WO2014157182A1 - Laminated polarizing plate and horizontal alignment liquid crystal display device - Google Patents

Laminated polarizing plate and horizontal alignment liquid crystal display device Download PDF

Info

Publication number
WO2014157182A1
WO2014157182A1 PCT/JP2014/058244 JP2014058244W WO2014157182A1 WO 2014157182 A1 WO2014157182 A1 WO 2014157182A1 JP 2014058244 W JP2014058244 W JP 2014058244W WO 2014157182 A1 WO2014157182 A1 WO 2014157182A1
Authority
WO
WIPO (PCT)
Prior art keywords
rth1
anisotropic layer
liquid crystal
light
optically anisotropic
Prior art date
Application number
PCT/JP2014/058244
Other languages
French (fr)
Japanese (ja)
Inventor
上坂 哲也
浩 今福
Original Assignee
Jx日鉱日石エネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石エネルギー株式会社 filed Critical Jx日鉱日石エネルギー株式会社
Publication of WO2014157182A1 publication Critical patent/WO2014157182A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133637Birefringent elements, e.g. for optical compensation characterised by the wavelength dispersion
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/02Number of plates being 2

Definitions

  • the present invention relates to a laminated polarizing plate and a horizontal alignment type liquid crystal display device excellent in viewing angle characteristics.
  • a horizontal alignment mode in which liquid crystal molecules in a liquid crystal cell are aligned in parallel with a substrate surface in an initial state
  • Patent Document 1 When no voltage is applied, liquid crystal molecules are arranged in parallel to the substrate surface, and a black display can be obtained by arranging linearly polarizing plates orthogonally on both sides of the liquid crystal cell.
  • a voltage is applied, the liquid crystal molecules rotate from the direction parallel to the substrate surface to the direction of the electric field, and as a result, a bright display is obtained.
  • black display of a horizontal alignment type liquid crystal display device good black display can be obtained in the front visual field, but there is a problem that light leakage occurs in the oblique visual field and the contrast becomes low.
  • An object of the present invention is to provide a laminated polarizing plate for a horizontal alignment type liquid crystal display device and a horizontal alignment type liquid crystal display device having excellent viewing angle characteristics.
  • the present inventors have found that the object can be achieved by the following laminated polarizing plate for a horizontal alignment type liquid crystal display device and a horizontal alignment type liquid crystal display device using the same.
  • the inventor has completed the present invention. That is, the present invention is as follows.
  • a laminated polarizing plate in which at least a first polarizing plate, a first optically anisotropic layer, and a second optically anisotropic layer are laminated in this order, wherein the first optically anisotropic layer is The following [1] to [7] are satisfied, the second optically anisotropic layer satisfies the following [8] to [9], and the first optically anisotropic layer and the second optically anisotropic layer are satisfied.
  • a laminated polarizing plate, wherein the isotropic layer satisfies the following [10].
  • Re1 (450), Re1 (550), and Re1 (650) mean in-plane retardation values of the first optically anisotropic layer in light of wavelengths 450 nm, 550 nm, and 650 nm, respectively, and Rth1 (450), Rth1 (550), and Rth1 (650) mean retardation values in the thickness direction of the first optical aniso
  • Ny1 (450), ny1 (550), ny1 (650) are orthogonal to nx1 (450), nx1 (550), and nx1 (650), respectively, in the first optically anisotropic layer plane for the light of You
  • the main refractive index in the direction, nz1 (450), nz1 (550), and nz1 (650), is the main refractive index in the thickness direction for light of wavelengths 450, 550, and 650 nm, respectively, and nx1 (550)> ny1 (550).
  • Re2 (550) means the in-plane retardation value of the second optically anisotropic layer in the light of wavelength 550 nm
  • Rth2 (550) is the second optical anisotropy in the light of wavelength 550 nm.
  • the second optically anisotropic layer is composed of a homeotropically aligned liquid crystal film in which a liquid crystalline composition exhibiting positive uniaxiality is homeotropically aligned in a liquid crystal state and then fixed in alignment.
  • liquid crystalline composition exhibiting positive uniaxiality includes a side chain type liquid crystalline polymer having an oxetanyl group.
  • a horizontal alignment type liquid crystal display in which at least a first polarizing plate, a first optical anisotropic layer, a second optical anisotropic layer, a horizontal alignment type liquid crystal cell, and a second polarizing plate are arranged in this order.
  • the first optical anisotropic layer satisfies the following [1] to [7]
  • the second optical anisotropic layer satisfies the following [8] to [9]:
  • the horizontal alignment type liquid crystal display device wherein the first optical anisotropic layer and the second optical anisotropic layer satisfy the following [10].
  • Re1 (450), Re1 (550), and Re1 (650) mean in-plane retardation values of the first optically anisotropic layer in light of wavelengths 450 nm, 550 nm, and 650 nm, respectively, and Rth1 (450), Rth1 (550), and Rth1 (650) mean retardation values in the thickness direction of the first optical aniso
  • Re2 (550) means the in-plane retardation value of the second optically anisotropic layer in the light of wavelength 550 nm
  • Rth2 (550) is the second optical anisotropy in the light of wavelength 550 nm.
  • the first optical anisotropic layer satisfies the following [1] to [7]
  • the second optical anisotropic layer has the following: [8] to [9] are satisfied
  • the first optical anisotropic layer and the second optical anisotropic layer satisfy the following [10]
  • the third optical anisotropic layer is: A horizontal alignment type liquid crystal display device satisfying the following [11] to [12].
  • Re1 (450), Re1 (550), and Re1 (650) mean in-plane retardation values of the first optically anisotropic layer in light of wavelengths 450 nm, 550 nm, and 650 nm, respectively, and Rth1 (450), Rth1 (550), and Rth1 (650) mean retardation values in the thickness direction of the first optical aniso
  • Ny1 (450), ny1 (550), ny1 (650) are orthogonal to nx1 (450), nx1 (550), and nx1 (650), respectively, in the first optically anisotropic layer plane for the light of You
  • the main refractive index in the direction, nz1 (450), nz1 (550), and nz1 (650), is the main refractive index in the thickness direction for light of wavelengths 450, 550, and 650 nm, respectively, and nx1 (550)> ny1 (550).
  • Re2 (550) means the in-plane retardation value of the second optically anisotropic layer in the light of wavelength 550 nm
  • Rth2 (550) is the second optical anisotropy in the light of wavelength 550 nm.
  • nx2 (550) [ ⁇ Nx2 (550) + ny2 (550) ⁇ / 2-nz2 (550)] ⁇ d2 [nm], where d2 is the thickness of the second optically anisotropic layer, and nx2 (550) is The maximum main refractive index in the plane of the second optical anisotropic layer for light with a wavelength of 550 nm, ny2 (550) is the main refractive index in the direction orthogonal to nx2 (550), and nz2 (550) is the thickness for light with a wavelength of 550 nm.
  • Re3 (550) means the in-plane retardation value of the third optical anisotropic layer in the light of wavelength 550 nm
  • Rth3 (550) is the third optical anisotropy in the light of wavelength 550 nm.
  • the second optically anisotropic layer is composed of a homeotropically aligned liquid crystal film obtained by homeotropically aligning a liquid crystalline composition exhibiting positive uniaxiality in a liquid crystal state and then fixing the alignment.
  • the horizontal alignment type liquid crystal display device according to [6] or [7].
  • liquid crystalline composition exhibiting positive uniaxiality includes a side chain liquid crystalline polymer having an oxetanyl group.
  • the horizontal alignment type liquid crystal display device of the present invention has a bright display and can display with high contrast in all directions.
  • FIG. 6 is a schematic cross-sectional view of a horizontal alignment type liquid crystal display device used in Example 2.
  • FIG. FIG. 6 is a plan view showing the angular relationship of each component of the horizontal alignment type liquid crystal display device used in Example 2. It is a figure which shows contrast ratio when the horizontal alignment type liquid crystal display device in Example 2 is seen from all directions. It is a figure which shows contrast ratio when the horizontal alignment type liquid crystal display device in Example 3 is seen from all directions. It is a figure which shows contrast ratio when the horizontal alignment type liquid crystal display device in Example 4 is seen from all directions.
  • 6 is a schematic cross-sectional view of a horizontal alignment type liquid crystal display device used in Example 5.
  • FIG. FIG. 5 is a schematic cross-sectional view of a horizontal alignment type liquid crystal display device used in Example 5.
  • FIG. 10 is a plan view showing the angular relationship of each component of the horizontal alignment type liquid crystal display device used in Example 5. It is a figure which shows contrast ratio when the horizontal alignment type liquid crystal display device in Example 5 is seen from all directions. It is a figure which shows contrast ratio when the horizontal alignment type liquid crystal display device in the comparative example 1 is seen from all directions. It is a figure which shows contrast ratio when the horizontal alignment type liquid crystal display device in the comparative example 2 is seen from all directions. It is a figure which shows contrast ratio when the horizontal alignment type liquid crystal display device in the comparative example 3 is seen from all directions. It is a figure which shows contrast ratio when the horizontal alignment type liquid crystal display device in the comparative example 4 is seen from all directions.
  • the laminated polarizing plate of the present invention is a laminated polarizing plate in which at least a first polarizing plate, a first optical anisotropic layer and a second optical anisotropic layer are laminated in this order as shown in FIG.
  • the driving method of the liquid crystal cell is not particularly limited, and is a passive matrix method used for STN-LCDs, an active matrix method using active electrodes such as TFT (Thin Film Transistor) electrodes, TFD (Thin Film Diode) electrodes, and a plasma addressing method. Any driving method may be used.
  • the transparent substrate constituting the liquid crystal cell is not particularly limited as long as the liquid crystal material constituting the liquid crystal layer is aligned in a specific alignment direction.
  • a transparent substrate having the property of aligning the liquid crystal itself a substrate itself lacking alignment ability, but a transparent substrate provided with an alignment film having the property of aligning liquid crystal, etc.
  • ITO can be used for the electrode of a liquid crystal cell.
  • the electrode can usually be provided on the surface of the transparent substrate with which the liquid crystal layer is in contact. When a substrate having an alignment film is used, it can be provided between the substrate and the alignment film.
  • the material exhibiting liquid crystallinity for forming the liquid crystal layer is not particularly limited as long as it has a positive dielectric anisotropy, and various ordinary low-molecular liquid crystal substances and polymer liquid crystals capable of constituting various liquid crystal cells. Materials and mixtures thereof. Moreover, a pigment
  • the horizontal alignment type liquid crystal display device of the present invention can be provided with other constituent members in addition to the constituent members described above.
  • a color liquid crystal display device capable of performing multicolor or full color display with high color purity can be manufactured.
  • the optically anisotropic layer used in the present invention will be described in order.
  • the first optical anisotropic layer for example, a film made of an appropriate polymer such as a cyclic polyolefin such as polycarbonate or norbornene resin, polyvinyl alcohol, polystyrene, polymethyl methacrylate, polypropylene, other polyolefins, polyarylate, or polyamide.
  • Examples thereof include a refractive film, an alignment film made of a liquid crystal material such as a liquid crystal polymer, and a film in which an alignment layer of the liquid crystal material is supported.
  • the positive biaxial optically anisotropic layer has a relationship of nx> nz> ny as a refractive index.
  • the negative biaxial optically anisotropic layer has a relationship of nx> ny> nz as a refractive index.
  • the first optical anisotropic layer contributes to the viewing angle compensation of the first polarizing plate, and it is necessary to satisfy the following [1] to [7]. .
  • Re1 (450), Re1 (550), and Re1 (650) are in-plane retardations of the first optical anisotropic layer in light having wavelengths of 450 nm, 550 nm, and 650 nm, respectively.
  • Rth1 (450), Rth1 (550), and Rth1 (650) mean retardation values in the thickness direction of the first optical anisotropic layer in light having wavelengths of 450 nm, 550 nm, and 650 nm, respectively. .
  • D1 is the thickness of the first optical anisotropic layer, and nx1 (450), nx1 (550), and nx1 (650) are in the plane of the first optical anisotropic layer for light having wavelengths of 450, 550, and 650 nm, respectively.
  • Ny1 (450), ny1 (550), and ny1 (650) are nx1 (450), nx1 (550), and nx1 (650) main refractive indexes in the direction orthogonal to nx1 (450), respectively.
  • nz1 (550) and nz1 (650) are main refractive indexes in the thickness direction with respect to light having wavelengths of 450, 550, and 650 nm, respectively, and nx1 (550)> ny1 (550)> nz1 (550).
  • the retardation value Re1 (550) in the first optically anisotropic layer surface needs to be 50 nm to 200 nm, preferably 70 nm to 180 nm, and more preferably 90 nm to 160 nm.
  • the retardation value Rth1 (550) in the thickness direction of the first optically anisotropic layer needs to be 30 nm to 300 nm, preferably 40 nm to 200 nm, more preferably 50 nm to 150 nm. .
  • a sufficient viewing angle improvement effect may not be obtained, or unnecessary coloring may occur when viewed from an oblique direction.
  • Rth1 (550) / Re1 (550) needs to be 0.5 to 1.5, preferably in the range of 0.5 to 1.2. When outside the above range, a sufficient viewing angle improvement effect may not be obtained, or unnecessary coloring may occur when viewed from an oblique direction.
  • Re1 (450), Re1 (550), and Re1 (650) satisfy the following relations [4] and [6], and Rth1 (450), Rth1 (550), and Rth1 (650) satisfy the following [5] ] And [7] must be satisfied. If these ranges are not satisfied, a sufficient viewing angle improvement effect may not be obtained, or unnecessary coloring may occur when viewed from an oblique direction.
  • the first optical anisotropic layer and the second optical anisotropic layer must satisfy the following [10]. [10] ⁇ 60 nm ⁇ Rth1 (550) + Rth2 (550) ⁇ 60 nm
  • the above range is more preferably ⁇ 55 nm ⁇ Rth1 (550) + Rth2 (550) ⁇ 55 nm.
  • Rth1 (550) + Rth2 (550) is in the above range, excellent viewing angle characteristics are exhibited.
  • r is an angle formed by the absorption axis of the first polarizing plate and the slow axis of the first optically anisotropic layer
  • r is preferably in the range of 85 ° to 95 °
  • the angle is more preferably 88 to 92 °, and still more preferably about 90 ° (orthogonal).
  • the absorption axis of the first polarizing plate and the long roll of the first optically anisotropic layer are substantially orthogonal (the crossing angle is within 90 ° ⁇ 5 °, preferably within ⁇ 2 °).
  • the slow axis of the first optical anisotropic layer is It is necessary to arrange in a direction perpendicular to the roll length direction. For that purpose, it is better to produce the first optically anisotropic layer by lateral uniaxial stretching or biaxial stretching.
  • lateral uniaxial stretching or biaxial stretching it is known that the refractive index relationship of the retardation film becomes negative biaxiality consisting of nx> ny> nz.
  • the second optical anisotropic layer is preferably made of a homeotropically aligned liquid crystal film in which a liquid crystal material exhibiting positive uniaxiality is homeotropically aligned in a liquid crystal state and then fixed in alignment.
  • selection of a liquid crystal material and an alignment substrate is extremely important for obtaining a liquid crystal film in which the homeotropic alignment of the liquid crystal material is fixed.
  • the liquid crystal material used in the present invention contains at least a side chain type liquid crystalline polymer such as poly (meth) acrylate or polysiloxane as a main constituent component.
  • the side chain type liquid crystal polymer used in the present invention preferably has a polymerizable oxetanyl group at the terminal. More specifically, the side chain obtained by homopolymerizing the (meth) acrylic moiety of the (meth) acrylic compound having an oxetanyl group represented by the formula (1) or copolymerizing with another (meth) acrylic compound.
  • a preferred example is a liquid crystalline polymer material.
  • R 1 represents hydrogen or a methyl group
  • R 2 represents hydrogen, a methyl group or an ethyl group
  • L 1 and L 2 are each independently a single bond, —O—, —O—CO—.
  • M represents Formula (2), Formula (3) or Formula (4)
  • n and m each independently represent an integer of 0 to 10.
  • P1 and P2 each independently represent a group selected from formula (5)
  • P3 represents a group selected from formula (6)
  • L3 and L4 each independently represents a single bond. , —CH ⁇ CH—, —C ⁇ C—, —O—, —O—CO— or —CO—O—.
  • the method for synthesizing these (meth) acrylic compounds having an oxetanyl group is not particularly limited, and can be synthesized by applying a method used in a general organic chemical synthesis method. For example, by combining a site having an oxetanyl group and a site having a (meth) acrylic group by means such as Williamson's ether synthesis or ester synthesis using a condensing agent, oxetanyl group and (meth) acrylic group 2 A (meth) acrylic compound having an oxetanyl group having two reactive functional groups can be synthesized.
  • radical polymerization a (meth) acryl compound is dissolved in a solvent such as dimethylformamide (DMF), and 2,2′-azobisisobutyronitrile (AIBN), benzoyl peroxide (BPO), or the like is used as an initiator. And reacting at 60 to 120 ° C. for several hours. Moreover, in order to make the liquid crystal phase appear stably, a copper (I) bromide / 2,2′-bipyridyl system, a 2,2,6,6-tetramethylpiperidinooxy free radical (TEMPO) system, etc. are used. A method of controlling the molecular weight distribution by conducting living radical polymerization as an initiator is also effective. These radical polymerizations are preferably performed under deoxygenation conditions.
  • a solvent such as dimethylformamide (DMF), and 2,2′-azobisisobutyronitrile (AIBN), benzoyl peroxide (BPO), or the like is used as an initiator. And reacting at 60
  • anionic polymerization examples include a method in which a (meth) acrylic compound is dissolved in a solvent such as tetrahydrofuran (THF) and a strong base such as an organic lithium compound, an organic sodium compound, or a Grignard reagent is reacted as an initiator.
  • a solvent such as tetrahydrofuran (THF)
  • a strong base such as an organic lithium compound, an organic sodium compound, or a Grignard reagent
  • the molecular weight distribution can be controlled by optimizing the initiator and the reaction temperature for living anionic polymerization.
  • the (meth) acryl compound to be copolymerized at this time is not particularly limited and may be anything as long as the synthesized polymer substance exhibits liquid crystallinity, but in order to increase the liquid crystallinity of the synthesized polymer substance, A (meth) acrylic compound having a mesogenic group is preferred.
  • a (meth) acrylic compound represented by the following formula can be exemplified as a preferred compound.
  • R represents hydrogen, an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, or a cyano group.
  • the side chain type liquid crystalline polymer substance preferably contains 5 to 100 mol% of the unit represented by the formula (7), and particularly preferably contains 10 to 100 mol%.
  • the side chain type liquid crystalline polymer substance preferably has a weight average molecular weight of 2,000 to 100,000, particularly preferably 5,000 to 50,000.
  • the liquid crystal material used in the present invention may contain various compounds that can be mixed without impairing liquid crystallinity in addition to the side chain liquid crystalline polymer substance.
  • examples of compounds that can be contained include compounds having a cationic polymerizable functional group such as an oxetanyl group, an epoxy group, and a vinyl ether group, various polymer substances having film-forming ability, and various low-molecular liquid crystal compounds having liquid crystallinity. And polymer liquid crystalline compounds.
  • the side chain liquid crystalline polymer substance is used as a composition, the proportion of the side chain liquid crystalline polymer substance in the entire composition is 10% by mass or more, preferably 30% by mass or more, and more preferably. Is 50 mass% or more. If the content of the side chain type liquid crystalline polymer substance is less than 10% by mass, the concentration of the polymerizable group in the composition becomes low, and the mechanical strength after polymerization becomes insufficient.
  • the liquid crystal material contains a photocation generator and / or a thermal cation generator that generates cations by an external stimulus such as light or heat. If necessary, various sensitizers may be used in combination.
  • the photo cation generator means a compound capable of generating a cation by irradiating with light having an appropriate wavelength, and examples thereof include organic sulfonium salt systems, iodonium salt systems, and phosphonium salt systems. Antimonates, phosphates, borates and the like are preferably used as counter ions of these compounds. Specific examples of the compound include Ar 3 S + SbF 6 ⁇ , Ar 3 P + BF 4 ⁇ , Ar 2 I + PF 6 ⁇ (wherein Ar represents a phenyl group or a substituted phenyl group), and the like. In addition, sulfonic acid esters, triazines, diazomethanes, ⁇ -ketosulfone, iminosulfonate, benzoinsulfonate and the like can also be used.
  • the thermal cation generator is a compound capable of generating a cation by being heated to an appropriate temperature, for example, benzylsulfonium salts, benzylammonium salts, benzylpyridinium salts, benzylphosphonium salts, hydrazinium salts, carboxylic acid esters, Examples thereof include sulfonic acid esters, amine imides, antimony pentachloride-acetyl chloride complexes, diaryliodonium salts-dibenzyloxycopper, and boron halide-tertiary amine adducts.
  • the amount of these cation generators added to the liquid crystal material varies depending on the structure of the mesogenic part and spacer part, the oxetanyl group equivalent, the alignment condition of the liquid crystal, etc. constituting the side chain type liquid crystalline polymer material to be used. However, it is usually 100 mass ppm to 20 mass%, preferably 1000 mass ppm to 10 mass%, more preferably 0.2 mass% to 7 mass%, most preferably based on the side chain type liquid crystalline polymer substance. Is in the range of 0.5% to 5% by weight. If the amount is less than 100 mass ppm, the amount of cations generated may not be sufficient and polymerization may not proceed. If the amount is more than 20 mass%, the remaining cation generator remains in the liquid crystal film. It is not preferable because there is a risk that the light resistance and the like may deteriorate due to an increase in the number of objects.
  • a substrate having a smooth plane is preferable, and examples thereof include a film or sheet made of an organic polymer material, a glass plate, and a metal plate. From the viewpoint of cost and continuous productivity, it is preferable to use a material made of an organic polymer.
  • organic polymer materials include polyvinyl alcohol, polyimide, polyphenylene oxide, polyether ketone, polyether ether ketone, polyester polymers such as polyethylene terephthalate and polyethylene naphthalate, cellulose polymers such as diacetyl cellulose and triacetyl cellulose, Examples include films made of transparent polymers such as polycarbonate polymers and acrylic polymers such as polymethyl methacrylate.
  • styrene polymers such as polystyrene, acrylonitrile / styrene copolymer, olefin polymers such as polyethylene, polypropylene, ethylene / propylene copolymer, cyclopolyolefins having cyclic or norbornene structure, vinyl chloride polymers, nylon and aromatic polyamides.
  • styrene polymers such as polystyrene, acrylonitrile / styrene copolymer, olefin polymers such as polyethylene, polypropylene, ethylene / propylene copolymer, cyclopolyolefins having cyclic or norbornene structure, vinyl chloride polymers, nylon and aromatic polyamides.
  • olefin polymers such as polyethylene, polypropylene, ethylene / propylene copolymer, cyclopolyolefins having cyclic or norbornene structure, vinyl chloride poly
  • imide polymers examples thereof include a film made of a transparent polymer such as a polymer, an epoxy-based polymer, and a blend of the above polymers.
  • plastic films such as triacetyl cellulose, polycarbonate, norbornene polyolefin used as an optical film are used.
  • organic polymer film examples include norbornene such as ZEONOR (trade name, manufactured by ZEON CORPORATION), ZEONEX (trade name, manufactured by ZEON CORPORATION), Arton (trade name, manufactured by JSR Corporation), etc.
  • a plastic film made of a polymer material having a structure is preferable because it has excellent optical properties.
  • a metal film the said film formed from aluminum etc. is mentioned, for example.
  • the material constituting these substrates has a long chain (usually 4 or more carbon atoms, preferably 8 or more) alkyl group, More preferably, the substrate surface has a compound layer having a long-chain alkyl group. Among them, it is preferable to form a layer made of polyvinyl alcohol having a long-chain alkyl group because the formation method is easy.
  • These organic polymer materials may be used alone as a substrate, or may be formed as a thin film on another substrate.
  • rubbing treatment is generally performed by rubbing the substrate with a cloth or the like, but the homeotropic alignment liquid crystal film of the present invention has an alignment structure in which in-plane anisotropy basically does not occur. Therefore, the rubbing process is not necessarily required. However, it is more preferable to perform a weak rubbing treatment from the viewpoint of suppressing repelling when a liquid crystal material is applied.
  • An important setting value that defines the rubbing condition is a peripheral speed ratio. This represents the ratio between the movement speed of the cloth and the movement speed of the substrate when the rubbing cloth is wound around a roll and rubbed while the substrate is rubbed.
  • the weak rubbing treatment usually has a peripheral speed ratio of 50 or less, more preferably 25 or less, and particularly preferably 10 or less.
  • the peripheral speed ratio is greater than 50, the effect of rubbing is too strong, and the liquid crystal material cannot be completely aligned vertically, and there is a possibility that the alignment is tilted in the in-plane direction from the vertical direction.
  • the manufacturing method of a homeotropic alignment liquid crystal film is demonstrated.
  • the method for producing the liquid crystal film is not limited to these, the above-mentioned liquid crystal material is spread on the above-mentioned alignment substrate, and after aligning the liquid crystal material, light irradiation and / or heat treatment is performed. It can manufacture by fixing the said orientation state.
  • the liquid crystal material is spread on the alignment substrate to form the liquid crystal material layer.
  • the liquid crystal material is applied directly on the alignment substrate in a molten state, or the liquid crystal material solution is applied on the alignment substrate, and then the coating film is applied. And drying the solvent to distill off the solvent.
  • the solvent used for preparing the solution is not particularly limited as long as it can dissolve the liquid crystal material of the present invention and can be distilled off under suitable conditions.
  • ketones such as acetone, methyl ethyl ketone, isophorone, and cyclohexanone
  • butoxyethyl Ethers such as alcohol, hexyloxyethyl alcohol, methoxy-2-propanol
  • glycol ethers such as ethylene glycol dimethyl ether and diethylene glycol dimethyl ether
  • esters such as ethyl acetate and ethyl lactate
  • phenols such as phenol and chlorophenol
  • N Amides such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, halogens such as chloroform, tetrachloroethane, dichlorobenzene, etc.
  • Mixed system is preferably used. Further, in order to form a uniform coating film
  • the application method is not particularly limited as long as the uniformity of the coating film is ensured, and a known method may be adopted. It can. Examples thereof include spin coating, die coating, curtain coating, dip coating, and roll coating.
  • a drying step for removing the solvent after the application As long as the uniformity of a coating film is maintained, this drying process can employ
  • the film thickness of the liquid crystal film cannot be generally described because it depends on the method of the liquid crystal display device and various optical parameters, but is usually 0.2 ⁇ m to 10 ⁇ m, preferably 0.3 ⁇ m to 5 ⁇ m, more preferably 0.5 ⁇ m. ⁇ 2 ⁇ m.
  • the film thickness is thinner than 0.2 ⁇ m, there is a possibility that a sufficient viewing angle improvement or brightness enhancement effect cannot be obtained. If it exceeds 10 ⁇ m, the liquid crystal display device may be unnecessarily colored.
  • the liquid crystal material layer formed on the alignment substrate is liquid crystal aligned by a method such as heat treatment, and is cured and fixed by light irradiation and / or heat treatment.
  • the liquid crystal is aligned by the self-alignment ability inherent in the liquid crystal material by heating to the liquid crystal phase expression temperature range of the used liquid crystal material.
  • the conditions for the heat treatment cannot be generally stated because the optimum conditions and limit values differ depending on the liquid crystal phase behavior temperature (transition temperature) of the liquid crystal material to be used, but are usually 10 to 250 ° C., preferably 30 to 160 ° C.
  • the heat treatment time is usually in the range of 3 seconds to 30 minutes, preferably 10 seconds to 10 minutes. If the heat treatment time is shorter than 3 seconds, the liquid crystal alignment may not be completed sufficiently, and if the heat treatment time exceeds 30 minutes, the productivity is deteriorated.
  • the liquid crystal material layer is formed into a liquid crystal alignment by a method such as heat treatment
  • the liquid crystal material is cured by a polymerization reaction of oxetanyl groups in the composition while maintaining the liquid crystal alignment state.
  • the curing step is aimed at fixing the liquid crystal alignment state of the completed liquid crystal alignment by a curing (crosslinking) reaction and modifying it into a stronger film.
  • the liquid crystal material of the present invention has a polymerizable oxetanyl group, as described above, it is preferable to use a cationic polymerization initiator (cation generator) for the polymerization (crosslinking) of the reactive group.
  • a cationic polymerization initiator cation generator
  • the polymerization initiator it is preferable to use a photo cation generator rather than a thermal cation generator.
  • the liquid crystal material can be obtained by adding the photo cation generator to the heat treatment for aligning the liquid crystal under dark conditions (light blocking conditions that do not cause the photo cation generator to dissociate). The liquid crystal can be aligned with sufficient fluidity without curing until the alignment stage. Thereafter, the liquid crystal material layer is cured by generating cations by irradiating light from a light source that emits light of an appropriate wavelength.
  • a photocation is generated by irradiating light from a light source such as a metal halide lamp, a high pressure mercury lamp, a low pressure mercury lamp, a xenon lamp, an arc lamp, or a laser having a spectrum in the absorption wavelength region of the photocation generator used. Cleave the generator.
  • the dose per square centimeter is usually in the range of 1 to 2000 mJ, preferably 10 to 1000 mJ, as the cumulative dose. However, this is not the case when the absorption region of the photocation generator and the spectrum of the light source are remarkably different, or when the liquid crystal material itself has the ability to absorb the light source wavelength.
  • the temperature at the time of light irradiation needs to be within a temperature range in which the liquid crystal material takes liquid crystal alignment. In order to sufficiently enhance the curing effect, it is preferable to perform light irradiation at a temperature equal to or higher than Tg of the liquid crystal material.
  • the liquid crystal material layer produced by the above process is a sufficiently strong film.
  • the mesogens are three-dimensionally bonded by the curing reaction, and not only the heat resistance (the upper limit temperature for maintaining the liquid crystal alignment) is improved as compared to before curing, but also scratch resistance, abrasion resistance, crack resistance.
  • the mechanical strength such as property is also greatly improved.
  • As the alignment substrate it is not optically isotropic, or the liquid crystal film to be obtained is finally opaque in the intended use wavelength region, or the alignment substrate is too thick, resulting in problems in actual use.
  • a form transferred from a form formed on an alignment substrate to a stretched film having a retardation function may be used.
  • As a transfer method a known method can be adopted.
  • a liquid crystal film layer is laminated with a substrate different from the alignment substrate via an adhesive or an adhesive, and if necessary, Examples thereof include a method of transferring only a liquid crystal film by performing a surface curing treatment using an adhesive or an adhesive and peeling the alignment substrate from the laminate.
  • the pressure-sensitive adhesive or adhesive used for transfer is not particularly limited as long as it is of optical grade, and generally used ones such as acrylic, epoxy, and urethane can be used.
  • the homeotropic alignment liquid crystal layer obtained as described above can be quantified by measuring the optical phase difference of the liquid crystal layer at an angle inclined from the normal incidence. In the case of homeotropic alignment liquid crystal layers, this retardation value is symmetric with respect to normal incidence.
  • Several methods can be used for measuring the optical phase difference. For example, an automatic birefringence measuring apparatus (manufactured by Oji Scientific Instruments) and a polarizing microscope can be used. This homeotropic alignment liquid crystal layer appears black between the crossed Nicols polarizing plates. Thus, homeotropic orientation was evaluated.
  • the second optically anisotropic layer needs to satisfy the following [8] to [9]. [8] -10 nm ⁇ Re2 (550) ⁇ 10 nm [9] ⁇ 200 nm ⁇ Rth2 (550) ⁇ ⁇ 50 nm
  • Re2 (550) means the in-plane retardation value of the second optical anisotropic layer in the light of wavelength 550 nm
  • Rth2 (550) is the second optical anisotropic layer in the light of wavelength 550 nm. Means the retardation value in the thickness direction.
  • D2 is the thickness of the second optical anisotropic layer
  • nx2 (550) is the maximum principal refractive index in the plane of the second optical anisotropic layer for light having a wavelength of 550 nm
  • ny2 (550) is nx2 (550).
  • the retardation value Re2 (550) in the plane of the homeotropic alignment liquid crystal film needs to be ⁇ 10 nm to 10 nm, preferably 0 nm to 10 nm, and more preferably 0 nm to 5 nm.
  • the retardation value Rth2 (550) in the thickness direction needs to be ⁇ 200 nm to ⁇ 50 nm, preferably ⁇ 190 nm to ⁇ 70 nm, and more preferably ⁇ 180 nm to ⁇ 90 nm. is there.
  • the viewing angle improving film of the liquid crystal display device can widen the viewing angle while correcting the color tone of the liquid crystal display. If the Rth2 (550) value is larger than ⁇ 50 nm or smaller than ⁇ 200 nm, a sufficient viewing angle improvement effect may not be obtained, or unnecessary coloring may occur when viewed obliquely. Further, by setting the Re2 (550) value to 10 nm or less, the front characteristics of the liquid crystal display element can be improved.
  • the third optical anisotropic layer As the third optically anisotropic layer, polycarbonate resin, polyvinyl alcohol resin, cellulose resin, polyester resin, polyarylate resin, polyimide resin, cyclic polyolefin resin, polysulfone resin, polyethersulfone resin Examples thereof include resins, polyolefin resins, polystyrene resins, polyvinyl alcohol resins, and mixtures thereof. Further, a thermosetting resin such as urethane, acrylic urethane, epoxy, or silicone, or an ultraviolet curable resin can also be used. Of these, cellulose resins and cyclic polyolefin resins are particularly preferably used. One or more kinds of arbitrary appropriate additives may be contained in the third optically anisotropic layer.
  • the cellulose resin is preferably an ester of cellulose and a fatty acid.
  • Specific examples of the cellulose ester resin include triacetyl cellulose, diacetyl cellulose, tripropionyl cellulose, dipropionyl cellulose, and the like. Among these, triacetyl cellulose is particularly preferable. Many products of triacetylcellulose are commercially available, which is advantageous in terms of availability and cost. Many triacetyl celluloses have a thickness direction retardation of more than 10 nm. However, an additive that counteracts these retardations is used, and depending on the method of film formation, not only frontal retardation, but also a cellulose type having a small thickness direction retardation. A resin film can be obtained and is particularly preferably used.
  • a base film such as polyethylene terephthalate, polypropylene, and stainless steel coated with a solvent such as cyclopentanone and methyl ethyl ketone is bonded to a general cellulose film, followed by heat drying (for example, 80 After peeling the substrate film at about 150 ° C. for about 3 to 10 minutes; a solution of norbornene resin, (meth) acrylic resin, etc. dissolved in a solvent such as cyclopentanone or methyl ethyl ketone Examples thereof include a method in which a coated resin film is coated and dried by heating (for example, at 80 to 150 ° C. for about 3 to 10 minutes) and then the coated film is peeled off.
  • a fatty acid cellulose resin film with a controlled degree of fat substitution can be used as the cellulose resin film having a small thickness direction retardation.
  • triacetyl cellulose has an acetic acid substitution degree of about 2.8.
  • the Rth can be reduced by controlling the acetic acid substitution degree to 1.8 to 2.7.
  • a plasticizer such as dibutyl phthalate, p-toluenesulfonanilide, acetyltriethyl citrate, etc.
  • the addition amount of the plasticizer is preferably 40 parts by weight or less, more preferably 1 to 20 parts by weight, and further preferably 1 to 15 parts by weight with respect to 100 parts by weight of the fatty acid cellulose resin.
  • Various products are marketed as a cellulose resin film having a small thickness direction retardation. Specific examples include the product name “Z-TAC” manufactured by FUJIFILM Corporation and the product name “Zero Tac” manufactured by Konica Minolta Advanced Layer Co., Ltd.
  • the cyclic polyolefin resin is preferably a norbornene resin.
  • the cyclic polyolefin resin is a general term for resins that are polymerized using a cyclic olefin as a polymerization unit, and is described in, for example, JP-A-1-240517, JP-A-3-14882, JP-A-3-122137, and the like. Resin.
  • cyclic olefin ring-opening (co) polymers examples include cyclic olefin addition polymers, cyclic olefins and ⁇ -olefins such as ethylene and propylene (typically random copolymers), And the graft polymer which modified these by unsaturated carboxylic acid or its derivative (s), and those hydrides, etc. are mentioned.
  • Specific examples of the cyclic olefin include norbornene monomers.
  • Various products are commercially available as the cyclic polyolefin resin.
  • Re3 (550) means the in-plane retardation value of the third optical anisotropic layer in the light of wavelength 550 nm
  • Rth3 (550) is the third optical anisotropic layer in the light of wavelength 550 nm. Means the retardation value in the thickness direction.
  • D3 is the thickness of the third optical anisotropic layer
  • nx3 (550) and ny3 (550) are the main refractive indices in the plane of the third optical anisotropic layer with respect to light having a wavelength of 550 nm
  • nz3 (550) is It is the main refractive index in the thickness direction for light having a wavelength of 550 nm
  • the in-plane retardation value Re3 (550) of the third optical anisotropic layer is ⁇ 10 nm to 10 nm, preferably 0 nm to 10 nm, and more preferably 0 nm to 5 nm.
  • the retardation value Rth3 (550) in the thickness direction is ⁇ 10 nm to 10 nm, preferably ⁇ 7 nm to 7 nm, and more preferably ⁇ 5 nm to 5 nm.
  • the first polarizing plate and the second polarizing plate used in the present invention will be described.
  • the first polarizing plate and the second polarizing plate used in the present invention those having a protective film on one side or both sides of the polarizer are usually used.
  • the first optically anisotropic layer also functions as a protective film.
  • the laminated polarizing plate of the present invention is laminated so that the slow axis of the first optically anisotropic layer and the absorption axis of the first polarizing plate are substantially orthogonal (intersection angle is within 90 ° ⁇ 5 °).
  • a negative biaxial optically anisotropic layer stretched in the width direction it is possible to perform integral production with a roll-to-roll.
  • the polarizer is not particularly limited, and various types can be used.
  • a hydrophilic polymer film such as a polyvinyl alcohol film, a partially formalized polyvinyl alcohol film, an ethylene / vinyl acetate copolymer partially saponified film.
  • polyene-based oriented films such as those obtained by adsorbing dichroic substances such as iodine and dichroic dyes and uniaxially stretched, polyvinyl alcohol dehydrated products and polyvinyl chloride dehydrochlorinated products.
  • dichroic substances such as iodine and dichroic dyes
  • the thickness of the polarizer is not particularly limited, but is generally about 5 to 80 ⁇ m.
  • a polarizer in which a polyvinyl alcohol film is dyed with iodine and uniaxially stretched can be produced, for example, by dyeing polyvinyl alcohol in an aqueous solution of iodine and stretching it 3 to 7 times the original length. If necessary, it can be immersed in an aqueous solution of boric acid or potassium iodide. Further, if necessary, the polyvinyl alcohol film may be immersed in water and washed before dyeing. In addition to washing the polyvinyl alcohol film surface with dirt and anti-blocking agents by washing the polyvinyl alcohol film with water, it also has the effect of preventing unevenness such as uneven coloring by swelling the polyvinyl alcohol film. is there.
  • Stretching may be performed after dyeing with iodine, may be performed while dyeing, or may be dyed with iodine after stretching.
  • the film can be stretched in an aqueous solution of boric acid or potassium iodide or in a water bath.
  • the protective film provided on one side or both sides of the polarizer preferably has excellent transparency, mechanical strength, thermal stability, moisture shielding properties, isotropic properties, and the like.
  • the material for the protective film include polyester polymers such as polyethylene terephthalate and polyethylene naphthalate, cellulose polymers such as diacetyl cellulose and triacetyl cellulose, acrylic polymers such as polymethyl methacrylate, polystyrene, acrylonitrile / styrene copolymer, and the like.
  • polyester polymers such as polyethylene terephthalate and polyethylene naphthalate
  • cellulose polymers such as diacetyl cellulose and triacetyl cellulose
  • acrylic polymers such as polymethyl methacrylate, polystyrene, acrylonitrile / styrene copolymer, and the like.
  • styrene polymers such as coalesced (AS resin), polycarbonate polymers, and the like.
  • polyolefin polymers such as polyethylene, polypropylene, ethylene / propylene copolymers, polyolefins having cycloolefin or norbornene structures, vinyl chloride polymers, amide polymers such as nylon and aromatic polyamide, imide polymers, sulfones Polymer, polyether sulfone polymer, polyether ether ketone polymer, polyphenylene sulfide polymer, vinyl alcohol polymer, vinylidene chloride polymer, vinyl butyral polymer, arylate polymer, polyoxymethylene polymer, epoxy polymer, or Examples of the polymer that forms the protective film include blends of the aforementioned polymers.
  • the thickness of the protective film is generally 500 ⁇ m or less, and preferably 1 to 300 ⁇ m. In particular, the thickness is preferably 5 to 200 ⁇ m.
  • the protective film is preferably an optically isotropic substrate.
  • a triacetyl cellulose (TAC) film such as Fujitac (product of Fujifilm) or Konicatak (product of Konica Minolta Opto), Arton film (product of JSR) And ZEONOR film, ZEONEX film (product of ZEON Corporation), cycloolefin polymer, TPX film (product of Mitsui Chemicals), acrylene film (product of Mitsubishi Rayon Co., Ltd.)
  • TAC triacetyl cellulose
  • TPX film product of Mitsui Chemicals
  • acrylene film product of Mitsubishi Rayon Co., Ltd.
  • the protective film which consists of the same polymer material may be used by the front and back, and the protective film which consists of a different polymer material etc. may be used.
  • the polarizer and the protective film are usually in close contact with each other through an aqueous adhesive or the like.
  • aqueous adhesives include polyvinyl alcohol adhesives, gelatin adhesives, vinyl latexes, aqueous polyurethanes, aqueous polyesters, and the like.
  • a hard coat layer As the protective film, a hard coat layer, an antireflection treatment, an anti-sticking treatment, or a treatment subjected to diffusion or anti-glare treatment can be used.
  • Hard coat treatment is performed for the purpose of preventing scratches on the surface of the polarizing plate.
  • a cured film having excellent hardness and slipping properties with an appropriate ultraviolet curable resin such as acrylic or silicone is applied to the protective film. It can be formed by a method of adding to the surface.
  • the antireflection treatment is performed for the purpose of preventing reflection of external light on the surface of the polarizing plate, and can be achieved by forming an antireflection film or the like according to the conventional art. Further, the anti-sticking treatment is performed for the purpose of preventing adhesion with an adjacent layer.
  • Anti-glare treatment is applied for the purpose of preventing external light from being reflected on the surface of the polarizing plate and obstructing the visibility of the light transmitted through the polarizing plate. For example, roughening by sandblasting or embossing. It can be formed by imparting a fine concavo-convex structure to the surface of the protective film by an appropriate method such as a method or a compounding method of transparent fine particles.
  • the fine particles to be included in the formation of the fine surface uneven structure include conductive particles made of silica, alumina, titania, zirconia, tin oxide, indium oxide, cadmium oxide, antimony oxide, and the like having an average particle size of 0.5 to 50 ⁇ m.
  • transparent fine particles such as inorganic fine particles, organic fine particles composed of a crosslinked or uncrosslinked polymer, and the like are used.
  • the amount of fine particles used is generally about 2 to 50 parts by weight, preferably 5 to 25 parts by weight, based on 100 parts by weight of the transparent resin forming the surface fine uneven structure.
  • the antiglare layer may also serve as a diffusion layer (viewing angle expanding function or the like) for diffusing the light transmitted through the polarizing plate to expand the viewing angle.
  • the antireflection layer, antisticking layer, diffusion layer, antiglare layer, and the like can be provided on the protective film itself, or can be provided separately from the transparent protective layer as an optical layer.
  • the first and second optically anisotropic layers and the first polarizing plate can be produced by sticking each other through an adhesive layer.
  • the pressure-sensitive adhesive forming the pressure-sensitive adhesive layer is not particularly limited.
  • an acrylic polymer, a silicone-based polymer, a polyester, a polyurethane, a polyamide, a polyether, a fluorine-based or rubber-based polymer is appropriately used as a base polymer.
  • those having excellent optical transparency such as an acrylic pressure-sensitive adhesive, exhibiting appropriate wettability, cohesiveness, and adhesive pressure-sensitive adhesive properties, and being excellent in weather resistance, heat resistance and the like can be preferably used.
  • the pressure-sensitive adhesive layer can be formed by an appropriate method.
  • a pressure-sensitive adhesive solution of about 10 to 40% by weight in which a base polymer or a composition thereof is dissolved or dispersed in a solvent composed of an appropriate solvent alone or a mixture such as toluene and ethyl acetate is prepared.
  • a method in which it is directly attached on the liquid crystal layer by an appropriate development method such as a casting method or a coating method, or an adhesive layer is formed on the separator according to the above and transferred onto the liquid crystal layer Examples include methods.
  • the pressure-sensitive adhesive layer includes, for example, natural and synthetic resins, in particular, tackifier resins, glass fibers, glass beads, metal powder, fillers made of other inorganic powders, pigments, colorants, You may contain the additive added to adhesion layers, such as antioxidant. Further, it may be a pressure-sensitive adhesive layer containing fine particles and exhibiting light diffusibility. In addition, when bonding each optically anisotropic layer mutually through an adhesive layer, the film surface can be surface-treated and adhesiveness with an adhesive layer can be improved.
  • the surface treatment means is not particularly limited, and a surface treatment method such as corona discharge treatment, sputtering treatment, low-pressure UV irradiation, or plasma treatment that can maintain the transparency of each optically anisotropic layer can be suitably employed.
  • a surface treatment method such as corona discharge treatment, sputtering treatment, low-pressure UV irradiation, or plasma treatment that can maintain the transparency of each optically anisotropic layer can be suitably employed.
  • corona discharge treatment is good.
  • the horizontal alignment type liquid crystal display device of the present invention includes a laminated polarizing plate of the present invention, a horizontal alignment type liquid crystal composed of at least a first polarizing plate, a first optical anisotropic layer, and a second optical anisotropic layer.
  • the cell and the second polarizing plate are arranged in this order.
  • the horizontal alignment type liquid crystal display device of the present invention is a laminated polarizing plate of the present invention comprising at least a first polarizing plate, a first optical anisotropic layer, and a second optical anisotropic layer, horizontal alignment A type liquid crystal cell, a third optically anisotropic layer, and a second polarizing plate are arranged in this order.
  • s is in the range of 85 ° to 95 °, where s is the angle formed by the absorption axis of the first polarizing plate and the absorption axis of the second polarizing plate. Preferably, it is 88 to 92 °, more preferably about 90 ° (orthogonal).
  • s deviates from the upper and lower ranges, light leakage of the horizontal alignment type liquid crystal display device is large and the visibility is remarkably deteriorated.
  • the layers are laminated so as to satisfy ⁇ 5 ° ⁇ t ⁇ 5 °.
  • t is out of the upper and lower ranges, light leakage of the horizontal alignment type liquid crystal display device is large, and the visibility is remarkably deteriorated.
  • a liquid crystal material solution was prepared by filtration through a 0.45 ⁇ m polytetrafluoroethylene filter.
  • the alignment substrate was prepared as follows.
  • a 38 ⁇ m-thick polyethylene naphthalate film (manufactured by Teijin Limited) was cut into a 15 cm square, and a 5% by mass solution of alkyl-modified polyvinyl alcohol (PVA: Kuraray Co., Ltd., MP-203) (the solvent was water and isopropyl).
  • a mixed solvent having an alcohol mass ratio of 1: 1) was applied by spin coating, dried on a hot plate at 50 ° C. for 30 minutes, and then heated in an oven at 120 ° C. for 10 minutes. Subsequently, it was rubbed with a rayon rubbing cloth.
  • the film thickness of the obtained PVA layer was 1.2 ⁇ m.
  • the peripheral speed ratio during rubbing was 4.
  • the liquid crystal material solution described above was applied to the alignment substrate thus obtained by spin coating. Next, it was dried on a hot plate at 60 ° C. for 10 minutes and heat-treated in an oven at 150 ° C. for 2 minutes to align the liquid crystal material. Next, the sample was placed in close contact with the aluminum plate heated to 60 ° C., and then the liquid crystal material was cured by irradiating with 600 mJ / cm 2 of ultraviolet light (however, measured at 365 nm) with a high-pressure mercury lamp. .
  • the obtained liquid crystalline film on the alignment substrate is converted to a triacetyl cellulose (TAC) film via an ultraviolet curable adhesive.
  • TAC triacetyl cellulose
  • an adhesive is applied to a thickness of 5 ⁇ m, laminated with a TAC film, and irradiated with ultraviolet rays from the TAC film side to cure the adhesive. After that, the polyethylene naphthalate film and the PVA layer were peeled off.
  • the obtained optical film (liquid crystal layer / adhesive layer / TAC film) is observed under a polarizing microscope, it has a uniform uniaxial refractive index structure from conoscopic observation with uniform orientation of monodomains without disclination. It was found to be homeotropic alignment.
  • the retardation in the in-plane direction of the TAC film and the liquid crystal layer measured using KOBRA21ADH was 0.5 nm, and the retardation in the thickness direction was ⁇ 119 nm. Since the TAC film alone was negative uniaxial and had an in-plane retardation of 0.5 nm and a retardation in the thickness direction of +35 nm, Re2 (550) was 0 nm for the retardation of the liquid crystal layer alone.
  • Rth2 (550) was estimated to be ⁇ 154 nm.
  • the TAC film of the substrate was removed and only the homeotropic alignment liquid crystal layer was taken out and used when bonded to another substrate.
  • the thickness of the homeotropic alignment liquid crystal layer was 0.9 ⁇ m.
  • the homeotropic alignment liquid crystal layer corresponds to the second optically anisotropic layer.
  • Example 1 The structure of the laminated polarizing plate will be described with reference to FIG.
  • a triacetyl cellulose (TAC) film having a thickness of 40 ⁇ m, a front phase difference of 6 nm, and a thickness direction retardation of 60 nm is provided as a protective film 2 on one side of the polarizer obtained in Reference Example 1 via a polyvinyl alcohol-based adhesive.
  • the first polarizing plate 1 was formed by bonding.
  • the other side of the first polarizing plate 1 is delayed in the roll width direction produced by lateral uniaxial stretching with the absorption axis of the first polarizing plate 1 having an absorption axis in the roll longitudinal direction via a polyvinyl alcohol adhesive.
  • the angle between the absorption axis of the first polarizing plate and the slow axis of the first optically anisotropic layer 3 is 90 degrees with the first optically anisotropic layer 3 made of a norbornene resin having a phase axis. Then, the second optically anisotropic layer 4 produced in Reference Example 2 was bonded thereto via an acrylic pressure-sensitive adhesive to obtain a laminated polarizing plate 5.
  • Re1 (550) of the first optically anisotropic layer 3 has a phase difference of 115 nm
  • Rth1 (550) has a phase difference of 103.5 nm
  • Re1 (450) / Re1 (550) has a phase difference of 1.01
  • Rth1 ( 450) / Rth1 (550) was 1.01
  • Re1 (650) / Re1 (550) was 0.99
  • Rth1 (650) / Rth1 (550) was 0.99.
  • the refractive index in each direction was in the relationship of nx1 (550)> ny1 (550)> nz1 (550).
  • Example 2 A horizontal alignment type liquid crystal display device used in Example 2 will be described with reference to FIGS.
  • a transparent electrode 7 is formed of a material having a high transmittance made of an ITO layer on the substrate 6, and a liquid crystal layer 9 made of a liquid crystal material having a negative dielectric anisotropy is sandwiched between the transparent electrode 7 and the substrate 8. .
  • a liquid crystal material exhibiting positive dielectric anisotropy is used for the liquid crystal layer 9.
  • the laminated polarizing plate 5 produced in Example 1 was disposed on the display surface side (upper side in the figure) of the horizontal alignment type liquid crystal cell 10.
  • a linearly polarizing plate (SQW-062 manufactured by Sumitomo Chemical Co., Ltd.) was disposed as the second polarizing plate 11 on the back side (lower side of the figure) of the horizontal alignment type liquid crystal cell 10.
  • Rth of triacetyl cellulose used for the support substrate of the linearly polarizing plate was 35 nm.
  • the directions of the absorption axes of the first polarizing plate 1 and the second polarizing plate 11 indicated by arrows in FIG. 3 were 90 degrees and 0 degrees in the plane, respectively.
  • the first optical anisotropic layer 3 is formed of an optical element having an in-plane optical axis and negative biaxial optical anisotropy.
  • the slow axis orientation of the first optically anisotropic layer 3 indicated by an arrow in FIG. 3 is 0 degree, and the in-plane Re1 has a phase difference of 115 nm and the Rth1 has a phase difference of 103.5 nm.
  • the second optically anisotropic layer 4 made of a homeotropic alignment liquid crystal film exhibits a phase difference in which Re2 is 0 nm and Rth2 is ⁇ 154 nm.
  • contrast ratio 4 shows the contrast ratio from all directions, where the transmittance ratio (white display) / (black display) of black display 0V and white display 5V is used as the contrast ratio.
  • Contrast contour lines were set to 6000, 3000, 1000, 500, and 200 in order from the inside.
  • the concentric circles indicate an angle of 20 degrees from the center. Therefore, the outermost circle shows 80 degrees from the center (the same applies to the following figures).
  • Example 3 The in-plane Re1 of the first optically anisotropic layer 3 made of norbornene-based resin is 125 nm, Rth1 is 87.5 nm, and the in-plane Re2 of the second optically anisotropic layer 4 made of homeotropic alignment liquid crystal film is 0 nm.
  • a horizontal alignment type liquid crystal display device was produced in the same manner as in Example 2 except that Rth2 was changed to -134 nm.
  • Re1 (450) / Re1 (550) is 1.01
  • Rth1 (450) / Rth1 (550) is 1.01
  • Re1 (650) / Re1 (550) is 0.99
  • Rth1 (650) / Rth1 (550) ) Was 0.99.
  • FIG. 5 shows the contrast ratio from all directions, where the transmittance ratio (white display) / (black display) of black display 0V and white display 5V is used as the contrast ratio.
  • the contrast ratio was viewed in all directions, it was found that the contrast ratio was high in all directions and good viewing angle characteristics were obtained.
  • Example 4 The in-plane Re1 of the first optical anisotropic layer 3 made of norbornene-based resin is 140 nm, Rth1 is 70.0 nm, and the in-plane Re2 of the second optical anisotropic layer 4 made of homeotropic alignment liquid crystal film is 0 nm.
  • a horizontal alignment type liquid crystal display device was produced in the same manner as in Example 2 except that Rth2 was ⁇ 113 nm.
  • Re1 (450) / Re1 (550) is 1.01
  • Rth1 (450) / Rth1 (550) is 1.01
  • Re1 (650) / Re1 (550) is 0.99
  • Rth1 (650) / Rth1 (550) ) Was 0.99.
  • FIG. 6 shows the contrast ratio from all directions, where the transmittance ratio (white display) / (black display) of black display 0V and white display 5V is used as the contrast ratio.
  • Example 5 Details of the horizontal alignment type liquid crystal display device used in this embodiment will be described with reference to FIGS.
  • a cellulose-based resin film (Z-TAC polarizing film manufactured by Fuji Film Co., Ltd.) having a small thickness direction retardation is disposed as the third optically anisotropic layer 12 between the lower second polarizing plate 11 and the liquid crystal cell 10.
  • a horizontal alignment type liquid crystal display device was produced in the same manner as in Example 2 except that.
  • Re1 (450) / Re1 (550) is 1.01
  • Rth1 (450) / Rth1 (550) is 1.01
  • Re1 (650) / Re1 (550) is 0.99
  • Rth1 (650) / Rth1 (550) ) Was 0.99.
  • the refractive index in each direction was in the relationship of nx1 (550)> ny1 (550)> nz1 (550).
  • Re3 (550) was 1 nm and Rth3 (550) was 2 nm.
  • the refractive index in each direction was in the relationship of nx3 (550) ⁇ ny3 (550) ⁇ nz3 (550).
  • FIG. 9 shows the contrast ratio from all directions, where the transmittance ratio (white display) / (black display) of black display 0V and white display 5V is used as the contrast ratio. When the contrast ratio was viewed in all directions, it was found that the contrast ratio was high in all directions and good viewing angle characteristics were obtained.
  • FIG. 10 shows the contrast ratio from all directions, where the transmittance ratio (white display) / (black display) of black display 0V and white display 5V is used as the contrast ratio.
  • the contrast ratio was viewed in all directions, it was found that the viewing angle characteristics deteriorated particularly in the four directions of upper right, upper left, lower right, and lower left.
  • FIG. 11 shows the contrast ratio from all directions, with the transmittance ratio (white display) / (black display) of the black display 0V and the white display 5V as the contrast ratio.
  • the contrast ratio was viewed in all directions, it was found that the viewing angle characteristics deteriorated particularly in the four directions of upper right, upper left, lower right, and lower left.
  • FIG. 12 shows the contrast ratio from all directions, where the transmittance ratio (white display) / (black display) of black display 0V and white display 5V is used as the contrast ratio.
  • the contrast ratio was viewed in all directions, it was found that the viewing angle characteristics deteriorated particularly in the four directions of upper right, upper left, lower right, and lower left.
  • FIG. 13 shows the contrast ratio from all directions, where the transmittance ratio (white display) / (black display) of black display 0V and white display 5V is used as the contrast ratio.
  • the contrast ratio was viewed in all directions, it was found that the viewing angle characteristics deteriorated particularly in the four directions of upper right, upper left, lower right, and lower left.
  • Example 5 A horizontal alignment type liquid crystal display device was produced in the same manner as in Example 2 except that Re1 of the first optically anisotropic layer 3 made of norbornene resin was 25 nm and Rth1 was 103.5 nm.
  • Re1 of the first optically anisotropic layer 3 made of norbornene resin was 25 nm and Rth1 was 103.5 nm.
  • Example 7 A horizontal alignment type liquid crystal display device was produced in the same manner as in Example 2 except that the norbornene resin of the first optically anisotropic layer 3 was changed to the polysulfone resin.
  • Re1 (450) / Re1 (550) 1.2
  • Rth1 (450) / Rth1 (550) 1.19
  • Re1 (650) / Re1 (550) 0.7
  • Rth1 (650) / Rth1 (550) 0.68.
  • the contrast ratio of the transmittance ratio of black display 0V and white display 5V (white display) / (black display) was measured, the contrast range was the same as in Example 2, and the contrast ratio was high in all directions and good viewing angle characteristics.
  • the Re1 (450) / Re1 (550) value, the Rth1 (450) / Rth1 (550) value, the Re1 (650) / Re1 (550) value, and the Rth1 (650) / Rth1 (550) value were obtained. Since it was far from the optimum range, it turned out that the color of the black display turned reddish purple and the coloration was large.
  • the contrast ratio of the transmittance ratio (white display) / (black display) of black display 0V and white display 5V was measured, when viewed in all directions, it was particularly low in the two directions of lower right and lower left, and the viewing angle. It was found that the characteristics deteriorated.

