WO2008101944A1 - Verfahren zum aufstellen einer mobilen arbeitsmaschine - Google Patents

Verfahren zum aufstellen einer mobilen arbeitsmaschine Download PDF

Info

Publication number
WO2008101944A1
WO2008101944A1 PCT/EP2008/052038 EP2008052038W WO2008101944A1 WO 2008101944 A1 WO2008101944 A1 WO 2008101944A1 EP 2008052038 W EP2008052038 W EP 2008052038W WO 2008101944 A1 WO2008101944 A1 WO 2008101944A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
machine
geographical
determined
working machine
Prior art date
Application number
PCT/EP2008/052038
Other languages
English (en)
French (fr)
Inventor
Stephan Gelies
Jürgen Frick
Kurt Rau
Original Assignee
Putzmeister Concrete Pumps Gmbh
Universität Stuttgart
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Putzmeister Concrete Pumps Gmbh, Universität Stuttgart filed Critical Putzmeister Concrete Pumps Gmbh
Priority to AT08709120T priority Critical patent/ATE504537T1/de
Priority to EP08709120A priority patent/EP2125597B1/de
Priority to DE502008003100T priority patent/DE502008003100D1/de
Priority to US12/449,675 priority patent/US8224577B2/en
Publication of WO2008101944A1 publication Critical patent/WO2008101944A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/88Safety gear
    • B66C23/90Devices for indicating or limiting lifting moment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/40Applications of devices for transmitting control pulses; Applications of remote control devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F17/00Safety devices, e.g. for limiting or indicating lifting force
    • B66F17/006Safety devices, e.g. for limiting or indicating lifting force for working platforms
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/02Conveying or working-up concrete or similar masses able to be heaped or cast
    • E04G21/04Devices for both conveying and distributing
    • E04G21/0418Devices for both conveying and distributing with distribution hose
    • E04G21/0436Devices for both conveying and distributing with distribution hose on a mobile support, e.g. truck
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/02Conveying or working-up concrete or similar masses able to be heaped or cast
    • E04G21/04Devices for both conveying and distributing
    • E04G21/0418Devices for both conveying and distributing with distribution hose
    • E04G21/0445Devices for both conveying and distributing with distribution hose with booms
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/02Conveying or working-up concrete or similar masses able to be heaped or cast
    • E04G21/04Devices for both conveying and distributing
    • E04G21/0418Devices for both conveying and distributing with distribution hose
    • E04G21/0445Devices for both conveying and distributing with distribution hose with booms
    • E04G21/0463Devices for both conveying and distributing with distribution hose with booms with boom control mechanisms, e.g. to automate concrete distribution

