JP2011048911A - Grid substrate for lead-acid battery and lead-acid battery using the same - Google Patents

Grid substrate for lead-acid battery and lead-acid battery using the same Download PDF

Info

Publication number
JP2011048911A
JP2011048911A JP2009193887A JP2009193887A JP2011048911A JP 2011048911 A JP2011048911 A JP 2011048911A JP 2009193887 A JP2009193887 A JP 2009193887A JP 2009193887 A JP2009193887 A JP 2009193887A JP 2011048911 A JP2011048911 A JP 2011048911A
Authority
JP
Japan
Prior art keywords
bone
lead
frame
active material
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009193887A
Other languages
Japanese (ja)
Inventor
Ichiro Shimoura
一朗 下浦
Katsura Mitani
桂 三谷
Shinichi Sano
伸一 佐野
Yoshikazu Hirose
義和 広瀬
Hiroyuki Wakatabe
浩之 若田部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2009193887A priority Critical patent/JP2011048911A/en
Publication of JP2011048911A publication Critical patent/JP2011048911A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a grid substrate for a lead-acid battery which has a good filling property of a paste-type active material on the opposite side of a filling surface without exposing an inside frame, as well as the lead-acid battery using the same. <P>SOLUTION: The grid substrate for the lead-acid battery is provided with a frame bone 1, a vertical bone and a horizontal bone which form the grid, and are arranged inside the frame bone. The thickness of the vertical bone and/or the horizontal bone is made thinner than the thickness of the frame bone 1, and all of the vertical bone and the horizontal bone are made within a thickness range of the frame bone 1, and are separated from one of the faces formed by the frame bone 1. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、鉛蓄電池用格子基板及びこの格子基板を用いた鉛蓄電池に関する。   The present invention relates to a grid substrate for a lead storage battery and a lead storage battery using the grid substrate.

電池は、マンガン、水銀、アルカリ等に代表される一次電池と、鉛、ニッケル−カドミウム、リチウムイオン、ニッケル−水素等に代表される充電可能な二次電池とに大別される。
また現在は、携帯電話等に多く使用されることから、次世代の二次電池としてリチウムイオン電池や、ニッケル水素電池等の小型且つ高性能な電池の開発が進んでいる。
他方で、前記リチウムイオン電池、ニッケル−水素電池は、価格の面で不利であり、特に前者は、安全性の面でも十分な配慮が必要であるため、オフィスビル、病院等の停電時における、瞬時電圧低下対策用の産業用電池、また自動車用電池等では、主に鉛蓄電池が用いられている。
Batteries are roughly classified into primary batteries represented by manganese, mercury, alkali and the like, and rechargeable secondary batteries represented by lead, nickel-cadmium, lithium ion, nickel-hydrogen and the like.
At present, since it is frequently used in mobile phones and the like, development of small and high-performance batteries such as lithium ion batteries and nickel metal hydride batteries as next-generation secondary batteries is progressing.
On the other hand, the lithium ion battery and the nickel-hydrogen battery are disadvantageous in terms of price, and in particular, the former requires sufficient consideration in terms of safety. Lead-acid batteries are mainly used in industrial batteries for instantaneous voltage drop countermeasures, automobile batteries, and the like.

鉛蓄電池の極板には、チュードル式、クラッド式、ペースト式等があり、用途に応じて使い分けされている。中でも、ペースト式極板は、生産性が高く、コストを安くできることから多く使われている。
このペースト式極板(以下、「極板」と言う。)は、鉛又は鉛合金により形成された格子基板に、ペースト状の鉛化合物等を用いた活物質を付着させ、更に、熟成・乾燥して作製される。
There are two types of electrode plates for lead-acid batteries: Tudor type, Cladding type, Paste type, etc. Among them, the paste type electrode plate is often used because of its high productivity and low cost.
This paste-type electrode plate (hereinafter referred to as “electrode plate”) has an active material using a paste-like lead compound or the like attached to a lattice substrate formed of lead or a lead alloy, and is further aged and dried. Is produced.

格子基板は、先に述べたように、ペースト状の活物質を保持させる都合上、図1に示すような構造を有する。格子基板5は、枠骨1の内側に、縦骨2及び横骨3を格子状になるように配置し、これに耳部4を設けて形成する。そして、この格子基板5に活物質を充填して保持させる。   As described above, the lattice substrate has a structure as shown in FIG. 1 for the purpose of holding the paste-like active material. The lattice substrate 5 is formed by disposing the longitudinal bones 2 and the lateral bones 3 in a lattice shape inside the frame bone 1 and providing the ears 4 thereon. Then, the lattice substrate 5 is filled with an active material and held.

通常、活物質の充填は、格子基板5をペースト充填機に通すことで、格子基板5の充填面よりペースト状の活物質に圧力をかけて塗布し、前記充填面にローラを当てることで、格子基板5の充填面から塗布した活物質を、格子基板5の裏側にも回り込ませるようにしている。   Usually, the filling of the active material is performed by applying the pressure to the paste-like active material from the filling surface of the lattice substrate 5 by passing the lattice substrate 5 through a paste filling machine, and applying a roller to the filling surface. The active material applied from the filling surface of the lattice substrate 5 is also caused to wrap around the back side of the lattice substrate 5.

但し、活物質の充填は、ペーストの性状により、格子基板5の裏側へのペースト状活物質の回り込みが悪く、枠骨内側の骨(縦骨2及び横骨3)が露出することがあった。内側の骨が露出することは、格子基板と活物質との密着性が低下するだけでなく、内側の骨の硫酸鉛化を促進させ、結果として電池寿命が短くなることが懸念される。
そこで、内側の骨の露出を防ぐために、予め内側の骨を充填面方向に偏らせて配置させ、活物質の充填により、内側の骨を充填面と反対方向に押し出し、骨の露出を防ぐ方法が行われてきた(特許文献1参照)。
However, in the filling of the active material, the paste-like active material wraps around the back side of the lattice substrate 5 due to the properties of the paste, and the bones inside the frame bone (vertical bone 2 and horizontal bone 3) may be exposed. . The exposure of the inner bone not only lowers the adhesion between the lattice substrate and the active material, but also promotes lead sulphate conversion of the inner bone, resulting in a concern that the battery life may be shortened.
Therefore, in order to prevent the exposure of the inner bone, a method of preliminarily arranging the inner bone in the direction of the filling surface and pushing the inner bone in the direction opposite to the filling surface by filling with the active material to prevent the bone from being exposed. Has been performed (see Patent Document 1).