Abstract

Provided are a laminated polarizing plate having superior field of view characteristics and a horizontal alignment liquid crystal display device. The laminated polarizing plate results from laminating, in the given order, at least a first polarizing plate, a first optically anisotropic layer, and a second optically anisotropic layer. The first optically anisotropic layer satisfies [1]-[7], the second optically anisotropic layer satisfies [8] and [9], and the first optically anisotropic layer and second optically anisotropic layer satisfy [10]. [1]: 50 nm ≤ Re1 (550) ≤ 200 nm. [2]: 30 nm ≤ Rth1 (550) ≤ 330 nm. [3]: 0.5 ≤ Rth1 (550)/Re1 (550) ≤ 1.5. [4]: 0.7 ≤ Re1 (450)/Re1 (550) < 1.1. [5]: 0.7 ≤ Rth1 (450)/Rth1 (550) < 1.1. [6]: 0.95 ≤ Re1 (650)/Re1 (550) < 1.2. [7]: 0.95 ≤ Rth1 (650)/Rth1 (550) < 1.2. [8]: -10 nm ≤ Re2 (550) ≤ 10 nm. [9]: -200 nm ≤ Rth2 (550) ≤ -50 nm. [10]: -60 nm ≤ Rth1 (550) + Rth2 (550) ≤ 60 nm. (Here, Re and Re 2 are the in-plane retardation values for the first and second optically anisotropic layers, and Rth1 and Rth2 are the thickness-direction retardation values of the first and second optically anisotropic layers.)

