TW201447429A - Laminated polarizing plate and horizontal alignment liquid crystal display device - Google Patents

Laminated polarizing plate and horizontal alignment liquid crystal display device Download PDF

Info

Publication number
TW201447429A
TW201447429A TW103111699A TW103111699A TW201447429A TW 201447429 A TW201447429 A TW 201447429A TW 103111699 A TW103111699 A TW 103111699A TW 103111699 A TW103111699 A TW 103111699A TW 201447429 A TW201447429 A TW 201447429A
Authority
TW
Taiwan
Prior art keywords
rth1
anisotropic layer
optical anisotropic
liquid crystal
polarizing plate
Prior art date
Application number
TW103111699A
Other languages
Chinese (zh)
Inventor
Tetsuya Uesaka
Hiroshi Imafuku
Original Assignee
Jx Nippon Oil & Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx Nippon Oil & Energy Corp filed Critical Jx Nippon Oil & Energy Corp
Publication of TW201447429A publication Critical patent/TW201447429A/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133637Birefringent elements, e.g. for optical compensation characterised by the wavelength dispersion
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/02Number of plates being 2

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

Provided are a laminated polarizing plate having superior field of view characteristics and a horizontal alignment liquid crystal display device. The laminated polarizing plate results from laminating, in the given order, at least a first polarizing plate, a first optically anisotropic layer, and a second optically anisotropic layer. The first optically anisotropic layer satisfies [1]-[7], the second optically anisotropic layer satisfies [8] and [9], and the first optically anisotropic layer and second optically anisotropic layer satisfy [10]. [1]: 50 nm ≤ Re1 (550) ≤ 200 nm. [2]: 30 nm ≤ Rth1 (550) ≤ 330 nm. [3]: 0.5 ≤ Rth1 (550)/Re1 (550) ≤ 1.5. [4]: 0.7 ≤ Re1 (450)/Re1 (550) < 1.1. [5]: 0.7 ≤ Rth1 (450)/Rth1 (550) < 1.1. [6]: 0.95 ≤ Re1 (650)/Re1 (550) < 1.2. [7]: 0.95 ≤ Rth1 (650)/Rth1 (550) < 1.2. [8]: -10 nm ≤ Re2 (550) ≤ 10 nm. [9]: -200 nm ≤ Rth2 (550) ≤ -50 nm. [10]: -60 nm ≤ Rth1 (550) + Rth2 (550) ≤ 60 nm. (Here, Re and Re 2 are the in-plane retardation values for the first and second optically anisotropic layers, and Rth1 and Rth2 are the thickness-direction retardation values of the first and second optically anisotropic layers.)

Description

積層偏光板及水平配向型液晶顯示裝置 Multilayer polarizing plate and horizontal alignment type liquid crystal display device

本發明係關於視野角特性優異的積層偏光板及水平配向型液晶顯示裝置。 The present invention relates to a laminated polarizing plate and a horizontal alignment type liquid crystal display device which are excellent in viewing angle characteristics.

作為液晶顯示裝置的顯示模式之一,在初期狀態下,液晶單元內的液晶分子對基板表面呈平行排列的水平配向模式(專利文獻1)。當無施加電壓時,液晶分子對基板表面呈平行排列,若在液晶單元二側呈正交配置直線偏光板,便可獲得黑顯示。 In one of the display modes of the liquid crystal display device, in the initial state, the liquid crystal molecules in the liquid crystal cell are arranged in a horizontal alignment pattern in parallel with the substrate surface (Patent Document 1). When no voltage is applied, the liquid crystal molecules are arranged in parallel to the surface of the substrate, and if the linear polarizing plates are arranged orthogonally on both sides of the liquid crystal cell, a black display can be obtained.

電壓施加時,液晶分子從平行於基板表面的方向旋轉為電場方向,結果便可獲得亮顯示。 When a voltage is applied, the liquid crystal molecules are rotated from the direction parallel to the surface of the substrate to the direction of the electric field, and as a result, a bright display can be obtained.

水平配向型液晶顯示裝置的黑顯示,雖正面視野可獲得良好的黑顯示,但斜向視野則會發生漏光,導致有對比降低的問題。 The black display of the horizontal alignment type liquid crystal display device can obtain a good black display in the front field of view, but light leakage occurs in the oblique field of view, resulting in a problem of a decrease in contrast.

[先前技術文獻] [Previous Technical Literature] [專利文獻] [Patent Literature]

[專利文獻1]美國專利第3,807,831號說明書 [Patent Document 1] US Patent No. 3,807,831

本發明目的在於提供:視野角特性優異的水平配向型液晶顯示裝置用積層偏光板及水平配向型液晶顯示裝置。 An object of the present invention is to provide a laminated polarizing plate for a horizontal alignment type liquid crystal display device and a horizontal alignment type liquid crystal display device which are excellent in viewing angle characteristics.

本發明者等為解決上述問題經深入鑽研的結果,發現藉由以下所示水平配向型液晶顯示裝置用積層偏光板、及使用其之水平配向型液晶顯示裝置,便可達成上述目的,遂完成本發明。 As a result of intensive studies to solve the above problems, the present inventors have found that the above object can be attained by the laminated polarizing plate for a horizontal alignment type liquid crystal display device and a horizontal alignment type liquid crystal display device using the same. this invention.

即,本發明係如下述。 That is, the present invention is as follows.

〔1〕一種積層偏光板,係至少依序積層著:第1偏光板、第1光學非等向性層及第2光學非等向性層的積層偏光板,其特徵在於:上述第1光學非等向性層係滿足以下的[1]~[7],上述第2光學非等向性層係滿足以下的[8]~[9],上述第1光學非等向性層及上述第2光學非等向性層係滿足以下的[10]。 [1] A laminated polarizing plate in which at least a first polarizing plate, a first optical anisotropic layer, and a second optical anisotropic layer are laminated, wherein the first optical device is characterized in that: The anisotropic layer satisfies the following [1] to [7], and the second optical anisotropic layer satisfies the following [8] to [9], the first optical anisotropic layer and the above 2 The optical anisotropic layer satisfies the following [10].

[1]50nm≦Re1(550)≦200nm [1] 50nm ≦ Re1 (550) ≦ 200nm

[2]30nm≦Rth1(550)≦300nm [2] 30nm≦Rth1(550)≦300nm

[3]0.5≦Rth1(550)/Re1(550)≦1.5 [3]0.5≦Rth1(550)/Re1(550)≦1.5

[4]0.7≦Re1(450)/Re1(550)<1.1 [4]0.7≦Re1(450)/Re1(550)<1.1

[5]0.7≦Rth1(450)/Rth1(550)<1.1 [5]0.7≦Rth1(450)/Rth1(550)<1.1

[6]0.95≦Re1(650)/Re1(550)<1.2 [6]0.95≦Re1(650)/Re1(550)<1.2

[7]0.95≦Rth1(650)/Rth1(550)<1.2 [7]0.95≦Rth1(650)/Rth1(550)<1.2

(其中,Re1(450)、Re1(550)及Re1(650)分別係指在波長450nm、550nm及650nm光下的第1光學非等向性層面內之延遲值;Rth1(450)、 Rth1(550)及Rth1(650)分別係指在波長450nm、550nm及650nm光下的第1光學非等向性層之厚度方向延遲值。Re1(450)、Re1(550)及Re1(650)、以及Rth1(450)、Rth1(550)及Rth1(650)分別係Re1(450)=(nx1(450)-ny1(450))×d1[nm]、Re1(550)=(nx1(550)-ny1(550))×d1[nm]、Re1(650)=(nx1(650)-ny1(650))×d1[nm]、Rth1(450)={(nx1(450)+ny1(450))/2-nz1(450)}×d1[nm]、Rth1(550)={(nx1(550)+ny1(550))/2-nz1(550)}×d1[nm]、Rth1(650)={(nx1(650)+ny1(650))/2-nz1(650)}×d1[nm]。又,d1係第1光學非等向性層的厚度;nx1(450)、nx1(550)、nx1(650)分別係對波長450、550、650nm光的第1光學非等向性層面內之最大主折射率;ny1(450)、ny1(550)、ny1(650)分別係正交於nx1(450)、nx1(550)、nx1(650)的方位之主折射率;nz1(450)、nz1(550)、nz1(650)分別係對波長450、550、650nm光的厚度方向主折射率;nx1(550)>ny1(550)>nz1(550)。) (wherein Re1 (450), Re1 (550), and Re1 (650) refer to delay values in the first optical anisotropic layer at wavelengths of 450 nm, 550 nm, and 650 nm, respectively; Rth1 (450), Rth1 (550) and Rth1 (650) refer to thickness direction retardation values of the first optical anisotropic layer at wavelengths of 450 nm, 550 nm, and 650 nm, respectively. Re1 (450), Re1 (550) and Re1 (650), and Rth1 (450), Rth1 (550), and Rth1 (650) are respectively Re1 (450) = (nx1 (450) - ny1 (450)) × d1 [nm], Re1 (550) = (nx1 (550) - ny1 (550)) × d1 [nm], Re1 (650) = (nx1 (650) - ny1 (650)) × d1 [nm], Rth1 ( 450)={(nx1(450)+ny1(450))/2-nz1(450)}×d1[nm], Rth1(550)={(nx1(550)+ny1(550))/2-nz1 (550)}×d1[nm], Rth1(650)={(nx1(650)+ny1(650))/2-nz1(650)}×d1[nm]. Further, d1 is the thickness of the first optical anisotropic layer; nx1 (450), nx1 (550), and nx1 (650) are respectively in the first optical anisotropic layer of light having wavelengths of 450, 550, and 650 nm. The maximum principal refractive index; ny1 (450), ny1 (550), and ny1 (650) are principal refractive indices orthogonal to the orientations of nx1 (450), nx1 (550), and nx1 (650), respectively; nz1 (450), Nz1 (550) and nz1 (650) are principal refractive indices in the thickness direction of light of wavelengths of 450, 550, and 650 nm, respectively; nx1 (550) > ny1 (550) > nz1 (550). )

[8]-10nm≦Re2(550)≦10nm [8]-10nm≦Re2(550)≦10nm

[9]-200nm≦Rth2(550)≦-50nm [9]-200nm≦Rth2(550)≦-50nm

(其中,Re2(550)係指對波長550nm光的第2光學非等向性層面內之延遲值;Rth2(550)係指對波長550nm光的第2光學非等向性層之厚度方向延遲值。Re2(550)及Rth2(550)分別係Re2(550)={nx2(550)-ny2(550)}×d2[nm]、Rth2(550)=[{nx2(550)+ny2(550)}/2-nz2(550)]×d2[nm]。又,d2係第2光學非等向性層的厚度;nx2(550)係對波長550nm光的第2光學非等向性層面內之最大主折射率;ny2(550)係正交於nx2(550)的方位之主折射率;nz2(550)係對波長550nm光的厚度方向主折射率;nz2(550)> nx2(550)=ny2。) (Re2 (550) is the retardation value in the second optical anisotropic layer of light having a wavelength of 550 nm; and Rth2 (550) is the retardation in the thickness direction of the second optical anisotropic layer of light having a wavelength of 550 nm. Values: Re2(550) and Rth2(550) are Re2(550)={nx2(550)-ny2(550)}×d2[nm], Rth2(550)=[{nx2(550)+ny2(550, respectively) }/2-nz2(550)]×d2[nm]. Further, d2 is the thickness of the second optical anisotropic layer; nx2(550) is in the second optical anisotropic layer of light having a wavelength of 550 nm. The maximum principal refractive index; ny2 (550) is the principal refractive index of the orientation orthogonal to nx2 (550); nz2 (550) is the thickness of the main refractive index of the wavelength of 550 nm; nz2 (550) > Nx2(550)=ny2. )

[10]-60nm≦Rth1(550)+Rth2(550)≦60nm [10]-60nm≦Rth1(550)+Rth2(550)≦60nm

〔2〕如上述〔1〕所記載的積層偏光板,其中,上述第2光學非等向性層係由使呈正單軸性的液晶性組成物在液晶狀態下呈垂直配向後,再配向固定化的垂直配向液晶薄膜形成。 [2] The laminated polarizing plate according to the above [1], wherein the second optical anisotropic layer is formed by vertically aligning the liquid crystal composition having a positive uniaxiality in a liquid crystal state. The vertical alignment liquid crystal film is formed.

〔3〕如上述〔2〕所記載的積層偏光板,其中,上述呈正單軸性的液晶性組成物係含有具氧雜環丁烷基之側鏈型液晶性高分子。 [3] The laminated polarizing plate according to the above [2], wherein the liquid crystal composition having a positive uniaxiality contains a side chain type liquid crystalline polymer having an oxetane group.

〔4〕如上述〔1〕~〔3〕中任一項所記載的積層偏光板,其中,上述第1光學非等向性層係含有聚碳酸酯或環狀聚烯烴。 [4] The laminated polarizing plate according to any one of the above [1], wherein the first optical anisotropic layer contains polycarbonate or a cyclic polyolefin.

〔5〕如上述〔1〕~〔4〕中任一項所記載的積層偏光板,其中,上述第1偏光板的吸收軸與上述第1光學非等向性層的慢軸之夾角設為r時,依滿足85°≦r≦95°的方式積層。 [5] The laminated polarizing plate according to any one of the above [1], wherein an angle between an absorption axis of the first polarizing plate and a slow axis of the first optical anisotropic layer is set to be When r, it is laminated in such a manner as to satisfy 85°≦r≦95°.

〔6〕一種水平配向型液晶顯示裝置,係至少依序配置著:第1偏光板、第1光學非等向性層、第2光學非等向性層、水平配向型液晶單元及第2偏光板的水平配向型液晶顯示裝置,其特徵在於:上述第1光學非等向性層係滿足以下的[1]~[7];上述第2光學非等向性層係滿足以下的[8]~[9];上述第1光學非等向性層及上述第2光學非等向性層係滿足以下的[10]。 [6] A horizontal alignment type liquid crystal display device in which at least a first polarizing plate, a first optical anisotropic layer, a second optical anisotropic layer, a horizontal alignment type liquid crystal cell, and a second polarized light are disposed in order In the horizontal alignment type liquid crystal display device of the present invention, the first optical anisotropic layer satisfies the following [1] to [7]; and the second optical anisotropic layer satisfies the following [8]. ~[9]; The first optical anisotropic layer and the second optical anisotropy layer satisfy the following [10].

[1]50nm≦Re1(550)≦200nm [1] 50nm ≦ Re1 (550) ≦ 200nm

[2]30nm≦Rth1(550)≦300nm [2] 30nm≦Rth1(550)≦300nm

[3]0.5≦Rth1(550)/Re1(550)≦1.5 [3]0.5≦Rth1(550)/Re1(550)≦1.5

[4]0.7≦Re1(450)/Re1(550)<1.1 [4]0.7≦Re1(450)/Re1(550)<1.1

[5]0.7≦Rth1(450)/Rth1(550)<1.1 [5]0.7≦Rth1(450)/Rth1(550)<1.1

[6]0.95≦Re1(650)/Re1(550)<1.2 [6]0.95≦Re1(650)/Re1(550)<1.2

[7]0.95≦Rth1(650)/Rth1(550)<1.2 [7]0.95≦Rth1(650)/Rth1(550)<1.2

(其中,Re1(450)、Re1(550)及Re1(650)分別係指在波長450nm、550nm及650nm光下的第1光學非等向性層面內之延遲值;Rth1(450)、Rth1(550)及Rth1(650)分別係指在波長450nm、550nm及650nm光下的第1光學非等向性層之厚度方向延遲值。Re1(450)、Re1(550)及Re1(650)、以及Rth1(450)、Rth1(550)及Rth1(650)分別係Re1(450)=(nx1(450)-ny1(450))×d1[nm]、Re1(550)=(nx1(550)-ny1(550))×d1[nm]、Re1(650)=(nx1(650)-ny1(650))×d1[nm]、Rth1(450)={(nx1(450)+ny1(450))/2-nz1(450)}×d1[nm]、Rth1(550)={(nx1(550)+ny1(550))/2-nz1(550)}×d1[nm]、Rth1(650)={(nx1(650)+ny1(650))/2-nz1(650)}×d1[nm]。又,d1係第1光學非等向性層的厚度;nx1(450)、nx1(550)、nx1(650)、ny1(450)、ny1(550)、ny1(650)分別係對波長450、550、650nm光的第1光學非等向性層面內之主折射率;nz1(450)、nz1(550)、nz1(650)分別係對波長450、550、650nm光的厚度方向主折射率;nx1(550)>ny1(550)>nz1(550)。) (wherein Re1 (450), Re1 (550), and Re1 (650) refer to delay values in the first optical anisotropic layer at wavelengths of 450 nm, 550 nm, and 650 nm, respectively; Rth1 (450), Rth1 ( 550) and Rth1 (650) are thickness direction retardation values of the first optical anisotropic layer at wavelengths of 450 nm, 550 nm, and 650 nm, respectively, Re1 (450), Re1 (550), and Re1 (650), and Rth1 (450), Rth1 (550), and Rth1 (650) are respectively Re1 (450) = (nx1 (450) - ny1 (450)) × d1 [nm], Re1 (550) = (nx1 (550) - ny1 (550)) × d1 [nm], Re1 (650) = (nx1 (650) - ny1 (650)) × d1 [nm], Rth1 (450) = {(nx1 (450) + ny1 (450)) / 2-nz1(450)}×d1[nm], Rth1(550)={(nx1(550)+ny1(550))/2-nz1(550)}×d1[nm], Rth1(650)={ (nx1(650)+ny1(650))/2-nz1(650)}×d1[nm]. Further, d1 is the thickness of the first optical anisotropic layer; nx1 (450), nx1 (550), Nx1 (650), ny1 (450), ny1 (550), and ny1 (650) are principal refractive indices in the first optical anisotropy plane of wavelengths of 450, 550, and 650 nm, respectively; nz1 (450), nz1 (550) and nz1 (650) are principal refractive indices in the thickness direction of light of wavelengths of 450, 550, and 650 nm, respectively; nx1 (550) > ny1 (550) > nz1 (550).

[8]-10nm≦Re2(550)≦10nm [8]-10nm≦Re2(550)≦10nm

[9]-200nm≦Rth2(550)≦-50nm [9]-200nm≦Rth2(550)≦-50nm

(其中,Re2(550)係指在波長550nm光下的第2光學非等向性層面內之延遲值;Rth2(550)係指對波長550nm光的第2光學非等向性層之厚度方向延遲值。Re2(550)及Rth2(550)分別係Re2(550)={nx2(550)-ny2(550)}×d2[nm]、Rth2(550)=[{nx2(550)+ny2(550)}/2-nz2(550)]×d2[nm]。又,d2係第2光學非等向性層的厚度;nx2(550)係對波長550nm光的第2光學非等向性層面內之最大主折射率;ny2(550)係正交於nx2(550)的方位之主折射率;nz2(550)係對波長550nm光的厚度方向主折射率;nz2(550)>nx2(550)=ny2。) (wherein Re2 (550) means a retardation value in a second optical anisotropic layer at a wavelength of 550 nm; Rth2 (550) means a thickness direction of a second optical anisotropic layer of light having a wavelength of 550 nm. Delay value. Re2 (550) and Rth2 (550) are Re2 (550) = {nx2 (550) - ny2 (550)} × d2 [nm], Rth2 (550) = [{nx2 (550) + ny2 ( 550)}/2-nz2(550)]×d2[nm]. Further, d2 is the thickness of the second optical anisotropic layer; nx2(550) is the second optical anisotropic layer of light with a wavelength of 550 nm. The maximum principal refractive index; ny2(550) is the principal refractive index of the orientation orthogonal to nx2(550); nz2(550) is the thickness-direction principal refractive index of the wavelength of 550nm light; nz2(550)>nx2(550 )=ny2.)

[10]-60nm≦Rth1(550)+Rth2(550)≦60nm [10]-60nm≦Rth1(550)+Rth2(550)≦60nm

〔7〕一種水平配向型液晶顯示裝置,係至少依序配置著:第1偏光板、第1光學非等向性層、第2光學非等向性層、水平配向型液晶單元、第3光學非等向性層及第2偏光板的水平配向型液晶顯示裝置,其中:上述第1光學非等向性層係滿足以下的[1]~[7];上述第2光學非等向性層係滿足以下的[8]~[9];上述第1光學非等向性層及上述第2光學非等向性層係滿足以下的[10];上述第3光學非等向性層係滿足以下的[11]~[12]。 [7] A horizontal alignment type liquid crystal display device in which at least a first polarizing plate, a first optical anisotropic layer, a second optical anisotropic layer, a horizontal alignment type liquid crystal cell, and a third optical are disposed in order The horizontal alignment type liquid crystal display device of the non-isotropic layer and the second polarizing plate, wherein the first optical anisotropic layer satisfies the following [1] to [7]; and the second optical anisotropic layer The following [8] to [9] are satisfied; the first optical anisotropic layer and the second optical anisotropy layer satisfy the following [10]; the third optical anisotropic layer satisfies The following [11]~[12].