特開平02−114451号公報JP 02-114451 A

しかしながら、特許文献1に記載される格子基板の構造は、活物質の充填により内側の骨が変形し易い、薄い格子基板又は内側の骨が細い格子基板には適用できるものの、厚い格子基板又は内側の骨の太い格子基板では、充填時の圧力で内側の骨が押し出されずに、充填前の偏心配置のままで残り易くなる。このような状態では、充填面側の骨が露出し易くなり、また充填面と反対側にペースト状活物質の回り込みが悪くなることで、骨が腐食し易くなり、骨と活物質との間に硫酸鉛が生成し易くなることで、導電性が失われる問題がある。   However, although the structure of the lattice substrate described in Patent Document 1 can be applied to a thin lattice substrate or a thin lattice substrate with a thin inner bone, the inner bone is easily deformed by filling of the active material, but the thick lattice substrate or the inner In the lattice substrate having a thick bone, the inner bone is not pushed out by the pressure at the time of filling, and remains in an eccentric arrangement before filling. In such a state, the bone on the filling surface side is likely to be exposed, and the paste-like active material wraps around on the side opposite to the filling surface, so that the bone is easily corroded, and the bone and the active material are not corroded. In addition, there is a problem that the conductivity is lost because lead sulfate is easily generated.

また、サイクル寿命を延ばすために、高密度のペースト状活物質を充填する際には、ペーストが硬いために、偏らせて配置した内側の骨が充填後に格子基板厚さ方向の中心まで変形しても、その反対側でのペースト状活物質の回り込みは改善されない。   Also, when filling a high-density paste-like active material to extend the cycle life, because the paste is hard, the biased inner bone is deformed to the center in the grid substrate thickness direction after filling. However, the wraparound of the paste-like active material on the opposite side is not improved.

本発明は、内側の骨が露出することなく、充填面と反対側へのペースト状活物質の、良好な充填性を持つ、鉛蓄電池用格子基板及びこの格子基板を用いた鉛蓄電池を、提供することを目的とする。   The present invention provides a lead-acid battery grid substrate and a lead-acid battery using this grid substrate, which have good filling properties of the pasty active material on the opposite side of the filling surface without exposing the inner bone. The purpose is to do.

本発明は、以下のものに関する。
(1)枠骨と、この枠骨内部に配置され、格子を形成する縦骨及び横骨とを備える。前記縦骨及び/又は横骨の厚みが、枠骨の厚みより薄い。そして、前記縦骨及び横骨の全てを、枠骨の厚みの範囲内とし、かつ枠骨により形成される一方の面と離間を有して配置した鉛蓄電池用格子基板。
(2)項(1)において、縦骨及び/又は横骨が、骨の径を異ならせた太骨と細骨とを混在させた鉛蓄電池用格子基板。
(3)項(1)又は項(2)に記載の鉛蓄電池用格子基板を用いた鉛蓄電池。
The present invention relates to the following.
(1) A frame bone, and a vertical bone and a horizontal bone which are arranged inside the frame bone and form a lattice are provided. The longitudinal bone and / or the lateral bone is thinner than the frame bone. A lead-acid battery grid substrate in which all of the vertical bones and horizontal bones are within the range of the thickness of the frame bones and are spaced apart from one surface formed by the frame bones.
(2) The grid substrate for a lead storage battery according to item (1), wherein the vertical bone and / or the horizontal bone are a mixture of a thick bone and a thin bone having different bone diameters.
(3) A lead storage battery using the lead substrate for a lead storage battery according to (1) or (2).

本発明の鉛蓄電池用格子基板は、枠骨内部に配置される、縦骨及び/又は横骨の厚みが、枠骨の厚みよりも薄くなっており、縦骨及び横骨は枠骨にて形成される一方の面と離間を有している。そのため、充填面から押し出されたペースト状活物質が、上記離間部分により通過し易くなり、充填面と反対側の面(一方の面)にて縦骨及び横骨を露出することなく、活物質にて覆うことができる。
また、縦骨及び横骨を枠骨格子に近い厚みとした場合であっても、活物質の充填後に縦骨及び横骨が、中心部に移動することが無いため、密度の高いペースト状活物質の充填も可能となる。
縦骨及び/又は横骨が、骨の径を異ならせた太骨と細骨を混在させている場合は、極板から活物質の脱落防止、耐腐食性および活物質の回り込み易さが優れる。
更に、本発明の鉛蓄電池は、縦骨及び横骨が露出することなく、電池寿命を縮めることがない。
In the lattice substrate for lead storage battery of the present invention, the thickness of the longitudinal bone and / or the lateral bone disposed inside the frame bone is thinner than the thickness of the frame bone, and the longitudinal bone and the lateral bone are frame bones. One surface to be formed is spaced apart. Therefore, the paste-like active material pushed out from the filling surface can easily pass through the separated portion, and the active material is exposed without exposing the longitudinal bone and the lateral bone on the surface (one surface) opposite to the filling surface. Can be covered.
Further, even when the longitudinal bone and the lateral bone have a thickness close to that of the frame skeleton, the longitudinal bone and the lateral bone do not move to the central portion after the filling of the active material. Filling with a substance is also possible.
When the vertical and / or horizontal bones are mixed with thick and thin bones with different bone diameters, the active material is prevented from falling off the electrode plate, and the corrosion resistance and ease of wrapping of the active material are excellent. .
Furthermore, the lead-acid battery of the present invention does not shorten the battery life without exposing the vertical and horizontal bones.

