WO2008105218A1 - Elliptical polarizing plate for vertically aligned liquid crystal display and vertically aligned liquid crystal display using the same - Google Patents

Elliptical polarizing plate for vertically aligned liquid crystal display and vertically aligned liquid crystal display using the same Download PDF

Info

Publication number
WO2008105218A1
WO2008105218A1 PCT/JP2008/051713 JP2008051713W WO2008105218A1 WO 2008105218 A1 WO2008105218 A1 WO 2008105218A1 JP 2008051713 W JP2008051713 W JP 2008051713W WO 2008105218 A1 WO2008105218 A1 WO 2008105218A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
film
polarizing plate
crystal display
vertical alignment
Prior art date
Application number
PCT/JP2008/051713
Other languages
French (fr)
Japanese (ja)
Inventor
Gorou Suzaki
Tomoo Hirai
Tetsuya Uesaka
Original Assignee
Nippon Oil Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corporation filed Critical Nippon Oil Corporation
Publication of WO2008105218A1 publication Critical patent/WO2008105218A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133634Birefringent elements, e.g. for optical compensation the refractive index Nz perpendicular to the element surface being different from in-plane refractive indices Nx and Ny, e.g. biaxial or with normal optical axis
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1393Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the birefringence of the liquid crystal being electrically controlled, e.g. ECB-, DAP-, HAN-, PI-LC cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133633Birefringent elements, e.g. for optical compensation using mesogenic materials