[1]50nm≦Re1(550)≦200nm [1] 50nm ≦ Re1 (550) ≦ 200nm

[2]30nm≦Rth1(550)≦300nm [2] 30nm≦Rth1(550)≦300nm

[3]0.5≦Rth1(550)/Re1(550)≦1.5 [3]0.5≦Rth1(550)/Re1(550)≦1.5

[4]0.7≦Re1(450)/Re1(550)<1.1 [4]0.7≦Re1(450)/Re1(550)<1.1

[5]0.7≦Rth1(450)/Rth1(550)<1.1 [5]0.7≦Rth1(450)/Rth1(550)<1.1

[6]0.95≦Re1(650)/Re1(550)<1.2 [6]0.95≦Re1(650)/Re1(550)<1.2

[7]0.95≦Rth1(650)/Rth1(550)<1.2 [7]0.95≦Rth1(650)/Rth1(550)<1.2

(其中,Re1(450)、Re1(550)及Re1(650)分別係指在波長450nm、550nm及650nm光下的第1光學非等向性層面內之延遲值;Rth1(450)、Rth1(550)及Rth1(650)分別係指在波長450nm、550nm及650nm光下的第1光學非等向性層之厚度方向延遲值。Re1(450)、Re1(550)及Re1(650)、以及Rth1(450)、Rth1(550)及Rth1(650)分別係Re1(450)=(nx1(450)-ny1(450))×d1[nm]、Re1(550)=(nx1(550)-ny1(550))×d1[nm]、Re1(650)=(nx1(650)-ny1(650))×d1[nm]、Rth1(450)={(nx1(450)+ny1(450))/2-nz1(450)}×d1[nm]、Rth1(550)={(nx1(550)+ny1(550))/2-nz1(550)}×d1[nm]、Rth1(650)={(nx1(650)+ny1(650))/2-nz1(650)}×d1[nm]。又,d1係第1光學非等向性層的厚度;nx1(450)、nx1(550)、nx1(650)分別係對波長450、550、650nm光的第1光學非等向性層面內之最大主折射率;ny1(450)、ny1(550)、ny1(650)分別係正交於nx1(450)、nx1(550)、nx1(650)的方位之主折射率;nz1(450)、nz1(550)、nz1(650)分別係對波長450、550、650nm光的厚度方向主折射率;nx1(550)>ny1(550)>nz1(550)。) (wherein Re1 (450), Re1 (550), and Re1 (650) refer to delay values in the first optical anisotropic layer at wavelengths of 450 nm, 550 nm, and 650 nm, respectively; Rth1 (450), Rth1 ( 550) and Rth1 (650) are thickness direction retardation values of the first optical anisotropic layer at wavelengths of 450 nm, 550 nm, and 650 nm, respectively, Re1 (450), Re1 (550), and Re1 (650), and Rth1 (450), Rth1 (550), and Rth1 (650) are respectively Re1 (450) = (nx1 (450) - ny1 (450)) × d1 [nm], Re1 (550) = (nx1 (550) - ny1 (550)) × d1 [nm], Re1 (650) = (nx1 (650) - ny1 (650)) × d1 [nm], Rth1 (450) = {(nx1 (450) + ny1 (450)) / 2-nz1(450)}×d1[nm], Rth1(550)={(nx1(550)+ny1(550))/2-nz1(550)}×d1[nm], Rth1(650)={ (nx1(650)+ny1(650))/2-nz1(650)}×d1[nm]. Further, d1 is the thickness of the first optical anisotropic layer; nx1 (450), nx1 (550), Nx1 (650) is the maximum principal refractive index in the first optical anisotropic layer of light of wavelengths 450, 550, and 650 nm, respectively; ny1 (450), ny1 (550), and ny1 (650) are orthogonal to nx1, respectively. The main refractive indices of the orientations of (450), nx1 (550), and nx1 (650); nz1 (450), nz1 (550), and nz1 (650) are the main directions of the thickness direction of the wavelengths of 450, 550, and 650 nm, respectively. Rate; nx1 (550)> ny1 (550)> nz1 (550)).

[8]-10nm≦Re2(550)≦10nm [8]-10nm≦Re2(550)≦10nm

[9]-200nm≦Rth2(550)≦-50nm [9]-200nm≦Rth2(550)≦-50nm

(其中,Re2(550)係指在波長550nm光下的第2光學非等向性層面內之延遲值;Rth2(550)係指對波長550nm光的第2光學非等向性層之厚度方向延遲值。Re2(550)及Rth2(550)分別係Re2(550)={nx2(550)-ny2(550)}×d2[nm]、Rth2(550)=[{nx2(550)+ny2(550)}/2-nz2(550)]×d2[nm]。又,d2係第2 光學非等向性層的厚度;nx2(550)係對波長550nm光的第2光學非等向性層面內之最大主折射率;ny2(550)係正交於nx2(550)的方位之主折射率;nz2(550)係對波長550nm光的厚度方向主折射率;nz2(550)>nx2(550)=ny2。) (wherein Re2 (550) means a retardation value in a second optical anisotropic layer at a wavelength of 550 nm; Rth2 (550) means a thickness direction of a second optical anisotropic layer of light having a wavelength of 550 nm. Delay value. Re2 (550) and Rth2 (550) are Re2 (550) = {nx2 (550) - ny2 (550)} × d2 [nm], Rth2 (550) = [{nx2 (550) + ny2 ( 550)}/2-nz2(550)]×d2[nm]. Also, d2 is the second The thickness of the optical anisotropic layer; nx2 (550) is the maximum principal refractive index in the second optical anisotropic layer of light having a wavelength of 550 nm; ny2 (550) is orthogonal to the orientation of nx2 (550). Refractive index; nz2 (550) is a thickness direction main refractive index for light having a wavelength of 550 nm; nz2 (550) > nx2 (550) = ny2. )

[10]-60nm≦Rth1(550)+Rth2(550)≦60nm [10]-60nm≦Rth1(550)+Rth2(550)≦60nm

[11]-10nm≦Re3(550)≦10nm [11]-10nm≦Re3(550)≦10nm

[12]-10nm≦Rth3(550)≦10nm [12]-10nm≦Rth3(550)≦10nm

(其中,Re3(550)係指在波長550nm光下的第3光學非等向性層面內之延遲值;Rth3(550)係指在波長550nm光下的第3光學非等向性層之厚度方向延遲值。Re3(550)及Rth3(550)分別係Re3(550)=(nx3(550)-ny3(550))×d3[nm]、Rth3(550)={(nx3(550)+ny3(550))/2-nz3(550)}×d3[nm]。又,d3係第3光學非等向性層的厚度;nx3(550)、ny3(550)係對波長550nm光的第3光學非等向性層面內之主折射率;nz3(550)係對波長550nm光的厚度方向主折射率;nx3(550)≧ny3(550)≧nz3(550)。) (wherein Re3 (550) refers to the retardation value in the third optical anisotropic layer at a wavelength of 550 nm; Rth3 (550) refers to the thickness of the third optical anisotropic layer at a wavelength of 550 nm. Direction delay value. Re3 (550) and Rth3 (550) are respectively Re3 (550) = (nx3 (550) - ny3 (550)) × d3 [nm], Rth3 (550) = {(nx3 (550) + ny3 (550))/2-nz3(550)}×d3[nm]. Further, d3 is the thickness of the third optical anisotropic layer; nx3 (550) and ny3 (550) are the third for the wavelength of 550 nm. The main refractive index in the optical anisotropic layer; nz3 (550) is the thickness direction main refractive index of light with a wavelength of 550 nm; nx3 (550) ≧ ny 3 (550) ≧ nz 3 (550).

〔8〕如上述〔6〕或〔7〕所記載的水平配向型液晶顯示裝置,其中,上述第2光學非等向性層係由使呈正單軸性的液晶性組成物在液晶狀態下呈垂直配向後,再配向固定化的垂直配向液晶薄膜構成。 [8] The horizontal alignment type liquid crystal display device according to the above [6], wherein the second optical anisotropic layer is formed by a liquid crystal composition having a positive uniaxiality in a liquid crystal state. After the vertical alignment, the alignment is performed on the fixed vertical alignment liquid crystal film.

〔9〕如上述〔8〕所記載的水平配向型液晶顯示裝置,其中,上述呈正單軸性的液晶性組成物係含有具氧雜環丁烷基之側鏈型液晶性高分子。 [9] The horizontal alignment type liquid crystal display device according to the above [8], wherein the liquid crystal composition having a positive uniaxiality contains a side chain type liquid crystalline polymer having an oxetane group.

〔10〕如上述〔6〕~〔9〕中任一項所記載的水平配向型液晶顯示裝置,其中,上述第1光學非等向性層係含有聚碳酸酯或環狀聚烯烴。 The horizontal alignment type liquid crystal display device according to any one of the above aspects, wherein the first optical anisotropic layer contains polycarbonate or a cyclic polyolefin.

〔11〕如上述〔6〕~〔10〕中任一項所記載的水平配向型液晶顯示裝置,其中,上述第1偏光板的吸收軸與上述第1光學非等向性層的慢軸之夾角設為r時,依滿足85°≦r≦95°的方式積層。 The horizontal alignment type liquid crystal display device according to any one of the above-mentioned [6], wherein the absorption axis of the first polarizing plate and the slow axis of the first optical anisotropic layer are When the angle is set to r, the layer is laminated in such a manner as to satisfy 85°≦r≦95°.

〔12〕如上述〔11〕所記載的水平配向型液晶顯示裝置,其中,依將上述第1偏光板吸收軸與上述第2偏光板吸收軸的夾角設為s時,滿足85°≦s≦95°,且將上述第2偏光板吸收軸與水平配向型液晶單元內的液晶光軸之夾角設為t時,滿足-5°≦t≦5°的方式積層。 [12] The horizontal alignment type liquid crystal display device according to the above [11], wherein the angle between the absorption axis of the first polarizing plate and the absorption axis of the second polarizing plate is s, and satisfies 85°≦s≦ When the angle between the absorption axis of the second polarizing plate and the liquid crystal axis of the horizontal alignment type liquid crystal cell is set to t, the layer is laminated so as to satisfy -5°≦t≦5°.

本發明的水平配向型液晶顯示裝置係顯示明亮,全方位均可高對比顯示。 The horizontal alignment type liquid crystal display device of the present invention displays bright and omnidirectional high contrast display.

1‧‧‧第1偏光板 1‧‧‧1st polarizer

2‧‧‧保護膜 2‧‧‧Protective film

3‧‧‧第1光學非等向性層 3‧‧‧1st optical anisotropic layer

4‧‧‧第2光學非等向性層 4‧‧‧2nd optical anisotropic layer

5‧‧‧積層偏光板 5‧‧‧Laminated polarizing plate

6、8‧‧‧基板 6, 8‧‧‧ substrate

7‧‧‧透明電極 7‧‧‧Transparent electrode

9‧‧‧液晶層(水平配向) 9‧‧‧Liquid layer (horizontal alignment)

10‧‧‧水平配向液晶單元 10‧‧‧Horizontal alignment liquid crystal cell

11‧‧‧第2偏光板 11‧‧‧2nd polarizer

12‧‧‧第3光學非等向性層 12‧‧‧3rd optical anisotropic layer

圖1係本發明積層偏光板的截面示意圖。 BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a schematic cross-sectional view showing a laminated polarizing plate of the present invention.

圖2係實施例2所使用水平配向型液晶顯示裝置的截面示意圖。 2 is a schematic cross-sectional view showing a horizontal alignment type liquid crystal display device used in Embodiment 2.

圖3係實施例2所使用水平配向型液晶顯示裝置的各構成構件之角度關係平面圖。 Fig. 3 is a plan view showing the angular relationship of each constituent member of the horizontal alignment type liquid crystal display device used in the second embodiment.

圖4係實施例2的水平配向型液晶顯示裝置從全方位觀看時的對比度圖。 Fig. 4 is a view showing the contrast of the horizontal alignment type liquid crystal display device of the second embodiment when viewed from all directions.

圖5係實施例3的水平配向型液晶顯示裝置從全方位觀看時的對 比度圖。 5 is a pair of the horizontal alignment type liquid crystal display device of Embodiment 3 when viewed from all directions. Ratio chart.

圖6係實施例4的水平配向型液晶顯示裝置從全方位觀看時的對比度圖。 Fig. 6 is a view showing the contrast of the horizontal alignment type liquid crystal display device of the fourth embodiment when viewed from all directions.

圖7係實施例5所使用水平配向型液晶顯示裝置的截面示意圖。 Fig. 7 is a schematic cross-sectional view showing a horizontal alignment type liquid crystal display device used in the fifth embodiment.

圖8係實施例5所使用水平配向型液晶顯示裝置的各構成構件之角度關係平面圖。 Fig. 8 is a plan view showing the angular relationship of each constituent member of the horizontal alignment type liquid crystal display device used in the fifth embodiment.

圖9係實施例5的水平配向型液晶顯示裝置從全方位觀看時的對比度圖。 Fig. 9 is a view showing the contrast of the horizontal alignment type liquid crystal display device of the fifth embodiment when viewed from all directions.

圖10係比較例1的水平配向型液晶顯示裝置從全方位觀看時的對比度圖。 Fig. 10 is a view showing a contrast ratio when the horizontal alignment type liquid crystal display device of Comparative Example 1 is viewed from all directions.

圖11係比較例2的水平配向型液晶顯示裝置從全方位觀看時的對比度圖。 Fig. 11 is a view showing the contrast of the horizontal alignment type liquid crystal display device of Comparative Example 2 when viewed from all directions.

圖12係比較例3的水平配向型液晶顯示裝置從全方位觀看時的對比度圖。 Fig. 12 is a view showing the contrast of the horizontal alignment type liquid crystal display device of Comparative Example 3 when viewed from all directions.

圖13係比較例4的水平配向型液晶顯示裝置從全方位觀看時的對比度圖。 Fig. 13 is a view showing the contrast when the horizontal alignment type liquid crystal display device of Comparative Example 4 is viewed from all directions.

以下,針對本發明進行詳細說明。 Hereinafter, the present invention will be described in detail.

本發明的積層偏光板係如圖1所示,至少依序積層著:第1偏光板、第1光學非等向性層及第2光學非等向性層的積層偏光板。 As shown in FIG. 1, the laminated polarizing plate of the present invention has a laminated polarizing plate of a first polarizing plate, a first optical anisotropic layer, and a second optical anisotropic layer, at least in sequence.

以下,針對本發明所使用構成構件依序進行說明。 Hereinafter, the constituent members used in the present invention will be described in order.

首先,針對本發明所使用的水平配向型液晶單元進行說明。液晶 單元並無特別的限制,可例如穿透型、反射型、半穿透型等各種液晶單元。液晶單元的驅動方式亦無特別的限制,可為STN-LCD等所使用的被動矩陣方式、使用TFT(Thin Film Transistor,薄膜電晶體)電極、TFD(Thin Film Diode,薄膜二極體)電極等主動電極的主動矩陣方式、電漿定址方式等任一驅動方式。 First, the horizontal alignment type liquid crystal cell used in the present invention will be described. liquid crystal The unit is not particularly limited and may be, for example, a liquid crystal cell such as a penetrating type, a reflective type, or a semi-transmissive type. The driving method of the liquid crystal cell is not particularly limited, and may be a passive matrix method used for an STN-LCD or the like, a TFT (Thin Film Transistor) electrode, a TFD (Thin Film Diode) electrode, or the like. Any driving method such as active matrix mode and plasma addressing mode of the active electrode.

構成液晶單元的透明基板係在使構成液晶層之呈液晶性材料朝特定配向方向配向的前提下,其餘並無特別的限制。具體係可使用基板本身具有使液晶配向性質的透明基板、基板本身雖缺乏配向能力但設有具使液晶配向性質之配向膜等的透明基板等等任一者。又,液晶單元的電極係可使用ITO等公知物。電極通常係可設置於液晶層所接觸的透明基板面上,當使用具配向膜的基板時,可設置於基板與配向膜之間。 The transparent substrate constituting the liquid crystal cell is not particularly limited as long as the liquid crystal material constituting the liquid crystal layer is aligned in a specific alignment direction. Specifically, the substrate itself may have a transparent substrate having a liquid crystal alignment property, and the substrate itself may be provided with a transparent substrate having an alignment film or the like having a liquid crystal alignment property, although it lacks an alignment ability. Further, a known material such as ITO can be used as the electrode of the liquid crystal cell. The electrode may be disposed on the transparent substrate surface that the liquid crystal layer contacts, and may be disposed between the substrate and the alignment film when the substrate having the alignment film is used.

形成液晶層呈液晶性的材料係在具有正介電常數非等向性之材料的前提下,其餘並無特別的限制,可例如能構成各種液晶單元的普通各種低分子液晶物質、高分子液晶物質及該等的混合物。又,在該等之中於不致損及液晶性的範圍內,亦可添加色素、非液晶性物質等。 The material which forms a liquid crystal layer having a liquid crystal property is based on a material having a positive dielectric constant anisotropy, and the rest thereof is not particularly limited, and for example, various ordinary low molecular liquid crystal materials and polymer liquid crystals which can constitute various liquid crystal cells can be used. Substances and mixtures of these. Further, a coloring matter, a non-liquid crystalline substance, or the like may be added in such a range as not to impair the liquid crystallinity.

本發明的水平配向型液晶顯示裝置係除上述構成構件之外,尚可附設其他的構成構件。例如藉由彩色濾光片附設於本發明的液晶顯示裝置,便可製作能執行色純度較高之多彩或全彩顯示的彩色液晶顯示裝置。 In the horizontal alignment type liquid crystal display device of the present invention, in addition to the above-described constituent members, other constituent members may be attached. For example, by providing a color filter attached to the liquid crystal display device of the present invention, it is possible to produce a color liquid crystal display device capable of performing color or full color display with high color purity.

其次,針對本發明所使用的光學非等向性層依序進行說明。 Next, the optical anisotropic layer used in the present invention will be described in order.

首先,針對第1光學非等向性層進行說明。 First, the first optical anisotropic layer will be described.

第1光學非等向性層係可例如:將由諸如聚碳酸酯、降烯系樹脂等環狀聚烯烴;聚乙烯醇、聚苯乙烯、聚甲基丙烯酸甲酯、聚丙烯、或其他聚烯烴、聚芳酯、聚醯胺等適當高分子形成的薄膜,利用單軸或雙軸延伸處理的手法,或者利用日本專利特開平5-157911號公報所揭示的熱收縮膜,使長條薄膜的寬度方向進行熱收縮而增加厚度方向相位差的手法所製造複折射膜;由液晶高分子等液晶材料構成的配向薄膜;利用薄膜支撐著液晶材料的配向層者等。 The first optical anisotropic layer can be, for example, to be composed of, for example, polycarbonate a cyclic polyolefin such as an olefinic resin; a film formed of a suitable polymer such as polyvinyl alcohol, polystyrene, polymethyl methacrylate, polypropylene, or other polyolefin, polyarylate, or polyamide; Or a biaxial stretching treatment method, or a birefringent film produced by a method of thermally shrinking a width direction of a long film and increasing a phase difference in a thickness direction by using a heat shrinkable film disclosed in Japanese Laid-Open Patent Publication No. Hei 5-157911; An alignment film made of a liquid crystal material such as a liquid crystal polymer; or an alignment layer in which a liquid crystal material is supported by a film.

當在面內方向上將面內主折射率呈最大的方向設為x方向、x方向的正交方向設為y方向,且將厚度方向設為z方向時,正單軸性光學非等向性層的折射率具有nx>ny=nz關係。又,正雙軸性光學非等向性層的折射率具有nx>nz>ny關係。負單軸性光學非等向性層的折射率具有nx=ny>nz關係。負雙軸性光學非等向性層的折射率具有nx>ny>nz關係。 When the direction in which the in-plane principal refractive index is the largest in the in-plane direction is the x direction, the orthogonal direction in the x direction is the y direction, and the thickness direction is the z direction, the positive uniaxial optical anisotropy The refractive index of the layer has a relationship of nx>ny=nz. Further, the refractive index of the positive biaxial optical anisotropic layer has a relationship of nx>nz>ny. The refractive index of the negative uniaxial optical anisotropic layer has a relationship of nx=ny>nz. The refractive index of the negative biaxial optical anisotropic layer has a relationship of nx>ny>nz.

第1光學非等向性層對第1偏光板的視野角補償具有貢獻,必需滿足以下的[1]~[7]: The first optical anisotropic layer contributes to the viewing angle compensation of the first polarizing plate, and it is necessary to satisfy the following [1] to [7]:

[1]50nm≦Re1(550)≦200nm [1] 50nm ≦ Re1 (550) ≦ 200nm

[2]30nm≦Rth1(550)≦300nm [2] 30nm≦Rth1(550)≦300nm

[3]0.5≦Rth1(550)/Re1(550)≦1.5 [3]0.5≦Rth1(550)/Re1(550)≦1.5

[4]0.7≦Re1(450)/Re1(550)<1.1 [4]0.7≦Re1(450)/Re1(550)<1.1

[5]0.7≦Rth1(450)/Rth1(550)<1.1 [5]0.7≦Rth1(450)/Rth1(550)<1.1

[6]0.95≦Re1(650)/Re1(550)<1.2 [6]0.95≦Re1(650)/Re1(550)<1.2

[7]0.95≦Rth1(650)/Rth1(550)<1.2 [7]0.95≦Rth1(650)/Rth1(550)<1.2

上述[1]~[7]中,Re1(450)、Re1(550)及Re1(650)分別係指在波長450nm、550nm及650nm光下的第1光學非等向性層面內之延遲值;Rth1(450)、Rth1(550)及Rth1(650)分別係指在波長450nm、550nm及650nm光下的第1光學非等向性層之厚度方向延遲值。Re1(450)、Re1(550)及Re1(650)、以及Rth1(450)、Rth1(550)及Rth1(650)分別係Re1(450)=(nx1(450)-ny1(450))×d1[nm]、Re1(550)=(nx1(550)-ny1(550))×d1[nm]、Re1(650)=(nx1(650)-ny1(650))×d1[nm]、Rth1(450)={(nx1(450)+ny1(450))/2-nz1(450)}×d1[nm]、Rth1(550)={(nx1(550)+ny1(550))/2-nz1(550)}×d1[nm]、Rth1(650)={(nx1(650)+ny1(650))/2-nz1(650)}×d1[nm]。又,d1係第1光學非等向性層的厚度、nx1(450)、nx1(550)、nx1(650)分別係對波長450、550、650nm光的第1光學非等向性層面內之最大主折射率;ny1(450)、ny1(550)、ny1(650)分別係正交於nx1(450)、nx1(550)、nx1(650)的方位之主折射率;nz1(450)、nz1(550)、nz1(650)分別係對波長450、550、650nm光的厚度方向主折射率;nx1(550)>ny1(550)>nz1(550)。 In the above [1] to [7], Re1 (450), Re1 (550), and Re1 (650) refer to retardation values in the first optical anisotropic layer at wavelengths of 450 nm, 550 nm, and 650 nm, respectively; Rth1 (450), Rth1 (550), and Rth1 (650) refer to thickness direction retardation values of the first optical anisotropic layer at wavelengths of 450 nm, 550 nm, and 650 nm, respectively. Re1 (450), Re1 (550) and Re1 (650), and Rth1 (450), Rth1 (550), and Rth1 (650) are respectively Re1 (450) = (nx1 (450) - ny1 (450)) × d1 [nm], Re1 (550) = (nx1 (550) - ny1 (550)) × d1 [nm], Re1 (650) = (nx1 (650) - ny1 (650)) × d1 [nm], Rth1 ( 450)={(nx1(450)+ny1(450))/2-nz1(450)}×d1[nm], Rth1(550)={(nx1(550)+ny1(550))/2-nz1 (550)}×d1[nm], Rth1(650)={(nx1(650)+ny1(650))/2-nz1(650)}×d1[nm]. Further, the thickness of the d1-type first optical anisotropic layer, nx1 (450), nx1 (550), and nx1 (650) are respectively in the first optical anisotropic layer of light having wavelengths of 450, 550, and 650 nm. The maximum principal refractive index; ny1 (450), ny1 (550), and ny1 (650) are principal refractive indices orthogonal to the orientations of nx1 (450), nx1 (550), and nx1 (650), respectively; nz1 (450), Nz1 (550) and nz1 (650) are principal refractive indices in the thickness direction of light of wavelengths of 450, 550, and 650 nm, respectively; nx1 (550) > ny1 (550) > nz1 (550).

即,第1光學非等向性層面內的延遲值Re1(550)必需50nm~200nm,較佳係70mm~180nm、更佳係90nm~160nm範圍。當Re1(550)值在上述範圍內時,可獲得充分的視野角改良效果,可防止從斜向觀看時的不必要上色。 That is, the retardation value Re1 (550) in the first optical anisotropy layer is required to be 50 nm to 200 nm, preferably 70 mm to 180 nm, and more preferably 90 nm to 160 nm. When the Re1 (550) value is within the above range, a sufficient viewing angle improvement effect can be obtained, and unnecessary coloring when viewed from an oblique direction can be prevented.

再者,第1光學非等向性層厚度方向的延遲值Rth1(550)必需30nm~300nm、較佳係40nm~200nm、更佳係50nm~150nm範圍。當踰 越上述範圍時,會有無法獲得充分的視野角改良效果、或從斜向觀看時發生不必要上色之虞。 Further, the retardation value Rth1 (550) in the thickness direction of the first optical anisotropic layer is required to be in the range of 30 nm to 300 nm, preferably 40 nm to 200 nm, more preferably 50 nm to 150 nm. When over When the above range is exceeded, there is a possibility that a sufficient viewing angle improvement effect cannot be obtained or unnecessary coloring occurs when viewed from an oblique direction.

再者,Rth1(550)/Re1(550)必需係0.5~1.5、較佳係0.5~1.2範圍。當踰越上述範圍時,會有無法獲得充分的視野角改良效果、或從斜向觀看時發生不必要上色之虞。 Furthermore, Rth1(550)/Re1(550) must be in the range of 0.5 to 1.5, preferably 0.5 to 1.2. When the above range is exceeded, there is a possibility that a sufficient viewing angle improvement effect cannot be obtained or unnecessary coloring occurs when viewed from an oblique direction.

再者,Re1(450)、Re1(550)、Re1(650)必需滿足以下的[4]及[6]關係,Rth1(450)、Rth1(550)、Rth1(650)必需滿足以下的[5]及[7]關係。當踰越該等範圍時,會有無法獲得充分的視野角改良效果、或從斜向觀看時發生不必要上色之虞。 Furthermore, Re1 (450), Re1 (550), and Re1 (650) must satisfy the following [4] and [6] relationships, and Rth1 (450), Rth1 (550), and Rth1 (650) must satisfy the following [5]. ] and [7] relationship. When the range is exceeded, there is a possibility that a sufficient viewing angle improvement effect cannot be obtained, or unnecessary coloring occurs when viewed from an oblique direction.

[4]0.7≦Re1(450)/Re1(550)<1.1 [4]0.7≦Re1(450)/Re1(550)<1.1

[5]0.7≦Rth1(450)/Rth1(550)<1.1 [5]0.7≦Rth1(450)/Rth1(550)<1.1

[6]0.95≦Re1(650)/Re1(550)<1.2 [6]0.95≦Re1(650)/Re1(550)<1.2

[7]0.95≦Rth1(650)/Rth1(550)<1.2 [7]0.95≦Rth1(650)/Rth1(550)<1.2

再者,上述第1光學非等向性層及第2光學非等向性層必需滿足以下的[10]: Furthermore, the first optical anisotropic layer and the second optical anisotropic layer must satisfy the following [10]:

[10]-60nm≦Rth1(550)+Rth2(550)≦60nm [10]-60nm≦Rth1(550)+Rth2(550)≦60nm

上述範圍更佳係-55nm≦Rth1(550)+Rth2(550)≦55nm。若Rth1(550)+Rth2(550)在上述範圍時,呈現優異的視野角特性。 The above range is more preferably -55 nm ≦ Rth1 (550) + Rth 2 (550) ≦ 55 nm. When Rth1(550)+Rth2(550) is in the above range, excellent viewing angle characteristics are exhibited.

再者,將上述第1偏光板的吸收軸與上述第1光學非等向性層的慢軸之夾角設為r時,r較佳係85°~95°範圍、更佳係88~92°、特佳係 略90°(正交)。依第1偏光板的吸收軸與第1光學非等向性層的長條輥呈略正交(指交角在90°±5°以內、較佳係±2°以內)的方式,以輥輪對輥輪貼合成一體化,便可製造高效率且薄型的積層偏光板,為能略呈貼合而一體化,第1光學非等向性層的慢軸相對於輥長條方向必需配置於正交的方向。所以,第1光學非等向性層最好利用橫單軸延伸或雙軸延伸進行製造。一般已知當利用橫單軸延伸或雙軸延伸進行製造時,相位差薄膜的折射率關係會成為nx>ny>nz的負雙軸性。 Further, when the angle between the absorption axis of the first polarizing plate and the slow axis of the first optical anisotropic layer is r, r is preferably in the range of 85° to 95°, more preferably in the range of 88 to 92°. Very good Slightly 90° (orthogonal). The roller of the first polarizing plate is slightly orthogonal to the long roller of the first optical anisotropic layer (referring that the angle of intersection is within 90°±5°, preferably within ±2°), and the roller is By laminating and integrating the rollers, it is possible to manufacture a high-efficiency and thin laminated polarizing plate, which can be integrated with a slight fit, and the slow axis of the first optical anisotropic layer must be disposed in the direction of the roll strip. Orthogonal directions. Therefore, the first optical anisotropic layer is preferably produced by lateral uniaxial stretching or biaxial stretching. It is generally known that when manufactured by transverse uniaxial stretching or biaxial stretching, the refractive index relationship of the retardation film becomes a negative biaxiality of nx>ny>nz.

其次,針對第2光學非等向性層進行說明。 Next, the second optical anisotropic layer will be described.

第2光學非等向性層最好由使呈正單軸性的液晶材料在液晶狀態下進行垂直配向後,再配向固定化的垂直配向液晶薄膜形成。 It is preferable that the second optical anisotropic layer is formed by vertically aligning the liquid crystal material having a positive uniaxiality in a liquid crystal state, and then aligning the fixed vertical alignment liquid crystal film.

本發明中,在獲得將液晶材料的垂直配向予以固定化之液晶薄膜時,液晶材料與配向基板的選擇係極為重要。 In the present invention, when a liquid crystal film in which the vertical alignment of the liquid crystal material is fixed is obtained, the selection of the liquid crystal material and the alignment substrate is extremely important.

本發明所使用的液晶材料係至少含有以聚(甲基)丙烯酸酯、聚矽氧烷等側鏈型液晶性高分子為主要構成成分者。又,本發明所使用的側鏈型液晶高分子最好末端具有可聚合的氧雜環丁烷基者。更具體較佳例係有如:由式(1)所示具有氧雜環丁烷基的(甲基)丙烯酸化合物之(甲基)丙烯基部位進行單獨聚合、或與其他(甲基)丙烯酸化合物進行共聚合而獲得的側鏈型液晶性高分子物質。 The liquid crystal material used in the present invention contains at least a side chain type liquid crystalline polymer such as poly(meth)acrylate or polyoxyalkylene as a main constituent. Further, the side chain type liquid crystal polymer used in the present invention preferably has a polymerizable oxetane group at its terminal. More specifically, for example, the (meth)acryl-based moiety of the (meth)acrylic acid compound having an oxetanyl group represented by the formula (1) is polymerized alone or with another (meth)acrylic compound. A side chain type liquid crystalline polymer material obtained by copolymerization.

上述式(1)中,R1係表示氫或甲基;R2係表示氫、甲基或乙基;L1及L2分別個別表示單鍵、-O-、-O-CO-、或-CO-O-中之任一者;M係表示式(2)、式(3)或式(4);n及m分別個別表示0~10之整數。 In the above formula (1), R 1 represents hydrogen or a methyl group; R 2 represents hydrogen, a methyl group or an ethyl group; and L 1 and L 2 each independently represent a single bond, -O-, -O-CO-, or -CO-O-; M system represents formula (2), formula (3) or formula (4); n and m each represent an integer from 0 to 10.

-P1-L3-P2-L4-P3- (2) -P1-L3-P2-L4-P3- (2)

-P1-L3-P3- (3) -P1-L3-P3- (3)

-P3- (4) -P3- (4)

式(2)~(4)中,P1及P2分別個別表示由式(5)中選擇的基;P3係表示從式(6)中選擇的基;L3及L4分別個別表示單鍵、-CH=CH-、-C≡C-、-O-、-O-CO-或-CO-O-。 In the formulae (2) to (4), P1 and P2 each represent a group selected from the formula (5); P3 represents a group selected from the formula (6); and L3 and L4 respectively represent a single bond, -CH =CH-, -C≡C-, -O-, -O-CO- or -CO-O-.

該等具有氧雜環丁烷基的(甲基)丙烯酸化合物之合成法並無特別的限制,利用通常有機化學合成法所使用方法便可合成。例如利用威廉森(Williamson)之醚合成、使用縮合劑的酯合成等手段,使具有氧雜環丁烷基的部位、與具有(甲基)丙烯基的部位進行鍵結,便可合成含有具氧雜環丁烷基與(甲基)丙烯基等2個反應性官能基之氧雜環丁烷基的(甲基)丙烯酸化合物。 The synthesis method of the (meth)acrylic acid compound having an oxetane group is not particularly limited, and it can be synthesized by a method generally used in an organic chemical synthesis method. For example, by using an ether synthesis by Williamson or an ester synthesis using a condensing agent, a site having an oxetane group and a site having a (meth)acryl group can be bonded to each other to form a component. A (meth)acrylic compound of an oxetanyl group having two reactive functional groups such as an oxetanyl group and a (meth)acryl group.

由式(1)所示具有氧雜環丁烷基的(甲基)丙烯酸化合物之(甲基)丙烯基部位進行單獨聚合、或與其他(甲基)丙烯酸化合物進行共聚合,便可獲得含有下述式(7)所示單元的側鏈型液晶性高分子物質。聚合條件並無特別的限定,可採用通常的自由基聚合、陰離子聚合之條件。 The (meth)acryl-based moiety of the (meth)acrylic acid compound having an oxetanyl group represented by the formula (1) is polymerized alone or copolymerized with another (meth)acrylic compound to obtain a content. A side chain type liquid crystalline polymer material of the unit represented by the following formula (7). The polymerization conditions are not particularly limited, and the conditions of ordinary radical polymerization and anionic polymerization can be employed.

自由基聚合例係可例如:將(甲基)丙烯酸化合物溶解於二甲基甲醯胺(DMF)等溶劑中,並以2,2'-偶氮雙異丁腈(AIBN)、過氧化苯甲醯(BPO)等為起始劑,依60~120℃進行數小時反應的方法。又,為能使液晶相安定地出現,以溴化銅(I)/2,2'-聯二吡啶系、2,2,6,6-四甲基哌啶氧化物 ‧自由基(TEMPO)系等為起始劑並進行活性自由基聚合,俾控制分子量分佈的方法亦屬有效。該等自由基聚合最好依脫氧條件實施。 The radical polymerization example can be, for example, dissolving a (meth)acrylic compound in a solvent such as dimethylformamide (DMF), and using 2,2'-azobisisobutyronitrile (AIBN), benzoyl peroxide. A method in which a formazan (BPO) or the like is used as a starter and is reacted at 60 to 120 ° C for several hours. Further, in order to make the liquid crystal phase appear calmly, copper (I)/2,2'-bipyridine and copper 2,2,6,6-tetramethylpiperidine oxide are used. ‧ The free radical (TEMPO) system is the initiator and is subjected to living radical polymerization, and the method of controlling the molecular weight distribution is also effective. These free radical polymerizations are preferably carried out under deoxygenation conditions.

陰離子聚合例係可例如:使(甲基)丙烯酸化合物溶解於四氫呋喃(THF)等溶劑中,並以有機鋰化合物、有機鈉化合物、格林尼亞試劑等強鹼為起始劑進行反應的方法。又,藉由將起始劑與反應溫度最佳化,再進行活性陰離子聚合,亦可控制分子量分佈。該等陰離子聚合必需依嚴格地脫水且脫氧條件實施。 The anion polymerization example can be, for example, a method in which a (meth)acrylic compound is dissolved in a solvent such as tetrahydrofuran (THF), and a strong base such as an organolithium compound, an organic sodium compound or a Grignard reagent is used as a starting agent. Further, the molecular weight distribution can also be controlled by optimizing the starting agent and the reaction temperature and performing living anionic polymerization. These anionic polymerizations must be carried out under strict dehydration and deoxygenation conditions.

再者,此時進行共聚合的(甲基)丙烯酸化合物並無特別的限定,所合成的高分子物質可呈現液晶性者均可,為提高所合成高分子物質的液晶性,最好具有液晶原基的(甲基)丙烯酸化合物。例如下述式所示(甲基)丙烯酸化合物便可例示為較佳化合物。 In addition, the (meth)acrylic compound to be copolymerized at this time is not particularly limited, and the polymer material to be synthesized may be liquid crystal, and it is preferable to have liquid crystal for improving the liquid crystal property of the polymer material to be synthesized. A primary (meth)acrylic compound. For example, a (meth)acrylic compound represented by the following formula can be exemplified as a preferred compound.

其中,R係表示氫、碳數1~12之烷基、碳數1~12之烷氧基、或氰基。 Here, R represents hydrogen, an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, or a cyano group.

側鏈型液晶性高分子物質較佳係含有式(7)所示單元5~100莫耳%者、更佳係含有10~100莫耳%者。又,側鏈型液晶性高分子物質的重量平均分子量較佳係2,000~100,000、更佳係5,000~50,000。 The side chain type liquid crystalline polymer material preferably contains 5 to 100 mol% of the unit represented by the formula (7), and more preferably 10 to 100 mol%. Further, the weight average molecular weight of the side chain type liquid crystalline polymer material is preferably 2,000 to 100,000, more preferably 5,000 to 50,000.

本發明所使用的液晶材料,除上述側鏈型液晶性高分子物質之外,可含有不致損及液晶性範圍內能混和的各種化合物。能含有的化合物係可例如:具有氧雜環丁烷基、環氧基、乙烯醚基等陽離子聚合性官能基的化合物;具薄膜形成能力的各種高分子物質;呈液晶性的各種低分子液晶性化合物、高分子液晶性化合物等。當上述側鏈型液晶性高分子物質作為使用組成物時,上述側鏈型液晶性高分子物質佔組成物全體的比例係10質量%以上、較佳係30質量%以上、更佳係50質量%以上。若側鏈型液晶性高分子物質的含有量未滿10質量%,則組成物中所佔的聚合性基濃度會降低、經聚合後的機械強度嫌不足,故不佳。 The liquid crystal material used in the present invention may contain, in addition to the above-mentioned side chain type liquid crystalline polymer material, various compounds which are compatible in the range of liquid crystal properties. The compound which can be contained is, for example, a compound having a cationically polymerizable functional group such as an oxetane group, an epoxy group or a vinyl ether group; various polymer materials having a film forming ability; and various low molecular liquid crystals having liquid crystallinity. Compound, polymer liquid crystal compound, and the like. When the side chain type liquid crystalline polymer material is used as a composition, the ratio of the side chain type liquid crystalline polymer substance to the entire composition is 10% by mass or more, preferably 30% by mass or more, and more preferably 50% by mass. %the above. When the content of the side chain type liquid crystalline polymer material is less than 10% by mass, the concentration of the polymerizable group in the composition is lowered, and the mechanical strength after the polymerization is insufficient, which is not preferable.

再者,上述液晶材料經配向處理後,藉由使氧雜環丁烷基進行陽離子聚合而交聯,該液晶狀態便固定化。所以,液晶材料中最好含有利用光或熱等外部刺激便會產生陽離子的光陽離子產生劑及/或熱陽離子產生劑。又,視需要亦可併用各種增感劑。 Further, after the liquid crystal material is subjected to the alignment treatment, the oxetane group is crosslinked by cationic polymerization, and the liquid crystal state is immobilized. Therefore, it is preferable that the liquid crystal material contains a photocation generator and/or a thermal cation generator which generate cations by external stimuli such as light or heat. Further, various sensitizers may be used in combination as needed.

所謂「光陽離子產生劑」係指利用適當波長光的照射便會產生陽 離子的化合物,可例示如有機鋶鹽系、碘鎓鹽系、鏻鹽系等。該等化合物的反離子最好使用銻鹽、磷酸鹽、硼酸鹽等。具體的化合物係可舉例如:Ar3S+SbF6 -、Ar3P+BF4 -、Ar2I+PF6 -(其中,Ar係指苯基或取代苯基)等。此外,尚可使用例如:磺酸酯類、三類、重氮甲烷類、β-酮碸、亞胺基磺酸酯、苯偶姻磺酸酯等。 The "photo cation generating agent" is a compound which generates a cation by irradiation with light of a suitable wavelength, and examples thereof include an organic phosphonium salt system, an iodonium salt system, and a phosphonium salt system. The counter ion of these compounds is preferably a phosphonium salt, a phosphate salt, a borate or the like. Specific examples of the compound include Ar 3 S + SbF 6 - , Ar 3 P + BF 4 - , Ar 2 I + PF 6 - (wherein Ar is a phenyl group or a substituted phenyl group). In addition, it is also possible to use, for example, sulfonate esters, three Classes, diazomethanes, β-ketooximes, imidosulfonates, benzoin sulfonates, and the like.

所謂「熱陽離子產生劑」係指利用加熱至適當溫度便能產生陽離子的化合物,可舉例如:苄基鋶鹽類、苄基銨鹽類、苄基吡啶鎓鹽類、苄基鏻鹽類、肼鹽類、羧酸酯類、磺酸酯類、胺基醯亞胺類、五氯化銻-氯化乙醯錯合物、二芳基碘鎓鹽-二苄氧基銅、鹵化硼-三級胺加成物等。 The "thermal cation generating agent" refers to a compound which generates a cation by heating to a suitable temperature, and examples thereof include a benzyl sulfonium salt, a benzyl ammonium salt, a benzyl pyridinium salt, and a benzyl sulfonium salt. Strontium salts, carboxylic acid esters, sulfonates, amine quinones, antimony pentachloride-ethidium chloride complex, diaryliodonium salt-dibenzyloxy copper, boron halide- Tertiary amine adducts, etc.

該等陽離子產生劑對液晶材料中的添加量,係隨構成所使用側鏈型液晶性高分子物質的液晶原部分與間隙子部分之構造、以及氧雜環丁烷基當量、液晶配向條件等因素而異,並無法一概言之,但相對側鏈型液晶性高分子物質,通常將設定在100質量ppm~20質量%、較佳係1000質量ppm~10質量%、更佳係0.2質量%~7質量%範圍、特佳係0.5質量%~5質量%範圍。當較少於100質量ppm的情況,所產生的陽離子量將嫌不足,恐有無法進行聚合之虞,反之,若多於20質量%的情況,液晶薄膜中所殘存陽離子產生劑的分解殘存物等將增加,有導致耐光性等惡化之虞,故不佳。 The amount of the cation generating agent to be added to the liquid crystal material depends on the structure of the liquid crystal original portion and the spacer portion of the side chain type liquid crystalline polymer material to be used, and the oxetane group equivalent, liquid crystal alignment condition, and the like. The factors vary, but it is not possible to say the same, but the side chain type liquid crystalline polymer material is usually set at 100 ppm by mass to 20% by mass, preferably 1,000 ppm by mass to 10% by mass, more preferably 0.2% by mass. The range of ~7 mass%, especially the range of 0.5 mass% to 5 mass%. When the amount is less than 100 ppm by mass, the amount of the generated cation will be insufficient, and the polymerization may not be carried out. On the other hand, if it is more than 20% by mass, the decomposition residue of the cation generator remaining in the liquid crystal film may be decomposed. It will increase, and it will cause deterioration of light resistance and the like, so it is not good.

其次,針對配向基板進行說明。 Next, the alignment substrate will be described.

配向基板較佳係具有平滑的平面,可例如由有機高分子材料形成 的薄膜或薄片、或者諸如玻璃板、金屬板等。就從成本、連續生產性的觀點,最好使用由有機高分子形成的材料。有機高分子材料的例子,係可舉例由諸如:聚乙烯醇、聚醯亞胺、聚伸苯醚、聚醚酮、聚醚醚酮、聚對苯二甲酸乙二酯、聚萘二甲酸乙二酯等聚酯系高分子;二乙醯纖維素、三乙醯纖維素等纖維素系高分子;聚碳酸酯系高分子、聚甲基丙烯酸甲酯等丙烯酸系高分子等等透明高分子形成的薄膜。又,尚可舉例由諸如:聚苯乙烯、丙烯腈‧苯乙烯共聚合體等苯乙烯系高分子;聚乙烯、聚丙烯、乙烯‧丙烯共聚合體等烯烴系高分子;環狀或具有降烯構造的環聚烯烴、氯乙烯系高分子、尼龍或芳香族聚醯胺等醯胺系高分子等等透明高分子形成的薄膜。又,尚可例如由:醯亞胺系高分子、碸系高分子、聚醚碸系高分子、聚醚醚酮系高分子、聚苯硫醚系高分子、乙烯醇系高分子、偏二氯乙烯系高分子、乙烯丁醛系高分子、芳酯系高分子、聚縮醛系高分子、環氧系高分子、上述高分子的摻合物等透明高分子形成的薄膜等。該等之中,最好使用當作光學薄膜用的三乙醯纖維素、聚碳酸酯、降烯聚烯烴等塑膠膜。有機高分子材料的薄膜特別係ZEONOR(商品名、日本ZEON(股)製)、ZEONEX(商品名、日本ZEON(股)製)、Arton(商品名、JSR(股)製)等由具有降烯構造的高分子物質所形成塑膠膜,因為在光學上亦具有優異特性,故屬較佳。又,金屬薄膜係可例如由鋁等形成的該薄膜。 The alignment substrate preferably has a smooth flat surface, such as a film or sheet formed of an organic polymer material, or a glass plate, a metal plate or the like. From the viewpoint of cost and continuous productivity, it is preferable to use a material formed of an organic polymer. Examples of the organic polymer material may be exemplified by, for example, polyvinyl alcohol, polyimide, polyphenylene oxide, polyether ketone, polyetheretherketone, polyethylene terephthalate, polyethylene naphthalate A polyester-based polymer such as a diester; a cellulose-based polymer such as diethyl phthalocyanine or triethylene fluorene; a transparent polymer such as a polycarbonate polymer or an acrylic polymer such as polymethyl methacrylate; The formed film. Further, examples thereof include styrene polymers such as polystyrene, acrylonitrile ‧ styrene copolymers; olefin polymers such as polyethylene, polypropylene, ethylene ‧ propylene copolymers; A film formed of a transparent polymer such as a cyclic polyolefin such as a polyolefin structure, a vinyl chloride polymer, or a polyamide or aromatic polyamide. Further, for example, it may be: a quinone imine polymer, a fluorene polymer, a polyether fluorene polymer, a polyether ether ketone polymer, a polyphenylene sulfide polymer, a vinyl alcohol polymer, or a second A film formed of a transparent polymer such as a vinyl chloride polymer, an ethylene butyral polymer, an aryl ester polymer, a polyacetal polymer, an epoxy polymer, or a blend of the above polymers. Among these, it is preferable to use triacetyl cellulose, polycarbonate, and lower as an optical film. A plastic film such as a polyolefin. In particular, ZEONOR (trade name, Japan ZEON Co., Ltd.), ZEONEX (trade name, Japan ZEON Co., Ltd.), Arton (trade name, JSR (share) system), etc. A plastic film formed of a polymer material having an olefin structure is preferred because it has excellent optical properties. Further, the metal thin film is a thin film which can be formed, for example, of aluminum or the like.

為能使用前述液晶材料安定地獲得垂直配向,構成該等基板的材料較佳係具有長鏈(通常碳數4以上,較佳係8以上)烷基、或基板表面設有具長鏈烷基之化合物的層。尤其是形成由具長鏈烷基之聚乙烯醇形成的層,就形成方法亦較為容易,故屬較佳。另外,該等有機高分 子材料係可單獨使用為基板,亦可在其他基板上形成薄膜。在液晶領域中,一般係採取利用布等對基板施行擦拭的研磨處理,但因為本發明所使用的垂直配向液晶層,係屬於基本上不會產生面內非等向性的配向構造,因而未必一定要施行研磨處理。然而,為能抑制在塗佈液晶材料時發生彈撥情形的觀點,最好施行輕研磨處理。規範研磨條件的重要設定值係周速比。該比值係表示在將研磨布捲繞於輥上並進行旋轉之情況下,對基板施行擦拭時,布移動速度與基板移動速度的比。本發明中,所謂「輕研磨處理」通常係指周速比50以下,較佳係25以下,更佳係10以下。若周速比大於50,則研磨效果將過於強,導致液晶材料無法完全呈垂直配向,恐有成為從垂直方向朝面內方向傾倒之配向之虞。 In order to stably obtain the vertical alignment using the liquid crystal material, the material constituting the substrates preferably has a long chain (usually having a carbon number of 4 or more, preferably 8 or more) alkyl groups, or a long-chain alkyl group is provided on the surface of the substrate. a layer of the compound. In particular, it is preferred to form a layer formed of a polyvinyl alcohol having a long-chain alkyl group, and the formation method is also relatively easy. In addition, these organic high scores The sub-materials may be used alone as a substrate, or may be formed on other substrates. In the liquid crystal field, a polishing process for wiping a substrate by a cloth or the like is generally employed. However, since the vertical alignment liquid crystal layer used in the present invention is an alignment structure that does not substantially cause in-plane anisotropy, it is not necessarily Be sure to perform the grinding process. However, in order to suppress the occurrence of plucking when the liquid crystal material is applied, it is preferable to carry out a light rubbing treatment. The important set value for specifying the grinding conditions is the weekly speed ratio. This ratio is a ratio of the cloth moving speed to the substrate moving speed when the substrate is wiped while the polishing cloth is wound around the roll and rotated. In the present invention, the "light polishing treatment" generally means a peripheral speed ratio of 50 or less, preferably 25 or less, more preferably 10 or less. If the peripheral speed ratio is greater than 50, the grinding effect will be too strong, resulting in the liquid crystal material not being completely vertically aligned, which may become the alignment of the vertical direction from the vertical direction.

其次,針對垂直配向液晶薄膜之製造方法進行說明。 Next, a method of manufacturing a vertical alignment liquid crystal film will be described.

液晶薄膜製造的方法並不僅侷限於該等,例如可將前述液晶材料展開於前述配向基板上,並使該液晶材料配向後,再藉由施行光照射及/或加熱處理,將該配向狀態固定化便可製得。 The method for producing a liquid crystal film is not limited to these. For example, the liquid crystal material may be developed on the alignment substrate, and after the liquid crystal material is aligned, the alignment state may be fixed by performing light irradiation and/or heat treatment. Can be made.

將液晶材料展開於配向基板上形成液晶材料層的方法,係有如:將液晶材料依熔融狀態直接塗佈於配向基板上的方法,或者將液晶材料的溶液塗佈於配向基板上之後,再將塗膜乾燥並餾除溶劑的方法。 A method of forming a liquid crystal material layer on a alignment substrate by forming a liquid crystal material, for example, a method of directly applying a liquid crystal material to a alignment substrate in a molten state, or applying a solution of a liquid crystal material to an alignment substrate, and then A method in which the coating film is dried and the solvent is distilled off.

相關溶液調製時所使用的溶劑,係在能溶解本發明液晶材料,且可依適當條件餾除的溶劑之前提下,其餘並無特別限制,一般最好使用例如:丙酮、甲乙酮、異佛爾酮、環己酮等酮類;丁氧基乙醇、己氧基乙醇、甲氧基-2-丙醇等醚醇類;乙二醇二甲醚、二乙二醇二甲醚 等二醇醚類;醋酸乙酯、乳酸乙酯等酯類;酚、氯酚等酚類;N,N-二甲基甲醯胺、N,N-二甲基乙醯胺、N-甲基吡咯啶酮等醯胺類;氯仿、四氯乙烷、二氯苯等鹵系等或該等的混合系。又,為能在配向基板上形成均勻塗膜,亦可在溶液中添加界面活性劑、消泡劑、均塗劑等。 The solvent used in the preparation of the relevant solution is prepared before the solvent which can dissolve the liquid crystal material of the present invention and can be distilled off under appropriate conditions, and the rest is not particularly limited, and it is generally preferred to use, for example, acetone, methyl ethyl ketone, and isophor. Ketones such as ketone and cyclohexanone; ether alcohols such as butoxyethanol, hexyloxyethanol and methoxy-2-propanol; ethylene glycol dimethyl ether and diethylene glycol dimethyl ether Ethylene glycol ethers; esters such as ethyl acetate and ethyl lactate; phenols such as phenol and chlorophenol; N,N-dimethylformamide, N,N-dimethylacetamide, N-A A guanamine such as a pyrrolidone; a halogen such as chloroform, tetrachloroethane or dichlorobenzene; or a mixed system thereof. Further, in order to form a uniform coating film on the alignment substrate, a surfactant, an antifoaming agent, a leveling agent, or the like may be added to the solution.

不論直接塗佈液晶材料的方法、亦或者塗佈溶液的方法,相關塗佈方法若為可確保塗膜均勻性之方法,其餘並無特別的限制,可採用公知方法。例如:旋塗法、模頭塗佈法、淋幕塗佈法、浸塗法、滾筒塗佈法等。塗佈液晶材料之溶液的方法,最好在塗佈後加入為除去溶劑的乾燥步驟。該乾燥步驟係在能維持塗膜均勻性方法之前提下,其餘並無特別的限制,可採用公知方法。例如:加熱器(爐)、熱風吹抵等方法。 Regarding the method of directly coating the liquid crystal material or the method of applying the solution, the related coating method is a method for ensuring the uniformity of the coating film, and the rest is not particularly limited, and a known method can be employed. For example, a spin coating method, a die coating method, a curtain coating method, a dip coating method, a roll coating method, and the like. The method of coating the solution of the liquid crystal material is preferably carried out by a drying step of removing the solvent after coating. This drying step is carried out before the method for maintaining the uniformity of the coating film, and the rest is not particularly limited, and a known method can be employed. For example: heater (furnace), hot air blowing, etc.

液晶層的膜厚係依存於液晶顯示裝置的方式、與各種光學參數,因而無法一概而言,通常設定為0.2μm~10μm,較佳係0.3μm~5μm,更佳係0.5μm~2μm。若膜厚較薄於0.2μm,則恐有無法獲得充分視角改良或輝度提升效果之虞。又,若超過10μm,則恐有液晶顯示裝置發生不必要上色等情況。 The film thickness of the liquid crystal layer depends on the liquid crystal display device and various optical parameters, and therefore cannot be generally set to 0.2 μm to 10 μm, preferably 0.3 μm to 5 μm, and more preferably 0.5 μm to 2 μm. If the film thickness is thinner than 0.2 μm, there is a fear that a sufficient viewing angle improvement or a luminance enhancement effect cannot be obtained. Moreover, if it exceeds 10 μm, there is a fear that the liquid crystal display device may be unnecessarily colored.

接著,將在配向基板上所形成的液晶材料層,利用熱處理等方法形成液晶配向,再利用光照射及/或加熱處理施行硬化而呈固定化。最初的熱處理係藉由加熱至所使用液晶材料的液晶相顯現溫度範圍,便可利用該液晶材料原本便擁有的自我配向能力使液晶配向。熱處理的條件係依照所使用液晶材料的液晶相行為溫度(轉移溫度),而有不同的 最佳條件與極限值,因而並無法一概而言,通常設定在10~250℃,較佳係30℃~160℃範圍內,較佳係依該液晶材料之玻璃轉移點(Tg)以上的溫度、更佳係較Tg高出10℃以上的溫度施行熱處理。若過於低溫,則恐有液晶配向無法充分進行之虞;反之,若高溫中,則恐有對液晶材料中的陽離子聚合性反應基、或配向基板造成不良影響之虞。又,相關熱處理時間,通常設定在3秒~30分鐘,較佳係10秒~10分鐘範圍內。若較短於3秒的熱處理時間,則恐有液晶配向未能充分完成之虞;反之,若超過30分鐘的熱處理時間,則生產性會惡化,因而不管何種情況均最好避免。 Next, the liquid crystal material layer formed on the alignment substrate is formed into a liquid crystal alignment by a heat treatment or the like, and then cured by light irradiation and/or heat treatment to be immobilized. The initial heat treatment is performed by heating to the temperature range of the liquid crystal phase of the liquid crystal material used, so that the liquid crystal material can be aligned by the self-alignment ability originally possessed by the liquid crystal material. The conditions of the heat treatment are different depending on the liquid crystal phase behavior temperature (transfer temperature) of the liquid crystal material used. The optimum conditions and limit values, therefore, cannot be generally set at 10 to 250 ° C, preferably in the range of 30 ° C to 160 ° C, preferably depending on the temperature above the glass transition point (Tg) of the liquid crystal material. More preferably, the heat treatment is performed at a temperature higher than Tg by more than 10 °C. If the temperature is too low, there is a fear that the liquid crystal alignment cannot be sufficiently performed. On the other hand, if the temperature is high, there is a fear that the cationically polymerizable reactive group or the alignment substrate in the liquid crystal material is adversely affected. Further, the relevant heat treatment time is usually set in the range of 3 seconds to 30 minutes, preferably in the range of 10 seconds to 10 minutes. If the heat treatment time is shorter than 3 seconds, there is a fear that the liquid crystal alignment is not sufficiently completed; on the other hand, if the heat treatment time exceeds 30 minutes, the productivity is deteriorated, and it is preferable to avoid it in any case.

利用對該液晶材料層施行熱處理等方法而形成液晶配向之後,在保持著液晶配向狀態下,藉由使液晶材料與組成物中的氧雜環丁烷基產生聚合反應而硬化。硬化步驟目的在於:使已完成的液晶配向利用硬化(交聯)反應,將液晶配向狀態予以固定化,而改質為更堅固的膜。 After the liquid crystal alignment is formed by performing heat treatment or the like on the liquid crystal material layer, the liquid crystal material is cured by polymerization reaction with the oxetane group in the composition while maintaining the liquid crystal alignment state. The purpose of the hardening step is to use a hardening (crosslinking) reaction for the completed liquid crystal alignment to fix the liquid crystal alignment state and to modify it into a more robust film.

因為本發明的液晶材料具有聚合性氧雜環丁烷基,因而如前述在進行反應基的聚合(交聯)時最好使用陽離子聚合起始劑(陽離子產生劑)。又,聚合起始劑係相較於熱陽離子產生劑,最好使用光陽離子產生劑。 Since the liquid crystal material of the present invention has a polymerizable oxetane group, a cationic polymerization initiator (cation generator) is preferably used in the polymerization (crosslinking) of the reactive group as described above. Further, as the polymerization initiator, a photocation generator is preferably used as compared with the thermal cation generator.

當使用光陽離子產生劑的情況,若在添加光陽離子產生劑後,截至為施行液晶配向的熱處理為止前之步驟均在暗條件(光陽離子產生劑不會解離程度的光阻隔條件)下實施,則液晶材料截至配向階段為止前均不會硬化,具有充分流動性俾可液晶配向。然後,藉由照射來自會發出適當波長光之光源的光,使產生陽離子,便使液晶材料層硬化。 When a photocationic cation generating agent is used, if the photocationic cation generating agent is added, the steps up to the heat treatment for performing liquid crystal alignment are carried out under dark conditions (light blocking conditions in which the photocation generating agent does not dissociate). Then, the liquid crystal material does not harden until the alignment stage, and has sufficient fluidity and liquid crystal alignment. Then, the liquid crystal material layer is cured by irradiating light from a light source that emits light of a suitable wavelength to cause cation formation.

光照射的方法係照射來自在所使用光陽離子產生劑的吸收波長區域中具有光譜,諸如金屬鹵素燈、高壓水銀燈、低壓水銀燈、氙燈、弧光燈、雷射等光源的光,便使光陽離子產生劑解離。每1平方公分的照射量依積分照射量計,通常設定為1~2000mJ,較佳係10~1000mJ範圍內。但,諸如光陽離子產生劑的吸收區域與光源光譜有明顯差異的情況、或者液晶材料本身便具有光源波長吸收能力的情況等,便不在此限。該等情況下,亦可採行混合使用諸如:適當光增感劑、吸收波長不同的2種以上光陽離子產生劑等方法。 The method of light irradiation is to irradiate light from a light source having a spectrum in an absorption wavelength region of a photocation generator used, such as a metal halide lamp, a high pressure mercury lamp, a low pressure mercury lamp, a xenon lamp, an arc lamp, a laser, etc., to cause photocation generation. Dissociation of the agent. The irradiation amount per square centimeter is usually set to 1 to 2000 mJ, preferably 10 to 1000 mJ, based on the integral irradiation amount. However, the case where the absorption region of the photo cation generator is significantly different from the spectrum of the light source, or the case where the liquid crystal material itself has the wavelength absorption ability of the light source is not limited thereto. In these cases, a method of mixing, for example, a suitable photosensitizer or two or more photocation generators having different absorption wavelengths may be employed.

光照射時的溫度必需設定為該液晶材料成為液晶配向的溫度範圍。又,為能充分提升硬化效果,最好依該液晶材料的Tg以上溫度施行光照射。 The temperature at the time of light irradiation must be set to a temperature range in which the liquid crystal material becomes a liquid crystal alignment. Further, in order to sufficiently enhance the hardening effect, it is preferred to perform light irradiation at a temperature higher than Tg of the liquid crystal material.

藉由以上步驟所製得液晶材料層會成為充分堅固的膜。具體而言,利用硬化反應使液晶原進行三維式鍵結,相較於硬化前,不僅將提升耐熱性(液晶配向保持的上限溫度),即使相關耐刮傷性、耐磨耗性、耐龜裂性等機械強度亦可大幅提升。 The liquid crystal material layer obtained by the above steps becomes a sufficiently strong film. Specifically, the liquid crystal source is three-dimensionally bonded by a hardening reaction, and the heat resistance (the upper limit temperature of the liquid crystal alignment retention) is improved not only before the curing, but also related to scratch resistance, abrasion resistance, and turtle resistance. Mechanical strength such as cracking can also be greatly improved.

另外,配向基板係非屬於光學等向性、或者所獲得液晶薄膜在最終目標使用波長區域中呈不透明、或者當配向基板膜厚過厚在實際使用上會造成阻礙等問題的情況下,亦可從形成於配向基板上的形態,改使用轉印具有相位差機能之延伸薄膜的形態。轉印方法係可採用公知方法。例如日本專利特開平4-57017號公報或特開平5-333313號公報所記載,將液晶薄膜層隔著黏著劑或接著劑,積層著不同於配向基板的基板之後,視需要使用黏著劑或接著劑施行表面的硬化處理,再從該積層體上剝離配向基板,藉此僅轉印液晶層的方法等。 In addition, the alignment substrate is not optically isotropic, or the obtained liquid crystal film is opaque in the final target use wavelength region, or when the alignment substrate film thickness is too thick, which may cause hindrance in practical use, etc. From the form formed on the alignment substrate, a form in which a stretched film having a phase difference function is transferred is used. The transfer method can employ a known method. For example, as described in Japanese Laid-Open Patent Publication No. Hei-4-57017, No. 5-333313, the liquid crystal film layer is laminated with an adhesive or an adhesive, and a substrate different from the alignment substrate is laminated, and then an adhesive or an adhesive is used as needed. The method of applying a hardening treatment to the surface, and then peeling off the alignment substrate from the laminate, thereby transferring only the liquid crystal layer.

轉印時所使用的黏著劑或接著劑,係只要屬於光學等級的話便可,其餘並無特別的限制,可使用諸如:丙烯酸系、環氧系、胺基甲酸酯系等一般使用物質。 The adhesive or the adhesive used in the transfer may be an optical grade, and the rest is not particularly limited, and a general-purpose substance such as an acrylic type, an epoxy type, or an urethane type can be used.

依如上述所獲得的垂直配向液晶層,係該液晶層的光學相位差藉由依傾斜垂直入射的角度施行測定便可定量化。垂直配向液晶層的情況,該相位差值係相對垂直入射呈對稱性。光學相位差的測定係可利用數種方法,例如可利用自動複折射測定裝置(王子計測機器(股)製)、及偏光顯微鏡。該垂直配向液晶層係在正交偏光元件間會看到黑色。依此施行垂直配向性的評價。 According to the vertical alignment liquid crystal layer obtained as described above, the optical phase difference of the liquid crystal layer can be quantified by performing measurement at an obliquely perpendicular incidence angle. In the case of a vertically aligned liquid crystal layer, the phase difference is symmetrical with respect to normal incidence. There are several methods for measuring the optical phase difference, and for example, an automatic birefringence measuring device (manufactured by Oji Scientific Instruments Co., Ltd.) and a polarizing microscope can be used. The vertical alignment liquid crystal layer will see black between the orthogonal polarizing elements. According to this, the evaluation of vertical alignment is performed.

第2光學非等向性層必需滿足以下的[8]~[9]: The second optical anisotropic layer must satisfy the following [8]~[9]:

[8]-10nm≦Re2(550)≦10nm [8]-10nm≦Re2(550)≦10nm

[9]-200nm≦Rth2(550)≦-50nm [9]-200nm≦Rth2(550)≦-50nm

其中,Re2(550)係指在波長550nm光下的第2光學非等向性層面內之延遲值;Rth2(550)係指對波長550nm光的第2光學非等向性層之厚度方向延遲值。Re2(550)及Rth2(550)分別係Re2(550)={nx2(550)-ny2(550)}×d2[nm]、Rth2(550)=[{nx2(550)+ny2(550)}/2-nz2(550)]×d2[nm]。又,d2係第2光學非等向性層的厚度;nx2(550)係對波長550nm光的第2光學非等向性層面內之最大主折射率;ny2(550)係正交於nx2(550)的方位之主折射率;nz2(550)係對波長550nm光的厚度方向主折射率;nz2(550)>nx2(550)=ny2(550)。 Wherein Re2 (550) refers to a retardation value in a second optical anisotropic layer at a wavelength of 550 nm; and Rth 2 (550) refers to a retardation in a thickness direction of a second optical anisotropic layer of light having a wavelength of 550 nm. value. Re2 (550) and Rth2 (550) are Re2 (550) = {nx2 (550) - ny2 (550)} × d2 [nm], Rth2 (550) = [{nx2 (550) + ny2 (550)}, respectively. /2-nz2(550)] × d2 [nm]. Further, d2 is the thickness of the second optical anisotropic layer; nx2 (550) is the maximum principal refractive index in the second optical anisotropic layer of light having a wavelength of 550 nm; and ny2 (550) is orthogonal to nx2 ( The main refractive index of the orientation of 550); nz2 (550) is the thickness direction main refractive index of light having a wavelength of 550 nm; nz2 (550) > nx2 (550) = ny2 (550).

即,垂直配向液晶薄膜面內的延遲值Re2(550)必需為-10nm~10nm、較佳係0nm~10nm、更佳係0nm~5nm範圍。又,厚度方向的延遲值Rth2(550)必需控制為-200nm~-50nm、較佳係-190nm~-70nm、更佳係-180nm~-90nm。 That is, the retardation value Re2 (550) in the plane of the vertical alignment liquid crystal film must be -10 nm to 10 nm, preferably 0 nm to 10 nm, more preferably 0 nm to 5 nm. Further, the retardation value Rth2 (550) in the thickness direction must be controlled to be -200 nm to -50 nm, preferably -190 nm to -70 nm, more preferably -180 nm to -90 nm.

藉由將上述Rth2(550)值設定在上述範圍內,在當作液晶顯示裝置的視野角改良薄膜時,便可一邊施行液晶顯示的色調校正,一邊擴大視野角。若Rth2(550)值大於-50nm或小於-200nm時,會有無法獲得充分的視野角改良效果、或從斜向觀看時發生不必要上色之虞。又,藉由將Re2(550)值設定在10nm以下,便可使液晶顯示元件的正面特性優良化。 By setting the Rth2 (550) value within the above range, when the film is improved as the viewing angle of the liquid crystal display device, the viewing angle can be increased while performing the color tone correction of the liquid crystal display. When the value of Rth2 (550) is more than -50 nm or less than -200 nm, there is a possibility that a sufficient viewing angle improvement effect cannot be obtained or unnecessary coloring occurs when viewed from an oblique direction. Moreover, by setting the Re2 (550) value to 10 nm or less, the front surface characteristics of the liquid crystal display element can be improved.

其次,針對第3光學非等向性層進行說明。 Next, the third optical anisotropic layer will be described.

第3光學非等向性層係可例如:聚碳酸酯系樹脂、聚乙烯醇系樹脂、纖維素系樹脂、聚酯系樹脂、聚芳酯系樹脂、聚醯亞胺系樹脂、環狀聚烯烴系樹脂、聚碸系樹脂、聚醚碸系樹脂、聚烯烴系樹脂、聚苯乙烯系樹脂、聚乙烯醇系樹脂、及該等的混合物。又,亦可使用例如:胺基甲酸酯系、丙烯酸胺基甲酸酯系、環氧系、聚矽氧系等熱硬化性樹脂或紫外線硬化型樹脂。該等之中,特別較佳係使用纖維素系樹脂及環狀聚烯烴系樹脂。第3光學非等向性層中亦可含有任意的適當添加劑1種以上。 The third optical anisotropic layer can be, for example, a polycarbonate resin, a polyvinyl alcohol resin, a cellulose resin, a polyester resin, a polyarylate resin, a polyimide resin, or a cyclic polymer. An olefin resin, a polyfluorene resin, a polyether oxime resin, a polyolefin resin, a polystyrene resin, a polyvinyl alcohol resin, and the like. Further, for example, a thermosetting resin such as an aminoester-based compound, an urethane urethane-based compound, an epoxy-based or a polyfluorene-based resin, or an ultraviolet curable resin can be used. Among these, a cellulose resin and a cyclic polyolefin resin are particularly preferably used. The third optical anisotropic layer may contain one or more optional additives as appropriate.

上述纖維素系樹脂較佳係纖維素與脂肪酸的酯。此種纖維素酯系樹脂的具體例係可例如:三乙醯纖維素、二乙醯纖維素、三丙醯纖維 素、二丙醯纖維素等。該等之中,特別較佳係三乙醯纖維素。三乙醯纖維素已有多種產品市售,就從取得容易性與成本的觀點較為有利。三乙醯纖維素大多係厚度方向遲延超過10nm者,使用抵消該等遲延的添加劑、或利用製膜方法,便可獲得不僅縮小正面遲延、亦縮小厚度方向遲延的纖維素系樹脂薄膜,特別適用。上述製膜方法係可例如:使經塗佈環戊酮、甲乙酮等溶劑的聚對苯二甲酸乙二酯、聚丙烯、不銹鋼等基材薄膜,貼合於一般的纖維素系薄膜上,施行加熱乾燥(例如依80~150℃施行3~10分鐘左右)後,再剝離基材薄膜的方法;將降烯系樹脂、(甲基)丙烯酸系樹脂等溶解於環戊酮、甲乙酮等溶劑中的溶液,塗佈於一般的纖維素系樹脂薄膜上,經加熱乾燥(例如依80~150℃施行3~10分鐘左右)後,再剝離塗佈薄膜的方法等。 The cellulose resin is preferably an ester of cellulose and a fatty acid. Specific examples of such a cellulose ester-based resin may, for example, be triacetyl cellulose, diacetyl cellulose, tripropylene cellulose, dipropylene cellulose or the like. Among these, triacetyl cellulose is particularly preferable. A variety of products, such as triacetonitrile cellulose, are commercially available, and it is advantageous from the viewpoint of availability and cost. In the case where the triacetyl cellulose is delayed in the thickness direction by more than 10 nm, it is possible to obtain a cellulose resin film which not only reduces the frontal retardation but also reduces the thickness direction by using an additive which cancels the retardation or a film forming method, and is particularly suitable. . In the film forming method, for example, a base film such as polyethylene terephthalate, polypropylene, or stainless steel coated with a solvent such as cyclopentanone or methyl ethyl ketone may be bonded to a general cellulose-based film. After heating and drying (for example, about 3 to 10 minutes at 80 to 150 ° C), the method of peeling off the substrate film; A solution in which a solvent such as an olefin resin or a (meth)acrylic resin is dissolved in a solvent such as cyclopentanone or methyl ethyl ketone is applied to a general cellulose resin film and dried by heating (for example, at 80 to 150 ° C for 3~) After about 10 minutes, the method of coating the film is peeled off.

再者,作為厚度方向遲延較小的纖維素系樹脂薄膜係可使用經控制脂肪取代度的脂肪酸纖維素系樹脂薄膜。一般所使用三乙醯纖維素的醋酸取代度係2.8左右,最好藉由將醋酸取代度控制為1.8~2.7,便可縮小Rth。藉由在上述脂肪酸取代纖維素系樹脂中添加鄰苯二甲酸二丁酯、p-甲苯磺酸醯苯胺、乙醯檸檬酸三乙酯等可塑劑,便可控制縮小Rth。可塑劑的添加量相對於脂肪酸纖維素系樹脂100重量份,較佳係40重量份以下、更佳係1~20重量份、特佳係1~15重量份。厚度方向遲延較小的纖維素系樹脂薄膜已有各種產品市售。具體例係可例如:FUJIFILM股份有限公司製商品名「Z-TAC」;KONICA MINOLTA ADVANCED LAYERS股份有限公司製商品名「ZeroTAC」。 In addition, as the cellulose-based resin film having a small retardation in the thickness direction, a fatty acid cellulose-based resin film having a controlled degree of fat substitution can be used. Generally, the degree of acetic acid substitution of triacetyl cellulose is about 2.8, and it is preferable to reduce Rth by controlling the degree of substitution of acetic acid to 1.8 to 2.7. By adding a plasticizer such as dibutyl phthalate, p-toluenesulfonate, or triethyl citrate to the above-mentioned fatty acid-substituted cellulose resin, it is possible to control the reduction of Rth. The amount of the plasticizer to be added is preferably 40 parts by weight or less, more preferably 1 to 20 parts by weight, even more preferably 1 to 15 parts by weight based on 100 parts by weight of the fatty acid cellulose resin. Cellulose-based resin films having a small retardation in the thickness direction are commercially available as various products. Specific examples are, for example, "Z-TAC" manufactured by FUJIFILM Co., Ltd.; and "ZeroTAC" manufactured by KONICA MINOLTA ADVANCED LAYERS Co., Ltd.

上述環狀聚烯烴系樹脂較佳係降烯系樹脂。環狀聚烯烴系樹脂 係以環狀烯烴為聚合單元進行聚合的樹脂總稱,例如日本專利特開平1-240517號公報、特開平3-14882號公報、特開平3-122137號公報等所記載的樹脂。具體例係可例如:環狀烯烴的開環(共)聚合體、環狀烯烴的加成聚合體、環狀烯烴與乙烯、丙烯等α-烯烴及其共聚合體(代表者係無規共聚合體);及該等經不飽和羧酸或其衍生物施行改質過的接枝聚合體;以及該等的氫化物等。環狀烯烴的具體例係可例如降烯系單體。環狀聚烯烴系樹脂已有各種產品市售。具體例係可例如:日本ZEON股份有限公司製商品名「ZEONEX」、「ZEONOR」;JSR股份有限公司製商品名「Arton」;TICONA公司製商品名「Topas」;三井化學股份有限公司製商品名「APEL」。 The above cyclic polyolefin resin is preferably reduced An olefinic resin. The cyclic polyolefin-based resin is a general term for a resin which is polymerized by using a cyclic olefin as a polymerization unit, and is described in, for example, JP-A No. 1-240517, JP-A No. 3-148882, and JP-A No. 3-122137. Resin. Specific examples are, for example, a ring-opened (co)polymer of a cyclic olefin, an addition polymer of a cyclic olefin, an α-olefin such as a cyclic olefin and ethylene, propylene, and a copolymer thereof (representative random copolymer) And the modified graft polymer obtained by the unsaturated carboxylic acid or its derivative; and the hydride or the like. Specific examples of cyclic olefins can, for example, be lowered An olefinic monomer. Cyclic polyolefin resins are commercially available in various products. Specific examples are, for example, the product names "ZEONEX" and "ZEONOR" manufactured by Japan ZEON Co., Ltd.; the product name "Arton" manufactured by JSR Co., Ltd.; the product name "Topas" manufactured by TICONA Co., Ltd.; and the product name of Mitsui Chemicals Co., Ltd. "APEL".

第3光學非等向性層係使用滿足以下的[11]~[12]者。 The third optical anisotropic layer is used in the following [11] to [12].

[11]-10nm≦Re3(550)≦10nm [11]-10nm≦Re3(550)≦10nm

[12]-10nm≦Rth3(550)≦10nm [12]-10nm≦Rth3(550)≦10nm

其中,Re3(550)係指在波長550nm光下的第3光學非等向性層面內之延遲值;Rth3(550)係指在波長550nm光下的第3光學非等向性層之厚度方向延遲值。Re3(550)及Rth3(550)分別係Re3(550)=(nx3(550)-ny3(550))×d3[nm]、Rth3(550)={(nx3(550)+ny3(550))/2-nz3(550)}×d3[nm]。又,d3係第3光學非等向性層的厚度;nx3(550)、ny3(550)係對波長550nm光的第3光學非等向性層面內之主折射率;nz3(550)係對波長550nm光的厚度方向主折射率;nx3(550)≧ny3(550)≧nz3(550)。 Wherein Re3 (550) refers to a retardation value in a third optical anisotropic layer at a wavelength of 550 nm; and Rth 3 (550) refers to a thickness direction of a third optical anisotropic layer at a wavelength of 550 nm. Delay value. Re3 (550) and Rth3 (550) are respectively Re3 (550) = (nx3 (550) - ny3 (550)) × d3 [nm], Rth3 (550) = {(nx3 (550) + ny3 (550)) /2-nz3(550)}×d3[nm]. Further, d3 is the thickness of the third optical anisotropic layer; nx3 (550) and ny3 (550) are principal refractive indices in the third optical anisotropic layer of light having a wavelength of 550 nm; nz3 (550) is a pair The main refractive index in the thickness direction of light having a wavelength of 550 nm; nx3 (550) ≧ ny 3 (550) ≧ nz 3 (550).

即,第3光學非等向性層的面內延遲值Re3(550)係-10nm~10nm、 較佳係0nm~10nm、更佳係0nm~5nm的範圍。又,厚度方向的延遲值Rth3(550)係-10nm~10nm、較佳係-7nm~7nm、更佳係-5nm~5nm的範圍。藉由將Re3(550)及Rth3(550)設定在上述範圍內,便呈現良好的視野角特性。 In other words, the in-plane retardation value Re3 (550) of the third optical anisotropic layer is -10 nm to 10 nm. It is preferably in the range of 0 nm to 10 nm, more preferably 0 nm to 5 nm. Further, the retardation value Rth3 (550) in the thickness direction is in the range of -10 nm to 10 nm, preferably -7 nm to 7 nm, more preferably 5 nm to 5 nm. By setting Re3 (550) and Rth3 (550) within the above range, a good viewing angle characteristic is exhibited.

針對本發明所使用第1偏光板及第2偏光板進行說明。 The first polarizing plate and the second polarizing plate used in the present invention will be described.

本發明所使用第1偏光板及第2偏光板通常係使用在偏光元件的單側或二側設有保護膜者。當僅單側設有保護膜的構造時,上述第1光學非等向性層便兼具保護膜的機能。本發明的積層偏光板係依第1光學非等向性層的慢軸、與第1偏光板的吸收軸呈略正交(交角在90°±5°以內)的方式積層,藉由使用朝寬度方向延伸的負雙軸性光學非等向性層,便可利用輥輪對輥輪進行一體製造。 In the first polarizing plate and the second polarizing plate used in the present invention, a protective film is provided on one side or both sides of the polarizing element. When the structure of the protective film is provided only on one side, the first optical anisotropic layer functions as a protective film. The laminated polarizing plate of the present invention is laminated such that the slow axis of the first optical anisotropic layer is slightly orthogonal to the absorption axis of the first polarizing plate (the angle of intersection is within 90° ± 5°). The negative biaxial optical anisotropic layer extending in the width direction can be integrally manufactured by the roller to the roller.

偏光元件並無特別的限制,可使用各種物質,例如:使在諸如聚乙烯醇系薄膜、部分甲醛化聚乙烯醇系薄膜、乙烯‧醋酸乙烯酯共聚物系部分皂化薄膜等親水性高分子薄膜上,吸附著碘、雙色性染料等雙色性物質,並施行單軸延伸者;或聚乙烯醇的脫水處理物、聚氯乙烯的脫鹽酸處理物等多烯系配向薄膜等等。該等之中,最好使用由聚乙烯醇系薄膜施行延伸,並吸附雙色性材料(碘、染料)且施行配向者。偏光元件的厚度並無特別的限制,一般係5~80μm左右。 The polarizing element is not particularly limited, and various materials such as a hydrophilic polymer film such as a polyvinyl alcohol film, a partially formaldehydeized polyvinyl alcohol film, or a partially saponified film of an ethylene vinyl acetate copolymer may be used. In the above, a dichroic substance such as iodine or a dichroic dye is adsorbed, and a uniaxially stretched one; or a polyene-based alignment film such as a dehydrated material of polyvinyl alcohol or a dehydrochlorinated product of polyvinyl chloride is adsorbed. Among these, it is preferable to use a polyvinyl alcohol-based film to stretch and adsorb a dichroic material (iodine, dye) and perform alignment. The thickness of the polarizing element is not particularly limited, and is generally about 5 to 80 μm.

由聚乙烯醇系薄膜利用碘染色並施行單軸延伸的偏光元件,係例如藉由將聚乙烯醇浸漬於碘的水溶液中而染色,再藉由延伸為原長的3~7倍便可製作。視需要,亦可浸漬於硼酸、碘化鉀等的水溶液中。此 外,視需要,亦可在施行染色之前,便將聚乙烯醇系薄膜浸漬於水中而施行水洗。藉由將聚乙烯醇系薄膜施行水洗,除可洗淨聚乙烯醇系薄膜表面髒污與抗黏合劑,此外藉由使聚乙烯醇系薄膜膨潤,亦具有能防止發生染色斑等不均勻現象的效果。延伸係可在利用碘染色後才實施,亦可一邊染色一邊延伸,且亦可一邊延伸一邊利用碘染色。亦可在硼酸、碘化鉀等的水溶液中、或水浴中施行延伸。 A polarizing element which is dyed by iodine and which is uniaxially stretched by a polyvinyl alcohol-based film is dyed by, for example, immersing polyvinyl alcohol in an aqueous solution of iodine, and is formed by stretching 3 to 7 times the original length. . If necessary, it may be immersed in an aqueous solution of boric acid, potassium iodide or the like. this Further, if necessary, the polyvinyl alcohol-based film may be immersed in water and subjected to water washing before dyeing. By washing the polyvinyl alcohol-based film with water, the surface of the polyvinyl alcohol-based film can be washed and the anti-adhesive agent can be washed. Further, by swelling the polyvinyl alcohol-based film, unevenness such as staining can be prevented. Effect. The extension system can be carried out after dyeing with iodine, or it can be stretched while dyeing, and can be dyed with iodine while extending. The extension may also be carried out in an aqueous solution of boric acid, potassium iodide or the like or in a water bath.

在上述偏光元件單側或二側所設置的保護膜,較佳係透明性、機械強度、熱安定性、水分遮蔽性、及等向性等均優異者。上述保護膜的材料係可例如:聚對苯二甲酸乙二酯、聚萘二甲酸乙二酯等聚酯系高分子;二乙醯纖維素、三乙醯纖維素等纖維素系高分子;聚甲基丙烯酸甲酯等丙烯酸系高分子;聚苯乙烯或丙烯腈‧苯乙烯共聚合體(AS樹脂)等苯乙烯系高分子;聚碳酸酯系高分子等。又,形成保護膜的高分子例,係可例如:聚乙烯、聚丙烯、乙烯‧丙烯共聚合體等聚烯烴系高分子;環烯烴系或具有降烯構造的聚烯烴;氯乙烯系高分子;尼龍、芳香族聚醯胺等醯胺系高分子;醯亞胺系高分子、碸系高分子、聚醚碸系高分子、聚醚醚酮系高分子、聚苯硫醚系高分子、乙烯醇系高分子、偏二氯乙烯系高分子、乙烯丁醛系高分子、芳酯系高分子、聚縮醛系高分子、環氧系高分子、或上述高分子的摻合物等。另外,尚可例由丙烯酸系、胺基甲酸酯系、丙烯酸胺基甲酸酯系、環氧系、聚矽氧系等熱硬化型或紫外線硬化型樹脂等,施行薄膜化者等等。保護膜的厚度一般係設定在500μm以下,較佳係1~300μm。特別更佳係5~200μm為佳。 The protective film provided on one side or both sides of the polarizing element is preferably excellent in transparency, mechanical strength, thermal stability, moisture shielding property, and isotropic property. The material of the protective film may be, for example, a polyester-based polymer such as polyethylene terephthalate or polyethylene naphthalate; a cellulose-based polymer such as diethyl phthalocyanine or triacetyl cellulose; An acrylic polymer such as polymethyl methacrylate; a styrene polymer such as polystyrene or acrylonitrile ‧ styrene copolymer (AS resin); or a polycarbonate polymer. Further, examples of the polymer forming the protective film may be, for example, a polyolefin-based polymer such as polyethylene, polypropylene, ethylene or propylene copolymer; Polyolefin structure; vinyl chloride polymer; guanamine polymer such as nylon or aromatic polyamine; quinone imine polymer, fluorene polymer, polyether fluorene polymer, polyether ether ketone Polymer, polyphenylene sulfide polymer, vinyl alcohol polymer, vinylidene chloride polymer, ethylene butyral polymer, aryl ester polymer, polyacetal polymer, epoxy polymer Or a blend of the above polymers. In addition, a thin film or the like may be used, such as a thermosetting type or an ultraviolet curing type resin such as an acrylic type, an urethane type, an urethane type, an epoxy type or a polyoxymethylene type. The thickness of the protective film is generally set to 500 μm or less, preferably 1 to 300 μm. Particularly preferably, the system is preferably 5 to 200 μm.

保護膜較佳係光學性等向性的基板,例如:FUJI增黏劑(FUJIFILM公司製品)、KONICA增黏劑(KONICA MINOLTA OPTO公司製品)等三乙醯纖維素(TAC)薄膜、Arton薄膜(JSR公司製品)、ZEONOR薄膜、ZEONEX薄膜(日本ZEON公司製品)等環烯烴系高分子、TPX薄膜(三井化學公司製品)、ACRYPLEN薄膜(Mitsubishi Rayon公司製品),當形成橢圓偏光板的情況,就從平面性、耐熱性、及耐濕性等觀點,較佳係三乙醯纖維素、環烯烴系高分子。 The protective film is preferably an optically isotropic substrate such as a FUJI tackifier (product of FUJIFILM Co., Ltd.) or a KONICA tackifier (product of KONICA MINOLTA OPTO Co., Ltd.), such as a triacetyl cellulose (TAC) film or an Arton film ( A cycloolefin polymer such as a JSR company product, a ZEONOR film, a ZEONEX film (product of Japan ZEON Co., Ltd.), a TPX film (product of Mitsui Chemicals Co., Ltd.), and an ACRYPLEN film (product of Mitsubishi Rayon Co., Ltd.), when an elliptically polarizing plate is formed, From the viewpoints of planarity, heat resistance, moisture resistance, and the like, triacetyl cellulose and a cycloolefin polymer are preferred.

另外,當在偏光元件二側均有設置保護膜的情況,可表背面均使用由相同高分子材料形成的保護膜,亦可使用由不同高分子材料等形成的保護膜。上述偏光元件與保護膜通常係利用水系黏著劑等密接。水系接著劑係可例示如:聚乙烯醇系接著劑、明膠系接著劑、乙烯系乳膠系、水系聚胺基甲酸酯、水系聚酯等。 Further, when a protective film is provided on both sides of the polarizing element, a protective film made of the same polymer material may be used for both the front and back surfaces, and a protective film formed of a different polymer material or the like may be used. The polarizing element and the protective film are usually adhered to each other by a water-based adhesive or the like. The water-based adhesive agent may, for example, be a polyvinyl alcohol-based adhesive, a gelatin-based adhesive, an ethylene-based latex, an aqueous polyurethane, or an aqueous polyester.

上述保護膜係可使用硬塗層,或經抗反射處理、以防黏、擴散或防眩為目的而施行處理者。 The protective film may be a hard coat layer or treated by an anti-reflection treatment for the purpose of preventing sticking, diffusion or anti-glare.

硬塗處理係在偏光板表面防刮傷等目的下實施,例如將由丙烯酸系、聚矽氧系等適當紫外線硬化型樹脂所形成,硬度與平滑特性等均優異的硬化皮膜附加於保護膜表面的方式等便可形成。抗反射處理係在偏光板表面的外光抗反射之目的下實施,可依照習知抗反射膜等的形成便可達成。又,防黏處理係在防止與鄰接層發生密接之目的下實施。 The hard coat treatment is carried out for the purpose of preventing scratches on the surface of the polarizing plate. For example, it is formed of a suitable ultraviolet curable resin such as acrylic or polyoxygen, and a hardened film excellent in hardness and smoothness is attached to the surface of the protective film. Ways can be formed. The antireflection treatment is carried out for the purpose of external light antireflection on the surface of the polarizing plate, and can be achieved by formation of a conventional antireflection film or the like. Further, the anti-adhesive treatment is carried out for the purpose of preventing adhesion to an adjacent layer.

再者,防眩處理係在防止因偏光板表面反射外光,而阻礙偏光板穿透光檢視等目的下實施,例如利用噴砂方式或壓花加工方式施行粗 面化方式、或摻合入透明微粒子的方式等適當方式,藉由對保護膜表面賦予微細凹凸構造便可形成。上述表面微細凹凸構造的形成中所含有之微粒子,係可使用由例如平均粒徑0.5~50μm的二氧化矽、氧化鋁、二氧化鈦、二氧化鋯、氧化錫、氧化銦、氧化鎘、氧化銻等所組成具有導電性的無機系微粒子,或者由交聯或未交聯高分子等組成的有機系微粒子等透明微粒子。形成表面微細凹凸構造的情況,微粒子的使用量相對於形成表面微細凹凸構造的透明樹脂100重量份,一般係使用2~50重量份左右,較佳係5~25重量份。防眩層亦可兼具供用以擴散偏光板穿透光俾擴大視角等的擴散層(視角擴大機能等)。 Further, the anti-glare treatment is performed to prevent the external light from being reflected by the surface of the polarizing plate, and to prevent the polarizing plate from penetrating the light, for example, by using a sand blasting method or an embossing method. An appropriate method such as a surface-forming method or a method of incorporating transparent fine particles can be formed by imparting a fine uneven structure to the surface of the protective film. For the fine particles contained in the formation of the surface fine concavo-convex structure, for example, ceria, alumina, titania, zirconia, tin oxide, indium oxide, cadmium oxide, cerium oxide, or the like having an average particle diameter of 0.5 to 50 μm can be used. The inorganic fine particles having conductivity or the transparent fine particles such as organic fine particles composed of a crosslinked or uncrosslinked polymer. When the surface fine uneven structure is formed, the amount of the fine particles used is generally from 2 to 50 parts by weight, preferably from 5 to 25 parts by weight, per 100 parts by weight of the transparent resin forming the surface fine uneven structure. The anti-glare layer may also have a diffusion layer (viewing angle expansion function, etc.) for diffusing the polarizing plate to penetrate the pupil and widening the viewing angle.

另外,上述抗反射層、防黏層、擴散層、防眩層等係除可直接設置於保護薄膜上,此外尚可成為透明保護層之外另行設置的光學層。 Further, the antireflection layer, the anti-adhesion layer, the diffusion layer, the antiglare layer, and the like may be directly provided on the protective film, and may be an optical layer separately provided in addition to the transparent protective layer.

上述第1、第2光學非等向性層、及第1偏光板係分別隔著黏著劑層相互貼合便可製作。形成黏著劑層的黏著劑並無特別的限制,可適當選擇使用以例如:丙烯酸系聚合體、聚矽氧系聚合物、聚酯、聚胺基甲酸酯、聚醯胺、聚醚、氟系、橡膠系等高分子為基質高分子者。特別係諸如丙烯酸系黏著劑之類,光學透明性優異、呈現適度潤濕性、凝聚性、及接著性等黏著特性,且耐候性、耐熱性等均優異,因而最好選擇使用。 The first and second optical anisotropic layers and the first polarizing plate are bonded to each other via an adhesive layer. The adhesive forming the adhesive layer is not particularly limited, and may be appropriately selected and used, for example, an acrylic polymer, a polyoxymethylene polymer, a polyester, a polyurethane, a polyamide, a polyether, or a fluorine. A polymer such as a system or a rubber system is a matrix polymer. In particular, it is preferably used, such as an acrylic adhesive, which is excellent in optical transparency, exhibits adhesive properties such as moderate wettability, cohesiveness, and adhesion, and is excellent in weather resistance and heat resistance.

黏合劑層的形成係可依適當方式實施。舉例而言,例如:在由甲苯、醋酸乙酯等適當溶劑的單獨物或混合物所形成溶劑中,使基質高分子或其組成物溶解或分散,而調製成10~40重量%左右的黏著劑溶液,再將其依澆塗方式、塗佈方式等適當的展開方式,直接附設於上 述液晶層上的方式;或者根據上述在隔板上形成黏著劑層,再將其移黏於上述液晶層上的方式等。此外,在黏著劑層中,亦可含有例如天然物、合成物的樹脂類,特別係黏著性賦予樹脂;由玻璃纖維、玻璃珠、金屬粉、其他無機粉末等組成的填充劑、顏料、著色劑、抗氧化劑等添加於黏著層中的添加劑。此外,亦可為含有微粒子而呈現光擴散性的黏著劑層等。 The formation of the adhesive layer can be carried out in a suitable manner. For example, in a solvent formed by a single substance or a mixture of a suitable solvent such as toluene or ethyl acetate, the matrix polymer or a composition thereof is dissolved or dispersed to prepare an adhesive of about 10 to 40% by weight. The solution is directly attached to the solution by means of a suitable method such as a coating method or a coating method. a method of forming a liquid crystal layer; or a method of forming an adhesive layer on a separator and then moving it to the liquid crystal layer. Further, the adhesive layer may contain, for example, a resin of a natural product or a composition, particularly an adhesiveness-imparting resin; a filler, a pigment, and a coloring agent composed of glass fiber, glass beads, metal powder, other inorganic powder, or the like. An additive added to the adhesive layer, such as an agent or an antioxidant. Further, it may be an adhesive layer or the like which exhibits light diffusibility by containing fine particles.

另外,當將各光學非等向性層隔著黏著劑層進行相互貼合之際,對薄膜表面施行表面處理,便可提升與黏著劑層間的密接性。表面處理的手段並無特別的限制,最好採用能維持上述各光學非等向性層透明性的電暈放電處理、濺鍍處理、低壓UV照射、電漿處理等表面處理法。該等表面處理法中,最好為電暈放電處理。 Further, when the optical anisotropic layers are bonded to each other via the adhesive layer, the surface of the film is subjected to a surface treatment to improve the adhesion to the adhesive layer. The means for the surface treatment is not particularly limited, and surface treatment methods such as corona discharge treatment, sputtering treatment, low-pressure UV irradiation, and plasma treatment capable of maintaining the transparency of each of the optical anisotropic layers are preferably used. Among these surface treatment methods, corona discharge treatment is preferred.

本發明的水平配向型液晶顯示裝置係依序配置有:至少由第1偏光板、第1光學非等向性層及第2光學非等向性層形成的本發明積層偏光板、水平配向型液晶單元及第2偏光板。 In the horizontal alignment type liquid crystal display device of the present invention, the laminated polarizing plate of the present invention formed of at least a first polarizing plate, a first optical anisotropic layer, and a second optical anisotropic layer, and a horizontal alignment type are disposed in this order. Liquid crystal cell and second polarizing plate.

再者,本發明的水平配向型液晶顯示裝置係依序配置有:至少由第1偏光板、第1光學非等向性層及第2光學非等向性層構成的本發明積層偏光板、水平配向型液晶單元、第3光學非等向性層及第2偏光板。 Further, in the horizontal alignment type liquid crystal display device of the present invention, the laminated polarizing plate of the present invention comprising at least a first polarizing plate, a first optical anisotropic layer, and a second optical anisotropic layer is disposed, The horizontal alignment type liquid crystal cell, the third optical anisotropic layer, and the second polarizing plate.

本發明的水平配向型液晶顯示裝置係將第1偏光板的吸收軸與第2偏光板的吸收軸之夾角設為s時,s較佳係85°~95°範圍、更佳係88~92°、特佳係略90°(正交)。若s逾越上下範圍時,水平配向型液晶顯示裝置的漏光較大,導致檢視性明顯惡化,故非屬較佳。 In the horizontal alignment type liquid crystal display device of the present invention, when the angle between the absorption axis of the first polarizing plate and the absorption axis of the second polarizing plate is s, s is preferably in the range of 85° to 95°, more preferably in the range of 88 to 92. °, especially good for 90 ° (orthogonal). When the s exceeds the upper and lower ranges, the light leakage of the horizontal alignment type liquid crystal display device is large, and the visibility is remarkably deteriorated, which is not preferable.

再者,將第2偏光板的吸收軸、與水平配向型液晶單元內的液晶光軸之夾角設為t時,最好依滿足-5°≦t≦5°的方式積層,若t逾越上下範圍時,水平配向型液晶顯示裝置的漏光較大,導致檢視性明顯惡化,故非屬較佳。 Further, when the angle between the absorption axis of the second polarizing plate and the liquid crystal axis of the horizontal alignment type liquid crystal cell is t, it is preferable to laminate the layer so as to satisfy -5°≦t≦5°. In the range, the horizontal alignment type liquid crystal display device has a large light leakage, which causes a significant deterioration in the visibility, which is not preferable.

[實施例] [Examples]

以下利用實施例針對本發明進行具體說明,惟本發明並不僅侷限於該等。 The invention will be specifically described below by way of examples, but the invention is not limited thereto.

另外,實施例所使用的各分析方法係如下述。 In addition, each analysis method used by the Example is as follows.

(1)1H-NMR之測定 (1) Determination of 1 H-NMR

將化合物溶解於氘化氯仿中,並依400MHz的1H-NMR(Variant公司製INOVA-400)進行測定。 The compound was dissolved in deuterated chloroform and measured by 1 H-NMR (INOVA-400, manufactured by Variant Co., Ltd.) at 400 MHz.

(2)GPC之測定 (2) Determination of GPC

將化合物溶解於四氫呋喃中,利用TOSOH公司製8020GPC系統,將TSK-GEL SuperH1000、SuperH2000、SuperH3000、及SuperH4000予以串聯連接,並使用四氫呋喃作為溶出液施行測定。分子量的校正係使用聚苯乙烯標樣。 The compound was dissolved in tetrahydrofuran, and TSK-GEL SuperH1000, SuperH2000, SuperH3000, and SuperH4000 were connected in series by using an 8020 GPC system manufactured by TOSOH Co., Ltd., and measurement was carried out using tetrahydrofuran as an eluate. The calibration of the molecular weight uses polystyrene standards.

(3)顯微鏡觀察 (3) Microscope observation

利用Olympus光學公司製BH2偏光顯微鏡,觀察液晶的配向狀態。 The alignment state of the liquid crystal was observed using a BH2 polarizing microscope manufactured by Olympus Optics Co., Ltd.

(4)膜厚測定法 (4) Film thickness measurement method

使用SLOAN公司製SURFACE TEXTURE ANALYSIS SYSTEM Dektak 3030ST。又,亦併用從干涉波測定(日本分光(股)製紫外‧可見‧近紅外分光光譜儀V-570)與折射率的數據求取膜厚的方法。 SURFACE TEXTURE ANALYSIS SYSTEM Dektak 3030ST manufactured by SLOAN was used. Further, a method of obtaining a film thickness from interference wave measurement (U.S. Spectrophotometer, UV ‧ visible ‧ near-infrared spectrometer V-570) and refractive index data was also used in combination.

(5)液晶薄膜的參數測定 (5) Determination of parameters of liquid crystal film

使用王子計測機器(股)製自動複折射計KOBRA21ADH。 The automatic complex refractometer KOBRA21ADH made by the prince measuring machine (stock) was used.

[參考例1] [Reference Example 1] (偏光元件之製作) (production of polarizing element)

將聚乙烯醇薄膜浸漬於溫水中並使膨張後,再於碘/碘化鉀水溶液中染色,接著在硼酸水溶液中施行單軸延伸處理而獲得偏光元件。該偏光元件經利用分光光譜儀調查單體穿透率、平行穿透率及正交穿透率,結果穿透率43.5%、偏光度99.9%。 The polyvinyl alcohol film was immersed in warm water and expanded, and then dyed in an iodine/potassium iodide aqueous solution, followed by uniaxial stretching treatment in an aqueous boric acid solution to obtain a polarizing element. The polarizing element was investigated for the monomer transmittance, the parallel transmittance, and the orthogonal transmittance by using a spectroscopic spectrometer, and the transmittance was 43.5% and the degree of polarization was 99.9%.

[參考例2] [Reference Example 2]

合成下述式(8)所示液晶性高分子。分子量依聚苯乙烯換算係Mn=8000、Mw=15000。另外,式(8)係依嵌段聚合體的構造表示,表示單體的構成比。 A liquid crystalline polymer represented by the following formula (8) is synthesized. The molecular weight was Mn = 8000 and Mw = 15,000 in terms of polystyrene. Further, the formula (8) is represented by the structure of the block polymer, and represents the composition ratio of the monomers.

將式(8)的高分子1.0g溶解於9ml環己酮中,於暗處添加三烯丙基鋶六氟化銻鹽50%碳酸丙烯酯溶液(Aldrich公司製、試劑)0.1g之後,利用孔徑0.45μm聚四氟乙烯製過濾器施行過濾,便調製得液晶材料的溶液。 1.0 g of the polymer of the formula (8) was dissolved in 9 ml of cyclohexanone, and a solution of a triallyl solution of a propylene carbonate hexafluoride 50% propylene carbonate (a reagent manufactured by Aldrich Co., Ltd.) was added in a dark place, and then used. A filter made of a polytetrafluoroethylene having a pore size of 0.45 μm was filtered to prepare a solution of a liquid crystal material.

配向基板係依如下述進行調製。將厚度38μm聚萘二甲酸乙二酯薄膜(帝人(股)製)切取15cm方塊,再將烷基改質聚乙烯醇(PVA:KURARAY(股)製、MP-203)的5質量%溶液(溶劑係水與異丙醇的質量比1:1混合溶劑),利用旋塗法施行塗佈,並利用50℃加熱板施行30分鐘乾燥後,再利用120℃烤箱施行10分鐘加熱。接著,利用嫘縈研磨布施行研磨。所獲得PVA層的膜厚係1.2μm。研磨時的周速比(研磨布移動速度/基板薄膜移動速度)係設為4。 The alignment substrate is prepared as follows. A polyethylene film of polyethylene naphthalate (manufactured by Teijin Co., Ltd.) having a thickness of 38 μm was cut into 15 cm squares, and a 5 mass% solution of an alkyl modified polyvinyl alcohol (PVA: KURARAY Co., Ltd., MP-203) was added. The solvent-based water and isopropyl alcohol were mixed in a mass ratio of 1:1. The coating was applied by a spin coating method, dried by a hot plate at 50 ° C for 30 minutes, and then heated in a 120 ° C oven for 10 minutes. Next, grinding was performed using a enamel polishing cloth. The film thickness of the obtained PVA layer was 1.2 μm. The peripheral speed ratio (grinding cloth moving speed / substrate film moving speed) at the time of polishing was set to 4.

在依此所獲得的配向基板上,將前述液晶材料溶液利用旋塗法施行塗佈。接著,利用60℃加熱板施行10分乾燥,再利用150℃烤箱施行2分鐘熱處理,而使液晶材料進行配向。然後,在經加熱至60℃的鋁板上密接放置試料,並從其上面利用高壓水銀燈照射600mJ/cm2紫外光(此係依365nm所測得的光量),而使液晶材料硬化。 On the alignment substrate obtained in this manner, the liquid crystal material solution was applied by spin coating. Next, it was dried by a hot plate at 60 ° C for 10 minutes, and then heat-treated in a 150 ° C oven for 2 minutes to align the liquid crystal material. Then, the sample was placed in close contact on an aluminum plate heated to 60 ° C, and a liquid crystal material was hardened by irradiating 600 mJ/cm 2 of ultraviolet light (this is the amount of light measured by 365 nm) from a high-pressure mercury lamp thereon.

使用為基板的聚萘二甲酸乙二酯薄膜,因為具有較大的複折射,並非屬較佳的光學用薄膜,因而將所獲得配向基板上的液晶性薄膜,介隔紫外線硬化型接著劑,轉印於三乙醯纖維素(TAC)薄膜上。即,在聚萘二甲酸乙二酯薄膜上之經硬化的液晶材料層上,將接著劑塗佈成5pm厚,再利用TAC薄膜層壓,並從TAC薄膜側照射紫外線使接著劑硬化後,再剝離聚萘二甲酸乙二酯薄膜及PVA層。 The polyethylene naphthalate film used as the substrate is not a preferred optical film because of its large birefringence, so that the liquid crystalline film on the obtained alignment substrate is interposed with the ultraviolet curing adhesive. Transfer onto a triethylene cellulose (TAC) film. That is, on the hardened liquid crystal material layer on the polyethylene naphthalate film, the adhesive is applied to a thickness of 5 pm, laminated with a TAC film, and irradiated with ultraviolet rays from the side of the TAC film to harden the adhesive. The polyethylene naphthalate film and the PVA layer were peeled off.

所獲得的光學薄膜(液晶層/接著劑層/TAC薄膜)在偏光顯微鏡下進行觀察,得知並非錯向而是單一區域的均勻配向,且由錐光鏡觀察得知屬於具有正單軸性折射率構造的垂直配向。使用KOBRA21ADH所測得的TAC薄膜與液晶層之合計面內方向延遲係0.5nm,厚度方向延 遲係-119nm。另外,TAC薄膜單體係負單軸性且面內延遲係0.5nm,厚度方向延遲係+35nm,因而預估液晶層單獨的延遲係Re2(550)為0nm、Rth2(550)為-154nm。實施例1以後,當與其他基材貼合時,係除去基板的TAC薄膜,僅取出垂直配向液晶層使用。又,垂直配向液晶層的厚度係0.9μm。各方位的折射率具有nz2(550)>nx2(550)=ny2(550)的關係。 The obtained optical film (liquid crystal layer/adhesive layer/TAC film) was observed under a polarizing microscope, and it was found that it was not a misalignment but a uniform alignment of a single region, and it was observed by a conoscope that it had positive uniaxiality. Vertical alignment of the refractive index structure. The total in-plane retardation of the TAC film and the liquid crystal layer measured by KOBRA21ADH is 0.5 nm, and the thickness direction is extended. Late -119nm. Further, the TAC film single system has a negative uniaxiality and an in-plane retardation of 0.5 nm, and a thickness direction retardation of +35 nm. Therefore, it is estimated that the liquid crystal layer alone has a retardation system Re2 (550) of 0 nm and Rth2 (550) of -154 nm. After the first embodiment, when the film was bonded to another substrate, the TAC film of the substrate was removed, and only the vertical alignment liquid crystal layer was taken out. Further, the thickness of the vertical alignment liquid crystal layer was 0.9 μm. The refractive index of each orientation has a relationship of nz2 (550) > nx2 (550) = ny2 (550).

另外,上述垂直配向液晶層係屬於第2光學非等向性層。 Further, the vertical alignment liquid crystal layer belongs to the second optical anisotropic layer.

[實施例1] [Example 1]

針對積層偏光板的構造,使用圖1進行說明。 The structure of the laminated polarizing plate will be described with reference to Fig. 1 .

在參考例1所獲得偏光元件的單面上,介隔聚乙烯醇系接著劑黏合著保護膜2(其係厚度40μm、正面相位差:6nm、厚度方向相位差:60nm的三乙醯纖維素(TAC)薄膜),而形成第1偏光板1。在該第1偏光板1的另一面上介隔聚乙烯醇系接著劑,依第1偏光板的吸收軸與第1光學非等向性層3的慢軸之夾角呈90度的方式,接著第1光學非等向性層3(其係由與在輥長條方向具有吸收軸的第1偏光板1之吸收軸呈橫單軸延伸製作,在輥寬方向上具有慢軸的降烯系樹脂構成),在其上面介隔丙烯酸系黏著劑貼合由參考例2製作的第2光學非等向性層4,便獲得積層偏光板5。其中,第1光學非等向性層3係呈Re1(550)為115nm、Rth1(550)為103.5nm的相位差,Re1(450)/Re1(550)係1.01,Rth1(450)/Rth1(550)係1.01,Re1(650)/Re1(550)係0.99,Rth1(650)/Rth1(550)係0.99。各方位的折射率具有nx1(550)>ny1(550)>nz1(550)的關係。 On one surface of the polarizing element obtained in Reference Example 1, a protective film 2 (a thickness of 40 μm, a front phase difference: 6 nm, and a thickness direction retardation: 60 nm) was adhered to each other via a polyvinyl alcohol-based adhesive. (TAC) film), the first polarizing plate 1 is formed. The polyvinyl alcohol-based adhesive is interposed on the other surface of the first polarizing plate 1 so that the angle between the absorption axis of the first polarizing plate and the slow axis of the first optical anisotropic layer 3 is 90 degrees. The first optical anisotropic layer 3 is formed by extending the uniaxial axis of the absorption axis of the first polarizing plate 1 having the absorption axis in the longitudinal direction of the roll, and has a slow axis in the roll width direction. In the olefin resin, the second optical anisotropic layer 4 produced in Reference Example 2 was bonded to the upper surface of the second optical anisotropic layer 4, and the laminated polarizing plate 5 was obtained. The first optical anisotropic layer 3 has a phase difference of Re1 (550) of 115 nm and Rth1 (550) of 103.5 nm, and Re1 (450) / Re1 (550) is 1.01, and Rth1 (450) / Rth1 ( 550) is 1.01, Re1 (650) / Re1 (550) is 0.99, and Rth1 (650) / Rth1 (550) is 0.99. The refractive index of each orientation has a relationship of nx1 (550) > ny1 (550) > nz1 (550).

[實施例2] [Embodiment 2]

針對本實施例2所使用的水平配向型液晶顯示裝置,參照圖2、圖3進行說明。在基板6上形成由ITO層形成高穿透率材料的透明電極7,在透明電極7與基板8之間夾持著由呈負介電常數非等向性的液晶材料所形成液晶層9。 The horizontal alignment type liquid crystal display device used in the second embodiment will be described with reference to Figs. 2 and 3 . A transparent electrode 7 having a high transmittance material formed of an ITO layer is formed on the substrate 6, and a liquid crystal layer 9 formed of a liquid crystal material having a negative dielectric constant anisotropy is sandwiched between the transparent electrode 7 and the substrate 8.

液晶層9係使用呈正介電常數非等向性的液晶材料,若對透明電極7的面方向施加電場,則液晶分子便朝電場方向旋轉。 In the liquid crystal layer 9, a liquid crystal material having a positive dielectric constant anisotropy is used, and when an electric field is applied to the surface direction of the transparent electrode 7, the liquid crystal molecules rotate in the direction of the electric field.

在水平配向型液晶單元10的顯示面側(圖中的上側)配置由實施例1所製作的積層偏光板5。在水平配向型液晶單元10的背面側(圖中的下側)配置當作第2偏光板11用的直線偏光板(住友化學(股)製SQW-062)。直線偏光板的支撐基板所使用三乙醯纖維素之Rth係35nm。 The laminated polarizing plate 5 produced in the first embodiment is disposed on the display surface side (upper side in the drawing) of the horizontal alignment type liquid crystal cell 10. A linear polarizing plate (SQW-062 manufactured by Sumitomo Chemical Co., Ltd.) serving as the second polarizing plate 11 is disposed on the back side (the lower side in the drawing) of the horizontal alignment type liquid crystal cell 10. The Rth system of triacetyl cellulose used for the support substrate of the linear polarizing plate was 35 nm.

圖3中箭頭所示第1偏光板1及第2偏光板11的吸收軸方位,分別係設定為面內90度、0度。第1光學非等向性層3係由面內具有光軸,且具有負雙軸光學非等向性的光學元件形成。圖3中箭頭所示第1光學非等向性層3的慢軸方位係設為0度,呈面內Re1為115nm、Rth1為103.5nm的相位差。 The absorption axis directions of the first polarizing plate 1 and the second polarizing plate 11 shown by the arrows in Fig. 3 are set to be 90 degrees in the plane and 0 degrees in the plane. The first optical anisotropic layer 3 is formed of an optical element having an optical axis in the plane and having a negative biaxial optical anisotropy. The slow axis orientation of the first optical anisotropic layer 3 shown by the arrow in Fig. 3 is 0 degree, and the phase difference of in-plane Re1 is 115 nm and Rth1 is 103.5 nm.

由垂直配向液晶薄膜形成的第2光學非等向性層4係呈Re2為0nm、Rth2為-154nm的相位差。 The second optical anisotropic layer 4 formed of the vertical alignment liquid crystal film has a phase difference of Re2 of 0 nm and Rth2 of -154 nm.

圖4所示係以黑顯示0V、白顯示5V的穿透率比(白顯示)/(黑顯示)為對比度,圖示從全方位的對比度。對比的等高線從內側起依序設為6000、3000、1000、500、200。又,同心圓係表示距中心20度間隔的角度。所以,最外圓係表示距中心80度(以下的圖亦同)。當從全方位 觀看對比度時,得知全方位的對比度提高,可獲得良好的視野角特性。 In Fig. 4, the transmittance ratio (white display) / (black display) of the black display 0V and the white display 5V is the contrast, and the contrast from the omnidirectional is shown. The contrast contours are sequentially set to 6000, 3000, 1000, 500, and 200 from the inside. Also, the concentric circles represent angles that are spaced 20 degrees from the center. Therefore, the outermost circle indicates 80 degrees from the center (the same applies to the following figures). When from all directions When viewing the contrast, it is known that the omnidirectional contrast is improved, and good viewing angle characteristics are obtained.

[實施例3] [Example 3]

除將由降烯系樹脂形成的第1光學非等向性層3之面內Re1設為125nm、Rth1設為87.5nm,且將由垂直配向液晶薄膜構成的第2光學非等向性層4之面內Re2設為0nm、Rth2設為-134nm之外,其餘均與實施例2同樣地製作水平配向型液晶顯示裝置。Re1(450)/Re1(550)係1.01、Rth1(450)/Rth1(550)係1.01、Re1(650)/Re1(550)係0.99、Rth1(650)/Rth1(550)係0.99。各方位的折射率具有nx1(550)>ny1(550)>nz1(550)的關係。 In addition to the drop In the surface of the first optical anisotropic layer 3 formed of the olefin resin, Re1 is 125 nm, Rth1 is 87.5 nm, and the in-plane Re2 of the second optical anisotropic layer 4 composed of the vertical alignment liquid crystal film is provided. A horizontal alignment type liquid crystal display device was produced in the same manner as in Example 2 except that 0 nm and Rth2 were set to -134 nm. Re1 (450) / Re1 (550) is 1.01, Rth1 (450) / Rth1 (550) is 1.01, Re1 (650) / Re1 (550) is 0.99, and Rth1 (650) / Rth1 (550) is 0.99. The refractive index of each orientation has a relationship of nx1 (550) > ny1 (550) > nz1 (550).

圖5所示係以黑顯示0V、白顯示5V的穿透率比(白顯示)/(黑顯示)為對比度,圖示從全方位的對比度。當從全方位觀看對比度時,得知全方位的對比度提高,可獲得良好的視野角特性。 Figure 5 shows the contrast ratio (white display) / (black display) in black for 0V and white for 5V as contrast, showing the contrast from all directions. When the contrast is viewed from all directions, it is known that the omnidirectional contrast is improved, and good viewing angle characteristics can be obtained.

[實施例4] [Example 4]

除將由降烯系樹脂構成的第1光學非等向性層3之面內Re1設為140nm、Rth1設為70.0nm,且將由垂直配向液晶薄膜構成的第2光學非等向性層4之面內Re2設為0nm、Rth2設為-113nm之外,其餘均與實施例2同樣地製作水平配向型液晶顯示裝置。Re1(450)/Re1(550)係1.01、Rth1(450)/Rth1(550)係1.01、Re1(650)/Re1(550)係0.99、Rth1(650)/Rth1(550)係0.99。各方位的折射率具有nx1(550)>ny1(550)>nz1(550)的關係。 In addition to the drop In the surface of the first optical anisotropic layer 3 made of an olefin resin, Re1 is 140 nm, Rth1 is 70.0 nm, and Re2 is provided in the plane of the second optical anisotropic layer 4 composed of the vertical alignment liquid crystal film. A horizontal alignment type liquid crystal display device was produced in the same manner as in Example 2 except that 0 nm and Rth2 were -113 nm. Re1 (450) / Re1 (550) is 1.01, Rth1 (450) / Rth1 (550) is 1.01, Re1 (650) / Re1 (550) is 0.99, and Rth1 (650) / Rth1 (550) is 0.99. The refractive index of each orientation has a relationship of nx1 (550) > ny1 (550) > nz1 (550).

圖6所示係以黑顯示0V、白顯示5V的穿透率比(白顯示)/(黑顯示)為對比度,圖示從全方位的對比度。當從全方位觀看對比度時,得知 全方位的對比度提高,可獲得良好的視野角特性。 In Fig. 6, the transmittance ratio (white display) / (black display) of black display 0V and white display 5V is contrast, and the contrast from all directions is shown. When you look at the contrast from all directions, you know A full range of contrast enhancement improves the viewing angle characteristics.

[實施例5] [Example 5]

相關本實施例所使用的水平配向型液晶顯示裝置,如圖7及圖8中詳細記載。除在下側第2偏光板11與液晶單元10之間所配置的第3光學非等向性層12,係厚度方向遲延較小的纖維素系樹脂薄膜(FUJIFILM(股)製Z-TAC偏光薄膜)之外,其餘均與實施例2同樣地製作水平配向型液晶顯示裝置。Re1(450)/Re1(550)係1.01、Rth1(450)/Rth1(550)係1.01、Re1(650)/Re1(550)係0.99、Rth1(650)/Rth1(550)係0.99。各方位的折射率具有nx1(550)>ny1(550)>nz1(550)的關係。又,相關第3光學非等向性層12,Re3(550)係1nm、Rth3(550)係2nm。各方位的折射率具有nx3(550)≧ny3(550)≧nz3(550)的關係。 The horizontal alignment type liquid crystal display device used in the present embodiment is described in detail in FIGS. 7 and 8. The third optical anisotropic layer 12 disposed between the lower second polarizing plate 11 and the liquid crystal cell 10 is a cellulose-based resin film having a small retardation in the thickness direction (a Z-TAC polarizing film made of FUJIFILM). A horizontal alignment type liquid crystal display device was produced in the same manner as in the second embodiment except for the above. Re1 (450) / Re1 (550) is 1.01, Rth1 (450) / Rth1 (550) is 1.01, Re1 (650) / Re1 (550) is 0.99, and Rth1 (650) / Rth1 (550) is 0.99. The refractive index of each orientation has a relationship of nx1 (550) > ny1 (550) > nz1 (550). Further, in the third optical anisotropic layer 12, Re3 (550) is 1 nm and Rth 3 (550) is 2 nm. The refractive index of each orientation has a relationship of nx3 (550) ≧ ny 3 (550) ≧ nz 3 (550).

圖9所示係以黑顯示0V、白顯示5V的穿透率比(白顯示)/(黑顯示)為對比度,圖示從全方位的對比度。當從全方位觀看對比度時,得知全方位的對比度提高,可獲得良好的視野角特性。 In Fig. 9, the transmittance ratio (white display) / (black display) of black display 0V and white display 5V is contrast, and the contrast from all directions is shown. When the contrast is viewed from all directions, it is known that the omnidirectional contrast is improved, and good viewing angle characteristics can be obtained.

[比較例1] [Comparative Example 1]

除將由垂直配向液晶薄膜構成的第2光學非等向性層4之Rth2設為-200nm之外,其餘均與實施例2同樣地製作水平配向型液晶顯示裝置。結果成為Rth1+Rth2=-96.5nm。 A horizontal alignment type liquid crystal display device was produced in the same manner as in Example 2 except that Rth2 of the second optical anisotropic layer 4 composed of the vertical alignment liquid crystal film was set to -200 nm. The result was Rth1 + Rth2 = -96.5 nm.

圖10所示係以黑顯示0V、白顯示5V的穿透率比(白顯示)/(黑顯示)為對比度,圖示從全方位的對比度。當從全方位觀看對比度時,在右上、左上、右下、左下等4個方向上特別低,得知視野角特性惡化。 In Fig. 10, the transmittance ratio (white display) / (black display) of black display 0V and white display 5V is contrast, and the contrast from all directions is shown. When the contrast is viewed from all directions, it is particularly low in four directions of the upper right, upper left, lower right, and lower left, and the viewing angle characteristics are deteriorated.

[比較例2] [Comparative Example 2]

除未使用由降烯系樹脂構成的第1光學非等向性層3之外,其餘均與實施例2同樣地製作水平配向型液晶顯示裝置。 Except for unused A horizontal alignment type liquid crystal display device was produced in the same manner as in Example 2 except that the first optical anisotropic layer 3 made of an olefin resin was used.

圖11所示係以黑顯示0V、白顯示5V的穿透率比(白顯示)/(黑顯示)為對比度,圖示從全方位的對比度。當從全方位觀看對比度時,在右上、左上、右下、左下等4個方向上特別低,得知視野角特性惡化。 In Fig. 11, the transmittance ratio (white display) / (black display) of black display 0V and white display 5V is contrast, and the contrast from all directions is shown. When the contrast is viewed from all directions, it is particularly low in four directions of the upper right, upper left, lower right, and lower left, and the viewing angle characteristics are deteriorated.

[比較例3] [Comparative Example 3]

除未使用由垂直配向液晶薄膜構成的第2光學非等向性層4之外,其餘均與實施例2同樣地製作水平配向型液晶顯示裝置。 A horizontal alignment type liquid crystal display device was produced in the same manner as in Example 2 except that the second optical anisotropic layer 4 composed of the vertical alignment liquid crystal film was not used.

圖12所示係以黑顯示0V、白顯示5V的穿透率比(白顯示)/(黑顯示)為對比度,圖示從全方位的對比度。當從全方位觀看對比度時,在右上、左上、右下、左下等4個方向上特別低,得知視野角特性惡化。 Figure 12 shows the contrast ratio (white display) / (black display) in black for 0V and white display for 5V, showing the contrast from all directions. When the contrast is viewed from all directions, it is particularly low in four directions of the upper right, upper left, lower right, and lower left, and the viewing angle characteristics are deteriorated.

[比較例4] [Comparative Example 4]

除未使用由降烯系樹脂構成的第1光學非等向性層3、及由垂直配向液晶薄膜構成的第2光學非等向性層4之外,其餘均與實施例2同樣地製作水平配向型液晶顯示裝置。 Except for unused A horizontal alignment type liquid crystal display device was produced in the same manner as in Example 2 except that the first optical anisotropic layer 3 composed of an olefin resin and the second optical anisotropic layer 4 composed of a vertical alignment liquid crystal film were used. .

圖13所示係以黑顯示0V、白顯示5V的穿透率比(白顯示)/(黑顯示)為對比度,圖示從全方位的對比度。當從全方位觀看對比度時,在右上、左上、右下、左下等4個方向上特別低,得知視野角特性惡化。 In Fig. 13, the transmittance ratio (white display) / (black display) of black display 0V and white display 5V is contrast, and the contrast from all directions is shown. When the contrast is viewed from all directions, it is particularly low in four directions of the upper right, upper left, lower right, and lower left, and the viewing angle characteristics are deteriorated.

[比較例5] [Comparative Example 5]

除將由降烯系樹脂構成的第1光學非等向性層3之Re1設為25nm、Rth1設為103.5nm之外,其餘均與實施例2同樣地製作水平配向型液晶顯示裝置。經測定黑顯示0V、白顯示5V的穿透率比(白顯示)/(黑顯示)之對比度,結果當從全方位觀看時,在右上、左上的2個方向上特別低,得知視野角特性惡化。 In addition to the drop A horizontal alignment type liquid crystal display device was produced in the same manner as in Example 2 except that Re1 of the first optical anisotropic layer 3 composed of the olefin resin was 25 nm and Rth1 was 103.5 nm. It is determined that the black shows 0V, the white shows a contrast ratio of 5V (white display) / (black display), and as a result, when viewed from all directions, it is particularly low in the upper right and upper left directions, and the viewing angle is known. The characteristics deteriorated.

[比較例6] [Comparative Example 6]

除將由降烯系樹脂構成的第1光學非等向性層3之Re1設為115nm、Rth1設為350nm之外,其餘均與實施例2同樣地製作水平配向型液晶顯示裝置。結果成為Rth1+Rth2=-196nm。又,成為Rth1(550)/Re1(550)=3.0。經測定黑顯示0V、白顯示5V的穿透率比(白顯示)/(黑顯示)之對比度,結果當從全方位觀看時,在右上、左上的2個方向上特別低,得知視野角特性惡化。 In addition to the drop A horizontal alignment type liquid crystal display device was produced in the same manner as in Example 2 except that Re1 of the first optical anisotropic layer 3 made of an olefin resin was 115 nm and Rth1 was 350 nm. The result was Rth1 + Rth2 = -196 nm. Further, it becomes Rth1 (550) / Re1 (550) = 3.0. It is determined that the black shows 0V, the white shows a contrast ratio of 5V (white display) / (black display), and as a result, when viewed from all directions, it is particularly low in the upper right and upper left directions, and the viewing angle is known. The characteristics deteriorated.

[比較例7] [Comparative Example 7]

除將第1光學非等向性層3的降烯系樹脂變更為聚碸系樹脂之外,其餘均與實施例2同樣地製作水平配向型液晶顯示裝置。結果成為Re1(450)/Re1(550)=1.2、Rth1(450)/Rth1(550)=1.19、Re1(650)/Re1(550)=0.7、Rth1(650)/Rth1(550)=0.68。經測定黑顯示0V、白顯示5V的穿透率比(白顯示)/(黑顯示)之對比度,對比範圍係與實施例2同樣,全方位均呈高對比度,可獲得良好的視野角特性,但因為Re1(450)/Re1(550)值、Rth1(450)/Rth1(550)值、Re1(650)/Re1(550)值、Rth1(650)/Rth1(550)值大幅逾越最佳範圍,因而黑顯示時的色調呈紅紫化,得知上色頗大。 In addition to the drop of the first optical anisotropic layer 3 A horizontal alignment type liquid crystal display device was produced in the same manner as in Example 2 except that the olefin resin was changed to a polyfluorene-based resin. As a result, Re1 (450) / Re1 (550) = 1.2, Rth1 (450) / Rth1 (550) = 1.19, Re1 (650) / Re1 (550) = 0.7, and Rth1 (650) / Rth1 (550) = 0.68. The contrast ratio of the black display 0V and the white display 5V transmittance ratio (white display) / (black display) was measured, and the comparison range was the same as that of the second embodiment, and the overall range was high contrast, and good viewing angle characteristics were obtained. However, the values of Re1(450)/Re1(550), Rth1(450)/Rth1(550), Re1(650)/Re1(550), and Rth1(650)/Rth1(550) greatly exceed the optimal range. Therefore, the hue of the black display is reddish purple, and it is known that the color is quite large.

[比較例8] [Comparative Example 8]

除將由垂直配向液晶薄膜構成的第2光學非等向性層4之Re2設為50nm、Rth2=-154nm之外,其餘均與實施例2同樣地製作水平配向型液晶顯示裝置。經測定黑顯示0V、白顯示5V的穿透率比(白顯示)/(黑顯示)之對比度,結果當從全方位觀看時,在右下、左下的的2個方向上特別低、得知視野角特性惡化。 A horizontal alignment type liquid crystal display device was produced in the same manner as in Example 2 except that Re2 of the second optical anisotropic layer 4 composed of the vertical alignment liquid crystal film was 50 nm and Rth2 = -154 nm. It is determined that the black shows 0V, the white shows a contrast ratio of 5V (white display) / (black display), and the result is particularly low in the two directions of the lower right and the lower left when viewed from all directions. The viewing angle characteristics deteriorate.

1‧‧‧第1偏光板 1‧‧‧1st polarizer

3‧‧‧第1光學非等向性層 3‧‧‧1st optical anisotropic layer

4‧‧‧第2光學非等向性層 4‧‧‧2nd optical anisotropic layer

5‧‧‧積層偏光板 5‧‧‧Laminated polarizing plate

Claims (12)

一種積層偏光板,係至少依序積層著:第1偏光板、第1光學非等向性層及第2光學非等向性層的積層偏光板,其中:上述第1光學非等向性層係滿足以下的[1]~[7],上述第2光學非等向性層係滿足以下的[8]~[9],上述第1光學非等向性層及上述第2光學非等向性層係滿足以下的[10];[1]50nm≦Re1(550)≦200nm[2]30nm≦Rth1(550)≦300nm[3]0.5≦Rth1(550)/Re1(550)≦1.5[4]0.7≦Re1(450)/Re1(550)<1.1[5]0.7≦Rth1(450)/Rth1(550)<1.1[6]0.95≦Re1(650)/Re1(550)<1.2[7]0.95≦Rth1(650)/Rth1(550)<1.2(其中,Re1(450)、Re1(550)及Re1(650)分別係指在波長450nm、550nm及650nm光下的第1光學非等向性層面內之延遲值;Rth1(450)、Rth1(550)及Rth1(650)分別係指在波長450nm、550nm及650nm光下的第1光學非等向性層之厚度方向延遲值;Re1(450)、Re1(550)及Re1(650)、以及Rth1(450)、Rth1(550)及Rth1(650)分別係Re1(450)=(nx1(450)-ny1(450))×d1[nm]、Re1(550)=(nx1(550)-ny1(550))×d1[nm]、Re1(650)=(nx1(650)-ny1(650))×d1[nm]、Rth1(450)={(nx1(450)+ny1(450))/2-nz1(450)}×d1[nm]、Rth1(550)={(nx1(550)+ny1(550))/2-nz1(550)}×d1[nm]、Rth1(650)={(nx1(650)+ny1(650))/2-nz1(650)}×d1[nm];又,d1係第1光學非等向性層的厚度;nx1(450)、nx1(550)、nx1(650)分別係對波長450、550、650nm光的第1光學非等向性層面內之最 大主折射率;ny1(450)、ny1(550)、ny1(650)分別係正交於nx1(450)、nx1(550)、nx1(650)的方位之主折射率;nz1(450)、nz1(550)、nz1(650)分別係對波長450、550、650nm光的厚度方向主折射率;nx1(550)>ny1(550)>nz1(550))[8]-10nm≦Re2(550)≦10nm[9]-200nm≦Rth2(550)≦-50nm(其中,Re2(550)係指對波長550nm光的第2光學非等向性層面內之延遲值;Rth2(550)係指對波長550nm光的第2光學非等向性層之厚度方向延遲值;Re2(550)及Rth2(550)分別係Re2(550)={nx2(550)-ny2(550)}×d2[nm]、Rth2(550)=[{nx2(550)+ny2(550)}/2-nz2(550)]×d2[nm];又,d2係第2光學非等向性層的厚度;nx2(550)係對波長550nm光的第2光學非等向性層面內之最大主折射率;ny2(550)係正交於nx2(550)的方位之主折射率;nz2(550)係對波長550nm光的厚度方向主折射率;nz2(550)>nx2(550)=ny2)[10]-60nm≦Rth1(550)+Rth2(550)≦60nm。 A laminated polarizing plate in which at least a first polarizing plate, a first optical anisotropic layer, and a second optical anisotropic layer are laminated, wherein the first optical anisotropic layer It satisfies the following [1] to [7], and the second optical anisotropic layer satisfies the following [8] to [9], the first optical anisotropic layer and the second optical anisotropy The layer satisfies the following [10]; [1] 50 nm ≦ Re1 (550) ≦ 200 nm [2] 30 nm ≦ Rth1 (550) ≦ 300 nm [3] 0.5 ≦ Rth1 (550) / Re1 (550) ≦ 1.5 [4 ] 0.7≦Re1(450)/Re1(550)<1.1[5]0.7≦Rth1(450)/Rth1(550)<1.1[6]0.95≦Re1(650)/Re1(550)<1.2[7]0.95 ≦Rth1(650)/Rth1(550)<1.2 (where Re1(450), Re1(550), and Re1(650) refer to the first optical anisotropic layer at wavelengths of 450nm, 550nm, and 650nm, respectively. The internal delay value; Rth1 (450), Rth1 (550), and Rth1 (650) refer to the thickness direction retardation value of the first optical anisotropic layer at wavelengths of 450 nm, 550 nm, and 650 nm, respectively; Re1 (450) Re1 (550) and Re1 (650), and Rth1 (450), Rth1 (550), and Rth1 (650) are respectively Re1 (450) = (nx1 (450) - ny1 (450)) × d1 [nm], Re1(550)=(nx1(550)-ny1(550))×d1[nm] Re1(650)=(nx1(650)-ny1(650))×d1[nm], Rth1(450)={(nx1(450)+ny1(450))/2-nz1(450)}×d1[ Nm], Rth1(550)={(nx1(550)+ny1(550))/2-nz1(550)}×d1[nm], Rth1(650)={(nx1(650)+ny1(650) )/2-nz1(650)}×d1[nm]; further, d1 is the thickness of the first optical anisotropic layer; nx1 (450), nx1 (550), and nx1 (650) are respectively at a wavelength of 450, The most optically anisotropic layer of 550, 650 nm light Large principal refractive index; ny1 (450), ny1 (550), and ny1 (650) are principal refractive indices orthogonal to the orientations of nx1 (450), nx1 (550), and nx1 (650), respectively; nz1 (450), Nz1 (550) and nz1 (650) are the main refractive indices in the thickness direction of the wavelengths of 450, 550, and 650 nm, respectively; nx1 (550) > ny1 (550) > nz1 (550)) [8] - 10 nm ≦ Re2 (550) ≦10nm[9]-200nm≦Rth2(550)≦-50nm (where Re2(550) refers to the retardation value in the second optical anisotropic layer of light with a wavelength of 550 nm; Rth2(550) means the pair The thickness direction retardation value of the second optical anisotropic layer of light having a wavelength of 550 nm; Re2 (550) and Rth2 (550) are respectively Re2 (550) = {nx2 (550) - ny2 (550)} × d2 [nm] , Rth2(550)=[{nx2(550)+ny2(550)}/2-nz2(550)]×d2[nm]; again, d2 is the thickness of the second optical anisotropic layer; nx2(550 a maximum principal refractive index in a second optical anisotropic layer of light having a wavelength of 550 nm; ny2 (550) is a principal refractive index orthogonal to the orientation of nx2 (550); nz2 (550) is a light having a wavelength of 550 nm The main refractive index in the thickness direction; nz2 (550) > nx2 (550) = ny2) [10] - 60 nm ≦ Rth1 (550) + Rth2 (550) ≦ 60 nm. 如申請專利範圍第1項之積層偏光板,其中,上述第2光學非等向性層係由使呈正單軸性的液晶性組成物在液晶狀態下呈垂直配向後,再配向固定化的垂直配向液晶薄膜形成。 The laminated optically polarizing plate according to the first aspect of the invention, wherein the second optical anisotropic layer is formed by vertically aligning the liquid crystal composition having a positive uniaxiality in a liquid crystal state, and then being aligned and fixed. The alignment liquid crystal film is formed. 如申請專利範圍第2項之積層偏光板,其中,上述呈正單軸性的液晶性組成物係含有具氧雜環丁烷基之側鏈型液晶性高分子。 The laminated polarizing plate of the second aspect of the invention, wherein the liquid crystal composition having a positive uniaxiality contains a side chain type liquid crystalline polymer having an oxetane group. 如申請專利範圍第1至3項中任一項之積層偏光板,其中,上述第1光學非等向性層係含有聚碳酸酯或環狀聚烯烴。 The laminated polarizing plate according to any one of claims 1 to 3, wherein the first optical anisotropic layer contains polycarbonate or a cyclic polyolefin. 如申請專利範圍第1至4項中任一項之積層偏光板,其中,上述第1偏光板的吸收軸與上述第1光學非等向性層的慢軸之夾角設為r 時,依滿足85°≦r≦95°的方式積層。 The laminated polarizing plate according to any one of claims 1 to 4, wherein an angle between an absorption axis of the first polarizing plate and a slow axis of the first optical anisotropic layer is r At the time, it is laminated in such a manner that it satisfies 85°≦r≦95°. 一種水平配向型液晶顯示裝置,係至少依序配置著:第1偏光板、第1光學非等向性層、第2光學非等向性層、水平配向型液晶單元及第2偏光板的水平配向型液晶顯示裝置,其中:上述第1光學非等向性層係滿足以下的[1]~[7];上述第2光學非等向性層係滿足以下的[8]~[9];上述第1光學非等向性層及上述第2光學非等向性層係滿足以下的[10];[1]50nm≦Re1(550)≦200nm[2]30nm≦Rth1(550)≦300nm[3]0.5≦Rth1(550)/Re1(550)≦1.5[4]0.7≦Re1(450)/Re1(550)<1.1[5]0.7≦Rth1(450)/Rth1(550)<1.1[6]0.95≦Re1(650)/Re1(550)<1.2[7]0.95≦Rth1(650)/Rth1(550)<1.2(其中,Re1(450)、Re1(550)及Re1(650)分別係指在波長450nm、550nm及650nm光下的第1光學非等向性層面內之延遲值;Rth1(450)、Rth1(550)及Rth1(650)分別係指在波長450nm、550nm及650nm光下的第1光學非等向性層之厚度方向延遲值;Re1(450)、Re1(550)及Re1(650)、以及Rth1(450)、Rth1(550)及Rth1(650)分別係Re1(450)=(nx1(450)-ny1(450))×d1[nm]、Re1(550)=(nx1(550)-ny1(550))×d1[nm]、Re1(650)=(nx1(650)-ny1(650))×d1[nm]、Rth1(450)={(nx1(450)+ny1(450))/2-nz1(450)}×d1[nm]、Rth1(550)={(nx1(550)+ny1(550))/2-nz1(550)}×d1[nm]、Rth1(650)={(nx1(650)+ny1(650))/2-nz1(650)}×d1[nm];又,d1係第1光學非等向性層的厚度; nx1(450)、nx1(550)、nx1(650)、ny1(450)、ny1(550)、ny1(650)分別係對波長450、550、650nm光的第1光學非等向性層面內之主折射率;nz1(450)、nz1(550)、nz1(650)分別係對波長450、550、650nm光的厚度方向主折射率;nx1(550)>ny1(550)>nz1(550))[8]-10nm≦Re2(550)≦10nm[9]-200nm≦Rth2(550)≦-50nm(其中,Re2(550)係指在波長550nm光下的第2光學非等向性層面內之延遲值;Rth2(550)係指對波長550nm光的第2光學非等向性層之厚度方向延遲值;Re2(550)及Rth2(550)分別係Re2(550)={nx2(550)-ny2(550)}×d2[nm]、Rth2(550)=[{nx2(550)+ny2(550)}/2-nz2(550)]×d2[nm];又,d2係第2光學非等向性層的厚度;nx2(550)係對波長550nm光的第2光學非等向性層面內之最大主折射率;ny2(550)係正交於nx2(550)的方位之主折射率;nz2(550)係對波長550nm光的厚度方向主折射率;nz2(550)>nx2(550)=ny2)[10]-60nm≦Rth1(550)+Rth2(550)≦60nm。 A horizontal alignment type liquid crystal display device in which at least a level of a first polarizing plate, a first optical anisotropic layer, a second optical anisotropic layer, a horizontal alignment type liquid crystal cell, and a second polarizing plate are disposed in order In the alignment type liquid crystal display device, the first optical anisotropic layer satisfies the following [1] to [7]; and the second optical anisotropic layer satisfies the following [8] to [9]; The first optical anisotropic layer and the second optical anisotropic layer satisfy the following [10]; [1] 50 nm ≦ Re1 (550) ≦ 200 nm [2] 30 nm ≦ Rth1 (550) ≦ 300 nm [ 3]0.5≦Rth1(550)/Re1(550)≦1.5[4]0.7≦Re1(450)/Re1(550)<1.1[5]0.7≦Rth1(450)/Rth1(550)<1.1[6] 0.95≦Re1(650)/Re1(550)<1.2[7]0.95≦Rth1(650)/Rth1(550)<1.2 (where Re1(450), Re1(550) and Re1(650) refer to The retardation value in the first optical anisotropic layer at wavelengths of 450 nm, 550 nm, and 650 nm; Rth1 (450), Rth1 (550), and Rth1 (650) refer to the wavelengths at 450 nm, 550 nm, and 650 nm, respectively. 1 thickness direction retardation value of optical anisotropic layer; Re1 (450), Re1 (550) and Re1 (650), and Rth1 (450), Rth1 (550) and Rth1 (650) Others Re1(450)=(nx1(450)-ny1(450))×d1[nm], Re1(550)=(nx1(550)-ny1(550))×d1[nm], Re1(650) =(nx1(650)-ny1(650))×d1[nm], Rth1(450)={(nx1(450)+ny1(450))/2-nz1(450)}×d1[nm], Rth1 (550)={(nx1(550)+ny1(550))/2-nz1(550)}×d1[nm], Rth1(650)={(nx1(650)+ny1(650))/2- Nz1(650)}×d1[nm]; further, d1 is the thickness of the first optical anisotropic layer; Nx1 (450), nx1 (550), nx1 (650), ny1 (450), ny1 (550), and ny1 (650) are respectively in the first optical anisotropic plane of wavelengths of 450, 550, and 650 nm. The main refractive index; nz1 (450), nz1 (550), and nz1 (650) are the main refractive indices in the thickness direction of the wavelengths of 450, 550, and 650 nm, respectively; nx1 (550) > ny1 (550) > nz 1 (550)) [8]-10nm≦Re2(550)≦10nm[9]-200nm≦Rth2(550)≦-50nm (where Re2(550) refers to the second optical anisotropic layer at a wavelength of 550nm light The retardation value; Rth2 (550) refers to the thickness direction retardation value of the second optical anisotropic layer of light having a wavelength of 550 nm; Re2 (550) and Rth2 (550) are respectively Re2 (550) = {nx2 (550) - Ny2(550)}×d2[nm], Rth2(550)=[{nx2(550)+ny2(550)}/2-nz2(550)]×d2[nm]; again, d2 is the second optical non The thickness of the isotropic layer; nx2 (550) is the maximum principal refractive index in the second optical anisotropic layer of light having a wavelength of 550 nm; ny2 (550) is the principal refractive index of the orientation orthogonal to nx2 (550) Nz2 (550) is a thickness direction principal refractive index for light having a wavelength of 550 nm; nz2 (550) > nx2 (550) = ny2) [10] - 60 nm ≦ Rth1 (550) + Rth2 (550) ≦ 60 nm. 一種水平配向型液晶顯示裝置,係至少依序配置著:第1偏光板、第1光學非等向性層、第2光學非等向性層、水平配向型液晶單元、第3光學非等向性層及第2偏光板的水平配向型液晶顯示裝置,其中:上述第1光學非等向性層係滿足以下的[1]~[7];上述第2光學非等向性層係滿足以下的[8]~[9];上述第1光學非等向性層及上述第2光學非等向性層係滿足以下的[10];上述第3光學非等向性層係滿足以下的[11]~[12];[1]50nm≦Re1(550)≦200nm[2]30nm≦Rth1(550)≦300nm [3]0.5≦Rth1(550)/Re1(550)≦1.5[4]0.7≦Re1(450)/Re1(550)<1.1[5]0.7≦Rth1(450)/Rth1(550)<1.1[6]0.95≦Re1(650)/Re1(550)<1.2[7]0.95≦Rth1(650)/Rth1(550)<1.2(其中,Re1(450)、Re1(550)及Re1(650)分別係指在波長450nm、550nm及650nm光下的第1光學非等向性層面內之延遲值;Rth1(450)、Rth1(550)及Rth1(650)分別係指在波長450nm、550nm及650nm光下的第1光學非等向性層之厚度方向延遲值;Re1(450)、Re1(550)及Re1(650)、以及Rth1(450)、Rth1(550)及Rth1(650)分別係Re1(450)=(nx1(450)-ny1(450))×d1[nm]、Re1(550)=(nx1(550)-ny1(550))×d1[nm]、Re1(650)=(nx1(650)-ny1(650))×d1[nm]、Rth1(450)={(nx1(450)+ny1(450))/2-nz1(450)}×d1[nm]、Rth1(550)={(nx1(550)+ny1(550))/2-nz1(550)}×d1[nm]、Rth1(650)={(nx1(650)+ny1(650))/2-nz1(650)}×d1[nm];又,d1係第1光學非等向性層的厚度;nx1(450)、nx1(550)、nx1(650)分別係對波長450、550、650nm光的第1光學非等向性層面內之最大主折射率;ny1(450)、ny1(550)、ny1(650)分別係正交於nx1(450)、nx1(550)、nx1(650)的方位之主折射率;nz1(450)、nz1(550)、nz1(650)分別係對波長450、550、650nm光的厚度方向主折射率;nx1(550)>ny1(550)>nz1(550))[8]-10nm≦Re2(550)≦10nm[9]-200nm≦Rth2(550)≦-50nm(其中,Re2(550)係指在波長550nm光下的第2光學非等向性層面內之延遲值;Rth2(550)係指對波長550nm光的第2光學非等向性層之 厚度方向延遲值;Re2(550)及Rth2(550)分別係Re2(550)={nx2(550)-ny2(550)}×d2[nm]、Rth2(550)=[{nx2(550)+ny2(550)}/2-nz2(550)]×d2[nm];又,d2係第2光學非等向性層的厚度;nx2(550)係對波長550nm光的第2光學非等向性層面內之最大主折射率;ny2(550)係正交於nx2(550)的方位之主折射率;nz2(550)係對波長550nm光的厚度方向主折射率;nz2(550)>nx2(550)=ny2)[10]-60nm≦Rth1(550)+Rth2(550)≦60nm[11]-10nm≦Re3(550)≦10nm[12]-10nm≦Rth3(550)≦10nm(其中,Re3(550)係指在波長550nm光下的第3光學非等向性層面內之延遲值;Rth3(550)係指在波長550nm光下的第3光學非等向性層之厚度方向延遲值;Re3(550)及Rth3(550)分別係Re3(550)=(nx3(550)-ny3(550))×d3[nm]、Rth3(550)={(nx3(550)+ny3(550))/2-nz3(550)}×d3[nm];又,d3係第3光學非等向性層的厚度;nx3(550)、ny3(550)係對波長550nm光的第3光學非等向性層面內之主折射率;nz3(550)係對波長550nm光的厚度方向主折射率;nx3(550)≧ny3(550)≧nz3(550))。 A horizontal alignment type liquid crystal display device in which at least a first polarizing plate, a first optical anisotropic layer, a second optical anisotropic layer, a horizontal alignment type liquid crystal cell, and a third optical anisotropy are disposed in order The horizontal alignment type liquid crystal display device of the second layer and the second polarizing plate, wherein the first optical anisotropic layer satisfies the following [1] to [7]; and the second optical anisotropic layer satisfies the following [8] to [9]; the first optical anisotropic layer and the second optical anisotropy layer satisfy the following [10]; and the third optical anisotropic layer satisfies the following [ 11]~[12];[1]50nm≦Re1(550)≦200nm[2]30nm≦Rth1(550)≦300nm [3]0.5≦Rth1(550)/Re1(550)≦1.5[4]0.7≦Re1(450)/Re1(550)<1.1[5]0.7≦Rth1(450)/Rth1(550)<1.1[6 ]0.95≦Re1(650)/Re1(550)<1.2[7]0.95≦Rth1(650)/Rth1(550)<1.2 (where Re1(450), Re1(550) and Re1(650) refer to Delay values in the first optical anisotropic layer at wavelengths of 450 nm, 550 nm, and 650 nm; Rth1 (450), Rth1 (550), and Rth1 (650) refer to light at wavelengths of 450 nm, 550 nm, and 650 nm, respectively. The thickness direction retardation value of the first optical anisotropic layer; Re1 (450), Re1 (550), and Re1 (650), and Rth1 (450), Rth1 (550), and Rth1 (650) are Re1 (450), respectively. =(nx1(450)-ny1(450))×d1[nm], Re1(550)=(nx1(550)-ny1(550))×d1[nm], Re1(650)=(nx1(650) -ny1(650))×d1[nm], Rth1(450)={(nx1(450)+ny1(450))/2-nz1(450)}×d1[nm], Rth1(550)={( Nx1(550)+ny1(550))/2-nz1(550)}×d1[nm], Rth1(650)={(nx1(650)+ny1(650))/2-nz1(650)}× D1 [nm]; further, d1 is the thickness of the first optical anisotropic layer; nx1 (450), nx1 (550), and nx1 (650) are the first optical non-equal to the wavelengths of 450, 550, and 650 nm, respectively. The maximum principal refractive index in the directional plane; ny1 (450), ny1 (550), ny1 (650) respectively The principal refractive index of the orientation orthogonal to nx1 (450), nx1 (550), and nx1 (650); nz1 (450), nz1 (550), and nz1 (650) are the thicknesses of light at wavelengths of 450, 550, and 650 nm, respectively. Directional main refractive index; nx1(550)>ny1(550)>nz1(550))[8]-10nm≦Re2(550)≦10nm[9]-200nm≦Rth2(550)≦-50nm (where Re2( 550) refers to the retardation value in the second optical anisotropic layer at a wavelength of 550 nm; Rth2 (550) refers to the second optical anisotropic layer of light having a wavelength of 550 nm. Thickness direction delay value; Re2(550) and Rth2(550) are Re2(550)={nx2(550)-ny2(550)}×d2[nm], Rth2(550)=[{nx2(550)+ Ny2(550)}/2-nz2(550)]×d2[nm]; further, d2 is the thickness of the second optical anisotropic layer; nx2(550) is the second optical anisotropy of light having a wavelength of 550 nm The maximum principal refractive index in the sex plane; ny2(550) is the principal refractive index orthogonal to the orientation of nx2(550); nz2(550) is the thickness direction principal refractive index of the wavelength 550nm light; nz2(550)>nx2 (550)=ny2)[10]-60nm≦Rth1(550)+Rth2(550)≦60nm[11]-10nm≦Re3(550)≦10nm[12]-10nm≦Rth3(550)≦10nm (where Re3 (550) refers to the retardation value in the third optical anisotropic layer at a wavelength of 550 nm; Rth3 (550) refers to the thickness direction retardation value of the third optical anisotropic layer at a wavelength of 550 nm. Re3 (550) and Rth3 (550) are Re3 (550) = (nx3 (550) - ny3 (550)) × d3 [nm], Rth3 (550) = {(nx3 (550) + ny3 (550), respectively. / 2 - nz3 (550)} × d3 [nm]; further, d3 is the thickness of the third optical anisotropic layer; nx3 (550), ny3 (550) is the third optical non-equal to the wavelength of 550 nm light The main refractive index in the directional plane; nz3 (550) is the main direction of the thickness direction of the wavelength of 550 nm light Rate; nx3 (550) ≧ ny3 (550) ≧ nz3 (550)). 如申請專利範圍第6或7項之水平配向型液晶顯示裝置,其中,上述第2光學非等向性層係由使呈正單軸性的液晶性組成物在液晶狀態下呈垂直配向後,再配向固定化的垂直配向液晶薄膜形成。 The horizontal alignment type liquid crystal display device according to claim 6 or 7, wherein the second optical anisotropic layer is formed by vertically aligning the liquid crystal composition having a positive uniaxiality in a liquid crystal state. The alignment is formed by a vertically aligned vertical alignment liquid crystal film. 如申請專利範圍第8項之水平配向型液晶顯示裝置,其中,上述呈正單軸性的液晶性組成物係含有具氧雜環丁烷基之側鏈型液晶性高分子。 The horizontal alignment type liquid crystal display device according to the eighth aspect of the invention, wherein the liquid crystal composition having a positive uniaxiality contains a side chain type liquid crystalline polymer having an oxetane group. 如申請專利範圍第6至9項中任一項之水平配向型液晶顯示裝置, 其中,上述第1光學非等向性層係含有聚碳酸酯或環狀聚烯烴。 A horizontal alignment type liquid crystal display device according to any one of claims 6 to 9, The first optical anisotropic layer contains polycarbonate or a cyclic polyolefin. 如申請專利範圍第6至10項中任一項之水平配向型液晶顯示裝置,其中,上述第1偏光板的吸收軸與上述第1光學非等向性層的慢軸之夾角設為r時,依滿足85°≦r≦95°的方式積層。 The horizontal alignment type liquid crystal display device according to any one of claims 6 to 10, wherein an angle between an absorption axis of the first polarizing plate and a slow axis of the first optical anisotropic layer is r , layered in a manner that satisfies 85°≦r≦95°. 如申請專利範圍第11項之水平配向型液晶顯示裝置,其中,依將上述第1偏光板吸收軸與上述第2偏光板吸收軸的夾角設為s時,滿足85°≦s≦95°,且將上述第2偏光板吸收軸與水平配向型液晶單元內的液晶光軸之夾角設為t時,滿足-5°≦t≦5°的方式積層。 The horizontal alignment type liquid crystal display device according to claim 11, wherein the angle between the absorption axis of the first polarizing plate and the absorption axis of the second polarizing plate is s, and satisfies 85° ≦ s ≦ 95°. Further, when the angle between the absorption axis of the second polarizing plate and the optical axis of the liquid crystal in the horizontal alignment type liquid crystal cell is t, the layer is laminated so as to satisfy -5°≦t≦5°.
TW103111699A 2013-03-28 2014-03-28 Laminated polarizing plate and horizontal alignment liquid crystal display device TW201447429A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013070265A JP2016106241A (en) 2013-03-28 2013-03-28 Laminated polarizing plate and horizontal alignment type liquid crystal display device

Publications (1)

Publication Number Publication Date
TW201447429A true TW201447429A (en) 2014-12-16

Family

ID=51624153

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103111699A TW201447429A (en) 2013-03-28 2014-03-28 Laminated polarizing plate and horizontal alignment liquid crystal display device

Country Status (3)

Country Link
JP (1) JP2016106241A (en)
TW (1) TW201447429A (en)
WO (1) WO2014157182A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108027535A (en) * 2015-09-30 2018-05-11 日本瑞翁株式会社 Liquid crystal display device
TWI683141B (en) * 2017-01-25 2020-01-21 南韓商Lg化學股份有限公司 Optical filter for anti-reflection and organic light-emitting device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6998944B2 (en) 2017-05-08 2022-01-18 富士フイルム株式会社 Liquid crystal display device
CN110612475B (en) * 2017-05-08 2022-04-08 富士胶片株式会社 Liquid crystal display device having a plurality of pixel electrodes
WO2021065978A1 (en) * 2019-09-30 2021-04-08 大日本印刷株式会社 Optical film, polarizing plate, image display device, and optical film selection method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3926824B2 (en) * 2004-11-29 2007-06-06 日東電工株式会社 Liquid crystal panel and liquid crystal display device
KR20070106763A (en) * 2005-02-08 2007-11-05 니폰 오일 코포레이션 (신 니혼 세키유 가부시키 가이샤) Homeotropically oriented liquid-crystal film, optical film comprising the same, and image display
JP4726740B2 (en) * 2006-08-22 2011-07-20 富士フイルム株式会社 Optical compensation film and liquid crystal display device
JP5235755B2 (en) * 2008-09-26 2013-07-10 富士フイルム株式会社 Acrylic film, optical compensation film, and IPS or FFS mode liquid crystal display device using the same
JP5877017B2 (en) * 2011-08-30 2016-03-02 富士フイルム株式会社 Optical laminated film, and polarizing plate and liquid crystal display device using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108027535A (en) * 2015-09-30 2018-05-11 日本瑞翁株式会社 Liquid crystal display device
TWI683141B (en) * 2017-01-25 2020-01-21 南韓商Lg化學股份有限公司 Optical filter for anti-reflection and organic light-emitting device
US10943960B2 (en) 2017-01-25 2021-03-09 Lg Chem, Ltd. Optical filter for anti-reflection and organic light-emitting device

Also Published As

Publication number Publication date
JP2016106241A (en) 2016-06-16
WO2014157182A1 (en) 2014-10-02

Similar Documents

Publication Publication Date Title
TWI387816B (en) Elliptical polarizer and vertical alignment type liquid crystal display device comprising the same
CN104170525B (en) There is the organic EL display element of optical laminate
CN102171591B (en) Elliptical light polarizing plate and vertically oriented liquid crystal display device using the same
US7732024B2 (en) Homeotropic alignment liquid crystal film, optical film comprising the same, and image display device
TWI449971B (en) Elliptical polarizer, process of producing the polarizer and liquid crystal display device equipped with the polarizer
JP6392257B2 (en) Retardation plate, laminated polarizing plate using retardation plate, and display device using retardation plate
JP5723077B1 (en) Retardation plate, elliptically polarizing plate and display device using the same
JP2008129175A (en) Elliptical polarizing plate and vertically aligned liquid crystal display apparatus using the same
TWI428643B (en) Elliptical polarizer and liquid crystal display device
JP6677722B2 (en) Horizontal alignment type liquid crystal display
JP2015161714A (en) Retardation plate, elliptical polarization plate, and display device using the same
JP2008191630A (en) Elliptically polarizing plate, manufacturing method thereof, luminance improving film, and image display device
TW201447429A (en) Laminated polarizing plate and horizontal alignment liquid crystal display device
JP2007017637A (en) Laminated optical retardation plate, method for producing the same, luminance-improving film, and image display device
JP2009288440A (en) Retardation film, method for manufacturing retardation film, polarizing plate, and liquid crystal display
JP2007072213A (en) Viewing angle compensation plate for homeotropically oriented liquid crystal display device and homeotropically oriented liquid crystal display device using same
JP2006337575A (en) Homeotropically oriented liquid-crystal film, and device using the same
JP2008129176A (en) Elliptical polarizing plate and vertically aligned liquid crystal display apparatus using the same
TW201447398A (en) Laminated polarizing plate for horizontal alignment liquid crystal display device and horizontal alignment liquid crystal display device
WO2007111081A1 (en) Elliptical polarizing plate, method for production of the same, and liquid crystal display device using the same
KR20230145479A (en) Polarizer with retardation layer and method for manufacturing the same, and image display device using the polarizer with retardation layer