従来の格子基板の平面図である。It is a top view of the conventional lattice board | substrate. 格子基板の断面図である。It is sectional drawing of a lattice board | substrate. 本発明に係る格子基板の断面図である。It is sectional drawing of the lattice board | substrate which concerns on this invention. 格子基板Aの断面図である。2 is a cross-sectional view of a lattice substrate A. FIG. 格子基板Bの断面図である。3 is a cross-sectional view of a lattice substrate B. FIG. 格子基板Cの断面図である。2 is a cross-sectional view of a lattice substrate C. FIG. 格子基板Dの断面図である。2 is a cross-sectional view of a lattice substrate D. FIG. 本実施例に使用した充填装置の概略図である。It is the schematic of the filling apparatus used for the present Example. 60℃トリクル寿命試験結果である。It is a 60 degreeC trickle life test result.

(枠骨)
本発明にて述べる枠骨は、格子基板の外枠(外形形状)を形成するものであり、その形状を限定されるものではないが、最終的に使用される鉛蓄電池の外装ケースの内部形状に合わせることが好ましく、より具体的には、平面視にて正方形又は長方形となるものを用いることができる。
枠骨の断面形状は、特に限定されるものではないが、活物質との密着性を高めるために、活物質との接触面積が大きい菱形又は六角形が望ましい。
枠骨の厚みは、格子基板(活物質を充填する前の基板)の厚みに等しいもので、必ずしも、枠骨の最大太さを意味しない。枠骨の厚みは、特に限定されるものではないが、好ましくは、1〜6mm程度が好ましい。これは、1mmより薄いと物理的強度が不足して、製造時のハンドリングが悪くなり、重力鋳造方式にて作製するのが困難であることに起因する。逆に、6mmより厚い格子基板の場合は、ペースト状活物質を裏面まで均一に、骨を露出することなく充填することが困難になる。
枠骨の材質は、主原料を鉛とするもので、これに合金材質として、スズ、カルシウム、アンチモン等を用いることができ、中でも、スズ及びカルシウムの両方を用いるのが、好ましい。これは、カルシウムを添加すると、自己放電の割合を、減少させることができ、更に、このカルシウムを添加した際の課題である、骨の腐食の起こり易さを、スズの添加により、抑制することができるためである。
(Frame bone)
The frame bone described in the present invention forms the outer frame (outer shape) of the lattice substrate, and the shape is not limited, but the inner shape of the outer case of the lead storage battery to be used finally. More specifically, a material that is square or rectangular in plan view can be used.
The cross-sectional shape of the frame bone is not particularly limited, but a rhombus or hexagon having a large contact area with the active material is desirable in order to improve the adhesion with the active material.
The thickness of the frame bone is equal to the thickness of the lattice substrate (the substrate before being filled with the active material), and does not necessarily mean the maximum thickness of the frame bone. The thickness of the frame bone is not particularly limited, but preferably about 1 to 6 mm. This is because when the thickness is less than 1 mm, the physical strength is insufficient, the handling at the time of manufacture is deteriorated, and it is difficult to produce by the gravity casting method. Conversely, in the case of a grid substrate thicker than 6 mm, it becomes difficult to uniformly fill the paste-like active material up to the back surface without exposing the bone.
The material of the frame bone is lead as a main raw material, and tin, calcium, antimony, etc. can be used as the alloy material for this, and it is preferable to use both tin and calcium. This is because when calcium is added, the rate of self-discharge can be reduced, and the addition of tin suppresses the susceptibility to bone corrosion, which is a problem when calcium is added. It is because it can do.

(縦骨及び横骨)
本発明にて述べる縦骨及び横骨は、先に述べた枠骨の内部(枠骨にて区切られた領域の内側)に、格子を形成するように配置されたものであり、耳部の長寸法方向に対して平行に配置した骨を縦骨、直角方向に配置した骨を横骨とする。
縦骨及び横骨は、枠骨の外形形状を維持すると共に、後に述べる活物質を担持させるものであり、その配置本数は、枠骨の外形形状の変形及び活物質の脱落がない範囲にて、任意に設定することができる。
(Longitudinal and transverse bones)
The longitudinal bone and the lateral bone described in the present invention are arranged so as to form a lattice inside the frame bone described above (inside the region divided by the frame bone). Bone arranged in parallel to the long dimension direction is called a longitudinal bone, and a bone arranged in a perpendicular direction is called a horizontal bone.
The vertical and horizontal bones maintain the outer shape of the frame bone and carry the active material described later, and the number of arrangement is within a range in which the outer shape of the frame bone is not deformed and the active material is not dropped off. Can be set arbitrarily.

縦骨又は横骨は、その全てにて、同じ太さのものを用いる必要はなく、太骨と、この太骨よりも細い細骨とを混在して用いることができ、特に、太骨が、連続して配置されないように、太骨と太骨との間に1本又は複数本の細骨を配置させることが好ましい。これは、図2(a)に示すように、太骨6が連続配置されるよりも、図2(b)に示すように、太骨6、6の間に細骨7、7を配置した方が、活物質が格子基板の裏面に回り込み易くなるためである。
細骨の太さは、必ずしも1種類にする必要はなく、太骨の太さよりも細い、複数種類のものを使用することもできる。
また、縦骨及び横骨は、その何れか一方のみに、太骨及び細骨を配置し、他方を全て同じ太さとすることもできるが、活物質の回り込み易さから、縦骨及び横骨の双方が、太骨及び細骨を有することが好ましい。
尚、ここで述べる太さとは、骨の断面形状が円形であれば直径を示し、骨の断面が非円形であれば、最大長さと最小長さの平均値として、定義される。
It is not necessary to use the same thickness for the longitudinal bone or the transverse bone, and it is possible to use a thick bone and a fine bone that is thinner than this thick bone. It is preferable to arrange one or a plurality of thin bones between the thick bones and the thick bones so that they are not continuously arranged. This is because the thin bones 7 and 7 are arranged between the thick bones 6 and 6, as shown in FIG. 2B, rather than the thick bones 6 being continuously arranged as shown in FIG. 2A. This is because the active material is more likely to wrap around the back surface of the lattice substrate.
The thickness of the thin bone does not necessarily need to be one type, and a plurality of types can be used that are thinner than the thickness of the thick bone.
In addition, the longitudinal bone and the lateral bone can be arranged with either the thick bone or the thin bone only in one of them, and the other can have the same thickness. Both of them preferably have thick bones and thin bones.
The thickness described here indicates a diameter when the cross-sectional shape of the bone is circular, and is defined as an average value of the maximum length and the minimum length when the cross-section of the bone is non-circular.