Definitions

  • the present invention relates to a vertical alignment type liquid crystal display device in which liquid crystal molecules are aligned perpendicular to a substrate when no voltage is applied, and in particular, an elliptically polarized light for a vertical alignment type liquid crystal display device that realizes a wide viewing angle and can be made thin.
  • the present invention relates to a vertical alignment type liquid crystal display device in which an elliptically polarizing plate is disposed.
  • One of the display modes in the liquid crystal display device is a vertical alignment mode in which liquid crystal molecules in the liquid crystal cell are aligned perpendicularly to the substrate surface in the initial state. When no voltage is applied, the liquid crystal molecules are aligned perpendicularly to the substrate surface, and a black display can be obtained by placing a linear polarizer perpendicular to both sides of the liquid crystal cell.
  • the optical characteristics in the liquid crystal cell are isotropic in the in-plane direction, and ideal viewing angle compensation is easily possible.
  • an optical element having negative uniaxial optical anisotropy in the thickness direction is inserted between one or both sides of the liquid crystal cell and the linear polarizer. When inserted into the, a very good black display viewing angle characteristic can be obtained.
  • Patent Document 1 Japanese Patent Laid-Open No. 2 0 0 2-4 0 4 2 8
  • linearly polarizing plates arranged on both sides of a liquid crystal element having a liquid crystal layer including a state are replaced with circularly polarizing plates.
  • the dark area during voltage application can be eliminated, and a liquid crystal display device with high transmittance can be realized.
  • the vertical alignment type liquid crystal display device using the circularly polarizing plate has a problem that the viewing angle characteristic is narrower than that of the vertical alignment type liquid crystal display device using the linear polarizing plate.
  • Patent Document 2 Japanese Patent Laid-Open No. 2 0 0 3—2 0 7 7 8 2
  • a negative uniaxial optical anisotropic Optically anisotropic elements and biaxial optically anisotropic materials have been proposed.
  • an optical anisotropic element with negative uniaxial optical anisotropy can compensate for positive uniaxial optical anisotropy in the thickness direction of the liquid crystal cell, but cannot compensate for the viewing angle characteristics of the 14 wavelength plate. A sufficient viewing angle characteristic cannot be obtained.
  • the in-plane main refractive index of the resulting retardation plate is nx, ny
  • the phase difference cannot be controlled over a wide range.
  • the thickness of the obtained phase difference plate increases rather than a elongate film.
  • the thickness of the retardation plate obtained by the manufacturing method is about 50 to 100 ⁇ um, which is not sufficient for reducing the thickness required for liquid crystal display devices and the like.
  • An object of the present invention is to provide a vertical alignment type liquid crystal display device having excellent viewing angle characteristics. Another object of the present invention is to provide a thin elliptical polarizing plate capable of controlling the thickness direction retardation over a wide range as an elliptical polarizing plate for a vertical alignment type liquid crystal display device.
  • the present inventors have achieved the above object by using an elliptically polarizing plate for a vertical alignment type liquid crystal display device shown below and a vertical alignment type liquid crystal display device using the same. The inventors have found that this can be achieved and have completed the present invention.
  • a liquid crystal material exhibiting at least positive uniaxiality is subjected to homeotropic pick orientation in a liquid crystal state, and then a vertical orientation comprising a homeotropic pick oriented liquid crystal film in which the orientation is fixed and a linear polarizing plate.
  • the vertical alignment liquid crystal display device ellipse according to the first aspect of the present invention is characterized in that the homeotopically picked liquid crystal film satisfies the following [1] and [2].
  • R e 1 means the in-plane retardation value of the home-mouth pick-aligned liquid crystal film
  • R th 1 means the retardation value in the thickness direction of the home-top pick-aligned liquid crystal film.
  • D 1 is the thickness of the home-orifice pick-aligned liquid crystal film
  • Nx 1 and Ny 1 are the main refractive indexes in the plane of the home-orifice pick-oriented liquid crystal film
  • N z 1 is the main refractive index in the thickness direction
  • the liquid crystal state is homeotropically aligned.
  • the liquid crystal state is homeotropically aligned.
  • the elliptically polarizing plate for a vertical alignment type liquid crystal display device has the first optical anisotropic element showing a phase difference of 1 ⁇ 4 wavelength in the plane. 4.
  • the elliptically polarizing plate for a vertical alignment type liquid crystal display device is different from the first optical anisotropic element exhibiting a phase difference of 1Z 4 wavelengths in the plane with a negative uniaxial optical difference in the thickness direction.
  • Re 2 means the in-plane retardation value of the third optical anisotropic element
  • R th 2 means the retardation value in the thickness direction of the third optical anisotropic element.
  • R th 2 (N x 2 -N z 2) X d 2 [nm] is there.
  • D 2 is the thickness of the third optical anisotropic element
  • Nx 2 and Ny 2 are the main refractive indices in the plane of the third optical anisotropic element
  • N z 2 is the main refractive index in the thickness direction.
  • the third optical anisotropic element is at least one polymer material selected from the group consisting of a polyamide, a polyimide, a polyester, a polyether ketone, a polyamide imide, and a polyester imide.
  • the first optical anisotropic element exhibits a 1/4 wavelength phase difference in a plane and has negative biaxial optical anisotropy.
  • An eighth aspect of the present invention is the elliptically polarizing plate for a vertical alignment type liquid crystal display device according to any one of the first to seventh aspects, wherein the total film thickness is 400 m or less.
  • a vertical alignment type liquid crystal cell including a liquid crystal molecule that is vertically aligned with respect to a substrate surface when no voltage is applied between a pair of substrates having electrodes, and the vertical alignment type liquid crystal cell substrate.
  • a tenth aspect of the present invention is the vertical alignment type liquid crystal display device according to the ninth aspect of the present invention, wherein the surface from the substrate side is disposed on the substrate opposite to the substrate on which the elliptically polarizing plate for the vertical alignment type liquid crystal display device is disposed.
  • the vertical alignment type liquid crystal display device according to the ninth aspect of the present invention wherein at least one first optical anisotropic element exhibiting a phase difference of 1/4 wavelength and a linearly polarizing plate are disposed.
  • a third optical element having negative uniaxial optical anisotropy in at least one thickness direction between the first optical anisotropic element and the vertical alignment type liquid crystal cell.
  • the vertical alignment type liquid crystal display device according to the ninth or 10th aspect of the present invention characterized by having an anisotropic element.
  • a first aspect of the present invention includes the fourth optical anisotropic element having positive uniaxial optical anisotropy in an in-plane direction between the vertical alignment type liquid crystal cell and the linearly polarizing plate.
  • a vertical alignment type liquid crystal display device according to any of 9th to 11th of the present invention.
  • a first aspect of the present invention is the present invention, wherein the first optical anisotropic element exhibits a phase difference of 1 Z 4 wavelength in a plane and has negative biaxial optical anisotropy.
  • the vertical alignment type liquid crystal display device according to any one of Items 9 to 12.
  • a fourteenth aspect of the present invention is the ninth to thirteenth aspects of the present invention, wherein one substrate of the vertical alignment type liquid crystal cell is a substrate having a region having a reflection function and a region having a transmission function.
  • the vertical alignment type liquid crystal display device When the elliptical polarizing plate for a vertical alignment type liquid crystal display device of the present invention using a homeotopic pick E-direction liquid crystal film is arranged in a vertical alignment type liquid crystal display device, the viewing angle can be widened.
  • the vertical alignment type liquid crystal display device has a bright display and is capable of high contrast display in all directions.
  • the elliptically polarizing plate for vertical alignment type liquid crystal display device of the present invention will be described.
  • the elliptically polarizing plate for a vertical alignment type liquid crystal display device comprises a homeo-mouth-pick-aligned liquid crystal film in which a liquid crystal material exhibiting at least positive uniaxial property is home-mouth pick-aligned in a liquid crystal state and then the orientation is fixed. It consists of a linear polarizing plate.
  • the alignment film is formed on the alignment substrate or on the alignment substrate and then formed.
  • the liquid crystal material may be a positive uniaxial liquid crystal material that can be homeotropically aligned and fix the alignment, and may be a material composed of a low molecular liquid crystal compound, a liquid crystal polymer compound, or a mixture thereof.
  • the low-molecular liquid crystal compound a compound having a reactive group that reacts with light or heat is preferable because the alignment can be easily fixed.
  • reactive groups include bur, attalyloyl, buroxy, oxylanyl, oxetanyl, and aziridinyl groups.
  • other reactive groups such as an isocyanate group, a hydroxyl group, an amino group, an acid anhydride group, and a strong loxyl group can also be used depending on the reaction conditions.
  • the liquid crystalline polymer compound includes a main chain type liquid crystal polymer and a side chain type liquid crystal polymer, both of which can be used. Examples of the main chain type liquid crystal polymer include polyester, polyester imide, polyamide, and polycarbonate.
  • liquid crystalline polyesters are preferable from the viewpoint of ease of synthesis, orientation, glass transition point, and the like, and main chain type liquid crystalline polyesters bonded with cationic polymerizable groups are particularly preferable.
  • the side chain type liquid crystal polymer include polyacrylate, polymalonate, polysiloxane and the like.
  • the liquid crystal polymer preferably has the above-described reactive group bonded thereto.
  • the home-orientated pick-aligned liquid crystal film used in the present invention is, for example, developed by spreading the above-mentioned liquid crystal material on an alignment substrate, aligning the liquid crystal material, and then subjecting to light irradiation and Z or heat treatment as necessary, followed by cooling. By doing so, it can be manufactured by fixing the orientation state.
  • the main-chain liquid crystalline polyester includes an aromatic diol unit (hereinafter referred to as a structural unit (A)), an aromatic dicarboxylic acid unit (hereinafter referred to as a structural unit (B)), and an aromatic hydroxycarboxylic acid.
  • structural units (A), (B) and (C) will be sequentially described.
  • a compound represented by the following general formula (a) is preferable. Specifically, catechol, resorcin, hydroquinone or the like, or a substituted product thereof, 4, bibienol, 2, 2, 6, 6, 6, tetramethyl 4, 4, bibienol, 2, 6-naphthalene diol, etc. Especially, catechol, resorcin, hydroquinone, etc. or their substitutes are preferred. Les.
  • 1 X in the formula is 1 H, 1 CH 3 , 1 C 2 H 5 , 1 CH 2 CH 2 CH 3 , 1 CH (CH 3 ) 2 , —CH 2 CH 2 CH 2 CH 3 , — CH 2 CH (CH 3 ) CH 3 , — CH (CH 3 ) CH 2 CH 3 , 1 C (CH 3 ) 3 , — ⁇ CH 3 , —OC 2 H 5 , — OC 6 H 5 , 1 OCH 2 C 6
  • One of H 5 , 1 F, —CI 2 , —Br, 1 N0 2 , and 1 CN ′′, particularly a compound represented by the following formula (a ′) is preferable.
  • a compound represented by the following general formula (b) is preferable. Specifically, terephthalic acid, isophthalic acid, phthalic acid or the like, or a substituted product thereof, 4, 4, 1-stilbene dicarboxylic acid or its substitutes, 2, 6 1-naphthalenedicarboxylic acid, 4, 4 '1 biphenyl dicarboxylic acid, etc., especially terephthalic acid, isophthalic acid, phthalic acid etc.
  • 1 X in the formula is 1 H, 1 CH 3 , 1 C 2 H 5 , 1 CH 2 CH 2 CH 3 ,-CH (CH 3 ) 2 , — CH 2 CH 2 CH 2 CH 3 , — CH 2 CH (CH 3 ) CH 3 , _C H (CH 3 ) CH 2 CH 3 , 1 C (CH 3 ) 3 , —OCH 3 , — OC 2 H 5 , 1 OC 6 H 5 , 1 OCH 2 C 6 H 5 represents an F, _C 1, one B r, one N_ ⁇ 2 or a CN, whichever is the group.
  • a compound represented by the following general formula (c) is preferable. Specifically, hydroxybenzoic acid or a substituted product thereof, 4′-hydroxy 4-biphenyl Carboxylic acid or a substituted product thereof, 4′-hydroxy-1,4-stilbene carboxylic acid or a substituted product thereof, 6-hydroxy-2-naphthoic acid, 4-hydroxycinnamic acid, etc., particularly, hydroxybenzoic acid And a substituted product thereof, 4′-hydroxyl-4-biphenylcarboxylic acid or a substituted product thereof, and 4′-hydroxy-4-stilbene carboxylic acid or a substituted product thereof are preferable.
  • 1 X, 1 X and 1 X 2 in the formula are respectively independently 1 H, _CH 3 , 1 C 2 H 5 , — CH 2 CH 2 CH 3 , — CH (CH 3 ) 2 , _ CH 2 CH 2 CH 2 CH 3 ,-CH 2 CH (CH 3 ) CH 3 , 1 CH (CH 3 ) CH 2 CH 3 , 1 C (CH 3 ) 3 ,-OCH 3 , 1 OC 2 H 5 , 1 OC 6 H 5 , _ 0 CH 2 C 6 H 5 , 1 F, 1 Cl, 1 Br, 1 N 0 2 , or 1 CN
  • the main chain type liquid crystalline polyester is preferably at least two kinds of structural units selected from (A) aromatic diol units, (B) aromatic dicarboxylic acid units, and (C) aromatic hydroxycarboxylic acid units. May further include a structural unit having a cationic polymerizable group (hereinafter referred to as “structural unit (D)”) at least at one of the ends of the main chain, as long as it exhibits thermomorphic liquid crystallinity. There is no particular limitation as long as the conditions are satisfied.
  • the proportion of the structural units (A;), (B) and (C) constituting the main-chain liquid crystalline polyester in the total structural units is that the structural units (A), (B) and (C) are diols or When expressed as a ratio of the total weight of dicarboxylic acid or hydroxycarboxylic acid to the total amount of monomers charged, it is usually 20 to 99%, preferably 30 to 95%, particularly preferably 40 to 90%. % Range. If it is less than 20%, the temperature range where liquid crystallinity is developed may be extremely narrow, and if it exceeds 99%, the number of units having a cationic polymerizable group will be relatively small, and the orientation will be maintained. Performance and mechanical strength may not be improved.
  • the structural unit (D) having a cationic polymerizable group As the cationic polymerizable group, a functional group selected from the group consisting of an epoxy group, an oxetanyl group, and a vinyloxy group is preferable, and an oxetanyl group is particularly preferable.
  • a compound for introducing the structural unit (D) as shown in the following general formula (d), an aromatic compound having a phenolic hydroxyl group or a carboxyl group is added to an epoxy group, an oxetanyl group, and buroxy.
  • 1 X, 1 X 1 X 2 , 1 Y, and 1 ⁇ ⁇ each independently represent one of the following groups for each structural unit.
  • — X, 1 X 1 2 — ⁇ , 1 CH 3 , 1 C 2 H 5 , — CH 2 CH 2 CH 3 , 1 CH (CH 3 ) 2 , — CH 2 CH 2 CH 2 CH 3 , —CH 2 CH (CH 3 ) CH 3 , —CH (CH 3 ) CH 2 CH 3 , —C (CH 3 ) 3 , 1 OCH 3 , — OC 2 H 5 , — OC 6 H 5 , 1 OCH 2 C 6 H 5 , 1 F, 1 C l, 1 Br, 1 N0 2 , or 1 CN
  • the bonding position of a cation polymerizable group or a substituent containing a cation polymerizable group and a phenolic hydroxyl group or carboxylic acid group is 1 when the skeleton to which these groups are bonded is a benzene ring.
  • 4— in the case of a naphthalene ring, in the case of a 2, 6— positional relationship, in the case of a biphenyl skeleton or a stilbene skeleton, a 4, 4′_ positional relationship is preferred from the viewpoint of liquid crystallinity.
  • 4-bioxybenzoic acid 4-buoxyphenol, 4-bioxyethoxybenzoic acid, 4-vinyloxyethoxyphenol, 4-glycidyloxybenzoic acid, 4-glycidyloxy Phenols, 4-I (oxetanylmethoxy) benzoic acid, 4-— (Oxetaninolemetoxy) Phenols, 4'Ivininoreoxy 4-Bibinenoleoxynorenoic acid, 4, -Vininoreoxy 1-Hydroxybiphenyl, 4'-Bulauxitoxy 4-biphenyl carboxylic acid, 4 'mono-bruchetoxy 4 4-hydroxy diphenyl, 4'-glycidyloxy 4- 4-phenyl carboxylic acid, 4'-glycidinoreoxy 4- 4-hydroxy biphenyl, 4 '-Oxetanilmethoxy 1-biphenolate norevonic acid, 4'-Oxetaninoremet
  • the proportion of the structural unit (D) having a cationic polymerizable group to the total structural units constituting the main-chain liquid crystalline polyester is similarly the weight proportion in the composition charged with the structural unit (D) as a carboxylic acid or phenol.
  • it is usually in the range of 1 to 60%, preferably 5 to 50%. If it is less than 1%, the orientation holding ability and mechanical strength may not be improved, and if it exceeds 60%, the crystallinity will increase and the liquid crystal temperature range will be narrowed. This is also not preferable.
  • Each structural unit of (A) to (D) has one or two carboxyl groups or phenolic hydroxyl groups, but the carboxyl groups and phenolic hydroxyl groups of (A) to (D) are It is desirable that the total number of equivalents of each functional group is roughly aligned at the preparation stage.
  • the main-chain liquid crystalline polyester can contain structural units other than (A), (B), (C) and (D).
  • Other structural units that can be contained are not particularly limited, and compounds (monomers) known in the art can be used.
  • an optically active compound when used as a raw material of a unit constituting the main chain type liquid crystalline polyester, a chiral phase can be imparted to the main chain type liquid crystalline polyester.
  • the powerful optically active compound There are no particular limitations on the powerful optically active compound.
  • an optically active aliphatic alcohol (C n H 2n + 1 OH, where n represents an integer of 4 to 14)
  • an optically active aliphatic group Alkoxybenzoic acid (C n H 2n + 1 O 1 P h—COOH, where n is an integer from 4 to 14, P h represents a fuel group)
  • menthol camphoric acid
  • naproxen derivative binaphthol
  • Examples include 1,2-propanediol, 1,3-butanediol, 2-methylbutanediol, 2-chlorobutanediol, tartaric acid, methylsuccinic acid, and 3-methyladipic acid.
  • the molecular weight of the main-chain liquid crystalline polyester is: logarithmic viscosity 77 measured at 30 ° C in phenol Z tetrachloroethane mixed solvent (mass ratio 60/40) is 0.03 to 0.5 0 d lZg Is more preferably 0.05 to 0.15 dl / g.
  • logarithmic viscosity 77 measured at 30 ° C in phenol Z tetrachloroethane mixed solvent (mass ratio 60/40) is 0.03 to 0.5 0 d lZg Is more preferably 0.05 to 0.15 dl / g.
  • the solution viscosity of the main-chain liquid crystalline polyester is low, and a uniform coating film may not be obtained when forming a film.
  • it is larger than 0.50 d 1 Zg the alignment treatment temperature required for liquid crystal alignment becomes high, and there is a risk that alignment and crosslinking occur simultaneously and alignment is lowered.
  • the molecular weight control of the main-chain liquid crystalline polyester is determined solely by the charged composition.
  • the monofunctional monomer that reacts in the form of sealing both ends of the molecule that is, the main content obtained by the relative content of the compound for introducing the structural unit (D) in the total charged composition.
  • the average degree of polymerization (average number of bonds of structural units (A) to (D)) of the chain-type liquid crystalline polyester is determined. Therefore, in order to obtain a main-chain liquid crystalline polyester having the desired logarithmic viscosity, it is necessary to adjust the charged composition according to the type of charged monomer.
  • the method for synthesizing the main chain type liquid crystalline polyester may be a method used for synthesizing ordinary polyester, and is not particularly limited.
  • a method in which a carboxylic acid unit is activated to an acid chloride or sulfonic anhydride and the like is reacted with a phenol unit in the presence of a base (acid chloride method), and a carboxylic acid unit and a phenol unit are converted to DCC (dicyclohexane).
  • a direct condensation method using a condensing agent such as xylcarbodiimide), a method in which a phenol unit is acetylated, and this and a carboxylic acid unit are subjected to deacetic acid polymerization under melting conditions can be used.
  • the monomer units having a cationically polymerizable group may undergo polymerization or decomposition under the reaction conditions, so the reaction conditions must be strictly controlled.
  • an appropriate protecting group is used in some cases, or a compound having another functional group is reacted once and then a cation-polymerizable group is introduced later.
  • the crude main-chain liquid crystalline polyester obtained by the polymerization reaction may be purified by methods such as recrystallization and reprecipitation.
  • the main chain type liquid crystalline polyester thus obtained is analyzed by means such as NMR (nuclear magnetic resonance) to determine the proportion of each monomer present in the main chain type liquid crystalline polyester. Can be identified. In particular, the average number of bonds of the main chain type liquid crystalline polyester can be calculated from the amount ratio of the cationic polymerizable group.
  • main-chain liquid crystalline polyester containing the cationic polymerizable group it is also possible to mix other compounds with the main-chain liquid crystalline polyester containing the cationic polymerizable group as long as the scope of the present invention is not exceeded.
  • other high molecular compounds miscible with the main-chain liquid crystalline polyester used in the present invention and various low molecular compounds may be added.
  • Such a low molecular weight compound may or may not have liquid crystallinity, and may or may not have a polymerizable group capable of reacting with a crosslinkable main chain liquid crystalline polyester. It is preferable to use a liquid crystalline compound having a polymerizable group, and examples thereof include the following.
  • n an integer of 2 to 12
  • 1 V— and 1 W each represent one of the following groups.
  • V— Single bond, 101, 1 O— C m H 2m — 0 (where m is an integer from 2 to 12) — W:
  • a chiral liquid crystal phase can be induced as a composition.
  • Such a composition can be used for producing a film having a twisted nematic alignment structure or a cholesteric alignment structure.
  • the side chain type liquid crystal polymer includes poly (meth) acrylate, poly Malonate, polysiloxane, etc. are mentioned.
  • Poly (meth) acrylate with a reactive group bonded thereto is preferred.
  • each R 3 independently represents hydrogen or a methyl group
  • each R 4 independently represents hydrogen, methyl group, ethyl group, butyl group, hexyl group, octyl group, Noel Group, decyl group, dodecyl group, methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group, heptyloxy group, octyloxy group, decyloxy group, dodecyloxy group, cyano group, bromo group, black mouth group
  • R 5 independently represents hydrogen, a methyl group or an ethyl group
  • R 6 represents a hydrocarbon group having 1 to 24 carbon atoms
  • L 2 represents Independently, a single bond, 10_, 1 O— CO_, —CO _0—, 1 CH ⁇ CH— or 1 C ⁇ C—, p represents an integer from 1 to
  • the molar ratio of each component may be arbitrary as long as this requirement is satisfied, but is preferably as follows.
  • a preferably 0 to 0.80, more preferably 0.05 to 0.50 b
  • d Preferably 0 to 0.50, more preferably 0.1 0 to 0.30
  • e Preferably 0 to 0.50, more preferably 0.1 0 to 0.30
  • f Preferably 0 to 0.30, more preferably 0.0 1 to 0.10
  • R 4 is preferably hydrogen, a methyl group, a butyl group, a methoxy group, a cyano group, a promo group, or a fluoro group, particularly preferably hydrogen, a methoxy group, or a cyano group, and L 2 is preferably a single bond, 10_, 1 O—CO— or 1 C 0—0, and R 6 is preferably of 2, 3, 4, 6, 8 and 18 Represents a hydrocarbon group.
  • the birefringence of the side chain type polymer liquid crystalline compound represented by the general formula (1) varies depending on the molar ratio of each component a to f and the orientation form, but the birefringence when nematic orientation is adopted.
  • the rate is preferably 0.001 to 0 : 300, more preferably 0.05 to 0.25.
  • Each (meth) acrylic compound corresponding to each component of the above-mentioned side chain type liquid crystal polymer can be obtained by an ordinary organic chemical synthesis method.
  • a (meth) acrylic compound having an oxetanyl group can be easily obtained by a method similar to the synthesis of compounds corresponding to formulas (7), (8) and (9) described later.
  • Said side chain type liquid crystal polymer can be easily synthesized by copolymerizing the (meth) acrylic group of each (meth) acrylic compound obtained by the above method corresponding to each component by radical polymerization or cation polymerization. Can do. Polymerization conditions are not particularly limited, and normal conditions can be employed.
  • radical polymerization a (meth) acrylic compound corresponding to each component is dissolved in a solvent such as dimethylformamide (DMF) or diethylene glycol dimethyl ether, and 2, 2, mono-bisisopropylonitrile (AI BN) or peroxynitrile is used.
  • a solvent such as dimethylformamide (DMF) or diethylene glycol dimethyl ether
  • AI BN 2, 2, mono-bisisopropylonitrile
  • a method of reacting at 60 to 120 ° C. for several hours using benzoyl oxide (B 3 PO) or the like as an initiator can be mentioned.
  • anionic polymerization the (meth) acrylic compound corresponding to each component is dissolved in a solvent such as tetrahydrofuran (THF) and reacted with a strong base such as an organolithium compound, an organic sodium compound, or a Grignard reagent as an initiator. Can be mentioned. It is also possible to control the molecular weight distribution by optimizing the initiator and reaction temperature for living anion polymerization. These anion polymerizations must be performed under dehydration and deoxygenation conditions.
  • the side chain type liquid crystal polymer preferably has a weight average molecular weight of 1,000 to 200,000, particularly preferably 3,000 to 50,000. Outside this range, the strength is insufficient or the orientation is deteriorated.
  • the liquid crystalline composition preferably contains a dioxetane compound represented by the following general formula (2).
  • each R 7 independently represents hydrogen, a methyl group or an ethyl group
  • each L 3 independently represents a single bond or one (CH 2 ) n — (n is 1 to 1 2 ′
  • X 1 represents each independently a single bond, 10—, 10—CO— or _C ⁇ _ ⁇ 1, and M 1 is represented by formula (3) or formula (4).
  • E t represents an ethyl group
  • i Pr represents an isopropyl group
  • n B u represents a normal butyl group
  • t B u represents a tertiary butyl group.
  • the linking groups connecting the left and right oxetanyl groups as seen from the M 1 group may be different (asymmetric) or the same (symmetric), especially when the two L 3 are different or other Depending on the structure of the linking group, it may not exhibit liquid crystallinity, but it is not a restriction on its use.
  • the oxetanyl group since the oxetanyl group has cationic polymerizability, it is necessary to select reaction conditions in consideration of the occurrence of side reactions such as polymerization and ring opening under strong acidic conditions.
  • the oxetanyl group is less likely to cause a side reaction than the similar cationic polymerizable functional group oxylanyl group.
  • various compounds such as similar alcohols, phenols, and carboxylic acids may be reacted successively, and the use of protecting groups may be considered as appropriate.
  • hydroxybenzoic acid is used as a starting compound, an oxetanyl group is bonded by Williamson's ether synthesis method, etc., and a diol suitable for the present invention and a diol suitable for the present invention are used.
  • a compound having an appropriate oxetanyl group such as halo after removing the protecting group
  • examples include a method of reacting argyloxetane and the like with a hydroxyl group.
  • a reaction condition suitable for the form and reactivity of the compound to be used may be selected.
  • the reaction temperature is 120 ° C.
  • a temperature of 10 ° C. to 1550 ° C. is selected, and the reaction time is 10 minutes to 48 hours, preferably 30 minutes to 24 hours. Outside these ranges, the reaction does not proceed sufficiently or side reactions occur, which is not preferable.
  • the mixing ratio of the two is preferably 0.8 to 1.2 equivalents of oxetane compound per equivalent of hydroxyl group.
  • various compounds that can be mixed without impairing liquid crystallinity can be contained.
  • the compounds that can be contained include compounds having a cationic polymerizable functional group such as an oxetal group, an epoxy group, and a butyl ether group, various polymer materials having film-forming ability, and various low liquid crystal properties. Examples thereof include molecular liquid crystal compounds and polymer liquid crystal compounds.
  • the side chain liquid crystal polymer is used as a composition, the proportion of the side chain liquid crystal polymer in the entire composition is 10% by mass or more, preferably 30% by mass or more, and more preferably 50%. It is at least mass%.
  • the content of the side chain type liquid crystal polymer is 10 mass. If it is less than 0 , the film-forming ability is insufficient or the polymerizable group concentration in the composition is low, and the mechanical strength after polymerization becomes insufficient, which is not preferable.
  • the liquid crystal state can be fixed by cationically polymerizing the oxetanyl group and crosslinking.
  • the liquid crystal material contains a light-power thione generator that generates cations by an external stimulus such as light and heat, and a hydrogen or thermal cation generator. If necessary, various sensitizers may be used in combination.
  • the photopower thione generator means a compound capable of generating a cation by irradiating with light of an appropriate wavelength, and examples thereof include organic sulfate salt systems, podonium salt systems, and phosphonium salt systems. Antimonates, phosphates, borates and the like are preferably used as counter ions of these compounds. Specific compounds include Ar 3 S + S b F 6- , A r 3 P + BF 4 —, A r 2 I + PF 6 _ (where A r is a phenyl group or a substituted group) A dil group) and the like.
  • Thermal cation generators are compounds that can generate cations when heated to a suitable temperature, such as benzylsulfonium salts, benzylammoyuum salts, benzylpyridinium salts, benzylphosphonium.
  • Salts hydrazinium salts, carboxylic acid esters, sulfonic acid esters, ammine imides, antimony pentachloride acetyl chloride complex, diallydonium salt-dibenzyloxy copper, boron halide primary tertiary amine adduct, etc. Can be mentioned.
  • the amount of these cation generators added to the liquid crystal material varies depending on the structure of the mesogenic portion or spacer portion constituting the side chain type liquid crystalline polymer used, the oxetanyl group equivalent, the liquid crystal alignment conditions, etc. Therefore, it cannot be generally stated, but usually 100 mass ppm to 20 mass%, preferably 10 mass to pp 111 to 10 mass%, more preferably 0 to the side chain type liquid crystalline polymer substance. The range is from 2% to 7% by weight. If the amount is less than 100 ppm by mass, the amount of cations generated may not be sufficient and polymerization may not proceed. If the amount is more than 20% by mass, cations remaining in the liquid crystal film may be generated. It is not preferable because the decomposition residue of the agent increases and the light resistance may deteriorate. Next, the alignment substrate will be described.
  • a substrate having a smooth plane is preferable, and examples thereof include a film or sheet made of an organic polymer material, a glass plate, and a metal plate. From the viewpoint of continuous productivity, it is preferable to use a material made of an organic polymer.
  • organic polymer materials include polyvinyl alcohol, polyimide, polyphenol-oxide, polyphenylene norfide, polysenorephone, polyethenoreketone, polyethenoreethenoleketone, polyarylate, polyethylene terephthalate, polyethylene naphthalate, and other polyesters
  • examples thereof include a film made of a transparent polymer such as an acryl-based polymer, a ce / relose-based polymer such as diacetyl cellulose or triacetinoresenorelose, a polycarbonate polymer, or an acryl-based polymer such as polymethyl methacrylate.
  • styrene polymers such as polystyrene, acrylonitrile styrene copolymers, olefin polymers such as polyethylene, polypropylene, ethylene propylene copolymers, polycyclohexylene, vinyl chloride polymers, nylon and aromatic polyamides.
  • Transparent polymers such as amide polymers A film made of mer is also included. These may be blends.
  • plastic films such as triacetyl cellulose, polycarbonate, polycyclohexylin and the like used as optical films are used.
  • organic polymer film include norbornene such as ZENOA (trade name, manufactured by ZEON CORPORATION), ZEONEX (trade name, manufactured by ZEON CORPORATION), Arton (trade name, manufactured by JSR Corporation), etc.
  • a plastic film made of a polymer material having a structure is preferable because it has excellent optical properties.
  • a metal film the said film formed from aluminum etc. is mentioned, for example.
  • the materials constituting these substrates are long-chain (usually 4 or more, preferably 8 or more) alkyl groups or fluorinated. It is more preferable to have a hydrocarbon group or to have a compound layer having these groups on the substrate surface.
  • These organic polymer materials may be used alone as a substrate, or may be formed as a thin film on another substrate. The process of forming a compound layer (alignment film) having a long chain (usually 4 or more carbon atoms, preferably 8 or more) alkyl group or fluorinated hydrocarbon group will be described.
  • the material for forming the alignment film is preferably applied in a solution state from the viewpoint of controlling the alignment film thickness and surface properties.
  • the solution can be appropriately performed using a solvent capable of dissolving the material.
  • the solvent for preparing the PVA solution is not particularly limited as long as it can dissolve the PVA, and usually a mixture of water, lower alcohol such as methanol, ethanol, isopropyl alcohol, or the like is used.
  • the coating method used to form the alignment film on the substrate is flexographic printing using a soft resin plate, dispenser method, gravure coating method. , Micro gravure method, screen printing method, lip coating method, die coating method and the like. Of these, the gravure coating method, the lip coating method and the die coating method are preferable.
  • the applied alignment film is dried if necessary.
  • the drying temperature is usually limited in the case of PVA due to its heat resistance, but may be higher depending on the purpose. Generally, it is 50 ° C to 180 ° C, preferably 80 ° C to 160 ° C. Also drying time Although there is no particular limitation, it is usually 10 seconds to 60 minutes, preferably 1 minute to 30 minutes.
  • the relative moving speed between the film to be dried and the drying apparatus is preferably 60 m / min to 120 m mmin in terms of relative wind speed.
  • rubbing is generally performed by rubbing the substrate with a cloth or the like in a certain direction.
  • the home-orientation pick alignment liquid crystal film used in the present invention is anisotropic in the plane. Since it is an orientation structure that does not produce any basic properties, rubbing is not necessarily required. However, it is more preferable to apply a weak rubbing treatment from the viewpoint of suppressing repelling when a liquid crystal material is applied.
  • An important setting value that defines the rubbing condition is the peripheral speed ratio. This represents the ratio of the movement speed of the cloth to the movement speed of the substrate when the rubbing cloth is wound around a roll and rubbed while the substrate is rubbed.
  • the weak rubbing treatment usually has a peripheral speed ratio of 50 or less, more preferably 25 or less, and particularly preferably 10 or less.
  • the peripheral speed ratio is larger than 50, the effect of rubbing is too strong, and the liquid crystal material cannot be perfectly aligned vertically, and the alignment may fall in the in-plane direction from the vertical direction.
  • the liquid crystal material is spread on the alignment substrate to form the liquid crystal material layer.
  • the liquid crystal material can be applied directly on the alignment substrate in a molten state, or the liquid crystal material solution can be applied on the alignment substrate and then applied.
  • membrane and distilling a solvent off is mentioned.
  • the solvent used for preparing the solution is not particularly limited as long as it can dissolve the liquid crystal material of the present invention and can be distilled off under suitable conditions.
  • ketones such as acetone, methyl ethyl ketone, isophorone, and cyclohexanone are used.
  • Butoxychetinorea ⁇ call hexyloxyethyl alcohol, ether alcohols such as methoxy-2-prononol, glycol ethers such as ethylene glycol dimethyl etherol and diethylene glycol dimethyl ether, ethyl acetate, lactyl acetate Estenoles, etc.
  • Phenolic, Phenolics such as Black-headed Fuenore, N, N-Di Preferably used are amides such as methylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, halogens such as chlorophonolem, tetrachloroethane, dichlorobenzene, and the like, and mixtures thereof.
  • a surfactant, an antifoaming agent, a leveling agent, a coloring agent, or the like may be added to the solution.
  • two groups having the same reactivity as the polymerizable group bonded to the liquid crystal polymer compound are contained in one molecule.
  • Various low molecular compounds whether liquid crystalline or non-liquid crystalline) or various compounds that can improve adhesion can be added.
  • the application method is not particularly limited as long as it is a method that ensures the uniformity of the coating film, and a known method is adopted. Can do. Examples include spin coating, die coating, curtain coating, dip coating, and roll coating.
  • this drying process can employ
  • the film thickness of the liquid crystal film cannot be generally described because it depends on the method of the liquid crystal display device and various optical parameters, but is usually 0.2 ⁇ to 10 ⁇ , preferably 0.3 111 to 5 111, More preferably, it is 0.5 111 to 2 111. If the film thickness is thinner than 0.2 ⁇ m, it may not be possible to obtain a sufficient viewing angle improvement or brightness enhancement effect. Further exceeds 1 0 ⁇ ⁇ , a liquid crystal display device is a fear force s such browned unnecessarily.
  • the liquid crystal material layer formed on the alignment substrate is formed into a liquid crystal alignment by a method such as heat treatment, and is cured and fixed by light irradiation and / or heat treatment.
  • the liquid crystal is aligned by the self-alignment ability inherent in the liquid crystal material by heating to the liquid crystal phase expression temperature range of the liquid crystal material used.
  • the conditions for the heat treatment vary depending on the liquid crystal phase behavior temperature (transition temperature) of the liquid crystal material to be used, because the optimum conditions and limit values are different — generally not 10 – 25 ° C, preferably 30
  • the temperature is in the range of ° C to 160 ° C, and the temperature is more than the glass transition point (T g) of the liquid crystal material, more preferably Heat treatment is preferably performed at a temperature higher by 1 ° C or more. If the temperature is too low, the liquid crystal alignment may not proceed sufficiently, and if the temperature is high, the cationically polymerizable reactive group in the liquid crystal material may adversely affect the alignment substrate.
  • the heat treatment time is usually in the range of 3 seconds to 30 minutes, preferably 10 seconds to 20 minutes.
  • the liquid crystal alignment may not be sufficiently completed, and if the heat treatment time exceeds 30 minutes, the productivity will be deteriorated.
  • the liquid crystal material layer is formed into a liquid crystal alignment by a method such as heat treatment
  • the liquid crystal material is cured by a polymerization reaction of oxetanyl groups in the composition while maintaining the liquid crystal alignment state.
  • the purpose of the curing step is to fix the completed liquid crystal alignment by a curing (crosslinking) reaction and to modify it into a stronger film.
  • liquid crystal material of the present invention has a polymerizable oxetal group, it is preferable to use a cationic polymerization initiator (cation generator) for polymerization (bridge) of the reactive group as described above. Further, as the polymerization initiator, it is preferable to use a light power thione generator rather than a thermal cation generator.
  • cation generator cationic polymerization initiator
  • the liquid crystal material can be aligned with sufficient fluidity without curing until the alignment stage. Then, cations are generated by irradiating light from a light source that emits light of an appropriate wavelength, and the liquid crystal material layer is cured.
  • the light irradiation method includes light from a light source such as a metal halide lamp, a high-pressure mercury lamp, a low-pressure mercury lamp, a xenon lamp, an arc lamp, or a laser that has a spectrum in the absorption wavelength region of the photoactive thione generator. Irradiate to cleave the light thione generator.
  • the irradiation dose per square centimeter is usually in the range of 1 to 200 mj, preferably 10 to 100 mJ, as the integrated dose. However, this does not apply when the absorption region of the light-power thione generator and the spectrum of the light source are significantly different, or when the liquid crystal material itself has the ability to absorb light from the light source. In these cases, an appropriate photosensitizer or a mixture of two or more photopower thione generators having different absorption wavelengths can be used.
  • the temperature at the time of light irradiation needs to be within a temperature range in which the liquid crystal material takes liquid crystal alignment.
  • the liquid crystal material is irradiated with light at a temperature equal to or higher than Tg. It is preferable to perform shooting.
  • the liquid crystal material layer produced by the above process is a sufficiently strong film.
  • the mesogens are three-dimensionally bonded by the curing reaction, which not only improves the heat resistance (upper limit temperature for maintaining liquid crystal alignment) compared to before curing, but also provides scratch resistance, abrasion resistance, and crack resistance.
  • the mechanical strength such as property is also greatly improved.
  • the alignment substrate is not optically isotropic, or the liquid crystal film to be obtained is finally opaque in the intended use wavelength region, or the film thickness of the alignment substrate is too thick, which causes problems in actual use. If there is a problem such as the above, it is also possible to use a form formed on an alignment substrate, a polarizing plate, a substrate that does not become an obstacle in the intended wavelength range of use, and a stretched film having a retardation function.
  • a transfer method a known method can be employed. For example, as described in Japanese Patent Application Laid-Open No. Hei 4 5 7 0 1 7 or Japanese Patent Application Laid-Open No. 5-3 3 3 3 1 3, a liquid crystal film layer is bonded to an alignment substrate via an adhesive or an adhesive. Examples include a method of transferring only a liquid crystal film by laminating different substrates and then peeling the alignment substrate from the stack.
  • the pressure-sensitive adhesive or adhesive used for transfer is not particularly limited as long as it is an optical grade as described later, and generally used materials such as acrylic, epoxy, and urethane can be used.
  • the homeotopically picked liquid crystal film layer obtained as described above can be quantified by measuring the optical phase difference of the liquid crystal layer at an angle inclined from normal incidence. In the case of home-orientated pick-aligned liquid crystal layers, this retardation value is symmetric with respect to normal incidence.
  • optical phase difference Several methods can be used to measure the optical phase difference. For example, an automatic birefringence measuring device (manufactured by Oji Scientific Instruments) and a polarizing microscope can be used. This homeomorphic liquid crystal layer looks black between the crossed Nicol polarizers. In this way, homeo-mouth pick orientation was evaluated.
  • the optical parameters R e 1 and R th 1 values of homeotopic alignment liquid crystal films depend on the type of liquid crystal display device and various optical parameters.
  • the in-plane retardation value (R e 1) of the homeomorphic pick-up liquid crystal film is usually 0 nm to 20 nm, preferably O nm to: 10 nm, and more preferably 0
  • the retardation value (R th 1) in the thickness direction is usually from 500 nm to 30 nm, preferably from 400 nm to 50 nm, more preferably from 400 nm to 1 nm.
  • the viewing angle improving film of the liquid crystal display device can widen the viewing angle while correcting the color tone of the liquid crystal display.
  • the Re 1 value is larger than 20 nm, the front characteristic of the liquid crystal display device may be deteriorated due to the large in-plane retardation value.
  • the R thl value is greater than –30 nm or less than 1500 nm, sufficient viewing angle improvement effects may not be obtained, or unnecessary coloring may occur when viewed from an oblique angle. .
  • the homeotopically picked liquid crystal film preferably satisfies the conditions represented by the following [5] and [6].
  • the delta eta show birefringence in the thickness direction of the Homeoto port pick aligned liquid crystal full Ilm (birefringent layer), Nx l, Ny l Oyopi N Z l is As described above, the refractive indexes in the three axial directions of the homeotopically picked liquid crystal film are shown. In view of improving productivity and reducing the thickness of the optical film including the birefringent layer, it is more preferably set to 0.2 ⁇ ⁇ ⁇ ⁇ —0.005.
  • the thickness direction in place of the home-to-mouth pick alignment liquid crystal film. Even if a stretched film is used as the optical anisotropic element, there is a limit to stretching in the thickness direction, and thus the retardation in the thickness direction cannot be controlled over a wide range.
  • a method is also used in which a heat-shrinkable film is used to heat-shrink a long film and stretch it in the thickness direction.
  • the thickness of the film obtained when the birefringence index in the thickness direction is 0.03 or less. Is about 50 to 100 ⁇ , which is thicker than the original long film, and it is difficult to meet the demand for thinning the entire elliptical polarizing plate as the liquid crystal display device becomes thinner. is there
  • the film thickness of the elliptically polarizing plate is desirably 40.000 or less, particularly preferably 300.mu.m or less, in view of the recent demand for thinning.
  • a vertical alignment type liquid crystal display device includes a vertical alignment type liquid crystal cell including liquid crystal molecules that are vertically aligned with respect to a substrate surface when no voltage is applied between a pair of substrates provided with electrodes, and the vertical alignment type Placed on at least one side of the liquid crystal cell substrate so that the home-orientated pick-aligned liquid crystal film side of the elliptically polarizing plate for vertical alignment type liquid crystal display device of the present invention faces, between the vertical alignment type liquid crystal cell substrate and the elliptically polarizing plate, It is characterized in that at least one first optical anisotropic element exhibiting a phase difference of 1 Z 4 wavelength in the plane is arranged.
  • the first optical anisotropic element is a wideband 1/4 wavelength consisting of an optical element showing a phase difference of 1 Z 4 wavelength in the plane and a second optical anisotropic element showing a phase difference of 1/2 wavelength in the plane. It may consist of an optical element called a plate. Further, at least one third optical anisotropic element having negative uniaxial optical anisotropy in the thickness direction is disposed between the first optical anisotropic element and the vertical alignment type liquid crystal cell. In view of further widening the viewing angle, a fourth optical anisotropic element having positive uniaxial optical anisotropy in the in-plane direction is disposed between the vertical alignment type liquid crystal cell and the linearly polarizing plate. It is preferable.
  • the linear polarizing plate constituting the elliptically polarizing plate of the present invention one having a protective film on one side or both sides of the polarizer is usually used.
  • the polarizer there are no particular restrictions on the polarizer, and various types of polarizers can be used.
  • polybulal alcohol-based film, partially formalized polybulal alcohol-based film, ethylene / butyl acetate copolymer system part A dichroic material such as saponified dichroic dye is adsorbed on a hydrophilic polymer film such as a saponified film and uniaxially stretched. Dehydrated polybulal alcohol and polyvinyl chloride are removed.
  • Polyethylene oriented films such as treated with hydrochloric acid are exemplified. Among these, those obtained by stretching a polybulal alcohol film and adsorbing and orienting a dichroic material (iodine, dye) are preferably used.
  • the thickness of the polarizer is not particularly limited,
  • the range of 5 to 80 ⁇ is common.
  • a polarizer obtained by dyeing a polyvinyl alcohol film with iodine and uniaxially stretching it for example, is dyed by immersing polybulal alcohol in an aqueous solution of iodine, and is made by stretching it 3 to 7 times the original length. Can do. If necessary, it can be immersed in an aqueous solution of boric acid or potassium oxalate. Furthermore, if necessary, the polybulal alcohol film may be immersed in water and washed before dyeing. In addition to washing polyvinyl alcohol film surface stains and anti-blocking agents by washing the polyvinyl alcohol film with water, swelling of the polyvinyl alcohol film eliminates unevenness such as uneven coloring. There is also an effect to prevent.
  • Stretching may be performed after dyeing with iodine, or may be performed while dyeing, or may be stretched and then dyed with iodine.
  • the film can be stretched in an aqueous solution of boric acid or potassium iodide or in a water bath.
  • the protective film provided on one side or both sides of the polarizer is preferably one having excellent transparency, mechanical strength, thermal stability, moisture shielding properties, isotropic properties, and the like.
  • the material of the protective film include, for example, polyester polymers such as polyethylene terephthalate and polyethylene naphthalate, cenorelose polymers such as diacetyl cellulose and triacetylenorenorose, and acrylics such as polymethylenomethacrylate.
  • Styrene polymers such as polystyrene polymers, polystyrene and acrylonitrile styrene copolymers (AS resin), polycarbonate polymers, and the like.
  • polyolefin polymers such as polyethylene, polypropylene and ethylene / propylene copolymers, polyolefins having a neck or norbornene structure, chlorinated butyl polymers, amide polymers such as nylon and aromatic polyamides, Imido polymer, Snorephone polymer, Polyetherolenorephone polymer, Polyetherenoretone ketone polymer, Polyphenylene norfide polymer, Bull alcohol polymer, Vinylidene chloride polymer, Vinylptyra
  • the polymer that forms a protective film include monolole polymers, arylate polymers, polyoxymethylene polymers, epoxy polymers, and blends of the above polymers.
  • Other examples include films made from thermosetting or ultraviolet curable resins such as acrylic, urethane, acrylate urethane, epoxy, and silicone.
  • the thickness of the protective film is generally
  • a cellulose-based polymer such as triacetyl cellulose is preferable from the viewpoints of polarization characteristics and durability. Triacetinole cellulose film is particularly preferred.
  • a protective film made of the same polymer material may be used on the front and back, or a protective film made of a different polymer material or the like may be used.
  • the polarizer and the protective film are usually in close contact via an adhesive or the like.
  • the adhesive examples include polybulal alcohol adhesives, gelatin adhesives, bullet latexes, aqueous polyurethanes, aqueous polyesters, and the like.
  • a hard coat layer As the protective film, a hard coat layer, an antireflection treatment, an anti-sticking treatment, or a treatment subjected to treatment for diffusion or anti-glare can be used.
  • Hard coat treatment is performed for the purpose of preventing scratches on the surface of the polarizing plate.
  • a protective film is applied to a cured film having excellent hardness and sliding properties by an appropriate UV curable resin such as acryl or silicone. It can be formed by a method of adding to the surface.
  • the antireflection treatment is performed for the purpose of preventing reflection of external light on the surface of the polarizing plate, and can be achieved by forming an antireflection film or the like according to the conventional art.
  • the anti-sticking treatment is performed for the purpose of preventing adhesion with an adjacent layer.
  • the anti-glare treatment is performed for the purpose of preventing external light from being reflected on the surface of the polarizing plate and hindering the viewing of the light transmitted through the polarizing plate.
  • the anti-glare treatment can be performed using a sand plast method or an embossing method. It can be formed by imparting a fine concavo-convex structure to the surface of the protective film by an appropriate method such as a surface method or a compounding method of transparent fine particles.
  • Examples of the fine particles to be included in the formation of the surface fine concavo-convex structure include silica, alumina, titania, zirconia, tin oxide having an average particle diameter of 0.5 to 50 ⁇ ⁇ , Transparent fine particles such as inorganic fine particles having conductivity, which are made of indium oxide, cadmium oxide, antimony oxide, or the like, and organic fine particles made of a crosslinked or uncrosslinked polymer are used.
  • the amount of fine particles used is generally about 2 to 50 parts by weight with respect to 100 parts by weight of the transparent resin forming the surface fine uneven structure, and 5 to 25 Part by weight is preferred.
  • the antiglare layer may also serve as a diffusion layer (viewing angle expanding function or the like) for diffusing the light transmitted through the polarizing plate to expand the viewing angle.
  • the antireflection layer, antisticking layer, diffusing layer, antiglare layer and the like can be provided on the protective film itself, or can be provided separately from the transparent protective layer as an optical layer.
  • a circularly polarizing plate is formed by combining a 1 Z 4 wavelength plate with a linear polarizing plate.
  • the circularly polarizing plate has a function of changing linearly polarized light into circularly polarized light or changing circularly polarized light into linearly polarized light with a quarter wave plate.
  • a linearly polarizing plate is provided on both sides of the vertical alignment type liquid crystal cell, and the first optical anisotropic element having a phase difference of 1 Z 4 wavelength in the plane is provided between the linearly polarizing plate and the vertical alignment type liquid crystal cell. Therefore, when no voltage is applied, the phase difference in the observation direction of the liquid crystal layer is 0, so that the upper and lower polarizing plates can be made to be orthogonal, and when the voltage is applied, the phase difference in the observation direction is generated and bright display is possible. Become. In this case, the angle between the slow axis of the first optical anisotropic element having a phase difference of 1 Z 4 wavelength and the absorption axis of the linearly polarizing plate is 45 degrees, so that the liquid crystal layer has the simplest configuration. Circularly polarized light can be obtained.
  • the first having a phase difference of 1 Z 4 wavelength at all wavelengths.
  • a second optical anisotropic element having a phase difference of 1 ⁇ 2 wavelength in the plane between the linearly polarizing plate and the 1 ⁇ 4 wavelength plate.
  • a fourth optical anisotropic element having a directivity will be described.
  • optical anisotropic elements only have to have a desired retardation function, for example, polymer Examples thereof include a uniaxially or biaxially stretched film, a Z-axis oriented treatment, and an oriented film film in which a material exhibiting liquid crystallinity is applied and oriented.
  • optically anisotropic element a method of uniaxially or biaxially stretching a film made of an appropriate polymer can be used, and a width of a long film can be reduced by a heat-shrinkable film as disclosed in Japanese Patent Application Laid-Open No. 5_157 911.
  • a birefringent film manufactured by a method in which the direction is thermally shrunk to increase the retardation in the thickness direction is preferable, and examples of the raw material include films and sheets made of organic polymer materials.
  • polyester polymers such as poly (vinyl alcohol), polyimide, polyphenylene oxide, polyether ketone, polyether enoate ketone, polyethylene terephthalate and polyethylene naphthalate, and senorelose systems such as diacetyl cellulose and triacetyl styrene cellulose
  • films made of transparent polymers such as polymers, polycarbonate polymers, and acrylic polymers such as polymethyl methacrylate.
  • polystyrene, acrylonitrile 'styrene polymers such as styrene copolymers, polyethylene, polypropylene, polycyclohexylene, olefin polymers such as ethylene' propylene copolymer, butyl chloride polymers, nylon and aromatics.
  • a film made of a transparent polymer such as an amide polymer such as polyamide may also be mentioned.
  • imide polymers examples include films made of transparent polymers such as arylate polymers, polyoxymethylene polymers, epoxy polymers, and blends of the aforementioned polymers.
  • transparent polymers such as arylate polymers, polyoxymethylene polymers, epoxy polymers, and blends of the aforementioned polymers.
  • plastic films such as triacetyl cellulose, polycarbonate, and polycyclohexylin, which have high hydrogen bonding properties and are used as optical films, are used.
  • Examples of the organic polymer film include ZENOOR (trade name, manufactured by ZEON CORPORATION), ZEONEX (trade name, manufactured by ZEON CORPORATION), Arton (trade name, manufactured by JSR Corporation), etc.
  • a plastic film made of a polymer material having a norbornene structure is preferably used.
  • a retardation film formed by stretching the film described above has excellent optical properties.
  • NZ coefficient ( ⁇ ⁇ - ⁇ ⁇ ) / ( ⁇ ⁇ - ⁇ y)
  • NZ> 1 negative 2 axes
  • NZ k 1 positive It can be classified as two axes.
  • the Re 3 and NZ 3 values which are the optical parameters of the first optical anisotropic element, depend on the type of liquid crystal display device and various optical parameters.
  • the retardation value (R e 3) in the first optical anisotropic element surface is usually 80 ⁇ ⁇ ! ⁇ 170 nm, preferably 100 nm ⁇ 150 nm, more preferably 120 nm ⁇ : 1 40 nm
  • the NZ 3 value is 1 to NZ 3 to 4, preferably It is controlled at 0. 5 NZ 3 -3, more preferably 1 ⁇ NZ 3 -3.
  • the second optical anisotropic element showing a phase difference of 12 wavelengths in the plane is d 4 for the thickness of the second optical anisotropic element and Nx 4 for the main refractive index in the second optical anisotropic element plane.
  • the Re 4 and NZ 4 values which are the optical parameters of the second optical anisotropic element, cannot be generally described because they depend on the type of liquid crystal display device and various optical parameters.
  • the in-plane retardation value (R e 4) of the second optically anisotropic element is usually 200 nm to 350 nm, preferably 250 ⁇ ! ⁇ 300 ⁇ m, more preferred, 260 nm to 280 nm, and NZ4 values are _2, NZ4, 3, _1, NZ4, 2, more preferably 0 Controlled to ⁇ NZ 4 ⁇ 1.5.
  • the viewing angle improvement film of the liquid crystal display device can widen the viewing angle while correcting the color tone of the liquid crystal display. Is possible. If the R e 3 and Re 4 values are out of the above range, the front characteristics of the liquid crystal display device may be deteriorated due to the effect of deviation of the in-plane retardation value. If the NZ 3 and NZ 4 values are out of the above range, sufficient viewing angle improvement effects may not be obtained, or unnecessary coloring may occur when viewed obliquely.
  • the fourth optical anisotropic element having positive uniaxial optical anisotropy in the in-plane direction has a thickness of the fourth optical anisotropic element d 5 and the main refractive index in the fourth optical anisotropic element plane.
  • the Re 5 value which is the optical parameter of the fourth optical anisotropic element, depends on the type of liquid crystal display device and various optical parameters, but it cannot be said unconditionally, but for 550 nm monochromatic light.
  • the in-plane retardation value (Re5) of the fourth optical anisotropic element is usually in the range of 50 nm to 350 nm, preferably 70 nm to 300 nm, more preferably 90 nm to 280 nm. It is controlled. If the Re5 value is out of the above range, a sufficient viewing angle improvement effect may not be obtained, or unnecessary coloring may occur when viewed from an oblique direction.
  • a third optical anisotropic element having negative uniaxial optical anisotropy in the thickness direction will be described.
  • the third optical anisotropic element is not particularly limited, but non-liquid crystal materials are excellent in heat resistance, chemical resistance, transparency, and rigidity.
  • non-liquid crystal materials are excellent in heat resistance, chemical resistance, transparency, and rigidity.
  • polyolefins polyamides, polyimides, polyesters, polyether ketones, polyaryl ether ketones, polyamides, polyesters
  • Polymers such as imides are preferred. These polymers may be used either alone or as a mixture of two or more with different functional groups, such as a mixture of polyaryletherketone and polyamide. Good.
  • polyimide is particularly preferable because of its high transparency and high orientation.
  • a polyimide having high in-plane orientation and soluble in an organic solvent is preferable.
  • condensation of 9,9-bis (aminoaryl) fluorene and aromatic tetra force sulfonic acid dianhydride disclosed in Japanese Patent Publication No. 2 0 0 0—5 1 1 2 9 6
  • a polymerization product specifically, a polymer containing one or more repeating units represented by the following formula (8) can be used.
  • R 3 ⁇ R e is hydrogen, halogen, Hue - group, 1 to 4 halo gen atom or Fuweniru group substituted with an alkyl group having a carbon number of 1-1 0, and carbonitrides It is at least one kind of substituent each independently selected from the group consisting of alkyl groups having 1 to 10 prime numbers.
  • R 3 to R 6 are halogen, a phenyl group, a phenyl group substituted with 1 to 4 halogen atoms or an alkyl group having 1 to 10 carbon atoms, and 1 to 10 carbon atoms.
  • at least one kind of substituent each independently selected from the group consisting of alkyl groups.
  • Z is, for example, a tetravalent aromatic group having 6 to 20 carbon atoms, preferably a pyromellitic group, a polycyclic aromatic group, or a derivative of a polycyclic aromatic group.
  • Z ′ is, for example, a covalent bond, C (R 7 ) 2 group, CO group, O atom, S atom, S 0 2 group, S i (C 2 H 5 ) 2 group, or NR 8 groups, and when plural, they are the same or different.
  • W represents an integer from 1 to 10;
  • Each R 7 is independently hydrogen or C (R 9 ) 3 .
  • R 8 is hydrogen, an alkyl group having 1 to 20 carbon atoms, or an aryl group having 6 to 20 carbon atoms, and when there are a plurality thereof, they are the same or different.
  • Each R 9 is independently hydrogen, fluorine, or chlorine.
  • the liquid crystal material examples include a cholesteric alignment film made of a liquid crystal material such as a cholesteric liquid crystalline polymer, a film in which a cholesteric alignment layer is supported by a film, and a discotic liquid crystal layer.
  • the cholesteric alignment film preferably has a uniform blister orientation in which the cholesteric helical axis exists in the normal direction of the film by an appropriately selected method such as heat treatment, and the selective reflection wavelength s is 300 nm or less. Is preferred.
  • the material for realizing the cholesteric alignment is not limited to the liquid crystalline polymer, but a liquid crystal monomer molecule having a polymerizable group capable of realizing a cholesteric alignment alone, or a mixture of a liquid crystalline monomer having a polymerizable group and a chiral compound. Etc. are also preferably used. After these materials are cholesterically oriented by a method selected appropriately, such as heat treatment, the polymerizable group can be cured by a suitably used means such as heat or light, and the cholesteric orientation can be fixed.
  • a polymerizable discotic liquid crystal compound that is homogeneously aligned is also preferably used as a liquid crystal material other than the above that forms the negative uniaxial optically anisotropic layer.
  • the third optical anisotropic element has a thickness of d 3 for the third optical anisotropic element, Nx 2 and Ny 2 for the main refractive index in the third optical anisotropic element surface, and main refraction in the thickness direction.
  • the R e 2 and R th 2 values which are the optical parameters of the third optical anisotropic element, depend on the type of the liquid crystal display device and various optical parameters.
  • the in-plane retardation value (R e 2) for monochromatic light is usually 0 nm to 20 nm, preferably 0 n ⁇ ! ⁇ 10 nm, more preferably in the range of 0 nm to 5 nm, and the retardation value (R th 2) in the thickness direction is usually 30 to 500 nm, preferably 80 to 4 It is controlled at 0 nm, more preferably from 100 nm to 300 nm.
  • the viewing angle improving film of the liquid crystal display device can widen the viewing angle while correcting the color tone of the liquid crystal display. If the Re 2 value is greater than 20 nm, the front characteristics of the liquid crystal display device may be deteriorated due to the large front phase difference value. Also, if the Rth2 value is less than 30 nm or greater than 500 nm, a sufficient viewing angle improvement effect cannot be obtained, or unnecessary coloring occurs when viewed obliquely. fear is a mosquito s.
  • the laminate composed of the linearly polarizing plate, the home-orientated pick-aligned liquid crystal film, and the first, second, third, and fourth optical anisotropic elements is bonded to each other via an adhesive layer.
  • the homeotropic alignment liquid crystal film produced on the substrate is attached to the linearly polarizing plate or the first, second, or third optical anisotropic element through an adhesive layer, and then homeotropic.
  • Stacking is also possible by stripping the alignment substrate used to achieve the photo-alignment and transferring only the liquid crystal part that has been home-orientated to the linearly polarizing plate or the first, second, or third optical anisotropic element. Can be made.
  • a method of laminating the first, second, and third optical anisotropic elements for example, a method of directly laminating both using an adhesive layer described later, a liquid crystal alignment capability on each optical anisotropic element.
  • a method of providing a liquid crystalline polymer that exhibits uniform and monodomain liquid crystal orientation and that can easily fix the orientation state by means such as coating, provided on a film substrate For example, a method of transferring the liquid crystal compound to another optical anisotropic element using a pressure sensitive adhesive or an adhesive described later is preferably used.
  • the elliptically polarizing plate of the present invention is a homeotope pick with fixed homeotope pick orientation. It is an elliptically polarizing plate for vertically aligned liquid crystal display devices, in which an aligned liquid crystal film layer and a linearly polarizing plate are laminated.
  • a light diffusing layer, a light control film, a light guide plate, a prism sheet are used as necessary. Such a member may be added.
  • the following (1) to (3) may be used in addition to the elliptically polarizing plate of the present invention in that the liquid crystal display device obtains optical characteristics with little viewing angle dependency.
  • “Z” represents the interface of the layers (hereinafter the same).
  • examples of the configuration arranged in the vertical alignment type liquid crystal display device can include the following (4) to (15), and any configuration may be used.
  • Ellipsoidal polarizing plate of the present invention / first optical anisotropy exhibiting a phase difference of 1 Z 4 wavelength in the plane, third optical anisotropy having negative uniaxial optical anisotropy in the Z thickness direction Isotropic layer
  • Vertical alignment type liquid crystal display cell 1st optically anisotropic layer showing phase difference of 1 Z 4 wavelength in the plane
  • Linearly polarizing plate (8)
  • Ellipsoidal polarizing plate of the present invention The first optical anisotropy layer showing a 1/4 wavelength phase difference in the Z plane Z vertical alignment type liquid crystal display cell / negative uniaxial optical anisotropy in the thickness direction
  • Third optically anisotropic layer having a first optically anisotropic layer / linearly polarizing plate exhibiting a phase difference of 1 Z4 wavelength in the Z plane
  • the elliptically polarizing plate of the present invention Z is a first optically anisotropic layer that exhibits negative biaxiality and exhibits a 1/4 wavelength retardation in the plane.
  • Z 1st optical anisotropic layer showing phase difference of 4 wavelengths 4th optical anisotropic element / linearly polarizing plate with positive uniaxial optical anisotropy in Z-plane direction
  • the elliptically polarizing plate of the present invention / first optically anisotropic layer showing a phase difference of 1/4 wavelength in the plane / vertical alignment type liquid crystal display cell / showing negative biaxiality and in-plane 1 Z 1st optical anisotropic layer showing phase difference of 4 wavelengths Z linear polarizing plate
  • the elliptically polarizing plate of the present invention Z is a first optically anisotropic layer exhibiting negative biaxiality and exhibiting a phase difference of 1Z4 wavelength in the plane.
  • Vertical alignment type liquid crystal display cell First optically anisotropic layer showing a phase difference of 14 wavelengths in-plane Z linear polarizing plate
  • the adhesive used to form the linear polarizing plate, the home-orientated pick-up liquid crystal film, the layer of each optical anisotropic element, and the adhesive / adhesive layer used for transfer is optically isotropic and transparent. If it is a thing, it will not restrict
  • those based on polymers such as acrylic polymers, silicone polymers, polyesters, polyurethanes, polyamides, polyethers, and fluorine-based rubbers can be appropriately selected and used.
  • a reactive material that reacts by an external stimulus such as light, electron beam, or heat to undergo polymerization or crosslinking can also be used.
  • those having excellent optical transparency such as an acrylic pressure-sensitive adhesive, exhibiting appropriate wettability, cohesiveness, and adhesive pressure-sensitive adhesive properties, and being excellent in weather resistance, heat resistance, etc. can be preferably used.
  • the adhesive layer can be formed by an appropriate method.
  • a pressure-sensitive adhesive solution of about 10 to 40% by mass in which a base polymer or a composition thereof is dissolved or dispersed in a solvent composed of a single solvent or a mixture of appropriate solvents such as toluene and ethyl acetate.
  • the method of attaching it directly on the polarizing plate, the liquid crystal film or the optical element layer by an appropriate development method such as a casting method or a coating method, or an adhesive / adhesive on the separator according to the above. Examples include a method of forming a layer and transferring it onto the polarizing plate, the liquid crystal film or the optical element layer.
  • the adhesive / adhesive layer includes, for example, natural and synthetic resins, in particular, tackifier resins, fillers made of glass fibers, glass beads, metal powders, other inorganic powders, pigments, It may contain additives that may be added to the adhesive layer, such as colorants and antioxidants. Further, it may be an adhesive layer containing fine particles and exhibiting light diffusibility.
  • the thickness of the adhesive layer is not particularly limited as long as the member to be adhered can be adhered and sufficient adhesion can be maintained, depending on the properties of the adhesive and the adhesive and the material to be adhered. Can be selected. Since the demand for reducing the total thickness of the elliptically polarizing plate is strong, it is preferable that the thickness of the adhesive is thinner, but usually 2 to 80 ⁇ , preferably 5 to 50 ⁇ m, more preferably 10 ⁇ 40 0 ⁇ . Outside this range, it is not preferable because the adhesive strength is insufficient, or oozes out from the end portion when laminating or storing the elliptically polarizing plate.
  • (B) Home-to-mouth pick alignment in which the liquid crystal alignment formed on the alignment substrate is fixed. After the liquid crystal layer is adhered to the removable substrate 1 via the adhesive layer 1, the alignment substrate is peeled off and the homeotope is aligned. Transfer the mouth-pick orientation liquid crystal layer to the re-peelable substrate 1 and re-peel the substrate 1 Adhesive layer 1 Make the intermediate 1 consisting of the Z home-to-mouth pick-alignment liquid crystal layer, and then re-peel it through the adhesive layer 2 After adhering to the releasable substrate 2, the releasable substrate 1 is peeled off to produce an intermediate 2 consisting of an adhesive layer 1 home-orientated liquid crystal layer / adhesive layer 2 / removable substrate 2, and After the non-carrier paste with a separate film is bonded to the adhesive layer 1 side, the separate film is peeled off, and is appropriately attached to a polarizing plate or an optical anisotropic element, and the re-peelable substrate 2
  • the adhesion between the removable substrate and the home-orientated pick-aligned liquid crystal layer is reduced, and the removability is also achieved.
  • the adhesive layer can be peeled off while being adhered to the removable substrate side.
  • the type and amount of the surfactant and additive used in this case as long as they do not adversely affect the optical defect inspection and peelability.
  • the linear polarizing plate or the second polarizing plate When transferring to the first, second, or third optical anisotropic element, processes such as the following (D) and (E) can be used as appropriate to facilitate the transfer.
  • (E) Home-to-mouth pick alignment in which the liquid crystal alignment formed on the alignment substrate is fixed. After the liquid crystal layer is adhered to the re-peelable substrate 1 via the adhesive layer 1, the alignment substrate is peeled off and the home is aligned. Transfer the lip-pickup alignment liquid crystal layer to the removable substrate 1, re-peelable substrate 1 / adhesive layer 1 produce intermediate 1 consisting of the Z homeotopick-pick alignment liquid crystal layer, and re-transfer through the adhesive layer 2 After adhering to the peelable substrate 2, the releasable substrate 1 is peeled off, and an intermediate 2 composed of the adhesive layer 1 liquid crystal orientation layer Z adhesive layer 2 removable substrate 2 is produced.
  • the peelable substrate 2 is peeled off with the adhesive layer 2 adhered, and a separate film adhesive layer / adhesive layer 1 / Preparation of intermediate 5 consisting of homeostatic picked liquid crystal layer Non-carrier adhesive with separate vinyl is also pasted on the side of the liquid crystal alignment layer, separate film / adhesive layer Z adhesive layer 1 Z homeotropic alignment liquid crystal layer / adhesive layer 2 / adhesive layer Z separate
  • An intermediate 6 made of a film is prepared, and the separate film is peeled off and appropriately attached to a polarizing plate or an optical anisotropic element.
  • the surface of the homeotropic alignment liquid crystal film is surface-treated.
  • the surface treatment means is not particularly limited, but corona discharge treatment, sputtering treatment, low-pressure UV irradiation, brazing that can maintain the transparency of the liquid crystal film surface.
  • a surface treatment method such as a Jerusalema treatment can be suitably employed. Among these surface treatment methods, the corner discharge treatment is good.
  • the above-mentioned liquid crystal material is applied to the above-mentioned alignment substrate on the above-mentioned linear polarizing plate or the first, second or third optically anisotropic element without using a home-orientation pick-alignment liquid crystal film via an adhesive layer. It is also possible to manufacture by aligning the liquid crystal material and then fixing the alignment state by light irradiation and Z or heat treatment. If necessary, install the alignment film on the linearly polarizing plate or the first, second, or third optical anisotropic element, and then develop the liquid crystal material on the alignment substrate. After aligning the liquid crystal material, it can also be produced by fixing the alignment state by irradiation with light Z or heat treatment.
  • liquid crystal display device Various liquid crystal display devices of a transmission type, a reflection type, and a transflective type can be mentioned.
  • driving method of the liquid crystal cell There are no particular restrictions on the driving method of the liquid crystal cell.
  • the transparent substrate constituting the liquid crystal cell is not particularly limited as long as the liquid crystal material constituting the liquid crystal layer is aligned in a specific alignment direction.
  • a transparent substrate having the property of orienting liquid crystals by the substrate itself a force that lacks the alignment ability of the substrate itself, a transparent substrate having an alignment film having the property of orienting liquid crystals, etc.
  • a transparent substrate having an alignment film having the property of orienting liquid crystals can also be used.
  • well-known things, such as ITO can be used for the electrode of a liquid crystal cell.
  • the electrode can usually be provided on the surface of the transparent substrate with which the liquid crystal layer is in contact, and when a substrate having an alignment film is used, it can be provided between the substrate and the alignment film.
  • the material exhibiting liquid crystallinity for forming the liquid crystal layer is not particularly limited as long as it has a negative dielectric anisotropy, and various ordinary low-molecular liquid crystal materials and polymers that can form various liquid crystal cells. Liquid crystal substances and mixtures thereof are mentioned. In addition, a dye, a chiral agent, a non-liquid crystal substance, and the like can be added to these as long as liquid crystallinity is not impaired. If a chiral agent is added to a vertically aligned liquid crystal layer using a liquid crystal material exhibiting negative dielectric anisotropy and the liquid crystal molecules are rotated when voltage is applied, the rotation of the liquid crystal molecules when voltage is applied should be stabilized. Can do.
  • the trace of the alignment process is not the same direction, so that the streak is not noticeable.
  • the liquid crystal layer is twisted 90 degrees, retardation will occur in the tilt direction of the liquid crystal molecules when it is aligned at a few degrees to prevent disclination when a voltage is applied. Since the tilted direction of the liquid crystal molecules forms an angle of 90 degrees near the upper and lower substrates, the generated retardation can be canceled out and a black display with less leakage light can be obtained.
  • one substrate of the vertical alignment type liquid crystal cell as a substrate having a region having a reflection function and a region having a transmission function, a transflective vertical alignment type liquid crystal display device can be obtained.
  • the region having a reflective function (hereinafter sometimes referred to as a reflective layer) included in the transflective electrode used in the transflective vertical alignment type liquid crystal display device is not particularly limited, and is made of aluminum, silver. Examples thereof include metals such as gold, chromium and platinum, alloys containing them, oxides such as magnesium oxide, multilayer films of dielectrics, liquid crystals exhibiting selective reflection, or combinations thereof. These reflective layers may be flat or curved. In addition, the reflective layer is processed to have a surface shape, such as an uneven shape, to have diffuse reflectivity, to have the electrode on the electrode substrate opposite to the viewer side of the liquid crystal cell, or a combination thereof It may be.
  • the vertical alignment type liquid crystal display device of the present invention can be provided with other constituent members in addition to the constituent members described above. For example, by attaching a color filter to the liquid crystal display device of the present invention, a color liquid crystal display device capable of performing multicolor or full color display with high color purity can be manufactured.
  • the compound was dissolved in deuterated black-hole form and measured by 1 H-NMR of 40 OMHz (I NOVA-400 manufactured by Variant).
  • TSK—GEL Super H 1 000, Super H2000, Super H 3000, Super H4000 were connected in series and measured using tetrahydrofuran as the eluent. Polystyrene standards were used for molecular weight calibration.
  • the alignment state of the liquid crystal was observed with a BH 2 polarizing microscope manufactured by Olympus Optical Co., Ltd.
  • a differential scanning calorimeter (DS C, DS C-7 manufactured by Perkin E1mer) was used and measured at a heating rate of 20 ° C / min.
  • the viewing angle of the liquid crystal display device was measured by EZcontras t 16 60R manufactured by ELD IM, and an equal contrast curve was obtained.
  • a liquid crystal material solution was prepared as follows.
  • a liquid crystalline polymer of the following formula (1 0) was synthesized.
  • An alignment substrate was prepared as follows.
  • Polyethylene naphthalate film (P EN film) with a thickness of 38 ⁇ (manufactured by Teijin DuPont Films Co., Ltd.) is cut into 15 cm squares, and the alkyl-modified polybutyl alcohol (Kuraray Co., Ltd., MP—203 (PVA)) 5% by weight solution (solvent is a mixed solvent of water and isopropyl alcohol at a mass ratio of 1: 1) is applied by spin coating, dried on a hot plate at 50 ° C for 30 minutes, and then 120 ° C at 120 ° C. Heated in an oven for 10 minutes. Subsequently, it was rubbed with a rayon rubbing cloth. The thickness of the obtained PVA layer was 1.2 ⁇ .
  • the peripheral speed ratio during rubbing (moving speed of rubbing cloth, moving speed of Z substrate film) was 4.
  • the liquid crystal material solution described above was applied to the alignment substrate thus obtained by spin coating. Next, it was dried on a hot plate at 60 ° C. for 10 minutes, and heat-treated at 15 ° 0 ° C. for 2 minutes to align the liquid crystal material. Next, place the sample in close contact with an aluminum plate heated to 60 ° C, and then irradiate it with ultraviolet light (measured at 365 nm) of 600 m J / cm 2 with a high-pressure mercury lamp. material
  • Laminates 1 and 2 were prepared as follows to measure the optical parameters of the obtained liquid crystal layer (homeotope orientation liquid crystal layer) and to protect the surface of the liquid crystal layer.
  • the liquid crystal layer on the obtained alignment substrate was transferred to a polyethylene terephthalate film (PET) through a commercially available UV curable adhesive (UV-3400, manufactured by Toagosei Co., Ltd.).
  • UV-3400 was applied as adhesive layer 1 to a thickness of 5 on the cured liquid crystal layer on the PVA layer, and polyethylene terephthalate (P (ET) film is laminated, and the adhesive layer 1 is cured by irradiating UV light from the PET film side, then the PVA layer and the PEN film are peeled off, and an intermediate laminate with PET film ( PET film Z adhesive layer 1 liquid crystal layer).
  • UV-curing adhesive (UV_3400, manufactured by Toagosei Co., Ltd.) was applied as an adhesive layer 2 on the homeotopick liquid crystal layer of the obtained intermediate laminate to a thickness of 5 m.
  • TAC cetyl cellulose
  • the obtained laminate 1 When the obtained laminate 1 is observed under a polarizing microscope in which the crossed Nicols are crossed, it has a uniform monodomain orientation with no disclination, and is homeomorphic with a positive uniaxial refractive index structure from conoscopic observation. I understood it.
  • this film When this film was tilted, light was incident from an oblique direction, and the cross-col was observed in the same way, and light transmission was observed.
  • the optical retardation of the film was measured with an automatic birefringence measuring device KOB RA2 1 ADH. The measurement light was made incident on the sample surface perpendicularly or obliquely, and the home-to-mouth pick orientation was confirmed from the chart of the optical phase difference and the incident angle of the measurement light.
  • the phase difference (front phase difference) in the direction perpendicular to the sample surface is almost zero.
  • the phase difference value increased with the increase of the incident angle of the measurement light, and the homeotopic orientation was obtained. I was able to judge. From the above, it was judged that the homeo-mouth pick orientation was good.
  • N X 1 of the homeotopic pick alignment liquid crystal film was 1.54, Ny: U3 ⁇ 4l.54, and N z l were 1.73.
  • T g was measured using a differential calorimetry (DSC).
  • the T g was 100 ° C.
  • film liquid crystal The pencil hardness on the surface of the layer was about 2 H, and a sufficiently strong film was obtained.
  • Corona discharge treatment (25 OW'm in / m 2 ) was applied to the adhesive layer 1 side of the laminate 1 and a linear polarizing plate (thickness: about 105 ⁇ , manufactured by Sumitomo Chemical Co., Ltd. SQW-06 06 2) ) was peeled off, and the TAC film was peeled off to obtain an elliptically polarizing plate 1 (linear polarizing plate pressure-sensitive adhesive layer / adhesive layer 1 / homeotope orientation liquid crystal layer / adhesive layer 2).
  • Corona discharge treatment (25 OW'm in / m 2 ) is applied to the adhesive layer 1 side of the laminate 1 and a retardation film with an in-plane retardation of 140 nm is used as the first optical anisotropic element via an adhesive.
  • a retardation film with an in-plane retardation of 140 nm is used as the first optical anisotropic element via an adhesive.
  • Zeonor film manufactured by Nippon Zeon Co., Ltd.
  • peel off the TAC film and laminate 3 (adhesive layer 2 / homeotopick orientation liquid crystal layer / adhesive layer 1 / adhesive layer Z zeonor film) Got.
  • Corona discharge treatment 250 W ⁇ min / m 2
  • a TAC film (Fuji Film Co., Ltd.) has negative uniaxiality as a third optical anisotropic element via an adhesive.
  • Manufactured was pasted to obtain a laminate 4 (adhesive layer 2 / homeotopic picked liquid crystal layer / adhesive layer 1 / adhesive layer ZENOA film / adhesive layer / TAC film).
  • Corona discharge treatment (25 OW'm in / m 2 ) was applied to the adhesive layer 2 side of the laminate 4 and a linear polarizing plate (thickness: about 105 ⁇ , manufactured by Sumitomo Chemical Co., Ltd. SQW-06 06 2) ) Is attached to the elliptical polarizing plate 2 (linear polarizing plate ⁇ adhesive layer adhesive layer 2 / homeoto mouth pick alignment liquid crystal layer / adhesive layer 1 ⁇ adhesive layer ⁇ Zeoner film / adhesive layer A
  • the layer thickness of the elliptically polarizing plate was 280 ⁇ .
  • the viewing side polarizing plate is shown in Fig. 1 for the backlight, back side polarizing plate, vertical alignment (VA) type liquid crystal cell, and viewing side polarizing plate.
  • the elliptically polarizing plate 2 of the present invention was disposed.
  • Figure 2 shows an equal contrast diagram. Compared to the case where this elliptical polarizing plate 2 is not used, the viewing angle is enlarged and obliquely It was found that a good image was obtained even when viewed.
  • the concentric circles in Fig. 2 are drawn at 20 ° intervals. Therefore, the outermost circle shows 80 ° from the center (the same applies to the following figures).
  • the TAC film was peeled off and the elliptical polarizing plate 25 (direct A linear polarizing plate / adhesive layer / adhesive layer 3 nonnematic alignment liquid crystal layer Z adhesive layer 4)
  • VA type liquid crystal of the same type as that used in the production of the vertical alignment type liquid crystal display device of Example 2
  • the elliptically polarizing plate 25 was placed in place of the elliptically polarizing plate 2 used in Example 2.
  • An equal contrast diagram is shown in Fig. 12. Compared with the case where the elliptically polarizing plate 2 of the present invention is used. The viewing angle expansion effect was small, and a good image was not obtained even when viewed from an oblique direction.
  • Corona discharge treatment 250 W. min / m 2 was applied to the zenoir film side of the laminate 5, and the adhesive layer 2 side of the laminate 2 was adhered via an adhesive, and the laminate 6 (separate film Z Adhesive Layer Z Adhesive Layer 1 / Home-Oriented Pick Oriented Liquid Crystal Layer Adhesive Layer 2 Adhesive Layer Z Zeonor Film Z Polyetherketone Film) was obtained. (Production of elliptically polarizing plate 3)
  • the separate film of laminate 6 was peeled off, and a linear polarizing plate (thickness approx. 105 ⁇ m, SQW-06 2 manufactured by Sumitomo Chemical Co., Ltd.) was attached, and elliptical polarizing plate 3 (linear polarizing plate Z adhesive layer / adhesion)
  • Adhesive layer / Zeono film Z polyetherketone film.
  • the polyimide represented by the following formula (12) was dissolved in cyclohexanone to prepare a 15% by weight polyimide solution.
  • This polyimide solution was applied to a retardation film having an in-plane retardation of 140 nm (Zeonor film, manufactured by Nippon Zeon Co., Ltd.) and heat-treated at 100 ° C. for 10 minutes.
  • a polyimide film that is transparent, smooth on the surface has a thickness of 6 ⁇ , and exhibits negative optical anisotropy in the direction perpendicular to the film surface is formed on the ZENOA film.
  • Corona discharge treatment (2 50 W ⁇ min / m 2 ) is applied to the adhesive layer 2 side of the elliptical polarizing plate 1, and the ZENOA film side of the laminate 7 is adhered via an adhesive, and the elliptical polarizing plate 4 (linear polarization) Plate Z pressure-sensitive adhesive layer Z adhesive layer 1 / home-orientated pick liquid crystal layer adhesive layer 2 / pressure-sensitive adhesive layer nozono film / polyimide film) were obtained.
  • a tetrachloroethane solution with a concentration of 15% by mass was purified and spun onto a 12 cm ⁇ 12 cm glass plate (manufactured by EBC) with a polyimide alignment film that was rubbed on one side. After applying by a coating method, it was dried.
  • this sample was heat-treated at 200 ° C. for 10 minutes in an air thermostat, then taken out from the thermostat and allowed to cool to fix the alignment and obtain a nematic liquid crystal alignment layer.
  • the obtained nematic liquid crystal alignment layer was a completely transparent and smooth film having a thickness of 0, 62 m.
  • a laminate 8 was prepared as follows.
  • the liquid crystal layer on the obtained alignment substrate was transferred to a polyethylene terephthalate film (PET) through a commercially available UV curable adhesive (UV-3400, manufactured by Toagosei Co., Ltd.).
  • UV curable adhesive was applied as an adhesive layer 3 to a thickness of 5 m, laminated with PET film, and UV rays were applied from the PET film side.
  • the polyimide alignment film transparent glass substrate was peeled off to produce a laminate 8 (PET film adhesive layer 3 Z nematic alignment liquid crystal layer).
  • UV curable adhesive (UV-3400, manufactured by Toagosei Co., Ltd.) was applied as an adhesive layer 4 on the liquid crystal layer of laminate 8 to a thickness of 5 ⁇ , and triacetyl cellulose ( TAC) Laminate with film and irradiate ultraviolet rays from TAC film side to cure adhesive layer 2, then peel off ⁇ film and laminate 9 (adhesive layer 3 nematic alignment liquid crystal layer adhesive) Layer 4 ZT AC film).
  • TAC triacetyl cellulose
  • the elliptical polarizing plate 1 (linear polarizing plate adhesive layer / adhesive layer 1 Z homeotropic alignment liquid crystal layer-adhesive layer 2) has an edge discharge treatment (250 W min / m on the adhesive layer 2 side).
  • the laminated body 8 is used as a first optical anisotropic element via an adhesive.
  • the PET film is peeled off and the elliptically polarizing plate 5 (Linear polarizing plate adhesive layer Adhesive layer 1 Z homeotopick alignment liquid crystal layer / adhesive layer
  • the layer thickness of the elliptically polarizing plate 5 was 180 m.
  • a film 1 as a third optical anisotropic element having negative uniaxiality in the film thickness direction was fabricated by the following method.
  • Transparent polycarbonate film with a thickness of 110 m manufactured by Sumitomo Chemical Co., Ltd.
  • 1 Heated to 70 ° C stretched at a speed of 0.3 mm / sec, then re-heated 1 70 ° C
  • the film was stretched at a speed of 0.5 mm / sec in a direction perpendicular to the first stretching direction.
  • the polycarbonate film had a higher refractive index in the stretching direction due to the second stretching, and the refractive index was about the same as the direction perpendicular to the stretching direction. For this reason, the polycarbonate film became a negative uniaxial optical anisotropic body including the extraordinary refractive index of the medium in the direction perpendicular to the stretching direction (that is, the direction perpendicular to the film surface).
  • Corona discharge treatment (25 OW ′ min / m 2 ) is applied to the adhesive layer 3 side of the elliptically polarizing plate 5, and the film having negative uniaxiality as a third optical anisotropic element through an adhesive 1 is attached, and elliptically polarizing plate 6 (linear polarizing plate Z adhesive layer Z adhesive layer 1 / home-to-mouth orientation liquid crystal layer Z adhesive layer 2 Z adhesive layer Z nematic alignment liquid crystal layer Z adhesive layer
  • Corona discharge treatment (250 W 'min / m 2 ) is applied to the adhesive layer 2 side of the laminate 3 (adhesive layer 2 Z home-mouth picked liquid crystal layer Z adhesive layer 1 / adhesive layer / Zeonor film),
  • a linear polarizing plate (thickness: approx. 10 05 ⁇ , manufactured by Sumitomo Chemical Co., Ltd. 3 (3 ⁇ _ 06 2)) is bonded to the elliptical polarizing plate 7 (linear polarizing plate / adhesive layer / adhesive layer 2 ⁇ Homeo-mouth pick alignment liquid crystal layer adhesive layer 1 / adhesive layer / Zeonor film).
  • the elliptical polarizing plate 7 is subjected to corona discharge treatment (2550 W ⁇ min / m 2 ) on the zenoir film side, and a negative uniaxial TAC film as a third optical anisotropic element through an adhesive (Fuji Film (manufactured by Co., Ltd.) is attached, and elliptically polarizing plate 8 (linearly polarizing plate Z adhesive layer Z adhesive layer 2 / homeotopick orientation liquid crystal layer Z adhesive layer 1 Z adhesive layer / ZEONOR film adhesive Layer ZTAC film).
  • a retardation film (Pure Ace WR, manufactured by Teijin Ltd.) having an in-plane retardation was longitudinally uniaxially stretched at 230 ° C. to obtain a film 2 having negative biaxiality.
  • the in-plane phase difference was 140 nm.
  • Corona discharge treatment on the adhesive layer 2 side of the elliptically polarizing plate 1 (linear polarizing plate Z adhesive layer Z adhesive layer 1 Z homeoto orientation liquid crystal layer / adhesive layer 2) m 2 ), and the film 2 is pasted as a first optical anisotropic element through an adhesive, and an elliptically polarizing plate 9 (linearly polarizing plate Z adhesive layer Z adhesive layer 1 / homeotopic orientation liquid crystal Layer Z adhesive layer 2 Z pressure-sensitive adhesive layer Z film 2) was obtained.
  • the layer thickness of the elliptically polarizing plate 9 was 1500 ⁇ m.
  • the present invention is used instead of the viewing side polarizing plate.
  • the elliptically polarizing plate 9 was disposed.
  • Figure 4 shows an equal contrast diagram. Compared to the case where the elliptical polarizing plate 9 is not used, the viewing angle is widened, and it was found that a good image can be obtained even when viewed obliquely.
  • a TAC film After the corona discharge treatment (250 W ⁇ min / m 2 ) is applied to the adhesive layer 1 side of the laminate 1 and the film 2 is adhered as a first optical anisotropic element via an adhesive, a TAC film The laminate 10 was peeled to obtain a laminate 10 (adhesive layer 2 homeomorphic orientation liquid crystal layer / adhesive layer 1Z pressure-sensitive adhesive layer film 2).
  • Corona discharge treatment 250 W ⁇ min / m 2
  • a linear polarizing plate (thickness: about 10 ⁇ , manufactured by Sumitomo Chemical Co., Ltd.) via an adhesive.
  • SQ W-06 2 is pasted to obtain an elliptically polarizing plate 10 (linear polarizing plate ⁇ adhesive layer / adhesive layer 2 / homeotope picked liquid crystal layer ⁇ adhesive layer 1 ⁇ adhesive layer film 2) It was.
  • In-plane retardation 1 05 nm retardation film (Zeonor film, manufactured by Nippon Zeon Co., Ltd.) was subjected to corona treatment (250 W ⁇ min / m2), and the laminate 8 (PET film Z adhesive) was bonded via an adhesive. After sticking the nematic alignment liquid crystal layer side of layer 3Z nematic alignment liquid crystal layer), the PET film was peeled off to produce laminate 1 1 (adhesive layer 3 / nematic alignment liquid crystal layer pressure-sensitive adhesive layer / Zeonor film).
  • the laminate 11 is subjected to a corona treatment (250 W 'min / m 2) on the zenoah film side, and a linear polarizing plate (thickness: about 105 ⁇ , manufactured by Sumitomo Chemical Co., Ltd., SQ W-06) 2) was pasted to make an elliptically polarizing plate 1 1 (adhesive layer 3 ⁇ nematic alignment liquid crystal layer / adhesive layer / zeonor film / adhesive layer / linear polarizing plate).
  • corona discharge treatment 250 W ⁇ min / m 2
  • the elliptical polarizing plate 1 3 is subjected to corona treatment (250 W ⁇ mi ⁇ / m2) on the zenoah film side, and the laminate 9 (adhesive layer 3Z nematic alignment liquid crystal layer Z adhesive layer 4 / T AC film through an adhesive) stuck with adhesive layer 3 side), elliptically polarizing plate 1 4 (T AC film Z adhesive layer 4 / nematic alignment liquid crystal layer Z adhesive layer 3 / Zeonoafi Lum / adhesive layer / / linear polarizer) Obtained.
  • TAC film (Fuji Film) has a negative uniaxial property as the third optical anisotropic element through the adhesive by applying corona discharge treatment (250W ⁇ min Zm 2 ) to the TAC film side of the elliptically polarizing plate 14 (Made by Co., Ltd.) and an elliptically polarizing plate 1 5 (TAC film Z adhesive layer ZT AC film / adhesive layer 4 Z nematic alignment liquid crystal layer Z adhesive layer 3 Z ZEONOR film Z adhesive layer / A linear polarizing plate) was obtained.
  • film 3 having negative uniaxial anisotropy in the film thickness direction is produced by the following method. Made.
  • an alignment film coating solution composed of 10 parts by weight of polyvinyl alcohol, 371 parts by weight of water, 19 parts by weight of methanol, and 0.5 parts by weight of glutaraldehyde is deposited on the film. It was applied with a spin coater. A film was formed by drying with warm air of 60 ° C for 60 seconds and further with warm air of 100 ° C for 120 seconds. Next, the formed film was rubbed in a direction parallel to the slow axis direction of the film to obtain an alignment film.
  • film 3 (discotic liquid crystal Layer alignment film / TAC film).
  • a film having an in-plane retardation of 140 nm (Zeonor film, manufactured by Nippon Zeon Co., Ltd.) is attached as a first optical anisotropic element via an adhesive to the TAC film side of the film 3 and laminated.
  • Body 1 2 (discotic liquid crystal layer alignment film ZTAC film pressure-sensitive adhesive layer Z-Zeonor film) was obtained.
  • Corona discharge treatment 250 W ⁇ min / m 2 was applied to the Xenoah film side of the laminate 13 and a linear polarizing plate (thickness: about 105 m, manufactured by Sumitomo Chemical Co., Ltd. 3 (3 06 2) was pasted to produce an elliptically polarizing plate 1 7 (discotic liquid crystal layer / alignment film TAC film pressure-sensitive adhesive layer / Zeono Aluminum Z pressure-sensitive adhesive layer nozeonofilm Z pressure-sensitive adhesive layer-linear polarizing plate).
  • Corona discharge treatment (2 50 W ⁇ min / m 2 ) was applied to a retardation film (Zenoah, manufactured by Nippon Zeon Co., Ltd.) with an in-plane retardation of 140 nm, and an in-plane retardation of 105 nm was applied via an adhesive.
  • a phase difference film (Pure Ace, manufactured by Teijin Limited) is pasted and laminated.
  • a film 4 having negative uniaxial anisotropy in the film thickness direction was produced by the following method.
  • Photopolymerizable mesogenic compound (LC 242 manufactured by BAS F) 90.5 parts by weight, polymerizable chiral agent (LC 75 6 manufactured by BAS F) 9.5 parts by weight and solvent (cyclohexanone) selectively reflected 3 weights of photopolymerization initiator (Irgacure 907, manufactured by Ciba Specialty Chemicals Co., Ltd.) is added to the solution that is adjusted and blended so that the center wavelength is 300 nm.
  • a coating solution with 0 added (solid content 30 wt%) was prepared.
  • the coating solution was applied on a stretched polyethylene terephthalate film (alignment substrate) using a spin coater so that the thickness after drying was 6 m, and the solvent was dried at 100 ° C for 2 minutes. .
  • the obtained film was irradiated with the first ultraviolet ray at 5 OmW / cm 2 for 1 second in an air atmosphere at 35 ° C. from the alignment substrate side. Then, it was heated at 80 ° C for 1 minute without UV irradiation. Next, the second UV irradiation is performed in an air atmosphere at 80 ° C. Performed at 5 mW / cm 2 for 60 seconds.
  • irradiation of the third ultraviolet ray from the alignment substrate side at 8 OmW / cm 2 was performed for 30 seconds in a nitrogen atmosphere at 50 ° C. to form a broadband cholesteric liquid crystal layer having a selected wavelength of 250 to 350 nm.
  • a triacetyl cellulose film was bonded to the cholesteric liquid crystal layer side with an acrylic adhesive and dried at 80 ° C. for 5 minutes.
  • the alignment substrate was gently peeled off to obtain film 4 (cholesteric liquid crystal layer pressure-sensitive adhesive layer / TAC film).
  • Corona discharge treatment (250 W ⁇ min / m 2 ) is applied to the zenoah film side of the laminate 14, and the TAC film side of the film 4 is adhered via an adhesive, and the laminate 15 (cholesteric liquid crystal layer) Z pressure-sensitive adhesive layer ZTAC film Z pressure-sensitive adhesive layer Z zeonor film / pressure-sensitive adhesive layer / pure ace film).
  • Corona discharge treatment 250 W ⁇ min / m 2
  • a linear polarizing plate (thickness: about 105 ⁇ , manufactured by Sumitomo Chemical Co., Ltd. SQW-062) was applied via an adhesive.
  • Adhesion was made to produce an elliptically polarizing plate 18 (cholesteric liquid crystal layer / adhesive layer ⁇ AC film / adhesive layer / Zeonor film / adhesive layer Z Pure Ace film / adhesive layer / linear polarizing plate).
  • a film 5 having positive uniaxial anisotropy in the in-plane direction of the film was produced by the following method.
  • a photopolymerization initiator (Ciba Specialty Chemicals, Irgacure 907) was added to a solution in which 100 parts by weight of a photopolymerizable mesogenic compound (LC 242 manufactured by BAS F) and a solvent (cyclohexanone) were mixed. ) was added to prepare a coating solution (solid content 30% by weight).
  • the coating solution was applied onto a stretched polyethylene terephthalate film (alignment substrate) using a spin coater so that the thickness after drying was 6 ⁇ , and the solvent was dried at 100 ° C. for 2 minutes.
  • the obtained film was irradiated with the first ultraviolet ray at 5 OmW / cm 2 for 1 second in an air atmosphere at 35 ° C. from the alignment substrate side.
  • a retardation film having an in-plane retardation (Warton, manufactured by JSR Co., Ltd.) was longitudinally uniaxially stretched at 230 ° C. to obtain a film 6 having negative biaxiality.
  • the in-plane retardation was 140 ⁇ m.
  • the film 6 is subjected to corona discharge treatment (250 W. min / m 2 ), and the TAC film side of the film 5 having positive uniaxiality in the plane is pasted as a fourth optical anisotropic element through an adhesive.
  • the laminate 16 film 6Z adhesive layer / nematic liquid crystal alignment layer Z adhesive layer ZT AC film was obtained.
  • Corona treatment 250 W ⁇ min / m 2
  • a linear polarizing plate (thickness: about 105 im, SQ W-062 manufactured by Sumitomo Chemical Co., Ltd.) is applied via an adhesive.
  • An elliptically polarizing plate 19 (film 6 / adhesive layer non-matic liquid crystal alignment layer / adhesive layer / TAC film / adhesive layer linear polarizing plate) was prepared.
  • the elliptical polarizing plate 13 (Zeonor film / adhesive layer Z linear polarizing plate) is subjected to a corona discharge treatment (250 W ⁇ minZm 2 ) on the side of the zenoir film, and a negative 2 as a fourth optical anisotropic element through the adhesive.
  • the axially polarizing film 6 was stuck to obtain an elliptically polarizing plate 20 (film 6 Z pressure-sensitive adhesive layer / Zeonoa film pressure-sensitive adhesive layer / linearly polarizing plate).
  • Corona discharge treatment 250W ⁇ minZm 2
  • a linear polarizing plate (thickness: about 105 m, manufactured by Sumitomo Chemical Co., Ltd.) is used.
  • SQW—062 An elliptically polarizing plate 2 1 (polyether ketone film Z zeonor film / adhesive layer / linearly polarizing plate) was obtained.
  • Corona discharge treatment 250W ⁇ min / m 2
  • a retardation film with an in-plane retardation of 140 nm (Zeonor film, manufactured by ZEON CORPORATION), and a linear polarizing plate (thickness approx. 3 (3 ⁇ ⁇ -06 2) manufactured by Sumitomo Chemical Co., Ltd. was pasted to obtain an elliptically polarizing plate 22 (Zeonor film / adhesive layer Z linear polarizing plate).
  • the elliptical polarizing plate 22 (Zeonor film / adhesive layer linearly polarizing plate) is subjected to corona discharge treatment (250 W ⁇ min / m 2 ) on the side of the zenoir film, and the third optical anisotropic element is formed via the adhesive.
  • the film 1 having negative uniaxiality was stuck to obtain an elliptically polarizing plate 23 (film 1Z pressure-sensitive adhesive layer Z zeonor film Z pressure-sensitive adhesive layer / linearly polarizing plate).
  • the film 6 having negative biaxiality as the first optical anisotropic element is subjected to a corona discharge treatment (250 W ⁇ min / m 2 ), and a linear polarizing plate (thickness of about 10 5 M) via an adhesive.
  • m, 3 ⁇ 3 ⁇ — 06 2) manufactured by Sumitomo Chemical Co., Ltd. was attached to obtain an elliptically polarizing plate 24 (film 6 / adhesive layer Z linear polarizing plate).
  • Example 2 Using the VA type liquid crystal television of the same type as that used in Example 2, as shown in FIG. 5, the elliptically polarizing plates obtained in Examples 1 to 10 and Reference Examples 1 to 14 described above were used. The element and a vertical alignment type liquid crystal display cell were arranged to produce a vertical alignment type liquid crystal display device (see Table 1 for the number of elliptical polarizing plates used).
  • Fig. 6 shows the equi-contrast diagram of Example 13.
  • a vertical alignment type liquid crystal display device shown in FIG. 5 was produced in the same manner as in Example 13 except that the retardation R th 2 in the thickness direction of the third optical anisotropic element of Example 13 was 10 nm. .
  • the viewing angle expansion effect was small as compared with the case where the elliptically polarizing plate of the present invention was used, and a good image was not obtained even when viewed from an oblique direction.
  • Example 2 Using the same type of VA-type liquid crystal television used in Example 2, except that the fourth optical anisotropic element was not arranged in the arrangement of FIG. A direct-alignment type liquid crystal display device was produced (see Table 1 for the number of elliptically polarizing plates used). As a result, it was found that, compared with the case where the elliptically polarizing plate of the present invention was not used, the viewing angle was enlarged and a good image was obtained even when viewed obliquely.
  • Example 7 using the same type of VA type liquid crystal television as used in Example 2, except that the third optical anisotropic element was not arranged in the arrangement of FIG.
  • a direct-alignment type liquid crystal display device was produced (see Table 1 for the number of elliptically polarizing plates used). As a result, it was found that, compared with the case where the elliptically polarizing plate of the present invention was not used, the viewing angle was enlarged and a good image was obtained even when viewed obliquely.
  • Example 9 Using the same type of VA type liquid crystal television used in Example 2, as shown in FIG. 9, the elliptically polarizing plate and the optical anisotropic element obtained in Examples 1 to 10 and Reference Examples 1 to 14 are used. And a vertical alignment type liquid crystal display cell were arranged to produce a vertical alignment type liquid crystal display device (see Table 1 for the number of elliptically polarizing plates used). As a result, it was found that, compared with the case where the elliptically polarizing plate of the present invention was not used, the viewing angle was enlarged and a good image was obtained even when viewed obliquely.
  • UV curable adhesive UV-3400, manufactured by Toagosei Co., Ltd.
  • silicone-based surface modifier Paintad 32, manufactured by Toray Dakoi-Jung Co., Ltd.
  • TAC triacetyl cellulose
  • Corona discharge treatment (2500 W ⁇ min / m 2 ) was applied to the adhesive layer 1 side of the laminate 17 and an in-plane retardation of 140 nm was obtained as the first optical anisotropic element via the adhesive.
  • the film Zeonor Film, manufactured by Nippon Zeon Co., Ltd.
  • the TAC film was peeled off with the adhesive layer 5 adhered, and the laminate 1 8 (homeotope orientation liquid crystal layer Z adhesive layer 1 / adhesive layer Z zeno film).
  • Corona discharge treatment 250 W. min / m 2 was applied to the Xenoah film side of the laminate 18 and a negative uniaxial TAC film (Fuji Film ( Manufactured)) to obtain a laminated body 19 (homeotope orientation liquid crystal layer / adhesive layer 1 Z pressure-sensitive adhesive layer / Zeonor film / pressure-sensitive adhesive layer / TAC film).
  • Linear polarizer corona discharge treatment (25 OW ⁇ min / m 2 ) applied to (a thickness of about 1 05 ⁇ ⁇ , Sumitomo Chemical Co., Ltd. SQW- 06 2), praise ot the laminate 1 9 with an adhesive Sticking with the mouth-pick orientation liquid crystal layer surface, an elliptically polarizing plate 26 (linear polarizing plate pressure-sensitive adhesive layer / homeoto mouth-pick orientation liquid crystal layer adhesive layer 1 pressure-sensitive adhesive layer Z ZEONOR film / pressure-sensitive adhesive layer ZT AC film) was obtained. . ⁇ Comparative Example 5>
  • Polystyrene was biaxially stretched in the in-plane direction of the film to produce an optically positive uniaxial film 7 having a thickness difference of 1195 nm.
  • a vertical alignment type liquid crystal display device shown in FIG. 5 was produced in the same manner as in Example 2 except that the homeotropic alignment liquid crystal layer in Example 2 was replaced with film 7. As a result, the thickness was significantly increased compared to the elliptical polarizing plate of the present invention, and the total film thickness was 4500 m. table 1
  • FIG. 1 is a schematic cross-sectional view of a vertical alignment type liquid crystal display device used in Example 2.
  • FIG. 2 is a diagram showing the contrast ratio when the vertical alignment type liquid crystal display device in Example 2 is viewed from all directions.
  • FIG. 3 is a schematic cross-sectional view of the vertical alignment type liquid crystal display device used in Example 9.
  • FIG. 4 is a graph showing the contrast ratio when the vertical alignment type liquid crystal display device in Example 9 is viewed from all directions.
  • FIG. 5 is a schematic cross-sectional view of the vertical alignment type liquid crystal display device used in Example 13.
  • FIG. 6 is a graph showing the contrast ratio when the vertical alignment type liquid crystal display device in Example 13 is viewed from all directions.
  • FIG. 7 is a schematic cross-sectional view of the vertical alignment type liquid crystal display device used in Example 19.
  • FIG. 8 is a graph showing the contrast ratio when the vertical alignment type liquid crystal display device in Example 19 is viewed from all directions.
  • FIG. 9 is a schematic cross-sectional view of the vertical alignment type liquid crystal display device used in Example 22.
  • FIG. 10 is a diagram showing the contrast ratio when the vertical alignment type liquid crystal display device in Example 22 is viewed from all directions.
  • FIG. 11 is a schematic cross-sectional view of the vertical alignment type liquid crystal display device used in Comparative Example 1.
  • FIG. 12 is a diagram showing the contrast ratio when the vertical alignment type liquid crystal display device in Comparative Example 1 is viewed from all directions.
  • FIG. 13 is a schematic cross-sectional view of the vertical alignment type liquid crystal display device used in Comparative Example 2.
  • FIG. 14 is a diagram showing the contrast ratio when the vertical alignment type liquid crystal display device in Comparative Example 2 is viewed from all directions.
  • FIG. 15 is a schematic cross-sectional view of the vertical alignment type liquid crystal display device used in Comparative Example 3.
  • FIG. 16 is a diagram showing a small contrast ratio when the vertical alignment type liquid crystal display device in Comparative Example 3 is viewed from all directions.
  • FIG. 17 is a graph showing the contrast ratio when the vertically aligned liquid crystal display device in Comparative Example 4 is viewed from all directions.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

Disclosed is a thin elliptical polarizing plate for vertically aligned liquid crystal displays, wherein retardation in the thickness direction can be controlled over a wide range. The elliptical polarizing plate for vertically aligned liquid crystal displays is composed of a homeotropically aligned liquid crystal film and a linear polarizing plate. The homeotropically aligned liquid crystal film is obtained by homeotropically aligning at least a positive uniaxial liquid crystal material in a liquid crystal state and then fixing the alignment. Also disclosed is a vertically aligned liquid crystal display using such an elliptical polarizing plate, which is excellent in viewing angle characteristics.