Definitions

  • the invention relates to a method for setting up a mobile work machine, in which the substrate is analyzed at a site in terms of its nature and / or sustainability before the machine is positioned there and / or aligned and by means of aus synther support legs on according to the determined surface quality and capacity supported by suitable installation positions.
  • Mobile machines such. As truck-mounted pumps, mobile cranes and aerial work platforms, are provided with adjustable support legs, which should improve the stability of the machine at the site.
  • the support legs have the task of lifting the vehicle axles in order to use their own weight as a stand weight.
  • the support legs to prevent the tilting of the machine when high tilting moments arise over a work boom.
  • the substrate is subject to settlement due to the soil pressure generated by the upright support legs.
  • the assessment of the underground is quite difficult for a layman, so that it comes again and again to misjudgements of the underground properties. This is all the more true if in the underground cavities, such as channels, tunnels, shafts, pipes and the like are present. A failure of the ground under the support legs can lead to the overturning of the mobile work machine.
  • the reliable detection of cavities under the footprints of mobile machines has not been solved.
  • the present invention seeks to improve a method of the type specified in that already before the deployment of the work machine can be made a reliable prediction of the load capacity of the substrate.
  • the solution according to the invention is based on the recognition that many local authorities provide data on known and recorded cavities, such as channels, tunnels, shafts, lines, etc., in a geographical information system (GIS) digitally, in part also online, for example via the Internet can be retrieved.
  • GIS geographical information system
  • Mobile machines today often use an Internet-enabled interface, such.
  • GSM, UMTS, GPRS queried about the data, for example, from the municipal servers and information can be conveyed. If the exact position of the mobile work machine is known, potentially dangerous cavities can accordingly be detected via an online query of GIS data.
  • GIS geographical information system
  • geodesics of a geographic environment containing the site are read into a data store with a layer of known background data defining the nature of the subsoil and its capacity,
  • the geographical position of the work machine and its orientation at the place of use are determined and linked in the form of a data set defining at least the geographical set-up positions of the issued support legs with the read-in geological and ground data; - And that the machine is navigated with their support legs in each one according to the read geo and ground data suitable installation position.
  • the term "geodesics” shall essentially be understood to mean the cartographic path data in latitudes and longitudes which indicate the path of the working machine to the place of use and the cartographic conditions of the surroundings of the place of deployment on the earth's surface Also in the longitude and latitude system of the earth's surface specified system of attributes of the ground, such as cavities and the like, which may be decisive for the bearing capacity of the substrate and which are superimposed on the geodesics as a layer
  • the background data can be, for example, from the digital cable cadastres of the municipalities for
  • the geodesics and the underground data can be available as vector data in the form of dots, lines and areas or as raster data in the form of pixels Essentially the b Recognized graphics and CAD programs.
  • a preferred embodiment of the invention provides that the geo and background data read into the data memory are displayed as a geographical representation in a screen and that the geographic installation positions of the legs inserted into the geographic screen representation of the geo and background data and when navigating the machine relative to to be moved.
  • a preferred embodiment of the invention provides that the geographical position of the working machine at the place of use via a machine-mounted, satellite-based positioning system, such as the US-American GPS or the European Galileo system, is determined.
  • a machine-mounted, satellite-based positioning system such as the US-American GPS or the European Galileo system
  • the geographic orientation of the work machine can be determined, for example, by means of a second satellite-supported positioning system arranged at a fixed distance from the satellite-supported positioning system in a machine-fixed manner.
  • the geographic orientation of the work machine can be determined via a machine-fixed inertial sensor system, for example via a fiber gyro, gyro compass or a laser gyro.
  • Figure 1 is a view of an erected on the roadside truck concrete pump with narrowly supported on the street side support legs.
  • 2a, b is a plan view of the support structure of the truck-mounted concrete pump according to FIG. 1 in the condition of full support and narrow support;
  • FIG. 3 shows a block diagram of a circuit arrangement for the installation of a concrete pump at the place of use
  • FIG. 4 is an enlarged view of the screen of FIG. 3 with a cartographic representation of the site for the concrete pump with geographic background data and optimized installation positions for the support legs of the machine.
  • the truck-mounted concrete pump 1 shown in FIGS. 1 and 2 essentially consists of a multiaxial chassis 10, a fixed to a near-vertical mast block 12 about a chassis-fixed vertical axis 13 rotatably mounted concrete boom 14 and a support structure 15, a chassis-fixed support frame 16, two on the support frame 16 in each has a telescopic segment designed as a telescopic extension box 18 sliding front support legs 20 and two pivotable about a vertical axis 22 rear support legs 24.
  • the support legs 20, 24 are each supported with a downwardly extendable support leg 26 on the ground 28.
  • the front and rear support legs 20, 24 are extendable by hydraulic means from a driving position close to the chassis into a support position.
  • FIG. 2a shows the support structure of the truck-mounted concrete pump according to FIG. 1 in the condition of full support and FIG. 2b in the condition of a narrow support.
  • a special feature of the present invention is that the use of geodesics in the context of geo-information systems (GIS) 32 available in online databases (Internet) in conjunction with a satellite-based geographic positioning and orientation of the work machine 1 Cavities 30 or other defects in the soil can be prevented. It is important that the installation positions VR, VL, HR, HL of the support legs 26 on the exposed support legs 20, 24 are not in the immediate area of the cavities 30 arranged underneath.
  • GIS geo-information systems
  • the working machine has a circuit arrangement 35 with an on-board computer 36, via which the geodesics 38 of a place of operation together with a layer of known underground data 40 defining the background condition and capacity are connected via an Internet-capable interface (GSM, UMTS, GPRS) 42 are requested from a municipal geoinformation data server 32 and read into a data memory 44.
  • GSM Internet-capable interface
  • the position of the work machine 1, so their geographical position and orientation at the place of use, determined and in the form of at least the geographical Advicetellpositionen VR, VL, HR, HL of the issued support legs 20, 24 defining record 46 with the read in geo and background data 38th , 40 linked.
  • the working machine 1 with its support legs 20, 24 is navigated in each case according to the read-in geological and underground data 38, 40 suitable, cavity-free installation position.
  • the geo and background data read into the data memory 44 are displayed with the associated cavity positions 30 as a geographical representation 48 in a screen 50, while the geographic setup positions of the support legs are inserted into the geographic screen representation 48 of the geo and background data and during navigation of the work machine 1 can be moved relative to these.
  • the evaluation can be done either visually by the operator or by the evaluation of the potential installation position at the site by the computer 36.
  • the geographic position of the working machine at the place of use is determined in the embodiment shown by means of a machine-mounted, satellite-supported positioning system 52.
  • the additionally required geographical orientation of the working machine 1 at the place of use can be determined either via a second positioning system 54, which is arranged fixedly at a distance from the first positioning system 52, or via a machine-resistant inertial sensor system.
  • the latter is expediently designed as an electro-optical fiber gyroscope 56 or as a laser fiber gyroscope.
  • the suitability or unsuitability of a set-up position can be indicated by an optical or acoustic release or warning signal.
  • the screen content 48 of the computer system is shown by way of example in FIG.
  • the geographical environment 38 'of a site for the work machine 1 is shown together with the course of the background and load capacity defining ground data 40', resulting for example from a municipal line cadaster.
  • the cartographic representation of the free streets and places recognize that can be driven by the working machine 1 and which are basically suitable for supporting the machine.
  • For routes with a certain traffic volume it is also possible that by a narrow support, as in the case of Figs. 1 and 2b, a portion of the available roadway 57 remains free for traffic.
  • the suitable installation positions and orientations of the working machine 1 can be determined already in the planning phase. This makes it possible, especially in complicated locations, to plan from the outset in which direction and from which side the working machine 1 approaches the place of use so that it can be optimally supported with regard to the available installation positions. This is achieved by simulating the approach of the work machine and its installation on the basis of a model data set of the work machine 1 inserted into the geological and background data 38 ', 40' and determining the approach paths and / or set-up positions determined in a route or setpoint memory 58 be stored for the subsequent navigation of the work machine 1.
  • the invention relates to a method for setting up a mobile work machine 1, in particular a truck-mounted concrete pump, a mobile crane or a mobile working platform.
  • the substrate 28 is analyzed at a place of use with regard to its nature and / or load capacity before the work machine 1 is positioned and / or aligned there and by means of adjustable support legs 20, 24 on suitable installation positions in accordance with the determined substrate condition and load-bearing capacity VR, VL, HR, HL is supported.
  • geodesics 38 of a geographical environment containing the location of use are determined via a computer with a layer of known surface properties and bearing capacity.
  • Underground data 40 is read into a data memory 44.
  • the geographical position of the work machine 1 and its orientation at the place of use is determined and linked in the form of a geo-graphical set-up positions VR, VL, HR, HL of the issued support legs 20, 24 defining record with the read geo- and background data 38, 40 , Then, the working machine 1 is navigated with its support legs 20, 24 in each one in accordance with the read in geo and background data suitable installation position.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Automation & Control Theory (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • On-Site Construction Work That Accompanies The Preparation And Application Of Concrete (AREA)
  • Lifting Devices For Agricultural Implements (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

Die Erfindung bezieht sich auf ein Verfahren zum Aufstellen einer mobilen Arbeitsmaschine (1), insbesondere einer Autobetonpumpe, eines Mobilkrans oder einer fahrbaren Hubarbeitsbühne. Bei einem solchen Verfahren wird der Untergrund (28) an einem Einsatzort hinsichtlich seiner Beschaffenheit und/oder Tragfähigkeit analysiert, bevor die Arbeitsmaschine (1) dort positioniert und/oder ausgerichtet und mittels ausstellbarer Stützbeine (20, 24) auf nach Maßgabe der ermittelten Untergrundbeschaffenheit und -tragfähigkeit geeigneten Aufstellpositionen (VR, VL, HR, HL) abgestützt wird. Um eine optimale Aufstellposition für die Stützbeine (20, 24) zu ermitteln, werden über einen Computer Geodäten (38) einer den Einsatzort enthaltenden geografischen Umgebung mit einem Layer aus bekannten, die Untergrundbeschaffenheit und -tragfähigkeit definierenden Untergrunddaten (40) in einen Datenspeicher (44) eingelesen. Außerdem wird die geografische Position der Arbeitsmaschine (1) und deren Orientierung am Einsatzort bestimmt und in Form eines zumindest die geografischen Aufstellpositionen (VR, VL, HR, HL) der ausgestellten Stützbeine (20, 24) definierenden Datensatzes mit den eingelesenen Geo- und Untergrunddaten (38, 40) verknüpft. Sodann wird die Arbeitsmaschine (1) mit ihren Stützbeinen (20, 24) in je eine nach Maßgabe der eingelesenen Geo- und Untergrunddaten geeignete Aufstellposition navigiert.

Description

Verfahren zum Aufstellen einer mobilen Arbeitsmaschine
Beschreibung
Die Erfindung betrifft ein Verfahren zum Aufstellen einer mobilen Arbeitsmaschine, bei welchem der Untergrund an einem Einsatzort hinsichtlich seiner Beschaffenheit und/oder Tragfähigkeit analysiert wird, bevor die Arbeitsmaschine dort positioniert und/oder ausgerichtet und mittels ausstellbarer Stützbeine auf nach Maßgabe der ermittelten Untergrundbeschaffenheit und -tragfähigkeit geeigneten Aufstellpositionen abgestützt wird.
Mobile Arbeitsmaschinen, wie z. B. Autobetonpumpen, Mobilkrane und Hubarbeitsbühnen, sind mit ausstellbaren Stützbeinen versehen, die am Einsatzort die Standfestigkeit der Arbeitsmaschine verbessern sollen. Die Stütz- beine haben dabei einerseits die Aufgabe, die Fahrzeugachsen anzuheben, um deren Eigengewicht als Standgewicht zu nutzen. Zum anderen sollen die Stützbeine das Kippen der Arbeitsmaschine verhindern, wenn über einen Arbeitsausleger hohe Kippmomente entstehen. Weiter unterliegt der Untergrund aufgrund des über die aufstehenden Stützbeine erzeugten Boden- drucks einer Setzung. Die Einschätzung des Untergrundes ist für einen Laien recht schwierig, so dass es immer wieder zu Fehleinschätzungen der Untergrundeigenschaften kommt. Dies gilt umso mehr, wenn im Untergrund Hohlräume, wie beispielsweise Kanäle, Stollen, Schächte, Leitungen und dergleichen vorhanden sind. Ein Versagen des Untergrunds unter den Stütz- beinen kann zu einem Umstürzen der mobilen Arbeitsmaschine führen. Das sichere Erkennen von Hohlräumen unter den Aufstellflächen von mobilen Arbeitsmaschinen ist bisher nicht gelöst.
Ausgehend hiervon liegt der Erfindung die Aufgabe zugrunde, ein Verfahren der eingangs angegebenen Art dahingehend zu verbessern, dass bereits vor der Aufstellung der Arbeitsmaschine eine zuverlässige Vorhersage über die Tragfähigkeit des Untergrunds gemacht werden kann.
Zur Lösung dieser Aufgabe wird die im Patentanspruch 1 angegebene Merkmalskombination vorgeschlagen. Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung ergeben sich aus den abhängigen Ansprüchen.
Die erfindungsgemäße Lösung geht von der Erkenntnis aus, dass viele Kommunen Daten über bekannte und erfasste Hohlräume, wie Kanäle, Stollen, Schächte, Leitungen usw., in einem geografischen Informationssystem (GIS) digital zur Verfügung stellen, die teilweise auch Online beispielsweise über das Internet abgerufen werden können. Mobile Arbeitsmaschinen benutzen heute schon oft eine Internetfähige Schnittstelle, wie z. B. GSM, UMTS, GPRS, über die Daten beispielsweise aus den kommunalen Servern abgefragt und Informationen vermittelt werden können. Ist die genaue Position der mobilen Arbeitsmaschine bekannt, können demgemäß über eine Online-Abfrage von GIS-Daten potentiell gefährliche Hohlräume erkannt werden. Dementsprechend besteht die erfindungsgemäße Lösung im We- sentlichen darin,
- dass über einen Computer Geodäten einer den Einsatzort enthaltenden geografischen Umgebung mit einem Layer aus bekannten, die Untergrundbeschaffenheit und -tragfähigkeit definierenden Untergrunddaten in einen Datenspeicher eingelesen werden,
- dass die geografische Position der Arbeitsmaschine und deren Orientierung am Einsatzort bestimmt und in Form eines zumindest die geografischen Aufstellpositionen der ausgestellten Stützbeine definierenden Da- tensatzes mit den eingelesenen Geo- und Untergrunddaten verknüpft werden, - und dass die Arbeitsmaschine mit ihren Stützbeinen in je eine nach Maßgabe der eingelesenen Geo- und Untergrunddaten geeignete Aufstellposition navigiert wird.
Unter dem Begriff „Geodäten" sollen im Folgenden im Wesentlichen die kar- tografischen Wegdaten in Längen- und Breitengraden verstanden werden, die den Weg der Arbeitsmaschine zum Einsatzort und die kartografischen Verhältnisse der Umgebung des Einsatzortes auf der Erdoberfläche ange- ben. Die Untergrunddaten bilden ein ebenfalls im Längen- und Breitengradsystem der Erdoberfläche angegebenes System von Attributen des Untergrundes, wie Hohlräume und dergleichen, die für die Tragfähigkeit des Untergrundes maßgeblich sein können und die den Geodäten als Layer überlagert sind. Die Untergrunddaten lassen sich beispielsweise aus den digitalen Leitungskatastern der Kommunen für Wasser, Kanal, Gas und Strom über ein Online-Datennetz entnehmen. Die Geodäten und die Untergrunddaten können als Vektordaten in Form von Punkten, Linien und Flächen oder als Rasterdaten in Form von Pixeln zur Verfügung stehen. Die verwendeten Datenstrukturen entsprechen z. Z. im Wesentlichen den bekannten Grafik- und CAD-Programmen.
Eine bevorzugte Ausgestaltung der Erfindung sieht vor, dass die in den Datenspeicher eingelesenen Geo- und Untergrunddaten als geografische Darstellung in einem Bildschirm angezeigt werden und dass die geografischen Aufstellpositionen der Standbeine in die geografische Bildschirmdarstellung der Geo- und Untergrunddaten eingefügt und beim Navigieren der Arbeitsmaschine relativ zu diesen bewegt werden. Eine bevorzugte Ausgestaltung der Erfindung sieht vor, dass die geografische Position der Arbeitsmaschine am Einsatzort über ein maschinenfest angeordnetes, satellitengestützes Po- sitioniersystem, wie das US-amerikanische GPS oder das europäische Galileo-System, bestimmt wird. Um zusätzlich die genaue geografische Aufstellposition der Stützbeine bestimmen zu können, bedarf es außerdem der Bestimmung der geografi- schen Orientierung der Arbeitsmaschine am Einsatzort, also der Ausrichtung der Fahrzeuglängsachse der Arbeitsmaschine in Bezug auf die Himmelsrichtungen. Die geografische Orientierung der Arbeitsmaschine kann beispielsweise über ein im Abstand von dem satellitengestützten Positioniersystem maschinenfest angeordnetes zweites satellitengestütztes Positioniersystem bestimmt werden. Alternativ hierzu kann die geografische Orientierung der Arbeitsmaschine über ein maschinenfestes Inertialsensorsystem, beispielsweise über einen Faserkreisel, Kreiselkompass oder einen Laserkreisel, bestimmt werden.
Mit den beschriebenen Verfahrensschritten ist es möglich, die Arbeitsma- schine am Einsatzort entweder von Hand durch einen Maschinisten oder automatisch in eine geeignete Aufstellposition für ihre Stützbeine zu navigieren und dort abzustützen.
Andererseits ist es mit den erfindungsgemäßen Maßnahmen möglich, die Anfahrt der Arbeitsmaschine zum Einsatzort und deren Aufstellung anhand eines in die Geo- und Untergrunddaten eingefügten Modelldatensatzes der Arbeitsmaschine zu simulieren und die dabei ermittelten Anfahrwege und/oder Aufstellpositionen in einem Routen- oder Sollwertspeicher für eine spätere Navigation der Arbeitsmaschine zum Aufstellort abzulegen.
Im Folgenden wird die Erfindung anhand eines in der Zeichnung in schema- tischer Weise dargestellten Ausführungsbeispiels näher erläutert. Es zeigen
Fig. 1 eine Ansicht einer am Straßenrand aufgestellten Autobetonpumpe mit auf der Straßenseite schmal abgestützten Stützbeinen; Fig. 2a, b eine Draufsicht auf die Stützkonstruktion der Autobetonpumpe nach Fig. 1 im Zustand der Vollabstützung und der Schmalabstüt- zung;
Fig. 3 ein Blockschaltbild einer Schaltungsanordnung für die Aufstellung einer Betonpumpe am Einsatzort;
Fig. 4 eine vergrößerte Darstellung des Bildschirms nach Fig. 3 mit einer kartografischen Darstellung des Einsatzorts für die Beton- pumpe mit geografischen Untergrunddaten und optimierten Aufstellpositionen für die Stützbeine der Arbeitsmaschine.
Die in Fig. 1 und 2 dargestellte Autobetonpumpe 1 besteht im wesentlichen aus einem mehrachsigen Fahrgestell 10, einem an einem vorderachsnahen Mastbock 12 um eine fahrgestellfeste Hochachse 13 drehbar gelagerten Betonverteilermast 14 und einer Stützkonstruktion 15, die einen fahrgestellfesten Tragrahmen 16, zwei am Tragrahmen 16 in je einem als Ausschubkasten ausgebildeten Teleskopsegment 18 verschiebbare vordere Stützbeine 20 und zwei um eine lotrechte Achse 22 verschwenkbare hintere Stützbeine 24 aufweist. Die Stützbeine 20, 24 sind mit je einem nach unten ausfahrbaren Stützfuß 26 auf dem Untergrund 28 abstützbar. Die vorderen und rückwärtigen Stützbeine 20, 24 sind mit hydraulischen Mitteln von einer fahrgestellnahen Fahrstellung in eine Abstützstellung ausfahrbar. Bei dem in Fig. 1 gezeigten Beispiel wurde auf der Straßenseite eine Schmalabstützung gewählt. Mit der Schmalabstützung kann den Platzproblemen auf Baustellen Rechnung getragen werden. Allerdings führt sie zu einer Einschränkung im Drehwinkel des Betonverteilermasts 14. Fig. 2a zeigt die Stützkonstruktion der Autobetonpumpe nach Fig. 1 im Zustand der Vollabstützung und Fig. 2b im Zustand einer Schmalabstützung. Beim Positionieren der Autobetonpumpe 1 kommt es ebenso wie bei jeder anderen Arbeitsmaschine mit Stützbeinen darauf an, dass der Untergrund 28 ausreichend tragfähig ist. Bei der Auswahl der Aufstellpositionen der Stützbeine ist darauf zu achten, dass sich dort keine Hohlräume 30 im Un- tergrund 28 befinden, die zum Einbruch und zu einem Umstürzen der Arbeitsmaschine 1 führen könnten.
Eine Besonderheit der vorliegenden Erfindung besteht darin, dass durch die Nutzung von Geodäten im Rahmen von in Online-Datenbanken (Internet) verfügbaren Geo-Informationssystemen (GIS) 32 in Verbindung mit einer Satelliten 34 gestützten geografischen Positionierung und Orientierung der Arbeitsmaschine 1 das Aufstellen auf bekannten Hohlräumen 30 oder anderen Fehlstellen im Boden verhindert werden kann. Wichtig ist dabei, dass sich die Aufstellpositionen VR, VL, HR, HL der Stützfüße 26 an den ausge- stellten Stützbeinen 20, 24 nicht im unmittelbaren Bereich der darunter angeordneten Hohlräume 30 befinden.
Um dies zu verhindern, weist die Arbeitsmaschine eine Schaltungsanordnung 35 mit einem Bordcomputer 36 auf, über den die Geodäten 38 eines Einsatzortes zusammen mit einem Layer aus bekannten, die Untergrundbeschaffenheit und -tragfähigkeit definierenden Untergrunddaten 40 über eine Internet-fähige Schnittstelle (GSM, UMTS, GPRS) 42 von einem kommunalen Geoinformationsdatenserver 32 angefordert und in einen Datenspeicher 44 eingelesen werden. Außerdem wird die Stellung der Arbeitsmaschine 1 , also deren geografische Position und Orientierung am Einsatzort, bestimmt und in Form eines zumindest die geografischen Aufstellpositionen VR, VL, HR, HL der ausgestellten Stützbeine 20, 24 definierenden Datensatzes 46 mit den eingelesenen Geo- und Untergrunddaten 38, 40 verknüpft. Aufgrund dieser Daten wird die Arbeitsmaschine 1 mit ihren Stützbeinen 20, 24 in je eine nach Maßgabe der eingelesenen Geo- und Untergrunddaten 38, 40 geeignete, hohlraumfreie Aufstellposition navigiert. Zu diesem Zweck kön- nen die in den Datenspeicher 44 eingelesenen Geo- und Untergrunddaten mit den zugehörigen Hohlraumpositionen 30 als geografische Darstellung 48 in einem Bildschirm 50 angezeigt werden, während die geografischen Aufstellpositionen der Stützbeine in die geografische Bildschirmdarstellung 48 der Geo- und Untergrunddaten eingefügt und beim Navigieren der Arbeitsmaschine 1 relativ zu diesen bewegt werden können. Die Auswertung kann entweder visuell durch den Maschinisten oder durch die Bewertung der potentiellen Aufstellposition am Einsatzort durch den Computer 36 erfolgen.
Die geografische Position der Arbeitsmaschine am Einsatzort wird bei dem gezeigten Ausführungsbeispiel über ein maschinenfest angeordnetes, satel- litengestützes Positioniersystem 52 bestimmt. Die zusätzlich erforderliche geografische Orientierung der Arbeitsmaschine 1 am Einsatzort kann entweder über ein im Abstand von dem ersten Positioniersystem 52 maschinenfest angeordnetes zweites Positioniersystem 54 oder über ein maschinenfestes Inertialsensorsystem bestimmt werden. Letzteres ist dabei zweckmäßig als elektrooptischer Faserkreisel 56 oder als Laserfaserkreisel ausgebildet. Im Falle einer automatischen Einmessung kann die Eignung oder die Nichteignung einer Aufstellposition durch ein optisches oder akustisches Freigabe- oder Warnsignal angezeigt werden.
Der Bildschirminhalt 48 des Computersystems ist beispielhaft in Fig. 4 dargestellt. Dort ist die geografische Umgebung 38' eines Einsatzorts für die Arbeitsmaschine 1 zusammen mit dem Verlauf der die Untergrundbeschaf- fenheit und Tragfähigkeit definierenden Untergrunddaten 40', die sich beispielsweise aus einem kommunalen Leitungskataster ergeben, dargestellt. Weiter lässt die kartografische Darstellung die freien Straßenzüge und Plätze erkennen, die von der Arbeitsmaschine 1 befahren werden können und die für die Abstützung der Arbeitsmaschine grundsätzlich geeignet sind. Beim Aufstellen ist darauf zu achten, dass die Aufstellpositionen VR, VL, HR, HL der ausgestellten Stützbeine 20, 24 der Arbeitsmaschine außerhalb der die Tragfähigkeit des Untergrunds mindernden Kanäle oder Hohlräume 30 zu liegen kommen. Bei Fahrstraßen mit einem gewissen Verkehrsaufkommen ist es außerdem möglich, dass durch eine Schmalabstützung, wie im Falle der Fig. 1 und 2b, ein Teil der zur Verfügung stehenden Fahrbahn 57 für den Verkehr frei bleibt.
Mit der vorstehend beschriebenen Methode lassen sich bereits in der Planungsphase die in Betracht kommenden Aufstellpositionen und Orientierungen der Arbeitsmaschine 1 ermitteln. Damit ist es vor allem bei komplizierten Einsatzorten möglich, von vorneherein zu planen, in welcher Richtung und von welcher Seite her die Arbeitsmaschine 1 zum Einsatzort anfährt, damit sie im Hinblick auf die zur Verfügung stehenden Aufstellpositionen optimal abgestützt werden kann. Dies wird dadurch erreicht, dass die Anfahrt der Arbeitsmaschine und deren Aufstellung anhand eines in die Geo- und Un- tergrunddaten 38', 40' eingefügten Modelldatensatzes der Arbeitsmaschine 1 simuliert und die dabei ermittelten Anfahrwege und/oder Aufstellpositionen in einem Routen- oder Sollwertspeicher 58 für die spätere Navigation der Arbeitsmaschine 1 abgelegt werden.
Zusammenfassend ist folgendes festzuhalten: Die Erfindung bezieht sich auf ein Verfahren zum Aufstellen einer mobilen Arbeitsmaschine 1 , insbesondere einer Autobetonpumpe, eines Mobilkrans oder einer fahrbaren Hubarbeitsbühne. Bei einem solchen Verfahren wird der Untergrund 28 an einem Einsatzort hinsichtlich seiner Beschaffenheit und/oder Tragfähigkeit analy- siert, bevor die Arbeitsmaschine 1 dort positioniert und/oder ausgerichtet und mittels ausstellbarer Stützbeine 20, 24 auf nach Maßgabe der ermittelten Untergrundbeschaffenheit und -tragfähigkeit geeigneten Aufstellpositionen VR, VL, HR, HL abgestützt wird. Um eine optimale Aufstellposition für die Stützbeine 20, 24 zu ermitteln, werden über einen Computer Geodäten 38 einer den Einsatzort enthaltenden geografischen Umgebung mit einem Layer aus bekannten, die Untergrundbeschaffenheit und -tragfähigkeit defi- nierenden Untergrunddaten 40 in einen Datenspeicher 44 eingelesen. Außerdem wird die geografische Position der Arbeitsmaschine 1 und deren Orientierung am Einsatzort bestimmt und in Form eines zumindest die geo- grafischen Aufstellpositionen VR, VL, HR, HL der ausgestellten Stützbeine 20, 24 definierenden Datensatzes mit den eingelesenen Geo- und Untergrunddaten 38, 40 verknüpft. Sodann wird die Arbeitsmaschine 1 mit ihren Stützbeinen 20, 24 in je eine nach Maßgabe der eingelesenen Geo- und Untergrunddaten geeignete Aufstellposition navigiert.

Claims

Patentansprüche
1. Verfahren zum Aufstellen einer mobilen Arbeitsmaschine (1 ), bei welchem der Untergrund (28) an einem Einsatzort hinsichtlich seiner Be- schaffenheit und/oder Tragfähigkeit analysiert wird, bevor die Arbeitsmaschine (1 ) dort positioniert und/oder ausgerichtet und mittels ausstellbarer Stützbeine (20, 24) auf nach Maßgabe der ermittelten Untergrundbeschaffenheit und/oder -tragfähigkeit geeigneten Aufstellpositionen (VR, VL, HR, HL) abgestützt wird, dadurch gekennzeichnet, dass über einen Computer Geodäten (38) einer den Einsatzort enthaltenden geografischen Umgebung mit einem Layer aus bekannten, die Untergrundbeschaffenheit und/oder -tragfähigkeit definierenden Untergrunddaten (40) in einen Datenspeicher (44) eingelesen werden, dass die geografische Position der Arbeitsmaschine (1 ) und deren Orientierung am Einsatzort bestimmt und in Form eines zumindest die geografischen Aufstellpositionen (VR, VL, HR, HL) der ausgestellten Stützbeine (20, 24) definierenden Datensatzes mit den eingelesenen Geo- und Untergrunddaten (38, 40) verknüpft werden, und dass die Arbeitsmaschine (1 ) mit ihren Stützbeinen (20, 24) in je eine nach Maßgabe der eingelesenen Geo- und Untergrunddaten geeignete
Aufstellposition navigiert wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die in den Datenspeicher (44) eingelesenen Geo- und Untergrunddaten (38, 40) als geografische Darstellung (48) auf einem Bildschirm (50) angezeigt werden, und dass die geografischen Aufstellpositionen (VR, VL, HR, HL) der Stützbeine (20, 24) in die geografische Bildschirmdarstellung (48) der Geo- und Untergrunddaten (38, 40) eingefügt und beim Navigieren der Arbeitsmaschine (1 ) relativ zu dieser bewegt werden.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die geografische Position der Arbeitsmaschine (1 ) am Einsatzort über ein maschinenfest angeordnetes, satellitengestütztes Position iersystem (52) bestimmt wird.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die geografische Orientierung der Arbeitsmaschine am Einsatzort über ein im Abstand von dem Positioniersystem (52) maschinenfest angeordnetes zweites, satellitengestütztes Positioniersystem (54) bestimmt wird.
5. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die geografische Orientierung der Arbeitsmaschine (1 ) am Einsatzort über ein maschinenfestes Inertialsensorsystem (56) bestimmt wird.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass das Inertialsensorsystem (56) als Faserkreisel oder als Laserkreisel ausgebildet ist.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Untergrunddaten (40) digitale Geoinformationsdaten über Hohlräume (30), Kanäle, Leitungen im Untergrund (28) enthalten.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeich- net, dass die Untergrunddaten (40) in Form von Pixeldateien eingelesen und im Computer (36) verarbeitet werden.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Untergrunddaten (40) in Form von Vektordateien eingele- sen und im Computer (36) verarbeitet werden.
10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Geo- und/oder Untergrunddaten (38, 40) über eine Online-Datenbank (32) abgerufen werden.
11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Anfahrt der Arbeitsmaschine zum Einsatzort und deren Aufstellung anhand eines in die Geo- und Untergrunddaten (38, 40) eingefügten Modelldatensatzes der Arbeitsmaschine (1 ) simuliert wird, und dass die dabei ermittelten Anfahrwege und/oder Aufstellpositionen in einem Routen- oder Sollwertspeicher (58) für eine spätere Navigation der Arbeitsmaschine (1 ) zum Einsatzort abgelegt werden.
12. Verfahren nach einem der Ansprüche 1 bis 11 , dadurch gekennzeichnet, dass die Arbeitsmaschine (1 ) von einem Maschinisten in eine ge- eignete Aufstellposition navigiert und dort abgestützt wird.
13. Verfahren nach einem der Ansprüche 1 bis 11 , dadurch gekennzeichnet, dass die Arbeitsmaschine (1 ) anhand ihrer gemessenen geografi- schen Positions- und Orientierungsdaten (46) automatisch nach Maß- gäbe der ermittelten Geo- und Untergrunddaten (38, 40) mit ihren
Stützbeinen (20, 24) in die Aufstellpositionen (VR, VL, HR, HL) navigiert und dort abgestützt wird.
14. Verfahren nach einem der Ansprüche 1 bis 13, dadurch gekennzeich- net, dass die Eignung oder Nichteignung einer potentiellen Aufstellposition durch ein optisches oder akustisches Freigabe- oder Warnsignal angezeigt wird.
PCT/EP2008/052038 2007-02-21 2008-02-20 Verfahren zum aufstellen einer mobilen arbeitsmaschine WO2008101944A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AT08709120T ATE504537T1 (de) 2007-02-21 2008-02-20 Verfahren zum aufstellen einer mobilen arbeitsmaschine
EP08709120A EP2125597B1 (de) 2007-02-21 2008-02-20 Verfahren zum aufstellen einer mobilen arbeitsmaschine
DE502008003100T DE502008003100D1 (de) 2007-02-21 2008-02-20 Verfahren zum aufstellen einer mobilen arbeitsmaschine
US12/449,675 US8224577B2 (en) 2007-02-21 2008-02-20 Method for setting up a mobile machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007008881.9 2007-02-21
DE102007008881A DE102007008881A1 (de) 2007-02-21 2007-02-21 Verfahren zum Aufstellen einer mobilen Arbeitsmaschine

Publications (1)

Publication Number Publication Date
WO2008101944A1 true WO2008101944A1 (de) 2008-08-28

Family

ID=39493620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/052038 WO2008101944A1 (de) 2007-02-21 2008-02-20 Verfahren zum aufstellen einer mobilen arbeitsmaschine

Country Status (6)

Country Link
US (1) US8224577B2 (de)
EP (1) EP2125597B1 (de)
AT (1) ATE504537T1 (de)
DE (2) DE102007008881A1 (de)
ES (1) ES2361221T3 (de)
WO (1) WO2008101944A1 (de)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130054075A1 (en) * 2011-08-22 2013-02-28 Deere And Company Location Control System for Feature Placement
US9415976B2 (en) * 2012-05-10 2016-08-16 Trimble Navigation Limited Crane collision avoidance
DE102013206366A1 (de) * 2013-04-11 2014-10-16 Putzmeister Engineering Gmbh Fahrbare Betonpumpe mit Verteilermast und Abstützvorrichtung
DE102013006232A1 (de) * 2013-04-11 2014-10-16 Liebherr-Betonpumpen Gmbh Fahrbares Arbeitsgerät mit drehbarem Mast oder Ausleger
DE102013209878A1 (de) * 2013-05-28 2014-12-04 Putzmeister Engineering Gmbh Arbeitsgerät mit an einem Drehkopf angeordneten Arbeitsausleger
US20150375974A1 (en) * 2014-06-27 2015-12-31 Caterpillar Forest Products Inc. Stabilizer legs for knuckleboom loader
EP3371383B1 (de) * 2015-11-02 2020-01-29 Technische Universität Hamburg-Harburg Baugerätstandsicherungsverfahren und -system
US10543817B2 (en) 2016-12-15 2020-01-28 Schwing America, Inc. Powered rear outrigger systems
IT201800001069A1 (it) * 2018-01-16 2019-07-16 Cifa Spa Macchina operatrice mobile
EP3533934B1 (de) * 2018-03-01 2020-07-15 BAUER Spezialtiefbau GmbH Bauverfahren
DE102019118902A1 (de) * 2019-07-12 2021-01-14 Putzmeister Engineering Gmbh Fahrbare Betonpumpe
DE102019211674A1 (de) * 2019-08-02 2021-02-04 Robert Bosch Gmbh Verfahren und Vorrichtung zum Ausgeben eines Steuersignals an eine Einheit einer mobilen Arbeitsmaschine, insbesondere einer Hubarbeitsbühne

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5646844A (en) * 1994-04-18 1997-07-08 Caterpillar Inc. Method and apparatus for real-time monitoring and coordination of multiple geography altering machines on a work site
WO2003087720A1 (en) * 2002-04-12 2003-10-23 Guardian Angel Protection Inc. Apparatus for determining positioning relative to utility lines
DE10320382A1 (de) * 2003-05-06 2004-12-23 Universität Stuttgart vertreten durch das Institut für Geotechnik Mobile Arbeitsmaschine mit Stützauslegern
US20080024318A1 (en) * 2006-07-06 2008-01-31 Hall David R System and Method for Sharing Information between Downhole Drill Strings

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09112032A (ja) * 1995-10-17 1997-04-28 Babcock Hitachi Kk 建設管理支援システム
US6202013B1 (en) * 1998-01-15 2001-03-13 Schwing America, Inc. Articulated boom monitoring system
JP2003221183A (ja) * 2002-01-31 2003-08-05 Penta Ocean Constr Co Ltd クレーンに対応するバケット台車位置決め装置
DE10240180A1 (de) * 2002-08-27 2004-03-11 Putzmeister Ag Vorrichtung zur Betätigung eines Knickmasts
JP4211584B2 (ja) * 2003-11-28 2009-01-21 株式会社大林組 部材建込み方法、部材建込みプログラム、およびこれを記録した記録媒体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5646844A (en) * 1994-04-18 1997-07-08 Caterpillar Inc. Method and apparatus for real-time monitoring and coordination of multiple geography altering machines on a work site
WO2003087720A1 (en) * 2002-04-12 2003-10-23 Guardian Angel Protection Inc. Apparatus for determining positioning relative to utility lines
DE10320382A1 (de) * 2003-05-06 2004-12-23 Universität Stuttgart vertreten durch das Institut für Geotechnik Mobile Arbeitsmaschine mit Stützauslegern
US20080024318A1 (en) * 2006-07-06 2008-01-31 Hall David R System and Method for Sharing Information between Downhole Drill Strings

Also Published As

Publication number Publication date
US8224577B2 (en) 2012-07-17
ES2361221T3 (es) 2011-06-15
DE502008003100D1 (de) 2011-05-19
ATE504537T1 (de) 2011-04-15
EP2125597B1 (de) 2011-04-06
DE102007008881A1 (de) 2008-08-28
US20100324824A1 (en) 2010-12-23
EP2125597A1 (de) 2009-12-02

Similar Documents

Publication Publication Date Title
EP2125597B1 (de) Verfahren zum aufstellen einer mobilen arbeitsmaschine
DE69819628T2 (de) Positionsanzeigevorrichtung für Navigationseinrichtung mit Stockwerkangabe
DE69824218T2 (de) Navigationsvorrichtung
EP3577420B1 (de) Verfahren und vorrichtung zur aktualisierung einer digitalen karte
DE102019210970A1 (de) Visuelles assistenz- und steuersystem für einearbeitsmaschine
DE212017000120U1 (de) Autonome intelligente Fahrbahnprüfvorrichtung und Robotersystem
EP2005115B1 (de) Navigationsanordnung und -verfahren für ein kraftfahrzeug
DE112004001405T5 (de) Kartenanzeigeverfahren
DE102010061957A1 (de) Navigationssystem für ein Elektrofahrzeug und Navigationsserviceverfahren hiervon
EP2325601B1 (de) Messung unterirdischer Bauwerke, insbesondere beim unterirdischen Vortrieb, mit Fröschen
EP3581889A2 (de) Computerimplementiertes verfahren für die erstellung einer route für transport und durchführung von transport
DE102014107810A1 (de) Verfahren zur Visualisierung der Abstützposition und/oder des Ausfahrweges zumindest einer Stütze eines Fahrzeuges sowie Fahrzeug mit zumindest einer Stütze
EP1174699B1 (de) Verfahren und Einrichtung zum Prüfen der Festigkeit von stehend verankerten Masten
DE19945918A1 (de) Karten-Anzeigeeinheit
DE102021206428A1 (de) Steuervorrichtung für ein selbstfahrendes Transportfahrzeug, Transportfahrzeug mit einer solchen Steuervorrichtung, Fahrzeugflotte mit und Verfahren zum Betreiben von einer Mehrzahl von Transportfahrzeugen
EP1557493B1 (de) Verfahren zum Betreiben eines Strassenfertigers
DE102010044743A1 (de) Fahrzeug für eine Zustandserfassung von Fahrbahnbelägen
DE102009045455A1 (de) Bordseitige Fahrzeugnavigation-Zielsuchvorrichtung und bordseitiges Fahrzeugnavigation-Zielsuchverfahren
EP3076129B1 (de) Bereitstellen von zusatzlandkartendaten für eine offroad-strecke mit einer navigationseinrichtung
DE102018006464A1 (de) Vorrichtung zum Positionieren einer elektronischen Einheit an einer Erdbohrvorrichtung
DE102019202988A1 (de) System und Verfahren zur Visualisierung von Geofencing-Eigenschaften eines Fahrzeugs
DE102014015442B4 (de) Verfahren zum Setzen von Leitdrahtträgern und Setzvorrichtung
DE102022200124B4 (de) Mobile Erfassungsvorrichtung und Verfahren zum Bereitstellen einer Durchfahrtsbreite und/oder Durchfahrtshöhe eines Durchfahrbereichs für ein Kraftfahrzeug auf einer Fahrbahn
DE102022001581A1 (de) ORTUNGS-, ANTSTEUERUNGS- und/oder POSITIONSDATENERFASSUNGSVERFAHREN und -VORRICHTUNG, sowie FAHRZEUG mit ORTUNGS-, ANSTEUERUNGS- und/oder POSITIONSDATENERFASSUNGSFUNKTION
DE102022130587A1 (de) Verfahren zum betätigen wenigstens einer ausgabeeinheit, meldesystem für wenigstens ein begleitfahrzeug, begleitfahrzeug und fahrzeugverband

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08709120

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008709120

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12449675

Country of ref document: US