Description

積層偏光板及び水平配向型液晶表示装置Multilayer polarizing plate and horizontal alignment type liquid crystal display device
 本発明は、視野角特性に優れた積層偏光板及び水平配向型液晶表示装置に関する。 The present invention relates to a laminated polarizing plate and a horizontal alignment type liquid crystal display device excellent in viewing angle characteristics.
 液晶表示装置における表示モードの1つとして、初期状態において液晶セル内の液晶分子が基板表面に対して平行に配列する水平配向モードがある(特許文献1)。電圧無印加時には、液晶分子が基板表面に対して平行に配列し、液晶セルの両側に直線偏光板を直交配置すると黒表示が得られる。
 電圧印加時においては、液晶分子が基板表面に平行な方向から電界の方向に回転し、その結果、明表示が得られる。
 水平配向型液晶表示装置の黒表示において、正面の視野においては良好な黒表示が得られるが、斜めからの視野においては光漏れが生じ、コントラストが低くなってしまうという問題がある。
As one of display modes in a liquid crystal display device, there is a horizontal alignment mode in which liquid crystal molecules in a liquid crystal cell are aligned in parallel with a substrate surface in an initial state (Patent Document 1). When no voltage is applied, liquid crystal molecules are arranged in parallel to the substrate surface, and a black display can be obtained by arranging linearly polarizing plates orthogonally on both sides of the liquid crystal cell.
When a voltage is applied, the liquid crystal molecules rotate from the direction parallel to the substrate surface to the direction of the electric field, and as a result, a bright display is obtained.
In black display of a horizontal alignment type liquid crystal display device, good black display can be obtained in the front visual field, but there is a problem that light leakage occurs in the oblique visual field and the contrast becomes low.
米国特許第3,807,831号明細書US Pat. No. 3,807,831
 本発明は、視野角特性の優れた水平配向型液晶表示装置用積層偏光板及び水平配向型液晶表示装置を提供することを目的とする。 An object of the present invention is to provide a laminated polarizing plate for a horizontal alignment type liquid crystal display device and a horizontal alignment type liquid crystal display device having excellent viewing angle characteristics.
 本発明者らは前記課題を解決すべく鋭意検討を重ねた結果、以下に示す水平配向型液晶表示装置用積層偏光板およびそれを用いた水平配向型液晶表示装置により、前記目的を達成できることを見出し本発明を完成するに至った。
すなわち、本発明は以下のとおりである。
As a result of intensive studies to solve the above problems, the present inventors have found that the object can be achieved by the following laminated polarizing plate for a horizontal alignment type liquid crystal display device and a horizontal alignment type liquid crystal display device using the same. The inventor has completed the present invention.
That is, the present invention is as follows.
〔1〕少なくとも第1の偏光板、第1の光学異方性層および第2の光学異方性層がこの順に積層された積層偏光板であって、前記第1の光学異方性層が以下の[1]~[7]を満たし、前記第2の光学異方性層が以下の[8]~[9]を満たし、前記第1の光学異方性層及び前記第2の光学異方性層が、以下の[10]を満たすことを特徴とする積層偏光板。
  [1]50nm≦Re1(550)≦200nm
  [2]30nm≦Rth1(550)≦300nm
  [3]0.5≦Rth1(550)/Re1(550)≦1.5
  [4]0.7≦Re1(450)/Re1(550)<1.1
  [5]0.7≦Rth1(450)/Rth1(550)<1.1
  [6]0.95≦Re1(650)/Re1(550)<1.2
  [7]0.95≦Rth1(650)/Rth1(550)<1.2
(ここで、Re1(450)、Re1(550)およびRe1(650)は、それぞれ波長450nm、550nmおよび650nmの光における第1の光学異方性層の面内のリターデーション値を意味し、Rth1(450)、Rth1(550)およびRth1(650)は、それぞれ波長450nm、550nmおよび650nmの光における第1の光学異方性層の厚さ方向のリターデーション値を意味する。Re1(450)、Re1(550)およびRe1(650)ならびにRth1(450)、Rth1(550)およびRth1(650)は、それぞれRe1(450)=(nx1(450)-ny1(450))×d1[nm]、Re1(550)=(nx1(550)-ny1(550))×d1[nm]、Re1(650)=(nx1(650)-ny1(650))×d1[nm]、Rth1(450)={(nx1(450)+ny1(450))/2-nz1(450)}×d1[nm]、Rth1(550)={(nx1(550)+ny1(550))/2-nz1(550)}×d1[nm]、Rth1(650)={(nx1(650)+ny1(650))/2-nz1(650)}×d1[nm]である。また、d1は第1の光学異方性層の厚さ、nx1(450)、nx1(550)、nx1(650)はそれぞれ波長450、550、650nmの光に対する第1の光学異方性層面内の最大主屈折率、ny1(450)、ny1(550)、ny1(650)はそれぞれnx1(450)、nx1(550)、nx1(650)に直交する方位の主屈折率、nz1(450)、nz1(550)、nz1(650)はそれぞれ波長450、550、650nmの光に対する厚さ方向の主屈折率であり、nx1(550)>ny1(550)>nz1(550)である。)
  [8]-10nm≦Re2(550)≦10nm
  [9]-200nm≦Rth2(550)≦-50nm
(ここで、Re2(550)は波長550nmの光における第2の光学異方性層の面内のリターデーション値を意味し、Rth2(550)は波長550nmの光における第2の光学異方性層の厚さ方向のリターデーション値を意味する。Re2(550)及びRth2(550)は、それぞれRe2(550)={nx2(550)-ny2(550)}×d2[nm]、Rth2(550)=[{nx2(550)+ny2(550)}/2-nz2(550)]×d2[nm]である。また、d2は第2の光学異方性層の厚さ、nx2(550)は波長550nmの光に対する第2の光学異方性層面内の最大主屈折率、ny2(550)はnx2(550)に直交する方位の主屈折率、nz2(550)は波長550nmの光に対する厚さ方向の主屈折率であり、nz2(550)>nx2(550)=ny2である。)
  [10]-60nm≦Rth1(550)+Rth2(550)≦60nm
[1] A laminated polarizing plate in which at least a first polarizing plate, a first optically anisotropic layer, and a second optically anisotropic layer are laminated in this order, wherein the first optically anisotropic layer is The following [1] to [7] are satisfied, the second optically anisotropic layer satisfies the following [8] to [9], and the first optically anisotropic layer and the second optically anisotropic layer are satisfied. A laminated polarizing plate, wherein the isotropic layer satisfies the following [10].
[1] 50 nm ≦ Re1 (550) ≦ 200 nm
[2] 30 nm ≦ Rth1 (550) ≦ 300 nm
[3] 0.5 ≦ Rth1 (550) / Re1 (550) ≦ 1.5
[4] 0.7 ≦ Re1 (450) / Re1 (550) <1.1
[5] 0.7 ≦ Rth1 (450) / Rth1 (550) <1.1
[6] 0.95 ≦ Re1 (650) / Re1 (550) <1.2
[7] 0.95 ≦ Rth1 (650) / Rth1 (550) <1.2
(Here, Re1 (450), Re1 (550), and Re1 (650) mean in-plane retardation values of the first optically anisotropic layer in light of wavelengths 450 nm, 550 nm, and 650 nm, respectively, and Rth1 (450), Rth1 (550), and Rth1 (650) mean retardation values in the thickness direction of the first optical anisotropic layer in light having wavelengths of 450 nm, 550 nm, and 650 nm, respectively. Re1 (550) and Re1 (650) and Rth1 (450), Rth1 (550) and Rth1 (650) are respectively Re1 (450) = (nx1 (450) −ny1 (450)) × d1 [nm], Re1 (550) = (nx1 (550) −ny1 (550)) × d1 [nm], Re1 (65 0) = (nx1 (650) −ny1 (650)) × d1 [nm], Rth1 (450) = {(nx1 (450) + ny1 (450)) / 2−nz1 (450)} × d1 [nm], Rth1 (550) = {(nx1 (550) + ny1 (550)) / 2−nz1 (550)} × d1 [nm], Rth1 (650) = {(nx1 (650) + ny1 (650)) / 2−nz1 (650)} × d1 [nm] where d1 is the thickness of the first optical anisotropic layer, and nx1 (450), nx1 (550), and nx1 (650) are wavelengths 450, 550, and 650 nm, respectively. Ny1 (450), ny1 (550), ny1 (650) are orthogonal to nx1 (450), nx1 (550), and nx1 (650), respectively, in the first optically anisotropic layer plane for the light of You The main refractive index in the direction, nz1 (450), nz1 (550), and nz1 (650), is the main refractive index in the thickness direction for light of wavelengths 450, 550, and 650 nm, respectively, and nx1 (550)> ny1 (550). > Nz1 (550).)
[8] -10 nm ≦ Re2 (550) ≦ 10 nm
[9] −200 nm ≦ Rth2 (550) ≦ −50 nm
(Here, Re2 (550) means the in-plane retardation value of the second optically anisotropic layer in the light of wavelength 550 nm, and Rth2 (550) is the second optical anisotropy in the light of wavelength 550 nm. Re2 (550) and Rth2 (550) are Re2 (550) = {nx2 (550) −ny2 (550)} × d2 [nm], Rth2 (550), respectively. ) = [{Nx2 (550) + ny2 (550)} / 2-nz2 (550)] × d2 [nm], where d2 is the thickness of the second optically anisotropic layer, and nx2 (550) is The maximum main refractive index in the plane of the second optical anisotropic layer for light with a wavelength of 550 nm, ny2 (550) is the main refractive index in the direction orthogonal to nx2 (550), and nz2 (550) is the thickness for light with a wavelength of 550 nm. (The main refractive index in the vertical direction, nz2 (550)> nx2 (550) = ny2)
[10] −60 nm ≦ Rth1 (550) + Rth2 (550) ≦ 60 nm
〔2〕前記第2の光学異方性層が、正の一軸性を示す液晶性組成物を液晶状態においてホメオトロピック配向させた後、配向固定化したホメオトロピック配向液晶フィルムからなることを特徴とする前記〔1〕に記載の積層偏光板。 [2] The second optically anisotropic layer is composed of a homeotropically aligned liquid crystal film in which a liquid crystalline composition exhibiting positive uniaxiality is homeotropically aligned in a liquid crystal state and then fixed in alignment. The laminated polarizing plate according to [1].
〔3〕前記の正の一軸性を示す液晶性組成物が、オキセタニル基を有する側鎖型液晶性高分子を含むことを特徴とする前記〔2〕に記載の積層偏光板。 [3] The laminated polarizing plate according to [2], wherein the liquid crystalline composition exhibiting positive uniaxiality includes a side chain type liquid crystalline polymer having an oxetanyl group.
〔4〕前記第1の光学異方性層が、ポリカーボネートあるいは環状ポリオレフィンを含むことを特徴とする前記〔1〕~〔3〕のいずれかに記載の積層偏光板。 [4] The laminated polarizing plate according to any one of [1] to [3], wherein the first optically anisotropic layer contains polycarbonate or cyclic polyolefin.
〔5〕前記第1の偏光板の吸収軸と前記第1の光学異方性層の遅相軸とのなす角度をrとしたときに、85°≦r≦95°を満たすように積層されていることを特徴とする前記〔1〕~〔4〕のいずれかに記載の積層偏光板。 [5] Laminated so as to satisfy 85 ° ≦ r ≦ 95 °, where r is an angle formed between the absorption axis of the first polarizing plate and the slow axis of the first optically anisotropic layer. The laminated polarizing plate as described in any one of [1] to [4] above,
〔6〕少なくとも第1の偏光板、第1の光学異方性層、第2の光学異方性層、水平配向型液晶セルおよび第2の偏光板がこの順に配置された水平配向型液晶表示装置であって、前記第1の光学異方性層が、以下の[1]~[7]を満たし、前記第2の光学異方性層が、以下の[8]~[9]を満たし、前記第1の光学異方性層及び前記第2の光学異方性層が、以下の[10]を満たすことを特徴とする水平配向型液晶表示装置。
  [1]50nm≦Re1(550)≦200nm
  [2]30nm≦Rth1(550)≦300nm
  [3]0.5≦Rth1(550)/Re1(550)≦1.5
  [4]0.7≦Re1(450)/Re1(550)<1.1
  [5]0.7≦Rth1(450)/Rth1(550)<1.1
  [6]0.95≦Re1(650)/Re1(550)<1.2
  [7]0.95≦Rth1(650)/Rth1(550)<1.2
(ここで、Re1(450)、Re1(550)およびRe1(650)は、それぞれ波長450nm、550nmおよび650nmの光における第1の光学異方性層の面内のリターデーション値を意味し、Rth1(450)、Rth1(550)およびRth1(650)は、それぞれ波長450nm、550nmおよび650nmの光における第1の光学異方性層の厚さ方向のリターデーション値を意味する。Re1(450)、Re1(550)およびRe1(650)ならびにRth1(450)、Rth1(550)およびRth1(650)は、それぞれRe1(450)=(nx1(450)-ny1(450))×d1[nm]、Re1(550)=(nx1(550)-ny1(550))×d1[nm]、Re1(650)=(nx1(650)-ny1(650))×d1[nm]、Rth1(450)={(nx1(450)+ny1(450))/2-nz1(450)}×d1[nm]、Rth1(550)={(nx1(550)+ny1(550))/2-nz1(550)}×d1[nm]、Rth1(650)={(nx1(650)+ny1(650))/2-nz1(650)}×d1[nm]である。また、d1は第1の光学異方性層の厚さ、nx1(450)、nx1(550)、nx1(650)、ny1(450)、ny1(550)、ny1(650)はそれぞれ波長450、550、650nmの光に対する第1の光学異方性層面内の主屈折率、nz1(450)、nz1(550)、nz1(650)はそれぞれ波長450、550、650nmの光に対する厚さ方向の主屈折率であり、nx1(550)>ny1(550)>nz1(550)である。)
  [8]-10nm≦Re2(550)≦10nm
  [9]-200nm≦Rth2(550)≦-50nm
(ここで、Re2(550)は波長550nmの光における第2の光学異方性層の面内のリターデーション値を意味し、Rth2(550)は波長550nmの光における第2の光学異方性層の厚さ方向のリターデーション値を意味する。Re2(550)及びRth2(550)は、それぞれRe2(550)={nx2(550)-ny2(550)}×d2[nm]、Rth2(550)=[{nx2(550)+ny2(550)}/2-nz2(550)]×d2[nm]である。また、d2は第2の光学異方性層の厚さ、nx2(550)は波長550nmの光に対する第2の光学異方性層面内の最大主屈折率、ny2(550)はnx2(550)に直交する方位の主屈折率、nz2(550)は波長550nmの光に対する厚さ方向の主屈折率であり、nz2(550)>nx2(550)=ny2である。)
  [10]-60nm≦Rth1(550)+Rth2(550)≦60nm
[6] A horizontal alignment type liquid crystal display in which at least a first polarizing plate, a first optical anisotropic layer, a second optical anisotropic layer, a horizontal alignment type liquid crystal cell, and a second polarizing plate are arranged in this order. In the apparatus, the first optical anisotropic layer satisfies the following [1] to [7], and the second optical anisotropic layer satisfies the following [8] to [9]: The horizontal alignment type liquid crystal display device, wherein the first optical anisotropic layer and the second optical anisotropic layer satisfy the following [10].
[1] 50 nm ≦ Re1 (550) ≦ 200 nm
[2] 30 nm ≦ Rth1 (550) ≦ 300 nm
[3] 0.5 ≦ Rth1 (550) / Re1 (550) ≦ 1.5
[4] 0.7 ≦ Re1 (450) / Re1 (550) <1.1
[5] 0.7 ≦ Rth1 (450) / Rth1 (550) <1.1
[6] 0.95 ≦ Re1 (650) / Re1 (550) <1.2
[7] 0.95 ≦ Rth1 (650) / Rth1 (550) <1.2
(Here, Re1 (450), Re1 (550), and Re1 (650) mean in-plane retardation values of the first optically anisotropic layer in light of wavelengths 450 nm, 550 nm, and 650 nm, respectively, and Rth1 (450), Rth1 (550), and Rth1 (650) mean retardation values in the thickness direction of the first optical anisotropic layer in light having wavelengths of 450 nm, 550 nm, and 650 nm, respectively. Re1 (550) and Re1 (650) and Rth1 (450), Rth1 (550) and Rth1 (650) are respectively Re1 (450) = (nx1 (450) −ny1 (450)) × d1 [nm], Re1 (550) = (nx1 (550) −ny1 (550)) × d1 [nm], Re1 (65 0) = (nx1 (650) −ny1 (650)) × d1 [nm], Rth1 (450) = {(nx1 (450) + ny1 (450)) / 2−nz1 (450)} × d1 [nm], Rth1 (550) = {(nx1 (550) + ny1 (550)) / 2−nz1 (550)} × d1 [nm], Rth1 (650) = {(nx1 (650) + ny1 (650)) / 2−nz1 (650)} × d1 [nm] where d1 is the thickness of the first optical anisotropic layer, nx1 (450), nx1 (550), nx1 (650), ny1 (450), ny1 ( 550) and ny1 (650) are the main refractive indices in the first optical anisotropic layer surface for light of wavelengths 450, 550 and 650 nm, respectively, and nz1 (450), nz1 (550) and nz1 (650) are wavelengths 450, respectively. The main refractive index in the thickness direction for light at 550,650Nm, an nx1 (550)> ny1 (550)> nz1 (550).)
[8] -10 nm ≦ Re2 (550) ≦ 10 nm
[9] −200 nm ≦ Rth2 (550) ≦ −50 nm
(Here, Re2 (550) means the in-plane retardation value of the second optically anisotropic layer in the light of wavelength 550 nm, and Rth2 (550) is the second optical anisotropy in the light of wavelength 550 nm. Re2 (550) and Rth2 (550) are Re2 (550) = {nx2 (550) −ny2 (550)} × d2 [nm], Rth2 (550), respectively. ) = [{Nx2 (550) + ny2 (550)} / 2-nz2 (550)] × d2 [nm], where d2 is the thickness of the second optically anisotropic layer, and nx2 (550) is The maximum main refractive index in the plane of the second optical anisotropic layer for light with a wavelength of 550 nm, ny2 (550) is the main refractive index in the direction orthogonal to nx2 (550), and nz2 (550) is the thickness for light with a wavelength of 550 nm. (The main refractive index in the vertical direction, nz2 (550)> nx2 (550) = ny2)
[10] −60 nm ≦ Rth1 (550) + Rth2 (550) ≦ 60 nm
〔7〕少なくとも第1の偏光板、第1の光学異方性層、第2の光学異方性層、水平配向型液晶セル、第3の光学異方性層および第2の偏光板がこの順に配置された水平配向型液晶表示装置であって、前記第1の光学異方性層が、以下の[1]~[7]を満たし、前記第2の光学異方性層が、以下の[8]~[9]を満たし、前記第1の光学異方性層及び前記第2の光学異方性層が、以下の[10]を満たし、前記第3の光学異方性層が、以下の[11]~[12]を満たすことを特徴とする水平配向型液晶表示装置。
  [1]50nm≦Re1(550)≦200nm
  [2]30nm≦Rth1(550)≦300nm
  [3]0.5≦Rth1(550)/Re1(550)≦1.5
  [4]0.7≦Re1(450)/Re1(550)<1.1
  [5]0.7≦Rth1(450)/Rth1(550)<1.1
  [6]0.95≦Re1(650)/Re1(550)<1.2
  [7]0.95≦Rth1(650)/Rth1(550)<1.2
(ここで、Re1(450)、Re1(550)およびRe1(650)は、それぞれ波長450nm、550nmおよび650nmの光における第1の光学異方性層の面内のリターデーション値を意味し、Rth1(450)、Rth1(550)およびRth1(650)は、それぞれ波長450nm、550nmおよび650nmの光における第1の光学異方性層の厚さ方向のリターデーション値を意味する。Re1(450)、Re1(550)およびRe1(650)ならびにRth1(450)、Rth1(550)およびRth1(650)は、それぞれRe1(450)=(nx1(450)-ny1(450))×d1[nm]、Re1(550)=(nx1(550)-ny1(550))×d1[nm]、Re1(650)=(nx1(650)-ny1(650))×d1[nm]、Rth1(450)={(nx1(450)+ny1(450))/2-nz1(450)}×d1[nm]、Rth1(550)={(nx1(550)+ny1(550))/2-nz1(550)}×d1[nm]、Rth1(650)={(nx1(650)+ny1(650))/2-nz1(650)}×d1[nm]である。また、d1は第1の光学異方性層の厚さ、nx1(450)、nx1(550)、nx1(650)はそれぞれ波長450、550、650nmの光に対する第1の光学異方性層面内の最大主屈折率、ny1(450)、ny1(550)、ny1(650)はそれぞれnx1(450)、nx1(550)、nx1(650)に直交する方位の主屈折率、nz1(450)、nz1(550)、nz1(650)はそれぞれ波長450、550、650nmの光に対する厚さ方向の主屈折率であり、nx1(550)>ny1(550)>nz1(550)である。)
  [8]-10nm≦Re2(550)≦10nm
  [9]-200nm≦Rth2(550)≦-50nm
(ここで、Re2(550)は波長550nmの光における第2の光学異方性層の面内のリターデーション値を意味し、Rth2(550)は波長550nmの光における第2の光学異方性層の厚さ方向のリターデーション値を意味する。Re2(550)及びRth2(550)は、それぞれRe2(550)={nx2(550)-ny2(550)}×d2[nm]、Rth2(550)=[{nx2(550)+ny2(550)}/2-nz2(550)]×d2[nm]である。また、d2は第2の光学異方性層の厚さ、nx2(550)は波長550nmの光に対する第2の光学異方性層面内の最大主屈折率、ny2(550)はnx2(550)に直交する方位の主屈折率、nz2(550)は波長550nmの光に対する厚さ方向の主屈折率であり、nz2(550)>nx2(550)=ny2である。)
  [10]-60nm≦Rth1(550)+Rth2(550)≦60nm
  [11]-10nm≦Re3(550)≦10nm
  [12]-10nm≦Rth3(550)≦10nm
(ここで、Re3(550)は波長550nmの光における第3の光学異方性層の面内のリターデーション値を意味し、Rth3(550)は波長550nmの光における第3の光学異方性層の厚さ方向のリターデーション値を意味する。Re3(550)及びRth3(550)は、それぞれRe3(550)=(nx3(550)-ny3(550))×d3[nm]、Rth3(550)={(nx3(550)+ny3(550))/2-nz3(550)}×d3[nm]である。また、d3は第3の光学異方性層の厚さ、nx3(550)、ny3(550)は波長550nmの光に対する第3の光学異方性層面内の主屈折率、nz3(550)は波長550nmの光に対する厚さ方向の主屈折率であり、nx3(550)≧ny3(550)≧nz3(550)である。)
[7] At least the first polarizing plate, the first optical anisotropic layer, the second optical anisotropic layer, the horizontal alignment type liquid crystal cell, the third optical anisotropic layer, and the second polarizing plate In the horizontal alignment type liquid crystal display device arranged in order, the first optical anisotropic layer satisfies the following [1] to [7], and the second optical anisotropic layer has the following: [8] to [9] are satisfied, the first optical anisotropic layer and the second optical anisotropic layer satisfy the following [10], and the third optical anisotropic layer is: A horizontal alignment type liquid crystal display device satisfying the following [11] to [12].
[1] 50 nm ≦ Re1 (550) ≦ 200 nm
[2] 30 nm ≦ Rth1 (550) ≦ 300 nm
[3] 0.5 ≦ Rth1 (550) / Re1 (550) ≦ 1.5
[4] 0.7 ≦ Re1 (450) / Re1 (550) <1.1
[5] 0.7 ≦ Rth1 (450) / Rth1 (550) <1.1
[6] 0.95 ≦ Re1 (650) / Re1 (550) <1.2
[7] 0.95 ≦ Rth1 (650) / Rth1 (550) <1.2
(Here, Re1 (450), Re1 (550), and Re1 (650) mean in-plane retardation values of the first optically anisotropic layer in light of wavelengths 450 nm, 550 nm, and 650 nm, respectively, and Rth1 (450), Rth1 (550), and Rth1 (650) mean retardation values in the thickness direction of the first optical anisotropic layer in light having wavelengths of 450 nm, 550 nm, and 650 nm, respectively. Re1 (550) and Re1 (650) and Rth1 (450), Rth1 (550) and Rth1 (650) are respectively Re1 (450) = (nx1 (450) −ny1 (450)) × d1 [nm], Re1 (550) = (nx1 (550) −ny1 (550)) × d1 [nm], Re1 (65 0) = (nx1 (650) −ny1 (650)) × d1 [nm], Rth1 (450) = {(nx1 (450) + ny1 (450)) / 2−nz1 (450)} × d1 [nm], Rth1 (550) = {(nx1 (550) + ny1 (550)) / 2−nz1 (550)} × d1 [nm], Rth1 (650) = {(nx1 (650) + ny1 (650)) / 2−nz1 (650)} × d1 [nm] where d1 is the thickness of the first optical anisotropic layer, and nx1 (450), nx1 (550), and nx1 (650) are wavelengths 450, 550, and 650 nm, respectively. Ny1 (450), ny1 (550), ny1 (650) are orthogonal to nx1 (450), nx1 (550), and nx1 (650), respectively, in the first optically anisotropic layer plane for the light of You The main refractive index in the direction, nz1 (450), nz1 (550), and nz1 (650), is the main refractive index in the thickness direction for light of wavelengths 450, 550, and 650 nm, respectively, and nx1 (550)> ny1 (550). > Nz1 (550).)
[8] -10 nm ≦ Re2 (550) ≦ 10 nm
[9] −200 nm ≦ Rth2 (550) ≦ −50 nm
(Here, Re2 (550) means the in-plane retardation value of the second optically anisotropic layer in the light of wavelength 550 nm, and Rth2 (550) is the second optical anisotropy in the light of wavelength 550 nm. Re2 (550) and Rth2 (550) are Re2 (550) = {nx2 (550) −ny2 (550)} × d2 [nm], Rth2 (550), respectively. ) = [{Nx2 (550) + ny2 (550)} / 2-nz2 (550)] × d2 [nm], where d2 is the thickness of the second optically anisotropic layer, and nx2 (550) is The maximum main refractive index in the plane of the second optical anisotropic layer for light with a wavelength of 550 nm, ny2 (550) is the main refractive index in the direction orthogonal to nx2 (550), and nz2 (550) is the thickness for light with a wavelength of 550 nm. (The main refractive index in the vertical direction, nz2 (550)> nx2 (550) = ny2)
[10] −60 nm ≦ Rth1 (550) + Rth2 (550) ≦ 60 nm
[11] -10 nm ≦ Re3 (550) ≦ 10 nm
[12] -10 nm ≦ Rth3 (550) ≦ 10 nm
(Here, Re3 (550) means the in-plane retardation value of the third optical anisotropic layer in the light of wavelength 550 nm, and Rth3 (550) is the third optical anisotropy in the light of wavelength 550 nm. Re3 (550) and Rth3 (550) are Re3 (550) = (nx3 (550) −ny3 (550)) × d3 [nm], Rth3 (550), respectively. ) = {(Nx3 (550) + ny3 (550)) / 2−nz3 (550)} × d3 [nm], where d3 is the thickness of the third optical anisotropic layer, nx3 (550), ny3 (550) is the main refractive index in the third optical anisotropic layer surface for light having a wavelength of 550 nm, nz3 (550) is the main refractive index in the thickness direction for light having a wavelength of 550 nm, and nx3 (550) ≧ ny 3 (550) ≧ nz3 (550).)
〔8〕前記第2の光学異方性層が、正の一軸性を示す液晶性組成物を液晶状態においてホメオトロピック配向させた後、配向固定化したホメオトロピック配向液晶フィルムからなることを特徴とする前記〔6〕または〔7〕に記載の水平配向型液晶表示装置。 [8] The second optically anisotropic layer is composed of a homeotropically aligned liquid crystal film obtained by homeotropically aligning a liquid crystalline composition exhibiting positive uniaxiality in a liquid crystal state and then fixing the alignment. The horizontal alignment type liquid crystal display device according to [6] or [7].
〔9〕前記の正の一軸性を示す液晶性組成物が、オキセタニル基を有する側鎖型液晶性高分子を含むことを特徴とする前記〔8〕に記載の水平配向型液晶表示装置。 [9] The horizontal alignment liquid crystal display device according to [8], wherein the liquid crystalline composition exhibiting positive uniaxiality includes a side chain liquid crystalline polymer having an oxetanyl group.
〔10〕前記第1の光学異方性層が、ポリカーボネートあるいは環状ポリオレフィンを含むことを特徴とする前記〔6〕~〔9〕のいずれかに記載の水平配向型液晶表示装置。 [10] The horizontal alignment type liquid crystal display device according to any one of [6] to [9], wherein the first optically anisotropic layer contains polycarbonate or cyclic polyolefin.
〔11〕前記第1の偏光板の吸収軸と前記第1の光学異方性層の遅相軸とのなす角度をrとしたときに、85°≦r≦95°を満たすように積層されていることを特徴とする前記〔6〕~〔10〕のいずれかに記載の水平配向型液晶表示装置。 [11] Laminated so as to satisfy 85 ° ≦ r ≦ 95 °, where r is an angle formed between the absorption axis of the first polarizing plate and the slow axis of the first optically anisotropic layer. The horizontal alignment type liquid crystal display device according to any one of [6] to [10], wherein
〔12〕前記第1の偏光板の吸収軸と前記第2の偏光板の吸収軸とのなす角度をsとしたときに、85°≦s≦95°を満たし、前記第2の偏光板の吸収軸と水平配向型液晶セル内の液晶の光軸とのなす角度をtとしたときに、-5°≦t≦5°を満たすように積層されていることを特徴とする前記〔11〕に記載の水平配向型液晶表示装置。 [12] When the angle between the absorption axis of the first polarizing plate and the absorption axis of the second polarizing plate is s, 85 ° ≦ s ≦ 95 ° is satisfied, and the second polarizing plate The above-mentioned [11], wherein the layers are laminated so that −5 ° ≦ t ≦ 5 ° is satisfied, where t is an angle formed between the absorption axis and the optical axis of the liquid crystal in the horizontal alignment type liquid crystal cell. A horizontal alignment type liquid crystal display device described in 1.
 本発明の水平配向型液晶表示装置は、表示が明るく、全方位において高コントラストな表示が可能である。 The horizontal alignment type liquid crystal display device of the present invention has a bright display and can display with high contrast in all directions.
本発明の積層偏光板の断面模式図である。It is a cross-sectional schematic diagram of the laminated polarizing plate of this invention. 実施例2で用いた水平配向型液晶表示装置の断面模式図である。6 is a schematic cross-sectional view of a horizontal alignment type liquid crystal display device used in Example 2. FIG. 実施例2で用いた水平配向型液晶表示装置の各構成部材の角度関係を示した平面図である。FIG. 6 is a plan view showing the angular relationship of each component of the horizontal alignment type liquid crystal display device used in Example 2. 実施例2における水平配向型液晶表示装置を全方位から見た時のコントラスト比を示す図である。It is a figure which shows contrast ratio when the horizontal alignment type liquid crystal display device in Example 2 is seen from all directions. 実施例3における水平配向型液晶表示装置を全方位から見た時のコントラスト比を示す図である。It is a figure which shows contrast ratio when the horizontal alignment type liquid crystal display device in Example 3 is seen from all directions. 実施例4における水平配向型液晶表示装置を全方位から見た時のコントラスト比を示す図である。It is a figure which shows contrast ratio when the horizontal alignment type liquid crystal display device in Example 4 is seen from all directions. 実施例5で用いた水平配向型液晶表示装置の断面模式図である。6 is a schematic cross-sectional view of a horizontal alignment type liquid crystal display device used in Example 5. FIG. 実施例5で用いた水平配向型液晶表示装置の各構成部材の角度関係を示した平面図である。FIG. 10 is a plan view showing the angular relationship of each component of the horizontal alignment type liquid crystal display device used in Example 5. 実施例5における水平配向型液晶表示装置を全方位から見た時のコントラスト比を示す図である。It is a figure which shows contrast ratio when the horizontal alignment type liquid crystal display device in Example 5 is seen from all directions. 比較例1における水平配向型液晶表示装置を全方位から見た時のコントラスト比を示す図である。It is a figure which shows contrast ratio when the horizontal alignment type liquid crystal display device in the comparative example 1 is seen from all directions. 比較例2における水平配向型液晶表示装置を全方位から見た時のコントラスト比を示す図である。It is a figure which shows contrast ratio when the horizontal alignment type liquid crystal display device in the comparative example 2 is seen from all directions. 比較例3における水平配向型液晶表示装置を全方位から見た時のコントラスト比を示す図である。It is a figure which shows contrast ratio when the horizontal alignment type liquid crystal display device in the comparative example 3 is seen from all directions. 比較例4における水平配向型液晶表示装置を全方位から見た時のコントラスト比を示す図である。It is a figure which shows contrast ratio when the horizontal alignment type liquid crystal display device in the comparative example 4 is seen from all directions.
 以下、本発明を詳細に説明する。
 本発明の積層偏光板は、図1に示すような少なくとも第1の偏光板、第1の光学異方性層および第2の光学異方性層がこの順に積層された積層偏光板である。
Hereinafter, the present invention will be described in detail.
The laminated polarizing plate of the present invention is a laminated polarizing plate in which at least a first polarizing plate, a first optical anisotropic layer and a second optical anisotropic layer are laminated in this order as shown in FIG.
 以下本発明に用いられる構成部材について順に説明する。
 まず、本発明に使用する水平配向型液晶セルについて説明する。液晶セルとしては、特に制限はないが、透過型、反射型、半透過型の各種液晶セルを挙げることができる。液晶セルの駆動方式も特に制限はなく、STN-LCD等に用いられるパッシブマトリクス方式、TFT(Thin Film Transistor)電極、TFD(Thin Film Diode)電極等の能動電極を用いるアクティブマトリクス方式、プラズマアドレス方式等のいずれの駆動方式であっても良い。
Hereinafter, the constituent members used in the present invention will be described in order.
First, the horizontal alignment type liquid crystal cell used in the present invention will be described. Although there is no restriction | limiting in particular as a liquid crystal cell, Various liquid crystal cells of a transmissive type, a reflective type, and a semi-transmissive type can be mentioned. The driving method of the liquid crystal cell is not particularly limited, and is a passive matrix method used for STN-LCDs, an active matrix method using active electrodes such as TFT (Thin Film Transistor) electrodes, TFD (Thin Film Diode) electrodes, and a plasma addressing method. Any driving method may be used.
 液晶セルを構成する透明基板としては、液晶層を構成する液晶性を示す材料を特定の配向方向に配向させるものであれば特に制限はない。具体的には、基板自体が液晶を配向させる性質を有している透明基板、基板自体は配向能に欠けるが、液晶を配向させる性質を有する配向膜等をこれに設けた透明基板等がいずれも使用できる。また、液晶セルの電極は、ITO等の公知のものが使用できる。電極は通常、液晶層が接する透明基板の面上に設けることができ、配向膜を有する基板を使用する場合は、基板と配向膜との間に設けることができる。 The transparent substrate constituting the liquid crystal cell is not particularly limited as long as the liquid crystal material constituting the liquid crystal layer is aligned in a specific alignment direction. Specifically, a transparent substrate having the property of aligning the liquid crystal itself, a substrate itself lacking alignment ability, but a transparent substrate provided with an alignment film having the property of aligning liquid crystal, etc. Can also be used. Moreover, well-known things, such as ITO, can be used for the electrode of a liquid crystal cell. The electrode can usually be provided on the surface of the transparent substrate with which the liquid crystal layer is in contact. When a substrate having an alignment film is used, it can be provided between the substrate and the alignment film.
 液晶層を形成する液晶性を示す材料としては、正の誘電率異方性を有する材料であれば特に制限されず、各種の液晶セルを構成し得る通常の各種低分子液晶物質、高分子液晶物質およびこれらの混合物が挙げられる。また、これらに液晶性を損なわない範囲で色素や非液晶性物質等を添加することもできる。 The material exhibiting liquid crystallinity for forming the liquid crystal layer is not particularly limited as long as it has a positive dielectric anisotropy, and various ordinary low-molecular liquid crystal substances and polymer liquid crystals capable of constituting various liquid crystal cells. Materials and mixtures thereof. Moreover, a pigment | dye, a non-liquid crystalline substance, etc. can also be added to these in the range which does not impair liquid crystallinity.
 本発明の水平配向型液晶表示装置は、前記した構成部材以外にも他の構成部材を付設することができる。例えば、カラーフィルターを本発明の液晶表示装置に付設することにより、色純度の高いマルチカラー又はフルカラー表示を行うことができるカラー液晶表示装置を作製することができる。 The horizontal alignment type liquid crystal display device of the present invention can be provided with other constituent members in addition to the constituent members described above. For example, by attaching a color filter to the liquid crystal display device of the present invention, a color liquid crystal display device capable of performing multicolor or full color display with high color purity can be manufactured.
 次に、本発明に使用する光学異方性層について順に説明する。
 まず、第1の光学異方性層について説明する。
 第1の光学異方性層としては、例えば、ポリカーボネート、ノルボルネン系樹脂等の環状ポリオレフィン、ポリビニルアルコール、ポリスチレン、ポリメチルメタクリレート、ポリプロピレンやその他のポリオレフィン、ポリアリレート、ポリアミドの如き適宜なポリマーからなるフィルムを一軸あるいは二軸延伸処理する手法や特開平5-157911号公報に示されるような熱収縮フィルムにより長尺フィルムの幅方向を熱収縮させて厚み方向に位相差を大きくする手法により製造した複屈折フィルム、液晶ポリマーなどの液晶材料からなる配向フィルム、液晶材料の配向層をフィルムにて支持したものなどが挙げられる。
Next, the optically anisotropic layer used in the present invention will be described in order.
First, the first optical anisotropic layer will be described.
As the first optically anisotropic layer, for example, a film made of an appropriate polymer such as a cyclic polyolefin such as polycarbonate or norbornene resin, polyvinyl alcohol, polystyrene, polymethyl methacrylate, polypropylene, other polyolefins, polyarylate, or polyamide. A composite film manufactured by a method in which a film is uniaxially or biaxially stretched or a method in which the width direction of a long film is thermally contracted by a heat shrinkable film as disclosed in JP-A-5-157911 and the phase difference is increased in the thickness direction. Examples thereof include a refractive film, an alignment film made of a liquid crystal material such as a liquid crystal polymer, and a film in which an alignment layer of the liquid crystal material is supported.
 面内方向に面内の主屈折率が最大になる方向であるx方向、x方向に直行する方向であるy方向を取り、厚さ方向をz方向とする場合、正の一軸性光学異方性層は、屈折率としてnx>ny=nzの関係を有する。また、正の二軸性光学異方性層は、屈折率としてnx>nz>nyの関係を有する。負の一軸性光学異方性層は、屈折率としてnx=ny>nzの関係を有する。負の二軸性光学異方性層は、屈折率としてnx>ny>nzの関係を有する。 When the x direction, which is the direction in which the in-plane main refractive index is the maximum in the in-plane direction, and the y direction, which is the direction orthogonal to the x direction, are taken and the thickness direction is the z direction, positive uniaxial optical The conductive layer has a relationship of nx> ny = nz as a refractive index. The positive biaxial optically anisotropic layer has a relationship of nx> nz> ny as a refractive index. The negative uniaxial optically anisotropic layer has a relationship of nx = ny> nz as a refractive index. The negative biaxial optically anisotropic layer has a relationship of nx> ny> nz as a refractive index.