Description

明 細 書 垂直配向型液晶表示装置用楕円偏光板およびそれを用いた垂直配向型液晶表示 装置  Description: Elliptical polarizing plate for vertical alignment type liquid crystal display device and vertical alignment type liquid crystal display device using the same
[技術分野] [Technical field]
本発明は、 電圧無印加時に液晶分子が基板に対して垂直に配向する垂直配向型 液晶表示装置に関し、 特に広視野角を実現し、 薄膜化が可能な垂直配向型液晶表 示装置用楕円偏光板おょぴ該楕円偏光板を配置した垂直配向型液晶表示装置に関 する。  The present invention relates to a vertical alignment type liquid crystal display device in which liquid crystal molecules are aligned perpendicular to a substrate when no voltage is applied, and in particular, an elliptically polarized light for a vertical alignment type liquid crystal display device that realizes a wide viewing angle and can be made thin. The present invention relates to a vertical alignment type liquid crystal display device in which an elliptically polarizing plate is disposed.
[背景技術] [Background]
液晶表示装置における表示モードの 1つとして、 初期状態において液晶セル内 の液晶分子が基板表面に対して垂直に配列する垂直配向モードがある。 電圧無印 加時には、 液晶分子が基板表面に対して垂直に配列し、 液晶セルの両側に直線偏 光板を直交配置すると黒表示が得られる。  One of the display modes in the liquid crystal display device is a vertical alignment mode in which liquid crystal molecules in the liquid crystal cell are aligned perpendicularly to the substrate surface in the initial state. When no voltage is applied, the liquid crystal molecules are aligned perpendicularly to the substrate surface, and a black display can be obtained by placing a linear polarizer perpendicular to both sides of the liquid crystal cell.
液晶セル内の光学特性は面内方向で等方的であり、 理想的な視野角補償が容易 に可能である。 液晶セルの厚さ方向に正の 1軸光学異方性を補償するため、 厚さ 方向に負の 1軸光学異方性を有する光学素子を液晶セルの片面又は両面と直線偏 光板との間に挿入すると、 非常に良好な黒表示視角特性が得られる。  The optical characteristics in the liquid crystal cell are isotropic in the in-plane direction, and ideal viewing angle compensation is easily possible. In order to compensate for positive uniaxial optical anisotropy in the thickness direction of the liquid crystal cell, an optical element having negative uniaxial optical anisotropy in the thickness direction is inserted between one or both sides of the liquid crystal cell and the linear polarizer. When inserted into the, a very good black display viewing angle characteristic can be obtained.
電圧印加時においては、 液晶分子が基板表面に垂直な方向から基板表面に平行 な方向に向って配向を変化させる。 この際、 液晶配列の均一化が困難である。 通 常の配向処理である基板表面のラビング処理を用いると、 表示品位が著しく低下 する。  When a voltage is applied, the orientation of liquid crystal molecules changes from a direction perpendicular to the substrate surface to a direction parallel to the substrate surface. At this time, it is difficult to make the liquid crystal alignment uniform. When the rubbing process on the substrate surface, which is a normal alignment process, is used, the display quality is significantly lowered.
電圧印加時における液晶配列を均一化するため、 基板上の電極形状を工夫し、 液晶層内に斜め電界が発生するようにし、 均一配向を得る等の提案がある。 この 方法によれば、 均一な液晶配列は得られるが、 ミクロ的には不均一な配向領域が 生じ、 電圧印加時にこの領域が暗領域となる。 従って、 液晶表示装置の透過率が 低下する。  In order to make the liquid crystal alignment uniform when applying a voltage, there are proposals such as devising the electrode shape on the substrate, generating an oblique electric field in the liquid crystal layer, and obtaining uniform alignment. According to this method, a uniform liquid crystal alignment can be obtained, but a microscopically non-uniform alignment region is generated, and this region becomes a dark region when a voltage is applied. Therefore, the transmittance of the liquid crystal display device is lowered.
特許文献 1 (特開 2 0 0 2— 4 0 4 2 8号公報) によれば、 ランダム配向した 状態を含む液晶層を有する液晶素子の両側に配置する直線偏光板を円偏光板に置 き換えた構成が提案されている。 直線偏光板の代わりに、 直線偏光板と 1 Z 4波 長板とを組み合わせた円偏光板に置き換えることにより、 電圧印加時の暗領域を 解消し、 高透過率な液晶表示装置を実現できる。 しかしながら、 円偏光板を用い た垂直配向型液晶表示装置では、 直線偏光板を用いた垂直配向型液晶表示装置と 比較し視野角特性が狭いという課題があった。 特許文献 2 (特開 2 0 0 3— 2 0 7 7 8 2号公報) によれば、 円偏光板を用いた垂直配向型液晶表示装置の視野角 補償として、 負の 1軸の光学異方性を有する光学異方素子や 2軸光学異方性材料 が提案されている。 しかし負の 1軸の光学異方性を有する光学異方素子により液 晶セルの厚さ方向に正の 1軸光学異方性を補償できるが、 1 4波長板の視野角 特性を補償できないため、 十分な視野角特性を得ることはできない。 また、 2軸 光学異方性材料の製造を行う場合、 得られる位相差板の面内の主屈折率を n x、 n yとし、厚さ方向の屈折率を n zとし、かつ n x〉 n yとしたとき、 N z = ( n x— n z ) / ( n x— n y ) で定義される N zは一 1 . 0く N zく 0 . 1であり、 厚み方向の延伸には限界があり、 厚み方向の位相差を広範囲に制御することがで きない。 また前記製造方法では、 熱収縮フィルムにより、 長尺フィルムを熱収縮 させて厚み方向に延伸させているため、 得られる位相差板は、 長尺フィルムより も厚みが増加する。 前記製造方法で得られる位相差板の厚みは 5 0〜1 0 0 ^u m 程度であり、 液晶表示装置等に要求される薄型化に対しても十分ではなかった。 According to Patent Document 1 (Japanese Patent Laid-Open No. 2 0 0 2-4 0 4 2 8), randomly oriented There has been proposed a configuration in which linearly polarizing plates arranged on both sides of a liquid crystal element having a liquid crystal layer including a state are replaced with circularly polarizing plates. By replacing the linearly polarizing plate with a circularly polarizing plate that combines a linearly polarizing plate and a 1 Z 4 wave plate, the dark area during voltage application can be eliminated, and a liquid crystal display device with high transmittance can be realized. However, the vertical alignment type liquid crystal display device using the circularly polarizing plate has a problem that the viewing angle characteristic is narrower than that of the vertical alignment type liquid crystal display device using the linear polarizing plate. According to Patent Document 2 (Japanese Patent Laid-Open No. 2 0 0 3—2 0 7 7 8 2), as a viewing angle compensation of a vertical alignment type liquid crystal display device using a circularly polarizing plate, a negative uniaxial optical anisotropic Optically anisotropic elements and biaxial optically anisotropic materials have been proposed. However, an optical anisotropic element with negative uniaxial optical anisotropy can compensate for positive uniaxial optical anisotropy in the thickness direction of the liquid crystal cell, but cannot compensate for the viewing angle characteristics of the 14 wavelength plate. A sufficient viewing angle characteristic cannot be obtained. Also, when manufacturing biaxial optically anisotropic materials, when the in-plane main refractive index of the resulting retardation plate is nx, ny, the refractive index in the thickness direction is nz, and nx> ny N z defined as N z = (nx— nz) / (nx— ny) is 1.0 and N z, 0.1, and there is a limit to stretching in the thickness direction. The phase difference cannot be controlled over a wide range. Moreover, in the said manufacturing method, since the elongate film is heat-shrinked with the heat-shrink film and it is extended | stretched in the thickness direction, the thickness of the obtained phase difference plate increases rather than a elongate film. The thickness of the retardation plate obtained by the manufacturing method is about 50 to 100 ^ um, which is not sufficient for reducing the thickness required for liquid crystal display devices and the like.
[発明の開示] [Disclosure of the Invention]
本発明の目的は、 視野角特性の優れた垂直配向型液晶表示装置を提供すること である。 また、 垂直配向型液晶表示装置用楕円偏光板として、 厚み方向の位相差 を広範囲に制御可能で薄型の楕円偏光板を提供することを目的とする。  An object of the present invention is to provide a vertical alignment type liquid crystal display device having excellent viewing angle characteristics. Another object of the present invention is to provide a thin elliptical polarizing plate capable of controlling the thickness direction retardation over a wide range as an elliptical polarizing plate for a vertical alignment type liquid crystal display device.
本発明者らは前記課題を解決すべく鋭意検討を重ねた結果、 以下に示す垂直配 向型液晶表示装置用楕円偏光板およびそれを用いた垂直配向型液晶表示装置によ り、 前記目的を達成できることを見出し本発明を完成するに至った。  As a result of intensive studies to solve the above-mentioned problems, the present inventors have achieved the above object by using an elliptically polarizing plate for a vertical alignment type liquid crystal display device shown below and a vertical alignment type liquid crystal display device using the same. The inventors have found that this can be achieved and have completed the present invention.
すなわち、 本発明の第 1は、 少なくとも正の一軸性を示す液晶材料を液晶状態 においてホメオト口ピック配向させた後、 該配向を固定化したホメオト口ピック 配向液晶フィルムと直線偏光板とからなる垂直配向型液晶表示装置用楕円偏光板、 である。 That is, according to the first aspect of the present invention, a liquid crystal material exhibiting at least positive uniaxiality is subjected to homeotropic pick orientation in a liquid crystal state, and then a vertical orientation comprising a homeotropic pick oriented liquid crystal film in which the orientation is fixed and a linear polarizing plate. An elliptically polarizing plate for an alignment type liquid crystal display, It is.
本発明の第 2は、 前記ホメオト口ピック配向液晶フィルムが以下の [1] およ び [2] を満たすことを特徴とする本発明の第 1に記載の垂直配向型液晶表示装 置用楕円偏光板、 である。  According to a second aspect of the present invention, the vertical alignment liquid crystal display device ellipse according to the first aspect of the present invention is characterized in that the homeotopically picked liquid crystal film satisfies the following [1] and [2]. A polarizing plate.
[ 1 ] 0 nm≤R e 1≤ 20 n m  [1] 0 nm≤R e 1≤ 20 n m
[2] - 500 nm≤R t h l≤- 30 nm  [2]-500 nm≤R t h l≤- 30 nm
(ここで、 R e 1は前記ホメオト口ピック配向液晶フィルムの面内のリターデー シヨン値を意味し、 R t h 1は前記ホメオト口ピック配向液晶フィルムの厚さ方 向のリタ一デーシヨン値を意味する。 前記 R e 1及び R t h 1は、 それぞれ R e 1 = (N 1 -N y 1 ) X d 1 [nm]、 R t h 1 = (N x 1 -N z 1) X d 1 [n m] である。 また、 d 1は前記ホメオト口ピック配向液晶フィルムの厚さ、 Nx 1および Ny 1は前記ホメオト口ピック配向液晶フィルム面内の主屈折率、 N z 1は厚さ方向の主屈折率であり、 N z 1 >Nx 1≥Ny 1である。)  (Here, R e 1 means the in-plane retardation value of the home-mouth pick-aligned liquid crystal film, and R th 1 means the retardation value in the thickness direction of the home-top pick-aligned liquid crystal film. R e 1 and R th 1 are R e 1 = (N 1 −N y 1) X d 1 [nm], R th 1 = (N x 1 −N z 1) X d 1 [nm], respectively. D 1 is the thickness of the home-orifice pick-aligned liquid crystal film, Nx 1 and Ny 1 are the main refractive indexes in the plane of the home-orifice pick-oriented liquid crystal film, and N z 1 is the main refractive index in the thickness direction And N z 1> Nx 1≥Ny 1.)
本発明の第 3は、 前記ホメオト口ピック配向液晶層が、 ォキセタニル基を有す る液晶性高分子化合物を少なくとも含有してなる液晶性組成物を、 液晶状態でホ メォトロピック配向させた後、 前記ォキセタニル基を反応せしめて前記ホメオト 口ピック配向を固定化したものであることを特徴とする本発明の第 1または第 2 に記載の楕円偏光板、 である。  According to a third aspect of the present invention, after the homeotropic alignment liquid crystal layer contains a liquid crystalline composition containing at least a liquid crystalline polymer compound having an oxetanyl group, the liquid crystal state is homeotropically aligned. 3. The elliptically polarizing plate according to the first or second aspect of the present invention, wherein the homeotropic orientation is fixed by reacting an oxetanyl group.
本発明の第 4は、 前記の垂直配向型液晶表示装置用楕円偏光板が、 面内で 1/ 4波長の位相差を示す第 1の光学異方素子を有することを特徴とする本発明の第 1〜3に記載の垂直配向型液晶表示装置用楕円偏光板、 である。  According to a fourth aspect of the present invention, the elliptically polarizing plate for a vertical alignment type liquid crystal display device has the first optical anisotropic element showing a phase difference of ¼ wavelength in the plane. 4. An elliptically polarizing plate for a vertical alignment type liquid crystal display device as described in the first to third items.
本発明の第 5は、 前記の垂直配向型液晶表示装置用楕円偏光板が、 面内で 1Z 4波長の位相差を示す第 1の光学異方素子と厚さ方向に負の 1軸光学異方性を示 す以下の [3] および [4] を満たすことを特徴とする第 3の光学異方素子とを 有することを特徴とする本発明の第 1〜 4に記載の垂直配向型液晶表示装置用楕 円偏光板、 である。  According to a fifth aspect of the present invention, the elliptically polarizing plate for a vertical alignment type liquid crystal display device is different from the first optical anisotropic element exhibiting a phase difference of 1Z 4 wavelengths in the plane with a negative uniaxial optical difference in the thickness direction. A vertically aligned liquid crystal according to any one of the first to fourth aspects of the present invention, comprising: a third optical anisotropic element characterized by satisfying the following [3] and [4] exhibiting a directivity: An elliptically polarizing plate for a display device.
[3] 0 nm≤R e 2≤ 20 n m  [3] 0 nm≤R e 2≤ 20 n m
[4] 30 nm≤R t h 2≤ 500 nm  [4] 30 nm≤R t h 2≤ 500 nm
(ここで、 R e 2は前記第 3の光学異方素子の面内のリターデーション値を意味 し、 R t h 2は前記第 3の光学異方素子の厚さ方向のリタ一デーシヨン値を意味 する。 前記 R e 2及び R t h 2は、 それぞれ R e 2= (N x 2 -Ny 2) X d 2 [nm], R t h 2 = (N x 2 -N z 2) X d 2 [nm] である。 また、 d 2は前 記第 3の光学異方素子の厚さ、 Nx 2および Ny 2は前記第 3の光学異方素子の 面内の主屈折率、 N z 2は厚さ方向の主屈折率であり、 Nx 2≥Ny 2 >N z 2 である。) (Here, Re 2 means the in-plane retardation value of the third optical anisotropic element, and R th 2 means the retardation value in the thickness direction of the third optical anisotropic element. To do. R e 2 and R th 2 are respectively R e 2 = (N x 2 -Ny 2) X d 2 [nm], R th 2 = (N x 2 -N z 2) X d 2 [nm] is there. D 2 is the thickness of the third optical anisotropic element, Nx 2 and Ny 2 are the main refractive indices in the plane of the third optical anisotropic element, and N z 2 is the main refractive index in the thickness direction. Nx 2≥Ny 2> N z 2. )
本発明の第 6は、 前記第 3の光学異方素子が、 ポリアミ ド、 ポリイミ ド、 ポリ エステル、 ポリエーテルケトン、 ポリアミ ドイミ ドおよびポリエステルイミ ドか らなる群から選択される少なくとも一種のポリマー材料であることを特徴とする 本発明の第 5に記載の楕円偏光板、 である。  According to a sixth aspect of the present invention, the third optical anisotropic element is at least one polymer material selected from the group consisting of a polyamide, a polyimide, a polyester, a polyether ketone, a polyamide imide, and a polyester imide. The elliptically polarizing plate according to the fifth aspect of the present invention, characterized in that
本発明の第 7は、 前記第 1の光学異方素子が、 面内で 1/4波長の位相差を示 しかつ負の 2軸性光学異方性を有することを特徴とする本発明の第 1〜 6に記載 の垂直配向型液晶表示装置用楕円偏光板、 である。  According to a seventh aspect of the present invention, in the first optical anisotropic element, the first optical anisotropic element exhibits a 1/4 wavelength phase difference in a plane and has negative biaxial optical anisotropy. The elliptically polarizing plate for vertical alignment type liquid crystal display devices as described in 1st-6th.
本発明の第 8は、 総膜厚が 400 m以下であることを特徴とする本発明の第 1〜 7に記載の垂直配向型液晶表示装置用楕円偏光板、 である。  An eighth aspect of the present invention is the elliptically polarizing plate for a vertical alignment type liquid crystal display device according to any one of the first to seventh aspects, wherein the total film thickness is 400 m or less.
本発明の第 9は、 電極を備えた 1対の基板間に、 電圧無印加時に基板表面に対 して垂直配向する液晶分子を含む垂直配向型液晶セルと、 前記垂直配向型液晶セ ル基板の少なくとも片側に垂直配向型液晶セル基板側に請求項 1〜 7のいずれか に記載の垂直配向型液晶表示装置用楕円偏光板のホメオト口ピック配向液晶フィ ルム側が向かうよう配置し、 前記垂直配向型液晶セル基板と前記楕円偏光板との 間に、 面内で 1Z4波長の位相差を示す第 1の光学異方素子を少なくとも 1枚配 置したことを特徴とする垂直配向型液晶表示装置、 である。  According to a ninth aspect of the present invention, there is provided a vertical alignment type liquid crystal cell including a liquid crystal molecule that is vertically aligned with respect to a substrate surface when no voltage is applied between a pair of substrates having electrodes, and the vertical alignment type liquid crystal cell substrate. 8. The vertical alignment type liquid crystal cell substrate side of the vertical alignment type liquid crystal cell substrate side of at least one side of the elliptically polarizing plate for vertical alignment type liquid crystal display device according to any one of claims 1 to 7, A vertical alignment type liquid crystal display device, wherein at least one first optical anisotropic element exhibiting a phase difference of 1Z4 wavelength in-plane is disposed between a liquid crystal cell substrate and the elliptically polarizing plate; It is.
本発明の第 1 0は、 本発明の第 9に記載の垂直配向型液晶表示装置において、 垂直配向型液晶表示装置用楕円偏光板を配置した基板と反対側の基板上に、 基板 側から面内で 1/4波長の位相差を示す第 1の光学異方素子を少なくとも 1枚お よび直線偏光板を配置したことを特徴とする本発明の第 9に記載の垂直配向型液 晶表示装置、 である。  A tenth aspect of the present invention is the vertical alignment type liquid crystal display device according to the ninth aspect of the present invention, wherein the surface from the substrate side is disposed on the substrate opposite to the substrate on which the elliptically polarizing plate for the vertical alignment type liquid crystal display device is disposed. The vertical alignment type liquid crystal display device according to the ninth aspect of the present invention, wherein at least one first optical anisotropic element exhibiting a phase difference of 1/4 wavelength and a linearly polarizing plate are disposed. ,
本発明の第 1 1は、 前記第 1の光学異方素子と前記垂直配向型液晶セルとの間 に、 少なくとも 1枚の厚さ方向に負の 1軸光学異方性を示す第 3の光学異方素子 を有することを特徴とする本発明の第 9又は 1 0に記載の垂直配向型液晶表示装 置、 である。 本発明の第 1 2は、 前記垂直配向型液晶セルと直線偏光板の間に、 面内方向に 正の 1軸光学異方性を有する第 4の光学異方素子を有することを特徴とする本発 明の第 9〜1 1に記載の垂直配向型液晶表示装置、 である。 According to a first aspect of the present invention, there is provided a third optical element having negative uniaxial optical anisotropy in at least one thickness direction between the first optical anisotropic element and the vertical alignment type liquid crystal cell. The vertical alignment type liquid crystal display device according to the ninth or 10th aspect of the present invention, characterized by having an anisotropic element. A first aspect of the present invention includes the fourth optical anisotropic element having positive uniaxial optical anisotropy in an in-plane direction between the vertical alignment type liquid crystal cell and the linearly polarizing plate. A vertical alignment type liquid crystal display device according to any of 9th to 11th of the present invention.
本発明の第 1 3は、 前記第 1の光学異方素子が面内で 1 Z 4波長の位相差を示 し、 かつ負の 2軸性光学異方性を有することを特徴とする本発明の第 9〜1 2に 記載の垂直配向型液晶表示装置、 である。  A first aspect of the present invention is the present invention, wherein the first optical anisotropic element exhibits a phase difference of 1 Z 4 wavelength in a plane and has negative biaxial optical anisotropy. The vertical alignment type liquid crystal display device according to any one of Items 9 to 12.
本発明の第 1 4は、 前記垂直配向型液晶セルの一方の基板が反射機能を有する 領域と透過機能を有する領域とを有する基板であることを特徴とする本発明の第 9〜1 3に記載の垂直配向型液晶表示装置、 である。  A fourteenth aspect of the present invention is the ninth to thirteenth aspects of the present invention, wherein one substrate of the vertical alignment type liquid crystal cell is a substrate having a region having a reflection function and a region having a transmission function. The vertical alignment type liquid crystal display device described.
[発明の効果] [The invention's effect]
ホメオト口ピック E向液晶フィルムを用いた本発明の垂直配向型液晶表示装置 用楕円偏光板は、 垂直配向型液晶表示装置に配置した場合、 視野角を広くするこ とができるばかりでなく、 該垂直配向型液晶表示装置は、 表示が明るく、 全方位 において高コントラストな表示が可能である。  When the elliptical polarizing plate for a vertical alignment type liquid crystal display device of the present invention using a homeotopic pick E-direction liquid crystal film is arranged in a vertical alignment type liquid crystal display device, the viewing angle can be widened. The vertical alignment type liquid crystal display device has a bright display and is capable of high contrast display in all directions.
[発明を実施するための最良の形態] [Best Mode for Carrying Out the Invention]
以下、 本発明を詳細に説明する。  Hereinafter, the present invention will be described in detail.
本発明の垂直配向型液晶表示装置用楕円偏光板について説明する。  The elliptically polarizing plate for vertical alignment type liquid crystal display device of the present invention will be described.
本発明の垂直配向型液晶表示装置用楕円偏光板は、 少なくとも正の一軸性を示 す液晶材料を液晶状態においてホメオト口ピック配向させた後、 該配向を固定化 したホメオト口ピック配向液晶フィルムと直線偏光板とからなる。 本発明におい て、 液晶材料のホメオト口ピック配向を固定化した液晶フィルムを得るに当たつ て用いられる液晶材料としては、 配向基板上もしくは配向基板上に配向膜をコー ティングした後、 形成させた液晶材料がホメオト口ピック配向し、 その配向を固 定化しうる正の一軸性液晶材料であればよく、 低分子液晶化合物、 液晶性高分子 化合物やこれらの混合物からなる材料であってもよい。  The elliptically polarizing plate for a vertical alignment type liquid crystal display device according to the present invention comprises a homeo-mouth-pick-aligned liquid crystal film in which a liquid crystal material exhibiting at least positive uniaxial property is home-mouth pick-aligned in a liquid crystal state and then the orientation is fixed. It consists of a linear polarizing plate. In the present invention, as a liquid crystal material used for obtaining a liquid crystal film in which the homeotropic orientation of the liquid crystal material is fixed, the alignment film is formed on the alignment substrate or on the alignment substrate and then formed. The liquid crystal material may be a positive uniaxial liquid crystal material that can be homeotropically aligned and fix the alignment, and may be a material composed of a low molecular liquid crystal compound, a liquid crystal polymer compound, or a mixture thereof.
前記の低分子液晶化合物は光や熱により反応する反応性基を結合した化合物が 配向を容易に固定化できるので好ましい。 反応性基としては、 ビュル基、 アタリ ロイル基、 ビュルォキシ基、 ォキシラニル基、 ォキセタニル基、 アジリジニル基 等が好ましいが、 他の反応性基、 例えばイソシアナ一ト基、 水酸基、 アミノ基、 酸無水物基、力ルポキシル基なども反応条件等によっては使用することができる。 前記の液晶性高分子化合物には主鎖型液晶ポリマーと側鎖型液晶ポリマーとが あるがいずれも使用することができる。 主鎖型液晶ポリマーとしては、 ポリエス テル、 ポリエステルイミ ド、 ポリアミ ド、 ポリカーボネート等が挙げられる。 な かでも合成の容易さ、 配向性、 ガラス転移点などの面から液晶性ポリエステルが 好ましく、 カチオン重合性基を結合した主鎖型液晶性ポリエステルが特に好まし い。 側鎖型液晶ポリマーとしては、 ポリアクリレート、 ポリマロネート、 ポリシ ロキサン等を挙げることができる。 液晶ポリマーは前記の反応性基を結合したも のが好ましい。 As the low-molecular liquid crystal compound, a compound having a reactive group that reacts with light or heat is preferable because the alignment can be easily fixed. Examples of reactive groups include bur, attalyloyl, buroxy, oxylanyl, oxetanyl, and aziridinyl groups. However, other reactive groups such as an isocyanate group, a hydroxyl group, an amino group, an acid anhydride group, and a strong loxyl group can also be used depending on the reaction conditions. The liquid crystalline polymer compound includes a main chain type liquid crystal polymer and a side chain type liquid crystal polymer, both of which can be used. Examples of the main chain type liquid crystal polymer include polyester, polyester imide, polyamide, and polycarbonate. Among these, liquid crystalline polyesters are preferable from the viewpoint of ease of synthesis, orientation, glass transition point, and the like, and main chain type liquid crystalline polyesters bonded with cationic polymerizable groups are particularly preferable. Examples of the side chain type liquid crystal polymer include polyacrylate, polymalonate, polysiloxane and the like. The liquid crystal polymer preferably has the above-described reactive group bonded thereto.
本発明に使用されるホメオト口ピック配向液晶フィルムは、 例えば前述の液晶 材料を配向基板上に展開し、 当該液晶材料を配向させた後、 必要により光照射お よび Zまたは加熱処理した後、 冷却することにより当該配向状態を固定化するこ とにより製造することができる。  The home-orientated pick-aligned liquid crystal film used in the present invention is, for example, developed by spreading the above-mentioned liquid crystal material on an alignment substrate, aligning the liquid crystal material, and then subjecting to light irradiation and Z or heat treatment as necessary, followed by cooling. By doing so, it can be manufactured by fixing the orientation state.
前記の主鎖型液晶性ポリエステルは、芳香族ジオール単位(以下、構造単位(A ) という。)、 芳香族ジカルボン酸単位 (以下、 構造単位 (B ) という。) および芳香 族ヒ ドロキシカルボン酸単位 (以下、 構造単位 (C ) という。) のうち少なく とも 2種を必須単位として含む主鎖型液晶性ポリエステルであって、 主鎖末端の少な く とも一方にカチオン重合性基を有する構造単位を含むことを特徴とする主鎖型 液晶性ポリエステルである。 以下に、 構造単位 (A)、 ( B ) および (C ) につい て順次説明する。  The main-chain liquid crystalline polyester includes an aromatic diol unit (hereinafter referred to as a structural unit (A)), an aromatic dicarboxylic acid unit (hereinafter referred to as a structural unit (B)), and an aromatic hydroxycarboxylic acid. A main-chain liquid crystalline polyester containing at least two types of units (hereinafter referred to as structural unit (C)) as essential units, and having a cationically polymerizable group at least at one end of the main chain It is a main chain type liquid crystalline polyester characterized by containing. Hereinafter, the structural units (A), (B) and (C) will be sequentially described.
構造単位 (A) を導入するための化合物としては下記一般式 (a ) で表される 化合物が好ましく、 具体的には、 カテコール、 レゾルシン、 ヒ ドロキノン等若し くはそれらの置換体、 4 , 4, ービフエノール、 2 , 2,, 6 , 6, ーテトラメチ ルー 4 , 4, ービフエノール、 2, 6一ナフタレンジオールなどが挙げられ、 特 に、 カテコール、 レゾルシン、 ヒ ドロキノン等若しくはそれらの置換体が好まし レ、。  As the compound for introducing the structural unit (A), a compound represented by the following general formula (a) is preferable. Specifically, catechol, resorcin, hydroquinone or the like, or a substituted product thereof, 4, bibienol, 2, 2, 6, 6, 6, tetramethyl 4, 4, bibienol, 2, 6-naphthalene diol, etc. Especially, catechol, resorcin, hydroquinone, etc. or their substitutes are preferred. Les.
Figure imgf000007_0001
ただし、 式中の一 Xは、 一 H、 一CH3、 一 C2H5、 一 CH2CH2CH3、 一 CH (CH3) 2、 —CH2CH2CH2CH3、 — CH2CH (CH3) CH3、 — C H (CH3) CH2CH3、 一 C (CH3) 3、 —〇CH3、 —OC2H5、 — OC6 H5、 一 OCH2C6H5、 一 F、 -C I , _B r、 一N02、 または一 CN"のいず れかの基であり、 特に下記式 (a ') で表される化合物が好ましい。
Figure imgf000008_0001
Figure imgf000007_0001
However, 1 X in the formula is 1 H, 1 CH 3 , 1 C 2 H 5 , 1 CH 2 CH 2 CH 3 , 1 CH (CH 3 ) 2 , —CH 2 CH 2 CH 2 CH 3 , — CH 2 CH (CH 3 ) CH 3 , — CH (CH 3 ) CH 2 CH 3 , 1 C (CH 3 ) 3 , —〇CH 3 , —OC 2 H 5 , — OC 6 H 5 , 1 OCH 2 C 6 One of H 5 , 1 F, —CI 2 , —Br, 1 N0 2 , and 1 CN ″, particularly a compound represented by the following formula (a ′) is preferable.
Figure imgf000008_0001
構造単位 (B) を導入するための化合物としては下記一般式 (b) で表される 化合物が好ましく、 具体的には、 テレフタル酸、 イソフタル酸、 フタル酸等若し くはそれらの置換体、 4, 4,一スチルベンジカルボン酸若しくはその置換体、 2, 6一ナフタレンジカルボン酸、 4 , 4'一ビフエニルジカルボン酸などが挙げられ、 特に、 テレフタル酸、 イソフタル酸、 フタル酸等若しくはそれらの置換体が好ま しい
Figure imgf000008_0002
ただし、 式中の一 Xは、 一 H、 一 CH3、 一 C2H5、 一 CH2CH2CH3、 - CH (CH3) 2、 — CH2CH2CH2CH3、 — CH2CH (CH3) CH3、 _C H (CH3) CH2CH3、 一 C (CH3) 3、 —OCH3、 — OC2H5、 一 OC6 H5、 一 OCH2C6H5、 一 F、 _C 1、 一 B r、 一 N〇2、 または一CNのいず れかの基を表す。
As the compound for introducing the structural unit (B), a compound represented by the following general formula (b) is preferable. Specifically, terephthalic acid, isophthalic acid, phthalic acid or the like, or a substituted product thereof, 4, 4, 1-stilbene dicarboxylic acid or its substitutes, 2, 6 1-naphthalenedicarboxylic acid, 4, 4 '1 biphenyl dicarboxylic acid, etc., especially terephthalic acid, isophthalic acid, phthalic acid etc. or their substitution I like the body
Figure imgf000008_0002
1 X in the formula is 1 H, 1 CH 3 , 1 C 2 H 5 , 1 CH 2 CH 2 CH 3 ,-CH (CH 3 ) 2 , — CH 2 CH 2 CH 2 CH 3 , — CH 2 CH (CH 3 ) CH 3 , _C H (CH 3 ) CH 2 CH 3 , 1 C (CH 3 ) 3 , —OCH 3 , — OC 2 H 5 , 1 OC 6 H 5 , 1 OCH 2 C 6 H 5 represents an F, _C 1, one B r, one N_〇 2 or a CN, whichever is the group.
構造単位 (C) を導入するための化合物としては下記一般式 (c) で表される 化合物が好ましく、 具体的には、 ヒ ドロキシ安息香酸若しくはその置換体、 4' -ヒ ドロキシー 4 -ビフエ二ルカルボン酸若しくはその置換体、 4'—ヒ ドロキシ 一 4一スチルベンカルボン酸若しくはその置換体、 6—ヒ ドロキシー 2—ナフト ェ酸、 4—ヒ ドロキシ桂皮酸などが挙げられ、 特に、 ヒ ドロキシ安息香酸および その置換体、 4'—ヒ ドロキシ一 4—ビフヱ二ルカルボン酸若しくはその置換体、 4'ーヒ ドロキシ— 4—スチルベンカルボン酸若しくはその置換体が好ましい。
Figure imgf000009_0001
ただし、 式中の一 X、 一 Xい 一 X2は、 それぞれ個別に、 一 H、 _CH3、 一 C 2H5、 — CH2CH2CH3、 — CH (CH3) 2、 _ C H 2 C H 2 C H 2 C H 3、 ― CH2CH (CH3) CH3、 一 CH (CH3) CH2CH3、 一 C (CH3) 3、 - OCH3、 一 OC2H5、 一 OC6H5、 _〇CH2C6H5、 一 F、 一 C l、 一 B r、 一 N〇2、 または一 CNのいずれかの基を表す。
As the compound for introducing the structural unit (C), a compound represented by the following general formula (c) is preferable. Specifically, hydroxybenzoic acid or a substituted product thereof, 4′-hydroxy 4-biphenyl Carboxylic acid or a substituted product thereof, 4′-hydroxy-1,4-stilbene carboxylic acid or a substituted product thereof, 6-hydroxy-2-naphthoic acid, 4-hydroxycinnamic acid, etc., particularly, hydroxybenzoic acid And a substituted product thereof, 4′-hydroxyl-4-biphenylcarboxylic acid or a substituted product thereof, and 4′-hydroxy-4-stilbene carboxylic acid or a substituted product thereof are preferable.
Figure imgf000009_0001
However, 1 X, 1 X and 1 X 2 in the formula are respectively independently 1 H, _CH 3 , 1 C 2 H 5 , — CH 2 CH 2 CH 3 , — CH (CH 3 ) 2 , _ CH 2 CH 2 CH 2 CH 3 ,-CH 2 CH (CH 3 ) CH 3 , 1 CH (CH 3 ) CH 2 CH 3 , 1 C (CH 3 ) 3 ,-OCH 3 , 1 OC 2 H 5 , 1 OC 6 H 5 , _ 0 CH 2 C 6 H 5 , 1 F, 1 Cl, 1 Br, 1 N 0 2 , or 1 CN
主鎖型液晶性ポリエステルは、構造単位として、(A)芳香族ジオール単位、 (B) 芳香族ジカルボン酸単位、 および (C) 芳香族ヒ ドロキシカルボン酸単位のうち から少なくとも 2種と、 好ましくはさらに主鎖末端の少なくとも一方にカチオン 重合性基を有する構造単位 (以下、 構造単位 (D) という。) を含み、 サーモト口 ピック液晶性を示すものであればよく、 他の構造単位はこれら条件を満足する限 り特に限定されるものではない。  The main chain type liquid crystalline polyester is preferably at least two kinds of structural units selected from (A) aromatic diol units, (B) aromatic dicarboxylic acid units, and (C) aromatic hydroxycarboxylic acid units. May further include a structural unit having a cationic polymerizable group (hereinafter referred to as “structural unit (D)”) at least at one of the ends of the main chain, as long as it exhibits thermomorphic liquid crystallinity. There is no particular limitation as long as the conditions are satisfied.
主鎖型液晶性ポリエステルを構成する構造単位 (A;)、 (B) および (C) の全 構造単位に占める割合は、 構造単位 (A)、 (B) および (C) がジオールあるい はジカルボン酸あるいはヒ ドロキシカルボン酸として全モノマーの仕込み量に対 して占める重量和の比率で表した場合、 通常 20〜9 9%、 好ましくは 3 0〜 9 5%、 特に好ましくは 40〜 90%の範囲である。 20%より少ない場合には、 液晶性を発現する温度領域が極端に狭くなるおそれがあり、 また 9 9%を越える 場合には、 カチオン重合性基を有する単位が相対的に少なくなり、 配向保持能、 機械的強度の向上が得られない恐れがある。  The proportion of the structural units (A;), (B) and (C) constituting the main-chain liquid crystalline polyester in the total structural units is that the structural units (A), (B) and (C) are diols or When expressed as a ratio of the total weight of dicarboxylic acid or hydroxycarboxylic acid to the total amount of monomers charged, it is usually 20 to 99%, preferably 30 to 95%, particularly preferably 40 to 90%. % Range. If it is less than 20%, the temperature range where liquid crystallinity is developed may be extremely narrow, and if it exceeds 99%, the number of units having a cationic polymerizable group will be relatively small, and the orientation will be maintained. Performance and mechanical strength may not be improved.
次にカチオン重合性基を有する構造単位 (D) について説明する。 カチオン重 合性基としては、 エポキシ基、 ォキセタニル基、 およぴビニルォキシ基からなる 群から選ばれる官能基が好ましく、特にォキセタニル基が好ましレ、。構造単位(D) を導入するための化合物としては、 下記の一般式 (d) に示すごとく、 フエノー ル性水酸基あるいはカルボキシル基を有する芳香族化合物に、 エポキシ基、 ォキ セタニル基、 およびビュル キシ基から選ばれるカチオン重合性を有する官能基 が結合した化合物である。 また、 芳香環と上記カチオン重合性基との間には、 当なスぺーザ一部分を有していても良い。 Next, the structural unit (D) having a cationic polymerizable group will be described. As the cationic polymerizable group, a functional group selected from the group consisting of an epoxy group, an oxetanyl group, and a vinyloxy group is preferable, and an oxetanyl group is particularly preferable. As a compound for introducing the structural unit (D), as shown in the following general formula (d), an aromatic compound having a phenolic hydroxyl group or a carboxyl group is added to an epoxy group, an oxetanyl group, and buroxy. Functional group having cationic polymerizability selected from a group Is a compound to which is bound. Further, an appropriate spacer portion may be provided between the aromatic ring and the cationic polymerizable group.
Figure imgf000010_0001
Figure imgf000010_0001
ただし、 式中の一 X、 一 Xい 一 X2、 一 Y、 一 Ζは、 各構造単位毎にそれぞれ 独立に以下に示すいずれかの基を表す。 In the formula, 1 X, 1 X 1 X 2 , 1 Y, and 1 表 す each independently represent one of the following groups for each structural unit.
( 1 ) — X、 一 Xい 一 Χ2 : — Η、 一 CH3、 一 C2H5、 — CH2CH2CH3、 一 CH (CH3) 2、 — CH2CH2CH2CH3、 —CH2CH (CH3) CH3、 - CH (CH3) CH2CH3、 -C (CH3) 3、 一 OCH3、 — OC2H5、 — OC6 H5、 一 OCH2C6H5、 一 F、 一 C l、 一 B r、 一 N02、 または一 CN (1) — X, 1 X 1 2 : — Η, 1 CH 3 , 1 C 2 H 5 , — CH 2 CH 2 CH 3 , 1 CH (CH 3 ) 2 , — CH 2 CH 2 CH 2 CH 3 , —CH 2 CH (CH 3 ) CH 3 , —CH (CH 3 ) CH 2 CH 3 , —C (CH 3 ) 3 , 1 OCH 3 , — OC 2 H 5 , — OC 6 H 5 , 1 OCH 2 C 6 H 5 , 1 F, 1 C l, 1 Br, 1 N0 2 , or 1 CN
(2) — Y :単結合、 ― (CH2) n―、 _0—、 — O— (CH2) n―、 一 (CH 2) n—〇_、 一 O— (CH2) n— O—、 — O— CO—、 _c〇_o—、 — O— C O— (CH2) n―、 —CO— O— (CH2) n―、 一 (CH2) n—〇_CO—、 一 (CH2) n— CO—〇—、 一 O— (CH2) n_0— CO—、 — O— (CH2) n— CO— O—、 — O— CO— (CH2) n—〇一、 一 CO— O— (CH2) n—〇 一、 一 O— CO— (CH2) n— O— CO—、 一 O— CO— (CH2) n— CO— O 一、 一 CO— O— (CH2) n— O— CO—、 または一 CO—〇一 (CH2) n— C O— O— (ただし、 nは:!〜 1 2の整数を示す。) (2) — Y: single bond, — (CH 2 ) n —, _0—, — O— (CH 2 ) n —, one (CH 2 ) n — ○ _, one O— (CH 2 ) n — O —, — O— CO—, _c〇_o—, — O— CO— (CH 2 ) n —, —CO— O— (CH 2 ) n —, One (CH 2 ) n —〇_CO—, One (CH 2 ) n — CO—〇—, One O— (CH 2 ) n _0— CO—, — O— (CH 2 ) n — CO— O—, — O— CO— (CH 2 ) n — ○ One, one CO— O— (CH 2 ) n — ○ One, one O— CO— (CH 2 ) n — O— CO—, One O— CO— (CH 2 ) n — CO— O One, one CO—O— (CH 2 ) n —O—CO—, or one CO—O— (CH 2 ) n —CO—O— (where n represents an integer from:! To 1 2)
(3) Z :
Figure imgf000011_0001
i -
Figure imgf000011_0002
(3) Z:
Figure imgf000011_0001
i-
Figure imgf000011_0002
〜。 d - - o - - 0'
Figure imgf000011_0003
構造単位 (D ) の中では、 カチオン重合性基もしくはカチオン重合性基を含む 置換基とフ ノール性水酸基あるいはカルボン酸基の結合位置は、 これらの基が 結合する骨格がベンゼン環の場合は 1 , 4—の位置関係を、 ナフタレン環の場合 は 2 , 6—の位置関係を、 ビフヱニル骨格、 スチルベン骨格の場合は 4 , 4 ' _の 位置関係にあるものが液晶性の点から好ましい。 より具体的には、 4一ビエルォ キシ安息香酸、 4—ビュルォキシフエノール、 4—ビエルォキシエトキシ安息香 酸、 4一ビニルォキシエトキシフエノール、 4—グリシジルォキシ安息香酸、 4 —グリシジルォキシフエノール、 4一 (ォキセタニルメ トキシ) 安息香酸、 4— (ォキセタニノレメ トキシ) フエノール、 4 '一ビニノレオキシー 4―ビフエ二ノレ力ノレ ボン酸、 4,ービニノレオキシ一 4—ヒ ドロキシビフエニル、 4 '—ビュルォキシェ トキシ一 4一ビフエ二ルカルボン酸、 4 '一ビュルォキシェトキシー 4一ヒ ドロキ シビフエニル、 4 '—グリシジルォキシ一 4ービフエ二ルカルボン酸、 4 '—グリ シジノレオキシ一 4—ヒ ドロキシビフエニル、 4 'ーォキセタニルメ トキシ一 4 -ビ フエ二ノレ力ノレボン酸、 4 'ーォキセタニノレメ トキシ一 4ーヒ ドロキシビフエ二ノレ、 6-ビュルォキシ一 2一ナフタレンカルボン酸、 6―ビエルォキシ一 2—ヒ ドロキ シナフタレン、 6—ビニルォキシエトキシー 2—ナフタレンカルボン酸、 6—ビ ニルォキシェトキシー 2—ヒ ドロキシナフタレン、 6—グリシジルォキシ一 2― ナフタレンカルボン酸、 6—グリシジノレオキシ一 2—ヒ ドロキシナフタレン、 6 ーォキセタニルメ トキシ一 2—ナフタレンカルボン酸、 6 _ォキセタエルメ トキ シー 2—ヒ ドロキシナフタレン、 4—ビュルォキシ桂皮酸、 4—ビニルォキシェ トキシ桂皮酸、 4ーグリ シジルォキシ桂皮酸、 4—ォキセタニルメ トキシ桂皮酸、 4 '—ビュルォキシ一 4一スチルベン力ノレボン酸、 4,一ビニルォキシ一 3 '—メ ト キシ一 4ースチノレベンカルボン酸、 4 '一ビニノレオキシー 4ーヒ ドロキシスチノレべ ン、 4 '一ビュルォキシエトキシー 4—スチルベンカルボン酸、 4 ' -ビニルォキ シェトキシー 3 '—メ トキシー 4—スチルベン力ノレボン酸、 4,ービニノレオキシェ トキシー 4ーヒ ドロキシスチノレベン、 4,一グリシジノレ才キシ一 4一スチルベン力 ノレボン酸、 4'ーグリシジルォキシ一 3'—メ トキシ一 4—スチルベン力ノレボン酸、 4'—グリシジノレォキシ一 4—ヒ ドロキシスチノレベン、 4'ーォキセタニノレメ トキ シ一 4一スチルベンカルボン酸、 4'ーォキセタニルメ トキシ一 3 '—メ トキシー 4—スチルベンカルボン酸、 4 '―ォキセタエルメ トキシ一 4 _ヒ ドロキシスチル ベンなどが好ましい。
~. d--o-- 0 '
Figure imgf000011_0003
In the structural unit (D), the bonding position of a cation polymerizable group or a substituent containing a cation polymerizable group and a phenolic hydroxyl group or carboxylic acid group is 1 when the skeleton to which these groups are bonded is a benzene ring. , 4—, in the case of a naphthalene ring, in the case of a 2, 6— positional relationship, in the case of a biphenyl skeleton or a stilbene skeleton, a 4, 4′_ positional relationship is preferred from the viewpoint of liquid crystallinity. More specifically, 4-bioxybenzoic acid, 4-buoxyphenol, 4-bioxyethoxybenzoic acid, 4-vinyloxyethoxyphenol, 4-glycidyloxybenzoic acid, 4-glycidyloxy Phenols, 4-I (oxetanylmethoxy) benzoic acid, 4-— (Oxetaninolemetoxy) Phenols, 4'Ivininoreoxy 4-Bibinenoleoxynorenoic acid, 4, -Vininoreoxy 1-Hydroxybiphenyl, 4'-Bulauxitoxy 4-biphenyl carboxylic acid, 4 'mono-bruchetoxy 4 4-hydroxy diphenyl, 4'-glycidyloxy 4- 4-phenyl carboxylic acid, 4'-glycidinoreoxy 4- 4-hydroxy biphenyl, 4 '-Oxetanilmethoxy 1-biphenolate norevonic acid, 4'-Oxetaninoremetoxy 4-Hydroxybiphenyl, 6-Buroxy-2, 1-Naphthalenecarboxylic acid, 6-Bieloxy-1, 2-Hydroxy Sinaphthalene, 6-Vinoxyethoxy-2-naphthalenecarboxylic acid, 6-Binyloxychetoxy 2-hydroxynaphthalene, 6-glycidyloxy-2-naphthalenecarboxylic acid, 6-glycidinoreoxy-1-hydroxynaphthalene, 6-oxetanylmethoxy-2-naphthalenecarboxylic acid, 6_oxetalum —Hydroxynaphthalene, 4-Buroxycinnamic acid, 4-Vinoxyxuccinamic acid, 4-Glycidyloxycinnamic acid, 4-Oxetanylmethoxycinnamic acid, 4′-Buroxy 1 4-Stilbene power Norebonic acid, 4, 1 Vinyloxy 1 3 '—Methoxy 4-stinolevene carboxylic acid, 4' Moninoreoxy 4 -Hydroxystinole 4'-Butoxyethoxy 4-stilbene carboxylic acid, 4'-vinyloxy succinoxy 3'-methoxy 4-stilbene-powered norevonic acid, 4, -vininoreoxytoxyl 4-hydroxy stynoleben, 4, 1 Glycidinore xylone 4 1 Stilbene strength Nolevonic acid, 4'-Glycidyloxy 1 3'-Methoxyl 1-Stilbene strength Norevonic acid, 4'-Glycidinoreoxy 1 4-Hydroxistinoleven 4'-oxetaninoremethoxy 4-mono-stilbene carboxylic acid, 4'-oxetanyl meth- oxy 3'-methoxy 4-stilbene carboxylic acid, 4'-oxetaermetoxy 4_hydroxystilbene and the like are preferable.
カチオン重合性基を有する構造単位 (D) の主鎖型液晶性ポリエステルを構成 する全構造単位に占める割合は、 同様に構造単位 (D) をカルボン酸あるいはフ ェノールとして仕込み組成中の重量割合で表した場合、 通常 1〜60%、 好まし くは 5〜50%の範囲である。 1 %よりも少ない場合には、 配向保持能、 機械的 強度の向上が得られない恐れがあり、 また 60%を越える場合には、 結晶性が上 がることにより液晶温度範囲が狭まり、 どちらの場合も好ましくない。  The proportion of the structural unit (D) having a cationic polymerizable group to the total structural units constituting the main-chain liquid crystalline polyester is similarly the weight proportion in the composition charged with the structural unit (D) as a carboxylic acid or phenol. When expressed, it is usually in the range of 1 to 60%, preferably 5 to 50%. If it is less than 1%, the orientation holding ability and mechanical strength may not be improved, and if it exceeds 60%, the crystallinity will increase and the liquid crystal temperature range will be narrowed. This is also not preferable.
(A) 〜 (D) の各構造単位は、 それぞれ 1つまたは 2つのカルボキシル基あ るいはフエノール性水酸基を有しているが、 (A) 〜 (D) の有するカルボキシル 基、 フエノール性水酸基は、 仕込みの段階においてそれぞれの官能基の当量数の 総和を概ねそろえることが望ましい。 すなわち、 構造単位 (D) が遊離のカルボ キシル基を有する単位である場合には、 ((A) のモル数 X 2) = ((B) のモル数 X 2) + ((D) のモル数)、 構造単位 (D) が遊離のフエノール性水酸基を有す る単位である場合には、 ((A) のモル数 X 2) + ((D) のモル数) = ((B) の モル数 X 2) なる関係を概ね満たすことが望ましい。 この関係式から大きく外れ る仕込み組成の場合には、 カチオン重合に関わる単位以外のカルボン酸あるいは フエノール、 もしくはそれらの誘導体が分子末端となることになり、 十分なカチ オン重合性が得られないばかり力、、 これら酸性の残基が存在することにより、 プ ロセス上の望む段階以外で重合反応や分解反応が起きてしまうおそれがあり好ま しくない。  Each structural unit of (A) to (D) has one or two carboxyl groups or phenolic hydroxyl groups, but the carboxyl groups and phenolic hydroxyl groups of (A) to (D) are It is desirable that the total number of equivalents of each functional group is roughly aligned at the preparation stage. That is, when the structural unit (D) is a unit having a free carboxyl group, ((A) moles X 2) = ((B) moles X 2) + ((D) moles Number), when the structural unit (D) is a unit having a free phenolic hydroxyl group, (number of moles of (A) X 2) + (number of moles of (D)) = (of (B) It is desirable to satisfy the following relationship: In the case of a feed composition that greatly deviates from this relational expression, a carboxylic acid or phenol other than the unit involved in cationic polymerization, or a derivative thereof becomes the molecular end, and sufficient cationic polymerization is not obtained. The presence of these acidic residues is not preferable because a polymerization reaction or a decomposition reaction may occur at a stage other than the desired stage in the process.
主鎖型液晶性ポリエステルは、 (A)、 (B)、 (C) および (D) 以外の構造単位 を含有することができる。 含有することができる他の構造単位としては、 特に限 定はなく当該分野で公知の化合物(モノマー)を使用することができる。例えば、 ナフタレンジカルボン酸、 ビフエ二ルジカルボン酸、 脂肪族ジカルボン酸および これら化合物にハロゲン基やアルキル基を導入した化合物や、 ビフユノール、 ナ フタレンジオール、 脂肪族ジオールおよびこれら化合物にハロゲン基やアルキル 基を導入した化合物等を挙げることができる。 The main-chain liquid crystalline polyester can contain structural units other than (A), (B), (C) and (D). Other structural units that can be contained are not particularly limited, and compounds (monomers) known in the art can be used. For example, Naphthalenedicarboxylic acid, biphenyldicarboxylic acid, aliphatic dicarboxylic acid, compounds in which halogen groups or alkyl groups are introduced into these compounds, and bifunonol, naphthalenediol, aliphatic diols, and compounds in which halogen groups or alkyl groups are introduced And the like.
また、 主鎖型液晶性ポリエステルを構成する単位の原料として光学活性な化合 物を用いた場合、 該主鎖型液晶性ポリエステルにカイラルな相を付与せしめるこ とが可能となる。 力かる光学活性な化合物としては特に制限はないが、 例えば、 光学活性な脂肪族アルコール (CnH2n + 1OH、 ただし nは 4から 14の整数を 表す。)、 光学活性な脂肪族基を結合したアルコキシ安息香酸 (CnH2n + 1〇一 P h— COOH、 ただし nは 4から 14の整数、 P hはフエエル基を表す。)、 メン トール、 カンファー酸、 ナプロキセン誘導体、 ビナフトール、 1 , 2—プロパン ジオール、 1, 3—ブタンジオール、 2—メチルブタンジオール、 2—クロロブ タンジオール、 酒石酸、 メチルコハク酸、 3—メチルアジピン酸などを挙げるこ とができる。 In addition, when an optically active compound is used as a raw material of a unit constituting the main chain type liquid crystalline polyester, a chiral phase can be imparted to the main chain type liquid crystalline polyester. There are no particular limitations on the powerful optically active compound. For example, an optically active aliphatic alcohol (C n H 2n + 1 OH, where n represents an integer of 4 to 14), an optically active aliphatic group Alkoxybenzoic acid (C n H 2n + 1 O 1 P h—COOH, where n is an integer from 4 to 14, P h represents a fuel group), menthol, camphoric acid, naproxen derivative, binaphthol, Examples include 1,2-propanediol, 1,3-butanediol, 2-methylbutanediol, 2-chlorobutanediol, tartaric acid, methylsuccinic acid, and 3-methyladipic acid.
主鎖型液晶性ポリエステルの分子量は、 フエノール Zテトラクロロェタン混合 溶媒 (質量比 60/40) 中、 30°Cで測定した対数粘度 77 が 0. 03〜0. 5 0 d lZgであることが好ましくより好ましくは 0. 05〜0. 1 5 d l/gで ある。 が 0. 03 d 1 より小さい場合には、 主鎖型液晶性ポリエステルの 溶液粘度が低く、フィルム化する際に均一な塗膜が得られない恐れがある。また、 0. 50 d 1 Zgより大きい場合には、 液晶配向時に要する配向処理温度が高く なり、 配向と架橋が同時に起こり配向性を低下させる危険性がある。  The molecular weight of the main-chain liquid crystalline polyester is: logarithmic viscosity 77 measured at 30 ° C in phenol Z tetrachloroethane mixed solvent (mass ratio 60/40) is 0.03 to 0.5 0 d lZg Is more preferably 0.05 to 0.15 dl / g. When is less than 0.03 d 1, the solution viscosity of the main-chain liquid crystalline polyester is low, and a uniform coating film may not be obtained when forming a film. On the other hand, when it is larger than 0.50 d 1 Zg, the alignment treatment temperature required for liquid crystal alignment becomes high, and there is a risk that alignment and crosslinking occur simultaneously and alignment is lowered.
本発明において、 主鎖型液晶性ポリエステルの分子量制御は専ら仕込み組成に より決定される。 具体的には分子両末端を封印する形で反応する 1官能性モノマ 一、 すなわち前記した構造単位 (D) を導入するための化合物の、 全仕込み組成 における相対的な含有量により、 得られる主鎖型液晶性ポリエステルの平均的な 重合度 (構造単位 (A) 〜 (D) の平均結合数) が決定される。 したがって、 所 望の対数粘度を有する主鎖型液晶性ポリエステルを得るためには、 仕込みモノマ 一の種類に応じて仕込み組成を調整する必要がある。  In the present invention, the molecular weight control of the main-chain liquid crystalline polyester is determined solely by the charged composition. Specifically, the monofunctional monomer that reacts in the form of sealing both ends of the molecule, that is, the main content obtained by the relative content of the compound for introducing the structural unit (D) in the total charged composition. The average degree of polymerization (average number of bonds of structural units (A) to (D)) of the chain-type liquid crystalline polyester is determined. Therefore, in order to obtain a main-chain liquid crystalline polyester having the desired logarithmic viscosity, it is necessary to adjust the charged composition according to the type of charged monomer.
主鎖型液晶性ポリエステルの合成方法としては、 通常のポリエステルを合成す る際に用いられる方法を採ることができ、特に限定されるものではない。例えば、 カルボン酸単位を酸クロリ ドゃスルホン酸無水物などに活性化し、 それを塩基の 存在下でフ ノール単位と反応させる方法(酸クロリ ド法)、カルボン酸単位とフ ェノール単位を D C C (ジシクロへキシルカルボジイミ ド) などの縮合剤を用い て直接縮合させる方法、 フエノール単位をァセチル化して、 これとカルボン酸単 位とを溶融条件下で脱酢酸重合する方法などを用いることが出来る。 ただし、 溶 融条件下での脱酢酸重合を用いる場合には、 カチオン重合性基を有するモノマー 単位が反応条件下で重合や分解反応を起こすおそれがあるため、 反応条件を厳密 に制御する必要がある場合が多く、 場合によっては適当な保護基を用いたり、 あ るいは一度別な官能基を有する化合物を反応させておいてから、 後でカチオン重 合性基を導入するなどの方法を採ることが望ましい場合もある。 また、 重合反応 により得られた粗主鎖型液晶性ポリエステルを、 再結晶、 再沈などの方法により 精製してもよレ、。 The method for synthesizing the main chain type liquid crystalline polyester may be a method used for synthesizing ordinary polyester, and is not particularly limited. For example, A method in which a carboxylic acid unit is activated to an acid chloride or sulfonic anhydride and the like is reacted with a phenol unit in the presence of a base (acid chloride method), and a carboxylic acid unit and a phenol unit are converted to DCC (dicyclohexane). A direct condensation method using a condensing agent such as xylcarbodiimide), a method in which a phenol unit is acetylated, and this and a carboxylic acid unit are subjected to deacetic acid polymerization under melting conditions can be used. However, when using deacetic acid polymerization under melting conditions, the monomer units having a cationically polymerizable group may undergo polymerization or decomposition under the reaction conditions, so the reaction conditions must be strictly controlled. In many cases, an appropriate protecting group is used in some cases, or a compound having another functional group is reacted once and then a cation-polymerizable group is introduced later. Sometimes it is desirable. The crude main-chain liquid crystalline polyester obtained by the polymerization reaction may be purified by methods such as recrystallization and reprecipitation.
このようにして得られた主鎖型液晶性ポリエステルは、 NMR (核磁気共鳴法) などの分析手段により、 それぞれのモノマーがどのような比率で主鎖型液晶性ポ リエステル中に存在するかを同定することができる。 特に、 カチオン重合性基の 量比から、 主鎖型液晶性ポリエステルの平均結合数を算出する事ができる。  The main chain type liquid crystalline polyester thus obtained is analyzed by means such as NMR (nuclear magnetic resonance) to determine the proportion of each monomer present in the main chain type liquid crystalline polyester. Can be identified. In particular, the average number of bonds of the main chain type liquid crystalline polyester can be calculated from the amount ratio of the cationic polymerizable group.
