも短時間で被覆されているので、Sbが効果的に作用し、Pbあるいは非Sb系鉛合金格子を用いた鉛蓄電池に発生する早期容量低下を大幅に低減可能で、しかも、Sbの絶対量が少ないので、Sbの有害作用に起因する自己放電も極力押さえられ、Pbあるいは非Sb系鉛合金格子を用いても、寿命性能の安定した鉛蓄電池が得られ、その工業的効果が極めて大である。   As described above, by adopting a method in which Sb is electrodeposited on the surface of Pb or non-Sb lead alloy lattice in a sulfuric acid aqueous solution in which an Sb compound is dissolved, the lattice surface is made uniform with a small amount of Sb. Moreover, since it is coated in a short time, Sb works effectively, and it is possible to greatly reduce the early capacity drop that occurs in lead-acid batteries using Pb or non-Sb lead alloy grids, and the absolute amount of Sb Therefore, even if Pb or non-Sb lead alloy lattice is used, a lead storage battery with stable life performance can be obtained, and its industrial effect is extremely large. is there.

本発明を実施するための最良の形態は、Sbを溶解させた比重1.100〜1.400の希硫酸中に、Pbあるいは非Sb系鉛合金格子を浸漬し、前記格子を陰極にして電気分解を行うことである。そうすれば希硫酸中に溶解しているSbが前記格子に電析する。この方法により、微量のSbで格子表面を、非常に短時間で均一に覆うことができる。 The best mode for carrying out the present invention is to immerse a Pb or non-Sb lead alloy lattice in dilute sulfuric acid having a specific gravity of 1.100 to 1.400 in which Sb 2 O 3 is dissolved, and use the lattice as a cathode. And performing electrolysis. Then, Sb dissolved in dilute sulfuric acid is electrodeposited on the lattice. By this method, the lattice surface can be uniformly covered in a very short time with a small amount of Sb.

Sbの上記比重の希硫酸に対する溶解量は、0.01〜0.1質量%で、前記溶液中でPbあるいは非Sb系鉛合金格子を陰極にして電気分解を行えば、格子質量に対して0.001〜0.01質量%のSbが格子表面に電析する。電析方法であれば、このような微量であっても、Sbで格子表面を均一に被覆することができることがわかった。 The amount of Sb 2 O 3 dissolved in dilute sulfuric acid having the above specific gravity is 0.01 to 0.1% by mass. If electrolysis is performed using the Pb or non-Sb lead alloy lattice as a cathode in the solution, the lattice mass 0.001 to 0.01% by mass of Sb is electrodeposited on the lattice surface. It was found that the electrodepositing method can uniformly coat the lattice surface with Sb even with such a small amount.

本発明を実施例に基づき詳細に説明する。
(実施例1)
Pb−0.08質量%Ca―1.2質量%Sn合金からなるC=7Ah(C:定格容量、:5時間率)の制御弁式鉛蓄電池用の格子を準備した。次に、比重1.050〜1.400の希硫酸にSbを溶解させた溶液を準備し、前記格子を陰極にして0.04A/格子重量(g)×30秒の条件で電気分解を行い、格子表面にSbを電析させた。その内容を表1に示す。
The present invention will be described in detail based on examples.
(Example 1)
A grid for a control valve type lead storage battery of C 5 = 7 Ah (C: rated capacity, 5 : 5 hour rate) made of a Pb-0.08 mass% Ca-1.2 mass% Sn alloy was prepared. Next, a solution in which Sb 2 O 3 is dissolved in dilute sulfuric acid having a specific gravity of 1.050 to 1.400 is prepared, and electricity is used under the condition of 0.04 A / grid weight (g) × 30 seconds using the lattice as a cathode. Decomposition was performed to deposit Sb on the lattice surface. The contents are shown in Table 1.

Figure 2005122922
Figure 2005122922

表1に示すように、比重1.050の希硫酸では、Sbの溶解量は0.005質量%であった(溶解量は希硫酸溶液の質量に対する質量%で示す)。比重1.10から1.300でのSbの溶解量は、比重が高くなるにしたがって増加するが、本発明の試験では0.01質量%に固定した(C、D、E)。比重1.400では溶解量0.01質量%溶液と飽和溶解量0.1質量%の溶液を準備した(記号F、G)。電気分解後の格子に電析されたSb量は、表1に示す通りである。該Sbの電析量は、格子質量に対する質量%で表記している。 As shown in Table 1, in the diluted sulfuric acid having a specific gravity of 1.050, the dissolved amount of Sb 2 O 3 was 0.005% by mass (the dissolved amount is expressed by mass% with respect to the mass of the diluted sulfuric acid solution). The dissolution amount of Sb 2 O 3 at a specific gravity of 1.10 to 1.300 increases as the specific gravity increases, but is fixed at 0.01% by mass in the test of the present invention (C, D, E). At a specific gravity of 1.400, a solution having a dissolution amount of 0.01% by mass and a solution having a saturated dissolution amount of 0.1% by mass was prepared (symbols F and G). The amount of Sb electrodeposited on the lattice after electrolysis is as shown in Table 1. The amount of Sb electrodeposited is expressed in mass% with respect to the lattice mass.

上記Sbを電析させた格子の断面を切断し、走査電子顕微鏡(SEM)で分析を行った結果、格子表面に1〜10μmの薄いSbの層が均一に形成されていることがわかった。   As a result of cutting the section of the lattice on which Sb was deposited and analyzing with a scanning electron microscope (SEM), it was found that a thin Sb layer of 1 to 10 μm was uniformly formed on the lattice surface.

なお、希硫酸に対するSbの溶解度は、比重が高くなるほど増加することは周知であるが、希硫酸の比重が高くなるほど腐食性が高くなるので、本発明の電析を行うための設備に対してして好ましくなく、1.400以上については試験を行わなかった。 It is well known that the solubility of Sb 2 O 3 in dilute sulfuric acid increases as the specific gravity increases. However, the higher the specific gravity of dilute sulfuric acid, the higher the corrosivity, so the equipment for performing electrodeposition according to the present invention. However, the test was not performed for 1.400 or more.

電析処理を行っていない従来品の格子(記号A)、Sbの電析処理を行った格子(記号B〜G)にそれぞれ定法の正極ペーストを充填し、熟成・乾燥を経て、未化成正極板を作製した。   The conventional grid (symbol A) that has not been subjected to electrodeposition treatment and the grid (symbols B to G) that have been subjected to electrodeposition treatment of Sb are each filled with a positive electrode paste of a regular method, and after aging and drying, an unformed positive electrode A plate was made.

また、比較品として、実施例と同じ、Pb−0.08質量%Ca―1.2質量%Sn合金格子に定法の正極ペースト原料にSbを前記原料に対してSb量に換算して0.1質量%添加したものを充填し、熟成・乾燥を経て、未化成正極板(記号H)を作製した。 In addition, as a comparative product, Sb 2 O 3 was converted into the amount of Sb with respect to the raw material as a positive electrode paste raw material of a regular method in a Pb-0.08 mass% Ca-1.2 mass% Sn alloy lattice as in the example. Then, 0.1% by mass added was filled, and after aging and drying, an unformed positive electrode plate (symbol H) was produced.

一方、負極板は、上記正極板と同じPb−0.08質量%Ca―1.2質量%Sn合金格子に有機エキスパンダー、カーボンおよび炭酸バリウムを所定量添加した負極ペーストを充填し、熟成・乾燥を経て、未化成負極板を作製した。   On the other hand, the negative electrode plate is filled with a negative electrode paste in which a predetermined amount of an organic expander, carbon, and barium carbonate is added to the same Pb-0.08 mass% Ca-1.2 mass% Sn alloy lattice as the above positive electrode plate, and is aged and dried. Then, an unformed negative electrode plate was produced.

上記未化成正極板と未化成負極板とを繊維径10μm以下の極細ガラス繊維からなるセパレータを介して積層し、極板群を形成し、定格容量がCで7Ahの制御弁式鉛蓄電池を作製した。 And the unformed positive electrode plate and unformed negative electrode plate are laminated via a separator consisting of ultrafine glass fiber fiber diameter 10 [mu] m, to form an electrode plate group, the rated capacity of the valve-regulated lead-acid battery of 7Ah in C 5 Produced.

これら蓄電池に所定比重の希硫酸を所定量注入後、定法により電槽内で初充電を行い、終了後、注液口に制御弁を装着して蓄電池を完成させた。   After injecting a predetermined amount of dilute sulfuric acid having a specific gravity into these storage batteries, initial charging was performed in the battery case by a regular method, and after completion, a control valve was attached to the liquid inlet to complete the storage battery.

上記制御弁式鉛蓄電池を下記の条件により寿命試験に供した。   The control valve type lead acid battery was subjected to a life test under the following conditions.

放電:1.4A×1.5時間
充電:2段定電流充電(1.4A×1.35時間+0.35A×2.7時間)
放置:6時間
温度:40℃
上記放電・充電・放置を1サイクルとした寿命試験を行った。
Discharge: 1.4 A x 1.5 hours Charging: 2-stage constant current charge (1.4 A x 1.35 hours + 0.35 A x 2.7 hours)
Left: 6 hours Temperature: 40 ° C
A life test was conducted in which the above discharge / charge / stand was one cycle.

Pbあるいは非Sb系鉛合金格子を用いた鉛蓄電池の早期容量低下は上述したように放電量が少なく、しかもその後、充電量が多い過充電が繰り返される条件で発生し易いことから、上記放・充電条件は、そのような観点から設定した。すなわち、放電量は、1.4A×1.5時間=2.1Ahで定格容量7Ahの30%と少なく、充電量も通常は、放電量の110から115%の充電量で充電されるのに対して、135%と多くした。但し、2段定電流充電方式を採用したのは、初期の1.4Aのまま充電を継続すると充電電流が大きいため充電効率が悪く、充電末期のガス発生が多くなり、電解液が枯渇し、他の理由で蓄電池性能が劣化するのを防止するため、放電量の90%に達して時点で0.35Aの電流に低下させた。   As described above, the early capacity reduction of a lead storage battery using Pb or non-Sb lead alloy lattice is less likely to occur under the condition that the amount of discharge is small and then overcharge with a large amount of charge is repeated. The charging conditions were set from such a viewpoint. In other words, the discharge amount is 1.4A × 1.5 hours = 2.1 Ah, which is as small as 30% of the rated capacity 7 Ah, and the charge amount is usually charged at a charge amount of 110 to 115% of the discharge amount. On the other hand, it increased to 135%. However, the two-stage constant current charging method was adopted because the charging current is large when charging is continued with the initial 1.4A, the charging efficiency is poor, the gas generation at the end of charging is increased, the electrolyte is depleted, In order to prevent the storage battery performance from deteriorating for other reasons, the current reached 90% of the discharge amount, and the current was reduced to 0.35 A.

温度が高ければ早期容量低下が発生し易くなるので40℃で行った。さらに、放・充電毎に6時間の放置を挿入した。原因は明確ではないが、充電後に放置を挿入すると早期容量低下が発生し易いことが知られている。   As the temperature is high, early capacity drop tends to occur. In addition, a 6-hour leave was inserted for each release / charge. The cause is not clear, but it is known that if a stand is inserted after charging, an early capacity drop tends to occur.

寿命試験の結果を図1に示す。   The results of the life test are shown in FIG.

図1は、放・充電サイクルに対する各蓄電池の容量の変化を示すもので、前記容量は、各蓄電池の初期容量を100とした時の比率(%)で表した。   FIG. 1 shows the change of the capacity of each storage battery with respect to the discharge / charge cycle, and the capacity is expressed as a ratio (%) when the initial capacity of each storage battery is 100.

図1に示すように、本試験は、早期容量低下が発生し易い条件であるので、格子にSbを電析していない従来の蓄電池Aは、50サイクルの時点で、容量が初期の40%以下になった。それに対して、Sbの電析量が0.0007質量%である蓄電池Bは、その効果が認められたがSbの電析量が少ないため700サイクルで容量が初期の50%まで低下した。それに対して、電析量が0.001質量%である蓄電池C〜Fは、その効果が顕著になり800サイクル経過した時点で、初期の75%以上の容量を維持していた。さらに、Sbの電析量が0.01質量%と最も多い蓄電池Gは、800サイクルの時点で80%以上の容量を維持し、より優れた寿命性能を示した。   As shown in FIG. 1, since this test is a condition in which early capacity reduction is likely to occur, the conventional storage battery A in which Sb is not electrodeposited on the lattice has a capacity of 40% of the initial value at the time of 50 cycles. It became the following. On the other hand, the storage battery B having an Sb electrodeposition amount of 0.0007% by mass showed the effect, but the capacity decreased to the initial 50% in 700 cycles because the amount of Sb electrodeposition was small. On the other hand, the storage batteries C to F having an electrodeposition amount of 0.001% by mass maintained the capacity of 75% or more of the initial value when the effect became remarkable and 800 cycles passed. Furthermore, the storage battery G having the largest amount of Sb electrodeposition of 0.01% by mass maintained a capacity of 80% or more at the time of 800 cycles, and exhibited a better life performance.

一方、比較品である正極活物質にSbを0.1質量%添加した蓄電池Hは、その効果が認められるものの、添加量が多いにもかかわらず、その効果が十分でなく、500サイクルで容量が50%に低下してしまった。その原因は、活物質にSbを添加したため格子界面に有効に作用しなかったためと考えられる。   On the other hand, the storage battery H in which 0.1% by mass of Sb was added to the positive electrode active material as a comparative product, although the effect was recognized, the effect was not sufficient even though the addition amount was large, and the capacity was reached at 500 cycles. Has dropped to 50%. The cause is considered to be because it did not act effectively on the lattice interface because Sb was added to the active material.

以上、説明したように、Sbを格子表面に電析させる本発明の方法は、従来の方法に比べて非常に少ないSbの量でその効果が得られ、しかもSbの有害作用がほとんど影響ないことが明らかになった。   As described above, the method of the present invention in which Sb is electrodeposited on the lattice surface can be obtained with a very small amount of Sb as compared with the conventional method, and the harmful effects of Sb are hardly affected. Became clear.

実施例で示したように、格子表面に電析されたSbの量は、0.001〜0.01質量%で好ましい結果を得たが、前記電析量は、格子質量に対して表記されており、非常に少ない量であるが、上述したようにSEMで確認した結果、格子表面の極めて薄い1〜10μmの層にSbが集中して存在し、格子表面を被覆しており、それが、Sbが微量でも効果的に作用することが本試験で明らかになった。   As shown in the examples, the amount of Sb electrodeposited on the lattice surface was preferably 0.001 to 0.01% by mass, and the amount of electrodeposition was expressed with respect to the lattice mass. Although it is a very small amount, as a result of confirmation by SEM as described above, Sb is concentrated in a very thin layer of 1 to 10 μm on the surface of the lattice and covers the surface of the lattice. This test revealed that Sb works effectively even in a trace amount.

本発明でのSbの電析量を格子重量に対する比率で表記した場合、非常に低い値であり、例えば、JIS H 2105で規定されている鉛地金(純鉛)の特種に含まれるSb+Snが0.005質量%(SbとSnが同量とすればSb:0.0025質量%)以下である規格に対して、本発明の効果が得られるSb量がそれより低い0.001質量%であっても、そのSbがSEMで確認したように格子表面の極薄い部分に集中しているからその効果が得られたのはいうまでもない。   When the electrodeposition amount of Sb in the present invention is expressed as a ratio to the lattice weight, it is a very low value. For example, Sb + Sn included in the special species of lead ingot (pure lead) defined in JIS H 2105 is With respect to a standard of 0.005% by mass (Sb: 0.0025% by mass if Sb and Sn are the same amount) or less, the Sb content at which the effect of the present invention is obtained is 0.001% by mass lower than that. Even if it exists, since the Sb is concentrated in the very thin part of the grating | lattice surface as confirmed by SEM, it cannot be overemphasized that the effect was acquired.

また、本試験では格子表面に電析されるSb量は、硫酸に溶解しているSb量に制限され、電析時間を本試験の30秒以上長くしても最初に電析した1〜10μmの層が増加することはなかった。この意味でも、本発明の方式は、Sbが多いことによる弊害が発生しない利点も有していることがわかった。   In addition, the amount of Sb electrodeposited on the lattice surface in this test is limited to the amount of Sb dissolved in sulfuric acid, and even if the electrodeposition time is increased by 30 seconds or more in this test, the first electrodeposition is 1 to 10 μm. The number of layers did not increase. Also in this sense, it has been found that the method of the present invention has an advantage that no adverse effect due to a large amount of Sb occurs.

本実施例では、Pb−0.08質量%Ca―1.2質量%Sn合金格子について試験したが、Pb、Pb−Ca合金、Pb−Ca−Sn−Ag合金およびPb−Sn合金格子についても試験を行い同様の結果を得ている。   In this example, a Pb-0.08 mass% Ca-1.2 mass% Sn alloy lattice was tested, but Pb, Pb-Ca alloy, Pb-Ca-Sn-Ag alloy and Pb-Sn alloy lattice were also tested. Tests have been conducted with similar results.

また、本実施例では、電解液が正・負極板およびセパレータに含浸・保持され遊離の電解液が存在しない制御弁式鉛蓄電池の試験結果について説明したが、Pbあるいは非Sb系鉛合金を用い、電解液が十分に存在する、いわゆる、液式鉛蓄電池についても本発明の格子を用いることによって同様の効果は得られることを別の試験で確認している。   Further, in this embodiment, the test results of the control valve type lead storage battery in which the electrolyte is impregnated / held in the positive / negative electrode plates and the separator and no free electrolyte exists, but Pb or a non-Sb lead alloy is used. In other tests, it has been confirmed that the same effect can be obtained by using the grid of the present invention for a so-called liquid lead-acid battery in which the electrolyte is sufficiently present.

放・充電サイクルに対する各蓄電池の容量の変化を示す図。The figure which shows the change of the capacity | capacitance of each storage battery with respect to a discharge / charge cycle.

Claims (2)

Sb化合物を溶解させた硫酸水溶液中で、Pbあるいは非Sb系鉛合金格子の表面にSbを電析させることを特徴とする鉛蓄電池用格子の製造方法。 A method for producing a lead-acid battery grid, comprising depositing Sb on the surface of a Pb or non-Sb lead alloy grid in an aqueous sulfuric acid solution in which an Sb compound is dissolved. 請求項1に記載の製造方法により製造された蓄電池用格子を備えたことを特徴とする鉛蓄電池。


































A lead storage battery comprising a grid for a storage battery manufactured by the manufacturing method according to claim 1.


































JP2003353477A 2003-10-14 2003-10-14 Manufacturing method of grid for lead acid battery and lead acid battery Pending JP2005122922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003353477A JP2005122922A (en) 2003-10-14 2003-10-14 Manufacturing method of grid for lead acid battery and lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003353477A JP2005122922A (en) 2003-10-14 2003-10-14 Manufacturing method of grid for lead acid battery and lead acid battery

Publications (1)

Publication Number Publication Date
JP2005122922A true JP2005122922A (en) 2005-05-12

Family

ID=34611751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003353477A Pending JP2005122922A (en) 2003-10-14 2003-10-14 Manufacturing method of grid for lead acid battery and lead acid battery

Country Status (1)

Country Link
JP (1) JP2005122922A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006093047A (en) * 2004-09-27 2006-04-06 Furukawa Battery Co Ltd:The Lead acid battery
JP2008210685A (en) * 2007-02-27 2008-09-11 Shin Kobe Electric Mach Co Ltd Lead storage cell
JP2009037775A (en) * 2007-07-31 2009-02-19 Furukawa Battery Co Ltd:The Grid for lead-acid storage battery, and lead-acid storage battery using the same
JP2009076406A (en) * 2007-09-24 2009-04-09 Furukawa Battery Co Ltd:The Grid for lead acid battery
CN110556515A (en) * 2019-08-19 2019-12-10 天能电池集团股份有限公司 preparation method and application of positive plate of lead storage battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006093047A (en) * 2004-09-27 2006-04-06 Furukawa Battery Co Ltd:The Lead acid battery
JP2008210685A (en) * 2007-02-27 2008-09-11 Shin Kobe Electric Mach Co Ltd Lead storage cell
WO2008108375A1 (en) * 2007-02-27 2008-09-12 Shin-Kobe Electric Machinery Co., Ltd. Lead storage battery
JP2009037775A (en) * 2007-07-31 2009-02-19 Furukawa Battery Co Ltd:The Grid for lead-acid storage battery, and lead-acid storage battery using the same
JP2009076406A (en) * 2007-09-24 2009-04-09 Furukawa Battery Co Ltd:The Grid for lead acid battery
CN110556515A (en) * 2019-08-19 2019-12-10 天能电池集团股份有限公司 preparation method and application of positive plate of lead storage battery
CN110556515B (en) * 2019-08-19 2020-12-11 天能电池集团股份有限公司 Preparation method and application of positive plate of lead storage battery

Similar Documents

Publication Publication Date Title
CN103109412B (en) Lead battery and be equipped with the idling stop vehicle of this lead battery
WO2010058240A1 (en) Low water loss battery
JP2006156371A (en) Negative electrode collector for lead-acid battery
JPH09306497A (en) Negative electrode plate for lead-acid battery
JP2006049025A (en) Control valve type lead-acid storage battery
JP2016177909A (en) Control valve type lead-acid battery
JP2005122922A (en) Manufacturing method of grid for lead acid battery and lead acid battery
JP2011210640A (en) Positive active material for lead-acid battery and positive electrode plate for lead-acid battery formed by filling the same
JP5342188B2 (en) Negative electrode active material for secondary battery and secondary battery using the same
WO2013058079A1 (en) Method for operating molten salt battery
JP5145644B2 (en) Lead acid battery
JP4892827B2 (en) Lead acid battery
JP4904658B2 (en) Method for producing lead-acid battery
CN112952078A (en) Magnesium metal negative electrode material and preparation method and application thereof
JP5073403B2 (en) Lead-acid battery grid and lead-acid battery using the grid
KR102458871B1 (en) Zinc metal electrode, method of manufacturing the same, and secondary battery having the same
JP2019207786A (en) Lead acid battery
US2994626A (en) Low loss battery
JP5223327B2 (en) Lead acid battery
JP4678117B2 (en) Lead acid battery
JPH0850896A (en) Manufacture of lead-acid battery
JP2005216804A (en) Manufacturing method of cylindrical sealed lead-acid battery
JP5375049B2 (en) Lead acid battery
JP4503358B2 (en) Lead acid battery
JP3475650B2 (en) Manufacturing method of current collector for lead-acid battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213