 第1の光学異方性層は、第1の光学異方性層は第1の偏光板の視野角補償として寄与しており、以下の[1]~[7]を満たすことが必要である。
  [1]50nm≦Re1(550)≦200nm
  [2]30nm≦Rth1(550)≦300nm
  [3]0.5≦Rth1(550)/Re1(550)≦1.5
  [4]0.7≦Re1(450)/Re1(550)<1.1
  [5]0.7≦Rth1(450)/Rth1(550)<1.1
  [6]0.95≦Re1(650)/Re1(550)<1.2
  [7]0.95≦Rth1(650)/Rth1(550)<1.2
The first optical anisotropic layer contributes to the viewing angle compensation of the first polarizing plate, and it is necessary to satisfy the following [1] to [7]. .
[1] 50 nm ≦ Re1 (550) ≦ 200 nm
[2] 30 nm ≦ Rth1 (550) ≦ 300 nm
[3] 0.5 ≦ Rth1 (550) / Re1 (550) ≦ 1.5
[4] 0.7 ≦ Re1 (450) / Re1 (550) <1.1
[5] 0.7 ≦ Rth1 (450) / Rth1 (550) <1.1
[6] 0.95 ≦ Re1 (650) / Re1 (550) <1.2
[7] 0.95 ≦ Rth1 (650) / Rth1 (550) <1.2
 上記[1]~[7]において、Re1(450)、Re1(550)およびRe1(650)は、それぞれ波長450nm、550nmおよび650nmの光における第1の光学異方性層の面内のリターデーション値を意味し、Rth1(450)、Rth1(550)およびRth1(650)は、それぞれ波長450nm、550nmおよび650nmの光における第1の光学異方性層の厚さ方向のリターデーション値を意味する。Re1(450)、Re1(550)およびRe1(650)ならびにRth1(450)、Rth1(550)およびRth1(650)は、それぞれRe1(450)=(nx1(450)-ny1(450))×d1[nm]、Re1(550)=(nx1(550)-ny1(550))×d1[nm]、Re1(650)=(nx1(650)-ny1(650))×d1[nm]、Rth1(450)={(nx1(450)+ny1(450))/2-nz1(450)}×d1[nm]、Rth1(550)={(nx1(550)+ny1(550))/2-nz1(550)}×d1[nm]、Rth1(650)={(nx1(650)+ny1(650))/2-nz1(650)}×d1[nm]である。また、d1は第1の光学異方性層の厚さ、nx1(450)、nx1(550)、nx1(650)はそれぞれ波長450、550、650nmの光に対する第1の光学異方性層面内の最大主屈折率、ny1(450)、ny1(550)、ny1(650)はそれぞれnx1(450)、nx1(550)、nx1(650)に直交する方位の主屈折率、nz1(450)、nz1(550)、nz1(650)はそれぞれ波長450、550、650nmの光に対する厚さ方向の主屈折率であり、nx1(550)>ny1(550)>nz1(550)である。 In the above [1] to [7], Re1 (450), Re1 (550), and Re1 (650) are in-plane retardations of the first optical anisotropic layer in light having wavelengths of 450 nm, 550 nm, and 650 nm, respectively. Rth1 (450), Rth1 (550), and Rth1 (650) mean retardation values in the thickness direction of the first optical anisotropic layer in light having wavelengths of 450 nm, 550 nm, and 650 nm, respectively. . Re1 (450), Re1 (550) and Re1 (650) and Rth1 (450), Rth1 (550) and Rth1 (650) are respectively Re1 (450) = (nx1 (450) −ny1 (450)) × d1 [Nm], Re1 (550) = (nx1 (550) −ny1 (550)) × d1 [nm], Re1 (650) = (nx1 (650) −ny1 (650)) × d1 [nm], Rth1 ( 450) = {(nx1 (450) + ny1 (450)) / 2−nz1 (450)} × d1 [nm], Rth1 (550) = {(nx1 (550) + ny1 (550)) / 2−nz1 (550) )} × d1 [nm], Rth1 (650) = {(nx1 (650) + ny1 (650)) / 2−nz1 (650)} × d1 [nm]. D1 is the thickness of the first optical anisotropic layer, and nx1 (450), nx1 (550), and nx1 (650) are in the plane of the first optical anisotropic layer for light having wavelengths of 450, 550, and 650 nm, respectively. Ny1 (450), ny1 (550), and ny1 (650) are nx1 (450), nx1 (550), and nx1 (650) main refractive indexes in the direction orthogonal to nx1 (450), respectively. nz1 (550) and nz1 (650) are main refractive indexes in the thickness direction with respect to light having wavelengths of 450, 550, and 650 nm, respectively, and nx1 (550)> ny1 (550)> nz1 (550).
 すなわち、第1の光学異方性層面内のリターデーション値Re1(550)は50nm~200nmであることが必要であり、好ましくは70nm~180nm、さらに好ましくは90nm~160nmの範囲である。Re1(550)値が上記範囲内である場合には、十分な視野角改良効果が得られ、斜めから見たときの不必要な色付きを防ぐことができる。
 また、第1の光学異方性層の厚さ方向のリターデーション値Rth1(550)は30nm~300nmであることが必要であり、好ましくは40nm~200nm、さらに好ましくは50nm~150nmの範囲である。上記範囲を外れた場合には、十分な視野角改良効果が得られないかあるいは、斜めから見たときに不必要な色付きが生じる恐れがある。
That is, the retardation value Re1 (550) in the first optically anisotropic layer surface needs to be 50 nm to 200 nm, preferably 70 nm to 180 nm, and more preferably 90 nm to 160 nm. When the Re1 (550) value is within the above range, a sufficient viewing angle improvement effect can be obtained, and unnecessary coloring can be prevented when viewed from an oblique direction.
The retardation value Rth1 (550) in the thickness direction of the first optically anisotropic layer needs to be 30 nm to 300 nm, preferably 40 nm to 200 nm, more preferably 50 nm to 150 nm. . When outside the above range, a sufficient viewing angle improvement effect may not be obtained, or unnecessary coloring may occur when viewed from an oblique direction.
 さらに、Rth1(550)/Re1(550)は0.5~1.5であることが必要であり、好ましくは0.5~1.2の範囲である。上記範囲を外れた場合には、十分な視野角改良効果が得られないかあるいは、斜めから見たときに不必要な色付きが生じる恐れがある。 Furthermore, Rth1 (550) / Re1 (550) needs to be 0.5 to 1.5, preferably in the range of 0.5 to 1.2. When outside the above range, a sufficient viewing angle improvement effect may not be obtained, or unnecessary coloring may occur when viewed from an oblique direction.
 さらに、Re1(450)、Re1(550)、Re1(650)が以下の[4]および[6]の関係を満たし、Rth1(450)、Rth1(550)、Rth1(650)が以下の[5]および[7]の関係を満たしていることが必要である。これらの範囲を外れた場合には、十分な視野角改良効果が得られないかあるいは、斜めから見たときに不必要な色付きが生じる恐れがある。
  [4]0.7≦Re1(450)/Re1(550)<1.1
  [5]0.7≦Rth1(450)/Rth1(550)<1.1
  [6]0.95≦Re1(650)/Re1(550)<1.2
  [7]0.95≦Rth1(650)/Rth1(550)<1.2
Furthermore, Re1 (450), Re1 (550), and Re1 (650) satisfy the following relations [4] and [6], and Rth1 (450), Rth1 (550), and Rth1 (650) satisfy the following [5] ] And [7] must be satisfied. If these ranges are not satisfied, a sufficient viewing angle improvement effect may not be obtained, or unnecessary coloring may occur when viewed from an oblique direction.
[4] 0.7 ≦ Re1 (450) / Re1 (550) <1.1
[5] 0.7 ≦ Rth1 (450) / Rth1 (550) <1.1
[6] 0.95 ≦ Re1 (650) / Re1 (550) <1.2
[7] 0.95 ≦ Rth1 (650) / Rth1 (550) <1.2
 また、前記第1の光学異方性層および第2の光学異方性層は以下の[10]を満たすことが必要である。
  [10]-60nm≦Rth1(550)+Rth2(550)≦60nm
 上記範囲は更に好ましくは-55nm≦Rth1(550)+Rth2(550)≦55nmである。Rth1(550)+Rth2(550)が上記範囲である場合、優れた視野角特性を示す。
In addition, the first optical anisotropic layer and the second optical anisotropic layer must satisfy the following [10].
[10] −60 nm ≦ Rth1 (550) + Rth2 (550) ≦ 60 nm
The above range is more preferably −55 nm ≦ Rth1 (550) + Rth2 (550) ≦ 55 nm. When Rth1 (550) + Rth2 (550) is in the above range, excellent viewing angle characteristics are exhibited.
 また前記第1の偏光板の吸収軸と前記第1の光学異方性層の遅相軸とのなす角度をrとしたときに、rは85°~95°の範囲であることが好ましく、より好ましくは88~92°、更に好ましくは略90°(直交)である。第1の偏光板の吸収軸と第1の光学異方性層の長尺ロールを略直交(交わる角度が90°±5°以内、好ましくは±2°以内のことをいう。)となるようにロールトゥロールに貼り合わせて一体化することで、高効率かつ薄型の積層偏光板を製造できるが、略直交に一体化するためには、第1の光学異方性層の遅相軸は、ロール長尺方向に対し、直交な方向に配置する必要がある。そのためには、第1の光学異方性層を横一軸延伸あるいは二軸延伸により製造したほうがよい。一般に、横一軸延伸または二軸延伸で製造した場合、位相差フィルムの屈折率の関係は,nx>ny>nzからなる負の二軸性になることが知られている。 In addition, when r is an angle formed by the absorption axis of the first polarizing plate and the slow axis of the first optically anisotropic layer, r is preferably in the range of 85 ° to 95 °, The angle is more preferably 88 to 92 °, and still more preferably about 90 ° (orthogonal). The absorption axis of the first polarizing plate and the long roll of the first optically anisotropic layer are substantially orthogonal (the crossing angle is within 90 ° ± 5 °, preferably within ± 2 °). Can be manufactured by laminating and integrating with roll-to-roll, but in order to integrate substantially orthogonally, the slow axis of the first optical anisotropic layer is It is necessary to arrange in a direction perpendicular to the roll length direction. For that purpose, it is better to produce the first optically anisotropic layer by lateral uniaxial stretching or biaxial stretching. In general, when manufactured by lateral uniaxial stretching or biaxial stretching, it is known that the refractive index relationship of the retardation film becomes negative biaxiality consisting of nx> ny> nz.
 次に、第2の光学異方性層について説明する。
 第2の光学異方性層は、正の一軸性を示す液晶材料を液晶状態においてホメオトロピック配向させた後、配向固定化したホメオトロピック配向液晶フィルムからなることが望ましい。
 本発明において、液晶材料のホメオトロピック配向を固定化した液晶フィルムを得るに当たっては、液晶材料と配向基板の選択が極めて重要である。
 本発明に用いられる液晶材料は、少なくともポリ(メタ)アクリレートやポリシロキサンなどの側鎖型の液晶性ポリマーを主たる構成成分として含むものである。
また本発明において用いられる側鎖型液晶ポリマーは末端に重合可能なオキセタニル基を有するものであることが望ましい。より具体的には、式(1)で表されるオキセタニル基を有する(メタ)アクリル化合物の(メタ)アクリル部位を単独重合、もしくは他の(メタ)アクリル化合物と共重合させて得られる側鎖型液晶性高分子物質を好ましい例として挙げることができる。
Next, the second optical anisotropic layer will be described.
The second optically anisotropic layer is preferably made of a homeotropically aligned liquid crystal film in which a liquid crystal material exhibiting positive uniaxiality is homeotropically aligned in a liquid crystal state and then fixed in alignment.
In the present invention, selection of a liquid crystal material and an alignment substrate is extremely important for obtaining a liquid crystal film in which the homeotropic alignment of the liquid crystal material is fixed.
The liquid crystal material used in the present invention contains at least a side chain type liquid crystalline polymer such as poly (meth) acrylate or polysiloxane as a main constituent component.
The side chain type liquid crystal polymer used in the present invention preferably has a polymerizable oxetanyl group at the terminal. More specifically, the side chain obtained by homopolymerizing the (meth) acrylic moiety of the (meth) acrylic compound having an oxetanyl group represented by the formula (1) or copolymerizing with another (meth) acrylic compound. A preferred example is a liquid crystalline polymer material.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記式(1)中、Rは水素またはメチル基を表し、R2は水素、メチル基またはエチル基を表し、LおよびLはそれぞれ個別に単結合、-O-、-O-CO-、または-CO-O-のいずれかを表し、Mは式(2)、式(3)または式(4)を表し、nおよびmはそれぞれ個別に0~10の整数を示す。
  -P1-L3-P2-L4-P3-  (2) 
  -P1-L3-P3-  (3) 
  -P3-  (4) 
In the above formula (1), R 1 represents hydrogen or a methyl group, R 2 represents hydrogen, a methyl group or an ethyl group, and L 1 and L 2 are each independently a single bond, —O—, —O—CO—. Or -CO-O-, M represents Formula (2), Formula (3) or Formula (4), and n and m each independently represent an integer of 0 to 10.
-P1-L3-P2-L4-P3- (2)
-P1-L3-P3- (3)
-P3- (4)
 式(2)~(4)中、P1およびP2はそれぞれ個別に式(5)から選ばれる基を表し、P3は式(6)から選ばれる基を表し、L3およびL4はそれぞれ個別に単結合、-CH=CH-、-C≡C-、-O-、-O-CO-または-CO-O-を表す。 In formulas (2) to (4), P1 and P2 each independently represent a group selected from formula (5), P3 represents a group selected from formula (6), and L3 and L4 each independently represents a single bond. , —CH═CH—, —C≡C—, —O—, —O—CO— or —CO—O—.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 これらオキセタニル基を有する(メタ)アクリル化合物の合成法は特に制限されるものではなく、通常の有機化学合成法で用いられる方法を適用することによって合成することができる。例えば、ウィリアムソンのエーテル合成や、縮合剤を用いたエステル合成などの手段でオキセタニル基を持つ部位と(メタ)アクリル基を持つ部位を結合することで、オキセタニル基と(メタ)アクリル基の2つの反応性官能基を持つオキセタニル基を有する(メタ)アクリル化合物を合成することができる。 The method for synthesizing these (meth) acrylic compounds having an oxetanyl group is not particularly limited, and can be synthesized by applying a method used in a general organic chemical synthesis method. For example, by combining a site having an oxetanyl group and a site having a (meth) acrylic group by means such as Williamson's ether synthesis or ester synthesis using a condensing agent, oxetanyl group and (meth) acrylic group 2 A (meth) acrylic compound having an oxetanyl group having two reactive functional groups can be synthesized.
 式(1)で表されるオキセタニル基を有する(メタ)アクリル化合物の(メタ)アクリル基を単独重合、もしくは他の(メタ)アクリル化合物と共重合することにより下記式(7)で表されるユニットを含む側鎖型液晶性高分子物質が得られる。重合条件は特に限定されるものではなく、通常のラジカル重合やアニオン重合の条件を採用することができる。 It is represented by the following formula (7) by homopolymerizing the (meth) acrylic group of the (meth) acrylic compound having an oxetanyl group represented by the formula (1) or copolymerizing with another (meth) acrylic compound. A side-chain liquid crystalline polymer substance containing units can be obtained. The polymerization conditions are not particularly limited, and normal radical polymerization or anionic polymerization conditions can be employed.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 ラジカル重合の例としては、(メタ)アクリル化合物をジメチルホルムアミド(DMF)などの溶媒に溶かし、2,2’-アゾビスイソブチロニトリル(AIBN)や過酸化ベンゾイル(BPO)などを開始剤として、60~120℃で数時間反応させる方法が挙げられる。また、液晶相を安定に出現させるために、臭化銅(I)/2,2’-ビピリジル系や2,2,6,6-テトラメチルピペリジノオキシ・フリーラジカル(TEMPO)系などを開始剤としたリビングラジカル重合を行い、分子量分布を制御する方法も有効である。これらのラジカル重合は脱酸素条件で行うことが好ましい。 As an example of radical polymerization, a (meth) acryl compound is dissolved in a solvent such as dimethylformamide (DMF), and 2,2′-azobisisobutyronitrile (AIBN), benzoyl peroxide (BPO), or the like is used as an initiator. And reacting at 60 to 120 ° C. for several hours. Moreover, in order to make the liquid crystal phase appear stably, a copper (I) bromide / 2,2′-bipyridyl system, a 2,2,6,6-tetramethylpiperidinooxy free radical (TEMPO) system, etc. are used. A method of controlling the molecular weight distribution by conducting living radical polymerization as an initiator is also effective. These radical polymerizations are preferably performed under deoxygenation conditions.
 アニオン重合の例としては、(メタ)アクリル化合物をテトラヒドロフラン(THF)などの溶媒に溶かし、有機リチウム化合物、有機ナトリウム化合物、グリニャール試薬などの強塩基を開始剤として反応させる方法が挙げられる。また、開始剤や反応温度を最適化することでリビングアニオン重合とし、分子量分布を制御することもできる。これらのアニオン重合は、厳密に脱水かつ脱酸素条件で行う必要がある。 Examples of anionic polymerization include a method in which a (meth) acrylic compound is dissolved in a solvent such as tetrahydrofuran (THF) and a strong base such as an organic lithium compound, an organic sodium compound, or a Grignard reagent is reacted as an initiator. In addition, the molecular weight distribution can be controlled by optimizing the initiator and the reaction temperature for living anionic polymerization. These anionic polymerizations must be performed strictly under dehydration and deoxygenation conditions.
 また、このとき共重合する(メタ)アクリル化合物は特に限定されるものではなく、合成される高分子物質が液晶性を示せば何でもよいが、合成される高分子物質の液晶性を高めるため、メソゲン基を有する(メタ)アクリル化合物が好ましい。例えば下記式で示されるような(メタ)アクリル化合物を好ましい化合物として例示することができる。 In addition, the (meth) acryl compound to be copolymerized at this time is not particularly limited and may be anything as long as the synthesized polymer substance exhibits liquid crystallinity, but in order to increase the liquid crystallinity of the synthesized polymer substance, A (meth) acrylic compound having a mesogenic group is preferred. For example, a (meth) acrylic compound represented by the following formula can be exemplified as a preferred compound.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 ここで、Rは、水素、炭素数1~12のアルキル基、炭素数1~12のアルコキシ基、またはシアノ基を表す。 Here, R represents hydrogen, an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, or a cyano group.
 側鎖型液晶性高分子物質は、式(7)で表されるユニットを5~100モル%含むものが好ましく、10~100モル%含むものが特に好ましい。また、側鎖型液晶性高分子物質は、重量平均分子量が2,000~100,000であるものが好ましく、5,000~50,000のものが特に好ましい。 The side chain type liquid crystalline polymer substance preferably contains 5 to 100 mol% of the unit represented by the formula (7), and particularly preferably contains 10 to 100 mol%. The side chain type liquid crystalline polymer substance preferably has a weight average molecular weight of 2,000 to 100,000, particularly preferably 5,000 to 50,000.
 本発明で用いる液晶材料においては、前記側鎖型液晶性高分子物質の他に、液晶性を損なわずに混和し得る種々の化合物を含有することができる。含有することができる化合物としては、オキセタニル基、エポキシ基、ビニルエーテル基などのカチオン重合性官能基を有する化合物、フィルム形成能を有する各種の高分子物質、液晶性を示す各種の低分子液晶性化合物や高分子液晶性化合物などが挙げられる。前記の側鎖型液晶性高分子物質を組成物として用いる場合、組成物全体に占める前記の側鎖型液晶性高分子物質の割合は、10質量%以上、好ましくは30質量%以上、さらに好ましくは50質量%以上である。側鎖型液晶性高分子物質の含有量が10質量%未満では組成物中に占める重合性基濃度が低くなり、重合後の機械的強度が不十分となるため好ましくない。 The liquid crystal material used in the present invention may contain various compounds that can be mixed without impairing liquid crystallinity in addition to the side chain liquid crystalline polymer substance. Examples of compounds that can be contained include compounds having a cationic polymerizable functional group such as an oxetanyl group, an epoxy group, and a vinyl ether group, various polymer substances having film-forming ability, and various low-molecular liquid crystal compounds having liquid crystallinity. And polymer liquid crystalline compounds. When the side chain liquid crystalline polymer substance is used as a composition, the proportion of the side chain liquid crystalline polymer substance in the entire composition is 10% by mass or more, preferably 30% by mass or more, and more preferably. Is 50 mass% or more. If the content of the side chain type liquid crystalline polymer substance is less than 10% by mass, the concentration of the polymerizable group in the composition becomes low, and the mechanical strength after polymerization becomes insufficient.
 また前記液晶材料は配向処理された後、オキセタニル基をカチオン重合させて架橋することにより、当該液晶状態を固定化する。このため、液晶材料中に、光や熱などの外部刺激でカチオンを発生する光カチオン発生剤および/または熱カチオン発生剤を含有させておくことが好ましい。また必要によっては各種の増感剤を併用してもよい。 Further, after the liquid crystal material is subjected to an alignment treatment, the oxetanyl group is cationically polymerized and crosslinked to fix the liquid crystal state. For this reason, it is preferable that the liquid crystal material contains a photocation generator and / or a thermal cation generator that generates cations by an external stimulus such as light or heat. If necessary, various sensitizers may be used in combination.
 光カチオン発生剤とは、適当な波長の光を照射することによりカチオンを発生できる化合物を意味し、有機スルフォニウム塩系、ヨードニウム塩系、フォスフォニウム塩系などを例示することが出来る。これら化合物の対イオンとしては、アンチモネート、フォスフェート、ボレートなどが好ましく用いられる。具体的な化合物としては、ArSbF 、ArBF 、ArPF (ただし、Arはフェニル基または置換フェニル基を示す。)などが挙げられる。また、スルホン酸エステル類、トリアジン類、ジアゾメタン類、β-ケトスルホン、イミノスルホナート、ベンゾインスルホナートなども用いることができる。 The photo cation generator means a compound capable of generating a cation by irradiating with light having an appropriate wavelength, and examples thereof include organic sulfonium salt systems, iodonium salt systems, and phosphonium salt systems. Antimonates, phosphates, borates and the like are preferably used as counter ions of these compounds. Specific examples of the compound include Ar 3 S + SbF 6 , Ar 3 P + BF 4 , Ar 2 I + PF 6 (wherein Ar represents a phenyl group or a substituted phenyl group), and the like. In addition, sulfonic acid esters, triazines, diazomethanes, β-ketosulfone, iminosulfonate, benzoinsulfonate and the like can also be used.
 熱カチオン発生剤とは、適当な温度に加熱されることによりカチオンを発生できる化合物であり、例えば、ベンジルスルホニウム塩類、ベンジルアンモニウム塩類、ベンジルピリジニウム塩類、ベンジルホスホニウム塩類、ヒドラジニウム塩類、カルボン酸エステル類、スルホン酸エステル類、アミンイミド類、五塩化アンチモン-塩化アセチル錯体、ジアリールヨードニウム塩-ジベンジルオキシ銅、ハロゲン化ホウ素-三級アミン付加物などを挙げることができる。 The thermal cation generator is a compound capable of generating a cation by being heated to an appropriate temperature, for example, benzylsulfonium salts, benzylammonium salts, benzylpyridinium salts, benzylphosphonium salts, hydrazinium salts, carboxylic acid esters, Examples thereof include sulfonic acid esters, amine imides, antimony pentachloride-acetyl chloride complexes, diaryliodonium salts-dibenzyloxycopper, and boron halide-tertiary amine adducts.
 これらのカチオン発生剤の液晶材料中への添加量は、用いる側鎖型液晶性高分子物質を構成するメソゲン部分やスペーサ部分の構造や、オキセタニル基当量、液晶の配向条件などにより異なるため一概には言えないが、側鎖型液晶性高分子物質に対し、通常100質量ppm~20質量%、好ましくは1000質量ppm~10質量%、より好ましくは0.2質量%~7質量%、最も好ましくは0.5質量%~5質量%の範囲である。100質量ppmよりも少ない場合には、発生するカチオンの量が十分でなく重合が進行しないおそれがあり、また20質量%よりも多い場合には、液晶フィルム中に残存するカチオン発生剤の分解残存物等が多くなり耐光性などが悪化するおそれがあるため好ましくない。 The amount of these cation generators added to the liquid crystal material varies depending on the structure of the mesogenic part and spacer part, the oxetanyl group equivalent, the alignment condition of the liquid crystal, etc. constituting the side chain type liquid crystalline polymer material to be used. However, it is usually 100 mass ppm to 20 mass%, preferably 1000 mass ppm to 10 mass%, more preferably 0.2 mass% to 7 mass%, most preferably based on the side chain type liquid crystalline polymer substance. Is in the range of 0.5% to 5% by weight. If the amount is less than 100 mass ppm, the amount of cations generated may not be sufficient and polymerization may not proceed. If the amount is more than 20 mass%, the remaining cation generator remains in the liquid crystal film. It is not preferable because there is a risk that the light resistance and the like may deteriorate due to an increase in the number of objects.
 次に配向基板について説明する。
 配向基板としては、まず平滑な平面を有するものが好ましく、有機高分子材料からなるフィルムやシート、ガラス板、金属板などを挙げることができる。コストや連続生産性の観点からは有機高分子からなる材料を用いることが好ましい。有機高分子材料の例としては、ポリビニルアルコール、ポリイミド、ポリフェニレンオキシド、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系ポリマー、ジアセチルセルロース、トリアセチルセルロース等のセルロース系ポリマー、ポリカーボネート系ポリマー、ポリメチルメタクリレート等のアクリル系ポリマー等の透明ポリマーからなるフィルムが挙げられる。またポリスチレン、アクリロニトリル・スチレン共重合体等のスチレン系ポリマー、ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体等のオレフィン系ポリマー、環状ないしノルボルネン構造を有するシクロポリオレフィン、塩化ビニル系ポリマー、ナイロンや芳香族ポリアミド等のアミド系ポリマー等の透明ポリマーからなるフィルムも挙げられる。さらにイミド系ポリマー、スルホン系ポリマー、ポリエーテルスルホン系ポリマー、ポリエーテルエーテルケトン系ポリマー、ポリフェニレンスルフィド系ポリマー、ビニルアルコール系ポリマー、塩化ビニリデン系ポリマー、ビニルブチラール系ポリマー、アリレート系ポリマー、ポリオキシメチレン系ポリマー、エポキシ系ポリマーや前記ポリマーのブレンド物等の透明ポリマーからなるフィルムなども挙げられる。これらのなかでも、光学フィルムとして用いられるトリアセチルセルロース、ポリカーボネート、ノルボルネンポリオレフィン等のプラスチックフィルムが使用される。有機高分子材料のフィルムとしては、特にゼオノア(商品名,日本ゼオン(株)製)、ゼオネックス(商品名,日本ゼオン(株)製)、アートン(商品名,JSR(株)製)などのノルボルネン構造を有するポリマー物質からなるプラスチックフィルムが光学的にも優れた特性を有するので好ましい。また金属フィルムとしては、例えばアルミニウムなどから形成される当該フィルムが挙げられる。
Next, the alignment substrate will be described.
As the alignment substrate, a substrate having a smooth plane is preferable, and examples thereof include a film or sheet made of an organic polymer material, a glass plate, and a metal plate. From the viewpoint of cost and continuous productivity, it is preferable to use a material made of an organic polymer. Examples of organic polymer materials include polyvinyl alcohol, polyimide, polyphenylene oxide, polyether ketone, polyether ether ketone, polyester polymers such as polyethylene terephthalate and polyethylene naphthalate, cellulose polymers such as diacetyl cellulose and triacetyl cellulose, Examples include films made of transparent polymers such as polycarbonate polymers and acrylic polymers such as polymethyl methacrylate. Also, styrene polymers such as polystyrene, acrylonitrile / styrene copolymer, olefin polymers such as polyethylene, polypropylene, ethylene / propylene copolymer, cyclopolyolefins having cyclic or norbornene structure, vinyl chloride polymers, nylon and aromatic polyamides. Examples thereof include a film made of a transparent polymer such as an amide polymer. Furthermore, imide polymers, sulfone polymers, polyether sulfone polymers, polyether ether ketone polymers, polyphenylene sulfide polymers, vinyl alcohol polymers, vinylidene chloride polymers, vinyl butyral polymers, arylate polymers, polyoxymethylene polymers Examples thereof include a film made of a transparent polymer such as a polymer, an epoxy-based polymer, and a blend of the above polymers. Among these, plastic films such as triacetyl cellulose, polycarbonate, norbornene polyolefin used as an optical film are used. Examples of organic polymer film include norbornene such as ZEONOR (trade name, manufactured by ZEON CORPORATION), ZEONEX (trade name, manufactured by ZEON CORPORATION), Arton (trade name, manufactured by JSR Corporation), etc. A plastic film made of a polymer material having a structure is preferable because it has excellent optical properties. Moreover, as a metal film, the said film formed from aluminum etc. is mentioned, for example.
 前述の液晶材料を用い、安定してホメオトロピック配向を得るためには、これらの基板を構成する材料が長鎖(通常炭素数4以上、好ましくは8以上)のアルキル基を有しているか、基板表面に長鎖アルキル基を有する化合物の層を有することがより好ましい。中でも長鎖アルキル基を有するポリビニルアルコールからなる層を形成することが、形成方法も容易であり好ましい。なお、これら有機高分子材料は単独で基板として用いても良いし、他の基板の上に薄膜として形成させていても良い。液晶の分野においては、基板に対して布等で擦るラビング処理を行うことが一般的であるが、本発明のホメオトロピック配向液晶フィルムは、面内の異方性が基本的に生じない配向構造であるため、必ずしもラビング処理を必要としない。しかしながら、液晶材料を塗布したときのはじき抑制の観点からは弱いラビング処理を施すことがより好ましい。ラビング条件を規定する重要な設定値としては周速比がある。これはラビング布をロールに巻きつけて回転させつつ基板を擦る場合の、布の移動速度と基板の移動速度の比を表す。本発明においては弱いラビング処理とは、通常周速比が50以下、より好ましくは25以下、特に好ましくは10以下である。周速比が50より大きい場合、ラビングの効果が強すぎて液晶材料が完全に垂直に配向しきれず、垂直方向より面内方向に倒れた配向となる恐れがある。 In order to stably obtain homeotropic alignment using the liquid crystal material described above, the material constituting these substrates has a long chain (usually 4 or more carbon atoms, preferably 8 or more) alkyl group, More preferably, the substrate surface has a compound layer having a long-chain alkyl group. Among them, it is preferable to form a layer made of polyvinyl alcohol having a long-chain alkyl group because the formation method is easy. These organic polymer materials may be used alone as a substrate, or may be formed as a thin film on another substrate. In the field of liquid crystal, rubbing treatment is generally performed by rubbing the substrate with a cloth or the like, but the homeotropic alignment liquid crystal film of the present invention has an alignment structure in which in-plane anisotropy basically does not occur. Therefore, the rubbing process is not necessarily required. However, it is more preferable to perform a weak rubbing treatment from the viewpoint of suppressing repelling when a liquid crystal material is applied. An important setting value that defines the rubbing condition is a peripheral speed ratio. This represents the ratio between the movement speed of the cloth and the movement speed of the substrate when the rubbing cloth is wound around a roll and rubbed while the substrate is rubbed. In the present invention, the weak rubbing treatment usually has a peripheral speed ratio of 50 or less, more preferably 25 or less, and particularly preferably 10 or less. When the peripheral speed ratio is greater than 50, the effect of rubbing is too strong, and the liquid crystal material cannot be completely aligned vertically, and there is a possibility that the alignment is tilted in the in-plane direction from the vertical direction.
 次に、ホメオトロピック配向液晶フィルムの製造方法について説明する。
 液晶フィルム製造の方法としてはこれらに限定されるものではないが、前述の液晶材料を前述の配向基板上に展開し、当該液晶材料を配向させた後、光照射および/または加熱処理することにより当該配向状態を固定化することにより製造することができる。
 液晶材料を配向基板上に展開して液晶材料層を形成する方法としては、液晶材料を溶融状態で直接配向基板上に塗布する方法や、液晶材料の溶液を配向基板上に塗布後、塗膜を乾燥して溶媒を留去させる方法が挙げられる。
Next, the manufacturing method of a homeotropic alignment liquid crystal film is demonstrated.
Although the method for producing the liquid crystal film is not limited to these, the above-mentioned liquid crystal material is spread on the above-mentioned alignment substrate, and after aligning the liquid crystal material, light irradiation and / or heat treatment is performed. It can manufacture by fixing the said orientation state.
The liquid crystal material is spread on the alignment substrate to form the liquid crystal material layer. The liquid crystal material is applied directly on the alignment substrate in a molten state, or the liquid crystal material solution is applied on the alignment substrate, and then the coating film is applied. And drying the solvent to distill off the solvent.
 溶液の調製に用いる溶媒に関しては、本発明の液晶材料を溶解でき適当な条件で留去できる溶媒であれば特に制限はなく、一般的にアセトン、メチルエチルケトン、イソホロン、シクロヘキサノンなどのケトン類、ブトキシエチルアルコール、ヘキシルオキシエチルアルコール、メトキシ-2-プロパノールなどのエーテルアルコール類、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテルなどのグリコールエーテル類、酢酸エチル、乳酸エチルなどのエステル類、フェノール、クロロフェノールなどのフェノール類、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドンなどのアミド類、クロロホルム、テトラクロロエタン、ジクロロベンゼンなどのハロゲン系などやこれらの混合系が好ましく用いられる。また、配向基板上に均一な塗膜を形成するために、界面活性剤、消泡剤、レベリング剤などを溶液に添加してもよい。 The solvent used for preparing the solution is not particularly limited as long as it can dissolve the liquid crystal material of the present invention and can be distilled off under suitable conditions. Generally, ketones such as acetone, methyl ethyl ketone, isophorone, and cyclohexanone, butoxyethyl Ethers such as alcohol, hexyloxyethyl alcohol, methoxy-2-propanol, glycol ethers such as ethylene glycol dimethyl ether and diethylene glycol dimethyl ether, esters such as ethyl acetate and ethyl lactate, phenols such as phenol and chlorophenol, N Amides such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, halogens such as chloroform, tetrachloroethane, dichlorobenzene, etc. Mixed system is preferably used. Further, in order to form a uniform coating film on the alignment substrate, a surfactant, an antifoaming agent, a leveling agent, or the like may be added to the solution.
 液晶材料を直接塗布する方法でも、溶液を塗布する方法でも、塗布方法については、塗膜の均一性が確保される方法であれば、特に限定されることはなく公知の方法を採用することができる。例えば、スピンコート法、ダイコート法、カーテンコート法、ディップコート法、ロールコート法などが挙げられる。液晶材料の溶液を塗布する方法では、塗布後に溶媒を除去するための乾燥工程を入れることが好ましい。この乾燥工程は、塗膜の均一性が維持される方法であれば、特に限定されることなく公知の方法を採用することができる。例えば、ヒーター(炉)、温風吹きつけなどの方法が挙げられる。 Regardless of the method of directly applying the liquid crystal material or the method of applying the solution, the application method is not particularly limited as long as the uniformity of the coating film is ensured, and a known method may be adopted. it can. Examples thereof include spin coating, die coating, curtain coating, dip coating, and roll coating. In the method of applying a liquid crystal material solution, it is preferable to include a drying step for removing the solvent after the application. As long as the uniformity of a coating film is maintained, this drying process can employ | adopt a well-known method, without being specifically limited. For example, a method such as a heater (furnace) or hot air blowing may be used.
 液晶フィルムの膜厚は、液晶表示装置の方式や種々の光学パラメータに依存することから一概には言えないが、通常0.2μm~10μm、好ましくは0.3μm~5μm、さらに好ましくは0.5μm~2μmである。膜厚が0.2μmより薄い場合、十分な視野角改良あるいは輝度向上効果を得ることができない恐れがある。また10μmを越えると、液晶表示装置が不必要に色付く等の恐れがある。 The film thickness of the liquid crystal film cannot be generally described because it depends on the method of the liquid crystal display device and various optical parameters, but is usually 0.2 μm to 10 μm, preferably 0.3 μm to 5 μm, more preferably 0.5 μm. ~ 2 μm. When the film thickness is thinner than 0.2 μm, there is a possibility that a sufficient viewing angle improvement or brightness enhancement effect cannot be obtained. If it exceeds 10 μm, the liquid crystal display device may be unnecessarily colored.
 続いて、配向基板上に形成された液晶材料層を、熱処理などの方法で液晶配向を形成し、光照射および/または加熱処理で硬化を行い固定化する。最初の熱処理では、使用した液晶材料の液晶相発現温度範囲に加熱することで、該液晶材料が本来有する自己配向能により液晶を配向させる。熱処理の条件としては、用いる液晶材料の液晶相挙動温度(転移温度)により最適条件や限界値が異なるため一概には言えないが、通常10~250℃、好ましくは30℃~160℃の範囲であり、該液晶材料のガラス転移点(Tg)以上の温度、さらに好ましくはTgより10℃以上高い温度で熱処理するのが好ましい。あまり低温では、液晶配向が充分に進行しないおそれがあり、また高温では液晶材料中のカチオン重合性反応基や配向基板に悪影響を与えるおそれがある。また、熱処理時間については、通常3秒~30分、好ましくは10秒~10分の範囲である。3秒より短い熱処理時間では、液晶配向が充分に完成しないおそれがあり、また30分を超える熱処理時間では、生産性が悪くなるため、どちらの場合も好ましくない。
 該液晶材料層を熱処理などの方法で液晶配向を形成したのち、液晶配向状態を保ったまま液晶材料を組成物中のオキセタニル基の重合反応により硬化させる。硬化工程は、完成した液晶配向を硬化(架橋)反応により液晶配向状態を固定化し、より強固な膜に変性することを目的にしている。