前記カチオン重合性基を含む主鎖型液晶性ポリエステルに他の化合物を配合す ることも、 本発明の範囲を超えない限り可能である。 例えば、 本発明に用いる主 鎖型液晶性ポリエステルと混和しうる他の高分子化合物や各種低分子化合物等を 添加しても良い。 かかる低分子化合物は、 液晶性を有していても有していなくと も良く、 架橋性の主鎖型液晶性ポリエステルと反応できる重合性基を有していて もいなくとも良い。 重合性基を有する液晶性化合物を用いることが好ましく、 例 えば以下のものを例示できる。 It is also possible to mix other compounds with the main-chain liquid crystalline polyester containing the cationic polymerizable group as long as the scope of the present invention is not exceeded. For example, other high molecular compounds miscible with the main-chain liquid crystalline polyester used in the present invention and various low molecular compounds may be added. Such a low molecular weight compound may or may not have liquid crystallinity, and may or may not have a polymerizable group capable of reacting with a crosslinkable main chain liquid crystalline polyester. It is preferable to use a liquid crystalline compound having a polymerizable group, and examples thereof include the following.
Figure imgf000015_0001
Figure imgf000015_0001
ここで、 nは 2〜1 2の整数を、 また一 V—および一 Wはそれぞれ以下のいず れかの基を表す。  Here, n represents an integer of 2 to 12, and 1 V— and 1 W each represent one of the following groups.
—V—: 単結合、 一〇一、 一 O— C mH2m—〇一(ただし、 mは 2〜1 2の整数) — W: —V—: Single bond, 101, 1 O— C m H 2m — 0 (where m is an integer from 2 to 12) — W:
Figure imgf000015_0002
なお、 添加する高分子化合物や低分子化合物が光学活性である場合、 組成物と してカイラルな液晶相を誘起させることができる。 かかる組成物は、 ねじれネマ チック配向構造ゃコレステリック配向構造を有するフィルムの製造に利用するこ とができる。
Figure imgf000015_0002
When the added high molecular compound or low molecular compound is optically active, a chiral liquid crystal phase can be induced as a composition. Such a composition can be used for producing a film having a twisted nematic alignment structure or a cholesteric alignment structure.
側鎖型液晶ポリマーとしては、 前述のようにポリ (メタ) アタリレート、 ポリ マロネート、 ポリシロキサン等が挙げられるが、 中でも下記一般 As described above, the side chain type liquid crystal polymer includes poly (meth) acrylate, poly Malonate, polysiloxane, etc. are mentioned.
れる反応性基を結合したポリ (メタ) アタリレートが好ましい。 Poly (meth) acrylate with a reactive group bonded thereto is preferred.
Figure imgf000016_0001
式 (1) において、 R3は、 それぞれ独立に、 水素またはメチル基を表し、 R4 は、 それぞれ独立に、 水素、 メチル基、 ェチル基、 ブチル基、 へキシル基、 ォク チル基、 ノエル基、 デシル基、 ドデシル基、 メ トキシ基、 エトキシ基、 プロポキ シ基、 ブトキシ基、 ペンチルォキシ基、 へキシルォキシ基、 ヘプチルォキシ基、 ォクチルォキシ基、 デシルォキシ基、 ドデシルォキシ基、 シァノ基、 ブロモ基、 クロ口基、 フルォロ基またはカルボキシル基を表し、 R5は、 それぞれ独立に、 水素、 メチル基またはェチル基を表し、 R6は、 炭素数 1から 24までの炭化水 素基を表し、 L2は、 それぞれ独立に、 単結合、 一〇_、 一 O— CO_、 -CO _0—、 一 CH=CH—または一 C≡C—を表し、 pは、 1から 1 0までの整数 を表し、 qは、 0から 1 0までの整数を表し、 a、 b、 c、 d、 eおよび f は、 ポリマー中の各ユニットのモル比 (a + b + c + d + e + f = l . 0、 ただし、 c + d + e = 0ではない) を表す。
Figure imgf000016_0001
In the formula (1), each R 3 independently represents hydrogen or a methyl group, and each R 4 independently represents hydrogen, methyl group, ethyl group, butyl group, hexyl group, octyl group, Noel Group, decyl group, dodecyl group, methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group, heptyloxy group, octyloxy group, decyloxy group, dodecyloxy group, cyano group, bromo group, black mouth group , A fluoro group or a carboxyl group, R 5 independently represents hydrogen, a methyl group or an ethyl group, R 6 represents a hydrocarbon group having 1 to 24 carbon atoms, and L 2 represents Independently, a single bond, 10_, 1 O— CO_, —CO _0—, 1 CH═CH— or 1 C≡C—, p represents an integer from 1 to 10 and q represents 0 to 1 0 A, b, c, d, e and f are the molar ratio of each unit in the polymer (a + b + c + d + e + f = l. 0, where c + d + e = Not 0)
式 (1) で表される側鎖型高分子液晶性化合物を構成する各成分のモル比は、 a + b + c + d + e + f = l . 0、 c + d + e = 0ではなく、 かつ、 液晶性を示 すことが必要である。 この要件を満たせば各成分のモル比は任意でよいが、 以下 のとおりであることが好ましい。  The molar ratio of each component constituting the side chain type polymer liquid crystal compound represented by the formula (1) is as follows: a + b + c + d + e + f = l.0, c + d + e = 0 It is necessary to exhibit liquid crystallinity. The molar ratio of each component may be arbitrary as long as this requirement is satisfied, but is preferably as follows.
a :好ましくは 0〜0. 80、 より好ましくは 0. 05〜0. 50 b 好ましくは 0〜 0. 90、 より好ましくは 0. 1 0〜 0. 70 c 好ましくは 0〜 0. 50、 より好ましくは 0. 1 0 〜 0. 3 0 a: preferably 0 to 0.80, more preferably 0.05 to 0.50 b Preferably 0 to 0.90, more preferably 0.1 0 to 0.70 c preferably 0 to 0.50, more preferably 0.1 0 to 0.30
d 好ましくは 0〜 0. 50、 より好ましくは 0. 1 0 〜0. 3 0  d Preferably 0 to 0.50, more preferably 0.1 0 to 0.30
e 好ましくは 0〜 0. 50、 より好ましくは 0. 1 0 〜0. 3 0  e Preferably 0 to 0.50, more preferably 0.1 0 to 0.30
f 好ましくは 0〜 0. 30、 より好ましくは 0. 0 1 〜0. 1 0  f Preferably 0 to 0.30, more preferably 0.0 1 to 0.10
これらのポリ (メタ) アタリレート中の各成分は、 上記の条件を満たせば、 6 種類の成分すべてが存在する必要もない。  Each component in these poly (meth) acrylates does not need to be present in all six types as long as the above conditions are met.
また、 R4は、 好ましくは、 水素、 メチル基、 ブチル基、 メ トキシ基、 シァノ 基、 プロモ基、 フルォロ基であり、 特に好ましくは、 水素、 メ トキシ基またはシ ァノ基であり、 L2は、 好ましくは、 単結合、 一〇_、 一O— CO—または一 C 〇ー〇ーであり、 R6は、 好ましくは、 炭素数 2、 3、 4、 6、 8および 1 8の 炭化水素基を表す。 R 4 is preferably hydrogen, a methyl group, a butyl group, a methoxy group, a cyano group, a promo group, or a fluoro group, particularly preferably hydrogen, a methoxy group, or a cyano group, and L 2 is preferably a single bond, 10_, 1 O—CO— or 1 C 0—0, and R 6 is preferably of 2, 3, 4, 6, 8 and 18 Represents a hydrocarbon group.
さらに、 一般式 (1) で表される側鎖型高分子液晶性化合物は、 各成分 a〜 f のモル比や配向形態により複屈折率が変化するが、 ネマチック配向をとつた場合 の複屈折率は 0. 00 1〜0: 300であることが好ましく、より好ましくは 0. 05〜 0. 25である。 Furthermore, the birefringence of the side chain type polymer liquid crystalline compound represented by the general formula (1) varies depending on the molar ratio of each component a to f and the orientation form, but the birefringence when nematic orientation is adopted. The rate is preferably 0.001 to 0 : 300, more preferably 0.05 to 0.25.
上記の側鎖型液晶ポリマーの各成分に該当するそれぞれの (メタ) アクリル化 合物は、 通常の有機化学の合成方法により得ることができる。 ォキセタニル基を 有する (メタ) アクリル化合物は、 後述する式 (7)、 (8) および (9) に該当 する化合物の合成に類似した方法により容易に得ることができる。  Each (meth) acrylic compound corresponding to each component of the above-mentioned side chain type liquid crystal polymer can be obtained by an ordinary organic chemical synthesis method. A (meth) acrylic compound having an oxetanyl group can be easily obtained by a method similar to the synthesis of compounds corresponding to formulas (7), (8) and (9) described later.
上記の側鎖型液晶ポリマーは、 各成分に該当する上記方法で得られたそれぞれ の (メタ) アクリル化合物の (メタ) アクリル基をラジカル重合またはァユオン 重合により共重合することにより容易に合成することができる。 重合条件は特に 限定されるものではなく、 通常の条件を採用することができる。  Said side chain type liquid crystal polymer can be easily synthesized by copolymerizing the (meth) acrylic group of each (meth) acrylic compound obtained by the above method corresponding to each component by radical polymerization or cation polymerization. Can do. Polymerization conditions are not particularly limited, and normal conditions can be employed.
ラジカル重合の例としては、 各成分に該当する (メタ) アクリル化合物をジメ チルホルムアミ ド(DMF)、ジエチレングリコールジメチルエーテルなどの溶媒 に溶かし、 2, 2, 一ァゾビスイソプチロニトリル (A I BN) や過酸化べンゾ ィル (B PO) などを開始剤として、 60〜1 20°Cで数時間反応させる方法が 挙げられる。 また、 液晶相を安定に出現させるために、 臭化銅 (I ) /2, 2' —ビビリジル系や 2, 2, 6, 6—テトラメチルピペリジノォキシ 'フリーラジ カル (TEMPO) 系などを開始剤としたリビングラジカル重合を行い、 分子量. 分布を制御する方法も有効である。 これらのラジカル重合は脱酸素条件下に行う 必要がある。 As an example of radical polymerization, a (meth) acrylic compound corresponding to each component is dissolved in a solvent such as dimethylformamide (DMF) or diethylene glycol dimethyl ether, and 2, 2, mono-bisisopropylonitrile (AI BN) or peroxynitrile is used. A method of reacting at 60 to 120 ° C. for several hours using benzoyl oxide (B 3 PO) or the like as an initiator can be mentioned. In order to make the liquid crystal phase appear stably, copper bromide (I) / 2,2'-bibilidyl series and 2, 2, 6, 6-tetramethylpiperidinoxy 'free radical A method of controlling the molecular weight and distribution by conducting living radical polymerization using a TEMPO system as an initiator is also effective. These radical polymerizations must be carried out under deoxygenated conditions.
ァニオン重合の例としては、 各成分に該当する (メタ) アクリル化合物をテト ラヒ ドロフラン (THF) などの溶媒に溶かし、 有機リチウム化合物、 有機ナト リゥム化合物、 グリニャール試薬などの強塩基を開始剤として反応させる方法が 挙げられる。 また、 開始剤や反応温度を最適化することでリビングァニオン重合 とし、 分子量分布を制御することもできる。 これらのァニオン重合は、 脱水かつ 脱酸素条件で行う必要がある。  As an example of anionic polymerization, the (meth) acrylic compound corresponding to each component is dissolved in a solvent such as tetrahydrofuran (THF) and reacted with a strong base such as an organolithium compound, an organic sodium compound, or a Grignard reagent as an initiator. Can be mentioned. It is also possible to control the molecular weight distribution by optimizing the initiator and reaction temperature for living anion polymerization. These anion polymerizations must be performed under dehydration and deoxygenation conditions.
側鎖型液晶ポリマーは、 重量平均分子量が 1 , 000〜 200, 000である ものが好ましく、 3, 000〜50, 000のものが特に好ましい。 この範囲外 では強度が不足したり、 配向性が悪化したりして好ましくない。  The side chain type liquid crystal polymer preferably has a weight average molecular weight of 1,000 to 200,000, particularly preferably 3,000 to 50,000. Outside this range, the strength is insufficient or the orientation is deteriorated.
本発明において、 液晶性組成物は下記一般式 (2) で表されるジォキセタン化 合物を含有することが好ましい。
Figure imgf000018_0001
式 (2) において、 R7は、 それぞれ独立に、 水素、 メチル基またはェチル基 を表し、 L3は、 それぞれ独立に、 単結合または一 (CH2) n— (nは 1〜1 2' の整数) を表し、 X1は、 それぞれ独立に、 単結合、 一0—、 一〇一 CO—また は _C〇_〇一を表し、 M1は、 式 (3) または式 (4) で表されるいずれかで あり、 式 (3) および式 ( ^ ^の卩 ま、 それぞれ独立に式 (5) から選ばれ る基を表し、 P2は式 (6) から選ばれる基を表し、 L4は、 それぞれ独立に単結 合、 一 CH=CH―、 一 C≡C―、 一 O—、 一 0—CO—または一CO—〇一を 表す。
In the present invention, the liquid crystalline composition preferably contains a dioxetane compound represented by the following general formula (2).
Figure imgf000018_0001
In the formula (2), each R 7 independently represents hydrogen, a methyl group or an ethyl group, and each L 3 independently represents a single bond or one (CH 2 ) n — (n is 1 to 1 2 ′ X 1 represents each independently a single bond, 10—, 10—CO— or _C〇_〇1, and M 1 is represented by formula (3) or formula (4). In the formula (3) and the formula (^^, each independently represents a group selected from the formula (5), P 2 represents a group selected from the formula (6), L 4 each independently represents a single bond, 1 CH═CH—, 1 C≡C—, 1 O—, 1 0—CO— or 1 CO—0.
一 P1—ぃ— P2—い—P1— (3) One P 1 ——— P 2 —I—P 1 — (3)
— P1—い一 P1— (4)
Figure imgf000019_0001
— P 1 —Iichi P 1 — (4)
Figure imgf000019_0001
Figure imgf000019_0002
Figure imgf000019_0002
式 (5) およぴ式 (6) において. E tはェチル基を、 i P rはイソプロピル 基を、 n B uはノルマルプチル基を、 t B uはターシャリ一プチル基をそれぞれ 表す。 In the formulas (5) and (6), E t represents an ethyl group, i Pr represents an isopropyl group, n B u represents a normal butyl group, and t B u represents a tertiary butyl group.
より具体的には、 M1基から見て左右のォキセタニル基を結合している連結基 は異なっても (非対称型) 同一でも (対称型) よく、 特に 2つの L3が異なる場 合や他の連結基の構造によっては液晶性を示さないこともあるが、 使用には制約 とならない。 More specifically, the linking groups connecting the left and right oxetanyl groups as seen from the M 1 group may be different (asymmetric) or the same (symmetric), especially when the two L 3 are different or other Depending on the structure of the linking group, it may not exhibit liquid crystallinity, but it is not a restriction on its use.
一般式 (2) で表される化合物は、 M L3および X1の組み合わせから多く の化合物を例示することができるが、 好ましくは、 下記の化合物を挙げること力 S できる。 As the compound represented by the general formula (2), many compounds can be exemplified from the combination of ML 3 and X 1 , but preferably, the following compounds can be listed.
Figure imgf000020_0001
Figure imgf000020_0001
Figure imgf000020_0002
Figure imgf000020_0002
Figure imgf000020_0003
Figure imgf000020_0003
Figure imgf000020_0004
これらの化合物は有機化学における通常の合成方法に従って合成することがで き、 合成方法は特に限定されるものではない。
Figure imgf000020_0004
These compounds can be synthesized according to ordinary synthesis methods in organic chemistry, and the synthesis method is not particularly limited.
合成にあたっては、 ォキセタニル基がカチオン重合性を有するため、 強い酸性 条件下では、 重合や開環などの副反応を起こすことを考慮して、 反応条件を選ぶ 必要がある。 なお、 ォキセタニル基は類似のカチオン重合性官能基であるォキシ ラニル基などと比べて、 副反応を起こす可能性が低い。 さらに、 類似したアルコ ール、 フエノール、 カルボン酸などの各種化合物をつぎつぎに反応させることも あり、 適宜保護基の活用を考慮してもよい。  In the synthesis, since the oxetanyl group has cationic polymerizability, it is necessary to select reaction conditions in consideration of the occurrence of side reactions such as polymerization and ring opening under strong acidic conditions. The oxetanyl group is less likely to cause a side reaction than the similar cationic polymerizable functional group oxylanyl group. Furthermore, various compounds such as similar alcohols, phenols, and carboxylic acids may be reacted successively, and the use of protecting groups may be considered as appropriate.
より具体的な合成方法としては、 例えば、 ヒ ドロキシ安息香酸を出発化合物と して、 ウィリアムソンのエーテル合成法等によりォキセタニル基を結合させ、 次 いで得られた化合物と本発明に適したジオールとを、 酸クロリ ド法ゃカルボジィ ミ ドによる縮合法等を用いて結合させる方法や、 逆に予めヒ ドロキシ安息香酸の 水酸基を適当な保護基で保護し、 本発明に適したジオールと縮合後、 保護基を脱 離させ、適当なォキセタニル基を有する化合物 (ォキセタン化合物)、例えばハロ アルギルォキセタン等と水酸基とを反応させる方法などが挙げられる。 ォキセタン化合物と水酸基との反応は、 用いられる化合物の形態や反応性によ り適した反応条件を選定すればよいが、 通常、 反応温度は一 2 0 °C〜 1 8 0 °C、 好ましくは 1 0 °C〜 1 5 0 °Cが選ばれ、 反応時間は 1 0分〜 4 8時間、 好ましく は 3 0分〜 2 4時間である。これらの範囲外では反応が充分に進行しなかったり、 副反応が生じたりして好ましくない。 また、 両者の混合割合は、 水酸基 1当量に つき、 ォキセタン化合物 0 . 8〜1 . 2当量が好ましい。 As a more specific synthesis method, for example, hydroxybenzoic acid is used as a starting compound, an oxetanyl group is bonded by Williamson's ether synthesis method, etc., and a diol suitable for the present invention and a diol suitable for the present invention are used. Are bonded using an acid chloride method using a condensation method using carbodiimide or the like, and conversely, the hydroxyl group of hydroxybenzoic acid is protected in advance with an appropriate protecting group, and after condensation with a diol suitable for the present invention, A compound having an appropriate oxetanyl group (oxetane compound) such as halo after removing the protecting group Examples include a method of reacting argyloxetane and the like with a hydroxyl group. For the reaction between the oxetane compound and the hydroxyl group, a reaction condition suitable for the form and reactivity of the compound to be used may be selected. Usually, the reaction temperature is 120 ° C. to 180 ° C., preferably A temperature of 10 ° C. to 1550 ° C. is selected, and the reaction time is 10 minutes to 48 hours, preferably 30 minutes to 24 hours. Outside these ranges, the reaction does not proceed sufficiently or side reactions occur, which is not preferable. The mixing ratio of the two is preferably 0.8 to 1.2 equivalents of oxetane compound per equivalent of hydroxyl group.
本発明で用いる液晶材料においては、 前記側鎖型液晶ポリマーの他に、 液晶性 を損なわずに混和し得る種々の化合物を含有することができる。 含有することが できる化合物としては、 ォキセタ-ル基、 エポキシ基、 ビュルエーテル基などの カチオン重合性官能基を有する化合物、 フィルム形成能を有する各種の高分子物 質、 液晶性を示す各種の低分子液晶性化合物や高分子液晶性化合物などが挙げら れる。 前記の側鎖型液晶ポリマーを組成物として用いる場合、 組成物全体に占め る前記の側鎖型液晶ポリマーの割合は、 1 0質量%以上、 好ましくは 3 0質量% 以上、 さらに好ましくは 5 0質量%以上である。 側鎖型液晶ポリマーの含有量が 1 0質量。 /0未満ではフィルム形成能が不足したり組成物中に占める重合性基濃度 が低くなり、 重合後の機械的強度が不十分となるため好ましくない。 In the liquid crystal material used in the present invention, in addition to the side chain type liquid crystal polymer, various compounds that can be mixed without impairing liquid crystallinity can be contained. The compounds that can be contained include compounds having a cationic polymerizable functional group such as an oxetal group, an epoxy group, and a butyl ether group, various polymer materials having film-forming ability, and various low liquid crystal properties. Examples thereof include molecular liquid crystal compounds and polymer liquid crystal compounds. When the side chain liquid crystal polymer is used as a composition, the proportion of the side chain liquid crystal polymer in the entire composition is 10% by mass or more, preferably 30% by mass or more, and more preferably 50%. It is at least mass%. The content of the side chain type liquid crystal polymer is 10 mass. If it is less than 0 , the film-forming ability is insufficient or the polymerizable group concentration in the composition is low, and the mechanical strength after polymerization becomes insufficient, which is not preferable.
また前記液晶材料は配向処理された後、 ォキセタニル基をカチオン重合させて 架橋することにより、 当該液晶状態を固定化することができる。 このため、 液晶 材料中に、 光や熱などの外部刺激でカチオンを発生する光力チオン発生剤および ノまたは熱カチオン発生剤を含有させておくことが好ましい。 また必要によって は各種の增感剤を併用してもよい。  Further, after the liquid crystal material is subjected to an alignment treatment, the liquid crystal state can be fixed by cationically polymerizing the oxetanyl group and crosslinking. For this reason, it is preferable that the liquid crystal material contains a light-power thione generator that generates cations by an external stimulus such as light and heat, and a hydrogen or thermal cation generator. If necessary, various sensitizers may be used in combination.
光力チオン発生剤とは、 適当な波長の光を照射することによりカチオンを発生 できる化合物を意味し、 有機スルフォユウム塩系、 ョードニゥム塩系、 フォスフ ォニゥム塩系などを例示することが出来る。 これら化合物の対イオンとしては、 アンチモネート、 フォスフェート、 ボレートなどが好ましく用いられる。 具体的 な化合物としては、 A r 3 S + S b F 6―、 A r 3 P + B F 4—、 A r 2 I + P F 6 _ (た だし、 A rはフエ二ル基または置換フヱ二ル基を示す。 )などが挙げられる。また、 スルホン酸エステル類、 トリアジン類、 ジァゾメタン類、 ケトスルホン、 ィ ミノスルホナート、 ベンゾインスルホ^ "一トなども用いることができる。 熱カチオン発生剤とは、 適当な温度に加熱されることによりカチオンを発生で きる化合物であり、 例えば、 ベンジルスルホニゥム塩類、 ベンジルアンモユウム 塩類、 ベンジルピリジニゥム塩類、 ベンジルホスホ-ゥム塩類、 ヒ ドラジニゥム 塩類、 カルボン酸エステル類、 スルホン酸エステル類、 ァミンイミ ド類、 五塩化 アンチモン一塩化ァセチル錯体、 ジァリ一ルョードニゥム塩ージベンジルォキシ 銅、 ハロゲン化ホウ素一三級アミン付加物などを挙げることができる。 The photopower thione generator means a compound capable of generating a cation by irradiating with light of an appropriate wavelength, and examples thereof include organic sulfate salt systems, podonium salt systems, and phosphonium salt systems. Antimonates, phosphates, borates and the like are preferably used as counter ions of these compounds. Specific compounds include Ar 3 S + S b F 6- , A r 3 P + BF 4 —, A r 2 I + PF 6 _ (where A r is a phenyl group or a substituted group) A dil group) and the like. In addition, sulfonic acid esters, triazines, diazomethanes, ketosulfone, iminosulfonate, benzoinsulfonate and the like can also be used. Thermal cation generators are compounds that can generate cations when heated to a suitable temperature, such as benzylsulfonium salts, benzylammoyuum salts, benzylpyridinium salts, benzylphosphonium. Salts, hydrazinium salts, carboxylic acid esters, sulfonic acid esters, ammine imides, antimony pentachloride acetyl chloride complex, diallydonium salt-dibenzyloxy copper, boron halide primary tertiary amine adduct, etc. Can be mentioned.
これらのカチオン発生剤の液晶材料中への添加量は、 用いる側鎖型液晶性高分 子物質を構成するメソゲン部分ゃスぺーサ部分の構造や、 ォキセタニル基当量、 液晶の配向条件などにより異なるため一概には言えないが、 側鎖型液晶性高分子 物質に対し、 通常 1 0 0質量 p p m〜2 0質量%、 好ましくは 1 0 0 0質量 p p 111〜1 0質量%、 より好ましくは 0 . 2質量%〜 7質量%の範囲である。 1 0 0 質量 p p mよりも少ない場合には、 発生するカチオンの量が十分でなく重合が進 行しないおそれがあり、 また 2 0質量%よりも多い場合には、 液晶フィルム中に 残存するカチオン発生剤の分解残存物等が多くなり耐光性などが悪化するおそれ があるため好ましくない。 次に配向基板について説明する。  The amount of these cation generators added to the liquid crystal material varies depending on the structure of the mesogenic portion or spacer portion constituting the side chain type liquid crystalline polymer used, the oxetanyl group equivalent, the liquid crystal alignment conditions, etc. Therefore, it cannot be generally stated, but usually 100 mass ppm to 20 mass%, preferably 10 mass to pp 111 to 10 mass%, more preferably 0 to the side chain type liquid crystalline polymer substance. The range is from 2% to 7% by weight. If the amount is less than 100 ppm by mass, the amount of cations generated may not be sufficient and polymerization may not proceed. If the amount is more than 20% by mass, cations remaining in the liquid crystal film may be generated. It is not preferable because the decomposition residue of the agent increases and the light resistance may deteriorate. Next, the alignment substrate will be described.
配向基板としては、 まず平滑な平面を有するものが好ましく、 有機高分子材料 からなるフィルムやシート、 ガラス板、 金属板などを挙げることができる。 コス トゃ連続生産性の観点からは有機高分子からなる材料を用いることが好ましい。 有機高分子材料の例としては、 ポリビニルアルコール、 ポリイミ ド、 ポリフエ- レンォキシド、ポリフエ二レンスノレフィ ド、ポリスノレホン、ポリエーテノレケトン、 ポリエーテノレエーテノレケトン、 ポリアリ レート、 ポリエチレンテレフタレートや ポリエチレンナフタレート等のポリエステル系ポリマー、 ジァセチルセルロース やトリァセチノレセノレロース等のセ /レロース系ポリマー、 ポリカーボネート系ポリ マー、 ポリメチルメタクリレート等のァクリル系ポリマー等の透明ポリマーから なるフィルムが挙げられる。 またポリスチレン、 アクリロニトリル .スチレン共 重合体等のスチレン系ポリマー、 ポリエチレン、 ポリプロピレン、 エチレン .プ ロピレン共重合体等のォレフィン系ポリマー、 ポリシクロォレフィン、 塩化ビ- ル系ポリマー、 ナイロンや芳香族ポリアミ ド等のアミ ド系ポリマー等の透明ポリ マーからなるフィルムも挙げられる。 これらはブレンド物であってもよい。 As the alignment substrate, a substrate having a smooth plane is preferable, and examples thereof include a film or sheet made of an organic polymer material, a glass plate, and a metal plate. From the viewpoint of continuous productivity, it is preferable to use a material made of an organic polymer. Examples of organic polymer materials include polyvinyl alcohol, polyimide, polyphenol-oxide, polyphenylene norfide, polysenorephone, polyethenoreketone, polyethenoreethenoleketone, polyarylate, polyethylene terephthalate, polyethylene naphthalate, and other polyesters Examples thereof include a film made of a transparent polymer such as an acryl-based polymer, a ce / relose-based polymer such as diacetyl cellulose or triacetinoresenorelose, a polycarbonate polymer, or an acryl-based polymer such as polymethyl methacrylate. Also, styrene polymers such as polystyrene, acrylonitrile styrene copolymers, olefin polymers such as polyethylene, polypropylene, ethylene propylene copolymers, polycyclohexylene, vinyl chloride polymers, nylon and aromatic polyamides. Transparent polymers such as amide polymers A film made of mer is also included. These may be blends.
これらのなかでも、 光学フィルムとして用いられるトリァセチルセルロース、 ポ リカーボネート、ポリシクロォレフイン等のプラスチックフィルムが賞用される。 有機高分子材料のフィルムとしては、 特にゼォノア (商品名, 日本ゼオン (株) 製)、 ゼォネックス (商品名, 日本ゼオン (株) 製)、 アートン (商品名, J S R (株) 製) などのノルボルネン構造を有するポリマー物質からなるプラスチック フィルムが光学的にも優れた特性を有するので好ましい。 また金属フィルムとし ては、 例えばアルミニウムなどから形成される当該フィルムが挙げられる。 Among these, plastic films such as triacetyl cellulose, polycarbonate, polycyclohexylin and the like used as optical films are used. Examples of organic polymer film include norbornene such as ZENOA (trade name, manufactured by ZEON CORPORATION), ZEONEX (trade name, manufactured by ZEON CORPORATION), Arton (trade name, manufactured by JSR Corporation), etc. A plastic film made of a polymer material having a structure is preferable because it has excellent optical properties. Moreover, as a metal film, the said film formed from aluminum etc. is mentioned, for example.
前述の液晶材料を用い、 安定してホメオト口ピック配向を得るためには、 これ らの基板を構成する材料が長鎖 (通常炭素数 4以上、 好ましくは 8以上) のアル キル基やフッ素化炭化水素基を有しているか、 基板表面にこれらの基を有する化 合物の層を有することがより好ましい。 なお、 これら有機高分子材料は単独で基 板として用いても良いし、 他の基板の上に薄膜として形成させていても良い。 長鎖 (通常炭素数 4以上、 好ましくは 8以上) のアルキル基やフッ素化炭化水 素基を有する化合物の層 (配向膜) の形成工程について説明する。  In order to obtain homeotropic orientation with stability using the liquid crystal materials described above, the materials constituting these substrates are long-chain (usually 4 or more, preferably 8 or more) alkyl groups or fluorinated. It is more preferable to have a hydrocarbon group or to have a compound layer having these groups on the substrate surface. These organic polymer materials may be used alone as a substrate, or may be formed as a thin film on another substrate. The process of forming a compound layer (alignment film) having a long chain (usually 4 or more carbon atoms, preferably 8 or more) alkyl group or fluorinated hydrocarbon group will be described.
配向膜を形成する材料は溶液状態にしての塗布が、 配向膜厚や表面性の制御か ら好ましい。 当該溶液は、 当該材料を溶解できる溶媒を用いて適宜行うことがで きる。 例えば P V Aの溶液を調製する溶媒は、 当該 P V Aを溶解できる溶媒であ れば特に制限はなく、 通常は水やメタノール、 エタノール、 イソプロピルアルコ ール等の低級アルコールゃこれらの混合物が使用される。  The material for forming the alignment film is preferably applied in a solution state from the viewpoint of controlling the alignment film thickness and surface properties. The solution can be appropriately performed using a solvent capable of dissolving the material. For example, the solvent for preparing the PVA solution is not particularly limited as long as it can dissolve the PVA, and usually a mixture of water, lower alcohol such as methanol, ethanol, isopropyl alcohol, or the like is used.
なお、 溶解に当たっては塗布や液晶の配向に悪影響を及ぼさない各種の添加剤 を添加してもよい。 また、 溶解を促進するために加温してもよい。  In the dissolution, various additives that do not adversely affect the coating and the alignment of the liquid crystal may be added. Moreover, you may heat in order to accelerate | stimulate melt | dissolution.
基材上に配向膜を形成するために使用される塗布方式は特に制限はなく、 特に 大面積の配向膜の塗布方法は、 やわらかい樹脂版を用いるフレキソ印刷方式、 デ イスペンサー方式、 グラビアコート方式、 マイクログラビア方式、 スクリーン印 刷方式、 リップコート方式、 ダイコート方式など挙げることができる。 これらの 中でグラビアコート方式、 リップコート方式やダイコート方式が好ましい。  There are no particular restrictions on the coating method used to form the alignment film on the substrate. Especially, the coating method for large-area alignment films is flexographic printing using a soft resin plate, dispenser method, gravure coating method. , Micro gravure method, screen printing method, lip coating method, die coating method and the like. Of these, the gravure coating method, the lip coating method and the die coating method are preferable.
塗布された配向膜は、 必要により乾燥を行う。 乾燥温度は、 通常、 P V Aの場 合はその耐熱性から限定されるが、 目的によってはそれ以上であってもよい。 一 般には、 5 0 °C〜1 8 0 °C、 好ましくは 8 0 °C〜1 6 0 °Cである。 また乾燥時間 も特に制限はないが、 通常は 1 0秒〜 6 0分、 好ましくは 1分〜 3 0分がよレ、。 被乾燥膜と乾燥装置との相対的な移動速度は相対風速で 6 0 m/分〜 1 2 0 0 m Z分が好ましい。 The applied alignment film is dried if necessary. The drying temperature is usually limited in the case of PVA due to its heat resistance, but may be higher depending on the purpose. Generally, it is 50 ° C to 180 ° C, preferably 80 ° C to 160 ° C. Also drying time Although there is no particular limitation, it is usually 10 seconds to 60 minutes, preferably 1 minute to 30 minutes. The relative moving speed between the film to be dried and the drying apparatus is preferably 60 m / min to 120 m mmin in terms of relative wind speed.
液晶の分野においては、 基板に対して布等で一定方向に擦るラビング処理を行 うことが一般的であるが、 本発明に使用されるホメオト口ピック配向液晶フィル ムは、 面内の異方性が基本的に生じない配向構造であるため、 必ずしもラビング 処理を必要としない。 しかしながら、 液晶材料を塗布したときのはじき抑制の観 点からは弱いラビング処理を施すことがより好ましい。 ラビング条件を規定する 重要な設定値としては周速比がある。 これはラビング布をロールに巻きつけて回 転させつつ基板を擦る場合の、 布の移動速度と基板の移動速度の比を表す。 本発 明においては弱いラビング処理とは、 通常周速比が 5 0以下、 より好ましくは 2 5以下、 特に好ましくは 1 0以下である。 周速比が 5 0より大きい場合、 ラビン グの効果が強すぎて液晶材料が完全に垂直に配向しきれず、 垂直方向より面内方 向に倒れた配向となる恐れがある。 次に、 本発明に使用されるホメオト口ピック配向液晶フィルムの製造方法につ いて説明する。 液晶フィルム製造の方法としてはこれらに限定されるものではな いが、 前述の液晶材料を前述の配向基板上に展開し、 当該液晶材料を配向させた 後、 光照射および/または加熱処理することにより当該配向状態を固定化するこ とにより製造することができる。  In the field of liquid crystals, rubbing is generally performed by rubbing the substrate with a cloth or the like in a certain direction. However, the home-orientation pick alignment liquid crystal film used in the present invention is anisotropic in the plane. Since it is an orientation structure that does not produce any basic properties, rubbing is not necessarily required. However, it is more preferable to apply a weak rubbing treatment from the viewpoint of suppressing repelling when a liquid crystal material is applied. An important setting value that defines the rubbing condition is the peripheral speed ratio. This represents the ratio of the movement speed of the cloth to the movement speed of the substrate when the rubbing cloth is wound around a roll and rubbed while the substrate is rubbed. In the present invention, the weak rubbing treatment usually has a peripheral speed ratio of 50 or less, more preferably 25 or less, and particularly preferably 10 or less. When the peripheral speed ratio is larger than 50, the effect of rubbing is too strong, and the liquid crystal material cannot be perfectly aligned vertically, and the alignment may fall in the in-plane direction from the vertical direction. Next, a method for producing a homeotopic picked liquid crystal film used in the present invention will be described. Although the method for producing the liquid crystal film is not limited to these, the above-mentioned liquid crystal material is spread on the above-mentioned alignment substrate, and after aligning the liquid crystal material, light irradiation and / or heat treatment is performed. Thus, it can be produced by fixing the orientation state.
液晶材料を配向基板上に展開して液晶材料層を形成する方法としては、 液晶材 料を溶融状態で直接配向基板上に塗布する方法や、 液晶材料の溶液を配向基板上 に塗布後、 塗膜を乾燥して溶媒を留去させる方法が挙げられる。  The liquid crystal material is spread on the alignment substrate to form the liquid crystal material layer. The liquid crystal material can be applied directly on the alignment substrate in a molten state, or the liquid crystal material solution can be applied on the alignment substrate and then applied. The method of drying a film | membrane and distilling a solvent off is mentioned.
溶液の調製に用いる溶媒に関しては、 本発明の液晶材料を溶解でき適当な条件 で留去できる溶媒であれば特に制限はなく、 一般的にアセトン、 メチルェチルケ トン、 イソホロン、 シクロへキサノンなどのケトン類、 ブトキシェチノレア^ コー ル、 へキシルォキシエチルアルコール、 メ トキシー 2—プロノ ノールなどのエー テルアルコール類、 エチレングリコールジメチルエーテノレ、 ジエチレングリコー ルジメチルエーテルなどのグリコールエーテル類、 酢酸ェチル、 乳酸ェチルなど のエステノレ類、 フエノーノレ、 クロ口フエノーノレなどのフエノール類、 N, N—ジ メチルホルムアミ ド、 N, N—ジメチルァセトアミ ド、 N—メチルピロリ ドンな どのアミ ド類、 クロロホノレム、 テトラクロロェタン、 ジクロロベンゼンなどのハ ロゲン系などやこれらの混合系が好ましく用いられる。 また、 配向基板上に均一 な塗膜を形成するために、 界面活性剤、 消泡剤、 レべリング剤、 着色剤などを溶 液に添加してもよい。 The solvent used for preparing the solution is not particularly limited as long as it can dissolve the liquid crystal material of the present invention and can be distilled off under suitable conditions. Generally, ketones such as acetone, methyl ethyl ketone, isophorone, and cyclohexanone are used. , Butoxychetinorea ^ call, hexyloxyethyl alcohol, ether alcohols such as methoxy-2-prononol, glycol ethers such as ethylene glycol dimethyl etherol and diethylene glycol dimethyl ether, ethyl acetate, lactyl acetate Estenoles, etc., Phenolic, Phenolics such as Black-headed Fuenore, N, N-Di Preferably used are amides such as methylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, halogens such as chlorophonolem, tetrachloroethane, dichlorobenzene, and the like, and mixtures thereof. In order to form a uniform coating film on the alignment substrate, a surfactant, an antifoaming agent, a leveling agent, a coloring agent, or the like may be added to the solution.
さらに、 前述の液晶性高分子化合物の配向の固定化を容易ならしめるために、 液晶性高分子化合物に結合されている重合可能な基と同一の反応性を有する基を 1分子内に 2個以上有する低分子化合物 (液晶性、 非液晶性を問わない) や接着 性を向上させうるような各種化合物を添加することもできる。  Furthermore, in order to facilitate the fixing of the alignment of the liquid crystalline polymer compound described above, two groups having the same reactivity as the polymerizable group bonded to the liquid crystal polymer compound are contained in one molecule. Various low molecular compounds (whether liquid crystalline or non-liquid crystalline) or various compounds that can improve adhesion can be added.
液晶材料を直接塗布する方法でも、 溶液を塗布する方法でも、 塗布方法につい ては、 塗膜の均一性が確保される方法であれば、 特に限定されることはなく公知 の方法を採用することができる。 例えば、 スピンコート法、 ダイコート法、 カー テンコート法、 ディップコート法、 ロールコート法などが挙げられる。  Regardless of the method of directly applying the liquid crystal material or the method of applying the solution, the application method is not particularly limited as long as it is a method that ensures the uniformity of the coating film, and a known method is adopted. Can do. Examples include spin coating, die coating, curtain coating, dip coating, and roll coating.
液晶材料の溶液を塗布する方法では、 塗布後に溶媒を除去するための乾燥工程 を入れることが好ましい。 この乾燥工程は、 塗膜の均一性が維持される方法であ れば、 特に限定されることなく公知の方法を採用することができる。 例えば、 ヒ 一ター (炉)、 温風吹きつけなどの方法が挙げられる。  In the method of applying the liquid crystal material solution, it is preferable to include a drying step for removing the solvent after the application. As long as the uniformity of a coating film is maintained, this drying process can employ | adopt a well-known method, without being specifically limited. For example, there are methods such as a heater (furnace) and hot air blowing.
液晶フィルムの膜厚は、 液晶表示装置の方式や種々の光学パラメーターに依存 することから一概には言えないが、 通常 0 . 2 μ πι〜1 0 ηι、 好ましくは 0 . 3 111〜5 111、 さらに好ましくは 0 . 5 111〜2 111でぁる。 膜厚が 0 . 2 μ m り薄い場合、 十分な視野角改良あるいは輝度向上効果を得ることができない 恐れがある。 また 1 0 μ πιを越えると、 液晶表示装置が不必要に色付く等の恐れ 力 sある。 The film thickness of the liquid crystal film cannot be generally described because it depends on the method of the liquid crystal display device and various optical parameters, but is usually 0.2 μπι to 10 ηι, preferably 0.3 111 to 5 111, More preferably, it is 0.5 111 to 2 111. If the film thickness is thinner than 0.2 μm, it may not be possible to obtain a sufficient viewing angle improvement or brightness enhancement effect. Further exceeds 1 0 μ πι, a liquid crystal display device is a fear force s such browned unnecessarily.
続いて、 配向基板上に形成された液晶材料層を、 熱処理などの方法で液晶配向 を形成し、 光照射および/または加熱処理で硬化を行い固定化する。 最初の熱処 理では、 使用した液晶材料の液晶相発現温度範囲に加熱することで、 該液晶材料 が本来有する自己配向能により液晶を配向させる。 熱処理の条件としては、 用い る液晶材料の液晶相挙動温度 (転移温度) により最適条件や限界値が異なるため —概には言えないが、 通常 1 0〜2 5 0 °C、 好ましくは 3 0 °C〜 1 6 0 °Cの範囲 であり、 該液晶材料のガラス転移点 (T g ) 以上の温度、 さらに好ましくは T g より 1 o °c以上高い温度で熱処理するのが好ましい。 あまり低温では、 液晶配向 が充分に進行しないおそれがあり、 また高温では液晶材料中のカチオン重合性反 応基ゃ配向基板に悪影響を与えるおそれがある。 また、 熱処理時間については、 通常 3秒〜 3 0分、 好ましくは 1 0秒〜 2 0分の範囲である。 3秒より短い熱処 理時間では、 液晶配向が充分に完成しないおそれがあり、 また 3 0分を超える熱 処理時間では、 生産性が悪くなるため、 どちらの場合も好ましくない。 該液晶 材料層を熱処理などの方法で液晶配向を形成したのち、 液晶配向状態を保ったま ま液晶材料を組成物中のォキセタニル基の重合反応により硬化させる。 硬化工程 は、 完成した液晶配向を硬化 (架橋) 反応により液晶配向状態を固定化し、 より 強固な膜に変性することを目的にしている。 Subsequently, the liquid crystal material layer formed on the alignment substrate is formed into a liquid crystal alignment by a method such as heat treatment, and is cured and fixed by light irradiation and / or heat treatment. In the first heat treatment, the liquid crystal is aligned by the self-alignment ability inherent in the liquid crystal material by heating to the liquid crystal phase expression temperature range of the liquid crystal material used. The conditions for the heat treatment vary depending on the liquid crystal phase behavior temperature (transition temperature) of the liquid crystal material to be used, because the optimum conditions and limit values are different — generally not 10 – 25 ° C, preferably 30 The temperature is in the range of ° C to 160 ° C, and the temperature is more than the glass transition point (T g) of the liquid crystal material, more preferably Heat treatment is preferably performed at a temperature higher by 1 ° C or more. If the temperature is too low, the liquid crystal alignment may not proceed sufficiently, and if the temperature is high, the cationically polymerizable reactive group in the liquid crystal material may adversely affect the alignment substrate. The heat treatment time is usually in the range of 3 seconds to 30 minutes, preferably 10 seconds to 20 minutes. If the heat treatment time is shorter than 3 seconds, the liquid crystal alignment may not be sufficiently completed, and if the heat treatment time exceeds 30 minutes, the productivity will be deteriorated. After the liquid crystal material layer is formed into a liquid crystal alignment by a method such as heat treatment, the liquid crystal material is cured by a polymerization reaction of oxetanyl groups in the composition while maintaining the liquid crystal alignment state. The purpose of the curing step is to fix the completed liquid crystal alignment by a curing (crosslinking) reaction and to modify it into a stronger film.
本発明の液晶材料は重合性のォキセタ-ル基を持っため、その反応基の重合(架 橋) には、 カチオン重合開始剤 (カチオン発生剤) を用いるのが好ましいことは 前述のとおりである。 また、 重合開始剤としては、 熱カチオン発生剤より光力チ オン発生剤の使用が好ましい。  Since the liquid crystal material of the present invention has a polymerizable oxetal group, it is preferable to use a cationic polymerization initiator (cation generator) for polymerization (bridge) of the reactive group as described above. . Further, as the polymerization initiator, it is preferable to use a light power thione generator rather than a thermal cation generator.
光力チオン発生剤を用いた場合、 光力チオン発生剤の添加後、 液晶配向のため の熱処理までの工程を喑条件(光力チオン発生剤が解離しない程度の光遮断条件) で行えば、 液晶材料は配向段階までは硬化することなく、 充分な流動性をもつて 液晶配向することができる。 この後、 適当な波長の光を発する光源からの光を照 射することによりカチオンを発生させ、 液晶材料層を硬化させる。  When using a light thione generator, if the process from the addition of the light thione generator to the heat treatment for liquid crystal alignment is performed under drought conditions (light blocking conditions that do not allow the light thione generator to dissociate), The liquid crystal material can be aligned with sufficient fluidity without curing until the alignment stage. Then, cations are generated by irradiating light from a light source that emits light of an appropriate wavelength, and the liquid crystal material layer is cured.
光照射の方法としては、 用いる光力チオン発生剤の吸収波長領域にスぺク トル を有するようなメタルハライ ドランプ、 高圧水銀灯、 低圧水銀灯、 キセノンラン プ、 アークランプ、 レーザーなどの光源からの光を照射し、 光力チオン発生剤を 開裂させる。 1平方センチメートルあたりの照射量としては、 積算照射量として 通常 l〜2 0 0 0 m j、 好ましくは 1 0〜1 0 0 0 m Jの範囲である。 ただし、 光力チオン発生剤の吸収領域と光源のスぺク トルが著しく異なる場合や、 液晶材 料自身に光源からの光の吸収能がある場合などはこの限りではない。 これらの場 合には、 適当な光増感剤や、 吸収波長の異なる 2種以上の光力チオン発生剤を混 合して用いるなどの方法を採ることもできる。  The light irradiation method includes light from a light source such as a metal halide lamp, a high-pressure mercury lamp, a low-pressure mercury lamp, a xenon lamp, an arc lamp, or a laser that has a spectrum in the absorption wavelength region of the photoactive thione generator. Irradiate to cleave the light thione generator. The irradiation dose per square centimeter is usually in the range of 1 to 200 mj, preferably 10 to 100 mJ, as the integrated dose. However, this does not apply when the absorption region of the light-power thione generator and the spectrum of the light source are significantly different, or when the liquid crystal material itself has the ability to absorb light from the light source. In these cases, an appropriate photosensitizer or a mixture of two or more photopower thione generators having different absorption wavelengths can be used.
光照射時の温度は、 該液晶材料が液晶配向をとる温度範囲である必要がある。 また、 硬化の効果を充分にあげるためには、 該液晶材料の T g以上の温度で光照 射を行うのが好ましい。 The temperature at the time of light irradiation needs to be within a temperature range in which the liquid crystal material takes liquid crystal alignment. In order to sufficiently improve the curing effect, the liquid crystal material is irradiated with light at a temperature equal to or higher than Tg. It is preferable to perform shooting.
以上のような工程により製造した液晶材料層は、 充分強固な膜となっている。 具体的には、 硬化反応によりメソゲンが 3次元的に結合され、 硬化前と比べて耐 熱性 (液晶配向保持の上限温度) が向上するのみでなく、 耐スクラッチ性、 耐磨 耗性、 耐クラック性などの機械的強度に関しても大幅に向上する。  The liquid crystal material layer produced by the above process is a sufficiently strong film. Specifically, the mesogens are three-dimensionally bonded by the curing reaction, which not only improves the heat resistance (upper limit temperature for maintaining liquid crystal alignment) compared to before curing, but also provides scratch resistance, abrasion resistance, and crack resistance. The mechanical strength such as property is also greatly improved.
なお、 配向基板として、 光学的に等方でない、 あるいは得られる液晶フィルム が最終的に目的とする使用波長領域において不透明である、 もしくは配向基板の 膜厚が厚すぎて実際の使用に支障を生じるなどの問題がある場合、 配向基板上で 形成された形態から、 偏光板、 目的とする使用波長領域で障害とならないような 基板や位相差機能を有する延伸フィルムに転写した形態も使用しうる。 転写方法 としては公知の方法を採用することができる。 例えば、 特開平 4一 5 7 0 1 7号 公報ゃ特開平 5— 3 3 3 3 1 3号公報に記載されているように液晶フィルム層を 粘着剤もしくは接着剤を介して、 配向基板とは異なる基板を積層した後に、 該積 層体から配向基板を剥離することで液晶フィルムのみを転写する方法等を挙げる ことができる。  In addition, the alignment substrate is not optically isotropic, or the liquid crystal film to be obtained is finally opaque in the intended use wavelength region, or the film thickness of the alignment substrate is too thick, which causes problems in actual use. If there is a problem such as the above, it is also possible to use a form formed on an alignment substrate, a polarizing plate, a substrate that does not become an obstacle in the intended wavelength range of use, and a stretched film having a retardation function. As a transfer method, a known method can be employed. For example, as described in Japanese Patent Application Laid-Open No. Hei 4 5 7 0 1 7 or Japanese Patent Application Laid-Open No. 5-3 3 3 3 1 3, a liquid crystal film layer is bonded to an alignment substrate via an adhesive or an adhesive. Examples include a method of transferring only a liquid crystal film by laminating different substrates and then peeling the alignment substrate from the stack.
転写に使用する粘着剤もしくは接着剤は、 後述のように光学グレードのもので あれば特に制限はなく、 アクリル系、 エポキシ系、 ウレタン系など一般に用いら れているものを用いることができる。  The pressure-sensitive adhesive or adhesive used for transfer is not particularly limited as long as it is an optical grade as described later, and generally used materials such as acrylic, epoxy, and urethane can be used.
以上のようにして得られるホメオト口ピック配向液晶フィルム層は、 当該液晶 層の光学位相差を垂直入射から傾けた角度で測定することによって定量化するこ とができる。 ホメオト口ピック配向液晶層の場合、 この位相差値は垂直入射につ いて対称的である。  The homeotopically picked liquid crystal film layer obtained as described above can be quantified by measuring the optical phase difference of the liquid crystal layer at an angle inclined from normal incidence. In the case of home-orientated pick-aligned liquid crystal layers, this retardation value is symmetric with respect to normal incidence.
光学位相差の測定には数種の方法を利用することができ、 例えば自動複屈折測 定装置 (王子計測機器 (株) 製) および偏光顕微鏡を利用することができる。 こ のホメオト口ピック配向液晶層はクロスニコル偏光子間で黒色に見える。 このよ うにしてホメオト口ピック配向性を評価した。  Several methods can be used to measure the optical phase difference. For example, an automatic birefringence measuring device (manufactured by Oji Scientific Instruments) and a polarizing microscope can be used. This homeomorphic liquid crystal layer looks black between the crossed Nicol polarizers. In this way, homeo-mouth pick orientation was evaluated.
本発明に使用されるホメオト口ピック配向液晶フィルムは、 液晶フィルムの厚 さを d 1、 液晶フィルム面内の主屈折率を N X 1および N y 1、 厚さ方向の主屈 折率を N z 1、 かつ、 N z l > N x l≥N y lとした場合に、 面内のリターデー ション値 (R e l = ( N 1 - N y 1 ) X d 1 [ n m] ) および厚さ方向のリタ一 デーションィ直 (R t h 1 = (N x 1 -N z 1 ) X d 1 [nm]) 力 以下の [ 1 ] および [2] を満たすことが好ましい。 The liquid crystal film used in the present invention has a liquid crystal film thickness of d 1, a main refractive index in the liquid crystal film plane of NX 1 and N y 1, and a main refractive index in the thickness direction of N z 1 and N zl> N xl≥N yl, the in-plane retardation value (R el = (N 1-N y 1) X d 1 [nm]) and the thickness direction retardation It is preferable to satisfy the following [1] and [2] which are equal to or less than Rd 1 (R th 1 = (N x 1 -N z 1) X d 1 [nm]) force.
[1] 0 nm≤R e 1≤ 20 n m  [1] 0 nm≤R e 1≤ 20 n m
[2] - 500 nm≤R t h l≤- 30 nm  [2]-500 nm≤R t h l≤- 30 nm
ホメオト口ピック配向液晶フィルムの光学パラメータである R e 1値、 R t h 1値は、 液晶表示装置の方式や種々の光学パラメーターに依存することからー概 には言えないが、 550 nmの単色光に対して、 ホメオト口ピック酉己向液晶フィ ルムの面内のリターデーション値 (R e 1 ) は、 通常 0 nm〜 20 nm、 好まし くは O nm〜: 1 0 nm、 さらに好ましくは 0 n m〜 5 n mの範囲であり、 かつ、 厚さ方向のリターデーション値(R t h 1 )は、通常一 500 nm〜一 30 nm、 好ましくは一 400 nm 50 nm、 さらに好ましくは一 400 nm〜一 1 0 The optical parameters R e 1 and R th 1 values of homeotopic alignment liquid crystal films depend on the type of liquid crystal display device and various optical parameters. On the other hand, the in-plane retardation value (R e 1) of the homeomorphic pick-up liquid crystal film is usually 0 nm to 20 nm, preferably O nm to: 10 nm, and more preferably 0 The retardation value (R th 1) in the thickness direction is usually from 500 nm to 30 nm, preferably from 400 nm to 50 nm, more preferably from 400 nm to 1 nm. Ten
0 nmに制御されたものである。 It is controlled to 0 nm.
前記 R e 1値及び R t h 1値を上記範囲にすることにより、 液晶表示装置の視 野角改良フィルムとしては、 液晶表示の色調補正を行いながら視野角を広げるこ とが可能となる。 R e 1値が 20 nmより大きい場合、 大きい面内の位相差値の 影響で、 液晶表示装置の正面特性を悪化させる恐れがある。 また、 R t h l値が — 30 nmより大きいあるいは一 5 00 nmより小さい場合には、 十分な視野角 改良効果が得られないかあるいは、 斜めから見たときに不必要な色付きが生じる 恐れがある。  By setting the R e 1 value and the R t h 1 value in the above ranges, the viewing angle improving film of the liquid crystal display device can widen the viewing angle while correcting the color tone of the liquid crystal display. When the Re 1 value is larger than 20 nm, the front characteristic of the liquid crystal display device may be deteriorated due to the large in-plane retardation value. Also, if the R thl value is greater than –30 nm or less than 1500 nm, sufficient viewing angle improvement effects may not be obtained, or unnecessary coloring may occur when viewed from an oblique angle. .
またホメオト口ピック配向液晶フィルムは、 下記 [5] および [6] で表され る条件を満たすことが好ましい。  In addition, the homeotopically picked liquid crystal film preferably satisfies the conditions represented by the following [5] and [6].
[5] - 0. 厶 n≤— 0. 0005  [5]-0. 厶 n≤— 0. 0005
[ 6 ] Δ n =N X 1 -N z 1  [6] Δ n = N X 1 -N z 1
前記 [5] および [6] において、 Δ ηは、 前記ホメオト口ピック配向液晶フ イルム (複屈折層) の厚さ方向の複屈折率を示し、 Nx l、 Ny lぉょぴN Z l は前述のように、 前記ホメオト口ピック配向液晶フィルムにおける 3つの軸方向 における屈折率をそれぞれ示す。 なお、 生産性の向上や、 前記複屈折層を含む光 学フィルムの薄型化の点から、より好ましくは一0. 2≤Δ η^— 0. 00 5 で める。 In the above [5] and [6], the delta eta, show birefringence in the thickness direction of the Homeoto port pick aligned liquid crystal full Ilm (birefringent layer), Nx l, Ny l Oyopi N Z l is As described above, the refractive indexes in the three axial directions of the homeotopically picked liquid crystal film are shown. In view of improving productivity and reducing the thickness of the optical film including the birefringent layer, it is more preferably set to 0.2 ≦ Δ η ^ —0.005.