縦骨及び横骨は、その全ての骨が、枠骨の厚みの範囲内に配置される。即ち、縦骨及び横骨は、枠骨により形成される厚み方向の2面にて形成される領域内に配置され、その領域よりも外部へと突出させない。そのため、活物質を充填させる際には、枠骨部分がローラからの力を支え、縦骨及び横骨に、局所的な応力をかけることがなく、更に、活物質から突出する部分もなくなる。
また、縦骨及び横骨は、その全てが、枠骨により形成される一方の面と離間を有して配置される。
ここで述べる一方の面とは、前述した枠骨により形成される厚み方向の2面の中の1面であり、より詳細に述べると、図3に記載するように、枠骨1の厚み部分である上端と下端にて形成される上面又は下面の、何れか一方の面である。そして、この一方の面は、活物質を充填させる際の、充填面8と対向する面となり、離間を設けたことで、充填面から充填された活物質が、回り込み易くなる。
尚、縦骨及び横骨は、先に述べた一方の面とは離間を有するが、他方の面(充填面8)とは、必ずしも離間を有する必要がなく、充填面と面一になるように、配置することもできる。このように配置した場合は、活物質充填時に、ローラからの圧力を、枠骨ばかりでなく、縦骨及び/又は横骨にも分散させることができ、より格子基板の変形を阻止し易くなる。
All of the longitudinal and lateral bones are arranged within the thickness of the frame bone. That is, the vertical bone and the horizontal bone are arranged in a region formed by two surfaces in the thickness direction formed by the frame bone, and do not protrude outward from the region. Therefore, when the active material is filled, the frame bone portion supports the force from the roller, so that no local stress is applied to the longitudinal bone and the lateral bone, and there is no portion protruding from the active material.
Further, the longitudinal bone and the lateral bone are all arranged so as to be separated from one surface formed by the frame bone.
One surface described here is one of the two surfaces in the thickness direction formed by the frame bone described above. More specifically, as shown in FIG. It is any one surface of the upper surface or lower surface formed by the upper end and lower end which are. And this one surface turns into the surface facing the filling surface 8 at the time of filling with an active material, and the active material with which it filled from the filling surface goes around easily by providing separation.
The vertical bone and the horizontal bone are spaced apart from one of the surfaces described above, but are not necessarily spaced from the other surface (filling surface 8) and are flush with the filling surface. It can also be arranged. When arranged in this way, when filling the active material, the pressure from the roller can be distributed not only to the frame bone but also to the vertical bone and / or the horizontal bone, making it easier to prevent deformation of the lattice substrate. .

縦骨及び横骨の断面形状は、枠骨と同じく特に限定されるものではないが、活物質との密着性を高めるために、活物質との接触面積が大きい菱形又は六角形が望ましい。また、縦骨と横骨の断面形状は必ずしも同じである必要はない。   The cross-sectional shapes of the longitudinal bone and the lateral bone are not particularly limited as in the case of the frame bone, but a rhombus or hexagon having a large contact area with the active material is desirable in order to improve the adhesion with the active material. Further, the cross-sectional shapes of the longitudinal bone and the lateral bone are not necessarily the same.

縦骨及び横骨の材質は、先に述べた枠骨と、同じでも、異なるものであっても良いが、枠骨、縦骨及び横骨を、一括一体成形することが容易に行えるように、同じものを使用することが好ましい。   The material of the vertical bone and the horizontal bone may be the same as or different from the frame bone described above, but the frame bone, the vertical bone and the horizontal bone can be easily formed integrally. It is preferable to use the same one.

(格子基板の製造方法)
格子基板は、様々な方法により製造することができ、重力鋳造方式(GDC:Gravity Die Casting)、連続鋳造方式、エキスパンド方式、打ち抜き方式等を用いることができるが、重力鋳造方式を用いることが好ましい。これは、鋳造可能な格子の太さに理論上限界がなく、且つ太骨と細骨を合わせ持つ格子基板の製造が、容易に可能であり、集電特性及び耐食性に優れているためである。
重力鋳造方式について、より詳細に述べると、格子基板の原材料金属(合金)を溶融し、この溶融金属(合金)に耐えうる金型へ、溶融金属(合金)を重力により流し込み、鋳造するもので、高速に、格子基板を形成することができる。
(Lattice substrate manufacturing method)
The lattice substrate can be manufactured by various methods, and a gravity casting method (GDC: Gravity Die Casting), a continuous casting method, an expanding method, a punching method, or the like can be used, but it is preferable to use a gravity casting method. . This is because there is no theoretical limit to the thickness of the grid that can be cast, and it is easy to manufacture a grid substrate having both thick and thin bones, and it has excellent current collecting characteristics and corrosion resistance. .
The gravity casting method will be described in more detail. The raw material metal (alloy) of the lattice substrate is melted, and the molten metal (alloy) is poured by gravity into a mold that can withstand the molten metal (alloy) and cast. The lattice substrate can be formed at high speed.