Subsequently, the liquid crystal material layer formed on the alignment substrate is liquid crystal aligned by a method such as heat treatment, and is cured and fixed by light irradiation and / or heat treatment. In the first heat treatment, the liquid crystal is aligned by the self-alignment ability inherent in the liquid crystal material by heating to the liquid crystal phase expression temperature range of the used liquid crystal material. The conditions for the heat treatment cannot be generally stated because the optimum conditions and limit values differ depending on the liquid crystal phase behavior temperature (transition temperature) of the liquid crystal material to be used, but are usually 10 to 250 ° C., preferably 30 to 160 ° C. In addition, it is preferable to perform heat treatment at a temperature equal to or higher than the glass transition point (Tg) of the liquid crystal material, more preferably at a temperature higher by 10 ° C. than Tg. If the temperature is too low, the liquid crystal alignment may not proceed sufficiently, and if the temperature is high, the cationic polymerizable reactive group in the liquid crystal material and the alignment substrate may be adversely affected. The heat treatment time is usually in the range of 3 seconds to 30 minutes, preferably 10 seconds to 10 minutes. If the heat treatment time is shorter than 3 seconds, the liquid crystal alignment may not be completed sufficiently, and if the heat treatment time exceeds 30 minutes, the productivity is deteriorated.
After the liquid crystal material layer is formed into a liquid crystal alignment by a method such as heat treatment, the liquid crystal material is cured by a polymerization reaction of oxetanyl groups in the composition while maintaining the liquid crystal alignment state. The curing step is aimed at fixing the liquid crystal alignment state of the completed liquid crystal alignment by a curing (crosslinking) reaction and modifying it into a stronger film.
 本発明の液晶材料は重合性のオキセタニル基を持つため、その反応基の重合(架橋)には、カチオン重合開始剤(カチオン発生剤)を用いるのが好ましいことは前述のとおりである。また、重合開始剤としては、熱カチオン発生剤より光カチオン発生剤の使用が好ましい。
 光カチオン発生剤を用いた場合、光カチオン発生剤の添加後、液晶配向のための熱処理までの工程を暗条件(光カチオン発生剤が解離しない程度の光遮断条件)で行えば、液晶材料は配向段階までは硬化することなく、充分な流動性をもって液晶配向することができる。この後、適当な波長の光を発する光源からの光を照射することによりカチオンを発生させ、液晶材料層を硬化させる。
Since the liquid crystal material of the present invention has a polymerizable oxetanyl group, as described above, it is preferable to use a cationic polymerization initiator (cation generator) for the polymerization (crosslinking) of the reactive group. As the polymerization initiator, it is preferable to use a photo cation generator rather than a thermal cation generator.
When a photo cation generator is used, the liquid crystal material can be obtained by adding the photo cation generator to the heat treatment for aligning the liquid crystal under dark conditions (light blocking conditions that do not cause the photo cation generator to dissociate). The liquid crystal can be aligned with sufficient fluidity without curing until the alignment stage. Thereafter, the liquid crystal material layer is cured by generating cations by irradiating light from a light source that emits light of an appropriate wavelength.
 光照射の方法としては、用いる光カチオン発生剤の吸収波長領域にスペクトルを有するようなメタルハライドランプ、高圧水銀灯、低圧水銀灯、キセノンランプ、アークランプ、レーザーなどの光源からの光を照射し、光カチオン発生剤を開裂させる。1平方センチメートルあたりの照射量としては、積算照射量として通常1~2000mJ、好ましくは10~1000mJの範囲である。ただし、光カチオン発生剤の吸収領域と光源のスペクトルが著しく異なる場合や、液晶材料自身に光源波長の吸収能がある場合などはこの限りではない。これらの場合には、適当な光増感剤や、吸収波長の異なる2種以上の光カチオン発生剤を混合して用いるなどの方法を採ることもできる。
 光照射時の温度は、該液晶材料が液晶配向をとる温度範囲である必要がある。また、硬化の効果を充分にあげるためには、該液晶材料のTg以上の温度で光照射を行うのが好ましい。
As a light irradiation method, a photocation is generated by irradiating light from a light source such as a metal halide lamp, a high pressure mercury lamp, a low pressure mercury lamp, a xenon lamp, an arc lamp, or a laser having a spectrum in the absorption wavelength region of the photocation generator used. Cleave the generator. The dose per square centimeter is usually in the range of 1 to 2000 mJ, preferably 10 to 1000 mJ, as the cumulative dose. However, this is not the case when the absorption region of the photocation generator and the spectrum of the light source are remarkably different, or when the liquid crystal material itself has the ability to absorb the light source wavelength. In these cases, it is possible to adopt a method such as using a suitable photosensitizer or a mixture of two or more photocation generators having different absorption wavelengths.
The temperature at the time of light irradiation needs to be within a temperature range in which the liquid crystal material takes liquid crystal alignment. In order to sufficiently enhance the curing effect, it is preferable to perform light irradiation at a temperature equal to or higher than Tg of the liquid crystal material.
 以上のような工程により製造した液晶材料層は、充分強固な膜となっている。具体的には、硬化反応によりメソゲンが3次元的に結合され、硬化前と比べて耐熱性(液晶配向保持の上限温度)が向上するのみでなく、耐スクラッチ性、耐磨耗性、耐クラック性などの機械的強度に関しても大幅に向上する。
 なお、配向基板として、光学的に等方でない、あるいは得られる液晶フィルムが最終的に目的とする使用波長領域において不透明である、もしくは配向基板の膜厚が厚すぎて実際の使用に支障を生じるなどの問題がある場合、配向基板上で形成された形態から、位相差機能を有する延伸フィルムに転写した形態も使用しうる。転写方法としては公知の方法を採用することができる。例えば、特開平4-57017号公報や特開平5-333313号公報に記載されているように液晶フィルム層を粘着剤もしくは接着剤を介して、配向基板とは異なる基板を積層した後に、必要により粘着剤もしくは接着剤を使って表面の硬化処理を施し、該積層体から配向基板を剥離することで液晶フィルムのみを転写する方法等を挙げることができる。
 転写に使用する粘着剤もしくは接着剤は、光学グレードのものであれば特に制限はなく、アクリル系、エポキシ系、ウレタン系など一般に用いられているものを用いることができる。
The liquid crystal material layer produced by the above process is a sufficiently strong film. Specifically, the mesogens are three-dimensionally bonded by the curing reaction, and not only the heat resistance (the upper limit temperature for maintaining the liquid crystal alignment) is improved as compared to before curing, but also scratch resistance, abrasion resistance, crack resistance. The mechanical strength such as property is also greatly improved.
As the alignment substrate, it is not optically isotropic, or the liquid crystal film to be obtained is finally opaque in the intended use wavelength region, or the alignment substrate is too thick, resulting in problems in actual use. When there is a problem such as, a form transferred from a form formed on an alignment substrate to a stretched film having a retardation function may be used. As a transfer method, a known method can be adopted. For example, as described in JP-A-4-57017 and JP-A-5-333313, a liquid crystal film layer is laminated with a substrate different from the alignment substrate via an adhesive or an adhesive, and if necessary, Examples thereof include a method of transferring only a liquid crystal film by performing a surface curing treatment using an adhesive or an adhesive and peeling the alignment substrate from the laminate.
The pressure-sensitive adhesive or adhesive used for transfer is not particularly limited as long as it is of optical grade, and generally used ones such as acrylic, epoxy, and urethane can be used.
 以上のようにして得られるホメオトロピック配向液晶層は、当該液晶層の光学位相差を垂直入射から傾けた角度で測定することによって定量化することができる。ホメオトロピック配向液晶層の場合、この位相差値は垂直入射について対称的である。光学位相差の測定には数種の方法を利用することができ、例えば自動複屈折測定装置(王子計測機器(株)製)および偏光顕微鏡を利用することができる。このホメオトロピック配向液晶層はクロスニコル偏光板間で黒色に見える。このようにしてホメオトロピック配向性を評価した。 The homeotropic alignment liquid crystal layer obtained as described above can be quantified by measuring the optical phase difference of the liquid crystal layer at an angle inclined from the normal incidence. In the case of homeotropic alignment liquid crystal layers, this retardation value is symmetric with respect to normal incidence. Several methods can be used for measuring the optical phase difference. For example, an automatic birefringence measuring apparatus (manufactured by Oji Scientific Instruments) and a polarizing microscope can be used. This homeotropic alignment liquid crystal layer appears black between the crossed Nicols polarizing plates. Thus, homeotropic orientation was evaluated.
 第2の光学異方性層は、以下の[8]~[9]を満たすことが必要である。
  [8]-10nm≦Re2(550)≦10nm
  [9]-200nm≦Rth2(550)≦-50nm
 ここで、Re2(550)は波長550nmの光における第2の光学異方性層の面内のリターデーション値を意味し、Rth2(550)は波長550nmの光における第2の光学異方性層の厚さ方向のリターデーション値を意味する。Re2(550)及びRth2(550)は、それぞれRe2(550)={nx2(550)-ny2(550)}×d2[nm]、Rth2(550)=[{nx2(550)+ny2(550)}/2-nz2(550)]×d2[nm]である。また、d2は第2の光学異方性層の厚さ、nx2(550)は波長550nmの光に対する第2の光学異方性層面内の最大主屈折率、ny2(550)はnx2(550)に直交する方位の主屈折率、nz2(550)は波長550nmの光に対する厚さ方向の主屈折率であり、nz2(550)>nx2(550)=ny2(550)である。
The second optically anisotropic layer needs to satisfy the following [8] to [9].
[8] -10 nm ≦ Re2 (550) ≦ 10 nm
[9] −200 nm ≦ Rth2 (550) ≦ −50 nm
Here, Re2 (550) means the in-plane retardation value of the second optical anisotropic layer in the light of wavelength 550 nm, and Rth2 (550) is the second optical anisotropic layer in the light of wavelength 550 nm. Means the retardation value in the thickness direction. Re2 (550) and Rth2 (550) are respectively Re2 (550) = {nx2 (550) −ny2 (550)} × d2 [nm], Rth2 (550) = [{nx2 (550) + ny2 (550)} / 2-nz2 (550)] × d2 [nm]. D2 is the thickness of the second optical anisotropic layer, nx2 (550) is the maximum principal refractive index in the plane of the second optical anisotropic layer for light having a wavelength of 550 nm, and ny2 (550) is nx2 (550). Nz2 (550) is a main refractive index in the thickness direction for light having a wavelength of 550 nm, and nz2 (550)> nx2 (550) = ny2 (550).
 すなわち、ホメオトロピック配向液晶フィルム面内のリターデーション値Re2(550)は、-10nm~10nmであることが必要であり、好ましくは0nm~10nm、さらに好ましくは0nm~5nmの範囲である。また、厚さ方向のリターデーション値Rth2(550)は、-200nm~-50nmであることが必要であり、好ましくは-190nm~-70nm、さらに好ましくは-180nm~-90nmに制御されたものである。 That is, the retardation value Re2 (550) in the plane of the homeotropic alignment liquid crystal film needs to be −10 nm to 10 nm, preferably 0 nm to 10 nm, and more preferably 0 nm to 5 nm. The retardation value Rth2 (550) in the thickness direction needs to be −200 nm to −50 nm, preferably −190 nm to −70 nm, and more preferably −180 nm to −90 nm. is there.
 前記Rth2(550)値を上記範囲にすることにより、液晶表示装置の視野角改良フィルムとしては、液晶表示の色調補正を行いながら視野角を広げることが可能となる。Rth2(550)値が-50nmより大きいあるいは-200nmより小さい場合には、十分な視野角改良効果が得られないかあるいは、斜めから見たときに不必要な色付きが生じる恐れがある。また、Re2(550)値を10nm以下とすることにより、液晶表示素子の正面特性を良化させることができる。 By setting the Rth2 (550) value within the above range, the viewing angle improving film of the liquid crystal display device can widen the viewing angle while correcting the color tone of the liquid crystal display. If the Rth2 (550) value is larger than −50 nm or smaller than −200 nm, a sufficient viewing angle improvement effect may not be obtained, or unnecessary coloring may occur when viewed obliquely. Further, by setting the Re2 (550) value to 10 nm or less, the front characteristics of the liquid crystal display element can be improved.
 次に、第3の光学異方性層について説明する。
 第3の光学異方性層としては、ポリカーボネート系樹脂、ポリビニルアルコール系樹脂、セルロース系樹脂、ポリエステル系樹脂、ポリアリレート系樹脂、ポリイミド系樹脂、環状ポリオレフィン系樹脂、ポリスルホン系樹脂、ポリエーテルスルホン系樹脂、ポリオレフィン系樹脂、ポリスチレン系樹脂、ポリビニルアルコール系樹脂、及びこれらの混合物が挙げられる。また、ウレタン系、アクリルウレタン系、エポキシ系、シリコーン系等の熱硬化性樹脂又は紫外線硬化型樹脂を用いることもできる。これらのうち、セルロース系樹脂および環状ポリオレフィン系樹脂が特に好適に用いられる。第3の光学異方性層中には、任意の適切な添加剤が1種類以上含まれていてもよい。
Next, the third optical anisotropic layer will be described.
As the third optically anisotropic layer, polycarbonate resin, polyvinyl alcohol resin, cellulose resin, polyester resin, polyarylate resin, polyimide resin, cyclic polyolefin resin, polysulfone resin, polyethersulfone resin Examples thereof include resins, polyolefin resins, polystyrene resins, polyvinyl alcohol resins, and mixtures thereof. Further, a thermosetting resin such as urethane, acrylic urethane, epoxy, or silicone, or an ultraviolet curable resin can also be used. Of these, cellulose resins and cyclic polyolefin resins are particularly preferably used. One or more kinds of arbitrary appropriate additives may be contained in the third optically anisotropic layer.
 前記セルロース系樹脂としては、セルロースと脂肪酸のエステルが好ましい。このようセルロースエステル系樹脂の具体例としでは、トリアセチルセルロース、ジアセチルセルロース、トリプロピオニルセルロース、ジプロピオニルセルロース等が挙げられる。これらのなかでも、トリアセチルセルロースが特に好ましい。トリアセチルセルロースは多くの製品が市販されており、入手容易性やコストの点でも有利である。トリアセチルセルロースは、厚み方向レターデーションが10nmを超えるものが多いが、これらのレターデーションを打ち消す添加剤を用いたり、製膜の方法によって正面レターデーションのみならず、厚み方向レターデーションも小さいセルロース系樹脂フィルムを得ることができ、特に好適に用いられる。上記の製膜の方法としては、例えばシクロペンタノン、メチルエチルケトン等の溶剤を塗工したポリエチレンテレフタレート、ポリプロピレン、ステンレスなどの基材フィルムを、一般的なセルロース系フィルムに貼り合わせ、加熱乾燥(例えば80~150℃で3~10分間程度)した後、基材フィルムを剥離する方法;ノルボルネン系樹脂、(メタ)アクリル系樹脂などをシクロペンタノン、メチルエチルケトン等の溶剤に溶解した溶液を一般的なセルロース系樹脂フィルムに塗工し加熱乾燥(例えば80~150℃で3~10分間程度)した後、塗工フィルムを剥離する方法などが挙げられる。 The cellulose resin is preferably an ester of cellulose and a fatty acid. Specific examples of the cellulose ester resin include triacetyl cellulose, diacetyl cellulose, tripropionyl cellulose, dipropionyl cellulose, and the like. Among these, triacetyl cellulose is particularly preferable. Many products of triacetylcellulose are commercially available, which is advantageous in terms of availability and cost. Many triacetyl celluloses have a thickness direction retardation of more than 10 nm. However, an additive that counteracts these retardations is used, and depending on the method of film formation, not only frontal retardation, but also a cellulose type having a small thickness direction retardation. A resin film can be obtained and is particularly preferably used. As the film forming method, for example, a base film such as polyethylene terephthalate, polypropylene, and stainless steel coated with a solvent such as cyclopentanone and methyl ethyl ketone is bonded to a general cellulose film, followed by heat drying (for example, 80 After peeling the substrate film at about 150 ° C. for about 3 to 10 minutes; a solution of norbornene resin, (meth) acrylic resin, etc. dissolved in a solvent such as cyclopentanone or methyl ethyl ketone Examples thereof include a method in which a coated resin film is coated and dried by heating (for example, at 80 to 150 ° C. for about 3 to 10 minutes) and then the coated film is peeled off.
 また、厚み方向レターデーションが小さいセルロース系樹脂フィルムとしては、脂肪置換度を制御した脂肪酸セルロース系樹脂フィルムを用いることができる。一般的に用いられるトリアセチルセルロースでは酢酸置換度が2.8程度であるが、好ましくは酢酸置換度を1.8~2.7に制御することによってRthを小さくすることができる。上記脂肪酸置換セルロース系樹脂に、ジブチルフタレート、p-トルエンスルホンアニリド、クエン酸アセチルトリエチル等の可塑剤を添加することにより、Rthを小さく制御することができる。可塑剤の添加量は、脂肪酸セルロース系樹脂100重量部に対して、好ましくは40重量部以下、より好ましくは1~20重量部、さらに好ましくは1~15重量部である。厚み方向レターデーションが小さいセルロース系樹脂フィルムとしては、種々の製品が市販されている。具体例としては、富士フイルム株式会社製の商品名「Z-TAC」、コニカミノルタアドバンストレイヤー株式会社製の商品名「ゼロタック」が挙げられる。 Further, as the cellulose resin film having a small thickness direction retardation, a fatty acid cellulose resin film with a controlled degree of fat substitution can be used. Generally used triacetyl cellulose has an acetic acid substitution degree of about 2.8. Preferably, the Rth can be reduced by controlling the acetic acid substitution degree to 1.8 to 2.7. By adding a plasticizer such as dibutyl phthalate, p-toluenesulfonanilide, acetyltriethyl citrate, etc. to the fatty acid-substituted cellulose resin, Rth can be controlled to be small. The addition amount of the plasticizer is preferably 40 parts by weight or less, more preferably 1 to 20 parts by weight, and further preferably 1 to 15 parts by weight with respect to 100 parts by weight of the fatty acid cellulose resin. Various products are marketed as a cellulose resin film having a small thickness direction retardation. Specific examples include the product name “Z-TAC” manufactured by FUJIFILM Corporation and the product name “Zero Tac” manufactured by Konica Minolta Advanced Layer Co., Ltd.
 前記環状ポリオレフィン系樹脂としては、好ましくはノルボルネン系樹脂である。環状ポリオレフィン系樹脂は、環状オレフィンを重合単位として重合される樹脂の総称であり、例えば、特開平1-240517号公報、特開平3-14882号公報、特開平3-122137号公報等に記載されている樹脂が挙げられる。具体例としては、環状オレフィンの開環(共)重合体、環状オレフィンの付加重合体、環状オレフィンとエチレン、プロピレン等のα-オレフィンとその共重合体(代表的にはランダム共重合体)、及び、これらを不飽和カルボン酸やその誘導体で変性したグラフト重合体、並びに、それらの水素化物などが挙げられる。環状オレフィンの具体例としては、ノルボルネン系モノマーが挙げられる。環状ポリオレフィン系樹脂としては、種々の製品が市販されている。具体例としては、日本ゼオン株式会社製の商品名「ゼオネックス」、「ゼオノア」、JSR株式会社製の商品名「アートン」、TICONA社製の商品名「トーパス」、三井化学株式会社製の商品名「アペル」が挙げられる。 The cyclic polyolefin resin is preferably a norbornene resin. The cyclic polyolefin resin is a general term for resins that are polymerized using a cyclic olefin as a polymerization unit, and is described in, for example, JP-A-1-240517, JP-A-3-14882, JP-A-3-122137, and the like. Resin. Specific examples include cyclic olefin ring-opening (co) polymers, cyclic olefin addition polymers, cyclic olefins and α-olefins such as ethylene and propylene (typically random copolymers), And the graft polymer which modified these by unsaturated carboxylic acid or its derivative (s), and those hydrides, etc. are mentioned. Specific examples of the cyclic olefin include norbornene monomers. Various products are commercially available as the cyclic polyolefin resin. As specific examples, trade names “ZEONEX” and “ZEONOR” manufactured by ZEON CORPORATION, product names “ARTON” manufactured by JSR Corporation, “TOPAS” manufactured by TICONA, and product names manufactured by Mitsui Chemicals, Inc. "Apel" is mentioned.
 第3の光学異方性層は、以下の[11]~[12]を満たすものが用いられる。
  [11]-10nm≦Re3(550)≦10nm
  [12]-10nm≦Rth3(550)≦10nm
 ここで、Re3(550)は波長550nmの光における第3の光学異方性層の面内のリターデーション値を意味し、Rth3(550)は波長550nmの光における第3の光学異方性層の厚さ方向のリターデーション値を意味する。Re3(550)及びRth3(550)は、それぞれRe3(550)=(nx3(550)-ny3(550))×d3[nm]、Rth3(550)={(nx3(550)+ny3(550))/2-nz3(550)}×d3[nm]である。また、d3は第3の光学異方性層の厚さ、nx3(550)、ny3(550)は波長550nmの光に対する第3の光学異方性層面内の主屈折率、nz3(550)は波長550nmの光に対する厚さ方向の主屈折率であり、nx3(550)≧ny3(550)≧nz3(550)である。
As the third optically anisotropic layer, a layer satisfying the following [11] to [12] is used.
[11] -10 nm ≦ Re3 (550) ≦ 10 nm
[12] -10 nm ≦ Rth3 (550) ≦ 10 nm
Here, Re3 (550) means the in-plane retardation value of the third optical anisotropic layer in the light of wavelength 550 nm, and Rth3 (550) is the third optical anisotropic layer in the light of wavelength 550 nm. Means the retardation value in the thickness direction. Re3 (550) and Rth3 (550) are respectively Re3 (550) = (nx3 (550) −ny3 (550)) × d3 [nm], Rth3 (550) = {(nx3 (550) + ny3 (550)) / 2-nz3 (550)} × d3 [nm]. D3 is the thickness of the third optical anisotropic layer, nx3 (550) and ny3 (550) are the main refractive indices in the plane of the third optical anisotropic layer with respect to light having a wavelength of 550 nm, and nz3 (550) is It is the main refractive index in the thickness direction for light having a wavelength of 550 nm, and nx3 (550) ≧ ny3 (550) ≧ nz3 (550).
 すなわち、第3の光学異方性層の面内リターデーション値Re3(550)は、-10nm~10nmであり、好ましくは0nm~10nm、さらに好ましくは0nm~5nmの範囲である。また、厚さ方向のリターデーション値Rth3(550)は、-10nm~10nmであり、好ましくは-7nm~7nm、さらに好ましくは-5nm~5nmの範囲である。Re3(550)およびRth3(550)を上記範囲とすることにより、良好な視野角特性を示すこととなる。 That is, the in-plane retardation value Re3 (550) of the third optical anisotropic layer is −10 nm to 10 nm, preferably 0 nm to 10 nm, and more preferably 0 nm to 5 nm. The retardation value Rth3 (550) in the thickness direction is −10 nm to 10 nm, preferably −7 nm to 7 nm, and more preferably −5 nm to 5 nm. By setting Re3 (550) and Rth3 (550) in the above ranges, good viewing angle characteristics are exhibited.
 本発明に用いる第1の偏光板および第2の偏光板について説明する。
 本発明に使用される第1の偏光板および第2の偏光板としては、通常、偏光子の片側または両側に保護フィルムを有するものが使用される。片側のみに保護フィルムを有する構造の場合、前記第1の光学異方性層は保護フィルムの機能を兼ねることとなる。本発明の積層偏光板は、第1の光学異方性層の遅相軸と第1の偏光板の吸収軸とが略直交(交わる角度が90°±5°以内)になるように積層されており、幅方向に延伸した負の二軸性光学異方性層を用いることでロールトゥロールでの一体製造が可能となる。
The first polarizing plate and the second polarizing plate used in the present invention will be described.
As the first polarizing plate and the second polarizing plate used in the present invention, those having a protective film on one side or both sides of the polarizer are usually used. In the case of a structure having a protective film only on one side, the first optically anisotropic layer also functions as a protective film. The laminated polarizing plate of the present invention is laminated so that the slow axis of the first optically anisotropic layer and the absorption axis of the first polarizing plate are substantially orthogonal (intersection angle is within 90 ° ± 5 °). In addition, by using a negative biaxial optically anisotropic layer stretched in the width direction, it is possible to perform integral production with a roll-to-roll.
 偏光子は、特に制限されず、各種のものを使用でき、例えば、ポリビニルアルコール系フィルム、部分ホルマール化ポリビニルアルコール系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム等の親水性高分子フィルムに、ヨウ素や二色性染料等の二色性物質を吸着させて一軸延伸したもの、ポリビニルアルコールの脱水処理物やポリ塩化ビニルの脱塩酸処理物等のポリエン系配向フィルム等が挙げられる。これらのなかでもポリビニルアルコール系フィルムを延伸して二色性材料(沃素、染料)を吸着・配向したものが好適に用いられる。偏光子の厚さも特に制限されないが、5~80μm程度が一般的である。 The polarizer is not particularly limited, and various types can be used. For example, for a hydrophilic polymer film such as a polyvinyl alcohol film, a partially formalized polyvinyl alcohol film, an ethylene / vinyl acetate copolymer partially saponified film. And polyene-based oriented films such as those obtained by adsorbing dichroic substances such as iodine and dichroic dyes and uniaxially stretched, polyvinyl alcohol dehydrated products and polyvinyl chloride dehydrochlorinated products. Among these, those obtained by stretching a polyvinyl alcohol film and adsorbing and orienting a dichroic material (iodine, dye) are preferably used. The thickness of the polarizer is not particularly limited, but is generally about 5 to 80 μm.
 ポリビニルアルコール系フィルムをヨウ素で染色し一軸延伸した偏光子は、例えば、ポリビニルアルコールをヨウ素の水溶液に浸漬することによって染色し、元長の3~7倍に延伸することで作製することができる。必要に応じてホウ酸やヨウ化カリウムなどの水溶液に浸漬することもできる。さらに必要に応じて染色の前にポリビニルアルコール系フィルムを水に浸漬して水洗してもよい。ポリビニルアルコール系フィルムを水洗することでポリビニルアルコール系フィルム表面の汚れやブロッキング防止剤を洗浄することができるほかに、ポリビニルアルコール系フィルムを膨潤させることで染色のムラなどの不均一
を防止する効果もある。延伸はヨウ素で染色した後に行っても良いし、染色しながら延伸してもよし、また延伸してからヨウ素で染色してもよい。ホウ酸やヨウ化カリウムなどの水溶液中や水浴中でも延伸することができる。
A polarizer in which a polyvinyl alcohol film is dyed with iodine and uniaxially stretched can be produced, for example, by dyeing polyvinyl alcohol in an aqueous solution of iodine and stretching it 3 to 7 times the original length. If necessary, it can be immersed in an aqueous solution of boric acid or potassium iodide. Further, if necessary, the polyvinyl alcohol film may be immersed in water and washed before dyeing. In addition to washing the polyvinyl alcohol film surface with dirt and anti-blocking agents by washing the polyvinyl alcohol film with water, it also has the effect of preventing unevenness such as uneven coloring by swelling the polyvinyl alcohol film. is there. Stretching may be performed after dyeing with iodine, may be performed while dyeing, or may be dyed with iodine after stretching. The film can be stretched in an aqueous solution of boric acid or potassium iodide or in a water bath.
 前記偏光子の片側または両側に設けられている保護フィルムには、透明性、機械的強度、熱安定性、水分遮蔽性、等方性などに優れるものが好ましい。前記保護フィルムの材料としては、例えば、ポリエチレンテレフタレートやポリエチレンナフタレート等のポリエステル系ポリマー、ジアセチルセルロースやトリアセチルセルロース等のセルロース系ポリマー、ポリメチルメタクリレート等のアクリル系ポリマー、ポリスチレンやアクリロニトリル・スチレン共重合体(AS樹脂)等のスチレン系ポリマー、ポリカーボネート系ポリマーなどが挙げられる。また、ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体の如きポリオレフィン系ポリマー、シクロオレフィン系ないしはノルボルネン構造を有するポリオレフィン、塩化ビニル系ポリマー、ナイロンや芳香族ポリアミド等のアミド系ポリマー、イミド系ポリマー、スルホン系ポリマー、ポリエーテルスルホン系ポリマー、ポリエーテルエーテルケトン系ポリマー、ポリフェニレンスルフィド系ポリマー、ビニルアルコール系ポリマー、塩化ビニリデン系ポリマー、ビニルブチラール系ポリマー、アリレート系ポリマー、ポリオキシメチレン系ポリマー、エポキシ系ポリマー、あるいは前記ポリマーのブレンド物などが保護フィルムを形成するポリマーの例として挙げられる。その他、アクリル系やウレタン系、アクリルウレタン系やエポキシ系、シリコーン系等の熱硬化型ないし紫外線硬化型樹脂などをフィルム化したものなどが挙げられる。保護フィルムの厚さは、一般には500μm以下であり、1~300μmが好ましい。特に5~200μmとするのが好ましい。 The protective film provided on one side or both sides of the polarizer preferably has excellent transparency, mechanical strength, thermal stability, moisture shielding properties, isotropic properties, and the like. Examples of the material for the protective film include polyester polymers such as polyethylene terephthalate and polyethylene naphthalate, cellulose polymers such as diacetyl cellulose and triacetyl cellulose, acrylic polymers such as polymethyl methacrylate, polystyrene, acrylonitrile / styrene copolymer, and the like. Examples thereof include styrene polymers such as coalesced (AS resin), polycarbonate polymers, and the like. Also, polyolefin polymers such as polyethylene, polypropylene, ethylene / propylene copolymers, polyolefins having cycloolefin or norbornene structures, vinyl chloride polymers, amide polymers such as nylon and aromatic polyamide, imide polymers, sulfones Polymer, polyether sulfone polymer, polyether ether ketone polymer, polyphenylene sulfide polymer, vinyl alcohol polymer, vinylidene chloride polymer, vinyl butyral polymer, arylate polymer, polyoxymethylene polymer, epoxy polymer, or Examples of the polymer that forms the protective film include blends of the aforementioned polymers. Other examples include films made of thermosetting or ultraviolet curable resins such as acrylic, urethane, acrylic urethane, epoxy, and silicone. The thickness of the protective film is generally 500 μm or less, and preferably 1 to 300 μm. In particular, the thickness is preferably 5 to 200 μm.
 保護フィルムとしては、光学的に等方な基板が好ましく、例えばフジタック(富士フイルム社製品)やコニカタック(コニカミノルタオプト社製品)などのトリアセチルセルロース(TAC)フィルム、アートンフィルム(JSR社製品)やゼオノアフィルム、ゼオネックスフィルム(日本ゼオン社製品)などのシクロオレフィン系ポリマー、TPXフィルム(三井化学社製品)、アクリプレンフィルム(三菱レーヨン社製品)が挙げられるが、楕円偏光板とした場合の平面性、耐熱性や耐湿性などからトリアセチルセルロース、シクロオレフィン系ポリマーが好ましい。
 なお、偏光子の両側に保護フィルムを設ける場合、その表裏で同じポリマー材料からなる保護フィルムを用いてもよく、異なるポリマー材料等からなる保護フィルムを用いてもよい。前記偏光子と保護フィルムとは通常、水系粘着剤等を介して密着している。水系接着剤としては、ポリビニルアルコール系接着剤、ゼラチン系接着剤、ビニル系ラテックス系、水系ポリウレタン、水系ポリエステル等を例示できる。
The protective film is preferably an optically isotropic substrate. For example, a triacetyl cellulose (TAC) film such as Fujitac (product of Fujifilm) or Konicatak (product of Konica Minolta Opto), Arton film (product of JSR) And ZEONOR film, ZEONEX film (product of ZEON Corporation), cycloolefin polymer, TPX film (product of Mitsui Chemicals), acrylene film (product of Mitsubishi Rayon Co., Ltd.) From the viewpoints of flatness, heat resistance and moisture resistance, triacetyl cellulose and cycloolefin polymers are preferred.
In addition, when providing a protective film in the both sides of a polarizer, the protective film which consists of the same polymer material may be used by the front and back, and the protective film which consists of a different polymer material etc. may be used. The polarizer and the protective film are usually in close contact with each other through an aqueous adhesive or the like. Examples of aqueous adhesives include polyvinyl alcohol adhesives, gelatin adhesives, vinyl latexes, aqueous polyurethanes, aqueous polyesters, and the like.
 前記保護フィルムとしては、ハードコート層や反射防止処理、スティッキング防止や、拡散ないしアンチグレアを目的とした処理を施したものを用いることができる。
 ハードコート処理は偏光板表面の傷付き防止などを目的に施されるものであり、例えばアクリル系、シリコーン系などの適宜な紫外線硬化型樹脂による硬度や滑り特性等に優れる硬化皮膜を保護フィルムの表面に付加する方式などにて形成することができる。反射防止処理は偏光板表面での外光の反射防止を目的に施されるものであり、従来に準じた反射防止膜などの形成により達成することができる。また、スティッキング防止処理は隣接層との密着防止を目的に施される。
As the protective film, a hard coat layer, an antireflection treatment, an anti-sticking treatment, or a treatment subjected to diffusion or anti-glare treatment can be used.
Hard coat treatment is performed for the purpose of preventing scratches on the surface of the polarizing plate. For example, a cured film having excellent hardness and slipping properties with an appropriate ultraviolet curable resin such as acrylic or silicone is applied to the protective film. It can be formed by a method of adding to the surface. The antireflection treatment is performed for the purpose of preventing reflection of external light on the surface of the polarizing plate, and can be achieved by forming an antireflection film or the like according to the conventional art. Further, the anti-sticking treatment is performed for the purpose of preventing adhesion with an adjacent layer.
 またアンチグレア処理は偏光板の表面で外光が反射して偏光板透過光の視認を阻害することの防止等を目的に施されるものであり、例えば、サンドブラスト方式やエンボス加工方式による粗面化方式や透明微粒子の配合方式などの適宜な方式にて保護フィルムの表面に微細凹凸構造を付与することにより形成することができる。前記表面微細凹凸構造の形成に含有させる微粒子としては、例えば平均粒径が0.5~50μmのシリカ、アルミナ、チタニア、ジルコニア、酸化錫、酸化インジウム、酸化カドミウム、酸化アンチモン等からなる導電性のこともある無機系微粒子、架橋又は未架橋のポリマー等からなる有機系微粒子などの透明微粒子が用いられる。表面微細凹凸構造を形成する場合、微粒子の使用量は、表面微細凹凸構造を形成する透明樹脂100重量部に対して一般的に2~50重量部程度であり、5~25重量部が好ましい。アンチグレア層は、偏光板透過光を拡散して視角などを拡大するための拡散層(視角拡大機能など)を兼ねるものであってもよい。
 なお、前記反射防止層、スティッキング防止層、拡散層やアンチグレア層等は、保護フィルムそのものに設けることができるほか、別途光学層として透明保護層とは別体のものとして設けることもできる。
Anti-glare treatment is applied for the purpose of preventing external light from being reflected on the surface of the polarizing plate and obstructing the visibility of the light transmitted through the polarizing plate. For example, roughening by sandblasting or embossing. It can be formed by imparting a fine concavo-convex structure to the surface of the protective film by an appropriate method such as a method or a compounding method of transparent fine particles. Examples of the fine particles to be included in the formation of the fine surface uneven structure include conductive particles made of silica, alumina, titania, zirconia, tin oxide, indium oxide, cadmium oxide, antimony oxide, and the like having an average particle size of 0.5 to 50 μm. In some cases, transparent fine particles such as inorganic fine particles, organic fine particles composed of a crosslinked or uncrosslinked polymer, and the like are used. In the case of forming a surface fine uneven structure, the amount of fine particles used is generally about 2 to 50 parts by weight, preferably 5 to 25 parts by weight, based on 100 parts by weight of the transparent resin forming the surface fine uneven structure. The antiglare layer may also serve as a diffusion layer (viewing angle expanding function or the like) for diffusing the light transmitted through the polarizing plate to expand the viewing angle.
The antireflection layer, antisticking layer, diffusion layer, antiglare layer, and the like can be provided on the protective film itself, or can be provided separately from the transparent protective layer as an optical layer.
 前記第1、第2の光学異方性層及び第1の偏光板は、それぞれ粘着剤層を介して互いに貼り合わせることにより作製することができる。粘着剤層を形成する粘着剤は特に制限されないが、例えば、アクリル系重合体、シリコーン系ポリマー、ポリエステル、ポリウレタン、ポリアミド、ポリエーテル、フッ素系やゴム系などのポリマーをベースポリマーとするものを適宜に選択して用いることができる。特に、アクリル系粘着剤の如く光学的透明性に優れ、適度な濡れ性と凝集性と接着性の粘着特性を示して、耐候性や耐熱性などに優れるものが好ましく用いうる。 The first and second optically anisotropic layers and the first polarizing plate can be produced by sticking each other through an adhesive layer. The pressure-sensitive adhesive forming the pressure-sensitive adhesive layer is not particularly limited. For example, an acrylic polymer, a silicone-based polymer, a polyester, a polyurethane, a polyamide, a polyether, a fluorine-based or rubber-based polymer is appropriately used as a base polymer. Can be selected and used. In particular, those having excellent optical transparency such as an acrylic pressure-sensitive adhesive, exhibiting appropriate wettability, cohesiveness, and adhesive pressure-sensitive adhesive properties, and being excellent in weather resistance, heat resistance and the like can be preferably used.