また、 ホメオト口ピック配向液晶フィルムに替えて厚さ方向に正の 1軸性を有 する光学異方素子として延伸フィルムを用いようとしても厚み方向の延伸には限 界があるため、 厚み方向の位相差を広範囲に制御することができない。 また熱収 縮フィルムにより、 長尺フィルムを熱収縮させて厚み方向に延伸させる手法も用 いられているが、 厚さ方向の複屈折率は 0 . 0 0 3以下で得られるフィルムの厚 みは 5 0〜1 0 0 μ πι程度あり、 元の長尺フィルムよりも厚みが増してしまい、 液晶表示装置の薄型化要求に伴う楕円偏光板全体の薄膜化の要求に対応すること は困難である In addition, it has positive uniaxiality in the thickness direction in place of the home-to-mouth pick alignment liquid crystal film. Even if a stretched film is used as the optical anisotropic element, there is a limit to stretching in the thickness direction, and thus the retardation in the thickness direction cannot be controlled over a wide range. A method is also used in which a heat-shrinkable film is used to heat-shrink a long film and stretch it in the thickness direction. However, the thickness of the film obtained when the birefringence index in the thickness direction is 0.03 or less. Is about 50 to 100 μπι, which is thicker than the original long film, and it is difficult to meet the demand for thinning the entire elliptical polarizing plate as the liquid crystal display device becomes thinner. is there
楕円偏光板の膜厚は近年の薄型化要求から望ましくは 4 0 0 以下、 特に望 ましくは 3 0 0 μ m以下がよい。 次に、 本発明の垂直配向型液晶表示装置用楕円偏光板を用いた垂直配向型液晶 表示装置について説明する。  The film thickness of the elliptically polarizing plate is desirably 40.000 or less, particularly preferably 300.mu.m or less, in view of the recent demand for thinning. Next, a vertical alignment type liquid crystal display device using the elliptically polarizing plate for the vertical alignment type liquid crystal display device of the present invention will be described.
本発明の垂直配向型液晶表示装置は、 電極を備えた 1対の基板間に、 電圧無印 加時に基板表面に対して垂直配向する液晶分子を含む垂直配向型液晶セルと、 前 記垂直配向型液晶セル基板の少なくとも片側に本発明の垂直配向型液晶表示装置 用楕円偏光板のホメオト口ピック配向液晶フィルム側が向かうよう配置し、 前記 垂直配向型液晶セル基板と前記楕円偏光板との間に、 面内で 1 Z 4波長の位相差 を示す第 1の光学異方素子を少なくとも 1枚配置したことを特徴とするものであ る。  A vertical alignment type liquid crystal display device according to the present invention includes a vertical alignment type liquid crystal cell including liquid crystal molecules that are vertically aligned with respect to a substrate surface when no voltage is applied between a pair of substrates provided with electrodes, and the vertical alignment type Placed on at least one side of the liquid crystal cell substrate so that the home-orientated pick-aligned liquid crystal film side of the elliptically polarizing plate for vertical alignment type liquid crystal display device of the present invention faces, between the vertical alignment type liquid crystal cell substrate and the elliptically polarizing plate, It is characterized in that at least one first optical anisotropic element exhibiting a phase difference of 1 Z 4 wavelength in the plane is arranged.
前記第 1の光学異方素子は面内で 1 Z 4波長の位相差を示す光学素子と面内で 1 / 2波長の位相差を示す第 2の光学異方素子からなる広帯域 1 / 4波長板とい われる光学素子からなっていてもよい。 また前記第 1の光学異方素子と前記垂直 配向型液晶セルとの間に、 少なくとも 1枚の厚さ方向に負の 1軸光学異方性を有 する第 3の光学異方素子を配置することが更なる広視野角化の観点から好ましく、 また前記垂直配向型液晶セルと直線偏光板の間に、 面内方向に正の 1軸光学異方 性を有する第 4の光学異方素子を配置することが好ましい。  The first optical anisotropic element is a wideband 1/4 wavelength consisting of an optical element showing a phase difference of 1 Z 4 wavelength in the plane and a second optical anisotropic element showing a phase difference of 1/2 wavelength in the plane. It may consist of an optical element called a plate. Further, at least one third optical anisotropic element having negative uniaxial optical anisotropy in the thickness direction is disposed between the first optical anisotropic element and the vertical alignment type liquid crystal cell. In view of further widening the viewing angle, a fourth optical anisotropic element having positive uniaxial optical anisotropy in the in-plane direction is disposed between the vertical alignment type liquid crystal cell and the linearly polarizing plate. It is preferable.
本発明の楕円偏光板を構成する直線偏光板としては、 通常、 偏光子の片側また は両側に保護フィルムを有するものが使用される。 偏光子は、 特に制限されず、 各種のものを使用でき、 例えば、 ポリビュルアルコール系フィルム、 部分ホルマ ール化ポリビュルアルコール系フィルム、 エチレン ·酢酸ビュル共重合体系部分 ケン化フィルム等の親水性高分子フィルムに、 ョゥ素ゃ二色性染料等の二色性物 質を吸着させて一軸延伸したもの、 ポリビュルアルコールの脱水処理物やポリ塩 化ビニルの脱塩酸処理物等のポリェン系配向フィルム等が挙げられる。 これらの なかでもポリビュルアルコール系フィルムを延伸して二色性材料 (沃素、 染料) を吸着'配向したものが好適に用いられる。偏光子の厚さも特に制限されないが、As the linear polarizing plate constituting the elliptically polarizing plate of the present invention, one having a protective film on one side or both sides of the polarizer is usually used. There are no particular restrictions on the polarizer, and various types of polarizers can be used. For example, polybulal alcohol-based film, partially formalized polybulal alcohol-based film, ethylene / butyl acetate copolymer system part A dichroic material such as saponified dichroic dye is adsorbed on a hydrophilic polymer film such as a saponified film and uniaxially stretched. Dehydrated polybulal alcohol and polyvinyl chloride are removed. Polyethylene oriented films such as treated with hydrochloric acid are exemplified. Among these, those obtained by stretching a polybulal alcohol film and adsorbing and orienting a dichroic material (iodine, dye) are preferably used. The thickness of the polarizer is not particularly limited,
5〜8 0 μ ΐη程度が一般的である。 The range of 5 to 80 μΐη is common.
ポリビエルアルコール系フィルムをヨウ素で染色し一軸延伸した偏光子は、 例 えば、 ポリビュルアルコールをヨウ素の水溶液に浸漬することによって染色し、 元長の 3〜 7倍に延伸することで作製することができる。 必要に応じてホウ酸や ョゥ化カリゥムなどの水溶液に浸漬することもできる。 さらに必要に応じて染色 の前にポリビュルアルコール系フィルムを水に浸漬して水洗してもよい。 ポリビ ニルアルコール系フィルムを水洗することでポリ ビニルアルコール系フィルム表 面の汚れやブロッキング防止剤を洗浄することができるほかに、 ポリビニルアル コール系フィルムを膨潤させることで染色のムラなどの不均一を防止する効果も ある。 延伸はヨウ素で染色した後に行っても良いし、 染色しながら延伸してもよ く、 また延伸してからヨウ素で染色してもよレ、。 ホウ酸やヨウ化カリウムなどの 水溶液中や水浴中でも延伸することができる。  A polarizer obtained by dyeing a polyvinyl alcohol film with iodine and uniaxially stretching it, for example, is dyed by immersing polybulal alcohol in an aqueous solution of iodine, and is made by stretching it 3 to 7 times the original length. Can do. If necessary, it can be immersed in an aqueous solution of boric acid or potassium oxalate. Furthermore, if necessary, the polybulal alcohol film may be immersed in water and washed before dyeing. In addition to washing polyvinyl alcohol film surface stains and anti-blocking agents by washing the polyvinyl alcohol film with water, swelling of the polyvinyl alcohol film eliminates unevenness such as uneven coloring. There is also an effect to prevent. Stretching may be performed after dyeing with iodine, or may be performed while dyeing, or may be stretched and then dyed with iodine. The film can be stretched in an aqueous solution of boric acid or potassium iodide or in a water bath.
前記偏光子の片側または両側に設けられている保護フィルムには、 透明性、 機 械的強度、 熱安定性、 水分遮蔽性、 等方性などに優れるものが好ましい。 前記保 護フィルムの材料としては、 例えば、 ポリエチレンテレフタレートゃポリエチレ ンナフタレート等のポリエステル系ポリマー、 ジァセチルセルロースやトリァセ チノレセノレロース等のセノレロース系ポリマー、 ポリメチノレメタク リ レート等のァク リル系ポリマー、 ポリスチレンやアクリ ロニトリル . スチレン共重合体 (A S樹 脂) 等のスチレン系ポリマー、 ポリカーボネート系ポリマーなどが挙げられる。 また、 ポリエチレン、 ポリプロピレン、 エチレン ' プロピレン共重合体の如きポ リオレフィン系ポリマー、 シク口系ないしはノルボルネン構造を有するポリォレ フィン、 塩化ビュル系ポリマー、 ナイロンや芳香族ポリアミ ド等のアミ ド系ポリ マー、 イミ ド系ポリマー、 スノレホン系ポリマー、 ポリエーテノレスノレホン系ポリマ 一、 ポリエーテノレエーテノレケトン系ポリマー、 ポリフエ二レンスノレフイ ド系ポリ マー、 ビュルアルコール系ポリマー、 塩化ビニリデン系ポリマー、 ビニルプチラ 一ノレ系ポリマー、 ァリ レート系ポリマー、 ポリオキシメチレン系ポリマ一、 ェポ キシ系ポリマー、 あるいは前記ポリマーのブレンド物などが保護フィルムを形成 するポリマーの例として挙げられる。 その他、 アクリル系やウレタン系、 アタリ ルウレタン系やエポキシ系、 シリコーン系等の熱硬化型ないし紫外線硬化型樹脂 などをフィルム化したものなどが挙げられる。 保護フィルムの厚さは、 一般にはThe protective film provided on one side or both sides of the polarizer is preferably one having excellent transparency, mechanical strength, thermal stability, moisture shielding properties, isotropic properties, and the like. Examples of the material of the protective film include, for example, polyester polymers such as polyethylene terephthalate and polyethylene naphthalate, cenorelose polymers such as diacetyl cellulose and triacetylenorenorose, and acrylics such as polymethylenomethacrylate. Styrene polymers such as polystyrene polymers, polystyrene and acrylonitrile styrene copolymers (AS resin), polycarbonate polymers, and the like. In addition, polyolefin polymers such as polyethylene, polypropylene and ethylene / propylene copolymers, polyolefins having a neck or norbornene structure, chlorinated butyl polymers, amide polymers such as nylon and aromatic polyamides, Imido polymer, Snorephone polymer, Polyetherolenorephone polymer, Polyetherenoretone ketone polymer, Polyphenylene norfide polymer, Bull alcohol polymer, Vinylidene chloride polymer, Vinylptyra Examples of the polymer that forms a protective film include monolole polymers, arylate polymers, polyoxymethylene polymers, epoxy polymers, and blends of the above polymers. Other examples include films made from thermosetting or ultraviolet curable resins such as acrylic, urethane, acrylate urethane, epoxy, and silicone. The thickness of the protective film is generally
5 0 0 μ πι以下であり、 1〜 3 0 0 μ mが好ましい。 特に 5〜2 0 0 μ πιとする のが好ましい。 It is not more than 500 μm, and preferably 1 to 300 μm. In particular, it is preferably 5 to 200 μππι.
保護フィルムとしては、 偏光特性や耐久性などの点より、 トリァセチルセル口 ース等のセルロース系ポリマーが好ましい。 特にトリァセチノレセルロースフィル ムが好適である。 なお、 偏光子の両側に保護フィルムを設ける場合、 その表裏で 同じポリマー材料からなる保護フィルムを用いてもよく、 異なるポリマー材料等 からなる保護フィルムを用いてもよい。 前記偏光子と保護フィルムとは通常、 粘 着剤等を介して密着している。  As the protective film, a cellulose-based polymer such as triacetyl cellulose is preferable from the viewpoints of polarization characteristics and durability. Triacetinole cellulose film is particularly preferred. In addition, when providing a protective film on both sides of the polarizer, a protective film made of the same polymer material may be used on the front and back, or a protective film made of a different polymer material or the like may be used. The polarizer and the protective film are usually in close contact via an adhesive or the like.
接着剤としては、 ポリ ビュルアルコール系接着剤、 ゼラチン系接着剤、 ビュル 系ラテックス系、 水系ポリゥレタン、 水系ポリエステル等を例示できる。  Examples of the adhesive include polybulal alcohol adhesives, gelatin adhesives, bullet latexes, aqueous polyurethanes, aqueous polyesters, and the like.
前記保護フィルムとしては、 ハードコート層や反射防止処理、 スティッキング 防止や、 拡散ないしアンチグレアを目的とした処理を施したものを用いることが できる。  As the protective film, a hard coat layer, an antireflection treatment, an anti-sticking treatment, or a treatment subjected to treatment for diffusion or anti-glare can be used.
ハードコート処理は偏光板表面の傷付き防止などを目的に施されるものであり、 例えばァクリル系、 シリコーン系などの適宜な紫外線硬化型樹脂による硬度や滑 り特性等に優れる硬化皮膜を保護フィルムの表面に付加する方式などにて形成す ることができる。 反射防止処理は偏光板表面での外光の反射防止を目的に施され るものであり、従来に準じた反射防止膜などの形成により達成することができる。 また、 スティッキング防止処理は隣接層との密着防止を目的に施される。  Hard coat treatment is performed for the purpose of preventing scratches on the surface of the polarizing plate. For example, a protective film is applied to a cured film having excellent hardness and sliding properties by an appropriate UV curable resin such as acryl or silicone. It can be formed by a method of adding to the surface. The antireflection treatment is performed for the purpose of preventing reflection of external light on the surface of the polarizing plate, and can be achieved by forming an antireflection film or the like according to the conventional art. In addition, the anti-sticking treatment is performed for the purpose of preventing adhesion with an adjacent layer.
またアンチグレア処理は偏光板の表面で外光が反射して偏光板透過光の視認を 阻害することの防止等を目的に施されるものであり、 例えば、 サンドプラスト方 式やエンボス加工方式による粗面化方式や透明微粒子の配合方式などの適宜な方 式にて保護フィルムの表面に微細凹凸構造を付与することにより形成することが できる。 前記表面微細凹凸構造の形成に含有させる微粒子としては、 例えば平均 粒径が 0 . 5〜5 0 ^ ηιのシリカ、 アルミナ、 チタニア、 ジルコニァ、 酸化錫、 酸化インジウム、 酸化カドミウム、 酸化アンチモン等からなる導電性のこともあ る無機系微粒子、 架橋又は未架橋のポリマー等からなる有機系微粒子などの透明 微粒子が用いられる。 表面微細凹凸構造を形成する場合、 微粒子の使用量は、 表 面微細凹凸構造を形成する透明樹脂 1 0 0重量部に対して一般的に 2〜 5 0重量 部程度であり、 5〜2 5重量部が好ましい。 アンチグレア層は、 偏光板透過光を 拡散して視角などを拡大するための拡散層 (視角拡大機能など) を兼ねるもので あってもよい。 The anti-glare treatment is performed for the purpose of preventing external light from being reflected on the surface of the polarizing plate and hindering the viewing of the light transmitted through the polarizing plate. For example, the anti-glare treatment can be performed using a sand plast method or an embossing method. It can be formed by imparting a fine concavo-convex structure to the surface of the protective film by an appropriate method such as a surface method or a compounding method of transparent fine particles. Examples of the fine particles to be included in the formation of the surface fine concavo-convex structure include silica, alumina, titania, zirconia, tin oxide having an average particle diameter of 0.5 to 50 ^ ηι, Transparent fine particles such as inorganic fine particles having conductivity, which are made of indium oxide, cadmium oxide, antimony oxide, or the like, and organic fine particles made of a crosslinked or uncrosslinked polymer are used. In the case of forming a surface fine uneven structure, the amount of fine particles used is generally about 2 to 50 parts by weight with respect to 100 parts by weight of the transparent resin forming the surface fine uneven structure, and 5 to 25 Part by weight is preferred. The antiglare layer may also serve as a diffusion layer (viewing angle expanding function or the like) for diffusing the light transmitted through the polarizing plate to expand the viewing angle.
なお、前記反射防止層、スティッキング防止層、拡散層やアンチグレア層等は、 保護フィルムそのものに設けることができるほか、 別途光学層として透明保護層 とは別体のものとして設けることもできる。  The antireflection layer, antisticking layer, diffusing layer, antiglare layer and the like can be provided on the protective film itself, or can be provided separately from the transparent protective layer as an optical layer.
直線偏光板に 1 Z 4波長板を組み合わせることにより円偏光板が形成される。 円偏光板は、 1 / 4波長板により直線偏光を円偏光に変えたり、 円偏光を直線偏 光に変える機能を有する。  A circularly polarizing plate is formed by combining a 1 Z 4 wavelength plate with a linear polarizing plate. The circularly polarizing plate has a function of changing linearly polarized light into circularly polarized light or changing circularly polarized light into linearly polarized light with a quarter wave plate.
垂直配向型液晶セルの両側に直線偏光板を有し、 直線偏光板と垂直配向型液晶 セルとの間に面内で 1 Z 4波長の位相差を有する第 1の光学異方素子を有するこ とにより、 電圧無印加時には液晶層の観測方向の位相差が 0のため上下の偏光板 を直交にすることにより喑表示が可能となり、 電圧印加時には観測方向の位相差 が生じ明表示が可能となる。 この場合、 1 Z 4波長の位相差を有する第 1の光学 異方素子の遅相軸と直線偏光板の吸収軸とのなす角度が 4 5度であることにより 最も簡単な構成で液晶層に円偏光を入手させることができる。  A linearly polarizing plate is provided on both sides of the vertical alignment type liquid crystal cell, and the first optical anisotropic element having a phase difference of 1 Z 4 wavelength in the plane is provided between the linearly polarizing plate and the vertical alignment type liquid crystal cell. Therefore, when no voltage is applied, the phase difference in the observation direction of the liquid crystal layer is 0, so that the upper and lower polarizing plates can be made to be orthogonal, and when the voltage is applied, the phase difference in the observation direction is generated and bright display is possible. Become. In this case, the angle between the slow axis of the first optical anisotropic element having a phase difference of 1 Z 4 wavelength and the absorption axis of the linearly polarizing plate is 45 degrees, so that the liquid crystal layer has the simplest configuration. Circularly polarized light can be obtained.
また、 透過機能と反射機能を兼ね備えた半透過反射型の垂直配向型液晶表示装 置の場合は、 反射時に良好な表示特性を得るため、 全波長において 1 Z 4波長の 位相差を有する第 1の光学異方素子を用いるか、 直線偏光板と 1 / 4波長板との 間に、 面内で 1 / 2波長の位相差を有する第 2の光学異方素子を用いることもで きる。 次に、 面内で 1 / 4波長の位相差を有する第 1の光学異方素子あるいは 1 Z 2 波長の位相差を有する第 2の光学異方素子並びに面内方向に正の 1軸光学異方性 を有する第 4の光学異方素子について説明する。  In addition, in the case of a transflective vertical alignment type liquid crystal display device that has both a transmission function and a reflection function, in order to obtain a good display characteristic at the time of reflection, the first having a phase difference of 1 Z 4 wavelength at all wavelengths. Or a second optical anisotropic element having a phase difference of ½ wavelength in the plane between the linearly polarizing plate and the ¼ wavelength plate. Next, the first optical anisotropic element having a phase difference of 1/4 wavelength in the plane, the second optical anisotropic element having a phase difference of 1 Z 2 wavelength, and a positive uniaxial optical anisotropy in the in-plane direction. A fourth optical anisotropic element having a directivity will be described.
これらの光学異方素子は所望の位相差機能を有すればよく、 例えば、 ポリマー フィルムを一軸延伸または二軸延伸したもの、 Z軸配向処理したものや液晶性を 示す材料を塗工 ·配向させた配向フィルム膜、 等が挙げられる。 These optical anisotropic elements only have to have a desired retardation function, for example, polymer Examples thereof include a uniaxially or biaxially stretched film, a Z-axis oriented treatment, and an oriented film film in which a material exhibiting liquid crystallinity is applied and oriented.
前記光学異方素子としては、 適宜なポリマーからなるフィルムを一軸あるいは 二軸延伸処理する手法ゃ特開平 5 _ 1 5 7 9 1 1号公報に示されるような熱収縮 フィルムにより長尺フィルムの幅方向を熱収縮させて厚み方向に位相差を大きく する手法により製造した複屈折フィルムが好ましく、 上記原料としては例えば有 機高分子材料からなるフィルムやシートを挙げることができる。 例えば、 ポリビ -ルアルコール、 ポリイミ ド、 ポリフヱニレンォキシド、 ポリエーテルケトン、 ポリエーテノレエーテノレケトン、 ポリエチレンテレフタレート、 ポリエチレンナフ タレート等のポリエステル系ポリマー、 ジァセチルセルロース、 トリァセチルセ ノレロース等のセノレロース系ポリマー、 ポリカーボネート系ポリマー、 ポリメチル メタクリレート等のァクリル系ポリマー等の透明ポリマーからなるフィルムが挙 げられる。 またポリスチレン、 アク リ ロニトリル ' スチレン共重合体等のスチレ ン系ポリマー、 ポリエチレン、 ポリプロピレン、 ポリシクロォレフィン、 ェチレ ン 'プロピレン共重合体等のォレフィン系ポリマー、 塩化ビュル系ポリマー、 ナ イロンゃ芳香族ポリアミ ド等のアミ ド系ポリマー等の透明ポリマーからなるフィ ルムも挙げられる。 さらにイミ ド系ポリマー、 スルホン系ポリマー、 ポリエーテ ノレスルホン系ポリマー、 ポリエーテノレエーテノレケトン系ポリマー、 ポリフエニレ ンスルフィ ド系ポリマー、 ビニルアルコール系ポリマー、 塩化ビ-リデン系ポリ マー、 ビニノレブチラ一/レ系ポリマー、 ァリレート系ポリマー、 ポリオキシメチレ ン系ポリマー、 エポキシ系ポリマーや前記ポリマーのブレンド物等の透明ポリマ 一からなるフィルムなども挙げられる。 これらのなかでも水素結合性が高く、 光 学フィルムとして用いられるトリァセチルセルロース、 ポリカーボネート、 ポリ シクロォレフイン等のプラスチックフィルムが賞用される。 有機高分子材料のフ イルムとしては、 特に、 ゼォノア (商品名, 日本ゼオン (株) 製)、 ゼォネックス (商品名, 日本ゼオン (株) 製)、 アートン (商品名, J S R (株) 製) などのノ ルボルネン構造を有するポリマー物質からなるプラスチックフィルムが好適に用 いられる。 上記記載のフィルムを延伸処理してなる位相差フィルムが光学的にも 優れた特性を有する。  As the optically anisotropic element, a method of uniaxially or biaxially stretching a film made of an appropriate polymer can be used, and a width of a long film can be reduced by a heat-shrinkable film as disclosed in Japanese Patent Application Laid-Open No. 5_157 911. A birefringent film manufactured by a method in which the direction is thermally shrunk to increase the retardation in the thickness direction is preferable, and examples of the raw material include films and sheets made of organic polymer materials. For example, polyester polymers such as poly (vinyl alcohol), polyimide, polyphenylene oxide, polyether ketone, polyether enoate ketone, polyethylene terephthalate and polyethylene naphthalate, and senorelose systems such as diacetyl cellulose and triacetyl styrene cellulose Examples include films made of transparent polymers such as polymers, polycarbonate polymers, and acrylic polymers such as polymethyl methacrylate. In addition, polystyrene, acrylonitrile 'styrene polymers such as styrene copolymers, polyethylene, polypropylene, polycyclohexylene, olefin polymers such as ethylene' propylene copolymer, butyl chloride polymers, nylon and aromatics. A film made of a transparent polymer such as an amide polymer such as polyamide may also be mentioned. In addition, imide polymers, sulfone polymers, polyetherolene sulfone polymers, polyetherenolethenoleketone polymers, polyphenylene sulfide polymers, vinyl alcohol polymers, vinylidene chloride polymers, vinylenobutylene / repolymers, Examples thereof include films made of transparent polymers such as arylate polymers, polyoxymethylene polymers, epoxy polymers, and blends of the aforementioned polymers. Of these, plastic films such as triacetyl cellulose, polycarbonate, and polycyclohexylin, which have high hydrogen bonding properties and are used as optical films, are used. Examples of the organic polymer film include ZENOOR (trade name, manufactured by ZEON CORPORATION), ZEONEX (trade name, manufactured by ZEON CORPORATION), Arton (trade name, manufactured by JSR Corporation), etc. A plastic film made of a polymer material having a norbornene structure is preferably used. A retardation film formed by stretching the film described above has excellent optical properties.
液晶ポリマーなどの液晶材料からなる配向フィルムとしては、 均一でモノ ドメ インなネマチック配向性を示し、 かつその配向状態を容易に固定化できる液晶性 高分子を基板上、 もしくは配向膜を塗布した基板上で熱処理し、 均一、 モノ ドメ インなネマチック構造を形成させたのち冷却することによって液晶状態における 配向を損なうことなく'固定化して製造される配向フィルム膜や、 前記液晶ポリマ 一に光重合性液晶化合物を配合して液晶性組成物とし、 基板上もしくは配向膜を 塗布した基板上に塗布 '配向し重合させた配向フィルム膜を挙げることができる。 面内方向に X方向、 y方向を取り、 厚さ方向を z方向とする場合、 正の 1軸性 光学異方素子は、 屈折率として n X >n y = n Zの関係を有する。 また、 正の 2 軸性光学異方素子は、 屈折率として n X >n z >n yの関係を有する。 負の 1軸 性光学異方素子は、 屈折率として n x = n y〉n Zの関係を有する。 負の 2軸性 光学異方素子は、 屈折率として n x>n y〉n zの関係を有する。 For alignment films made of liquid crystal materials such as liquid crystal polymers, uniform and mono In-nematic alignment and liquid crystalline polymer that can easily fix the alignment state was heat-treated on the substrate or the substrate coated with the alignment film to form a uniform, monodomain nematic structure. After that, by cooling, the alignment film film produced by fixing without impairing the alignment in the liquid crystal state, or a liquid crystalline composition by blending the liquid crystal polymer with a photopolymerizable liquid crystal compound, the substrate or the alignment film An oriented film film that is applied and oriented and polymerized on a substrate coated with can be mentioned. When the X direction and the y direction are taken in the in-plane direction, and the thickness direction is the z direction, the positive uniaxial optical anisotropic element has a relationship of refractive index n X> ny = n Z. Further, a positive biaxial optical anisotropic element has a relationship of refractive index n X>nz> ny. Negative uniaxial optically anisotropic element has a relationship of nx = ny> n Z as a refractive index. A negative biaxial optical anisotropic element has a relationship of nx>ny> nz as a refractive index.
2軸性を NZ係数 = (η χ-η ζ) / (η χ-η y) で定義した場合、 NZ〉 1が負の 2軸、 NZ= 1が正の 1軸、 NZく 1が正の 2軸と分類できる。  When biaxiality is defined as NZ coefficient = (η χ-η ζ) / (η χ-η y), NZ> 1 is negative 2 axes, NZ = 1 is positive 1 axis, NZ k 1 is positive It can be classified as two axes.
面内で 1 4波長の位相差を示す第 1の光学異方素子は、 第 1の光学異方素子 の厚さを d 3、 第 1の光学異方素子面内の主屈折率を Nx 3および Ny 3、 厚さ 方向の主屈折率を N z 3、 かつ、 N X 3〉N y 3とした場合に、 面内のリターデ ーション値 (R e 3 = (Nx 3 -Ny 3) X d 3 [nm]) が 80〜: 1 70 nmを 有し、 第 1の光学異方素子の NZ係数 (= (Nx 3 -N z 3) / (Nx 3 -Ny 3)) を NZ 3とした場合、 一 1く NZ 3く 4の関係を有するものが好ましい。 第 1の光学異方素子の光学パラメータである R e 3値、 NZ 3値は、 液晶表示 装置の方式や種々の光学パラメーターに依存することから一概には言えないが、 5 50 nmの単色光に対して、第 1の光学異方素子面内のリターデーション値(R e 3) は、 通常 80 η π!〜 1 70 n m、 好ましくは 1 00 n m〜 1 50 n m、 さ らに好ましくは 1 20 nm〜: 1 40 nmの範囲であり、 かつ、 NZ 3値は、 一 1 く N Z 3く 4、 好ましくは 0. 5く NZ 3く 3、 さらに好ましくは 1≤NZ 3く 3に制御されたものである。  The first optical anisotropic element exhibiting a phase difference of 14 wavelengths in the plane has the thickness of the first optical anisotropic element d 3 and the main refractive index in the first optical anisotropic element surface Nx 3 And Ny 3, the in-plane retardation value (R e 3 = (Nx 3 -Ny 3) X d 3 when the main refractive index in the thickness direction is N z 3 and NX 3> N y 3 [nm]) is from 80 to: 1 70 nm, and the NZ coefficient (= (Nx 3 -N z 3) / (Nx 3 -Ny 3)) of the first optical anisotropic element is NZ 3 Those having a relationship of 1 to NZ 3 to 4 are preferred. The Re 3 and NZ 3 values, which are the optical parameters of the first optical anisotropic element, depend on the type of liquid crystal display device and various optical parameters. On the other hand, the retardation value (R e 3) in the first optical anisotropic element surface is usually 80 η π! ~ 170 nm, preferably 100 nm ~ 150 nm, more preferably 120 nm ~: 1 40 nm, and the NZ 3 value is 1 to NZ 3 to 4, preferably It is controlled at 0. 5 NZ 3 -3, more preferably 1≤NZ 3 -3.
面内で 1 2波長の位相差を示す第 2の光学異方素子は、 第 2の光学異方素子 の厚さを d 4、 第 2の光学異方素子面内の主屈折率を Nx 4および Ny 4、 厚さ 方向の主屈折率を N z 4、 かつ、 N X 4 >N y 4とした場合に、 面内のリターデ ーション値 (R e 4 = (N 4 -Ny 4) X d 4 [nm]) 力 S200〜3 50 nm を有し、 第 2の光学異方素子の NZ係数 (= (N X 4 -N z 4) / (Nx 4— N y 4)) を NZ 4とした場合、 一 1く NZ 4く 4の関係を有するものが好ましレ、。 第 2の光学異方素子の光学パラメータである R e 4値、 NZ 4値は、 液晶表示 装置の方式や種々の光学パラメ一ターに依存することから一概には言えないが、 5 50 nmの単色光に対して、 第 2の光学異方素子の面内のリターデーション値 (R e 4) は、 通常 200 nm〜 3 50 nm、 好ましくは 250 ηπ!〜 300 η m、さらに好まし.くは 260 nm〜280 nmの範囲であり、かつ、 NZ 4値は、 _ 2く NZ 4く 3、 好ましくは _ 1く NZ 4く 2、 さらに好ましくは 0≤NZ 4 < 1. 5に制御されたものである。 The second optical anisotropic element showing a phase difference of 12 wavelengths in the plane is d 4 for the thickness of the second optical anisotropic element and Nx 4 for the main refractive index in the second optical anisotropic element plane. And Ny 4, the in-plane retardation value (R e 4 = (N 4 -Ny 4) X d 4 when the main refractive index in the thickness direction is N z 4 and NX 4> N y 4 [nm]) Force S200 ~ 3 50 nm When the NZ coefficient (= (NX 4 -N z 4) / (Nx 4— N y 4)) of the second optical anisotropic element is NZ 4, I prefer something that has. The Re 4 and NZ 4 values, which are the optical parameters of the second optical anisotropic element, cannot be generally described because they depend on the type of liquid crystal display device and various optical parameters. For monochromatic light, the in-plane retardation value (R e 4) of the second optically anisotropic element is usually 200 nm to 350 nm, preferably 250 ηπ! ~ 300 ηm, more preferred, 260 nm to 280 nm, and NZ4 values are _2, NZ4, 3, _1, NZ4, 2, more preferably 0 Controlled to ≤NZ 4 <1.5.
前記 R e 3, R e 4値並ぴにNZ 3, N Z 4値を上記範囲にすることにより、 液晶表示装置の視野角改良フィルムとしては、 液晶表示の色調補正を行いながら 視野角を広げることが可能となる。 R e 3および R e 4値が上記範囲を外れた場 合、 面内位相差値のずれの影響で、 液晶表示装置の正面特性を悪化させる恐れが ある。 また、 NZ 3および NZ 4値が上記範囲を外れた場合には、 十分な視野角 改良効果が得られないかあるいは、 斜めから見たときに不必要な色付きが生じる 恐れがある。  By setting the NZ3 and NZ4 values in the above range as well as the Re3, Re4 values, the viewing angle improvement film of the liquid crystal display device can widen the viewing angle while correcting the color tone of the liquid crystal display. Is possible. If the R e 3 and Re 4 values are out of the above range, the front characteristics of the liquid crystal display device may be deteriorated due to the effect of deviation of the in-plane retardation value. If the NZ 3 and NZ 4 values are out of the above range, sufficient viewing angle improvement effects may not be obtained, or unnecessary coloring may occur when viewed obliquely.
面内方向に正の 1軸光学異方性を有する第 4の光学異方素子は、 第 4の光学異 方素子の厚さを d 5、 第 4の光学異方素子面内の主屈折率を Nx 5および Ny 5 とした場合に、 面内のリターデーション値 (R e 5= (N 5 -N y 5 ) X d 5 [nm]) が 50 nm〜 3 50 nmを有するものが好ましい。  The fourth optical anisotropic element having positive uniaxial optical anisotropy in the in-plane direction has a thickness of the fourth optical anisotropic element d 5 and the main refractive index in the fourth optical anisotropic element plane. Nx 5 and Ny 5, the in-plane retardation value (R e 5 = (N 5 -N y 5) X d 5 [nm]) is preferably from 50 nm to 350 nm.
第 4の光学異方素子の光学パラメータである R e 5値は、 液晶表示装置の方式 や種々の光学パラメーターに依存することから一概には言えないが、 5 50 nm の単色光に対して、 第 4の光学異方素子の面内のリタ一デーシヨン値 (R e 5) は、 通常 50 nm〜3 50 nm、 好ましくは 70 nm〜300 nm, さらに好ま しくは 90 nm〜280 n mの範囲に制御されたものである。 R e 5値が上記範 囲を外れた場合には、 十分な視野角改良効果が得られないかあるいは、 斜めから 見たときに不必要な色付きが生じる恐れがある。 次に、 厚さ方向に負の 1軸光学異方性を有する第 3の光学異方素子について説 明する。 前記第 3の光学異方素子としては、特に限定されないが、非液晶材料としては、 耐熱性、 耐薬品性、 透明性に優れ、 剛性にも富むことから、 例えば、 セルロース トリアシレー ト、 ゼォネックス、 ゼォノア (共に日本ゼオン (株) 製) やアート ン ( J S R (株) 製) のようなポリオレフィン類、 ポリアミ ド、 ポリイミ ド、 ポ リエステル、 ポリエーテルケトン、 ポリアリールエーテルケトン、 ポリアミ ドィ ミ ド、 ポリエステルイミ ド等のポリマーが好ましい。 これらのポリマーは、 いず れか一種類を単独で使用してもよいし、 ポリアリールエーテルケトンとポリアミ ドとの混合物のように、 異なる官能基を持つ 2種以上の混合物として使用しても よい。 このようなポリマーの中でも、 高透明性、 高配向性であることから、 ポリ イミ ドが特に好ましい。 前記ポリイミ ドとしては、 例えば、 面内配向性が高く、 有機溶剤に可溶なポリイミ ドが好ましい。 具体的には、 例えば、 特表 2 0 0 0— 5 1 1 2 9 6号公報に開示された、 9 , 9 -ビス (アミノアリール) フルオレン と芳香族テトラ力ルポン酸ニ無水物との縮合重合生成物、具体的には、下記式( 8 ) に示す繰り返し単位を 1つ以上含むポリマーが使用できる。 The Re 5 value, which is the optical parameter of the fourth optical anisotropic element, depends on the type of liquid crystal display device and various optical parameters, but it cannot be said unconditionally, but for 550 nm monochromatic light, The in-plane retardation value (Re5) of the fourth optical anisotropic element is usually in the range of 50 nm to 350 nm, preferably 70 nm to 300 nm, more preferably 90 nm to 280 nm. It is controlled. If the Re5 value is out of the above range, a sufficient viewing angle improvement effect may not be obtained, or unnecessary coloring may occur when viewed from an oblique direction. Next, a third optical anisotropic element having negative uniaxial optical anisotropy in the thickness direction will be described. The third optical anisotropic element is not particularly limited, but non-liquid crystal materials are excellent in heat resistance, chemical resistance, transparency, and rigidity. For example, cellulose triacylate, ZEONEX, ZEONOR (Both manufactured by Nippon Zeon Co., Ltd.) and Arton (manufactured by JSR Co., Ltd.), polyolefins, polyamides, polyimides, polyesters, polyether ketones, polyaryl ether ketones, polyamides, polyesters Polymers such as imides are preferred. These polymers may be used either alone or as a mixture of two or more with different functional groups, such as a mixture of polyaryletherketone and polyamide. Good. Among these polymers, polyimide is particularly preferable because of its high transparency and high orientation. As the polyimide, for example, a polyimide having high in-plane orientation and soluble in an organic solvent is preferable. Specifically, for example, the condensation of 9,9-bis (aminoaryl) fluorene and aromatic tetra force sulfonic acid dianhydride disclosed in Japanese Patent Publication No. 2 0 0 0—5 1 1 2 9 6 A polymerization product, specifically, a polymer containing one or more repeating units represented by the following formula (8) can be used.
Figure imgf000036_0001
Figure imgf000036_0001
前記式 (8 ) 中、 R 3〜R eは、 水素、 ハロゲン、 フエ-ル基、 1〜4個のハロ ゲン原子または炭素数 1〜 1 0のアルキル基で置換されたフヱニル基、 および炭 素数 1〜1 0のアルキル基からなる群からそれぞれ独立に選択される少なくとも 一種類の置換基である。 好ましくは、 R 3〜R 6は、 ハロゲン、 フヱニル基、 1〜 4個のハロゲン原子または炭素数 1〜 1 0のアルキル基で置換されたフエ-ル基、 およぴ炭素数 1〜 1 0のアルキル基からなる群からそれぞれ独立に選択される少 なくとも一種類の置換基である。 In the formula (8), R 3 ~R e is hydrogen, halogen, Hue - group, 1 to 4 halo gen atom or Fuweniru group substituted with an alkyl group having a carbon number of 1-1 0, and carbonitrides It is at least one kind of substituent each independently selected from the group consisting of alkyl groups having 1 to 10 prime numbers. Preferably, R 3 to R 6 are halogen, a phenyl group, a phenyl group substituted with 1 to 4 halogen atoms or an alkyl group having 1 to 10 carbon atoms, and 1 to 10 carbon atoms. And at least one kind of substituent each independently selected from the group consisting of alkyl groups.
前記式 (8 ) 中、 Zは、 例えば、 炭素数 6〜2 0の 4価芳香族基であり、 好ま しくは、 ピロメリット基、 多環式芳香族基、 多環式芳香族基の誘導体、 または下
Figure imgf000037_0001
In the above formula (8), Z is, for example, a tetravalent aromatic group having 6 to 20 carbon atoms, preferably a pyromellitic group, a polycyclic aromatic group, or a derivative of a polycyclic aromatic group. , Or below
Figure imgf000037_0001
前記式 (9) 中、 Z' は、 例えば、 共有結合、 C (R7) 2基、 CO基、 O原子、 S原子、 S〇2基、 S i (C2H5) 2基、 または、 NR8基であり、 複数の場合、 それぞれ同一であるかまたは異なる。また、 wは、 1から 1 0までの整数を表す。 R7は、 それぞれ独立に、 水素または C (R9) 3である。 R8は、 水素、 炭素原子 数 1〜20のアルキル基、 または炭素数 6〜 20のァリール基であり、 複数の場 合、 それぞれ同一であるかまたは異なる。 R9は、 それぞれ独立に、 水素、 フッ 素、 または塩素である。 In the formula (9), Z ′ is, for example, a covalent bond, C (R 7 ) 2 group, CO group, O atom, S atom, S 0 2 group, S i (C 2 H 5 ) 2 group, or NR 8 groups, and when plural, they are the same or different. W represents an integer from 1 to 10; Each R 7 is independently hydrogen or C (R 9 ) 3 . R 8 is hydrogen, an alkyl group having 1 to 20 carbon atoms, or an aryl group having 6 to 20 carbon atoms, and when there are a plurality thereof, they are the same or different. Each R 9 is independently hydrogen, fluorine, or chlorine.
また液晶材料としては、 コレステリック液晶性ポリマーなどの液晶材料からな るコレステリック配向フィルム、 コレステリック配向層をフィルムにて支持した もの、 およびディスコティック液晶層等が挙げられる。 まずコレステリック配向 フィルムは熱処理等適宜選択される手法によってコレステリックらせん軸がフィ ルム法線方向に存在するような均一なブラナー配向したものが好ましく、 また選 択反射波長え sが 300 nm以下であることが好ましい。  Examples of the liquid crystal material include a cholesteric alignment film made of a liquid crystal material such as a cholesteric liquid crystalline polymer, a film in which a cholesteric alignment layer is supported by a film, and a discotic liquid crystal layer. First, the cholesteric alignment film preferably has a uniform blister orientation in which the cholesteric helical axis exists in the normal direction of the film by an appropriately selected method such as heat treatment, and the selective reflection wavelength s is 300 nm or less. Is preferred.
また、コレステリック配向を実現する材料としては、液晶性ポリマーに限らず、 単体でコレステリック配向を実現できる重合性基を有する液晶モノマー分子、 も しくは重合性基を有する液晶性モノマーとキラル化合物の混合物等も好ましく用 いられる。 これらの材料を熱処理等適宜選択される手法によってコレステリック 配向させた後、 重合性基を熱、 光等好適に用いられる手段によって硬化させ、 コ レステリック配向を固定化して用いることも出来る。  The material for realizing the cholesteric alignment is not limited to the liquid crystalline polymer, but a liquid crystal monomer molecule having a polymerizable group capable of realizing a cholesteric alignment alone, or a mixture of a liquid crystalline monomer having a polymerizable group and a chiral compound. Etc. are also preferably used. After these materials are cholesterically oriented by a method selected appropriately, such as heat treatment, the polymerizable group can be cured by a suitably used means such as heat or light, and the cholesteric orientation can be fixed.
また、 負の 1軸性光学異方性層を形成する上記以外の液晶材料としてはホモジ 二ァス配向させた重合性のディスコティック液晶化合物も好ましく用いられる。 第 3の光学異方素子は、 第 3の光学異方素子の厚さを d 2、 第 3の光学異方素 子面内の主屈折率を Nx 2および Ny 2、 厚さ方向の主屈折率を N z 2、 かつ、 Nx 2≥Ny 2 >N z 2とした場合に、面内のリターデーション値(R e 2 = (N X 2 -Ny 2) X d 2 [nm]) が 0〜20 nm、 厚さ方向のリターデーション値 (R t h 2 = (N x 2 -N z 2) X d 2 [nm]) が 30〜 500 nmであること が好ましい。 Further, as a liquid crystal material other than the above that forms the negative uniaxial optically anisotropic layer, a polymerizable discotic liquid crystal compound that is homogeneously aligned is also preferably used. The third optical anisotropic element has a thickness of d 3 for the third optical anisotropic element, Nx 2 and Ny 2 for the main refractive index in the third optical anisotropic element surface, and main refraction in the thickness direction. When the rate is N z 2 and Nx 2≥Ny 2> N z 2, the in-plane retardation value (R e 2 = (NX 2 -Ny 2) X d 2 [nm]) is 0 to 20 nm, Thickness direction retardation value (R th 2 = (N x 2 -N z 2) X d 2 [nm]) is 30 to 500 nm Is preferred.
第 3の光学異方素子の光学パラメータである R e 2値、 R t h 2値は、 液晶表 示装置の方式や種々の光学パラメーターに依存することから一概には言えないが、 5 5 0 n mの単色光に対して面内のリターデーション値 (R e 2 ) は、 通常 0 n m〜 2 0 n m、 好ましくは 0 n π!〜 1 0 n m、 さらに好ましくは 0 n m〜 5 n m の範囲であり、 かつ、 厚さ方向のリタ一デーシヨン値 (R t h 2 ) は、 通常 3 0 〜 5 0 0 n m、 好ましくは 8 0〜 4 0 0 n m、 さらに好ましくは 1 0 0〜 3 0 0 n mに制御されたものである。 The R e 2 and R th 2 values, which are the optical parameters of the third optical anisotropic element, depend on the type of the liquid crystal display device and various optical parameters. The in-plane retardation value (R e 2) for monochromatic light is usually 0 nm to 20 nm, preferably 0 n π! ˜10 nm, more preferably in the range of 0 nm to 5 nm, and the retardation value (R th 2) in the thickness direction is usually 30 to 500 nm, preferably 80 to 4 It is controlled at 0 nm, more preferably from 100 nm to 300 nm.
前記 R e 2値及び R t h 2値を上記範囲にすることにより、 液晶表示装置の視 野角改良フィルムとしては、 液晶表示の色調補正を行いながら視野角を広げるこ とが可能となる。 R e 2値が 2 0 n mより大きい場合、 大きい正面位相差値の影 響で、 液晶表示素子の正面特性を悪化させる恐れがある。 また、 R t h 2値が 3 0 n mより小さい場合あるいは 5 0 0 n mより大きい場合には、 十分な視野角改 良効果が得られないかあるいは、 斜めから見たときに不必要な色付きが生じる恐 れカ sある。 By setting the Re 2 value and the R th 2 value in the above ranges, the viewing angle improving film of the liquid crystal display device can widen the viewing angle while correcting the color tone of the liquid crystal display. If the Re 2 value is greater than 20 nm, the front characteristics of the liquid crystal display device may be deteriorated due to the large front phase difference value. Also, if the Rth2 value is less than 30 nm or greater than 500 nm, a sufficient viewing angle improvement effect cannot be obtained, or unnecessary coloring occurs when viewed obliquely. fear is a mosquito s.
前記の直線偏光板とホメオト口ピック配向液晶フィルム、 第 1、 第 2、 第 3お よび第 4の光学異方素子からなる積層体は、 それぞれ粘 ·接着剤層を介して互い に貼り合わせることにより作製することができる。 また、 基板上に作製されたホ メォトロピック配向液晶フィルムを、 粘 ·接着剤層を介して前記直線偏光板ある いは第 1あるいは第 2あるいは第 3の光学異方素子に貼着した後、 ホメオトロピ ック配向を実現するために使用した配向基板を剥離してホメオト口ピック配向し た液晶部分のみを直線偏光板あるいは第 1あるいは第 2あるいは第 3の光学異方 素子に転写する手法によっても積層させることができる。  The laminate composed of the linearly polarizing plate, the home-orientated pick-aligned liquid crystal film, and the first, second, third, and fourth optical anisotropic elements is bonded to each other via an adhesive layer. Can be produced. In addition, the homeotropic alignment liquid crystal film produced on the substrate is attached to the linearly polarizing plate or the first, second, or third optical anisotropic element through an adhesive layer, and then homeotropic. Stacking is also possible by stripping the alignment substrate used to achieve the photo-alignment and transferring only the liquid crystal part that has been home-orientated to the linearly polarizing plate or the first, second, or third optical anisotropic element. Can be made.
また、 第 1、 第 2、 第 3の光学異方素子同士の積層方法としては、 例えば後述 の粘 ·接着剤層を用いて直接両者を積層する手法、 各光学異方素子上に液晶配向 能を有する配向膜を設け、 均一でモノ ドメインな液晶配向性を示し、 かつその配 向状態を容易に固定化できる液晶性高分子を塗布等の手段により設ける手法、 フ イルム基板上に設けられた液晶化合物を後述の粘着剤もしくは接着剤を用いて別 の光学異方素子へ転写する手法等が好適に用いられる。  In addition, as a method of laminating the first, second, and third optical anisotropic elements, for example, a method of directly laminating both using an adhesive layer described later, a liquid crystal alignment capability on each optical anisotropic element. A method of providing a liquid crystalline polymer that exhibits uniform and monodomain liquid crystal orientation and that can easily fix the orientation state by means such as coating, provided on a film substrate For example, a method of transferring the liquid crystal compound to another optical anisotropic element using a pressure sensitive adhesive or an adhesive described later is preferably used.
本発明の楕円偏光板は、 ホメオト口ピック配向を固定化したホメオト口ピック 配向液晶フィルム層と直線偏光板とを積層した垂直配向型液晶表示装置用楕円偏 光板であるが、 液晶表示装置の作製に当たっては必要に応じて光拡散層、 光制御 フィルム、 導光板、 プリズムシート等の部材を追加してもよい。 The elliptically polarizing plate of the present invention is a homeotope pick with fixed homeotope pick orientation. It is an elliptically polarizing plate for vertically aligned liquid crystal display devices, in which an aligned liquid crystal film layer and a linearly polarizing plate are laminated. When manufacturing a liquid crystal display device, a light diffusing layer, a light control film, a light guide plate, a prism sheet are used as necessary. Such a member may be added.
液晶表示装置として、 視野角依存性の少ない光学特性を得ると言う点では、 本 発明の楕円偏光板の他に、 下記の (1 ) 〜 (3 ) のような構成を用いてもよい。 なお、 下記において 「Z」 は層の界面を表す (以下、 同じ)。  The following (1) to (3) may be used in addition to the elliptically polarizing plate of the present invention in that the liquid crystal display device obtains optical characteristics with little viewing angle dependency. In the following, “Z” represents the interface of the layers (hereinafter the same).
( 1 ) 本発明の楕円偏光板/面内で 1 Z 4波長の位相差を示す第 1の光学異方性 層 Z厚さ方向に負の 1軸光学異方性を有する第 3の光学異方性層  (1) Ellipsoidal polarizing plate of the present invention / first optical anisotropy exhibiting a phase difference of 1 Z 4 wavelength in the plane Third optical anisotropy having negative uniaxial optical anisotropy in the Z-thickness direction Isotropic layer
( 2 ) 本発明の楕円偏光板/面内で 1 / 4波長の位相差を示す第 1の光学異方性 層  (2) Ellipsoidal polarizing plate of the present invention / first optical anisotropy layer exhibiting a quarter-wave retardation in the plane
( 3 ) 本発明の楕円偏光板/負の 2軸性を示しかつ面内で 1 / 4波長の位相差を 示す第 1の光学異方性層  (3) The elliptically polarizing plate of the present invention / first optically anisotropic layer exhibiting negative biaxiality and having a phase difference of 1/4 wavelength in the plane
また、 垂直配向型液晶表示装置に配置した構成は、 下記の (4 ) 〜 (1 5 ) 等 を例示でき、 いずれの構成を用いてもよい  Further, examples of the configuration arranged in the vertical alignment type liquid crystal display device can include the following (4) to (15), and any configuration may be used.
( 4 ) 本発明の楕円偏光板/面内で 1 Z 4波長の位相差を示す第 1の光学異方性 層 Z厚さ方向に負の 1軸光学異方性を有する第 3の光学異方性層/垂直配向型液 晶表示セル/面内で 1 / 4波長の位相差を示す第 1の光学異方性層/面内方向に 正の 1軸光学異方性を有する第 4の光学異方素子/直線偏光板  (4) Ellipsoidal polarizing plate of the present invention / first optical anisotropy exhibiting a phase difference of 1 Z 4 wavelength in the plane, third optical anisotropy having negative uniaxial optical anisotropy in the Z-thickness direction Isotropic layer / vertical alignment type liquid crystal display cell / first optical anisotropic layer showing phase difference of 1/4 wavelength in the plane / fourth having positive uniaxial optical anisotropy in the in-plane direction Optical anisotropic element / linear polarizing plate
( 5 ) 本発明の楕円偏光板/面内で 1 Z 4波長の位相差を示す第 1の光学異方性 層 Z垂直配向型液晶表示セル/厚さ方向に負の 1軸光学異方性を有する第 3の光 学異方性層/面内で 1 / 4波長の位相差を示す第 1の光学異方性層/面内方向に 正の 1軸光学異方性を有する第 4の光学異方素子 直線偏光板  (5) Ellipsoidal polarizing plate of the present invention / first optical anisotropy exhibiting in-plane retardation of 1 Z 4 wavelength layer Z vertical alignment type liquid crystal display cell / negative uniaxial optical anisotropy in the thickness direction The third optically anisotropic layer / having a first optically anisotropic layer exhibiting a quarter wavelength retardation in the plane / the fourth optically uniaxial optical anisotropy in the in-plane direction Optical anisotropic element Linear polarizing plate
( 6 ) 本発明の楕円偏光板/面内で 1 Z 4波長の位相差を示す第 1の光学異方性 層 Z厚さ方向に負の 1軸光学異方性を有する第 3の光学異方性層 Z垂直配向型液 晶表示セル/厚さ方向に負の 1軸光学異方性を有する第 3の光学異方性層 面内 で 1 / 4波長の位相差を示す第 1の光学異方性層/面内方向に正の 1軸光学異方 性を有する第 4の光学異方素子 Z直線偏光板  (6) Ellipsoidal polarizing plate of the present invention / first optical anisotropy exhibiting a phase difference of 1 Z 4 wavelength in the plane, third optical anisotropy having negative uniaxial optical anisotropy in the Z thickness direction Isotropic layer Z vertical alignment type liquid crystal display cell / third optical anisotropy layer having negative uniaxial optical anisotropy in the thickness direction The first optical exhibiting a 1/4 wavelength phase difference in the plane Anisotropic layer / fourth optical anisotropic element with positive uniaxial optical anisotropy in in-plane direction Z linear polarizing plate
( 7 ) 本発明の楕円偏光板/面内で 1 Z 4波長の位相差を示す第 1の光学異方性 層 Z厚さ方向に負の 1軸光学異方性を有する第 3の光学異方性層 垂直配向型液 晶表示セル 面内で 1 Z 4波長の位相差を示す第 1の光学異方性層 直線偏光板 ( 8 ) 本発明の楕円偏光板 Z面内で 1 / 4波長の位相差を示す第 1の光学異方性 層 Z垂直配向型液晶表示セル/厚さ方向に負の 1軸光学異方性を有する第 3の光 学異方性層 Z面内で 1 Z4波長の位相差を示す第 1の光学異方性層/直線偏光板(7) Ellipsoidal polarizing plate of the present invention / first optical anisotropy exhibiting a phase difference of 1 Z 4 wavelength in the plane, third optical anisotropy having negative uniaxial optical anisotropy in the Z thickness direction Isotropic layer Vertical alignment type liquid crystal display cell 1st optically anisotropic layer showing phase difference of 1 Z 4 wavelength in the plane Linearly polarizing plate (8) Ellipsoidal polarizing plate of the present invention The first optical anisotropy layer showing a 1/4 wavelength phase difference in the Z plane Z vertical alignment type liquid crystal display cell / negative uniaxial optical anisotropy in the thickness direction Third optically anisotropic layer having a first optically anisotropic layer / linearly polarizing plate exhibiting a phase difference of 1 Z4 wavelength in the Z plane
( 9 ) 本発明の楕円偏光板 Z面内で 1 / 4波長の位相差を示す第 1の光学異方性 層/厚さ方向に負の 1軸光学異方性を有する第 3の光学異方性層 Z垂直配向型液 晶表示セル Z厚さ方向に負の 1軸光学異方性を有する第 3の光学異方性層 Z面内 で 1 /4波長の位相差を示す第 1の光学異方性層 Z直線偏光板 (9) Ellipsoidal polarizing plate of the present invention The first optical anisotropy exhibiting a 1/4 wavelength phase difference in the Z plane The third optical anisotropy having a negative uniaxial optical anisotropy in the layer / thickness direction Isotropic layer Z Vertically aligned liquid crystal display cell Z Third optically anisotropic layer with negative uniaxial optical anisotropy in the thickness direction First phase difference of 1/4 wavelength in the Z plane Optically anisotropic layer Z linear polarizer
(10) 本発明の楕円偏光板 Z負の 2軸性を示しかつ面内で 1/4波長の位相差 を示す第 1の光学異方性層ノ垂直配向型液晶表示セル/面内で 1 Z 4波長の位相 差を示す第 1の光学異方性層 Z面内方向に正の 1軸光学異方性を有する第 4の光 学異方素子/直線偏光板  (10) The elliptically polarizing plate of the present invention Z is a first optically anisotropic layer that exhibits negative biaxiality and exhibits a 1/4 wavelength retardation in the plane. Z 1st optical anisotropic layer showing phase difference of 4 wavelengths 4th optical anisotropic element / linearly polarizing plate with positive uniaxial optical anisotropy in Z-plane direction
(1 1) 本発明の楕円偏光板 Z面内で 1/4波長の位相差を示す第 1の光学異方 性層ノ垂直配向型液晶表示セル Z負の 2軸性を示しかつ面内で 1 Z4波長の位相 差を示す第 1の光学異方性層 Z面内方向に正の 1軸光学異方性を有する第 4の光 学異方素子/直線偏光板  (1 1) Ellipsoidal polarizing plate of the present invention The first optically anisotropic layer showing a phase difference of 1/4 wavelength in the Z plane, a vertically aligned liquid crystal display cell Z showing negative biaxiality and in-plane 1 First optical anisotropic layer showing phase difference of Z4 wavelength Fourth optical anisotropic element / linear polarizing plate with positive uniaxial optical anisotropy in the Z-plane direction
(1 2) 本発明の楕円偏光板/負の 2軸性を示しかつ面内で 1/4波長の位相差 を示す第 1の光学異方性層/垂直配向型液晶表示セル/負の 2軸性を示しかつ面 内で 1/4波長の位相差を示す第 1の光学異方性層/面内方向に正の 1軸光学異 方性を有する第 4の光学異方素子 Z直線偏光板  (1 2) The elliptically polarizing plate of the present invention / first optically anisotropic layer / vertical alignment type liquid crystal display cell / negative 2 exhibiting negative biaxiality and in-plane retardation of 1/4 wavelength First optically anisotropic layer showing axiality and in-plane phase difference of 1/4 wavelength / fourth optical anisotropic element with positive uniaxial optical anisotropy in in-plane direction Z linearly polarized light Board
(1 3) 本発明の楕円偏光板ノ負の 2軸性を示しかつ面内で 1Z4波長の位相差 を示す第 1の光学異方性層/垂直配向型液晶表示セル/面内で 1/4波長の位相 差を示す第 1の光学異方性層/直線偏光板  (1 3) The first optically anisotropic layer / vertical alignment type liquid crystal display cell / in-plane 1/4 in the plane exhibiting negative biaxiality of the elliptically polarizing plate of the present invention and in-plane retardation of 1Z4 wavelength First optically anisotropic layer / linearly polarizing plate showing phase difference of 4 wavelengths
(14) 本発明の楕円偏光板/面内で 1/4波長の位相差を示す第 1の光学異方 性層/垂直配向型液晶表示セル/負の 2軸性を示しかつ面内で 1 Z 4波長の位相 差を示す第 1の光学異方性層 Z直線偏光板  (14) The elliptically polarizing plate of the present invention / first optically anisotropic layer showing a phase difference of 1/4 wavelength in the plane / vertical alignment type liquid crystal display cell / showing negative biaxiality and in-plane 1 Z 1st optical anisotropic layer showing phase difference of 4 wavelengths Z linear polarizing plate
(15) 本発明の楕円偏光板 Z負の 2軸性を示しかつ面内で 1Z4波長の位相差 を示す第 1の光学異方性層 垂直配向型液晶表示セル 負の 2軸性を示しかつ面 内で 1 4波長の位相差を示す第 1の光学異方性層 Z直線偏光板  (15) The elliptically polarizing plate of the present invention Z is a first optically anisotropic layer exhibiting negative biaxiality and exhibiting a phase difference of 1Z4 wavelength in the plane.Vertical alignment type liquid crystal display cell First optically anisotropic layer showing a phase difference of 14 wavelengths in-plane Z linear polarizing plate
なお、 直線偏光板、 ホメオト口ピック配向液晶フィルムや各光学異方素子の積 層や転写に用いる粘 ·接着剤層を形成する粘 ·接着剤は光学的に等方性で透明な ものであれば特に制限されない。 例えば、 アクリル系重合体、 シリコーン系ポリ マー、 ポリエステル、 ポリ ウレタン、 ポリアミ ド、 ポリエーテル、 フッ素系ゃゴ ム系などのポリマーをベースポリマーとするものを適宜に選択して用いることが できる。 また、 光や電子線、 熱などの外部刺激により反応し重合や架橋するよう な反応性のものも用いることができる。 これらの中でも特に、 アクリル系粘着剤 の如く光学的透明性に優れ、適度な濡れ性と凝集性と接着性の粘着特性を示して、 耐候性や耐熱性などに優れるものが好ましく用いうる。 The adhesive used to form the linear polarizing plate, the home-orientated pick-up liquid crystal film, the layer of each optical anisotropic element, and the adhesive / adhesive layer used for transfer is optically isotropic and transparent. If it is a thing, it will not restrict | limit in particular. For example, those based on polymers such as acrylic polymers, silicone polymers, polyesters, polyurethanes, polyamides, polyethers, and fluorine-based rubbers can be appropriately selected and used. A reactive material that reacts by an external stimulus such as light, electron beam, or heat to undergo polymerization or crosslinking can also be used. Among these, those having excellent optical transparency, such as an acrylic pressure-sensitive adhesive, exhibiting appropriate wettability, cohesiveness, and adhesive pressure-sensitive adhesive properties, and being excellent in weather resistance, heat resistance, etc. can be preferably used.
粘 ·接着剤層の形成は、 適宜な方式で行うことができる。 その例としては、 例 えば、 トルエンや酢酸ェチル等の適宜な溶剤の単独物又は混合物からなる溶媒に ベースポリマーまたはその組成物を溶解又は分散させた 1 0〜 4 0質量%程度の 粘着剤溶液を調製し、 それを流延方式や塗工方式等の適宜な展開方式で前記の偏 光板、 液晶フィルムや光学素子層上に直接付設する方式、 あるいは前記に準じセ パレータ上に粘 ·接着剤層を形成してそれを前記の偏光板、 液晶フィルムや光学 素子層上に移着する方式などが挙げられる。 また、 粘 ·接着剤層には、 例えば天 然物ゃ合成物の樹脂類、 特に、 粘着性付与樹脂や、 ガラス繊維、 ガラスビーズ、 金属粉、 その他の無機粉末等からなる充填剤、 顔料、 着色剤、 酸化防止剤などの 粘着層に添加されることのある添加剤を含有していてもよい。 また微粒子を含有 して光拡散性を示す粘 ·接着剤層などであってもよい。  The adhesive layer can be formed by an appropriate method. For example, for example, a pressure-sensitive adhesive solution of about 10 to 40% by mass in which a base polymer or a composition thereof is dissolved or dispersed in a solvent composed of a single solvent or a mixture of appropriate solvents such as toluene and ethyl acetate. And the method of attaching it directly on the polarizing plate, the liquid crystal film or the optical element layer by an appropriate development method such as a casting method or a coating method, or an adhesive / adhesive on the separator according to the above. Examples include a method of forming a layer and transferring it onto the polarizing plate, the liquid crystal film or the optical element layer. The adhesive / adhesive layer includes, for example, natural and synthetic resins, in particular, tackifier resins, fillers made of glass fibers, glass beads, metal powders, other inorganic powders, pigments, It may contain additives that may be added to the adhesive layer, such as colorants and antioxidants. Further, it may be an adhesive layer containing fine particles and exhibiting light diffusibility.
粘 ·接着剤層の厚さは、 貼着する部材を貼着しかつ十分な密着力を維持できる 限り特に膜厚に制限はなく、 粘 ·接着剤の特性や粘 ·接着される部材により適宜 選定することができる。 楕円偏光板の総厚の低減要求の強いことから、 粘 ·接着 剤の厚さは薄いほうが好ましいが、 通常は 2〜 8 0 μ πι、 好ましくは 5〜 5 0 μ m、 さらに好ましくは 1 0〜 4 0 μ πιである。 この範囲外では、 接着力が不足し たり、 積層時や楕円偏光板の保存時に端部から滲み出すなどして好ましくない。 なお、 ホメオト口ピック配向液晶フィルムを粘 ·接着剤層を介して、 前記直線 偏光板あるいは第 1、 第 2あるいは第 3の光学異方素子に転写する際には、 転写 が容易となるよう下記 (A) 〜 (C ) のようなプロセスを適宜用いることもでき る。  The thickness of the adhesive layer is not particularly limited as long as the member to be adhered can be adhered and sufficient adhesion can be maintained, depending on the properties of the adhesive and the adhesive and the material to be adhered. Can be selected. Since the demand for reducing the total thickness of the elliptically polarizing plate is strong, it is preferable that the thickness of the adhesive is thinner, but usually 2 to 80 μπι, preferably 5 to 50 μm, more preferably 10 ~ 40 0 μπι. Outside this range, it is not preferable because the adhesive strength is insufficient, or oozes out from the end portion when laminating or storing the elliptically polarizing plate. In addition, when transferring a home-orientated pick-aligned liquid crystal film to the linearly polarizing plate or the first, second, or third optical anisotropic element via an adhesive layer, the transfer is facilitated as follows. Processes such as (A) to (C) can be used as appropriate.
(A) 配向基板上に形成された液晶配向が固定化されたホメオト口ピック配向 液晶層を、接着剤層 1を介して直接直線偏光板、もしくは光学異方素子へ貼着し、 配向基板を剥離してホメオト口ピック配向液晶層を直線偏光板もしくは光学異方 素子へ転写する。 (A) Home-to-mouth pick alignment in which the liquid crystal alignment formed on the alignment substrate is fixedAttach the liquid crystal layer directly to the linear polarizing plate or the optical anisotropic element through the adhesive layer 1, The alignment substrate is peeled off, and the homeotropic pick alignment liquid crystal layer is transferred to a linear polarizing plate or an optical anisotropic element.
( B ) 配向基板上に形成された液晶配向が固定化されたホメオト口ピック配向 液晶層を、 接着剤層 1を介して再剥離性基板 1と接着せしめた後、 配向基板を剥 離してホメオト口ピック配向液晶層を再剥離性基板 1に転写し、 再剥離性基板 1 接着剤層 1 Zホメオト口ピック配向液晶層からなる中間体 1を作製し、 さらに 接着剤層 2を介して再剥離性基板 2と接着せしめた後、再剥離性基板 1を剥離し、 接着剤層 1 ホメオト口ピック配向液晶層/接着剤層 2 /再剥離性基板 2からな る中間体 2を作製し、 さらに接着剤層 1側にセパレートフィルム付きのノンキヤ リア糊を貼合した後、 セパレートフィルムを剥離し適宜偏光板、 もしくは光学異 方素子へ貼着し、 再剥離性基板 2を剥離する。  (B) Home-to-mouth pick alignment in which the liquid crystal alignment formed on the alignment substrate is fixed. After the liquid crystal layer is adhered to the removable substrate 1 via the adhesive layer 1, the alignment substrate is peeled off and the homeotope is aligned. Transfer the mouth-pick orientation liquid crystal layer to the re-peelable substrate 1 and re-peel the substrate 1 Adhesive layer 1 Make the intermediate 1 consisting of the Z home-to-mouth pick-alignment liquid crystal layer, and then re-peel it through the adhesive layer 2 After adhering to the releasable substrate 2, the releasable substrate 1 is peeled off to produce an intermediate 2 consisting of an adhesive layer 1 home-orientated liquid crystal layer / adhesive layer 2 / removable substrate 2, and After the non-carrier paste with a separate film is bonded to the adhesive layer 1 side, the separate film is peeled off, and is appropriately attached to a polarizing plate or an optical anisotropic element, and the re-peelable substrate 2 is peeled off.
( C ) 配向基板上に形成された液晶配向が固定化されたホメオト口ピック配向 液晶層を、 接着剤層 1を介して再剥離性基板 1と接着せしめた後、 配向基板を剥 離してホメオト口ピック配向液晶層を再剥離性基板 1に転写し、 再剥離性基板 1 /接着剤層 1 Zホメオト口ピック配向液晶層からなる中間体 1を作製し、 さらに 接着剤層 2を介して再剥離性基板 2と接着せしめた後、再剥離性基板 1を剥離し、 接着剤層 1ノホメオト口ピック配向液晶層 Z接着剤層 2 /再剥離性基板 2からな る中間体 2を作製し、 さらに接着剤層 1側にセパレートフィルム付きのノンキヤ リァ糊を貼合した後、 再剥離性基板 2を剥離しセパレートフィルム Z粘着剤層/ 接着剤層 1 /ホメオト口ピック配向液晶層 接着剤層 2からなる中間体 3を作製 し、 さらに接着剤層 2側にもセパレートフィルム付きのノンキヤリァ糊を貼合し セパレートフィルムノ粘着剤層ノ接着剤層 1 ホメオト口ピック配向液晶層 接 着剤層 2 /粘着剤層 Zセパレートフイルムからなる中間体 4を作製し、 セパレー トフイルムを剥離し適宜偏光板、 もしくは光学異方素子へ貼着する。  (C) Home-to-mouth pick alignment with fixed liquid crystal alignment formed on the alignment substrate After the liquid crystal layer is adhered to the re-peelable substrate 1 via the adhesive layer 1, the alignment substrate is peeled off and the homeotope is aligned. Transfer the lip-pickup alignment liquid crystal layer to the removable substrate 1, re-peelable substrate 1 / adhesive layer 1 produce intermediate 1 consisting of the Z homeotopick-pick alignment liquid crystal layer, and re-transfer through the adhesive layer 2 After adhering to the peelable substrate 2, the peelable substrate 1 is peeled off, and an intermediate 2 consisting of an adhesive layer 1 a homeomorphic liquid crystal layer Z adhesive layer 2 / removable substrate 2 is prepared, Furthermore, after pasting a non-carrier paste with a separate film on the adhesive layer 1 side, the releasable substrate 2 is peeled off, and the separate film Z adhesive layer / adhesive layer 1 / home-top orientation liquid crystal layer adhesive layer 2 Intermediate 3 made of Non-carrier paste with rate film is laminated Separate film adhesive layer Adhesive layer 1 Home-orientated pick liquid crystal layer Adhesive layer 2 / Adhesive layer Intermediate 4 consisting of Z separate film is prepared, and separate film And is attached to a polarizing plate or an optically anisotropic element as appropriate.
さらに接着剤に適宜表面改質剤等の添加剤を添加することで、 再剥離性基板と ホメオト口ピック配向液晶層との貼着の際の両者の密着力を低減させ、 かつ再剥 離性基板と接着剤層との密着力を維持させることで再剥離性基板側に接着剤層が 貼着したまま剥離することもできる。 その際に用いられる界面活性剤、 および添 加剤としては光学的欠陥の検査性や剥離性に悪影響を及ぼさない範囲であれば種 類、 添加量に特に制限はない。 このような手法により前記直線偏光板あるいは第 1、 第 2あるいは第 3の光学異方素子に転写する際には、 転写が容易となるよう 下記 (D )、 ( E ) のようなプロセスを適宜用いることもできる。 Furthermore, by adding additives such as a surface modifier as appropriate to the adhesive, the adhesion between the removable substrate and the home-orientated pick-aligned liquid crystal layer is reduced, and the removability is also achieved. By maintaining the adhesion between the substrate and the adhesive layer, the adhesive layer can be peeled off while being adhered to the removable substrate side. There are no particular limitations on the type and amount of the surfactant and additive used in this case as long as they do not adversely affect the optical defect inspection and peelability. In this way, the linear polarizing plate or the second polarizing plate When transferring to the first, second, or third optical anisotropic element, processes such as the following (D) and (E) can be used as appropriate to facilitate the transfer.
( D ) 配向基板上に形成された液晶配向が固定化されたホメオト口ピック配向 液晶層を、 接着剤層 1を介して再剥離性基板 1と接着せしめた後、 配向基板を剥 離してホメォト口ピック配向液晶層を再剥離性基板 1に転写し、 再剥離性基板 1 ノ接着剤層 1 /ホメオト口ピック配向液晶層からなる中間体 1を作製し、 さらに 接着剤層 2を介して再剥離性基板 2と接着せしめた後、再剥離性基板 1を剥離し、 接着剤層 1 Zホメオト口ピック配向液晶層 Z接着剤層 2 再剥離性基板 2からな る中間体 2を作製し、 さらに接着剤層 1側にセパレートフィルム付きのノンキヤ リア糊を貼合した後、 セパレートフィルムを剥離し適宜偏光板、 もしくは光学異 方素子へ貼着し、 再剥離性基板 2を接着剤層 2が貼着した状態で剥離する。  (D) Home-to-mouth pick alignment with fixed liquid crystal alignment formed on the alignment substrate After the liquid crystal layer is adhered to the removable substrate 1 via the adhesive layer 1, the alignment substrate is peeled off and Transfer the lip-pickup alignment liquid crystal layer to the removable substrate 1, re-peelable substrate 1, adhesive layer 1 / intermediate 1 composed of home-pick orientation alignment liquid crystal layer, and then re-transfer through the adhesive layer 2 After adhering to the peelable substrate 2, the releasable substrate 1 is peeled off, and the intermediate layer 2 consisting of the adhesive layer 1 Z homeotopick orientation liquid crystal layer Z adhesive layer 2 removable substrate 2 is prepared, Furthermore, after pasting a non-carrier paste with a separate film on the adhesive layer 1 side, the separate film is peeled off and appropriately stuck to a polarizing plate or an optical anisotropic element, and the releasable substrate 2 is attached to the adhesive layer 2. It peels in the state where it stuck.
( E ) 配向基板上に形成された液晶配向が固定化されたホメオト口ピック配向 液晶層を、 接着剤層 1を介して再剥離性基板 1と接着せしめた後、 配向基板を剥 離してホメォト口ピック配向液晶層を再剥離性基板 1に転写し、 再剥離性基板 1 /接着剤層 1 Zホメオト口ピック配向液晶層からなる中間体 1を作製し、 さらに 接着剤層 2を介して再剥離性基板 2と接着せしめた後、再剥離性基板 1を剥離し、 接着剤層 1ノホメオト口ピック配向液晶層 Z接着剤層 2ノ再剥離性基板 2からな る中間体.2を作製し、 さらに接着剤層 1側にセパレートフィルム付きのノンキヤ リァ糊を貼合した後、 再剥離性基板 2を接着剤層 2が貼着した状態で剥離しセパ レートフィルムノ粘着剤層/接着剤層 1 /ホメオト口ピック配向液晶層からなる 中間体 5を作製し、 さらにホメオト口ピック配向液晶層側にもセパレートフイノレ ム付きのノンキヤリァ糊を貼合しセパレートフィルム/粘着剤層 Z接着剤層 1 Z ホメオト口ピック配向液晶層/接着剤層 2 /粘着剤層 Zセパレートフィルムから なる中間体 6を作製し、 セパレートフィルムを剥離し適宜偏光板、 もしくは光学 異方素子へ貼着する。  (E) Home-to-mouth pick alignment in which the liquid crystal alignment formed on the alignment substrate is fixed. After the liquid crystal layer is adhered to the re-peelable substrate 1 via the adhesive layer 1, the alignment substrate is peeled off and the home is aligned. Transfer the lip-pickup alignment liquid crystal layer to the removable substrate 1, re-peelable substrate 1 / adhesive layer 1 produce intermediate 1 consisting of the Z homeotopick-pick alignment liquid crystal layer, and re-transfer through the adhesive layer 2 After adhering to the peelable substrate 2, the releasable substrate 1 is peeled off, and an intermediate 2 composed of the adhesive layer 1 liquid crystal orientation layer Z adhesive layer 2 removable substrate 2 is produced. Furthermore, after bonding a non-carrier paste with a separate film on the adhesive layer 1 side, the peelable substrate 2 is peeled off with the adhesive layer 2 adhered, and a separate film adhesive layer / adhesive layer 1 / Preparation of intermediate 5 consisting of homeostatic picked liquid crystal layer Non-carrier adhesive with separate vinyl is also pasted on the side of the liquid crystal alignment layer, separate film / adhesive layer Z adhesive layer 1 Z homeotropic alignment liquid crystal layer / adhesive layer 2 / adhesive layer Z separate An intermediate 6 made of a film is prepared, and the separate film is peeled off and appropriately attached to a polarizing plate or an optical anisotropic element.
またホメオト口ピック配向液晶フィルムを粘 ·接着剤層を介して、 前記直線偏 光板あるいは第 1、 2あるいは第 3の光学異方素子に転写する際には、 ホメォ トロピック配向液晶フィルム表面を表面処理して粘 ·接着剤層との密着性を向上 することができる。 表面処理の手段は、 特に制限されないが、 前記液晶フィルム 表面の透明性を維持できるコロナ放電処理、 スパッタ処理、 低圧 U V照射、 ブラ ズマ処理などの表面処理法を好適に採用できる。 これら表面処理法のなかでもコ 口ナ放電処理が良好である。 In addition, when transferring the homeotropic alignment liquid crystal film to the linear polarizing plate or the first, second, or third optical anisotropic element via the adhesive layer, the surface of the homeotropic alignment liquid crystal film is surface-treated. Thus, the adhesiveness with the adhesive / adhesive layer can be improved. The surface treatment means is not particularly limited, but corona discharge treatment, sputtering treatment, low-pressure UV irradiation, brazing that can maintain the transparency of the liquid crystal film surface. A surface treatment method such as a zuma treatment can be suitably employed. Among these surface treatment methods, the corner discharge treatment is good.
さらに、 ホメオト口ピック配向液晶フィルムを粘 .接着剤層を介さずとも、 前 記直線偏光板あるいは第 1、 第 2あるいは第 3の光学異方素子上に前述の液晶材 料を前述の配向基板上に展開し、 当該液晶材料を配向させた後、 光照射および Z または加熱処理することにより当該配向状態を固定化することにより製造するこ ともできる。 適宜必要であれば前記直線偏光板あるいは第 1、 第 2あるいは第 3 の光学異方素子上に前述の配向膜を設置してから前述の液晶材料を前述の配向基 板上に展開し、 当該液晶材料を配向させた後、 光照射おょぴ Zまたは加熱処理す ることにより当該配向状態を固定化することにより製造することもできる。  Further, the above-mentioned liquid crystal material is applied to the above-mentioned alignment substrate on the above-mentioned linear polarizing plate or the first, second or third optically anisotropic element without using a home-orientation pick-alignment liquid crystal film via an adhesive layer. It is also possible to manufacture by aligning the liquid crystal material and then fixing the alignment state by light irradiation and Z or heat treatment. If necessary, install the alignment film on the linearly polarizing plate or the first, second, or third optical anisotropic element, and then develop the liquid crystal material on the alignment substrate. After aligning the liquid crystal material, it can also be produced by fixing the alignment state by irradiation with light Z or heat treatment.
液晶表示装置としては、 特に制限はないが、 透過型、 反射型、 半透過型の各種 液晶表示装置を挙げることができる。 液晶セルの駆動方式も特に制限はなく、 S T N - L C D等に用いられるパッシブマ トリクス方式、 T F T (Thin Fi lm Transistor)電極、 T F D (Thin Fi lm Diode)電極等の能動電極を用いるァクティ ブマトリタス方式、プラズマァドレス方式等のいずれの駆動方式であっても良い。 液晶セルを構成する透明基板としては、 液晶層を構成する液晶性を示す材料を 特定の配向方向に配向させるものであれば特に制限はない。 具体的には、 基板自 体が液晶を配向させる性質を有している透明基板、基板自体は配向能に欠ける力 液晶を配向させる性質を有する配向膜等をこれに設けた透明基板等がいずれも使 用できる。 また、 液晶セルの電極は、 I T O等の公知のものが使用できる。 電極 は通常、 液晶層が接する透明基板の面上に設けることができ、 配向膜を有する基 板を使用する場合は、 基板と配向膜との間に設けることができる。  Although there is no restriction | limiting in particular as a liquid crystal display device, Various liquid crystal display devices of a transmission type, a reflection type, and a transflective type can be mentioned. There are no particular restrictions on the driving method of the liquid crystal cell. The passive matrix method used in STN-LCD, the active matrix method using active electrodes such as TFT (Thin Film Transistor) electrodes, TFD (Thin Film Diode) electrodes, and plasma Any driving method such as an addressing method may be used. The transparent substrate constituting the liquid crystal cell is not particularly limited as long as the liquid crystal material constituting the liquid crystal layer is aligned in a specific alignment direction. Specifically, a transparent substrate having the property of orienting liquid crystals by the substrate itself, a force that lacks the alignment ability of the substrate itself, a transparent substrate having an alignment film having the property of orienting liquid crystals, etc. Can also be used. Moreover, well-known things, such as ITO, can be used for the electrode of a liquid crystal cell. The electrode can usually be provided on the surface of the transparent substrate with which the liquid crystal layer is in contact, and when a substrate having an alignment film is used, it can be provided between the substrate and the alignment film.
液晶層を形成する液晶性を示す材料としては、 負の誘電率異方性を有する材料 であれば特に制限されず、 各種の液晶セルを構成し得る通常の各種低分子液晶物 質、 高分子液晶物質およびこれらの混合物が挙げられる。 また、 これらに液晶性 を損なわない範囲で色素やカイラル剤、非液晶性物質等を添加することもできる。 負の誘電率異方性を示す液晶材料を用いた垂直配向液晶層にカイラル剤を添加し 電圧印加時に液晶分子を旋回させれば、 電圧印加時の液晶分子の旋回を安定した ものとすることができる。 更に上下基板のラビング方向を同一方向以外に施す場 合、 配向処理の軌跡が同一方向でなくなるため筋目が目立ちにくくなる。 また、 液晶層が 90度ッイストしていれば、 電圧印加時のディスクリネーション防止の ため基板に対し数度傾斜して配向させた場合に液晶分子の傾斜方向にリターデー シヨンが発生するが、 基板付近の液晶分子の傾斜した方向が上下の基板付近で互 いに 90度の角度をなしているため、 発生するリターデーションを打ち消すこと ができ、 漏れ光が少ない黒表示が得られる。 The material exhibiting liquid crystallinity for forming the liquid crystal layer is not particularly limited as long as it has a negative dielectric anisotropy, and various ordinary low-molecular liquid crystal materials and polymers that can form various liquid crystal cells. Liquid crystal substances and mixtures thereof are mentioned. In addition, a dye, a chiral agent, a non-liquid crystal substance, and the like can be added to these as long as liquid crystallinity is not impaired. If a chiral agent is added to a vertically aligned liquid crystal layer using a liquid crystal material exhibiting negative dielectric anisotropy and the liquid crystal molecules are rotated when voltage is applied, the rotation of the liquid crystal molecules when voltage is applied should be stabilized. Can do. Furthermore, when the rubbing directions of the upper and lower substrates are applied in a direction other than the same direction, the trace of the alignment process is not the same direction, so that the streak is not noticeable. Also, If the liquid crystal layer is twisted 90 degrees, retardation will occur in the tilt direction of the liquid crystal molecules when it is aligned at a few degrees to prevent disclination when a voltage is applied. Since the tilted direction of the liquid crystal molecules forms an angle of 90 degrees near the upper and lower substrates, the generated retardation can be canceled out and a black display with less leakage light can be obtained.
また、 前記垂直配向型液晶セルの一方の基板を反射機能を有する領域と透過機 能を有する領域とを有する基板とすることにより半透過反射型の垂直配向型液晶 表示装置とすることができる。  Further, by using one substrate of the vertical alignment type liquid crystal cell as a substrate having a region having a reflection function and a region having a transmission function, a transflective vertical alignment type liquid crystal display device can be obtained.
半透過反射型の垂直配向型液晶表示装置に使用する半透過反射性電極に含まれ る反射機能を有する領域 (以下、 反射層ということがある。) としては、 特に制限 されず、 アルミニウム、 銀、 金、 クロム、 白金等の金属やそれらを含む合金、 酸 化マグネシウム等の酸化物、 誘電体の多層膜、 選択反射を示す液晶又はこれらの 組み合わせ等を例示することができる。 これら反射層は平面であっても良く、 ま た曲面であっても良い。 さらに反射層は、 凹凸形状など表面形状に加工を施して 拡散反射性を持たせたもの、 液晶セルの観察者側と反対側の該電極基板上の電極 を兼備させたもの、 またそれらを組み合わせたものであっても良い。  The region having a reflective function (hereinafter sometimes referred to as a reflective layer) included in the transflective electrode used in the transflective vertical alignment type liquid crystal display device is not particularly limited, and is made of aluminum, silver. Examples thereof include metals such as gold, chromium and platinum, alloys containing them, oxides such as magnesium oxide, multilayer films of dielectrics, liquid crystals exhibiting selective reflection, or combinations thereof. These reflective layers may be flat or curved. In addition, the reflective layer is processed to have a surface shape, such as an uneven shape, to have diffuse reflectivity, to have the electrode on the electrode substrate opposite to the viewer side of the liquid crystal cell, or a combination thereof It may be.
本発明の垂直配向型液晶表示装置は、 前記した構成部材以外にも他の構成部材 を付設することができる。 例えば、 カラーフィルターを本発明の液晶表示装置に 付設することにより、 色純度の高いマルチカラー又はフルカラー表示を行うこと ができるカラー液晶表示装置を作製することができる。  The vertical alignment type liquid crystal display device of the present invention can be provided with other constituent members in addition to the constituent members described above. For example, by attaching a color filter to the liquid crystal display device of the present invention, a color liquid crystal display device capable of performing multicolor or full color display with high color purity can be manufactured.
[実施例] [Example]
以下に実施例により本発明を具体的に説明するが、 本発明はこれらに限定され るものではない。  EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
なお、 実施例で用いた各分析方法は以下の通りである。  The analysis methods used in the examples are as follows.
(1) iH— NMRの測定  (1) iH—NMR measurement
化合物を重水素化クロ口ホルムに溶解し、 40 OMH zの1 H— NMR (V a r i a n t社製 I NOVA—400) で測定した。 The compound was dissolved in deuterated black-hole form and measured by 1 H-NMR of 40 OMHz (I NOVA-400 manufactured by Variant).
(2) G PCの測定  (2) G PC measurement
化合物をテトラヒ ドロフランに溶解し、東ソ一社製 8020 GP Cシステムで、 TSK— GEL S u p e r H 1 000、 S u p e r H2000、 S u p e r H 3000、 S u p e r H4000を直列につなぎ、 溶出液としてテトラヒ ドロフ ランを用いて測定した。 分子量の較正にはポリスチレンスタンダードを用いた。Dissolve the compound in tetrahydrofuran and use Tosohichi 8020 GP C system. TSK—GEL Super H 1 000, Super H2000, Super H 3000, Super H4000 were connected in series and measured using tetrahydrofuran as the eluent. Polystyrene standards were used for molecular weight calibration.
(3) 顕微鏡観察 (3) Microscopic observation
ォリンパス光学社製 B H 2偏光顕微鏡で液晶の配向状態を観察した。  The alignment state of the liquid crystal was observed with a BH 2 polarizing microscope manufactured by Olympus Optical Co., Ltd.
(4) 液晶フィルムのパラメータ測定  (4) Liquid crystal film parameter measurement
王子計測機器社製自動複屈折計 K O B R A 2 1 A D Hを用いた。  An automatic birefringence meter K O B R A 2 1 A D H manufactured by Oji Scientific Instruments was used.
(5) DS Cの測定 (ガラス転移点(T g)の測定)  (5) DS C measurement (glass transition point (T g) measurement)
液晶層をかきとった後、 示差走査型熱量計 (DS C、 P e r k i n E 1 me r社製 DS C— 7) を用い、 昇温速度 20°C/m i nで測定した。  After scraping off the liquid crystal layer, a differential scanning calorimeter (DS C, DS C-7 manufactured by Perkin E1mer) was used and measured at a heating rate of 20 ° C / min.
( 6 ) 視野角 (等コントラス ト曲線) の測定  (6) Measurement of viewing angle (equal contrast curve)
ELD IM社製 EZ c o n t r a s t 1 6 0 Rにより液晶表示装置の視野 角測定を実施し等コントラス ト曲線を得た。  The viewing angle of the liquid crystal display device was measured by EZcontras t 16 60R manufactured by ELD IM, and an equal contrast curve was obtained.
<実施例 1〉 <Example 1>
液晶材料溶液を以下のようにして調製した。  A liquid crystal material solution was prepared as follows.
まず、 下記式 (1 0) の液晶性ポリマーを合成した。 分子量はポリスチレン換 算で、数平均分子量 Mn = 8000、重量平均分子量 Mw= 1 5000であった。 なお、 式 (1 0) は便宜上、 プロック重合体の構造で表記しているが、 数字はモ ノマーのモル構成比を表すものである。 式 (1 0) のポリマー 1. 0 gを、 9 m 1のシクロへキサノンに溶かし、 暗所でトリァリルスルフォニゥムへキサフルォ 口アンチモネ一ト 50 %プロピレンカーボネート溶液(アルドリ ツチ社製、試薬) 0. 1 gを加えた後、 孔径 0. 4 5 μπιのポリテトラフルォロエチレン製フィル ターでろ過して液晶材料の溶液を調製した。 First, a liquid crystalline polymer of the following formula (1 0) was synthesized. The molecular weight was polystyrene conversion and had a number average molecular weight Mn = 8000 and a weight average molecular weight Mw = 15,000. Note that, for the sake of convenience, the formula (10) is represented by the structure of the block polymer, but the number represents the molar composition ratio of the monomer. 1.0 g of the polymer of formula (1 0) is dissolved in 9 ml of cyclohexanone, and in the dark, triarylsulfonium hexafluorate 50% propylene carbonate solution (available from Aldrich, reagent) After adding 0.1 g, the solution was filtered through a polytetrafluoroethylene filter having a pore size of 0.45 μπι to prepare a liquid crystal material solution.
Figure imgf000047_0001
配向基板を以下のようにして調製した。
Figure imgf000047_0001
An alignment substrate was prepared as follows.
厚さ 38 μηιのポリエチレンナフタレートフイルム (P ENフィルム) (帝人デ ュポンフィルム (株) 製) を 1 5 cm角に切り出し、 アルキル変性ポリビュルァ ルコール ((株) クラレ製、 MP— 203 (PVA)) の 5質量%溶液 (溶媒は、 水とイソプロピルアルコールの質量比 1 : 1の混合溶媒) をスピンコート法によ り塗布し、 50°Cのホットプレートで 30分乾燥した後、 1 20°Cのオーブンで 1 0分間加熱した。 次いで、 レーヨンのラビング布でラビングした。.得られた P V A層の膜厚は 1. 2 μΐηであった。 ラビング時の周速比 (ラビング布の移動速 度 Z基板フィルムの移動速度) は 4とした。  Polyethylene naphthalate film (P EN film) with a thickness of 38 μηι (manufactured by Teijin DuPont Films Co., Ltd.) is cut into 15 cm squares, and the alkyl-modified polybutyl alcohol (Kuraray Co., Ltd., MP—203 (PVA)) 5% by weight solution (solvent is a mixed solvent of water and isopropyl alcohol at a mass ratio of 1: 1) is applied by spin coating, dried on a hot plate at 50 ° C for 30 minutes, and then 120 ° C at 120 ° C. Heated in an oven for 10 minutes. Subsequently, it was rubbed with a rayon rubbing cloth. The thickness of the obtained PVA layer was 1.2 μΐη. The peripheral speed ratio during rubbing (moving speed of rubbing cloth, moving speed of Z substrate film) was 4.
このようにして得られた配向基板に、 前述の液晶材料の溶液をスピンコート法 により塗布した。 次いで 60°Cのホットプレートで 10分乾燥し、 1 5' 0°Cのォ 一ブンで 2分間熱処理し、 液晶材料を配向させた。 次いで、 60°Cに加熱したァ ルミ板に試料を密着させて置き、 その上から、 高圧水銀灯ランプにより 600m J /cm2の紫外光 (ただし 365 nmで測定した光量) を照射して、 液晶材料The liquid crystal material solution described above was applied to the alignment substrate thus obtained by spin coating. Next, it was dried on a hot plate at 60 ° C. for 10 minutes, and heat-treated at 15 ° 0 ° C. for 2 minutes to align the liquid crystal material. Next, place the sample in close contact with an aluminum plate heated to 60 ° C, and then irradiate it with ultraviolet light (measured at 365 nm) of 600 m J / cm 2 with a high-pressure mercury lamp. material
(ホメオト口ピック配向液晶層の厚み 0. 8 μπι) を硬化させた。 (Thickness of the homeomorphic alignment liquid crystal layer 0.8 μπι) was cured.
(積層体 1および 2の作製)  (Production of laminates 1 and 2)
得られた液晶層 (ホメオト口ピック配向液晶層) の光学パラメータの測定を行 うため、 また液晶層の表面を保護するため積層体 1および 2を下記のように作製 した。  Laminates 1 and 2 were prepared as follows to measure the optical parameters of the obtained liquid crystal layer (homeotope orientation liquid crystal layer) and to protect the surface of the liquid crystal layer.
得られた配向基板上の液晶層を、 市販の UV硬化型接着剤 (UV— 3400、 東亞合成 (株) 製) を介してポリエチレンテレフタレートフィルム (PET) に 転写した。 すなわち、 PVA層上の硬化しだ液晶層の上に、 接着剤層 1として U V— 3400を 5 厚となるように塗布し、 ポリエチレンテレフタレート (P ET) フィルムでラミネートして、 P ETフィルム側から紫外線を照射して接着 剤層 1を硬化させた後、 P VA層おょぴ P ENフィルムを剥離し、 PETフィル ム付きの中間積層体 ( P E Tフィルム Z接着剤層 1ノホメオト口ピック配向液晶 層) を得た。 The liquid crystal layer on the obtained alignment substrate was transferred to a polyethylene terephthalate film (PET) through a commercially available UV curable adhesive (UV-3400, manufactured by Toagosei Co., Ltd.). In other words, UV-3400 was applied as adhesive layer 1 to a thickness of 5 on the cured liquid crystal layer on the PVA layer, and polyethylene terephthalate (P (ET) film is laminated, and the adhesive layer 1 is cured by irradiating UV light from the PET film side, then the PVA layer and the PEN film are peeled off, and an intermediate laminate with PET film ( PET film Z adhesive layer 1 liquid crystal layer).
得られた中間積層体のホメオト口ピック液晶層上に、 市販の U V硬化型接着剤 (UV_ 3400、 東亞合成 (株) 製) を接着剤層 2として 5 m厚となるよう に塗布し、 トリァセチルセルロース (TAC) フィルムでラミネートして、 T A Cフィルム側から紫外線を照射して接着剤層 2を硬化させた後、 P E Tフィルム を剥離して、 積層体 1 (接着剤層 1ノホメオト口ピック配向液晶層 接着剤層 2 ZT ACフィルム) を得た。  A commercially available UV-curing adhesive (UV_3400, manufactured by Toagosei Co., Ltd.) was applied as an adhesive layer 2 on the homeotopick liquid crystal layer of the obtained intermediate laminate to a thickness of 5 m. After laminating with cetyl cellulose (TAC) film and irradiating UV rays from the TAC film side to cure the adhesive layer 2, the PET film is peeled off, and the laminate 1 (adhesive layer 1 no homeomorphic alignment liquid crystal Layer adhesive layer 2 ZT AC film).
得られた積層体 1の接着剤層 1側に市販のノンキヤリァ糊をセパレートフィル ム付きの状態で貼合した後、 T ACフィルムを剥離して積層体 2 (セパレートフ ィルム /粘着剤層 Z接着剤層 1/ホメオト口ピック配向液晶層/接着剤層 2 ) を 得た。  After laminating a commercially available non-carrier paste with a separate film on the adhesive layer 1 side of the obtained laminate 1, peel off the TAC film and laminate 2 (separate film / adhesive layer Z adhesive) An agent layer 1 / home-orientated liquid crystal layer / adhesive layer 2) was obtained.
得られた積層体 1をクロスニコルさせた偏光顕微鏡下で観察すると、 ディスク リネーシヨンがなくモノ ドメインの均一な配向で、 コノスコープ観察から正の一 軸性屈折率構造を有するホメオト口ピック配向であることがわかった。 このフィ ルムを傾けて斜めから光を入射し、 同様にクロス-コルで観察したところ、 光の 透過が観測された。 また、 同フィルムの光学位相差を自動複屈折測定装置 KOB RA2 1 ADHにより測定した。 測定光をサンプル表面に対して垂直あるいは斜 めから入射して、 その光学位相差と測定光の入射角度のチャートから、 ホメオト 口ピック配向を確認した。 ホメオト口ピック配向では、 サンプル表面に対して垂 直方向での位相差 (正面位相差) がほぼゼロである。 このサンプルに関しては、 液晶層の遅相軸方向に斜めから位相差を測定したところ、 測定光の入射角度の増 加に伴い、 位相差値が増加したことからホメオト口ピック配向が得られていると 判断できた。 以上から、 ホメオト口ピック配向性は良好であると判断した。  When the obtained laminate 1 is observed under a polarizing microscope in which the crossed Nicols are crossed, it has a uniform monodomain orientation with no disclination, and is homeomorphic with a positive uniaxial refractive index structure from conoscopic observation. I understood it. When this film was tilted, light was incident from an oblique direction, and the cross-col was observed in the same way, and light transmission was observed. The optical retardation of the film was measured with an automatic birefringence measuring device KOB RA2 1 ADH. The measurement light was made incident on the sample surface perpendicularly or obliquely, and the home-to-mouth pick orientation was confirmed from the chart of the optical phase difference and the incident angle of the measurement light. In home-to-mouth pick orientation, the phase difference (front phase difference) in the direction perpendicular to the sample surface is almost zero. Regarding this sample, when the phase difference was measured obliquely in the slow axis direction of the liquid crystal layer, the phase difference value increased with the increase of the incident angle of the measurement light, and the homeotopic orientation was obtained. I was able to judge. From the above, it was judged that the homeo-mouth pick orientation was good.
なお、 ホメオト口ピック配向液晶フィルムの N X 1は 1. 54、 Ny :U¾l . 54、 N z lは 1. 73であった。  In addition, N X 1 of the homeotopic pick alignment liquid crystal film was 1.54, Ny: U¾l.54, and N z l were 1.73.
さらに積層フィルムの液晶材料部分のみをかきとり、 示差熱測定法 (D S C) を用いて T gを測定したところ、 T gは 1 00°Cであった。 またフィルムの液晶 層表面の鉛筆硬度は 2 H程度で、 充分に強固な膜が得られた。 Further, only the liquid crystal material portion of the laminated film was scraped, and T g was measured using a differential calorimetry (DSC). The T g was 100 ° C. Also film liquid crystal The pencil hardness on the surface of the layer was about 2 H, and a sufficiently strong film was obtained.
(楕円偏光板 1の作製)  (Production of elliptically polarizing plate 1)
積層体 1の接着剤層 1側にコロナ放電処理(25 OW'm i n/m2) を施し、 粘着剤を介して直線偏光板 (厚み約 105 μηι、 住友化学 (株) 製 SQW— 06 2) を貼着し TACフィルムを剥がして楕円偏光板 1 (直線偏光板 粘着剤層/ 接着剤層 1 /ホメオト口ピック配向液晶層/接着剤層 2) を得た。 Corona discharge treatment (25 OW'm in / m 2 ) was applied to the adhesive layer 1 side of the laminate 1 and a linear polarizing plate (thickness: about 105 μηι, manufactured by Sumitomo Chemical Co., Ltd. SQW-06 06 2) ) Was peeled off, and the TAC film was peeled off to obtain an elliptically polarizing plate 1 (linear polarizing plate pressure-sensitive adhesive layer / adhesive layer 1 / homeotope orientation liquid crystal layer / adhesive layer 2).
<実施例 2 > <Example 2>
(積層体 3の作製)  (Preparation of laminate 3)
積層体 1の接着剤層 1側にコロナ放電処理(25 OW'm i n/m2) を施し、 粘着剤を介して第 1の光学異方素子として面内位相差 140 nmの位相差フィル ム (ゼォノアフィルム、 日本ゼオン (株) 製) を貼着した後、 T ACフィルムを 剥がして積層体 3 (接着剤層 2 /ホメオト口ピック配向液晶層/接着剤層 1 /粘 着剤層 Zゼォノアフィルム) を得た。 Corona discharge treatment (25 OW'm in / m 2 ) is applied to the adhesive layer 1 side of the laminate 1 and a retardation film with an in-plane retardation of 140 nm is used as the first optical anisotropic element via an adhesive. (Zeonor film, manufactured by Nippon Zeon Co., Ltd.), then peel off the TAC film and laminate 3 (adhesive layer 2 / homeotopick orientation liquid crystal layer / adhesive layer 1 / adhesive layer Z zeonor film) Got.
(積層体 4の作製)  (Production of laminate 4)
積層体 3のゼォノアフィルム側にコロナ放電処理 ( 250 W · m i n/m2) を施し、 粘着剤を介して第 3の光学異方素子として負の 1軸性を有する T A Cフ イルム (富士フィルム (株) 製) を貼着し、 積層体 4 (接着剤層 2/ホメオト口 ピック配向液晶層/接着剤層 1/粘着剤層 ゼォノアフィルム/粘着剤層/ T A Cフィルム) を得た。 Corona discharge treatment (250 W · min / m 2 ) is applied to the Xenoah film side of Laminate 3 and a TAC film (Fuji Film Co., Ltd.) has negative uniaxiality as a third optical anisotropic element via an adhesive. ) Manufactured) was pasted to obtain a laminate 4 (adhesive layer 2 / homeotopic picked liquid crystal layer / adhesive layer 1 / adhesive layer ZENOA film / adhesive layer / TAC film).
(楕円偏光板 2の作製)  (Production of elliptically polarizing plate 2)
積層体 4の接着剤層 2側にコロナ放電処理(25 OW'm i n/m2) を施し、 粘着剤を介して直線偏光板 (厚み約 105 μιη、 住友化学 (株) 製 SQW— 06 2) を貼着し、 楕円偏光板 2 (直線偏光板 Ζ粘着剤層 接着剤層 2/ホメオト口 ピック配向液晶層/接着剤層 1 Ζ粘着剤層 Ζゼォノァフィルム /粘着剤層 ACorona discharge treatment (25 OW'm in / m 2 ) was applied to the adhesive layer 2 side of the laminate 4 and a linear polarizing plate (thickness: about 105 μιη, manufactured by Sumitomo Chemical Co., Ltd. SQW-06 06 2) ) Is attached to the elliptical polarizing plate 2 (linear polarizing plate Ζadhesive layer adhesive layer 2 / homeoto mouth pick alignment liquid crystal layer / adhesive layer 1 Ζadhesive layer ΖZeoner film / adhesive layer A
Cフィルム) を得た。 楕円偏光板の層膜厚は 280 μπιであった。 C film). The layer thickness of the elliptically polarizing plate was 280 μπι.
(垂直配向型液晶表示装置の作製)  (Production of vertical alignment type liquid crystal display device)
バックライ ト、 バックライ ト側偏光板、 垂直配向 (VA) 型液晶セル、 視認側 偏光板の順で配置された市販の V Α型の液晶テレビに対し、 図 1に示すように、 視認側偏光板の替わりに本発明の楕円偏光板 2を配置した。 図 2に等コントラス ト図を示す。 本楕円偏光板 2を用いない場合に比べ、 視野角が拡大し、 斜めから 見ても良好な画像が得られることが分かった。 なお、 図 2の同心円は 20° 間隔 で描かれている。 したがって最外円は中心から 80° を示す (以下の図も同様)。 <比較例 1 > As shown in Fig. 1, the viewing side polarizing plate is shown in Fig. 1 for the backlight, back side polarizing plate, vertical alignment (VA) type liquid crystal cell, and viewing side polarizing plate. Instead of this, the elliptically polarizing plate 2 of the present invention was disposed. Figure 2 shows an equal contrast diagram. Compared to the case where this elliptical polarizing plate 2 is not used, the viewing angle is enlarged and obliquely It was found that a good image was obtained even when viewed. The concentric circles in Fig. 2 are drawn at 20 ° intervals. Therefore, the outermost circle shows 80 ° from the center (the same applies to the following figures). <Comparative Example 1>
面内位相差 140 nmの積層体 9 (接着剤層 3 _/ネマチック配向液晶層 接着 剤層 4 /T ACフィルム) の接着剤層 3側にコロナ放電処理 (2 5 0W ' m i n Zm2) を施し、 粘着剤を介して直線偏光板 (厚み約 1 0 5 μπι、 住友化学 (株) 製3<2"\ — 062) を貼着した後 T ACフィルムを剥離して楕円偏光板 25 (直 線偏光板/粘着剤層/接着剤層 3ノネマチック配向液晶層 Z接着剤層 4 )を得た。 実施例 2の垂直配向型液晶表示装置の作製に使用したものと同型の市販 V A型 の液晶テレビに対し、 実施例 2で使用した楕円偏光板 2の替わりに前記楕円偏光 板 25を配置した。 図 1 2に等コントラス ト図を示す。 本発明の楕円偏光板 2を 用いた場合に比べ、 視野角拡大効果は少なく、 斜めから見ても良好な画像が得ら れなかった。 Plane retardation 140 nm of the laminate 9 to corona discharge treatment to the adhesive layer 3 side (4 / T AC film adhesive layer 3 _ / nematic alignment liquid crystal layer adhesive layer) (2 5 0W 'min Zm 2) After applying a linear polarizing plate (thickness approx. 10 5 μπι, manufactured by Sumitomo Chemical Co., Ltd. 3 <2 "\ — 062) through the adhesive, the TAC film was peeled off and the elliptical polarizing plate 25 (direct A linear polarizing plate / adhesive layer / adhesive layer 3 nonnematic alignment liquid crystal layer Z adhesive layer 4) A commercially available VA type liquid crystal of the same type as that used in the production of the vertical alignment type liquid crystal display device of Example 2 For the television, the elliptically polarizing plate 25 was placed in place of the elliptically polarizing plate 2 used in Example 2. An equal contrast diagram is shown in Fig. 12. Compared with the case where the elliptically polarizing plate 2 of the present invention is used. The viewing angle expansion effect was small, and a good image was not obtained even when viewed from an oblique direction.
<実施例 3 > <Example 3>
(積層体 5の作製)  (Preparation of laminate 5)
下記式 (1 1) で表されるポリエーテルケトン (株式会社日本触媒製: Δ n = 約 0. 02) を、 メチルイソブチルケトンに溶解し、 20重量0 /0のワニスを調製 した。 このワニスを、 面内位相差 1 40 nmの位相差フィルム (ゼォノアフィル ム、 日本ゼオン (株) 製) に塗布し、 1 00°Cで 1 0分熱処理した。 その結果、 ゼォノアフィルム上に、 透明かつ表面が平滑で厚み 6 mで、 フィルム膜厚方向 に負の光学異方性を示すポリエーテルケトンフィルムが形成された積層体 5が得 られた。 Formula (1 1) polyether ketone represented by (Nippon Shokubai Ltd.: delta n = about 0.02) was dissolved in methyl isobutyl ketone to prepare the 20 weight 0/0 of the varnish. This varnish was applied to a retardation film having an in-plane retardation of 140 nm (Zeonor film, manufactured by Nippon Zeon Co., Ltd.) and heat-treated at 100 ° C. for 10 minutes. As a result, a laminate 5 was obtained in which a polyetherketone film having a transparent, smooth surface, a thickness of 6 m, and a negative optical anisotropy in the film thickness direction was formed on a ZENOA film.
Figure imgf000050_0001
Figure imgf000050_0001
(積層体 6の作製)  (Production of laminate 6)
積層体 5のゼォノアフィルム側にコロナ放電処理 (25 0W . m i n/m2) を施し、 粘着剤を介して前記積層体 2の接着剤層 2側を貼着し、 積層体 6 (セパ レートフィルム Z粘着剤層 Z接着剤層 1 /ホメオト口ピック配向液晶層 接着剤 層 2 粘着剤層 Zゼォノアフィルム Zポリエーテルケトンフィルム) を得た。 (楕円偏光板 3の作製) Corona discharge treatment (250 W. min / m 2 ) was applied to the zenoir film side of the laminate 5, and the adhesive layer 2 side of the laminate 2 was adhered via an adhesive, and the laminate 6 (separate film Z Adhesive Layer Z Adhesive Layer 1 / Home-Oriented Pick Oriented Liquid Crystal Layer Adhesive Layer 2 Adhesive Layer Z Zeonor Film Z Polyetherketone Film) was obtained. (Production of elliptically polarizing plate 3)
積層体 6のセパレートフイルムを剥離し直線偏光板 (厚み約 1 05 μ m、 住友 化学 (株) 製SQW— 06 2) を貼着し、 楕円偏光板 3 (直線偏光板 Z粘着剤層 /接着剤層 1ノホメオト口ピック配向液晶層/接着剤層 2 粘着剤層/ゼオノ了 フィルム Zポリエーテルケトンフィルム) を得た。  The separate film of laminate 6 was peeled off, and a linear polarizing plate (thickness approx. 105 μm, SQW-06 2 manufactured by Sumitomo Chemical Co., Ltd.) was attached, and elliptical polarizing plate 3 (linear polarizing plate Z adhesive layer / adhesion) Adhesive layer 1 Noh homeo orientation liquid crystal layer / adhesive layer 2 Adhesive layer / Zeono film (Z polyetherketone film).
く実施例 4〉 Example 4>
(積層体 7の作製)  (Preparation of laminate 7)
下記式 (1 2) に示すポリイミ ドを、 シクロへキサノンに溶解して 1 5重量% のポリイミ ド溶液を調製した。 このポリイミ ド溶液を面内位相差 1 40 nmの位 相差フィルム (ゼォノアフィルム、 日本ゼオン (株) 製) に塗布し、 1 00°Cで 1 0分熱処理した。 その結果、 ゼォノアフィルム上に、 透明かつ表面が平滑で厚 み 6 μπιで、 フィルム面と垂直方向に負の光学異方性を示すポリイミ ドフィルム が  The polyimide represented by the following formula (12) was dissolved in cyclohexanone to prepare a 15% by weight polyimide solution. This polyimide solution was applied to a retardation film having an in-plane retardation of 140 nm (Zeonor film, manufactured by Nippon Zeon Co., Ltd.) and heat-treated at 100 ° C. for 10 minutes. As a result, a polyimide film that is transparent, smooth on the surface, has a thickness of 6 μπι, and exhibits negative optical anisotropy in the direction perpendicular to the film surface is formed on the ZENOA film.
Figure imgf000051_0001
Figure imgf000051_0001
(楕円偏光板 4の作製)  (Preparation of elliptically polarizing plate 4)
楕円偏光板 1の接着剤層 2側にコロナ放電処理 (2 50W · m i n/m2) を 施し、粘着剤を介して積層体 7のゼォノアフィルム側を貼着し、楕円偏光板 4 (直 線偏光板 Z粘着剤層 Z接着剤層 1 /ホメオト口ピック配向液晶層ノ接着剤層 2 / 粘着剤層ノゼォノアフィルム/ポリイミ ドフィルム) を得た。 Corona discharge treatment (2 50 W · min / m 2 ) is applied to the adhesive layer 2 side of the elliptical polarizing plate 1, and the ZENOA film side of the laminate 7 is adhered via an adhesive, and the elliptical polarizing plate 4 (linear polarization) Plate Z pressure-sensitive adhesive layer Z adhesive layer 1 / home-orientated pick liquid crystal layer adhesive layer 2 / pressure-sensitive adhesive layer nozono film / polyimide film) were obtained.
ぐ実施例 5 > Example 5>
(楕円偏光板 5の作製)  (Preparation of elliptical polarizing plate 5)
テレフタル酸 50 mm o 1、 メチルヒ ドロキノンジァセテート 25 mm o 1、 カテコールジァセテート 25 mm o 1および酢酸ナトリウム l O Omgを用いて 窒素雰囲気下で、 1 00 °Cで 30分、 1 50でで 1時間、 200でで 1時間と階 段状に昇温しながら重合を行った。 次に窒素ガスを流しながら 250°Cで 2時間 重合を続け、 さらに減圧下に同じ温度で 1時間重合を行った。 次に得られたポリ マーをテトラクロロェタンに溶解し濾過したのち、 メタノールで再沈殿を行い精 製ポリマー 9. O gを得た。 Terephthalic acid 50 mm o 1, methyl hydroquinone diacetate 25 mm o 1, catechol diacetate 25 mm o 1 and sodium acetate l O Omg under nitrogen atmosphere at 100 ° C for 30 min, 1 Polymerization was carried out while raising the temperature stepwise at 50 for 1 hour and 200 at 1 hour. Next, polymerization was continued for 2 hours at 250 ° C. with flowing nitrogen gas, and further for 1 hour at the same temperature under reduced pressure. The resulting poly The polymer was dissolved in tetrachloroethane and filtered, and then reprecipitated with methanol to obtain 9. O g of a purified polymer.
このポリマーを用いて濃度 1 5質量%のテトラクロロェタン溶液を精製し、 片 面にラビング処理したポリイミ ドの配向膜を有する 1 2 cmX 1 2 c mのガラス 板上 (EBC社製) にスピンコート法で塗布した後乾燥した。  Using this polymer, a tetrachloroethane solution with a concentration of 15% by mass was purified and spun onto a 12 cm × 12 cm glass plate (manufactured by EBC) with a polyimide alignment film that was rubbed on one side. After applying by a coating method, it was dried.
次にこの試料を空気恒温槽 200°Cで 1 0分間熱処理した後、 恒温槽より取り 出して放冷し、 配向を固定化しネマチック液晶配向層を得た。 得られたネマチッ ク液晶配向層は、 膜厚が 0, 6 2 mの完全透明で平滑なフィルムであった。 こ のネマチック液晶配向層の配向状態を偏光顕微鏡のクロスニコル下で観察したと ころ、 全領域にわたって欠陥が全く見つからなかった。 次に偏光解析を行ってこ のフィルムのリタデーシヨン (Δ η · d、 Δ ηは複屈折率を、 また dは膜厚を示 す) を測定したところ、 1 40 nm (5 50 nmの値) の値が得られ、 ネマチッ ク構造が固定化されていることがわかった (Δ η = 0. 227)。  Next, this sample was heat-treated at 200 ° C. for 10 minutes in an air thermostat, then taken out from the thermostat and allowed to cool to fix the alignment and obtain a nematic liquid crystal alignment layer. The obtained nematic liquid crystal alignment layer was a completely transparent and smooth film having a thickness of 0, 62 m. When the alignment state of this nematic liquid crystal alignment layer was observed under a crossed Nicol with a polarizing microscope, no defects were found over the entire region. Next, polarization analysis was performed to measure the retardation of this film (Δ η · d, Δ η is the birefringence, and d is the film thickness). The value was obtained and it was found that the nematic structure was fixed (Δ η = 0.227).
得られた液晶層 (ネマチック配向液晶層) をフィルム基板に転写するため積層 体 8を下記のように作製した。  In order to transfer the obtained liquid crystal layer (nematic alignment liquid crystal layer) to the film substrate, a laminate 8 was prepared as follows.
得られた配向基板上の液晶層を市販の UV硬化型接着剤 (UV— 3400、 東 亞合成 (株) 製) を介してポリエチレンテレフタレートフィルム (PET) に転 写した。 すわわち、 ポリイミ ド膜上の硬化した液晶層の上に、 UV硬化型接着剤 を接着剤層 3として 5 m厚となるように塗布し、 PETフィルムでラミネート して、 PETフィルム側から紫外線を照射して接着剤層 3を硬化させた後、 ポリ イミ ド配向膜おょぴガラス基板を剥離し積層体 8 (PETフィルムノ接着剤層 3 Zネマチック配向液晶層) を作製した。  The liquid crystal layer on the obtained alignment substrate was transferred to a polyethylene terephthalate film (PET) through a commercially available UV curable adhesive (UV-3400, manufactured by Toagosei Co., Ltd.). In other words, on the cured liquid crystal layer on the polyimide film, UV curable adhesive was applied as an adhesive layer 3 to a thickness of 5 m, laminated with PET film, and UV rays were applied from the PET film side. After curing the adhesive layer 3, the polyimide alignment film transparent glass substrate was peeled off to produce a laminate 8 (PET film adhesive layer 3 Z nematic alignment liquid crystal layer).
さらに積層体 8の液晶層上に、 市販の UV硬化型接着剤 (UV— 3400、 東 亞合成 (株) 製) を接着剤層 4として 5 μιη厚となるように塗布し、 トリァセチ ルセルロース (TAC) フィルムでラミネートして、 TACフィルム側から紫外 線を照射して接着剤層 2を硬化させた後、 Ρ ΕΤフィルムを剥離して、 積層体 9 (接着剤層 3 ネマチック配向液晶層 接着剤層 4 ZT A Cフィルム) を得た。 そして前記楕円偏光板 1 (直線偏光板 粘着剤層/接着剤層 1 Zホメオトロピ ック配向液晶層ノ接着剤層 2 ) の接着剤層 2側にコ口ナ放電処理 ( 250 W · m i n/m2) を施し、 粘着剤を介して第一の光学異方素子として前記積層体 8の ネマチック配向液晶層側と貼着した後 P E Tフィルムを剥離して楕円偏光板 5 (直線偏光板ノ粘着剤層 接着剤層 1 Zホメオト口ピック配向液晶層/接着剤層Further, a commercially available UV curable adhesive (UV-3400, manufactured by Toagosei Co., Ltd.) was applied as an adhesive layer 4 on the liquid crystal layer of laminate 8 to a thickness of 5 μιη, and triacetyl cellulose ( TAC) Laminate with film and irradiate ultraviolet rays from TAC film side to cure adhesive layer 2, then peel off ΕΤ film and laminate 9 (adhesive layer 3 nematic alignment liquid crystal layer adhesive) Layer 4 ZT AC film). The elliptical polarizing plate 1 (linear polarizing plate adhesive layer / adhesive layer 1 Z homeotropic alignment liquid crystal layer-adhesive layer 2) has an edge discharge treatment (250 W min / m on the adhesive layer 2 side). 2 ) and the laminated body 8 is used as a first optical anisotropic element via an adhesive. After adhering to the nematic alignment liquid crystal layer side, the PET film is peeled off and the elliptically polarizing plate 5 (Linear polarizing plate adhesive layer Adhesive layer 1 Z homeotopick alignment liquid crystal layer / adhesive layer
2 Z粘着剤層/ネマチック配向液晶層 Z接着剤層 3) を得た。 楕円偏光板 5の層 膜厚は 1 80 mであった。 2 Z pressure-sensitive adhesive layer / nematic alignment liquid crystal layer Z adhesive layer 3) was obtained. The layer thickness of the elliptically polarizing plate 5 was 180 m.
<実施例 6 >  <Example 6>
(フィルム 1の作製)  (Production of film 1)
以下の手法で膜厚方向に負の 1軸性を有する第 3の光学異方素子であるフィル ム 1を作製した。 透明な膜厚 1 1 0 mのポリカーボネートフィルム (住友化学 (株) 製) を 1 70°Cに加熱した状態で 0. 3mm/s e cの速度で延伸したの ち、 再ぴ 1 70°Cに加熱しながら最初の延伸方向と直角の方向に 0. 5mm/ s e cの速度で延伸した。 ポリカーボネートフイルムは 2度目の延伸により延伸方 向の屈折率が大きくなり延伸方向と直角方向と同程度の屈折率になった。 このた め、この 2回の延伸によりポリカーボネートフイルムは延伸方向と垂直な方向(す なわちフィルム面と垂直な方向) に媒体の異常屈折率を含む負の一軸性光学異方 体となった。  A film 1 as a third optical anisotropic element having negative uniaxiality in the film thickness direction was fabricated by the following method. Transparent polycarbonate film with a thickness of 110 m (manufactured by Sumitomo Chemical Co., Ltd.) 1 Heated to 70 ° C, stretched at a speed of 0.3 mm / sec, then re-heated 1 70 ° C However, the film was stretched at a speed of 0.5 mm / sec in a direction perpendicular to the first stretching direction. The polycarbonate film had a higher refractive index in the stretching direction due to the second stretching, and the refractive index was about the same as the direction perpendicular to the stretching direction. For this reason, the polycarbonate film became a negative uniaxial optical anisotropic body including the extraordinary refractive index of the medium in the direction perpendicular to the stretching direction (that is, the direction perpendicular to the film surface).
(楕円偏光板 6の作製)  (Preparation of elliptically polarizing plate 6)
前記楕円偏光板 5の接着剤層 3側にコロナ放電処理 (25 OW ' m i n/m2) を施し、 粘着剤を介して第 3の光学異方素子として負の 1軸性を有する前記フィ ルム 1を貼着し、 楕円偏光板 6 (直線偏光板 Z粘着剤層 Z接着剤層 1/ホメオト 口ピック配向液晶層 Z接着剤層 2 Z粘着剤層 Zネマチック配向液晶層 Z接着剤層Corona discharge treatment (25 OW ′ min / m 2 ) is applied to the adhesive layer 3 side of the elliptically polarizing plate 5, and the film having negative uniaxiality as a third optical anisotropic element through an adhesive 1 is attached, and elliptically polarizing plate 6 (linear polarizing plate Z adhesive layer Z adhesive layer 1 / home-to-mouth orientation liquid crystal layer Z adhesive layer 2 Z adhesive layer Z nematic alignment liquid crystal layer Z adhesive layer
3 Z粘着剤層/フィルム 1) を得た。 3 Z adhesive layer / film 1) was obtained.
<実施例 7 > <Example 7>
(楕円偏光板 7の作製)  (Production of elliptically polarizing plate 7)
前記積層体 3 (接着剤層 2 Zホメォト口ピック配向液晶層 Z接着剤層 1 /粘着 剤層/ゼォノアフィルム) の接着剤層 2側にコロナ放電処理 (250W ' m i n /m2) を施し、 粘着剤を介して直線偏光板 (厚み約 1 05 μπι、 住友化学 (株) 製3(3 ^_ 06 2) を貼着し、 楕円偏光板 7 (直線偏光板/粘着剤層/接着剤層 2 Ζホメオト口ピック配向液晶層ノ接着剤層 1/粘着剤層/ゼォノアフィルム) を得た。 Corona discharge treatment (250 W 'min / m 2 ) is applied to the adhesive layer 2 side of the laminate 3 (adhesive layer 2 Z home-mouth picked liquid crystal layer Z adhesive layer 1 / adhesive layer / Zeonor film), A linear polarizing plate (thickness: approx. 10 05 μπι, manufactured by Sumitomo Chemical Co., Ltd. 3 (3 ^ _ 06 2)) is bonded to the elliptical polarizing plate 7 (linear polarizing plate / adhesive layer / adhesive layer 2オ Homeo-mouth pick alignment liquid crystal layer adhesive layer 1 / adhesive layer / Zeonor film).
<実施例 8 > (楕円偏光板 8の作製) <Example 8> (Preparation of elliptically polarizing plate 8)
前記楕円偏光板 7のゼォノアフィルム側にコロナ放電処理 (2 5 0 W · m i n / m 2 ) を施し、 粘着剤を介して第 3の光学異方素子として負の 1軸性を有する T A Cフィルム (富士フィルム (株) 製) を貼着し、 楕円偏光板 8 (直線偏光板 Z粘着剤層 Z接着剤層 2 /ホメオト口ピック配向液晶層 Z接着剤層 1 Z粘着剤層 /ゼオノァフィルム 粘着剤層 Z T A Cフィルム) を得た。 The elliptical polarizing plate 7 is subjected to corona discharge treatment (2550 W · min / m 2 ) on the zenoir film side, and a negative uniaxial TAC film as a third optical anisotropic element through an adhesive (Fuji Film (manufactured by Co., Ltd.) is attached, and elliptically polarizing plate 8 (linearly polarizing plate Z adhesive layer Z adhesive layer 2 / homeotopick orientation liquid crystal layer Z adhesive layer 1 Z adhesive layer / ZEONOR film adhesive Layer ZTAC film).
ぐ実施例 9 > Example 9>
(フィルム 2の作製)  (Production of film 2)
面内に位相差を有する位相差フィルム (ピュアエース W R、 帝人 (株) 製) を 2 3 0 °Cで縦一軸延伸し、 負の 2軸性を有するフィルム 2を得た。 面内の位相差 は 1 4 0 n mであった。  A retardation film (Pure Ace WR, manufactured by Teijin Ltd.) having an in-plane retardation was longitudinally uniaxially stretched at 230 ° C. to obtain a film 2 having negative biaxiality. The in-plane phase difference was 140 nm.
(楕円偏光板 9の作製)  (Preparation of elliptically polarizing plate 9)
前記楕円偏光板 1 (直線偏光板 Z粘着剤層 Z接着剤層 1 Zホメオト口ピック配 向液晶層/接着剤層 2 ) の接着剤層 2側にコロナ放電処理 ( 2 5 0 W · m i n / m 2 ) を施し、 粘着剤を介して第一の光学異方素子として前記フィルム 2を貼着 し、 楕円偏光板 9 (直線偏光板 Z粘着剤層 Z接着剤層 1 /ホメオト口ピック配向 液晶層 Z接着剤層 2 Z粘着剤層 Zフィルム 2 ) を得た。 楕円偏光板 9の層膜厚は 1 5 0 μ mであった。 Corona discharge treatment on the adhesive layer 2 side of the elliptically polarizing plate 1 (linear polarizing plate Z adhesive layer Z adhesive layer 1 Z homeoto orientation liquid crystal layer / adhesive layer 2) m 2 ), and the film 2 is pasted as a first optical anisotropic element through an adhesive, and an elliptically polarizing plate 9 (linearly polarizing plate Z adhesive layer Z adhesive layer 1 / homeotopic orientation liquid crystal Layer Z adhesive layer 2 Z pressure-sensitive adhesive layer Z film 2) was obtained. The layer thickness of the elliptically polarizing plate 9 was 1500 μm.
(垂直配向型液晶表示装置の作製)  (Production of vertical alignment type liquid crystal display device)
バックライ ト、 バックライ ト側偏光板、 V A型液晶セル、 視認側偏光板の順で 配置された市販の V A型の液晶テレビに対し、 図 3に示すように、 視認側偏光板 の替わりに本発明の楕円偏光板 9を配置した。 図 4に等コントラス ト図を示す。 本楕円偏光板 9を用いない場合に比べ、 視野角が拡大し、 斜めから見ても良好な 画像が得られることが分かった。  For the commercially available VA type liquid crystal television arranged in the order of the backlight, the backlight side polarizing plate, the VA type liquid crystal cell, and the viewing side polarizing plate, as shown in FIG. 3, the present invention is used instead of the viewing side polarizing plate. The elliptically polarizing plate 9 was disposed. Figure 4 shows an equal contrast diagram. Compared to the case where the elliptical polarizing plate 9 is not used, the viewing angle is widened, and it was found that a good image can be obtained even when viewed obliquely.
く比較例 2 > Comparative Example 2>
実施例 9の垂直配向型液晶表示装置の作製に使用したものと同型の市販 V A型 の液晶テレビに対し、 楕円偏光板 9の替わりに後記の参考例 1 4で得られた楕円 偏光板 2 4を配置した。 図 1 4に等コントラス ト図を示す。 本発明の楕円偏光板 9を用いた場合に比べ、 視野角拡大効果は少なく、 斜めから見ても良好な画像が 得られなかった。 <実施例 1 0 > For the commercially available VA type liquid crystal television of the same type as that used in the manufacture of the vertical alignment type liquid crystal display device of Example 9, instead of the elliptically polarizing plate 9, the elliptically polarizing plate obtained in Reference Example 14 described later 4 4 Arranged. Figure 14 shows an equi-contrast diagram. Compared with the case of using the elliptically polarizing plate 9 of the present invention, the effect of widening the viewing angle was small, and a good image was not obtained even when viewed from an oblique direction. <Example 1 0>
(積層体 1 0の作製)  (Production of laminate 10)
前記積層体 1の接着剤層 1側にコロナ放電処理 (250W · m i n/m2) を 施し、 粘着剤を介して第 1の光学異方素子として前記フィルム 2を貼着した後、 T ACフィルムを剥離して積層体 1 0 (接着剤層 2ノホメオト口ピック配向液晶 層/接着剤層 1Z粘着剤層 フィルム 2) を得た。 After the corona discharge treatment (250 W · min / m 2 ) is applied to the adhesive layer 1 side of the laminate 1 and the film 2 is adhered as a first optical anisotropic element via an adhesive, a TAC film The laminate 10 was peeled to obtain a laminate 10 (adhesive layer 2 homeomorphic orientation liquid crystal layer / adhesive layer 1Z pressure-sensitive adhesive layer film 2).
(楕円偏光板 1 0の作製)  (Production of elliptically polarizing plate 10)
前記積層体 1 0の接着剤層 2側にコロナ放電処理 ( 25 0 W · m i n/m2) を施し、 粘着剤を介して直線偏光板 (厚み約 1 0 5 μπι、 住友化学 (株) 製 SQ W- 06 2) を貼着し、 楕円偏光板 1 0 (直線偏光板 Ζ粘着剤層/接着剤層 2/ ホメオト口ピック配向液晶層 Ζ接着剤層 1 Ζ粘着剤層 フィルム 2 ) を得た。 ぐ参考例 1 > Corona discharge treatment (250 W · min / m 2 ) was applied to the adhesive layer 2 side of the laminate 10, and a linear polarizing plate (thickness: about 10 μμιι, manufactured by Sumitomo Chemical Co., Ltd.) via an adhesive. SQ W-06 2) is pasted to obtain an elliptically polarizing plate 10 (linear polarizing plate Ζadhesive layer / adhesive layer 2 / homeotope picked liquid crystal layer Ζadhesive layer 1 Ζadhesive layer film 2) It was. Reference Example 1>
(積層体 1 1の作製)  (Production of laminate 1 1)
面内位相差 1 05 nmの位相差フィルム (ゼォノアフィルム、 日本ゼオン (株) 製) にコロナ処理 (250W · m i.n/m2) を施し、 粘着剤を介して前記積層 体 8 (PETフィルム Z接着剤層 3Zネマチック配向液晶層) のネマチック配向 液晶層側を貼着した後、 PETフィルムを剥離して積層体 1 1 (接着剤層 3/ネ マチック配向液晶層 粘着剤層/ゼォノアフィルム) を作製した。  In-plane retardation 1 05 nm retardation film (Zeonor film, manufactured by Nippon Zeon Co., Ltd.) was subjected to corona treatment (250 W · min / m2), and the laminate 8 (PET film Z adhesive) was bonded via an adhesive. After sticking the nematic alignment liquid crystal layer side of layer 3Z nematic alignment liquid crystal layer), the PET film was peeled off to produce laminate 1 1 (adhesive layer 3 / nematic alignment liquid crystal layer pressure-sensitive adhesive layer / Zeonor film).
(楕円偏光板 1 1の作製)  (Production of elliptically polarizing plate 1 1)
前記積層体 1 1のゼォノアフィルム側にコロナ処理( 2 50 W' m i n/m 2) を施し、 粘着剤を介して直線偏光板 (厚み約 1 0 5 μπι、 住友化学 (株) 製 SQ W- 06 2) を貼着し、 楕円偏光板 1 1 (接着剤層 3Ζネマチック配向液晶層/ 粘着剤層/ゼオノァフィルム /粘着剤層/直線偏光板) を作製した。  The laminate 11 is subjected to a corona treatment (250 W 'min / m 2) on the zenoah film side, and a linear polarizing plate (thickness: about 105 μπι, manufactured by Sumitomo Chemical Co., Ltd., SQ W-06) 2) was pasted to make an elliptically polarizing plate 1 1 (adhesive layer 3Ζnematic alignment liquid crystal layer / adhesive layer / zeonor film / adhesive layer / linear polarizing plate).
く参考例 2〉 <Reference Example 2>
(楕円偏光板 1 2の作製)  (Production of elliptically polarizing plate 1 2)
前記楕円偏光板 1 1の接着剤層 3側にコロナ放電処理 (250W · m i n/m 2) を施し、 粘着剤を介して第 3の光学異方素子として負の 1軸性を有する TA Cフィルム (富士フィルム (株) 製) を貼着し、 楕円偏光板 1 2 (TACフィル ム /粘着剤層 接着剤層 3 Zネマチック配向液晶層 粘着剤層 ゼオノァフィル ム Z粘着剤層 Z直線偏光板) を作製した。 ぐ参考例 3 > A TAC film having negative uniaxiality as a third optical anisotropic element through a pressure-sensitive adhesive by applying corona discharge treatment (250 W · min / m 2 ) to the adhesive layer 3 side of the elliptically polarizing plate 11 (Fuji Film Co., Ltd.) is attached, and elliptically polarizing plate 1 2 (TAC film / adhesive layer adhesive layer 3 Z nematic alignment liquid crystal layer adhesive layer ZEONOR film Z adhesive layer Z linear polarizing plate) Produced. Reference Example 3>
(楕円偏光板 1 3の作製)  (Preparation of elliptically polarizing plate 1 3)
面内位相差 1 0 5 nmの位相差フィルム (ゼォノアフィルム、 日本ゼオン (株) 製) にコロナ放電処理 (250W · m i n/m2) を施し、 粘着剤を介して直線 偏光板 (厚み約 1 05 μιη、 住友化学 (株) 製 SQW— 06 2) を貼着し、 楕円 偏光板 1 3 (ゼォノアフィルム/粘着剤層 Ζ直線偏光板) を作製した。 An in-plane retardation of 105 nm (Zeonor film, manufactured by Nippon Zeon Co., Ltd.) was subjected to corona discharge treatment (250 W · min / m 2 ), and a linear polarizing plate (thickness approx. μιη and SQW-06 2) manufactured by Sumitomo Chemical Co., Ltd. were attached to produce an elliptically polarizing plate 1 3 (Zeonor film / adhesive layer Ζlinear polarizing plate).
ぐ参考例 4 > Reference Example 4>
(楕円偏光板 14の作製)  (Preparation of elliptically polarizing plate 14)
前記楕円偏光板 1 3のゼォノアフィルム側にコロナ処理 (250W · m i η/ m2) を施し、 粘着剤を介して前記積層体 9 (接着剤層 3Zネマチック配向液晶 層 Z接着剤層 4 /T ACフィルム)の接着剤層 3側と貼着し、楕円偏光板 1 4 (T ACフィルム Z接着剤層 4/ネマチック配向液晶層 Z接着剤層 3/ゼォノアフィ ルム /粘着剤層 / /直線偏光板) を得た。 The elliptical polarizing plate 1 3 is subjected to corona treatment (250 W · mi η / m2) on the zenoah film side, and the laminate 9 (adhesive layer 3Z nematic alignment liquid crystal layer Z adhesive layer 4 / T AC film through an adhesive) stuck with adhesive layer 3 side), elliptically polarizing plate 1 4 (T AC film Z adhesive layer 4 / nematic alignment liquid crystal layer Z adhesive layer 3 / Zeonoafi Lum / adhesive layer / / linear polarizer) Obtained.
<参考例 5 > <Reference Example 5>
(楕円偏光板 1 5の作製)  (Preparation of elliptical polarizing plate 15)
前記楕円偏光板 14の T ACフィルム側にコロナ放電処理 (250W · m i n Zm2) を施し、 粘着剤を介して第 3の光学異方素子として負の 1軸性を有する TACフ ルム (富士フィルム (株) 製) を貼着し、 楕円偏光板 1 5 (TACフ ィルム Z粘着剤層 ZT A Cフィルム /接着剤層 4 Zネマチック配向液晶層 Z接着 剤層 3 Zゼオノァフィルム Z粘着剤層/直線偏光板) を得た。 TAC film (Fuji Film) has a negative uniaxial property as the third optical anisotropic element through the adhesive by applying corona discharge treatment (250W · min Zm 2 ) to the TAC film side of the elliptically polarizing plate 14 (Made by Co., Ltd.) and an elliptically polarizing plate 1 5 (TAC film Z adhesive layer ZT AC film / adhesive layer 4 Z nematic alignment liquid crystal layer Z adhesive layer 3 Z ZEONOR film Z adhesive layer / A linear polarizing plate) was obtained.
<参考例 6 > <Reference Example 6>
(楕円偏光板 1 6の作製) コロナ放電処理 (2 5 0W · m i n/m2) を施し、 粘着剤を介して楕円偏光板 1 3 (ゼォノアフィルム/粘着剤層 直線偏光板) のゼォノアフィルム側と貼着 し、 楕円偏光板 1 6 (ポリイミ ドフィルム ゼォノアフィルム/粘着剤層/ゼォ ノアフィルム Z粘着剤層 直線偏光板) を得た。 (Manufacture of elliptical polarizing plate 1 6) Corona discharge treatment (2500 W · min / m 2 ) was applied, and the adhesive plate was attached to the elliptical polarizing plate 1 3 (Zeonor film / adhesive layer linear polarizing plate) on the zeonor film side. As a result, an elliptically polarizing plate 16 (polyimide film Xenoir film / adhesive layer / Zenoor film Z adhesive layer linearly polarizing plate) was obtained.
<参考例 7 >  <Reference Example 7>
(フィルム 3の作製)  (Production of film 3)
まず以下の方法でフィルム膜厚方向に負の 1軸異方性を有するフィルム 3を作 製した。 First, film 3 having negative uniaxial anisotropy in the film thickness direction is produced by the following method. Made.
T ACフィルムの表面をケン化後、 このフィルム上にポリビニルアルコール 1 0 質量部、 水 371質量部、 メタノール 1 1 9質量部、 グルタルアルデヒ ド 0. 5 質量部で構成される配向膜塗布液をスピンコーターで塗布した。 60°Cの温風で 60秒、 さらに 100°Cの温風で 1 20秒乾燥して膜を形成した。 次に、 形成し た膜にフィルムの遅相軸方向と平行の方向にラビング処理を施し、配向膜とした。 次に、 配向膜上に、 下記式 (13) で示されるディスコティック液晶性化合物 1. 8 g、エチレンォキサイ ド変性トリメチロールプロパントリアタリ レート (V # 360、 大阪有機化学 (株) 製) 0. 2 g、 光重合開始剤 (ィルガキュア一 9 07、 チパガィギ一社製) 0. 06 g、 増感剤 (カャキュア一 DETX、 日本化 薬 (株) 製) 0. 02 g、 を 3. 9 gのメチルェチルケトンに溶解した溶液を、 スピンコーターで塗布した。 これを金属の枠に貼り付けて、 1 25°Cの恒温槽中 で 3分間加熱し、 ディスコティック液晶化合物を配向させた。 次に、 100°Cで 1 20W " cm高圧水銀灯を用いて、 30秒間 UV照射しディスコティック液晶 化合物を架橋した。その後、室温まで放冷した。 このようにして、 フィルム 3 (デ イスコティック液晶層 配向膜/ T ACフィルム) を作製した。  After saponifying the surface of the TAC film, an alignment film coating solution composed of 10 parts by weight of polyvinyl alcohol, 371 parts by weight of water, 19 parts by weight of methanol, and 0.5 parts by weight of glutaraldehyde is deposited on the film. It was applied with a spin coater. A film was formed by drying with warm air of 60 ° C for 60 seconds and further with warm air of 100 ° C for 120 seconds. Next, the formed film was rubbed in a direction parallel to the slow axis direction of the film to obtain an alignment film. Next, on the alignment film, 1.8 g of a discotic liquid crystalline compound represented by the following formula (13), ethylene oxide-modified trimethylolpropane tritalate (V # 360, manufactured by Osaka Organic Chemical Co., Ltd.) 0.2 g, photopolymerization initiator (Irgacure 9 07, manufactured by Chipagagi Co., Ltd.) 0.06 g, sensitizer (Cacure 1 DETX, manufactured by Nippon Kayaku Co., Ltd.) 0.02 g, 3.9 A solution of g in methyl ethyl ketone was applied with a spin coater. This was affixed to a metal frame and heated in a thermostat at 125 ° C for 3 minutes to align the discotic liquid crystal compound. Next, using a 120 W "cm high-pressure mercury lamp at 100 ° C, UV irradiation was performed for 30 seconds to crosslink the discotic liquid crystal compound. Then, the discotic liquid crystal compound was allowed to cool to room temperature. Thus, film 3 (discotic liquid crystal Layer alignment film / TAC film).
Figure imgf000057_0001
Figure imgf000057_0001
(積層体 1 2の作製) (Production of laminate 1 2)
前記フィルム 3の T ACフィルム側に粘着剤を介して第 1の光学異方素子と して面内位相差 140 nmの位相差フィルム(ゼォノアフィルム、日本ゼオン(株) 製) を貼着し、 積層体 1 2 (ディスコティック液晶層 配向膜 ZTACフィルム 粘着剤層 Zゼォノアフィルム) を得た。  A film having an in-plane retardation of 140 nm (Zeonor film, manufactured by Nippon Zeon Co., Ltd.) is attached as a first optical anisotropic element via an adhesive to the TAC film side of the film 3 and laminated. Body 1 2 (discotic liquid crystal layer alignment film ZTAC film pressure-sensitive adhesive layer Z-Zeonor film) was obtained.
(積層体 1 3の作製) 面内位相差 1 05 nmの位相差フィルム (ゼォノアフィルム、 日本ゼオン (株) 製) にコロナ処理 (2 50W · m i n/m2) を施し、 粘着剤を介して、 前記積 層体 1 2のゼォノアフィルム側と貼着し、 積層体 1 3 (ディスコティック液晶層 /配向膜ノ T A Cフィルム /粘着剤層ノゼオノァフィルム/粘着剤層 Zゼォノァ フィルム) を得た。 (Preparation of laminate 1 3) In-plane retardation 1 05 nm retardation film (Zeonor film, manufactured by Nippon Zeon Co., Ltd.) was subjected to corona treatment (250 W min / m 2 ), and the Zenoor film of the laminated body 1 2 was passed through an adhesive. The laminate 1 3 (discotic liquid crystal layer / alignment film no TAC film / adhesive layer nose oner film / adhesive layer Z zonah film) was obtained.
(楕円偏光板 1 7の作製)  (Production of elliptically polarizing plate 1 7)
前記積層体 1 3のゼォノアフィルム側にコロナ放電処理 (250W · m i n/ m2) を施し、 粘着剤を介して、 直線偏光板 (厚み約 1 0 5 m、 住友化学 (株) 製3(3 ー06 2) を貼着し、 楕円偏光板 1 7 (ディスコティック液晶層 / 配向 膜ノ T A Cフィルム 粘着剤層/ゼオノアブイルム Z粘着剤層ノゼォノアフィル ム Z粘着剤層ノ直線偏光板) を作製した。 Corona discharge treatment (250 W · min / m 2 ) was applied to the Xenoah film side of the laminate 13 and a linear polarizing plate (thickness: about 105 m, manufactured by Sumitomo Chemical Co., Ltd. 3 (3 06 2) was pasted to produce an elliptically polarizing plate 1 7 (discotic liquid crystal layer / alignment film TAC film pressure-sensitive adhesive layer / Zeono Aluminum Z pressure-sensitive adhesive layer nozeonofilm Z pressure-sensitive adhesive layer-linear polarizing plate).
<参考例 8 > <Reference Example 8>
(積層体 14の作製)  (Preparation of laminate 14)
面内位相差 140 nmの位相差フィルム (ゼォノア、 日本ゼオン (株) 製) に コロナ放電処理 (2 50W · m i n/m2) を施し、 粘着剤を介して面内位相差 1 0 5 nmの位相差フィルム (ピュアエース、 帝人 (株) 製) を貼着し、 積層体Corona discharge treatment (2 50 W · min / m 2 ) was applied to a retardation film (Zenoah, manufactured by Nippon Zeon Co., Ltd.) with an in-plane retardation of 140 nm, and an in-plane retardation of 105 nm was applied via an adhesive. A phase difference film (Pure Ace, manufactured by Teijin Limited) is pasted and laminated.
14 (ゼォノアフィルム/粘着剤層 Zピュアエースフィルム) を得た。 14 (Zeonor film / adhesive layer Z pure ace film) was obtained.
(フィルム 4の作製)  (Production of film 4)
まず以下の方法でフィルム膜厚方向に負の 1軸異方性を有するフィルム 4を作 製した。  First, a film 4 having negative uniaxial anisotropy in the film thickness direction was produced by the following method.
光重合性メ ソゲン化合物 (B AS F社製 L C 242) 90. 5重量部、 重合性 カイラル剤 (BAS F社製 LC 75 6) 9. 5重量部および溶媒 (シクロへキサ ノン) を選択反射中心波長が 300 nmとなるよう調整配合した溶液に、 その固 形分に対し、 光重合開始剤 (チバスペシャルティケミカルズ社製, ィルガキュア 907) を 3重量。 /0添加した塗工液 (固形分含有量 30重量%) を調製した。 当 該塗工液を、 延伸ポリエチレンテレフタレートフィルム (配向基材) 上にスピン コータを用いて乾燥後の厚みで 6 mとなるように塗設し、 溶媒を 1 00°Cで 2 分間乾燥させた。 得られた膜に、 配向基材側から 3 5°Cの空気雰囲気下で第 1紫 外線照射を 5 OmW/cm2で、 1秒間行った。 その後、 紫外線照射なしの状態 で、 80°Cで 1分間加熱した。次に、第 2紫外線照射を 80°Cの空気雰囲気下で、 5mW/cm2で、 60秒間行った。 次いで、 50 °Cの窒素雰囲気下で配向基材 側から第 3紫外線照射を 8 OmW/cm2で、 30秒間行い、 選択波長が 250 〜350 nmの広帯域コレステリック液晶層を形成した。 次いで、 コレステリッ ク液晶層側にトリァセチルセルロースフィルムをァク リル系粘着剤で貼り合せ、 80°Cで 5分間乾燥した。 次いで、 配向基材を静かに剥離しフィルム 4 (コレス テリック液晶層 粘着剤層/ TACフィルム) を得た。 Photopolymerizable mesogenic compound (LC 242 manufactured by BAS F) 90.5 parts by weight, polymerizable chiral agent (LC 75 6 manufactured by BAS F) 9.5 parts by weight and solvent (cyclohexanone) selectively reflected 3 weights of photopolymerization initiator (Irgacure 907, manufactured by Ciba Specialty Chemicals Co., Ltd.) is added to the solution that is adjusted and blended so that the center wavelength is 300 nm. A coating solution with 0 added (solid content 30 wt%) was prepared. The coating solution was applied on a stretched polyethylene terephthalate film (alignment substrate) using a spin coater so that the thickness after drying was 6 m, and the solvent was dried at 100 ° C for 2 minutes. . The obtained film was irradiated with the first ultraviolet ray at 5 OmW / cm 2 for 1 second in an air atmosphere at 35 ° C. from the alignment substrate side. Then, it was heated at 80 ° C for 1 minute without UV irradiation. Next, the second UV irradiation is performed in an air atmosphere at 80 ° C. Performed at 5 mW / cm 2 for 60 seconds. Next, irradiation of the third ultraviolet ray from the alignment substrate side at 8 OmW / cm 2 was performed for 30 seconds in a nitrogen atmosphere at 50 ° C. to form a broadband cholesteric liquid crystal layer having a selected wavelength of 250 to 350 nm. Next, a triacetyl cellulose film was bonded to the cholesteric liquid crystal layer side with an acrylic adhesive and dried at 80 ° C. for 5 minutes. Next, the alignment substrate was gently peeled off to obtain film 4 (cholesteric liquid crystal layer pressure-sensitive adhesive layer / TAC film).
(積層体 1 5の作製)  (Production of laminate 15)
前記積層体 14のゼォノアフィルム側にコロナ放電処理 (250W · m i n/ m2) を施し、 粘着剤を介してフィルム 4の TACフィルム側を貼着し、,、積層体 1 5 (コレステリ ック液晶層 Z粘着剤層 ZTACフィルム Z粘着剤層 Zゼォノア フィルム /粘着剤層/ピュアエースフィルム) を得た。 Corona discharge treatment (250 W · min / m 2 ) is applied to the zenoah film side of the laminate 14, and the TAC film side of the film 4 is adhered via an adhesive, and the laminate 15 (cholesteric liquid crystal layer) Z pressure-sensitive adhesive layer ZTAC film Z pressure-sensitive adhesive layer Z zeonor film / pressure-sensitive adhesive layer / pure ace film).
(楕円偏光板 18の作製)  (Preparation of elliptically polarizing plate 18)
前記積層体 1 5のピュアエースフィルム側にコロナ放電処理 (250W · m i n/m2) を施し、粘着剤を介して直線偏光板(厚み約 105 μπι、住友化学(株) 製 SQW— 062) を貼着し、 楕円偏光板 1 8 (コレステリック液晶層/粘着剤 層 ΖΤ A Cフィルム /粘着剤層/ゼオノァフィルム /粘着剤層 Zピュアエースフ イルム/粘着剤層/直線偏光板) を作製した。 Corona discharge treatment (250 W · min / m 2 ) was applied to the pure ace film side of the laminate 15 and a linear polarizing plate (thickness: about 105 μπι, manufactured by Sumitomo Chemical Co., Ltd. SQW-062) was applied via an adhesive. Adhesion was made to produce an elliptically polarizing plate 18 (cholesteric liquid crystal layer / adhesive layer ΖΤ AC film / adhesive layer / Zeonor film / adhesive layer Z Pure Ace film / adhesive layer / linear polarizing plate).
ぐ参考例 9 > Reference Example 9>
(フィルム 5の作製)  (Production of film 5)
まず以下の方法でフィルム面内方向に正の 1軸異方性を有するフィルム 5を作 製した。  First, a film 5 having positive uniaxial anisotropy in the in-plane direction of the film was produced by the following method.
光重合性メ ソゲン化合物 (BAS F社製 LC 242) 100重量部および溶媒 (シクロへキサノン) を混合した溶液に、 その固形分に対し、 光重合開始剤 (チ バスペシャルティケミカルズ社製, ィルガキュア 907) を 3重量%添加した塗 ェ液 (固形分含有量 30重量%) を調製した。 当該塗工液を、 延伸ポリエチレン テレフタレートフィルム (配向基材) 上にスピンコーターを用いて乾燥後の厚み で 6 μπιとなるように塗設し、 溶媒を 100°Cで 2分間乾燥させた。 得られた膜 に、 配向基材側から 35 °Cの空気雰囲気下で第 1紫外線照射を 5 OmW/c m2 で、 1秒間行った。その後、紫外線照射なしの状態で、 80°Cで 1分間加熱した。 次に、 第 2紫外線照射を 80°Cの空気雰囲気下で、 5mW/cm2で、 60秒間 行い、 フィルム面内に正の 1軸異方性を有するネマチック液晶層を形成した。 次 いで、 ネマチック液晶層側にトリァセチルセルロースフィルムをァクリル系粘着 剤で貼り合せ、 80°Cで 5分間乾燥した。 次いで、 配向基材を静かに剥離しブイ ルム 5 (ネマチック液晶配向層 粘着剤層/ TACフィルム) を得た。 A photopolymerization initiator (Ciba Specialty Chemicals, Irgacure 907) was added to a solution in which 100 parts by weight of a photopolymerizable mesogenic compound (LC 242 manufactured by BAS F) and a solvent (cyclohexanone) were mixed. ) Was added to prepare a coating solution (solid content 30% by weight). The coating solution was applied onto a stretched polyethylene terephthalate film (alignment substrate) using a spin coater so that the thickness after drying was 6 μπι, and the solvent was dried at 100 ° C. for 2 minutes. The obtained film was irradiated with the first ultraviolet ray at 5 OmW / cm 2 for 1 second in an air atmosphere at 35 ° C. from the alignment substrate side. Then, it was heated at 80 ° C for 1 minute without ultraviolet irradiation. Next, the second UV irradiation is performed at 5 mW / cm 2 for 60 seconds in an air atmosphere at 80 ° C. And a nematic liquid crystal layer having positive uniaxial anisotropy was formed in the film plane. Next, a triacetyl cellulose film was bonded to the nematic liquid crystal layer side with an acrylic adhesive and dried at 80 ° C. for 5 minutes. Next, the alignment substrate was gently peeled to obtain film 5 (nematic liquid crystal alignment layer pressure-sensitive adhesive layer / TAC film).
(フィルム 6の作製)  (Production of film 6)
面内に位相差を有する位相差フィルム (ァートン、 J S R (株)製) を 230°C で縦一軸延伸し、 負の 2軸性を有するフィルム 6を得た。 面内位相差は 140 η mであった。  A retardation film having an in-plane retardation (Warton, manufactured by JSR Co., Ltd.) was longitudinally uniaxially stretched at 230 ° C. to obtain a film 6 having negative biaxiality. The in-plane retardation was 140 ηm.
(積層体 16の作製)  (Production of laminate 16)
前記フィルム 6にコロナ放電処理 (250 W . m i n/m2) を施し、 粘着剤 を介して第 4の光学異方素子として面内に正の 1軸性を有するフィルム 5の T A Cフィルム側を貼着し、 積層体 16 (フィルム 6Z粘着剤層/ネマチック液晶配 向層 Z粘着剤層 ZT ACフィルム) を得た。 The film 6 is subjected to corona discharge treatment (250 W. min / m 2 ), and the TAC film side of the film 5 having positive uniaxiality in the plane is pasted as a fourth optical anisotropic element through an adhesive. The laminate 16 (film 6Z adhesive layer / nematic liquid crystal alignment layer Z adhesive layer ZT AC film) was obtained.
(楕円偏光板 1 9の作製)  (Production of elliptically polarizing plate 19)
前記積層体 1 6の T ACフィルム側にコロナ処理 (250W · m i n/m 2) を施し、 粘着剤を介して直線偏光板 (厚み約 105 i m、 住友化学 (株) 製 SQ W- 062) を貼着し、 楕円偏光板 19 (フィルム 6/粘着剤層ノネマチック液 晶配向層/粘着剤層/ T ACフィルム/粘着剤層 直線偏光板) を作製した。 ぐ参考例 10 >  Corona treatment (250 W · min / m 2) is applied to the TAC film side of the laminate 16 and a linear polarizing plate (thickness: about 105 im, SQ W-062 manufactured by Sumitomo Chemical Co., Ltd.) is applied via an adhesive. An elliptically polarizing plate 19 (film 6 / adhesive layer non-matic liquid crystal alignment layer / adhesive layer / TAC film / adhesive layer linear polarizing plate) was prepared. Reference Example 10>
(楕円偏光板 20の作製)  (Production of elliptically polarizing plate 20)
前記楕円偏光板 13 (ゼォノアフィルム/粘着剤層 Z直線偏光板) のゼォノア フィルム側にコロナ放電処理 (250W · m i nZm2) を施し、 粘着剤を介し て第 4の光学異方素子として負の 2軸性を有する前記フィルム 6を貼着し、 楕円 偏光板 20 (フィルム 6 Z粘着剤層/ゼオノァフィルムノ粘着剤層/直線偏光板) を得た。 The elliptical polarizing plate 13 (Zeonor film / adhesive layer Z linear polarizing plate) is subjected to a corona discharge treatment (250 W · minZm 2 ) on the side of the zenoir film, and a negative 2 as a fourth optical anisotropic element through the adhesive. The axially polarizing film 6 was stuck to obtain an elliptically polarizing plate 20 (film 6 Z pressure-sensitive adhesive layer / Zeonoa film pressure-sensitive adhesive layer / linearly polarizing plate).
<参考例 1 1 >  <Reference Example 1 1>
(楕円偏光板 21の作製)  (Preparation of elliptically polarizing plate 21)
前記積層体 5 (ポリエーテルケトンフィルム Zゼォノアフィルム) のゼォノア フィルム側にコロナ放電処理 (250W · m i nZm2) を施し、 粘着剤を介し て直線偏光板(厚み約 105 m、住友化学(株)製 S Q W— 062) を貼着し、 楕円偏光板 2 1 (ポリエーテルケトンフィルム Zゼォノアフィルム/粘着剤層 / 直線偏光板) を得た。 Corona discharge treatment (250W · minZm 2 ) is applied to the Zeonor film side of the laminate 5 (Polyetherketone film Z Zeonor film), and a linear polarizing plate (thickness: about 105 m, manufactured by Sumitomo Chemical Co., Ltd.) is used. SQW—062) An elliptically polarizing plate 2 1 (polyether ketone film Z zeonor film / adhesive layer / linearly polarizing plate) was obtained.
ぐ参考例 1 2 > Reference Example 1 2>
(楕円偏光板 22の作製)  (Preparation of elliptically polarizing plate 22)
面内位相差 140 nmの位相差フィルム (ゼォノアフィルム、 日本ゼオン (株) 製) にコロナ放電処理 (250W · m i n/m2) を施し、 粘着剤を介して直線 偏光板 (厚み約1 05 111、 住友化学 (株) 製3(3\^— 06 2) を貼着し、 楕円 偏光板 22 (ゼォノアフィルム/粘着剤層 Z直線偏光板) を得た。 Corona discharge treatment (250W · min / m 2 ) is applied to a retardation film with an in-plane retardation of 140 nm (Zeonor film, manufactured by ZEON CORPORATION), and a linear polarizing plate (thickness approx. 3 (3 \ ^-06 2) manufactured by Sumitomo Chemical Co., Ltd. was pasted to obtain an elliptically polarizing plate 22 (Zeonor film / adhesive layer Z linear polarizing plate).
ぐ参考例 1 3 > Reference Example 1 3>
• (楕円偏光板 23の作製) • (Production of elliptically polarizing plate 23)
前記楕円偏光板 22 (ゼォノアフィルム/粘着剤層ノ直線偏光板) のゼォノア フィルム側にコロナ放電処理 (2 50W · m i n/m2) を施し、 粘着剤を介し て前記第 3の光学異方素子として負の 1軸性を有する前記フィルム 1を貼着し、 楕円偏光板 23 (フィルム 1Z粘着剤層 Zゼォノアフィルム Z粘着剤層/直線偏 光板) を得た。 The elliptical polarizing plate 22 (Zeonor film / adhesive layer linearly polarizing plate) is subjected to corona discharge treatment (250 W · min / m 2 ) on the side of the zenoir film, and the third optical anisotropic element is formed via the adhesive. The film 1 having negative uniaxiality was stuck to obtain an elliptically polarizing plate 23 (film 1Z pressure-sensitive adhesive layer Z zeonor film Z pressure-sensitive adhesive layer / linearly polarizing plate).
く参考例 14 > Reference Example 14>
(楕円偏光板 24の作製)  (Preparation of elliptically polarizing plate 24)
第 1の光学異方素子として負の 2軸性を有する前記フィルム 6にコロナ放電処 理 (2 50W · m i n/m2) を施し、 粘着剤を介して直線偏光板 (厚み約 1 0 5 M m, 住友化学 (株) 製3<3\ — 06 2) を貼着し、 楕円偏光板 24 (フィル ム 6 /粘着剤層 Z直線偏光板) を得た。 The film 6 having negative biaxiality as the first optical anisotropic element is subjected to a corona discharge treatment (250 W · min / m 2 ), and a linear polarizing plate (thickness of about 10 5 M) via an adhesive. m, 3 <3 \ — 06 2) manufactured by Sumitomo Chemical Co., Ltd. was attached to obtain an elliptically polarizing plate 24 (film 6 / adhesive layer Z linear polarizing plate).
<実施例 1 1〜 1 3 > <Example 1 1 to 1 3>
実施例 2で使用したものと同型の VA型の液晶テレビを用いて図 5に示すよう に前記の実施例 1〜 1 0および参考例 1〜 1 4で得た楕円偏光板おょぴ光学異方 素子と垂直配向型液晶表示セルとを配置し、 垂直配向型液晶表示装置を作製した (使用した楕円偏光板番号等は表 1参照)。  Using the VA type liquid crystal television of the same type as that used in Example 2, as shown in FIG. 5, the elliptically polarizing plates obtained in Examples 1 to 10 and Reference Examples 1 to 14 described above were used. The element and a vertical alignment type liquid crystal display cell were arranged to produce a vertical alignment type liquid crystal display device (see Table 1 for the number of elliptical polarizing plates used).
その結果、 本発明の楕円偏光板を用いない場合に比べ、 視野角が拡大し、 斜め から見ても良好な画像が得られることが分かった。  As a result, it was found that, compared with the case where the elliptically polarizing plate of the present invention was not used, the viewing angle was enlarged and a good image was obtained even when viewed obliquely.
なお、 実施例 1 3の等コントラス ト図を図 6に示す。  Fig. 6 shows the equi-contrast diagram of Example 13.
<比較例 3 > バックライ ト側偏光板、 V A型液晶セル、 視認側偏光板の順で配置された市販 の V A型の液晶テレビに対し、 図 1 5に示すように、 視認側偏光板の替わりに前 記楕円偏光板 2 5を、 パックライト側偏光板の代わりに前記楕円偏光板 1 2を配 置した。 その結果、 本発明の楕円偏光板を用いた場合に比べ、 視野角拡大効果は 少なく、 斜めから見ても良好な画像が得られなかった。 <Comparative Example 3> For the commercially available VA liquid crystal TVs arranged in the order of backlight side polarizing plate, VA type liquid crystal cell, and viewing side polarizing plate, as shown in Fig. 15, instead of the viewing side polarizing plate, the elliptical polarization The plate 25 was provided with the elliptically polarizing plate 12 instead of the pack light side polarizing plate. As a result, the viewing angle expansion effect was small as compared with the case where the elliptically polarizing plate of the present invention was used, and a good image could not be obtained even when viewed obliquely.
なお、 等コントラスト図を図 1 6に示す。  An isocontrast diagram is shown in Figure 16.
<比較例 4 >  <Comparative Example 4>
実施例 1 3の第 3の光学異方素子の厚さ方向のリタデーション R t h 2を 1 0 n mとした以外は実施例 1 3と同様にして図 5に示す垂直配向型液晶表示装置を 作製した。 その結果、 本発明の楕円偏光板を用いた場合に比べ、 視野角拡大効果 は少なく、 斜めから見ても良好な画像が得られなかった。  A vertical alignment type liquid crystal display device shown in FIG. 5 was produced in the same manner as in Example 13 except that the retardation R th 2 in the thickness direction of the third optical anisotropic element of Example 13 was 10 nm. . As a result, the viewing angle expansion effect was small as compared with the case where the elliptically polarizing plate of the present invention was used, and a good image was not obtained even when viewed from an oblique direction.
なお、 等コントラス ト図を図 1 7に示す。  An equal contrast diagram is shown in Figure 17.
<実施例 1 4〜 1 6 > <Example 1 4 to 1 6>
実施例 2で使用したものと同型の V A型の液晶テレビを用いて図 5の配置にお いて、 第 4の光学異方素子を配置しなかった以外は実施例 1 1と同様に行い、 垂 直配向型液晶表示装置を作製した (使用した楕円偏光板番号等は表 1参照)。 その結果、 本発明の楕円偏光板を用いない場合に比べ、 視野角が拡大し、 斜め から見ても良好な画像が得られることが分かった。  Using the same type of VA-type liquid crystal television used in Example 2, except that the fourth optical anisotropic element was not arranged in the arrangement of FIG. A direct-alignment type liquid crystal display device was produced (see Table 1 for the number of elliptically polarizing plates used). As a result, it was found that, compared with the case where the elliptically polarizing plate of the present invention was not used, the viewing angle was enlarged and a good image was obtained even when viewed obliquely.
<実施例 1 7〜 1 9〉 <Example 1 7 to 1 9>
実施例 2で使用したものと同型の V A型の液晶テレビを用いて図 7の配置にお いて、 第 3の光学異方素子を配置しなかった以外は実施例 1 1と同様に行い、 垂 直配向型液晶表示装置を作製した (使用した楕円偏光板番号等は表 1参照)。 その結果、 本発明の楕円偏光板を用いない場合に比べ、 視野角が拡大し、 斜め から見ても良好な画像が得られることが分かった。  7 using the same type of VA type liquid crystal television as used in Example 2, except that the third optical anisotropic element was not arranged in the arrangement of FIG. A direct-alignment type liquid crystal display device was produced (see Table 1 for the number of elliptically polarizing plates used). As a result, it was found that, compared with the case where the elliptically polarizing plate of the present invention was not used, the viewing angle was enlarged and a good image was obtained even when viewed obliquely.
なお、 実施例 1 9の等コントラス ト図を図 8に示す。  An equal contrast diagram for Example 19 is shown in FIG.
<実施例 2 0〜 2 2 > <Example 2 0 to 2 2>
実施例 2で使用したものと同型の V A型の液晶テレビを用いて図 9に示すよう に前記の実施例 1〜 1 0および参考例 1〜 1 4で得た楕円偏光板および光学異方 素子と垂直配向型液晶表示セルとを配置し、 垂直配向型液晶表示装置を作製した (使用した楕円偏光板番号等は表 1参照)。 その結果、 本発明の楕円偏光板を用いない場合に比べ、 視野角が拡大し、 斜め から見ても良好な画像が得られることが分かった。 Using the same type of VA type liquid crystal television used in Example 2, as shown in FIG. 9, the elliptically polarizing plate and the optical anisotropic element obtained in Examples 1 to 10 and Reference Examples 1 to 14 are used. And a vertical alignment type liquid crystal display cell were arranged to produce a vertical alignment type liquid crystal display device (see Table 1 for the number of elliptically polarizing plates used). As a result, it was found that, compared with the case where the elliptically polarizing plate of the present invention was not used, the viewing angle was enlarged and a good image was obtained even when viewed obliquely.
なお、 実施例 22の等コントラス ト図を図 1 0に示す。  An equivalent contrast diagram of Example 22 is shown in FIG.
く実施例 23 > Example 23>
(積層体 1 7の作製)  (Preparation of laminate 17)
前記中間積層体( P E Tフィルム/接着剤層 1 Zホメオト口ピック配向液晶層) に市販の UV硬化型接着剤 (UV— 3400、 東亞合成 (株) 製) にシリ コーン 系表面改質剤 (ペインタッド 32、 東レ .ダゥコ一ユング (株) 製) を 4重量部 添加したものを接着剤層 5として 5 μ m厚となるように塗布し、 トリァセチルセ ルロース (TAC) フィルムでラミネートして、 T ACフィルム側から紫外線を 照射して接着剤層 5を硬化させた後、 PETフィルムを剥離して、積層体 1 Ί (接 着剤層 1/ホメオト口ピック配向液晶層 Z接着剤層 5 ZT A Cフィルム)を得た。  Commercially available UV curable adhesive (UV-3400, manufactured by Toagosei Co., Ltd.) and silicone-based surface modifier (Paintad) 32, manufactured by Toray Dakoi-Jung Co., Ltd.) was added as an adhesive layer 5 to a thickness of 5 μm, laminated with triacetyl cellulose (TAC) film, and TAC film After curing the adhesive layer 5 by irradiating ultraviolet rays from the side, the PET film was peeled off, and the laminate 1 Ί (adhesive layer 1 / homeotope orientation liquid crystal layer Z adhesive layer 5 ZT AC film) Got.
(積層体 1 8の作製)  (Production of laminate 1 8)
積層体 1 7の接着剤層 1側にコロナ放電処理 (2 5 0W · m i n/m2) を施 し、 粘着剤を介して第 1の光学異方素子として面内位相差 140 nmの位相差フ イルム (ゼォノアフィルム、 日本ゼオン (株) 製) を貼着した後、 TACフィル ムを接着剤層 5が貼着した状態で剥がして積層体 1 8 (ホメオト口ピック配向液 晶層 Z接着剤層 1 /粘着剤層 Zゼォノァフィルム) を得た。 Corona discharge treatment (2500 W · min / m 2 ) was applied to the adhesive layer 1 side of the laminate 17 and an in-plane retardation of 140 nm was obtained as the first optical anisotropic element via the adhesive. After pasting the film (Zeonor Film, manufactured by Nippon Zeon Co., Ltd.), the TAC film was peeled off with the adhesive layer 5 adhered, and the laminate 1 8 (homeotope orientation liquid crystal layer Z adhesive layer 1 / adhesive layer Z zeno film).
(積層体 1 9の作製)  (Production of laminate 1 9)
積層体 1 8のゼォノアフィルム側にコロナ放電処理 ( 250W . m i n/m2) を施し、 粘着剤を介して第 3の光学異方素子として負の 1軸性を有する T ACフ イルム (富士フィルム (株) 製) を貼着し、 積層体 1 9 (ホメオト口ピック配向 液晶層/接着剤層 1 Z粘着剤層/ゼオノァフィルム /粘着剤層/ T A Cフィル ム) を得た。 Corona discharge treatment (250 W. min / m 2 ) was applied to the Xenoah film side of the laminate 18 and a negative uniaxial TAC film (Fuji Film ( Manufactured)) to obtain a laminated body 19 (homeotope orientation liquid crystal layer / adhesive layer 1 Z pressure-sensitive adhesive layer / Zeonor film / pressure-sensitive adhesive layer / TAC film).
(楕円偏光板 26の作製)  (Preparation of elliptically polarizing plate 26)
直線偏光板 (厚み約 1 05 μπι、 住友化学 (株) 製 SQW— 06 2) にコロナ 放電処理 (25 OW · m i n/m2) を施し、 粘着剤を介して積層体 1 9のホメ オト口ピック配向液晶層面と貼着し、 楕円偏光板 26 (直線偏光板 粘着剤層/ ホメオト口ピック配向液晶層 接着剤層 1 粘着剤層 Zゼオノァフィルム /粘着 剤層 ZT ACフィルム) を得た。 <比較例 5 > Linear polarizer corona discharge treatment (25 OW · min / m 2 ) applied to (a thickness of about 1 05 μ πι, Sumitomo Chemical Co., Ltd. SQW- 06 2), praise ot the laminate 1 9 with an adhesive Sticking with the mouth-pick orientation liquid crystal layer surface, an elliptically polarizing plate 26 (linear polarizing plate pressure-sensitive adhesive layer / homeoto mouth-pick orientation liquid crystal layer adhesive layer 1 pressure-sensitive adhesive layer Z ZEONOR film / pressure-sensitive adhesive layer ZT AC film) was obtained. . <Comparative Example 5>
ポリスチレンをフィルム面内方向に 2軸延伸させ、 厚さ方向の位相差が一 1 9 5 n mの光学的に正の 1軸性を有するフィルム 7を作製した。 実施例 2のホメォ トロピック配向液晶層を、 フィルム 7に置き換えた以外は実施例 2と同様にして 図 5に示す垂直配向型液晶表示装置を作製した。 その結果、 本発明の楕円偏光板 に比べ、 大幅に厚みが増し総膜厚が 4 5 0 mとなった。 表 1  Polystyrene was biaxially stretched in the in-plane direction of the film to produce an optically positive uniaxial film 7 having a thickness difference of 1195 nm. A vertical alignment type liquid crystal display device shown in FIG. 5 was produced in the same manner as in Example 2 except that the homeotropic alignment liquid crystal layer in Example 2 was replaced with film 7. As a result, the thickness was significantly increased compared to the elliptical polarizing plate of the present invention, and the total film thickness was 4500 m. table 1
Figure imgf000064_0001
Figure imgf000064_0001
[図面の簡単な説明] [Brief description of drawings]
図 1は、 実施例 2で用いた垂直配向型液晶表示装置の断面模式図である。  FIG. 1 is a schematic cross-sectional view of a vertical alignment type liquid crystal display device used in Example 2.
図 2は、 実施例 2における垂直配向型液晶表示装置を全方位から見たときのコ ントラスト比を示す図である。  FIG. 2 is a diagram showing the contrast ratio when the vertical alignment type liquid crystal display device in Example 2 is viewed from all directions.
図 3は、 実施例 9で用いた垂直配向型液晶表示装置の断面模式図である。  FIG. 3 is a schematic cross-sectional view of the vertical alignment type liquid crystal display device used in Example 9.
図 4は、 実施例 9における垂直配向型液晶表示装置を全方位から見たときのコ ントラスト比を示す図である。  FIG. 4 is a graph showing the contrast ratio when the vertical alignment type liquid crystal display device in Example 9 is viewed from all directions.
図 5は、 実施例 1 3で用いた垂直配向型液晶表示装置の断面模式図である。 図 6は、 実施例 1 3における垂直配向型液晶表示装置を全方位から見たときの コントラスト比を示す図である。 図 7は、 実施例 1 9で用いた垂直配向型液晶表示装置の断面模式図である。 図 8は、 実施例 1 9における垂直配向型液晶表示装置を全方位から見たときの コントラスト比を示す図である。 FIG. 5 is a schematic cross-sectional view of the vertical alignment type liquid crystal display device used in Example 13. FIG. 6 is a graph showing the contrast ratio when the vertical alignment type liquid crystal display device in Example 13 is viewed from all directions. FIG. 7 is a schematic cross-sectional view of the vertical alignment type liquid crystal display device used in Example 19. FIG. 8 is a graph showing the contrast ratio when the vertical alignment type liquid crystal display device in Example 19 is viewed from all directions.
図 9は、 実施例 2 2で用いた垂直配向型液晶表示装置の断面模式図である。 図 1 0は、 実施例 2 2における垂直配向型液晶表示装置を全方位から見たとき のコントラスト比を示す図である。  FIG. 9 is a schematic cross-sectional view of the vertical alignment type liquid crystal display device used in Example 22. FIG. 10 is a diagram showing the contrast ratio when the vertical alignment type liquid crystal display device in Example 22 is viewed from all directions.
図 1 1は、 比較例 1で用いた垂直配向型液晶表示装置の断面模式図である。 図 1 2は、 比較例 1における垂直配向型液晶表示装置を全方位から見たときの コントラス ト比を示す図である。  FIG. 11 is a schematic cross-sectional view of the vertical alignment type liquid crystal display device used in Comparative Example 1. FIG. 12 is a diagram showing the contrast ratio when the vertical alignment type liquid crystal display device in Comparative Example 1 is viewed from all directions.
図 1 3は、 比較例 2で用いた垂直配向型液晶表示装置の断面模式図である。 図 1 4は、 比較例 2における垂直配向型液晶表示装置を全方位から見たときの コントラスト比を示す図である。  FIG. 13 is a schematic cross-sectional view of the vertical alignment type liquid crystal display device used in Comparative Example 2. FIG. 14 is a diagram showing the contrast ratio when the vertical alignment type liquid crystal display device in Comparative Example 2 is viewed from all directions.
図 1 5は、 比較例 3で用いた垂直配向型液晶表示装置の断面模式図である。 図 1 6は、 比較例 3における垂直配向型液晶表示装置を全方位から見たときの コントラス小比を示す図である。  FIG. 15 is a schematic cross-sectional view of the vertical alignment type liquid crystal display device used in Comparative Example 3. FIG. 16 is a diagram showing a small contrast ratio when the vertical alignment type liquid crystal display device in Comparative Example 3 is viewed from all directions.
図 1 7は、 比較例 4における垂直配向型液晶表示装置を全方位から見たときの コントラスト比を示す図である。  FIG. 17 is a graph showing the contrast ratio when the vertically aligned liquid crystal display device in Comparative Example 4 is viewed from all directions.
(符号の説明)  (Explanation of symbols)
1 直線偏光板  1 Linear polarizing plate
2 ホメオト口ピック配向液晶フィルム  2 Home-to-mouth pick alignment liquid crystal film
3 第 1の光学異方素子  3 First optical anisotropic element
4 第 1の光学異方素子 (負の 2軸性)  4 First optical anisotropic element (negative biaxiality)
5 第 3の光学異方素子  5 Third optical anisotropic element
6 第 4の光学異方素子  6 Fourth optical anisotropic element
7 垂直配向型液晶セル  7 Vertical alignment type liquid crystal cell

Claims

請 求 の 範 囲 The scope of the claims
1. 少なくとも正の一軸性を示す液晶材料を液晶状態においてホメォト 口ピック配向させた後、 該配向を固定化したホメオト口ピック配向液晶フィルム と直線偏光板とからなる垂直配向型液晶表示装置用楕円偏光板。 1. An ellipse for a vertical alignment type liquid crystal display device comprising a home-orifice pick-alignment liquid crystal film in which a liquid crystal material exhibiting at least positive uniaxiality is home-orientated in a liquid crystal state and then the orientation is fixed, and a linear polarizing plate Polarizer.
2. 前記ホメオト口ピック配向液晶フィルムが以下の [1] および [2] を満たすことを特徴とする請求項 1記載の垂直配向型液晶表示装置用楕円偏光板。 2. The elliptically polarizing plate for a vertical alignment type liquid crystal display device according to claim 1, wherein the homeotope pick alignment liquid crystal film satisfies the following [1] and [2].
[ 1 ] 0 nm≤R e 1≤ 20 nm  [1] 0 nm≤R e 1≤ 20 nm
[2] - 500 nm≤R t h l≤-30 nm  [2]-500 nm≤R t h l≤-30 nm
(ここで、 R e 1は前記ホメオト口ピック配向液晶フィルムの面内のリターデー ション値を意味し、 R t h 1は前記ホメオト口ピック配向液晶フィルムの厚さ方 向のリタ一デーシヨン値を意味する。 前記 R e 1及び R t h 1は、 それぞれ R e 1 = (N X 1 -N y 1 ) X d 1 [nm], R t h 1 = (Nx l—N z 1) X d 1 [n m] である。 また、 d 1は前記ホメオト口ピック配向液晶フィルムの厚さ、 Nx 1および Ny 1は前記ホメオト口ピック配向液晶フィルム面內の主屈折率、 N z 1は厚さ方向の主屈折率であり、 N z l〉Nx l≥Ny lである。)  (Here, R e 1 means the in-plane retardation value of the home-mouth pick-aligned liquid crystal film, and R th 1 means the retardation value in the thickness direction of the home-top pick-aligned liquid crystal film. R e 1 and R th 1 are R e 1 = (NX 1 −N y 1) X d 1 [nm] and R th 1 = (Nx 1−N z 1) X d 1 [nm], respectively. D 1 is the thickness of the liquid crystal film with home-orifice pick alignment, Nx 1 and Ny 1 are the main refractive index of the surface of the liquid crystal film with home-ortho-picked picking, and N z 1 is the main refractive index in the thickness direction. Yes, N zl> Nx l≥Ny l.)
3. 前記ホメオト口ピック配向液晶層が、 ォキセタニル基を有する液晶 性高分子化合物を少なくとも含有してなる液晶性組成物を、 液晶状態でホメオト 口ピック配向させた後、 前記ォキセタニル基を反応せしめて前記ホメォトロピッ ク配向を固定化したものであることを特徴とする請求項 1または 2に記載の楕円 偏光板。 3. A liquid crystalline composition comprising at least a liquid crystalline polymer compound having an oxetanyl group in the homeotropic alignment liquid crystal layer is homeotropically aligned in a liquid crystal state, and then reacted with the oxetanyl group. 3. The elliptically polarizing plate according to claim 1, wherein the homeotropic alignment is fixed.
4. 前記の垂直配向型液晶表示装置用楕円偏光板が、 面内で 1ノ 4波長 の位相差を示す第 1の光学異方素子を有することを特徴とする請求項 1〜 3のい ずれかに記載の垂直配向型液晶表示装置用楕円偏光板。 4. The elliptically polarizing plate for a vertical alignment type liquid crystal display device has a first optical anisotropic element exhibiting a phase difference of 1 to 4 wavelengths in a plane. An elliptically polarizing plate for vertically aligned liquid crystal display devices according to claim 1.
5. 前記の垂直配向型液晶表示装置用楕円偏光板が、 面内で 1/4波長 の位相差を示す第 1の光学異方素子と厚さ方向に負の 1軸光学異方性を示す以下 の [3] および [4] を満たすことを特徴とする第 3の光学異方素子とを有する ことを特徴とする請求項 1〜4のいずれかに記載の垂直配向型液晶表示装置用楕 円偏光板。 5. The above-mentioned elliptically polarizing plate for a vertical alignment type liquid crystal display device exhibits negative uniaxial optical anisotropy in the thickness direction with the first optical anisotropic element showing a phase difference of 1/4 wavelength in the plane. Less than 5. An elliptical element for a vertical alignment type liquid crystal display device according to any one of claims 1 to 4, characterized by comprising a third optical anisotropic element characterized by satisfying [3] and [4]. Polarizer.
[3] 0 nm≤R e 2≤ 20 nm  [3] 0 nm≤R e 2≤ 20 nm
[4] 30 nm≤R t h 2≤ 500 nm  [4] 30 nm≤R t h 2≤ 500 nm
(ここで、 R e 2は前記第 3の光学異方素子の面内のリタ一デーシヨン値を意味 し、 R t h 2は前記第 3の光学異方素子の厚さ方向のリタ一デーシヨン値を意味 する。 前記 R e 2及ぴ R t h 2は、 それぞれ R e 2 = (Nx 2 -Ny 2) X d 2 [nm]、 R t h 2 = (Nx 2-N z 2) X d 2 [nm] である。 また、 d 2は前 記第 3の光学異方素子の厚さ、 Nx 2および Ny 2は前記第 3の光学異方素子の 面内の主屈折率、 N z 2は厚さ方向の主屈折率であり、 Nx 2≥Ny 2 >N z 2 である。)  (Here, Re 2 represents the in-plane retardation value of the third optical anisotropic element, and R th 2 represents the thickness direction retardation value of the third optical anisotropic element. It means that R e 2 and R th 2 are R e 2 = (Nx 2 -Ny 2) X d 2 [nm], R th 2 = (Nx 2-N z 2) X d 2 [nm, respectively. D 2 is the thickness of the third optical anisotropic element, Nx 2 and Ny 2 are the main refractive indices in the plane of the third optical anisotropic element, and N z 2 is the thickness. The principal refractive index in the direction, Nx 2≥Ny 2> N z 2.)
6. 前記第 3の光学異方素子が、 ポリアミ ド、 ポリイミ ド、 ポリエステ ル、 ポリエーテルケトン、 ポリアミ ドイミ ドおよびポリエステルイミ ドからなる 群から選択される少なくとも一種のポリマー材料であることを特徴とする請求項 5に記載の楕円偏光板。 6. The third optically anisotropic element is at least one polymer material selected from the group consisting of polyamide, polyimide, polyester, polyetherketone, polyamideimide, and polyesterimide. The elliptically polarizing plate according to claim 5.
7. 前記第 1の光学異方素子が、 面内で 1Z4波長の位相差を示しかつ 負の 2軸性光学異方性を有することを特徴とする請求項 1〜 6のいずれかに記載 の垂直配向型液晶表示装置用楕円偏光板。 7. The first optical anisotropic element according to any one of claims 1 to 6, wherein the first optical anisotropic element exhibits a phase difference of 1Z4 wavelength in a plane and has negative biaxial optical anisotropy. An elliptically polarizing plate for vertically aligned liquid crystal display devices.
8. 総膜厚が 400 μπι以下であることを特徴とする請求項 1〜7のい ずれかに記載の垂直配向型液晶表示装置用楕円偏光板。 8. The elliptically polarizing plate for a vertical alignment type liquid crystal display device according to claim 1, wherein the total film thickness is 400 μπι or less.
9. 電極を備えた 1対の基板間に、 電圧無印加時に基板表面に対して垂 直配向する液晶分子を含む垂直配向型液晶セルと、 前記垂直配向型液晶セル基板 の少なくとも片側に垂直配向型液晶セル基板側に請求項 1〜 7のいずれかに記載 の垂直配向型液晶表示装置用楕円偏光板のホメオト口ピック配向液晶フィルム側 が向かうよう配置し、 前記垂直配向型液晶セル基板と前記楕円偏光板との間に、 面内で 1 / 4波長の位相差を示す第 1の光学異方素子を少なくとも 1枚配置した ことを特徴とする垂直配向型液晶表示装置。 . 9. A vertical alignment type liquid crystal cell including liquid crystal molecules vertically aligned with respect to the substrate surface when no voltage is applied between a pair of substrates having electrodes, and vertical alignment on at least one side of the vertical alignment type liquid crystal cell substrate The liquid crystal cell substrate side of the vertical alignment type liquid crystal display device according to any one of claims 1 to 7 is disposed such that the home-orientated pick alignment liquid crystal film side faces the vertical alignment type liquid crystal cell substrate and the vertical alignment type liquid crystal cell substrate Between the elliptical polarizer, A vertical alignment type liquid crystal display device comprising at least one first optical anisotropic element having a phase difference of ¼ wavelength in a plane. .
1 0 . 請求項 9に記載の垂直配向型液晶表示装置において、 垂直配向型液 晶表示装置用楕円偏光板を配置した基板と反対側の基板上に、 基板側から面内で 1 / 4波長の位相差を示す第 1の光学異方素子を少なくとも 1枚およぴ直線偏光 板を配置したことを特徴とする請求項 9に記載の垂直配向型液晶表示装置。 10. The vertical alignment type liquid crystal display device according to claim 9, wherein the wavelength is 1/4 in-plane from the substrate side on the substrate opposite to the substrate on which the elliptically polarizing plate for the vertical alignment type liquid crystal display device is disposed. 10. The vertical alignment type liquid crystal display device according to claim 9, wherein at least one first optical anisotropic element exhibiting a phase difference of at least one and a linear polarizing plate are arranged.
1 1 . 前記第 1の光学異方素子と前記垂直配向型液晶セルとの間に、 少な くとも 1枚の厚さ方向に負の 1軸光学異方性を示す第 3の光学異方素子を有する ことを特徴とする請求項 9または 1 0に記載の垂直配向型液晶表示装置。 11. A third optical anisotropic element exhibiting negative uniaxial optical anisotropy in at least one sheet in the thickness direction between the first optical anisotropic element and the vertical alignment type liquid crystal cell. The vertical alignment type liquid crystal display device according to claim 9 or 10, characterized by comprising:
1 2 . 前記垂直配向型液晶セルと直線偏光板の間に、 面内方向に正の 1軸 光学異方性を有する第 4の光学異方素子を有することを特徴とする請求項 9〜 1 1のいずれかに記載の垂直配向型液晶表示装置。 12. A fourth optical anisotropic element having positive uniaxial optical anisotropy in an in-plane direction is provided between the vertical alignment type liquid crystal cell and the linearly polarizing plate. The vertical alignment type liquid crystal display device according to any one of the above.
1 3 . 前記第 1の光学異方素子が面内で 1 / 4波長の位相差を示し、 かつ 負の 2軸性光学異方性を有することを特徴とする請求項 9〜 1 2のいずれかに記 載の垂直配向型液晶表示装置。 1 3. Any one of claims 9 to 12, wherein the first optical anisotropic element exhibits a phase difference of ¼ wavelength in a plane and has negative biaxial optical anisotropy. Vertical alignment type liquid crystal display device described in Crab.
1 4 . 前記垂直配向型液晶セルの一方の基板が反射機能を有する領域と透 過機能を有する領域とを有する基板であることを特徴とする請求項 9〜 1 3のい ずれかに記載の垂直配向型液晶表示装置。 14. The substrate according to any one of claims 9 to 13, wherein one substrate of the vertical alignment type liquid crystal cell is a substrate having a region having a reflection function and a region having a transmission function. Vertical alignment type liquid crystal display device.
PCT/JP2008/051713 2007-02-28 2008-01-29 Elliptical polarizing plate for vertically aligned liquid crystal display and vertically aligned liquid crystal display using the same WO2008105218A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-049080 2007-02-28
JP2007049080A JP2008209872A (en) 2007-02-28 2007-02-28 Elliptically polarizing plate for vertically aligned liquid crystal display device and vertically aligned liquid crystal display device using the same

Publications (1)

Publication Number Publication Date
WO2008105218A1 true WO2008105218A1 (en) 2008-09-04

Family

ID=39721056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/051713 WO2008105218A1 (en) 2007-02-28 2008-01-29 Elliptical polarizing plate for vertically aligned liquid crystal display and vertically aligned liquid crystal display using the same

Country Status (3)

Country Link
JP (1) JP2008209872A (en)
TW (1) TW200905328A (en)
WO (1) WO2008105218A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014059456A (en) * 2012-09-18 2014-04-03 Dainippon Printing Co Ltd Transfer body for optical film, optical film, and image display device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102798923B (en) * 2012-08-23 2014-12-24 深圳市华星光电技术有限公司 Optical compensation structure and display device
JP6287371B2 (en) * 2014-03-10 2018-03-07 大日本印刷株式会社 Optical film, optical film transfer body, and image display device
JP2017116879A (en) * 2015-12-25 2017-06-29 大日本印刷株式会社 Base material for display
JP6859109B2 (en) * 2017-01-18 2021-04-14 日東電工株式会社 Polarizing plate with optical compensation layer and organic EL panel using it
KR102202056B1 (en) 2018-02-21 2021-01-11 주식회사 엘지화학 Liquid crystal alignment composition, method of preparing liquid crystal alignment film, and liquid crystal alignment film using the same
JP6686083B2 (en) * 2018-08-27 2020-04-22 日東電工株式会社 Aligned liquid crystal film and manufacturing method thereof, optical film with pressure-sensitive adhesive and manufacturing method thereof, and image display device
CN110764315B (en) * 2019-10-28 2022-05-03 Tcl华星光电技术有限公司 Liquid crystal alignment force simulation method, system, equipment and storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002055342A (en) * 2000-05-31 2002-02-20 Sharp Corp Liquid crystal display device
WO2006085454A1 (en) * 2005-02-08 2006-08-17 Nippon Oil Corporation Homeotropically oriented liquid-crystal film, optical film comprising the same, and image display
JP2006243298A (en) * 2005-03-02 2006-09-14 Fuji Photo Film Co Ltd Retardation plate, polarizing plate and liquid crystal display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002055342A (en) * 2000-05-31 2002-02-20 Sharp Corp Liquid crystal display device
WO2006085454A1 (en) * 2005-02-08 2006-08-17 Nippon Oil Corporation Homeotropically oriented liquid-crystal film, optical film comprising the same, and image display
JP2006243298A (en) * 2005-03-02 2006-09-14 Fuji Photo Film Co Ltd Retardation plate, polarizing plate and liquid crystal display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014059456A (en) * 2012-09-18 2014-04-03 Dainippon Printing Co Ltd Transfer body for optical film, optical film, and image display device

Also Published As

Publication number Publication date
TW200905328A (en) 2009-02-01
JP2008209872A (en) 2008-09-11

Similar Documents

Publication Publication Date Title
JP5924877B2 (en) Optical film laminate
WO2009150779A1 (en) Elliptical light polarizing plate and vertically oriented liquid crystal display device using the same
WO2008059721A1 (en) Elliptic polarizing plate and vertically aligned liquid crystal display using the same
JP5723077B1 (en) Retardation plate, elliptically polarizing plate and display device using the same
WO2006085454A1 (en) Homeotropically oriented liquid-crystal film, optical film comprising the same, and image display
JP2006268007A (en) Method of producing elliptically polarizing plate and image display device using the elliptically polarizing plate
JP2015043073A (en) Retardation film, polarizing plate, and liquid crystal display device
TWI449971B (en) Elliptical polarizer, process of producing the polarizer and liquid crystal display device equipped with the polarizer
WO2008105218A1 (en) Elliptical polarizing plate for vertically aligned liquid crystal display and vertically aligned liquid crystal display using the same
JP2008009403A (en) Elliptical polarizing plate, method for production of the same, and liquid crystal display device
JP2008129175A (en) Elliptical polarizing plate and vertically aligned liquid crystal display apparatus using the same
JP2008191630A (en) Elliptically polarizing plate, manufacturing method thereof, luminance improving film, and image display device
KR20120053508A (en) Liquid crystal film and optical element obtained using same
JP2009288440A (en) Retardation film, method for manufacturing retardation film, polarizing plate, and liquid crystal display
JP2016139566A (en) Organic electroluminescence display device
JP2009294521A (en) Retardation film, method for manufacturing retardation film, sheet polarizer and liquid crystal display device
WO2014157182A1 (en) Laminated polarizing plate and horizontal alignment liquid crystal display device
WO2011105150A1 (en) Method for manufacturing an optical film, optical film obtained thereby, and optical element
JP2007072213A (en) Viewing angle compensation plate for homeotropically oriented liquid crystal display device and homeotropically oriented liquid crystal display device using same
JP2010072439A (en) Photocuring adhesive composition for liquid crystal layer, and liquid crystal film
JP7567785B2 (en) Manufacturing method of image display device and laminate for polarizer transfer
JP4413117B2 (en) Retardation film, polarizing plate, liquid crystal panel, liquid crystal display device and method for producing retardation film
JP2010072448A (en) Adhesive for liquid crystal film, liquid crystal film, and optical element film
KR20100065397A (en) Method for producing optical film
JP2007322778A (en) Elliptically polarizing plate, method of manufacturing elliptically polarizing plate and liquid crystal display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08704392

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08704392

Country of ref document: EP

Kind code of ref document: A1