(活物質)
前述してきた格子基板には、極板とするために、活物質を担持させる。活物質は、特に限定されるものでないが、一酸化鉛を含んだ鉛粉、水、硫酸等を混練(正極、負極の特性に合わせてカットファイバ、炭素粉末、リグニン、硫酸バリウム、鉛丹等の添加物を加える場合もある)して作製するのが好ましい。
(Active material)
The above-described lattice substrate is loaded with an active material to form an electrode plate. The active material is not particularly limited, but kneaded lead powder containing lead monoxide, water, sulfuric acid, etc. (cut fiber, carbon powder, lignin, barium sulfate, lead tan etc. according to the characteristics of the positive electrode and negative electrode) The additive may be added in some cases.

(活物質の充填)
活物質の充填は、様々な方法により行うことができるが、格子基板に対して、圧力をかけたペースト状の活物質を充填機から押し出し、更に、この活物質をローラにより押し込むようにすることで、縦骨及び横骨の露出がないように、行うことができる。
(Filling of active material)
The filling of the active material can be performed by various methods. The paste-like active material applied with pressure to the lattice substrate is pushed out of the filling machine, and this active material is pushed by a roller. Thus, the exposure can be performed without exposing the longitudinal bone and the lateral bone.

以下、本発明の実施例について、図面を用いて説明する。
(格子基板の作製)
鉛に、スズ:1.6質量%、カルシウム:0.08質量%を添加して混合物全体を100質量%とした鉛合金を溶融し、異なる4種類の型を用いて重力鋳造方式によって正極用の格子基板A、格子基板B、格子基板C、格子基板Dを作製した。
Embodiments of the present invention will be described below with reference to the drawings.
(Production of lattice substrate)
Lead alloy with 1.6% by mass of tin and 0.08% by mass of calcium added to lead to melt the entire mixture to 100% by mass is used for the positive electrode by gravity casting using four different molds. The lattice substrate A, the lattice substrate B, the lattice substrate C, and the lattice substrate D were prepared.

<実施例1:格子基板A>
格子基板Aの大きさは、縦:385mm、横:140mm、厚み:5.8mmとして作製した。また、枠骨の内側に形成される縦骨及び横骨には、太骨と細骨が存在し、断面形状を図4に示すように、上下方向に長い六角形であり、太骨6が、高さ:5.6mm、幅:4.3mm、細骨7が、高さ:3.6mm、幅:3.4mmとしている。
尚、厚み方向の上方の面、即ち充填面8で枠骨1と太骨6の高さを面一にし、充填面の反対の面において、枠骨1と太骨6の高さの差は、0.2mmとしている。
<Example 1: Lattice substrate A>
The size of the lattice substrate A was prepared with a length of 385 mm, a width of 140 mm, and a thickness of 5.8 mm. In addition, the vertical and horizontal bones formed inside the frame bone have thick and thin bones, and the cross-sectional shape is a hexagon that is long in the vertical direction, as shown in FIG. , Height: 5.6 mm, width: 4.3 mm, and thin bone 7 have a height: 3.6 mm and a width: 3.4 mm.
It should be noted that the height of the frame bone 1 and the thick bone 6 is flush with the upper surface in the thickness direction, that is, the filling surface 8, and the difference in height between the frame bone 1 and the thick bone 6 on the opposite surface of the filling surface is 0.2 mm.

<実施例2:格子基板B>
格子基板Bの大きさは、縦:385mm、横:140mm、厚み:5.8mmとして作製した。また、枠骨の内側に形成される縦骨及び横骨には、太骨と細骨が存在し、断面形状を図5に示すように、上下方向に長い六角形であり、太骨6が、高さ:5.4mm、幅:4.3mm、細骨7が、高さ:3.6mm、幅:3.4mmとしている。
尚、厚み方向の上方の面、即ち充填面8で枠骨1と太骨6の高さを面一にし、充填面の反対の面において、枠骨1と太骨6の高さの差は、0.4mmとしている。
<Example 2: Lattice substrate B>
The size of the lattice substrate B was prepared such that length: 385 mm, width: 140 mm, and thickness: 5.8 mm. Further, the vertical and horizontal bones formed inside the frame bone have thick and thin bones, and the cross-sectional shape is a hexagon that is long in the vertical direction, as shown in FIG. , Height: 5.4 mm, width: 4.3 mm, and fine bone 7 have a height: 3.6 mm and a width: 3.4 mm.
It should be noted that the height of the frame bone 1 and the thick bone 6 is flush with the upper surface in the thickness direction, that is, the filling surface 8, and the difference in height between the frame bone 1 and the thick bone 6 on the opposite surface of the filling surface is 0.4 mm.

<比較例1:格子基板C>
格子基板Cの大きさは、縦:385mm、横:140mm、厚み:5.8mmとして作製した。また枠骨の内側に形成される縦骨及び横骨の断面形状は、図6に示すように、上下方向に長い六角形であり、縦骨と横骨の全ての骨を、高さ:3.2mm、幅:2.4mmとしている。
尚、縦骨及び横骨は、枠骨1にて形成される上面及び下面とは面一になっておらず、双方の面に対して低くなっている。
<Comparative Example 1: Lattice substrate C>
The size of the lattice substrate C was prepared such that length: 385 mm, width: 140 mm, and thickness: 5.8 mm. Further, as shown in FIG. 6, the cross-sectional shapes of the longitudinal bone and the lateral bone formed inside the frame bone are hexagons that are long in the vertical direction, and all the longitudinal and lateral bones have a height of 3 .2 mm, width: 2.4 mm.
Note that the longitudinal bone and the lateral bone are not flush with the upper surface and the lower surface formed by the frame bone 1 and are lower than both surfaces.

<比較例2:格子基板D>
格子基板Dの大きさは、縦:385mm、横:140mm、厚み:5.8mmとして作製した。また枠骨の内側に形成される縦骨及び横骨には、太骨と細骨が存在し、断面形状を図7に示すように、上下方向に長い六角形であり、太骨6が、高さ:5.8mm、幅:4.3mm、細骨7が、高さ:3.6mm、幅:3.4mmとしている。
<Comparative Example 2: Lattice substrate D>
The size of the lattice substrate D was prepared with a length of 385 mm, a width of 140 mm, and a thickness of 5.8 mm. Further, in the vertical bone and the horizontal bone formed inside the frame bone, there are a thick bone and a thin bone, and the cross-sectional shape is a hexagon that is long in the vertical direction, as shown in FIG. The height: 5.8 mm, the width: 4.3 mm, and the fine bone 7 are the height: 3.6 mm and the width: 3.4 mm.

(活物質の充填性確認)
前述した格子基板A、B、C、Dに対し、正極用のペースト状活物質を、図8に示す構造の充填機にて活物質充填実験を実施し、その後、熟成・乾燥をして未化成の正極板を作製した。
尚、用いた活物質は、以下に示す工程により調製した。
一酸化鉛を主成分とする鉛粉の質量を100質量%として、ポリエステル繊維を0.1質量%加えて混合し、次に水を12質量%、希硫酸を16質量%加えて再び混練をして正極用のペースト状活物質を作製した。
(Confirmation of fillability of active material)
An active material filling experiment was performed on the above-described lattice substrates A, B, C, and D using a filling machine having a structure shown in FIG. 8 and then aging and drying were performed. A chemical positive plate was prepared.
The active material used was prepared by the following steps.
The mass of the lead powder containing lead monoxide as a main component is 100% by mass, 0.1% by mass of polyester fiber is added and mixed, and then 12% by mass of water and 16% by mass of dilute sulfuric acid are added and kneaded again. Thus, a paste-like active material for the positive electrode was produced.

(充填結果)
格子基板A、B、C、Dそれぞれ100枚に、前述したペースト状活物質を充填し、活物質の裏回り具合を視認した結果を表1に記す。
尚、裏回り不適としたのは、ペースト状活物質が裏回りせずに、縦骨又は横骨の一部でも露出させた場合を意味している。
活物質の充填は、回転ローラ9により移動する充填ベルト10の上に、格子基板5をセットし、ペースト状活物質11を収納するホッパ12の直下に達した際に、回転翼13及びペースト供給用ロール14を回転させて、ペースト状活物質11を格子基板5に対して押し出す。
格子基板5は、その後ペースト状活物質11の部分をローラ(図示省略)により押下され、ペースト状活物質を裏回りさせる。
(Filling result)
Table 1 shows the results obtained by filling the above-described pasty active material into 100 lattice substrates A, B, C, and D, respectively, and visually recognizing the backside of the active material.
Note that “unsuitable reverse” means that the paste-like active material is not reversed and a part of the longitudinal bone or the lateral bone is exposed.
The filling of the active material is performed when the lattice substrate 5 is set on the filling belt 10 that is moved by the rotating roller 9 and reaches the position immediately below the hopper 12 that houses the paste-like active material 11. The work roll 14 is rotated to push the pasty active material 11 against the lattice substrate 5.
Then, the lattice substrate 5 is pressed down on the portion of the paste-like active material 11 by a roller (not shown) so that the paste-like active material is turned around.

Figure 2011048911
Figure 2011048911


上記、表1に示す通り、実施例1及び2においては、裏回りが良好であり、100枚の格子基板に対して活物質を担持させたが、全ての格子基板において縦骨又は横骨が露出することがなく、活物質にて覆うことができた。
比較例1では、骨の太さが、実施例1、2に比較して細いため、裏回り不適なものはなかったが、骨を太くした比較例2では、裏回り不適が、27%も発生している。
即ち、骨の太い格子基板においては、本発明により、裏回り不適を大幅に低下させることができると、理解できる。

As shown in Table 1 above, in Examples 1 and 2, the back is good and the active material was supported on 100 lattice substrates. It was not exposed and could be covered with the active material.
In Comparative Example 1, the thickness of the bone was thinner than in Examples 1 and 2 and therefore there was no unsuitable reverse side. However, in Comparative Example 2 in which the bone was thick, the reverse side unsuitable was 27%. It has occurred.
That is, it can be understood that in the case of a lattice substrate having a thick bone, the inappropriateness of the back side can be greatly reduced by the present invention.

(制御弁式鉛蓄電池の作製)
前述した格子基板Aと格子基板Cを用いた2種類の制御弁式鉛蓄電池の作製方法を以下に示す。
正極板においては、上述の方法で作製した活物質を極板格子A、Cに充填し、熟成・乾燥したものを用いた。
また、負極板においては、以下に示す方法で作製したものを用いた。
負極板は、スズ:0.2質量%、カルシウム:0.1質量%を添加して混合物全体を100質量%として作製した鉛合金を溶融し、重力鋳造方式によって縦:385mm、横:140mm、厚み:3.0mmの格子基板(断面形状:縦骨と横骨の全ての骨が高さ2.6mm、幅1.8mmの六角形)を作製した。この格子基板に、一酸化鉛を主成分とする鉛粉の質量に対して、リグニン:0.2質量%、硫酸バリウム:0.1質量%、通常の市販されている黒鉛等のカーボン粉末:0.2質量%、ポリエステル繊維:0.1質量%加えて混合する。次に、水:12質量%加えて混練をした後、更に希硫酸:13質量%加えて再び混練したペースト状活物質を充填した。その充填後は、熟成・乾燥をして負極板とした。
上述した正極板と負極板とを、間にセパレータを介しながら1枚ずつ交互に積層し、同極板同士をストラップで連結させ、正極板24枚/負極板25枚からなる極板群を作製した。この極板群を電槽の中に入れ、希硫酸を注液し、化成を行って2V−1500Ahの制御弁式鉛蓄電池を作製した。
各電池は、負極板を前述したものを共通して用い、正極板を格子基板Aと格子基板Cとで、それぞれ用いた電池A、Cを作製した。
(Production of control valve type lead acid battery)
A method for producing two types of control valve type lead-acid batteries using the above-described lattice substrate A and lattice substrate C will be described below.
In the positive electrode plate, the active material produced by the above-described method was filled in the electrode plate lattices A and C, and aged and dried.
Moreover, what was produced with the method shown below was used for the negative electrode plate.
The negative electrode plate was prepared by melting a lead alloy prepared by adding tin: 0.2% by mass and calcium: 0.1% by mass to make the whole mixture 100% by mass, and longitudinally: 385 mm, laterally: 140 mm, by a gravity casting method. A lattice substrate having a thickness of 3.0 mm (cross-sectional shape: a hexagon having a height of 2.6 mm and a width of 1.8 mm in which all bones of a longitudinal bone and a transverse bone are formed) was prepared. On this lattice substrate, lignin: 0.2% by mass, barium sulfate: 0.1% by mass with respect to the mass of lead powder mainly composed of lead monoxide, carbon powder such as ordinary commercially available graphite: 0.2% by mass, polyester fiber: 0.1% by mass is added and mixed. Next, after adding 12% by mass of water and kneading, the paste-like active material kneaded again by adding 13% by mass of dilute sulfuric acid was filled. After the filling, it was aged and dried to obtain a negative electrode plate.
The above-described positive electrode plate and negative electrode plate are alternately laminated one by one with a separator in between, and the same electrode plates are connected with a strap to produce an electrode plate group consisting of 24 positive electrode plates / 25 negative electrode plates. did. This electrode plate group was put in a battery case, diluted sulfuric acid was injected, and chemical conversion was performed to produce a 2V-1500 Ah control valve type lead storage battery.
Each battery used what was mentioned above in common about the negative electrode plate, and produced the batteries A and C which used the positive electrode plate with the lattice board | substrate A and the lattice board | substrate C, respectively.

(制御弁式鉛蓄電池の寿命試験)
上記の作製した各電池を用い、60℃の恒温槽においてJIS−C 8704−2−1に準拠するトリクル寿命加速試験(定電圧充電電圧:2.23V)を行った(鉛蓄電池は、気温60℃中での1ヶ月経過で気温25℃中での1年相当となる)。また電池は、1カ月毎に25℃環境下にて0.25CA放電容量を測定し、放電容量の推移を確認した。
(Control valve type lead-acid battery life test)
A trickle life acceleration test (constant voltage charging voltage: 2.23 V) in accordance with JIS-C 8704-2-1 was conducted in a constant temperature bath of 60 ° C. using each of the batteries prepared above (lead storage battery has an air temperature of 60 1 month in ℃ is equivalent to one year at 25 ℃) Moreover, the battery measured the 0.25CA discharge capacity in a 25 degreeC environment every month, and confirmed the transition of discharge capacity.

(寿命試験結果)
図9に60℃トリクル寿命試験結果を示す。比較例1で作成した電池Cは、約11.5ヶ月で寿命に経ったのに対し、実施例1の極板で作製した電池Aは、約18.5ヶ月と約1.6倍の寿命であった。寿命となった電池Cを解体したところ、腐食による正極板の伸びが激しく、これが寿命原因であるとわかった。即ち、格子基板Cにおいては、裏回りについては良好であるものの、電池寿命が短いことが理解できる。
以上の結果から、実施例1の格子基板は、活物質ペーストの充填性に優れ、長寿命な鉛蓄電池を提供することができることがわかる。
(Life test result)
FIG. 9 shows the results of a 60 ° C. trickle life test. The battery C produced in Comparative Example 1 passed the life in about 11.5 months, whereas the battery A produced in the electrode plate of Example 1 was about 18.5 months and about 1.6 times longer in life. Met. When the battery C which had reached the end of its life was disassembled, the positive electrode plate was severely stretched by corrosion, and it was found that this was the cause of the life. That is, in the lattice substrate C, it can be understood that the battery life is short although the reverse is good.
From the above results, it can be seen that the lattice substrate of Example 1 can provide a long-life lead-acid battery that is excellent in fillability of the active material paste.

1…枠骨、2…縦骨、3…横骨、4…耳部、5…格子基板、6…太骨、7…細骨、8…充填面、9…回転ローラ、10…充填ベルト、11…ペースト状活物質、12…ホッパ、13…回転翼、14…ペースト供給用ロール DESCRIPTION OF SYMBOLS 1 ... Frame bone, 2 ... Vertical bone, 3 ... Horizontal bone, 4 ... Ear part, 5 ... Lattice substrate, 6 ... Thick bone, 7 ... Fine bone, 8 ... Filling surface, 9 ... Rotating roller, 10 ... Filling belt, DESCRIPTION OF SYMBOLS 11 ... Paste-like active material, 12 ... Hopper, 13 ... Rotary blade, 14 ... Paste supply roll

Claims (3)

枠骨と、この枠骨内部に配置され、格子を形成する縦骨及び横骨とを備え、
前記縦骨及び/又は横骨の厚みが、枠骨の厚みより薄く、
前記縦骨及び横骨の全てを、枠骨の厚みの範囲内とし、かつ枠骨により形成される一方の面と離間を有して配置した鉛蓄電池用格子基板。
A frame bone, and a longitudinal bone and a horizontal bone arranged inside the frame bone and forming a lattice,
The vertical bone and / or horizontal bone is thinner than the frame bone,
A lead-acid battery grid substrate in which all the vertical bones and horizontal bones are within the thickness range of the frame bones and are spaced apart from one surface formed by the frame bones.
請求項1において、縦骨及び/又は横骨が、骨の径を異ならせた太骨と細骨とを混在させた鉛蓄電池用格子基板。   The lead-acid battery grid substrate according to claim 1, wherein the vertical bone and / or the horizontal bone are a mixture of a thick bone and a thin bone having different bone diameters. 請求項1又は2に記載の鉛蓄電池用格子基板を用いた鉛蓄電池。   The lead acid battery using the grid | lattice board | substrate for lead acid batteries of Claim 1 or 2.
JP2009193887A 2009-08-25 2009-08-25 Grid substrate for lead-acid battery and lead-acid battery using the same Pending JP2011048911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009193887A JP2011048911A (en) 2009-08-25 2009-08-25 Grid substrate for lead-acid battery and lead-acid battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009193887A JP2011048911A (en) 2009-08-25 2009-08-25 Grid substrate for lead-acid battery and lead-acid battery using the same

Publications (1)

Publication Number Publication Date
JP2011048911A true JP2011048911A (en) 2011-03-10

Family

ID=43835067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009193887A Pending JP2011048911A (en) 2009-08-25 2009-08-25 Grid substrate for lead-acid battery and lead-acid battery using the same

Country Status (1)

Country Link
JP (1) JP2011048911A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014239027A (en) * 2013-05-07 2014-12-18 株式会社Gsユアサ Control valve type lead-acid battery
JP2014241306A (en) * 2014-10-02 2014-12-25 株式会社Gsユアサ Lead storage battery
JP2015088289A (en) * 2013-10-30 2015-05-07 株式会社Gsユアサ Valve-regulated lead-acid battery and casting collector thereof
JP2017139215A (en) * 2016-02-02 2017-08-10 株式会社Gsユアサ Positive electrode plate for lead-acid battery, lead-acid battery and method of manufacturing positive electrode plate for lead-acid battery
JP2019186028A (en) * 2018-04-10 2019-10-24 日立化成株式会社 Grid and lead-acid battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02114451A (en) * 1988-10-25 1990-04-26 Matsushita Electric Ind Co Ltd Paste type positive electrode plate for lead-acid battery
JPH04162358A (en) * 1990-10-24 1992-06-05 Shin Kobe Electric Mach Co Ltd Lattice unit for lead-acid battery plate and manufacture thereof
JPH04171666A (en) * 1990-11-05 1992-06-18 Matsushita Electric Ind Co Ltd Lead-acid battery
JPH04322058A (en) * 1991-04-23 1992-11-12 Shin Kobe Electric Mach Co Ltd Enclosed lead storage battery
JPH1110311A (en) * 1997-06-20 1999-01-19 Shin Kobe Electric Mach Co Ltd Manufacture of lead storage battery
JP2001185157A (en) * 1999-12-28 2001-07-06 Shin Kobe Electric Mach Co Ltd Lead acid battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02114451A (en) * 1988-10-25 1990-04-26 Matsushita Electric Ind Co Ltd Paste type positive electrode plate for lead-acid battery
JPH04162358A (en) * 1990-10-24 1992-06-05 Shin Kobe Electric Mach Co Ltd Lattice unit for lead-acid battery plate and manufacture thereof
JPH04171666A (en) * 1990-11-05 1992-06-18 Matsushita Electric Ind Co Ltd Lead-acid battery
JPH04322058A (en) * 1991-04-23 1992-11-12 Shin Kobe Electric Mach Co Ltd Enclosed lead storage battery
JPH1110311A (en) * 1997-06-20 1999-01-19 Shin Kobe Electric Mach Co Ltd Manufacture of lead storage battery
JP2001185157A (en) * 1999-12-28 2001-07-06 Shin Kobe Electric Mach Co Ltd Lead acid battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014239027A (en) * 2013-05-07 2014-12-18 株式会社Gsユアサ Control valve type lead-acid battery
JP2015088289A (en) * 2013-10-30 2015-05-07 株式会社Gsユアサ Valve-regulated lead-acid battery and casting collector thereof
JP2014241306A (en) * 2014-10-02 2014-12-25 株式会社Gsユアサ Lead storage battery
JP2017139215A (en) * 2016-02-02 2017-08-10 株式会社Gsユアサ Positive electrode plate for lead-acid battery, lead-acid battery and method of manufacturing positive electrode plate for lead-acid battery
JP7098874B2 (en) 2016-02-02 2022-07-12 株式会社Gsユアサ Manufacturing method of lead-acid battery and positive electrode plate for lead-acid battery
JP2019186028A (en) * 2018-04-10 2019-10-24 日立化成株式会社 Grid and lead-acid battery

Similar Documents

Publication Publication Date Title
JP5387666B2 (en) Lattice plate for lead-acid battery, electrode plate and lead-acid battery provided with this electrode plate
JP6665465B2 (en) Lead storage battery
US10084209B2 (en) Valve regulated lead-acid battery
JP4892651B1 (en) Lead acid battery
JP5325358B1 (en) ELECTRODE FOR BATTERY AND METHOD FOR MANUFACTURING THE SAME
JP2011048911A (en) Grid substrate for lead-acid battery and lead-acid battery using the same
TWI733637B (en) Current collector for coated lead storage battery, positive plate for coated lead storage battery, and coated lead storage battery
WO2012132476A1 (en) Grid for lead storage battery, positive plate using grid, plate group, lead storage battery, and method for manufacturing positive plate for lead storage battery
KR101830825B1 (en) Manufacturing method of ldad-acid battery for prevent power failure
JP5402090B2 (en) Manufacturing method of all-solid-state lithium ion secondary battery
JP5772497B2 (en) Lead acid battery
JP2007123244A (en) Cylindrical alkaline battery
JP5673194B2 (en) Positive electrode lattice substrate, electrode plate using the positive electrode lattice substrate, and lead-acid battery using the electrode plate
JP2008084676A (en) Rolled lead alloy sheet for expanded positive grid and lead-acid battery
JP5387667B2 (en) Lead acid battery
JP2012089296A (en) Lead storage battery
JP2008146960A (en) Lead-acid battery
JP2010277941A (en) Lead-acid battery
JP2015088289A (en) Valve-regulated lead-acid battery and casting collector thereof
JP2016096025A (en) Control valve-type lead storage battery
JP2016085859A (en) Lead acid storage battery
JP4783980B2 (en) Cylindrical secondary battery
JP2001332268A (en) Lead battery having control valve
JP2004296159A (en) Cylindrical storage battery
JP2010118249A (en) Method of manufacturing lead storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130905

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131029