 粘着剤層の形成は、適宜な方式で行うことができる。その例としては、例えば、トルエンや酢酸エチル等の適宜な溶剤の単独物又は混合物からなる溶媒にベースポリマーまたはその組成物を溶解又は分散させた10~40重量%程度の粘着剤溶液を調製し、それを流延方式や塗工方式等の適宜な展開方式で前記液晶層上に直接付設する方式、あるいは前記に準じセパレータ上に粘着剤層を形成してそれを前記液晶層上移着する方式などが挙げられる。また、粘着剤層には、例えば天然物や合成物の樹脂類、特に、粘着性付与樹脂や、ガラス繊維、ガラスビーズ、金属粉、その他の無機粉末等からなる充填剤、顔料、着色剤、酸化防止剤などの粘着層に添加されることの添加剤を含有していてもよい。また微粒子を含有して光拡散性を示す粘着剤層などであってもよい。
 なお、各光学異方性層を粘着剤層を介して、相互に貼り合わせる際には、フィルム表面を表面処理して粘着剤層との密着性を向上することができる。表面処理の手段は、特に制限されないが、前記の各光学異方性層の透明性を維持できるコロナ放電処理、スパッタ処理、低圧UV照射、プラズマ処理などの表面処理法を好適に採用できる。これら表面処理法のなかでもコロナ放電処理が良好である。
The pressure-sensitive adhesive layer can be formed by an appropriate method. For example, a pressure-sensitive adhesive solution of about 10 to 40% by weight in which a base polymer or a composition thereof is dissolved or dispersed in a solvent composed of an appropriate solvent alone or a mixture such as toluene and ethyl acetate is prepared. , A method in which it is directly attached on the liquid crystal layer by an appropriate development method such as a casting method or a coating method, or an adhesive layer is formed on the separator according to the above and transferred onto the liquid crystal layer Examples include methods. The pressure-sensitive adhesive layer includes, for example, natural and synthetic resins, in particular, tackifier resins, glass fibers, glass beads, metal powder, fillers made of other inorganic powders, pigments, colorants, You may contain the additive added to adhesion layers, such as antioxidant. Further, it may be a pressure-sensitive adhesive layer containing fine particles and exhibiting light diffusibility.
In addition, when bonding each optically anisotropic layer mutually through an adhesive layer, the film surface can be surface-treated and adhesiveness with an adhesive layer can be improved. The surface treatment means is not particularly limited, and a surface treatment method such as corona discharge treatment, sputtering treatment, low-pressure UV irradiation, or plasma treatment that can maintain the transparency of each optically anisotropic layer can be suitably employed. Among these surface treatment methods, corona discharge treatment is good.
 本発明の水平配向型液晶表示装置は、第1の偏光板、第1の光学異方性層および第2の光学異方性層から少なくとも構成される本発明の積層偏光板、水平配向型液晶セルおよび第2の偏光板がこの順に配置されたものである。
 さらに、本発明の水平配向型液晶表示装置は、第1の偏光板、第1の光学異方性層および第2の光学異方性層から少なくとも構成される本発明の積層偏光板、水平配向型液晶セル、第3の光学異方性層および第2の偏光板がこの順に配置されたものである。
The horizontal alignment type liquid crystal display device of the present invention includes a laminated polarizing plate of the present invention, a horizontal alignment type liquid crystal composed of at least a first polarizing plate, a first optical anisotropic layer, and a second optical anisotropic layer. The cell and the second polarizing plate are arranged in this order.
Furthermore, the horizontal alignment type liquid crystal display device of the present invention is a laminated polarizing plate of the present invention comprising at least a first polarizing plate, a first optical anisotropic layer, and a second optical anisotropic layer, horizontal alignment A type liquid crystal cell, a third optically anisotropic layer, and a second polarizing plate are arranged in this order.
 本発明の水平配向型液晶表示装置においては、第1の偏光板の吸収軸と第2の偏光板の吸収軸とのなす角度をsとしたときに、sは85°~95°の範囲であることが好ましく、より好ましくは88~92°、更に好ましくは略90°(直交)である。sが上下範囲から外れた場合には、水平配向型液晶表示装置の光漏れが大きく、著しく視認性が悪化するため好ましくない。
 また、第2の偏光板の吸収軸と水平配向型液晶セル内の液晶の光軸とのなす角度をtとしたときに、-5°≦t≦5°を満たすように積層されていることが好ましい、tが上下範囲から外れた場合には、水平配向型液晶表示装置の光漏れが大きく、著しく視認性が悪化するため好ましくない。
In the horizontal alignment type liquid crystal display device of the present invention, s is in the range of 85 ° to 95 °, where s is the angle formed by the absorption axis of the first polarizing plate and the absorption axis of the second polarizing plate. Preferably, it is 88 to 92 °, more preferably about 90 ° (orthogonal). When s deviates from the upper and lower ranges, light leakage of the horizontal alignment type liquid crystal display device is large and the visibility is remarkably deteriorated.
Further, when the angle between the absorption axis of the second polarizing plate and the optical axis of the liquid crystal in the horizontal alignment type liquid crystal cell is t, the layers are laminated so as to satisfy −5 ° ≦ t ≦ 5 °. However, when t is out of the upper and lower ranges, light leakage of the horizontal alignment type liquid crystal display device is large, and the visibility is remarkably deteriorated.
 以下に実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
 なお、実施例で用いた各分析方法は以下の通りである。
(1)H-NMRの測定
 化合物を重水素化クロロホルムに溶解し、400MHzのH-NMR(Variant社製INOVA-400)で測定した。
(2)GPCの測定
 化合物をテトラヒドロフランに溶解し、東ソー社製8020GPCシステムで、TSK-GEL SuperH1000、SuperH2000、SuperH3000、SuperH4000を直列につなぎ、溶出液としてテトラヒドロフランを用いて測定した。分子量の較正にはポリスチレンスタンダードを用いた。
(3)顕微鏡観察
 オリンパス光学社製BH2偏光顕微鏡で液晶の配向状態を観察した。
(4)膜厚測定法
 SLOAN社製SURFACE TEXTURE ANALYSIS SYSTEM Dektak 3030STを用いた。また、干渉波測定(日本分光(株)製 紫外・可視・近赤外分光光度計V-570)と屈折率のデータから膜厚を求める方法も併用した。
(5)液晶フィルムのパラメータ測定
 王子計測機器(株)製自動複屈折計KOBRA21ADHを用いた。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
In addition, each analysis method used in the Example is as follows.
(1) Measurement compound of 1 H-NMR was dissolved in deuterated chloroform and measured by 1 H-NMR of 400 MHz (Variant Co. INOVA-400).
(2) Measurement of GPC The compound was dissolved in tetrahydrofuran, and TSK-GEL SuperH1000, SuperH2000, SuperH3000 and SuperH4000 were connected in series with an 8020 GPC system manufactured by Tosoh Corporation and measured using tetrahydrofuran as an eluent. Polystyrene standards were used for molecular weight calibration.
(3) Microscope observation The alignment state of the liquid crystal was observed with an Olympus BH2 polarizing microscope.
(4) Film thickness measurement method SURFACE TEXTURE ANALYSIS SYSTEM Dektak 3030ST manufactured by SLOAN was used. In addition, a method of obtaining the film thickness from the interference wave measurement (UV-visible / near-infrared spectrophotometer V-570 manufactured by JASCO Corporation) and the refractive index data was used in combination.
(5) Parameter measurement of liquid crystal film Obi Scientific Instruments Co., Ltd. automatic birefringence meter KOBRA21ADH was used.
[参考例1]
(偏光子の作製)
 ポリビニルアルコールフィルムを温水中に浸漬して膨張させたあと、ヨウ素/ヨウ化カリウム水溶液中にて染色し、次いでホウ酸水溶液中で一軸延伸処理して偏光子を得た。これの偏光子は、分光光度計にて単体透過率、平行透過率および直交透過率を調べたところ透過率43.5%、偏光度99.9%であった。
[Reference Example 1]
(Production of polarizer)
The polyvinyl alcohol film was immersed in warm water to swell, then dyed in an iodine / potassium iodide aqueous solution, and then uniaxially stretched in an aqueous boric acid solution to obtain a polarizer. The polarizer was examined for single transmittance, parallel transmittance and orthogonal transmittance with a spectrophotometer. As a result, the transmittance was 43.5% and the polarization degree was 99.9%.
[参考例2]
 下記式(8)で示される液晶性ポリマーを合成した。分子量はポリスチレン換算で、Mn=8000、Mw=15000であった。なお、式(8)はブロック重合体の構造で表記しているがモノマーの構成比を表すものである。
Figure JPOXMLDOC01-appb-C000006
[Reference Example 2]
A liquid crystalline polymer represented by the following formula (8) was synthesized. The molecular weight was Mn = 8000 and Mw = 15000 in terms of polystyrene. In addition, although Formula (8) is described with the structure of a block polymer, it represents the component ratio of a monomer.
Figure JPOXMLDOC01-appb-C000006
 式(8)のポリマー1.0gを、9mlのシクロヘキサノンに溶かし、暗所でトリアリルスルフォニウムヘキサフルオロアンチモネート50%プロピレンカーボネート溶液(アルドリッチ社製、試薬)0.1gを加えた後、孔径0.45μmのポリテトラフルオロエチレン製フィルターでろ過して液晶材料の溶液を調製した。
 配向基板は以下のようにして調製した。厚さ38μmのポリエチレンナフタレートフィルム(帝人(株)製)を15cm角に切り出し、アルキル変性ポリビニルアルコール(PVA:(株)クラレ製、MP-203)の5質量%溶液(溶媒は、水とイソプロピルアルコールの質量比1:1の混合溶媒)をスピンコート法により塗布し、50℃のホットプレートで30分乾燥した後、120℃のオーブンで10分間加熱した。次いで、レーヨンのラビング布でラビングした。得られたPVA層の膜厚は1.2μmであった。ラビング時の周速比(ラビング布の移動速度/基板フィルムの移動速度)は4とした。
 このようにして得られた配向基板に、前述の液晶材料溶液をスピンコート法により塗布した。次いで60℃のホットプレートで10分乾燥し、150℃のオーブンで2分間熱処理し、液晶材料を配向させた。次いで、60℃に加熱したアルミ板に試料を密着させて置き、その上から、高圧水銀灯ランプにより600mJ/cm2の紫外光(ただし365nmで測定した光量)を照射して、液晶材料を硬化させた。
After dissolving 1.0 g of the polymer of the formula (8) in 9 ml of cyclohexanone and adding 0.1 g of a triallylsulfonium hexafluoroantimonate 50% propylene carbonate solution (manufactured by Aldrich) in the dark, A liquid crystal material solution was prepared by filtration through a 0.45 μm polytetrafluoroethylene filter.
The alignment substrate was prepared as follows. A 38 μm-thick polyethylene naphthalate film (manufactured by Teijin Limited) was cut into a 15 cm square, and a 5% by mass solution of alkyl-modified polyvinyl alcohol (PVA: Kuraray Co., Ltd., MP-203) (the solvent was water and isopropyl). A mixed solvent having an alcohol mass ratio of 1: 1) was applied by spin coating, dried on a hot plate at 50 ° C. for 30 minutes, and then heated in an oven at 120 ° C. for 10 minutes. Subsequently, it was rubbed with a rayon rubbing cloth. The film thickness of the obtained PVA layer was 1.2 μm. The peripheral speed ratio during rubbing (moving speed of rubbing cloth / moving speed of substrate film) was 4.
The liquid crystal material solution described above was applied to the alignment substrate thus obtained by spin coating. Next, it was dried on a hot plate at 60 ° C. for 10 minutes and heat-treated in an oven at 150 ° C. for 2 minutes to align the liquid crystal material. Next, the sample was placed in close contact with the aluminum plate heated to 60 ° C., and then the liquid crystal material was cured by irradiating with 600 mJ / cm 2 of ultraviolet light (however, measured at 365 nm) with a high-pressure mercury lamp. .
 基板として用いたポリエチレンナフタレートフィルムは大きな複屈折を持ち光学用フィルムとして好ましくないため、得られた配向基板上の液晶性フィルムを、紫外線硬化型接着剤を介して、トリアセチルセルロース(TAC)フィルムに転写した。すなわち、ポリエチレンナフタレートフィルム上の硬化した液晶材料層の上に、接着剤を5μm厚となるように塗布し、TACフィルムでラミネートして、TACフィルム側から紫外線を照射して接着剤を硬化させた後、ポリエチレンナフタレートフィルムおよびPVA層を剥離した。 Since the polyethylene naphthalate film used as the substrate has a large birefringence and is not preferable as an optical film, the obtained liquid crystalline film on the alignment substrate is converted to a triacetyl cellulose (TAC) film via an ultraviolet curable adhesive. Transcribed to. That is, on the cured liquid crystal material layer on the polyethylene naphthalate film, an adhesive is applied to a thickness of 5 μm, laminated with a TAC film, and irradiated with ultraviolet rays from the TAC film side to cure the adhesive. After that, the polyethylene naphthalate film and the PVA layer were peeled off.
 得られた光学フィルム(液晶層/接着剤層/TACフィルム)を偏光顕微鏡下で観察すると、ディスクリネーションがなくモノドメインの均一な配向で、コノスコープ観察から正の一軸性屈折率構造を有するホメオトロピック配向であることがわかった。KOBRA21ADHを用いて測定したTACフィルムと液晶層をあわせた面内方向のリターデーションは0.5nm、厚さ方向のリターデーションは-119nmであった。なお、TACフィルム単体は負の一軸性で面内のリターデーションが0.5nm、厚さ方向のリターデーションは+35nmであったことから、液晶層単独でのリターデーションは、Re2(550)が0nm、Rth2(550)が-154nmと見積もられた。実施例1以降では他基材と貼り合わせる際は、基板のTACフィルムは除去しホメオトロピック配向液晶層のみを取り出して使用した。また、ホメオトロピック配向液晶層の厚みは0.9μmであった。各方位の屈折率はnz2(550)>nx2(550)=ny2(550)の関係であった。
 なお、上記のホメオトロピック配向液晶層が第2の光学異方性層に該当する。
When the obtained optical film (liquid crystal layer / adhesive layer / TAC film) is observed under a polarizing microscope, it has a uniform uniaxial refractive index structure from conoscopic observation with uniform orientation of monodomains without disclination. It was found to be homeotropic alignment. The retardation in the in-plane direction of the TAC film and the liquid crystal layer measured using KOBRA21ADH was 0.5 nm, and the retardation in the thickness direction was −119 nm. Since the TAC film alone was negative uniaxial and had an in-plane retardation of 0.5 nm and a retardation in the thickness direction of +35 nm, Re2 (550) was 0 nm for the retardation of the liquid crystal layer alone. , Rth2 (550) was estimated to be −154 nm. In Example 1 and later, the TAC film of the substrate was removed and only the homeotropic alignment liquid crystal layer was taken out and used when bonded to another substrate. The thickness of the homeotropic alignment liquid crystal layer was 0.9 μm. The refractive index in each direction was in a relationship of nz2 (550)> nx2 (550) = ny2 (550).
The homeotropic alignment liquid crystal layer corresponds to the second optically anisotropic layer.
[実施例1]
 積層偏光板の構造について図1を用いて説明する。
 参考例1で得た偏光子の片面にポリビニルアルコール系接着剤を介して、保護フィルム2として、厚み40μm、正面位相差:6nm、厚み方向の位相差:60nmのトリアセチルセルロース(TAC)フィルムを接着して第1の偏光板1を形成した。その第1の偏光板1の他面にポリビニルアルコール系接着剤を介して、ロール長尺方向に吸収軸を有する第1の偏光板1の吸収軸と横一軸延伸により作製したロール幅方向に遅相軸を有するノルボルネン系樹脂からなる第1の光学異方性層3を、第1の偏光板の吸収軸と第1の光学異方性層3の遅相軸とのなす角度が90度になるように接着し、その上に参考例2で作製した第2の光学異方性層4をアクリル系粘着剤を介して貼り合せを行い、積層偏光板5を得た。ここで、第1の光学異方性層3のRe1(550)は115nm、Rth1(550)は103.5nmの位相差を示し、Re1(450)/Re1(550)は1.01、Rth1(450)/Rth1(550)は1.01、Re1(650)/Re1(550)は0.99、Rth1(650)/Rth1(550)は0.99であった。各方位の屈折率はnx1(550)>ny1(550)>nz1(550)の関係であった。
[Example 1]
The structure of the laminated polarizing plate will be described with reference to FIG.
A triacetyl cellulose (TAC) film having a thickness of 40 μm, a front phase difference of 6 nm, and a thickness direction retardation of 60 nm is provided as a protective film 2 on one side of the polarizer obtained in Reference Example 1 via a polyvinyl alcohol-based adhesive. The first polarizing plate 1 was formed by bonding. The other side of the first polarizing plate 1 is delayed in the roll width direction produced by lateral uniaxial stretching with the absorption axis of the first polarizing plate 1 having an absorption axis in the roll longitudinal direction via a polyvinyl alcohol adhesive. The angle between the absorption axis of the first polarizing plate and the slow axis of the first optically anisotropic layer 3 is 90 degrees with the first optically anisotropic layer 3 made of a norbornene resin having a phase axis. Then, the second optically anisotropic layer 4 produced in Reference Example 2 was bonded thereto via an acrylic pressure-sensitive adhesive to obtain a laminated polarizing plate 5. Here, Re1 (550) of the first optically anisotropic layer 3 has a phase difference of 115 nm, Rth1 (550) has a phase difference of 103.5 nm, Re1 (450) / Re1 (550) has a phase difference of 1.01, and Rth1 ( 450) / Rth1 (550) was 1.01, Re1 (650) / Re1 (550) was 0.99, and Rth1 (650) / Rth1 (550) was 0.99. The refractive index in each direction was in the relationship of nx1 (550)> ny1 (550)> nz1 (550).
[実施例2]
 本実施例2に用いた水平配向型液晶表示装置について図2、図3を用いて説明する。
基板6にITO層からなる透過率の高い材料で透明電極7が形成され、透明電極7と基板8の間に負の誘電率異方性を示す液晶材料からなる液晶層9が挟持されている。
 液晶層9には正の誘電率異方性を示す液晶材料が用いられており、透明電極7の面方向に電界を加えると、液晶分子が電界の方向に回転する。
[Example 2]
A horizontal alignment type liquid crystal display device used in Example 2 will be described with reference to FIGS.
A transparent electrode 7 is formed of a material having a high transmittance made of an ITO layer on the substrate 6, and a liquid crystal layer 9 made of a liquid crystal material having a negative dielectric anisotropy is sandwiched between the transparent electrode 7 and the substrate 8. .
A liquid crystal material exhibiting positive dielectric anisotropy is used for the liquid crystal layer 9. When an electric field is applied in the plane direction of the transparent electrode 7, the liquid crystal molecules rotate in the direction of the electric field.
 水平配向型液晶セル10の表示面側(図の上側)に実施例1で作製した積層偏光板5を配置した。水平配向型液晶セル10の背面側(図の下側)に第2の偏光板11として、直線偏光板(住友化学(株)製SQW-062)を配置した。直線偏光板の支持基板に使用されたトリアセチルセルロースのRthは35nmであった。
 図3に矢印で示す、第1の偏光板1および第2の偏光板11の吸収軸の方位はそれぞれ面内90度、0度とした。第1の光学異方性層3は、面内に光軸を有し、負の二軸光学異方性を有する光学素子で形成されている。図3に矢印で示す、第1の光学異方性層3の遅相軸の方位は0度とし、面内Re1で115nm、Rth1で103.5nmの位相差を示す。
 ホメオトロピック配向液晶フィルムからなる第2の光学異方性層4はRe2が0nm、Rth2が-154nmの位相差を示す。
 図4は、黒表示0V、白表示5Vの透過率の比(白表示)/(黒表示)をコントラスト比として、全方位からのコントラスト比を示している。コントラストの等高線は内側から順に6000、3000、1000、500、200とした。また、同心円は中心から20度間隔の角度を示す。したがって最外円は中心から80度を示す(以下の図も同様)。コントラスト比を全方位で見た場合、全方位にてコントラスト比は高くなり良好な視野角特性が得られることがわかった。
The laminated polarizing plate 5 produced in Example 1 was disposed on the display surface side (upper side in the figure) of the horizontal alignment type liquid crystal cell 10. A linearly polarizing plate (SQW-062 manufactured by Sumitomo Chemical Co., Ltd.) was disposed as the second polarizing plate 11 on the back side (lower side of the figure) of the horizontal alignment type liquid crystal cell 10. Rth of triacetyl cellulose used for the support substrate of the linearly polarizing plate was 35 nm.
The directions of the absorption axes of the first polarizing plate 1 and the second polarizing plate 11 indicated by arrows in FIG. 3 were 90 degrees and 0 degrees in the plane, respectively. The first optical anisotropic layer 3 is formed of an optical element having an in-plane optical axis and negative biaxial optical anisotropy. The slow axis orientation of the first optically anisotropic layer 3 indicated by an arrow in FIG. 3 is 0 degree, and the in-plane Re1 has a phase difference of 115 nm and the Rth1 has a phase difference of 103.5 nm.
The second optically anisotropic layer 4 made of a homeotropic alignment liquid crystal film exhibits a phase difference in which Re2 is 0 nm and Rth2 is −154 nm.
FIG. 4 shows the contrast ratio from all directions, where the transmittance ratio (white display) / (black display) of black display 0V and white display 5V is used as the contrast ratio. Contrast contour lines were set to 6000, 3000, 1000, 500, and 200 in order from the inside. The concentric circles indicate an angle of 20 degrees from the center. Therefore, the outermost circle shows 80 degrees from the center (the same applies to the following figures). When the contrast ratio was viewed in all directions, it was found that the contrast ratio was high in all directions and good viewing angle characteristics were obtained.
[実施例3]
 ノルボルネン系樹脂からなる第1の光学異方性層3の面内Re1を125nm、Rth1を87.5nmとし、ホメオトロピック配向液晶フィルムからなる第2の光学異方性層4の面内Re2を0nm、Rth2が-134nmとした以外は、実施例2と同様にして水平配向型液晶表示装置を作製した。Re1(450)/Re1(550)は1.01、Rth1(450)/Rth1(550)は1.01、Re1(650)/Re1(550)は0.99、Rth1(650)/Rth1(550)は0.99であった。各方位の屈折率はnx1(550)>ny1(550)>nz1(550)の関係であった。
 図5は、黒表示0V、白表示5Vの透過率の比(白表示)/(黒表示)をコントラスト比として、全方位からのコントラスト比を示している。コントラスト比を全方位で見た場合、全方位にてコントラスト比は高くなり良好な視野角特性が得られることがわかった。
[Example 3]
The in-plane Re1 of the first optically anisotropic layer 3 made of norbornene-based resin is 125 nm, Rth1 is 87.5 nm, and the in-plane Re2 of the second optically anisotropic layer 4 made of homeotropic alignment liquid crystal film is 0 nm. A horizontal alignment type liquid crystal display device was produced in the same manner as in Example 2 except that Rth2 was changed to -134 nm. Re1 (450) / Re1 (550) is 1.01, Rth1 (450) / Rth1 (550) is 1.01, Re1 (650) / Re1 (550) is 0.99, Rth1 (650) / Rth1 (550) ) Was 0.99. The refractive index in each direction was in the relationship of nx1 (550)> ny1 (550)> nz1 (550).
FIG. 5 shows the contrast ratio from all directions, where the transmittance ratio (white display) / (black display) of black display 0V and white display 5V is used as the contrast ratio. When the contrast ratio was viewed in all directions, it was found that the contrast ratio was high in all directions and good viewing angle characteristics were obtained.
[実施例4]
 ノルボルネン系樹脂からなる第1の光学異方性層3の面内Re1を140nm、Rth1を70.0nmとし、ホメオトロピック配向液晶フィルムからなる第2の光学異方性層4の面内Re2を0nm、Rth2が-113nmとした以外は、実施例2と同様にして水平配向型液晶表示装置を作製した。Re1(450)/Re1(550)は1.01、Rth1(450)/Rth1(550)は1.01、Re1(650)/Re1(550)は0.99、Rth1(650)/Rth1(550)は0.99であった。各方位の屈折率はnx1(550)>ny1(550)>nz1(550)の関係であった。
 図6は、黒表示0V、白表示5Vの透過率の比(白表示)/(黒表示)をコントラスト比として、全方位からのコントラスト比を示している。コントラスト比を全方位で見た場合、全方位にてコントラスト比は高くなり良好な視野角特性が得られることがわかった。
[Example 4]
The in-plane Re1 of the first optical anisotropic layer 3 made of norbornene-based resin is 140 nm, Rth1 is 70.0 nm, and the in-plane Re2 of the second optical anisotropic layer 4 made of homeotropic alignment liquid crystal film is 0 nm. A horizontal alignment type liquid crystal display device was produced in the same manner as in Example 2 except that Rth2 was −113 nm. Re1 (450) / Re1 (550) is 1.01, Rth1 (450) / Rth1 (550) is 1.01, Re1 (650) / Re1 (550) is 0.99, Rth1 (650) / Rth1 (550) ) Was 0.99. The refractive index in each direction was in the relationship of nx1 (550)> ny1 (550)> nz1 (550).
FIG. 6 shows the contrast ratio from all directions, where the transmittance ratio (white display) / (black display) of black display 0V and white display 5V is used as the contrast ratio. When the contrast ratio was viewed in all directions, it was found that the contrast ratio was high in all directions and good viewing angle characteristics were obtained.
[実施例5]
 本実施例に用いた水平配向型液晶表示装置については図7および図8に詳細を記載する。
 下側第2の偏光板11と液晶セル10の間に第3の光学異方性層12として厚み方向レターデーションが小さいセルロース系樹脂フィルム(富士フイルム(株)製Z-TAC偏光フィルム)を配置したこと以外は、実施例2と同様にして水平配向型液晶表示装置を作製した。Re1(450)/Re1(550)は1.01、Rth1(450)/Rth1(550)は1.01、Re1(650)/Re1(550)は0.99、Rth1(650)/Rth1(550)は0.99であった。各方位の屈折率はnx1(550)>ny1(550)>nz1(550)の関係であった。また第3の光学異方性層12に関してRe3(550)は1nm、Rth3(550)は2nmであった。各方位の屈折率はnx3(550)≧ny3(550)≧nz3(550)の関係であった。
 図9は、黒表示0V、白表示5Vの透過率の比(白表示)/(黒表示)をコントラスト比として、全方位からのコントラスト比を示している。コントラスト比を全方位で見た場合、全方位にてコントラスト比は高くなり良好な視野角特性が得られることがわかった。
[Example 5]
Details of the horizontal alignment type liquid crystal display device used in this embodiment will be described with reference to FIGS.
A cellulose-based resin film (Z-TAC polarizing film manufactured by Fuji Film Co., Ltd.) having a small thickness direction retardation is disposed as the third optically anisotropic layer 12 between the lower second polarizing plate 11 and the liquid crystal cell 10. A horizontal alignment type liquid crystal display device was produced in the same manner as in Example 2 except that. Re1 (450) / Re1 (550) is 1.01, Rth1 (450) / Rth1 (550) is 1.01, Re1 (650) / Re1 (550) is 0.99, Rth1 (650) / Rth1 (550) ) Was 0.99. The refractive index in each direction was in the relationship of nx1 (550)> ny1 (550)> nz1 (550). Regarding the third optical anisotropic layer 12, Re3 (550) was 1 nm and Rth3 (550) was 2 nm. The refractive index in each direction was in the relationship of nx3 (550) ≧ ny3 (550) ≧ nz3 (550).
FIG. 9 shows the contrast ratio from all directions, where the transmittance ratio (white display) / (black display) of black display 0V and white display 5V is used as the contrast ratio. When the contrast ratio was viewed in all directions, it was found that the contrast ratio was high in all directions and good viewing angle characteristics were obtained.
[比較例1]
 ホメオトロピック配向液晶フィルムからなる第2の光学異方性層4のRth2を-200nmとした以外は、実施例2と同様にして水平配向型液晶表示装置を作製した。その結果、Rth1+Rth2=-96.5nmとなる。
 図10は、黒表示0V、白表示5Vの透過率の比(白表示)/(黒表示)をコントラスト比として、全方位からのコントラスト比を示している。コントラスト比を全方位で見た場合、右上、左上、右下、左下の4方向で特に低くなり、視野角特性が悪化することがわかった。
[Comparative Example 1]
A horizontal alignment type liquid crystal display device was produced in the same manner as in Example 2 except that Rth2 of the second optically anisotropic layer 4 made of homeotropic alignment liquid crystal film was set to -200 nm. As a result, Rth1 + Rth2 = −96.5 nm.
FIG. 10 shows the contrast ratio from all directions, where the transmittance ratio (white display) / (black display) of black display 0V and white display 5V is used as the contrast ratio. When the contrast ratio was viewed in all directions, it was found that the viewing angle characteristics deteriorated particularly in the four directions of upper right, upper left, lower right, and lower left.
[比較例2]
 ノルボルネン系樹脂からなる第1の光学異方性層3を用いなかったこと以外は、実施例2と同様にして水平配向型液晶表示装置を作製した。
 図11は、黒表示0V、白表示5Vの透過率の比(白表示)/(黒表示)をコントラスト比として、全方位からのコントラスト比を示している。コントラスト比を全方位で見た場合、右上、左上、右下、左下の4方向で特に低くなり、視野角特性が悪化することがわかった。
[Comparative Example 2]
A horizontal alignment type liquid crystal display device was produced in the same manner as in Example 2 except that the first optically anisotropic layer 3 made of norbornene resin was not used.
FIG. 11 shows the contrast ratio from all directions, with the transmittance ratio (white display) / (black display) of the black display 0V and the white display 5V as the contrast ratio. When the contrast ratio was viewed in all directions, it was found that the viewing angle characteristics deteriorated particularly in the four directions of upper right, upper left, lower right, and lower left.
[比較例3]
 ホメオトロピック配向液晶フィルムからなる第2の光学異方性層4を用いなかったこと以外は、実施例2と同様にして水平配向型液晶表示装置を作製した。
 図12は、黒表示0V、白表示5Vの透過率の比(白表示)/(黒表示)をコントラスト比として、全方位からのコントラスト比を示している。コントラスト比を全方位で見た場合、右上、左上、右下、左下の4方向で特に低くなり、視野角特性が悪化することがわかった。
[Comparative Example 3]
A horizontal alignment type liquid crystal display device was produced in the same manner as in Example 2 except that the second optically anisotropic layer 4 made of homeotropic alignment liquid crystal film was not used.
FIG. 12 shows the contrast ratio from all directions, where the transmittance ratio (white display) / (black display) of black display 0V and white display 5V is used as the contrast ratio. When the contrast ratio was viewed in all directions, it was found that the viewing angle characteristics deteriorated particularly in the four directions of upper right, upper left, lower right, and lower left.
[比較例4]
 ノルボルネン系樹脂からなる第1の光学異方性層3およびホメオトロピック配向液晶フィルムからなる第2の光学異方性層4を用いなかったこと以外は、実施例2と同様にして水平配向型液晶表示装置を作製した。
 図13は、黒表示0V、白表示5Vの透過率の比(白表示)/(黒表示)をコントラスト比として、全方位からのコントラスト比を示している。コントラスト比を全方位で見た場合、右上、左上、右下、左下の4方向で特に低くなり、視野角特性が悪化することがわかった。
[Comparative Example 4]
A horizontal alignment type liquid crystal is obtained in the same manner as in Example 2 except that the first optical anisotropic layer 3 made of norbornene resin and the second optical anisotropic layer 4 made of homeotropic alignment liquid crystal film are not used. A display device was produced.
FIG. 13 shows the contrast ratio from all directions, where the transmittance ratio (white display) / (black display) of black display 0V and white display 5V is used as the contrast ratio. When the contrast ratio was viewed in all directions, it was found that the viewing angle characteristics deteriorated particularly in the four directions of upper right, upper left, lower right, and lower left.
[比較例5]
ノルボルネン系樹脂からなる第1の光学異方性層3のRe1を25nm、Rth1を103.5nmとした以外は、実施例2と同様にして水平配向型液晶表示装置を作製した。黒表示0V、白表示5Vの透過率の比(白表示)/(黒表示)のコントラスト比を測定したところ、全方位で見た場合、右上、左上の2方向で特に低くなり、視野角特性が悪化することがわかった。
[Comparative Example 5]
A horizontal alignment type liquid crystal display device was produced in the same manner as in Example 2 except that Re1 of the first optically anisotropic layer 3 made of norbornene resin was 25 nm and Rth1 was 103.5 nm. When the contrast ratio of the transmittance ratio (white display) / (black display) of black display 0V and white display 5V was measured, when viewed in all directions, it became particularly low in the upper right and upper left directions, and viewing angle characteristics. It turned out to get worse.
[比較例6]
ノルボルネン系樹脂からなる第1の光学異方性層3のRe1を115nm、Rth1を350nmとした以外は、実施例2と同様にして水平配向型液晶表示装置を作製した。その結果、Rth1+Rth2=-196nmとなる。また、Rth1(550)/Re1(550)=3.0となる。黒表示0V、白表示5Vの透過率の比(白表示)/(黒表示)のコントラスト比を測定したところ、全方位で見た場合、右上、左上の2方向で特に低くなり、視野角特性が悪化することがわかった。
[Comparative Example 6]
A horizontal alignment type liquid crystal display device was produced in the same manner as in Example 2 except that Re1 of the first optically anisotropic layer 3 made of norbornene resin was 115 nm and Rth1 was 350 nm. As a result, Rth1 + Rth2 = −196 nm. Also, Rth1 (550) / Re1 (550) = 3.0. When the contrast ratio of the transmittance ratio (white display) / (black display) of black display 0V and white display 5V was measured, when viewed in all directions, it became particularly low in the upper right and upper left directions, and viewing angle characteristics. It turned out to get worse.
[比較例7]
 第1の光学異方性層3のノルボルネン系樹脂からポリスルホン系樹脂に変えた以外は、実施例2と同様にして水平配向型液晶表示装置を作製した。その結果、Re1(450)/Re1(550)=1.2、Rth1(450)/Rth1(550)=1.19、Re1(650)/Re1(550)=0.7、Rth1(650)/Rth1(550)=0.68となる。黒表示0V、白表示5Vの透過率の比(白表示)/(黒表示)のコントラスト比を測定したところ、コントラスト範囲は実施例2と同様、全方位においてコントラスト比が高く良好な視野角特性が得られたが、Re1(450)/Re1(550)値、Rth1(450)/Rth1(550)値、Re1(650)/Re1(550)値、Rth1(650)/Rth1(550)値が最適範囲より大きく外れてしまったため、黒表示をした時の色味が赤紫化してしまい色づきが大きいことがわかった。
[Comparative Example 7]
A horizontal alignment type liquid crystal display device was produced in the same manner as in Example 2 except that the norbornene resin of the first optically anisotropic layer 3 was changed to the polysulfone resin. As a result, Re1 (450) / Re1 (550) = 1.2, Rth1 (450) / Rth1 (550) = 1.19, Re1 (650) / Re1 (550) = 0.7, Rth1 (650) / Rth1 (550) = 0.68. When the contrast ratio of the transmittance ratio of black display 0V and white display 5V (white display) / (black display) was measured, the contrast range was the same as in Example 2, and the contrast ratio was high in all directions and good viewing angle characteristics. The Re1 (450) / Re1 (550) value, the Rth1 (450) / Rth1 (550) value, the Re1 (650) / Re1 (550) value, and the Rth1 (650) / Rth1 (550) value were obtained. Since it was far from the optimum range, it turned out that the color of the black display turned reddish purple and the coloration was large.
[比較例8]
 ホメオトロピック配向液晶フィルムからなる第2の光学異方性層4のRe2を50nm、Rth2=-154nmとした以外は、実施例2と同様にして水平配向型液晶表示装置を作製した。黒表示0V、白表示5Vの透過率の比(白表示)/(黒表示)のコントラスト比を測定したところ、全方位で見た場合、右下、左下の2方向で特に低くなり、視野角特性が悪化することがわかった。
[Comparative Example 8]
A horizontal alignment type liquid crystal display device was produced in the same manner as in Example 2 except that Re2 of the second optically anisotropic layer 4 made of homeotropic alignment liquid crystal film was set to 50 nm and Rth2 = −154 nm. When the contrast ratio of the transmittance ratio (white display) / (black display) of black display 0V and white display 5V was measured, when viewed in all directions, it was particularly low in the two directions of lower right and lower left, and the viewing angle. It was found that the characteristics deteriorated.

Claims (12)

  1.  少なくとも第1の偏光板、第1の光学異方性層および第2の光学異方性層がこの順に積層された積層偏光板であって、前記第1の光学異方性層が以下の[1]~[7]を満たし、前記第2の光学異方性層が以下の[8]~[9]を満たし、前記第1の光学異方性層及び前記第2の光学異方性層が以下の[10]を満たすことを特徴とする積層偏光板。
      [1]50nm≦Re1(550)≦200nm
      [2]30nm≦Rth1(550)≦300nm
      [3]0.5≦Rth1(550)/Re1(550)≦1.5
      [4]0.7≦Re1(450)/Re1(550)<1.1
      [5]0.7≦Rth1(450)/Rth1(550)<1.1
      [6]0.95≦Re1(650)/Re1(550)<1.2
      [7]0.95≦Rth1(650)/Rth1(550)<1.2
    (ここで、Re1(450)、Re1(550)およびRe1(650)は、それぞれ波長450nm、550nmおよび650nmの光における第1の光学異方性層の面内のリターデーション値を意味し、Rth1(450)、Rth1(550)およびRth1(650)は、それぞれ波長450nm、550nmおよび650nmの光における第1の光学異方性層の厚さ方向のリターデーション値を意味する。Re1(450)、Re1(550)およびRe1(650)ならびにRth1(450)、Rth1(550)およびRth1(650)は、それぞれRe1(450)=(nx1(450)-ny1(450))×d1[nm]、Re1(550)=(nx1(550)-ny1(550))×d1[nm]、Re1(650)=(nx1(650)-ny1(650))×d1[nm]、Rth1(450)={(nx1(450)+ny1(450))/2-nz1(450)}×d1[nm]、Rth1(550)={(nx1(550)+ny1(550))/2-nz1(550)}×d1[nm]、Rth1(650)={(nx1(650)+ny1(650))/2-nz1(650)}×d1[nm]である。また、d1は第1の光学異方性層の厚さ、nx1(450)、nx1(550)、nx1(650)はそれぞれ波長450、550、650nmの光に対する第1の光学異方性層面内の最大主屈折率、ny1(450)、ny1(550)、ny1(650)はそれぞれnx1(450)、nx1(550)、nx1(650)に直交する方位の主屈折率、nz1(450)、nz1(550)、nz1(650)はそれぞれ波長450、550、650nmの光に対する厚さ方向の主屈折率であり、nx1(550)>ny1(550)>nz1(550)である。)
      [8]-10nm≦Re2(550)≦10nm
      [9]-200nm≦Rth2(550)≦-50nm
    (ここで、Re2(550)は波長550nmの光における第2の光学異方性層の面内のリターデーション値を意味し、Rth2(550)は波長550nmの光における第2の光学異方性層の厚さ方向のリターデーション値を意味する。Re2(550)及びRth2(550)は、それぞれRe2(550)={nx2(550)-ny2(550)}×d2[nm]、Rth2(550)=[{nx2(550)+ny2(550)}/2-nz2(550)]×d2[nm]である。また、d2は第2の光学異方性層の厚さ、nx2(550)は波長550nmの光に対する第2の光学異方性層面内の最大主屈折率、ny2(550)はnx2(550)に直交する方位の主屈折率、nz2(550)は波長550nmの光に対する厚さ方向の主屈折率であり、nz2(550)>nx2(550)=ny2である。)
      [10]-60nm≦Rth1(550)+Rth2(550)≦60nm
    A laminated polarizing plate in which at least a first polarizing plate, a first optically anisotropic layer, and a second optically anisotropic layer are laminated in this order, wherein the first optically anisotropic layer has the following [ 1] to [7], and the second optical anisotropic layer satisfies the following [8] to [9], and the first optical anisotropic layer and the second optical anisotropic layer Satisfies the following [10]: a laminated polarizing plate,
    [1] 50 nm ≦ Re1 (550) ≦ 200 nm
    [2] 30 nm ≦ Rth1 (550) ≦ 300 nm
    [3] 0.5 ≦ Rth1 (550) / Re1 (550) ≦ 1.5
    [4] 0.7 ≦ Re1 (450) / Re1 (550) <1.1
    [5] 0.7 ≦ Rth1 (450) / Rth1 (550) <1.1
    [6] 0.95 ≦ Re1 (650) / Re1 (550) <1.2
    [7] 0.95 ≦ Rth1 (650) / Rth1 (550) <1.2
    (Here, Re1 (450), Re1 (550), and Re1 (650) mean in-plane retardation values of the first optically anisotropic layer in light of wavelengths 450 nm, 550 nm, and 650 nm, respectively, and Rth1 (450), Rth1 (550), and Rth1 (650) mean retardation values in the thickness direction of the first optical anisotropic layer in light having wavelengths of 450 nm, 550 nm, and 650 nm, respectively. Re1 (550) and Re1 (650) and Rth1 (450), Rth1 (550) and Rth1 (650) are respectively Re1 (450) = (nx1 (450) −ny1 (450)) × d1 [nm], Re1 (550) = (nx1 (550) −ny1 (550)) × d1 [nm], Re1 (65 0) = (nx1 (650) −ny1 (650)) × d1 [nm], Rth1 (450) = {(nx1 (450) + ny1 (450)) / 2−nz1 (450)} × d1 [nm], Rth1 (550) = {(nx1 (550) + ny1 (550)) / 2−nz1 (550)} × d1 [nm], Rth1 (650) = {(nx1 (650) + ny1 (650)) / 2−nz1 (650)} × d1 [nm] where d1 is the thickness of the first optical anisotropic layer, and nx1 (450), nx1 (550), and nx1 (650) are wavelengths 450, 550, and 650 nm, respectively. Ny1 (450), ny1 (550), ny1 (650) are orthogonal to nx1 (450), nx1 (550), and nx1 (650), respectively, in the first optically anisotropic layer plane for the light of You The main refractive index in the direction, nz1 (450), nz1 (550), and nz1 (650), is the main refractive index in the thickness direction for light of wavelengths 450, 550, and 650 nm, respectively, and nx1 (550)> ny1 (550). > Nz1 (550).)
    [8] -10 nm ≦ Re2 (550) ≦ 10 nm
    [9] −200 nm ≦ Rth2 (550) ≦ −50 nm
    (Here, Re2 (550) means the in-plane retardation value of the second optically anisotropic layer in the light of wavelength 550 nm, and Rth2 (550) is the second optical anisotropy in the light of wavelength 550 nm. Re2 (550) and Rth2 (550) are Re2 (550) = {nx2 (550) −ny2 (550)} × d2 [nm], Rth2 (550), respectively. ) = [{Nx2 (550) + ny2 (550)} / 2-nz2 (550)] × d2 [nm], where d2 is the thickness of the second optically anisotropic layer, and nx2 (550) is The maximum main refractive index in the plane of the second optical anisotropic layer for light with a wavelength of 550 nm, ny2 (550) is the main refractive index in the direction orthogonal to nx2 (550), and nz2 (550) is the thickness for light with a wavelength of 550 nm. (The main refractive index in the vertical direction, nz2 (550)> nx2 (550) = ny2)
    [10] −60 nm ≦ Rth1 (550) + Rth2 (550) ≦ 60 nm
  2.  前記第2の光学異方性層が、正の一軸性を示す液晶性組成物を液晶状態においてホメオトロピック配向させた後、配向固定化したホメオトロピック配向液晶フィルムからなることを特徴とする請求項1に記載の積層偏光板。 The second optically anisotropic layer is composed of a homeotropic alignment liquid crystal film obtained by homeotropic alignment of a liquid crystalline composition exhibiting positive uniaxiality in a liquid crystal state and then fixing the alignment. 1. The laminated polarizing plate according to 1.
  3.  前記の正の一軸性を示す液晶性組成物が、オキセタニル基を有する側鎖型液晶性高分子を含むことを特徴とする請求項2に記載の積層偏光板。 3. The laminated polarizing plate according to claim 2, wherein the liquid crystalline composition exhibiting positive uniaxiality includes a side chain type liquid crystalline polymer having an oxetanyl group.
  4.  前記第1の光学異方性層が、ポリカーボネートあるいは環状ポリオレフィンを含むことを特徴とする請求項1~3のいずれかに記載の積層偏光板。 The laminated polarizing plate according to any one of claims 1 to 3, wherein the first optically anisotropic layer contains polycarbonate or cyclic polyolefin.
  5.  前記第1の偏光板の吸収軸と前記第1の光学異方性層の遅相軸とのなす角度をrとしたときに、85°≦r≦95°を満たすように積層されていることを特徴とする請求項1~4のいずれかに記載の積層偏光板。 Laminated so as to satisfy 85 ° ≦ r ≦ 95 °, where r is an angle formed between the absorption axis of the first polarizing plate and the slow axis of the first optically anisotropic layer. The laminated polarizing plate according to any one of claims 1 to 4, wherein:
  6.  少なくとも第1の偏光板、第1の光学異方性層、第2の光学異方性層、水平配向型液晶セルおよび第2の偏光板がこの順に配置された水平配向型液晶表示装置であって、前記第1の光学異方性層が、以下の[1]~[7]を満たし、前記第2の光学異方性層が、以下の[8]~[9]を満たし、前記第1の光学異方性層及び前記第2の光学異方性層が、以下の[10]を満たすことを特徴とする水平配向型液晶表示装置。
      [1]50nm≦Re1(550)≦200nm
      [2]30nm≦Rth1(550)≦300nm
      [3]0.5≦Rth1(550)/Re1(550)≦1.5
      [4]0.7≦Re1(450)/Re1(550)<1.1
      [5]0.7≦Rth1(450)/Rth1(550)<1.1
      [6]0.95≦Re1(650)/Re1(550)<1.2
      [7]0.95≦Rth1(650)/Rth1(550)<1.2
    (ここで、Re1(450)、Re1(550)およびRe1(650)は、それぞれ波長450nm、550nmおよび650nmの光における第1の光学異方性層の面内のリターデーション値を意味し、Rth1(450)、Rth1(550)およびRth1(650)は、それぞれ波長450nm、550nmおよび650nmの光における第1の光学異方性層の厚さ方向のリターデーション値を意味する。Re1(450)、Re1(550)およびRe1(650)ならびにRth1(450)、Rth1(550)およびRth1(650)は、それぞれRe1(450)=(nx1(450)-ny1(450))×d1[nm]、Re1(550)=(nx1(550)-ny1(550))×d1[nm]、Re1(650)=(nx1(650)-ny1(650))×d1[nm]、Rth1(450)={(nx1(450)+ny1(450))/2-nz1(450)}×d1[nm]、Rth1(550)={(nx1(550)+ny1(550))/2-nz1(550)}×d1[nm]、Rth1(650)={(nx1(650)+ny1(650))/2-nz1(650)}×d1[nm]である。また、d1は第1の光学異方性層の厚さ、nx1(450)、nx1(550)、nx1(650)、ny1(450)、ny1(550)、ny1(650)はそれぞれ波長450、550、650nmの光に対する第1の光学異方性層面内の主屈折率、nz1(450)、nz1(550)、nz1(650)はそれぞれ波長450、550、650nmの光に対する厚さ方向の主屈折率であり、nx1(550)>ny1(550)>nz1(550)である。)
      [8]-10nm≦Re2(550)≦10nm
      [9]-200nm≦Rth2(550)≦-50nm
    (ここで、Re2(550)は波長550nmの光における第2の光学異方性層の面内のリターデーション値を意味し、Rth2(550)は波長550nmの光における第2の光学異方性層の厚さ方向のリターデーション値を意味する。Re2(550)及びRth2(550)は、それぞれRe2(550)={nx2(550)-ny2(550)}×d2[nm]、Rth2(550)=[{nx2(550)+ny2(550)}/2-nz2(550)]×d2[nm]である。また、d2は第2の光学異方性層の厚さ、nx2(550)は波長550nmの光に対する第2の光学異方性層面内の最大主屈折率、ny2(550)はnx2(550)に直交する方位の主屈折率、nz2(550)は波長550nmの光に対する厚さ方向の主屈折率であり、nz2(550)>nx2(550)=ny2である。)
      [10]-60nm≦Rth1(550)+Rth2(550)≦60nm
    A horizontal alignment type liquid crystal display device in which at least a first polarizing plate, a first optical anisotropic layer, a second optical anisotropic layer, a horizontal alignment type liquid crystal cell, and a second polarizing plate are arranged in this order. The first optically anisotropic layer satisfies the following [1] to [7], and the second optically anisotropic layer satisfies the following [8] to [9]: A horizontal alignment type liquid crystal display device, wherein the first optical anisotropic layer and the second optical anisotropic layer satisfy the following [10].
    [1] 50 nm ≦ Re1 (550) ≦ 200 nm
    [2] 30 nm ≦ Rth1 (550) ≦ 300 nm
    [3] 0.5 ≦ Rth1 (550) / Re1 (550) ≦ 1.5
    [4] 0.7 ≦ Re1 (450) / Re1 (550) <1.1
    [5] 0.7 ≦ Rth1 (450) / Rth1 (550) <1.1
    [6] 0.95 ≦ Re1 (650) / Re1 (550) <1.2
    [7] 0.95 ≦ Rth1 (650) / Rth1 (550) <1.2
    (Here, Re1 (450), Re1 (550), and Re1 (650) mean in-plane retardation values of the first optically anisotropic layer in light of wavelengths 450 nm, 550 nm, and 650 nm, respectively, and Rth1 (450), Rth1 (550), and Rth1 (650) mean retardation values in the thickness direction of the first optical anisotropic layer in light having wavelengths of 450 nm, 550 nm, and 650 nm, respectively. Re1 (550) and Re1 (650) and Rth1 (450), Rth1 (550) and Rth1 (650) are respectively Re1 (450) = (nx1 (450) −ny1 (450)) × d1 [nm], Re1 (550) = (nx1 (550) −ny1 (550)) × d1 [nm], Re1 (65 0) = (nx1 (650) −ny1 (650)) × d1 [nm], Rth1 (450) = {(nx1 (450) + ny1 (450)) / 2−nz1 (450)} × d1 [nm], Rth1 (550) = {(nx1 (550) + ny1 (550)) / 2−nz1 (550)} × d1 [nm], Rth1 (650) = {(nx1 (650) + ny1 (650)) / 2−nz1 (650)} × d1 [nm] where d1 is the thickness of the first optical anisotropic layer, nx1 (450), nx1 (550), nx1 (650), ny1 (450), ny1 ( 550) and ny1 (650) are the main refractive indices in the first optical anisotropic layer surface for light of wavelengths 450, 550 and 650 nm, respectively, and nz1 (450), nz1 (550) and nz1 (650) are wavelengths 450, respectively. The main refractive index in the thickness direction for light at 550,650Nm, an nx1 (550)> ny1 (550)> nz1 (550).)
    [8] -10 nm ≦ Re2 (550) ≦ 10 nm
    [9] −200 nm ≦ Rth2 (550) ≦ −50 nm
    (Here, Re2 (550) means the in-plane retardation value of the second optically anisotropic layer in the light of wavelength 550 nm, and Rth2 (550) is the second optical anisotropy in the light of wavelength 550 nm. Re2 (550) and Rth2 (550) are Re2 (550) = {nx2 (550) −ny2 (550)} × d2 [nm], Rth2 (550), respectively. ) = [{Nx2 (550) + ny2 (550)} / 2-nz2 (550)] × d2 [nm], where d2 is the thickness of the second optically anisotropic layer, and nx2 (550) is The maximum main refractive index in the plane of the second optical anisotropic layer for light with a wavelength of 550 nm, ny2 (550) is the main refractive index in the direction orthogonal to nx2 (550), and nz2 (550) is the thickness for light with a wavelength of 550 nm. (The main refractive index in the vertical direction, nz2 (550)> nx2 (550) = ny2)
    [10] −60 nm ≦ Rth1 (550) + Rth2 (550) ≦ 60 nm
  7.  少なくとも第1の偏光板、第1の光学異方性層、第2の光学異方性層、水平配向型液晶セル、第3の光学異方性層および第2の偏光板がこの順に配置された水平配向型液晶表示装置であって、前記第1の光学異方性層が、以下の[1]~[7]を満たし、前記第2の光学異方性層が、以下の[8]~[9]を満たし、前記第1の光学異方性層及び前記第2の光学異方性層が、以下の[10]を満たし、前記第3の光学異方性層が、以下の[11]~[12]を満たすことを特徴とする水平配向型液晶表示装置。
      [1]50nm≦Re1(550)≦200nm
      [2]30nm≦Rth1(550)≦300nm
      [3]0.5≦Rth1(550)/Re1(550)≦1.5
      [4]0.7≦Re1(450)/Re1(550)<1.1
      [5]0.7≦Rth1(450)/Rth1(550)<1.1
      [6]0.95≦Re1(650)/Re1(550)<1.2
      [7]0.95≦Rth1(650)/Rth1(550)<1.2
    (ここで、Re1(450)、Re1(550)およびRe1(650)は、それぞれ波長450nm、550nmおよび650nmの光における第1の光学異方性層の面内のリターデーション値を意味し、Rth1(450)、Rth1(550)およびRth1(650)は、それぞれ波長450nm、550nmおよび650nmの光における第1の光学異方性層の厚さ方向のリターデーション値を意味する。Re1(450)、Re1(550)およびRe1(650)ならびにRth1(450)、Rth1(550)およびRth1(650)は、それぞれRe1(450)=(nx1(450)-ny1(450))×d1[nm]、Re1(550)=(nx1(550)-ny1(550))×d1[nm]、Re1(650)=(nx1(650)-ny1(650))×d1[nm]、Rth1(450)={(nx1(450)+ny1(450))/2-nz1(450)}×d1[nm]、Rth1(550)={(nx1(550)+ny1(550))/2-nz1(550)}×d1[nm]、Rth1(650)={(nx1(650)+ny1(650))/2-nz1(650)}×d1[nm]である。また、d1は第1の光学異方性層の厚さ、nx1(450)、nx1(550)、nx1(650)はそれぞれ波長450、550、650nmの光に対する第1の光学異方性層面内の最大主屈折率、ny1(450)、ny1(550)、ny1(650)はそれぞれnx1(450)、nx1(550)、nx1(650)に直交する方位の主屈折率、nz1(450)、nz1(550)、nz1(650)はそれぞれ波長450、550、650nmの光に対する厚さ方向の主屈折率であり、nx1(550)>ny1(550)>nz1(550)である。)
      [8]-10nm≦Re2(550)≦10nm
      [9]-200nm≦Rth2(550)≦-50nm
    (ここで、Re2(550)は波長550nmの光における第2の光学異方性層の面内のリターデーション値を意味し、Rth2(550)は波長550nmの光における第2の光学異方性層の厚さ方向のリターデーション値を意味する。Re2(550)及びRth2(550)は、それぞれRe2(550)={nx2(550)-ny2(550)}×d2[nm]、Rth2(550)=[{nx2(550)+ny2(550)}/2-nz2(550)]×d2[nm]である。また、d2は第2の光学異方性層の厚さ、nx2(550)は波長550nmの光に対する第2の光学異方性層面内の最大主屈折率、ny2(550)はnx2(550)に直交する方位の主屈折率、nz2(550)は波長550nmの光に対する厚さ方向の主屈折率であり、nz2(550)>nx2(550)=ny2である。)
      [10]-60nm≦Rth1(550)+Rth2(550)≦60nm
      [11]-10nm≦Re3(550)≦10nm
      [12]-10nm≦Rth3(550)≦10nm
    (ここで、Re3(550)は波長550nmの光における第3の光学異方性層の面内のリターデーション値を意味し、Rth3(550)は波長550nmの光における第3の光学異方性層の厚さ方向のリターデーション値を意味する。Re3(550)及びRth3(550)は、それぞれRe3(550)=(nx3(550)-ny3(550))×d3[nm]、Rth3(550)={(nx3(550)+ny3(550))/2-nz3(550)}×d3[nm]である。また、d3は第3の光学異方性層の厚さ、nx3(550)、ny3(550)は波長550nmの光に対する第3の光学異方性層面内の主屈折率、nz3(550)は波長550nmの光に対する厚さ方向の主屈折率であり、nx3(550)≧ny3(550)≧nz3(550)である。)
    At least the first polarizing plate, the first optical anisotropic layer, the second optical anisotropic layer, the horizontal alignment type liquid crystal cell, the third optical anisotropic layer, and the second polarizing plate are arranged in this order. In the horizontal alignment type liquid crystal display device, the first optically anisotropic layer satisfies the following [1] to [7], and the second optically anisotropic layer has the following [8]: To [9], the first optical anisotropic layer and the second optical anisotropic layer satisfy the following [10], and the third optical anisotropic layer has the following [ 11] to [12]. A horizontal alignment type liquid crystal display device characterized by the above.
    [1] 50 nm ≦ Re1 (550) ≦ 200 nm
    [2] 30 nm ≦ Rth1 (550) ≦ 300 nm
    [3] 0.5 ≦ Rth1 (550) / Re1 (550) ≦ 1.5
    [4] 0.7 ≦ Re1 (450) / Re1 (550) <1.1
    [5] 0.7 ≦ Rth1 (450) / Rth1 (550) <1.1
    [6] 0.95 ≦ Re1 (650) / Re1 (550) <1.2
    [7] 0.95 ≦ Rth1 (650) / Rth1 (550) <1.2
    (Here, Re1 (450), Re1 (550), and Re1 (650) mean in-plane retardation values of the first optically anisotropic layer in light of wavelengths 450 nm, 550 nm, and 650 nm, respectively, and Rth1 (450), Rth1 (550), and Rth1 (650) mean retardation values in the thickness direction of the first optical anisotropic layer in light having wavelengths of 450 nm, 550 nm, and 650 nm, respectively. Re1 (550) and Re1 (650) and Rth1 (450), Rth1 (550) and Rth1 (650) are respectively Re1 (450) = (nx1 (450) −ny1 (450)) × d1 [nm], Re1 (550) = (nx1 (550) −ny1 (550)) × d1 [nm], Re1 (65 0) = (nx1 (650) −ny1 (650)) × d1 [nm], Rth1 (450) = {(nx1 (450) + ny1 (450)) / 2−nz1 (450)} × d1 [nm], Rth1 (550) = {(nx1 (550) + ny1 (550)) / 2−nz1 (550)} × d1 [nm], Rth1 (650) = {(nx1 (650) + ny1 (650)) / 2−nz1 (650)} × d1 [nm] where d1 is the thickness of the first optical anisotropic layer, and nx1 (450), nx1 (550), and nx1 (650) are wavelengths 450, 550, and 650 nm, respectively. Ny1 (450), ny1 (550), ny1 (650) are orthogonal to nx1 (450), nx1 (550), and nx1 (650), respectively, in the first optically anisotropic layer plane for the light of You The main refractive index in the direction, nz1 (450), nz1 (550), and nz1 (650), is the main refractive index in the thickness direction for light of wavelengths 450, 550, and 650 nm, respectively, and nx1 (550)> ny1 (550). > Nz1 (550).)
    [8] -10 nm ≦ Re2 (550) ≦ 10 nm
    [9] −200 nm ≦ Rth2 (550) ≦ −50 nm
    (Here, Re2 (550) means the in-plane retardation value of the second optically anisotropic layer in the light of wavelength 550 nm, and Rth2 (550) is the second optical anisotropy in the light of wavelength 550 nm. Re2 (550) and Rth2 (550) are Re2 (550) = {nx2 (550) −ny2 (550)} × d2 [nm], Rth2 (550), respectively. ) = [{Nx2 (550) + ny2 (550)} / 2-nz2 (550)] × d2 [nm], where d2 is the thickness of the second optically anisotropic layer, and nx2 (550) is The maximum main refractive index in the plane of the second optical anisotropic layer for light with a wavelength of 550 nm, ny2 (550) is the main refractive index in the direction orthogonal to nx2 (550), and nz2 (550) is the thickness for light with a wavelength of 550 nm. (The main refractive index in the vertical direction, nz2 (550)> nx2 (550) = ny2)
    [10] −60 nm ≦ Rth1 (550) + Rth2 (550) ≦ 60 nm
    [11] -10 nm ≦ Re3 (550) ≦ 10 nm
    [12] -10 nm ≦ Rth3 (550) ≦ 10 nm
    (Here, Re3 (550) means the in-plane retardation value of the third optical anisotropic layer in the light of wavelength 550 nm, and Rth3 (550) is the third optical anisotropy in the light of wavelength 550 nm. Re3 (550) and Rth3 (550) are Re3 (550) = (nx3 (550) −ny3 (550)) × d3 [nm], Rth3 (550), respectively. ) = {(Nx3 (550) + ny3 (550)) / 2−nz3 (550)} × d3 [nm], where d3 is the thickness of the third optical anisotropic layer, nx3 (550), ny3 (550) is the main refractive index in the third optical anisotropic layer surface for light having a wavelength of 550 nm, nz3 (550) is the main refractive index in the thickness direction for light having a wavelength of 550 nm, and nx3 (550) ≧ ny 3 (550) ≧ nz3 (550).)
  8.  前記第2の光学異方性層が、正の一軸性を示す液晶性組成物を液晶状態においてホメオトロピック配向させた後、配向固定化したホメオトロピック配向液晶フィルムからなることを特徴とする請求項6または7に記載の水平配向型液晶表示装置。 The second optically anisotropic layer is composed of a homeotropic alignment liquid crystal film obtained by homeotropic alignment of a liquid crystalline composition exhibiting positive uniaxiality in a liquid crystal state and then fixing the alignment. 8. A horizontal alignment type liquid crystal display device according to 6 or 7.
  9.  前記の正の一軸性を示す液晶性組成物が、オキセタニル基を有する側鎖型液晶性高分子を含むことを特徴とする請求項8に記載の水平配向型液晶表示装置。 The horizontal alignment type liquid crystal display device according to claim 8, wherein the liquid crystalline composition exhibiting positive uniaxiality includes a side chain type liquid crystalline polymer having an oxetanyl group.
  10.  前記第1の光学異方性層が、ポリカーボネートあるいは環状ポリオレフィンを含むことを特徴とする請求項6~9のいずれかに記載の水平配向型液晶表示装置。 10. The horizontal alignment type liquid crystal display device according to claim 6, wherein the first optically anisotropic layer contains polycarbonate or cyclic polyolefin.
  11.  前記第1の偏光板の吸収軸と前記第1の光学異方性層の遅相軸とのなす角度をrとしたときに、85°≦r≦95°を満たすように積層されていることを特徴とする請求項6~10のいずれかに記載の水平配向型液晶表示装置。 Laminated so as to satisfy 85 ° ≦ r ≦ 95 °, where r is an angle formed between the absorption axis of the first polarizing plate and the slow axis of the first optically anisotropic layer. The horizontal alignment type liquid crystal display device according to any one of claims 6 to 10.
  12.  前記第1の偏光板の吸収軸と前記第2の偏光板の吸収軸とのなす角度をsとしたときに、85°≦s≦95°を満たし、前記第2の偏光板の吸収軸と水平配向型液晶セル内の液晶の光軸とのなす角度をtとしたときに、-5°≦t≦5°を満たすように積層されていることを特徴とする請求項11に記載の水平配向型液晶表示装置。 When the angle between the absorption axis of the first polarizing plate and the absorption axis of the second polarizing plate is s, 85 ° ≦ s ≦ 95 ° is satisfied, and the absorption axis of the second polarizing plate is 12. The horizontal layer according to claim 11, wherein the layers are stacked so as to satisfy −5 ° ≦ t ≦ 5 °, where t is an angle formed with the optical axis of the liquid crystal in the horizontal alignment type liquid crystal cell. Alignment type liquid crystal display device.
PCT/JP2014/058244 2013-03-28 2014-03-25 Laminated polarizing plate and horizontal alignment liquid crystal display device WO2014157182A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013070265A JP2016106241A (en) 2013-03-28 2013-03-28 Laminated polarizing plate and horizontal alignment type liquid crystal display device
JP2013-070265 2013-03-28

Publications (1)

Publication Number Publication Date
WO2014157182A1 true WO2014157182A1 (en) 2014-10-02

Family

ID=51624153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/058244 WO2014157182A1 (en) 2013-03-28 2014-03-25 Laminated polarizing plate and horizontal alignment liquid crystal display device

Country Status (3)

Country Link
JP (1) JP2016106241A (en)
TW (1) TW201447429A (en)
WO (1) WO2014157182A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017057347A1 (en) * 2015-09-30 2017-04-06 日本ゼオン株式会社 Lcd device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7055425B2 (en) 2017-01-25 2022-04-18 エルジー・ケム・リミテッド Anti-reflection optical filter and organic light emitting device
JPWO2018207798A1 (en) 2017-05-08 2020-03-12 富士フイルム株式会社 Liquid crystal display
JP6998944B2 (en) * 2017-05-08 2022-01-18 富士フイルム株式会社 Liquid crystal display device
JPWO2021065978A1 (en) * 2019-09-30 2021-04-08

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006178401A (en) * 2004-11-29 2006-07-06 Nitto Denko Corp Liquid crystal panel and liquid crystal display
WO2006085454A1 (en) * 2005-02-08 2006-08-17 Nippon Oil Corporation Homeotropically oriented liquid-crystal film, optical film comprising the same, and image display
JP2008051838A (en) * 2006-08-22 2008-03-06 Fujifilm Corp Optical compensation film and liquid crystal display apparatus
JP2010102296A (en) * 2008-09-26 2010-05-06 Fujifilm Corp Acrylic film, optical compensation film, and ips or ffs mode liquid crystal display device using the same
JP2013050482A (en) * 2011-08-30 2013-03-14 Fujifilm Corp Optical laminated film, and polarizing plate and liquid crystal display device using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006178401A (en) * 2004-11-29 2006-07-06 Nitto Denko Corp Liquid crystal panel and liquid crystal display
WO2006085454A1 (en) * 2005-02-08 2006-08-17 Nippon Oil Corporation Homeotropically oriented liquid-crystal film, optical film comprising the same, and image display
JP2008051838A (en) * 2006-08-22 2008-03-06 Fujifilm Corp Optical compensation film and liquid crystal display apparatus
JP2010102296A (en) * 2008-09-26 2010-05-06 Fujifilm Corp Acrylic film, optical compensation film, and ips or ffs mode liquid crystal display device using the same
JP2013050482A (en) * 2011-08-30 2013-03-14 Fujifilm Corp Optical laminated film, and polarizing plate and liquid crystal display device using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017057347A1 (en) * 2015-09-30 2017-04-06 日本ゼオン株式会社 Lcd device

Also Published As

Publication number Publication date
JP2016106241A (en) 2016-06-16
TW201447429A (en) 2014-12-16

Similar Documents

Publication Publication Date Title
WO2009150779A1 (en) Elliptical light polarizing plate and vertically oriented liquid crystal display device using the same
TWI387816B (en) Elliptical polarizer and vertical alignment type liquid crystal display device comprising the same
JP2008129175A (en) Elliptical polarizing plate and vertically aligned liquid crystal display apparatus using the same
JP5723077B1 (en) Retardation plate, elliptically polarizing plate and display device using the same
JP6392257B2 (en) Retardation plate, laminated polarizing plate using retardation plate, and display device using retardation plate
TWI449971B (en) Elliptical polarizer, process of producing the polarizer and liquid crystal display device equipped with the polarizer
WO2006085454A1 (en) Homeotropically oriented liquid-crystal film, optical film comprising the same, and image display
JP2008009403A (en) Elliptical polarizing plate, method for production of the same, and liquid crystal display device
JP2008191630A (en) Elliptically polarizing plate, manufacturing method thereof, luminance improving film, and image display device
JP2015161714A (en) Retardation plate, elliptical polarization plate, and display device using the same
WO2014157182A1 (en) Laminated polarizing plate and horizontal alignment liquid crystal display device
JP2009288440A (en) Retardation film, method for manufacturing retardation film, polarizing plate, and liquid crystal display
JP2007017637A (en) Laminated optical retardation plate, method for producing the same, luminance-improving film, and image display device
JP2008209872A (en) Elliptically polarizing plate for vertically aligned liquid crystal display device and vertically aligned liquid crystal display device using the same
JP2007072213A (en) Viewing angle compensation plate for homeotropically oriented liquid crystal display device and homeotropically oriented liquid crystal display device using same
JP2006337575A (en) Homeotropically oriented liquid-crystal film, and device using the same
JP2009294521A (en) Retardation film, method for manufacturing retardation film, sheet polarizer and liquid crystal display device
JP2008129176A (en) Elliptical polarizing plate and vertically aligned liquid crystal display apparatus using the same
JP6918098B2 (en) Optical film and manufacturing method of optical film
WO2014157181A1 (en) Laminated polarizing plate for horizontal alignment liquid crystal display device and horizontal alignment liquid crystal display device
JP2007256761A (en) Elliptic polarizing plate and manufacturing method therefor, and liquid crystal display device using same
JP2016090866A (en) Production method of optical film and optical film obtained by the method, and elliptically polarizing plate and image display device using the optical film
WO2007111081A1 (en) Elliptical polarizing plate, method for production of the same, and liquid crystal display device using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14775955

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14775955

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP