WO2008086760A1 - Ansteuerung eines phasenmodulzweiges eines multilevel-stromrichters - Google Patents

Ansteuerung eines phasenmodulzweiges eines multilevel-stromrichters Download PDF

Info

Publication number
WO2008086760A1
WO2008086760A1 PCT/DE2007/000099 DE2007000099W WO2008086760A1 WO 2008086760 A1 WO2008086760 A1 WO 2008086760A1 DE 2007000099 W DE2007000099 W DE 2007000099W WO 2008086760 A1 WO2008086760 A1 WO 2008086760A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy
energy storage
phase module
switched
actual value
Prior art date
Application number
PCT/DE2007/000099
Other languages
English (en)
French (fr)
Inventor
Mike Dommaschk
Jörg DORN
Ingo Euler
Jörg LANG
Quoc-Buu Tu
Klaus WÜRFLINGER
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to EP07702379.4A priority Critical patent/EP2122817B1/de
Priority to PL07702379T priority patent/PL2122817T3/pl
Priority to DE112007003408T priority patent/DE112007003408A5/de
Priority to US12/523,461 priority patent/US8390259B2/en
Priority to JP2009545811A priority patent/JP5247723B2/ja
Priority to CN2007800500693A priority patent/CN101584109B/zh
Priority to PCT/DE2007/000099 priority patent/WO2008086760A1/de
Priority to ES07702379.4T priority patent/ES2664868T3/es
Priority to DK07702379.4T priority patent/DK2122817T3/en
Publication of WO2008086760A1 publication Critical patent/WO2008086760A1/de

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits

Definitions

  • the invention relates to a method for charging and / or discharging energy stores of a multilevel power converter having at least one phase module branch having a series connection of submodules, each having at least one power semiconductor circuit for connecting or disconnecting an energy store in parallel to the power semiconductor circuit and a Submodule sensor for detecting an energy storage actual value, is determined by obtaining an energy change state, whether connected energy storage of a phase module branch can be charged or discharged, and the next to be switched energy storage each phase module branch is selected by means of a predetermined logic depending on the energy change state.
  • Phase module branches each consisting of a series connection of submodules, extend between the AC voltage connection and each DC voltage connection.
  • Each submodule has a power semiconductor circuit which is arranged in parallel to an energy store, such as a capacitor. Depending on the switching position of the power semiconductor circuit, the voltage of the energy store or the voltage zero drops at the bipolar connection of the submodules. The voltage drop across the phase module branch is thus dependent on the number of switched submodules.
  • Phase module branches of the aforementioned type are also conceivable in connection with so-called “flexible AC transmission systems", these serving as fast switches in series connection to a coil or capacitor, for example for flexible reactive power compensation.
  • Each power semiconductor circuit has according to the said contribution of Lesnicar and Marquardt two series-connected turn-off power semiconductors, which in each case a freewheeling diode is connected in anti-parallel.
  • a control unit is provided for the purposeful control of these turn-off power semiconductors.
  • One of the tasks of the controller is to maintain the voltages dropped across the capacitors of the submodules at about the same level. In this way, an unequal voltage load on the submodules or also the phase module branches is avoided.
  • the voltages dropping across the capacitors of a phase module branch are recorded in the kilohertz cycle, yielding energy storage actual values. Afterwards, the energy storage sorted by size.
  • the energy stores can be charged.
  • the energy store to which the smallest energy storage actual value is assigned, is switched on and thus charged.
  • the energy store is switched on, whose energy storage actual value is the largest, so that it can be discharged after switching.
  • the capacitors to be connected and disconnected are selected.
  • a so-called pulse width modulation takes over the actual switching on and off of the selected energy storage.
  • the energy stores are switched on and off in the kilohertz cycle, so that the voltage dropping across the sum of the connected submodules corresponds to a predetermined setpoint in the time average.
  • the previously known method has the disadvantage that the power semiconductors of the selected capacitors are switched at a high clock rate. This leads to a high load on the power semiconductor circuit with frequent failures and extensive maintenance work in the wake.
  • the object of the invention is therefore to provide a method of the type mentioned, with which the energy stored in the energy storage of the submodules energy is maintained at approximately the same level, while avoiding a high clock rate when switching on and off of the selected energy storage is.
  • the invention achieves this object by forming the sum of all connected energy storage actual values of a phase module branch to obtain an energy storage sum actual value, the difference between a predetermined phase module branch energy target value and the energy storage envelope. and a switching time in which the selected energy storage is switched, is determined when the amount of an energy difference value or the amount of a derived from the energy difference value size exceeds the amount of a switching threshold.
  • a switching time of the selected energy store is determined according to a second logic.
  • This second logic is based on a comparison of a specified phase module energy target value given by the control or a drive unit with an energy storage total value, the energy storage sum actual value being the sum of the energy storage actual values of the switched-on submodules. It is assumed that only the connected submodules can provide a contribution, for example to the voltage, which in total drops across the phase module branch. On the other hand, switched off submodules do not contribute to the mentioned voltage.
  • the switching of the submodules according to the invention is also dependent on the state of energy change. The energy change state is determined, for example, by detecting a current flowing across the phase module branch.
  • the energy change state can also be determined by the fact that
  • Energy storage actual values of a connected energy storage are compared to each other at two different times. If the energy storage actual value of a later measurement is greater than the energy storage actual value, which was previously measure, the energy stores of the phase module can be charged. In the opposite case, however, the connected energy storage devices can only be discharged.
  • the determination of the energy change state is inventively arbitrary.
  • the next energy store to be switched is that energy store whose energy storage actual value is the smallest or greatest depending on the energy change state of an energy storage actual value of the same phase module branch.
  • that switched-off energy store is selected for switching on, whose energy store actual value is the smallest.
  • the energy storage actual value according to the present invention corresponds, for example, to a voltage drop across the energy store or else to a square of this voltage.
  • the energy storage actual value within the scope of the invention serves as a measure of the energy stored in the respectively assigned energy store. If the energy store with the smallest energy storage actual value is selected by the switched-off energy stores, this means that one Energy storage is selected, in which the least energy is stored.
  • the energy storage After selecting the energy storage, it is switched on at the switching time and thus charged. In the case of an energy change state in which the switched-on energy stores of the phase module branch are discharged, the energy store with the largest energy store actual value is selected for switching on from the switched-off energy stores. As soon as this energy store is switched on in the switching instant, it is discharged, so that the energy storage actual value and thus the energy stored in the energy store is reduced.
  • switching off the energy storage is selected with positive branch currents of the switched energy storage, which has the largest energy storage actual value. For negative branch currents, the energy store is selected for switch-off, which has the smallest energy storage actual value.
  • the switching threshold value is determined by multiplying the energy storage actual value Uc of the next energy store to be switched with a predetermined factor, wherein the switching time point is determined when the amount of the energy difference value is greater than the amount of the switching threshold value.
  • the energy difference value is compared with the energy storage actual value of the next energy store to be switched.
  • the energy difference value can be positive or negative. If the energy storage actual value exceeds, for example, half of said energy storage actual value, the said energy store is switched on or off by appropriate control signals to the turn-off power semiconductors of the power semiconductor circuit. If the energy difference value is negative, the switched off energy storage switched off at the switching time. If the energy difference value is positive, the next energy store to be connected is connected in the switching instant. After switching on or off, the next energy store to be switched is selected.
  • the energy store of a phase module branch which has the largest energy storage value, while obtaining a maximum energy actual value and the energy store of a phase module branch having the smallest energy storage actual value, is determined to yield a minimum actual value, the difference between the maximum energy value and the minimum energy actual value, yielding a
  • the energy store which has the largest energy storage actual value of the energy stores of a phase module branch, is switched off at the same time, the energy store being switched on simultaneously by the energy stores of the same Phase module branch has the smallest energy storage actual value.
  • the energy store which has the smallest energy storage actual value of the energy stores of a phase module branch, is switched off, at the same time the energy store is switched on, which of the energy stores of the same Phase module branch has the largest energy storage actual value.
  • FIG. 2 shows a replacement image representation of a submodule and a phase module branch of the multilevel
  • FIG. 3 shows a schematic representation to illustrate an embodiment of the method according to the invention.
  • FIG. 1 shows by way of example a multilevel power converter 1, which is composed of three phase modules 2 a, 2 b and 2 c.
  • Each phase module 2a, 2b and 2c is connected to a positive DC voltage line p and to a negative DC voltage line n, so that each phase module 2a, 2b, 2c has two DC voltage connections.
  • an alternating voltage connection 3 ⁇ , 3 2 and 3 3 is provided for each phase module 2 a, 2 b and 2 c.
  • the AC voltage terminals 3i, 3 2 and 3s are connected via a transformer 4 with a three-phase AC voltage network 5.
  • the phase voltages Ul, U2 and U3 fall off, with line currents InI, In2 and In3 flowing.
  • phase module branches 6pl, 6p2 and 6p3 extend between each of the AC voltage terminals 3 ⁇ , 3 2 or 3 3 and the positive DC voltage line p. Between each AC voltage terminal 3 if 3 2 , 3 3 and the negative DC voltage line n, the phase module branches 6nl, 6n2 and 6n3 are formed.
  • Each phase module branch 6pl, 6p2, 6p3, 6nl, 6n2 and 6n3 consists of a series connection of submodules not shown in detail in FIG. 1 and an inductance which is denoted by L Kr in FIG. FIG.
  • Each turn-off power semiconductor Tl, T2 is a flywheel diode Dl, D2 connected in anti-parallel. Parallel to the series connection of the turn-off power semiconductors Tl, T2 and the freewheeling diodes Dl and D2, a capacitor 8 is connected as an energy storage. Each capacitor 8 is charged unipolar. Two voltage states can now be generated at the two-pole connection terminals X1 and X2 of each submodule 7.
  • a control signal is generated by a drive unit 9, with which the turn-off power semiconductor T2 is transferred to its open position, in which a current flow through the power semiconductor T2 is enabled, the voltage drops to zero at the terminals Xl, X2 of the submodule 7.
  • the turn-off power semiconductor Tl is in its blocking position, in which a current flow through the turn-off power semiconductor Tl is interrupted. This prevents the charging or discharging of the capacitor 8. If, however, the turn-off power semiconductor Tl transferred to its passage position, the turn-off power semiconductor T2, however, in its blocking position, is due to the
  • Each submodule also has a submodule sensor (not shown in FIG. 1) for detecting a capacitor voltage Uc dropped across the respective capacitor 8, wherein a capacitor voltage value corresponding to the capacitor voltage Uc is provided as the actual energy storage value for any higher-level control unit 9.
  • the control unit 9 provides the necessary for switching the power semiconductors Tl and T2 control signals, wherein the later explained in more detail embodiment of the method according to the invention is applied.
  • a multi-level power converter according to FIGS. 1 and 2 is suitable, for example, for driving electrical machines, such as motors or the like.
  • a multilevel converter is also suitable for use in the field of energy distribution and transmission.
  • the multilevel power converter serves, for example, as part of a close coupling, which consists of two DC voltage side interconnected multilevel Stroinrichtern, which - as shown in Figure 1 - are each connected to an AC voltage network.
  • Such short couplings are used for energy exchange between two power distribution networks, wherein the power distribution networks, for example, have a different frequency, phase position, neutral point treatment or the like.
  • FACTS Flexible AC Transmission Systems
  • FIG. 3 illustrates an exemplary embodiment of the method according to the invention with the aid of a diagram, wherein the said method is carried out, for example, by a multilevel converter 1 according to FIGS. 1 and 2.
  • the time is plotted on the abscissa, while on the ordinate in the lower region with 1, 2, 3, 4, the number of total four counting energy storage is plotted.
  • each submodule 7 has an energy store, which here is a capacitor, reference being made to the capacitors generally with the reference numeral 8.
  • the lower curve 10 thus clarifies the number p of the connected capacitors 8 as a function of time.
  • the voltage Uc is plotted as a function of time, which decreases at the four capacitors 8, respectively.
  • tw the current Izwgpl flowing through the phase module branch is greater than zero. This means that by the time tw, the capacitors 8 of the submodules 7 can each be charged. In the period subsequent to the time tw, however, the respective capacitors 8 can only be discharged if they are switched on by means of the power semiconductor circuit connected in parallel with them.
  • the capacitor voltages Uc of the four capacitors 11, 12, 13 and 14 of the Phasenmodulzwei- ges 6pl are plotted as an example of the time t as an example.
  • two capacitors are connected, namely the capacitors 11 and 12. Since the current flowing through the phase module branch 6 pl current I greater than zero is, the voltage dropping across them Uc and thus the detected by the SubitiodulSensoren energy storage actual value increases linearly.
  • the capacitor 12 is selected, since the voltage dropping across it is greater than that of the capacitor 11.
  • the capacitors 13 and 14 are already switched off and therefore can not be selected as the next capacitor to be switched off.
  • the control unit 9 has a phase module branch energy target value which changes over time. In the time interval between t0 and t1, the phase module branch energy target value keeps decreasing. At time t1, the amount of the difference between the phase module branch energy target value and an energy storage sum actual value formed of the sum of the capacitor voltages Uc of the capacitors 11 and 12 is smaller than half of
  • the time profile of the phase module branch setpoint is sinusoidal. In the time interval between t1 and t2, the semiconductor energy setpoint reaches its minimum and then rises again. In order to follow this predetermined curve, previously switched off capacitors must be connected by the control unit.
  • the branch current Izwgl is positive. As the next zuzuchagateder capacitor therefore the capacitor 13 is selected at the lowest voltage drops, so that it can be charged and reaches the voltage level of the other capacitors.
  • the amount of the difference between the phase module branch energy setpoint and the energy storage sum actual value which is shown in FIG.
  • the capacitor voltage of the capacitor 13 finally exceeds the capacitor voltage of the capacitor 12, so that the capacitor 12 is selected as the next zuzugateder capacitor.
  • the sum of the capacitor voltages of the capacitors 11 and 13 is now the energy storage total.
  • the amount of the difference between the phase module branch energy target value and energy storage total sum, ie the sum of the capacitor voltages of the capacitors 11 and 13, is greater than half the capacitor voltage drop across the capacitor 12, so that now the capacitor 12 is also switched on.
  • the voltage difference ⁇ between the smallest capacitor voltage dropping across the capacitor 14 and the largest capacitor voltage dropping across the capacitor 11 is greater than a maximum power deviation threshold value set by the control unit. For this reason, the control unit 9 switches off the capacitor 11, at which the largest capacitor voltage Uc drops, and at the same time, the capacitor 14, at which the smallest capacitor voltage drops at the instant tz, too.
  • This measure ensures that the capacitor voltages Uc of the capacitors of a phase module branch do not assume very different values. This would result in an unequal stress load and thus damage to the submodules 7.
  • the branch current flowing across the phase module branch which in FIG. 3 is designated only I for reasons of clarity, becomes negative.
  • the switched capacitors 12, 13 and 14 are therefore discharged.
  • the next capacitor to be switched on is inevitably the only capacitor 11 which has been switched off.
  • the difference between the semiconductor energy target value and the energy storage sum actual value, which is formed from the sum of the capacitor voltages dropping across the capacitors 12, 13 and 14, is greater than half the capacitor voltage Uc of the capacitor 11, thus enabling the capacitor 11 to be connected comes. All capacitors are now discharged.
  • the controller now provides for a decreasing semiconductor energy setpoint.
  • the difference between the semiconductor energy target value and the energy storage sum value is negative and smaller than a negative energy difference value. It comes to switching off the capacitor 14. Accordingly, the procedure at the switching times t ⁇ and t7.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

Verfahren zum Auf- und/oder Entladen von Energiespeichern eines Multilevel-Stromrichters mit wenigstens einem Phasenmodulzweig (6p1, 6p2, 6p3, 6n1, 6n2, 6n3), der eine Reihenschaltung von Submodulen (7) aufweist, die jeweils wenigstens eine Leistungshalbleiterschaltung (T1, T2) zum Zu- oder Abschalten eines Energiespeichers (8) in Parallelschaltung zur Leistungshalbleiterschaltung und einen Submodulsensor zum Erfassen eines Energiespeicheristwertes Uc aufweist, bei dem: unter Gewinnung eines Energieänderungszustandes ermittelt wird, ob zugeschaltete Energiespeicher eines Phasenmodulzweiges aufgeladen oder entladen werden können, und der nächste zu schaltende Energiespeicher jedes Phasenmodulzweiges mittels einer vorgegebenen Logik in Abhängigkeit des Energieänderungszustandes ausgewählt wird, mit dem die in den Energiespeichern gespeicherte Energie in etwa auf dem gleichen Niveau gehalten wird, wobei gleichzeitig eine hohe Taktrate beim Zu- und Abschalten des ausgewählten Energiespeichers vermieden wird.

Description

Beschreibung
Ansteuerung eines Phasenmodulzweiges eines Multilevel- Stromrichters
Die Erfindung betrifft ein Verfahren zum Auf- und/oder Entladen von Energiespeichern eines Multilevel-Stromrichters mit wenigstens einem Phasenmodulzweig, der eine Reihenschaltung von Submodulen aufweist, die jeweils wenigstens eine Leis- tungshalbleiterschaltung zum Zu- oder Abschalten eines Energiespeichers in Parallelschaltung zur Leistungshalbleiterschaltung und einen Submodulsensor zum Erfassen eines Energiespeicheristwertes aufweisen, bei dem unter Gewinnung eines Energieänderungszustandes ermittelt wird, ob zugeschaltete Energiespeicher eines Phasenmodulzweiges aufgeladen oder entladen werden können, und der nächste zu schaltende Energiespeicher jedes Phasenmodulzweiges mittels einer vorgegebenen Logik in Abhängigkeit des Energieänderungszustandes ausgewählt wird.
Ein solches Verfahren ist aus einem Beitrag „New Modular VoI- tage Source Inverter Topology" von A. Lesnicar und R. Mar- quardt bereits bekannt. Dort ist ein so genannter Multilevel- Stromrichter offenbart und ein Verfahren zu dessen Steuerung. Ein Multilevel-Stromrichter dient beispielsweise zum Antrieb einer elektrischen Maschine oder kann im Bereich der Energieübertragung und -Verteilung eingesetzt werden. So ist der Einsatz eines Multilevel-Stromrichters bei der Hochspannungsgleichstromübertragung beschrieben worden, wobei wenigstens zwei Multilevel-Stromrichter gleichspannungsseitig miteinander verbunden sind. Jeder dieser Multilevel-Stromrichter ist wechselspannungsseitig an ein Wechselspannungsnetz angeschlossen, so dass eine Leistungsübertragung zwischen den Wechselspannungsnetzen ermöglicht ist. Dabei weisen die MuI- tilevel-Stromrichter jeweils Phasenmodule auf, deren Anzahl der Anzahl der Phasen des jeweiligen Wechselspannungsnetzes entspricht. Jedes Phasenmodul verfügt über einen Wechsel- stromanschluss und wenigstens einen Gleichspannungsanschluss. Zwischen dem Wechselspannungsanschluss und jedem Gleichspannungsanschluss erstrecken sich Phasenmodulzweige, die jeweils aus einer Reihenschaltung von Submodulen bestehen. Jedes Sub- modul verfügt über eine Leistungshalbleiterschaltung, die parallel zu einem Energiespeicher, wie beispielsweise einem Kondensator, angeordnet ist. Je nach Schaltstellung der Leistungshalbleiterschaltung fällt an dem bipolaren Anschluss der Submodule die Spannung des Energiespeichers oder aber die Spannung null ab. Die über den Phasenmodulzweig abfallende Spannung ist somit von der Anzahl der zugeschalteten Submodu- Ie abhängig. Phasenmodulzweige der vorgenannten Art sind auch im Zusammenhang mit so genannten „Flexible AC Transmission Systems" denkbar, wobei diese als schnelle Schalter in Reihenschaltung zu einer Spule oder Kondensator beispielsweise zur flexiblen Blindleistungskompensation dienen.
Jede Leistungshalbleiterschaltung weist gemäß dem besagten Beitrag von Lesnicar und Marquardt zwei in Reihe zueinander geschaltete abschaltbare Leistungshalbleiter auf, denen jeweils eine Freilaufdiode antiparallel geschaltet ist. Zur zweckmäßigen Ansteuerung dieser abschaltbaren Leistungshalbleiter ist eine Steuerungseinheit vorgesehen. Eine der Aufgaben der Steuerung besteht darin, die an den Kondensatoren der Submodule abfallenden Spannungen in etwa auf dem gleichen Niveau zu halten. Auf diese Weisen wird eine ungleiche Span- nungsbelastung der Submodule oder auch der Phasenmodulzweige vermieden. Zur symmetrischen Spannungsverteilung werden die an den Kondensatoren eines Phasenmodulzweiges abfallenden Spannungen im Kilohertztakt unter Gewinnung von Energiespeicheristwerten erfasst. Anschließend werden die Energiespei- cheristwerte hinsichtlich ihrer Größe sortiert. Fließt ein positiver Strom über den Phasenmodulzweig, können die Energiespeicher aufgeladen werden. In diesem Fall wird der Energiespeicher, dem der kleinste Energiespeicheristwert zugeord- net ist, eingeschaltet und somit geladen. Ist der in dem jeweiligen Phasenmodulzweig fließende Strom jedoch negativ, wird der Energiespeicher zugeschaltet, dessen Energiespeicheristwert der größte ist, so dass dieser nach dem Einschalten entladen werden kann. Zunächst werden die zuzuschaltenden und abzuschaltenden Kondensatoren ausgewählt. Anschließend übernimmt eine so genannte Pulsweitenmodulation das eigentliche Zu- und Abschalten der ausgewählten Energiespeicher. Die Energiespeicher werden im Kilohertztakt zu- und abgeschaltet, so dass die an der Summe der zugeschalteten Submodule abfal- lende Spannung im zeitlichen Mittel einem vorgegebenen Sollwert entspricht. Dem vorbekannten Verfahren haftet der Nachteil an, dass die Leistungshalbleiter der ausgewählten Kondensatoren mit einer hohen Taktrate geschaltet werden. Dies führt zu einer hohen Belastung der Leistungshalbleiterschal- tung mit häufigen Ausfällen und aufwändigen Wartungsarbeiten im Gefolge.
Aufgabe der Erfindung ist es daher, ein Verfahren der eingangs genannten Art bereitzustellen, mit dem die in den Ener- giespeichern der Submodule gespeicherte Energie in etwa auf dem gleichen Niveau gehalten wird, wobei gleichzeitig eine hohe Taktrate beim Zu- und Abschalten des ausgewählten Energiespeichers vermieden ist.
Die Erfindung löst diese Aufgabe dadurch, dass die Summe aller zugeschalteten Energiespeicheristwerte eines Phasenmodul- zweiges unter Gewinnung eines Energiespeichersummenistwertes gebildet wird, die Differenz zwischen einem vorgegebenen Pha- senmodulzweigenergiesollwert und dem Energiespeichersum- menistwert und unter Gewinnung eines Energiedifferenzwertes bestimmt wird und ein Schaltzeitpunkt, in dem der ausgewählte Energiespeicher geschaltet wird, festgelegt wird, wenn der Betrag eines Energiedifferenzwertes oder der Betrag einer aus dem Energiedifferenzwert abgeleiteten Größe den Betrag eines Schaltschwellenwert überschreitet .
Erfindungsgemäß wird ein Schaltzeitpunkt des ausgewählten Energiespeichers gemäß einer zweiten Logik festgelegt. Diese zweite Logik basiert auf einem Vergleich eines von der Steuerung oder einer Ansteuereinheit vorgegebenen Phasenmodul- zweigenergiesollwertes mit einem Energiespeichersummenist- wert, wobei der Energiespeichersummenistwert die Summe der Energiespeicheristwerte der zugeschalteten Submodule ist. Da- bei wird davon ausgegangen, dass nur die zugeschalteten Submodule einen Beitrag beispielsweise zur Spannung liefern können, die in Summe über dem Phasenmodulzweig abfällt. Abgeschaltete Submodule liefern hingegen keinen Beitrag zur besagten Spannung. Das Schalten der Submodule ist erfindungsge- maß auch abhängig von dem Energieänderungszustand. Der Ener- gieänderungszustand wird beispielsweise durch Erfassen eines über den Phasenmodulzweig fließenden Stromes bestimmt. Ist der erfasste Strom positiv, können zugeschalteten Energiespeicher aufgeladen werden. Der Energiespeicheristwert eines abgeschalteten Energiespeichers wird hingegen nicht verändert. Bei einem negativen über den Phasenmodulzweig fließenden Strom, der auch Zweigstrom genannt wird, können zugeschaltete Energiespeicher hingegen entladen werden. Abweichend von der eben dargestellten Zweigstromerfassung kann der Energieänderungszustand auch dadurch bestimmt werden, dass
Energiespeicheristwerte eines zugeschalteten Energiespeichers zu zwei verschiedenen Zeitpunkten miteinander verglichen werden. Ist der Energiespeicheristwert einer zeitlich späteren Messung größer als der Energiespeicheristwert, der zuvor ge- messen wurde, können die Energiespeicher des Phasenmodulzwei- ges aufgeladen werden. Im umgekehrten Fall können die zugeschalteten Energiespeicher hingegen nur entladen werden. Die Ermittlung des Energieänderungszustandes ist erfindungsgemäß beliebig.
Durch die Festlegung eines Zeitpunktes mittels einer separaten Logik ist ein häufiges Zu- und Abschalten des ausgewählten Energiespeichers, wie bei der Pulsweitenmodulation, ver- mieden. Im Rahmen der Erfindung wird lediglich der nächste zu schaltende Energiespeicher ausgewählt und zu einem ermittelten Schaltzeitpunkt geschaltet. Ein häufiges Zu- und Abschalten zum Erhalt eines passenden zeitlichen Mittelwertes ist erfindungsgemäß überflüssig geworden. Das erfindungsgemäße Verfahren sorgt somit zu einer geringeren Belastung der abschaltbaren Leistungshalbleiter.
Vorteilhafterweise ist der nächste zu schaltende Energiespeicher derjenige Energiespeicher, dessen Energiespeicheristwert je nach Energieänderungszustand von einem Energiespeicheristwert des gleichen Phasenmodulzweiges am kleinsten oder am größten ist. Gemäß dieser vorteilhaften Ausgestaltung der Erfindung wird bei einem Energieänderungszustand, in dem die Energiespeicher des Phasenmodulzweiges aufgeladen werden kön- nen, derjenige abgeschaltete Energiespeicher zum Einschalten ausgewählt, dessen Energiespeicheristwert am kleinsten ist. Der Energiespeicheristwert gemäß der vorliegenden Erfindung entspricht beispielsweise einer an dem Energiespeicher abfallenden Spannung oder aber einem Quadrat dieser Spannung. Letztendlich dient der Energiespeicheristwert im Rahmen der Erfindung als Maß der in dem jeweils zugeordneten Energiespeicher gespeicherten Energie. Wird von den abgeschalteten Energiespeichern der Energiespeicher mit dem kleinsten Energiespeicheristwert ausgewählt, bedeutet dies, dass derjenige Energiespeicher ausgewählt wird, in dem die geringste Energie gespeichert ist.
Nach der Auswahl des Energiespeichers wird dieser im Schalt- Zeitpunkt zugeschaltet und somit geladen. Bei einem Energie- änderungszustand, in dem die zugeschalteten Energiespeicher des Phasenmodulzweiges entladen werden, wird von den abgeschalteten Energiespeichern der Energiespeicher mit dem größten Energiespeicheristwert zum Zuschalten ausgewählt. Sobald dieser Energiespeicher im SchaltZeitpunkt zugeschaltet wird, wird dieser entladen, so dass der Energiespeicheristwert und somit die in dem Energiespeicher gespeicherte Energie verringert wird. Beim Abschalten wird bei positiven Zweigströmen von den eingeschalteten Energiespeichern der Energiespeicher ausgewählt, der den größten Energiespeicheristwert aufweist. Bei negativen Zweigströmen wird der Energiespeicher zum Abschalten ausgewählt, der den kleinsten Energiespeicheristwert aufweist.
Gemäß einer vorteilhaft Ausgestaltung der Erfindung wird der Schaltschwellenwert durch Multiplikation des Energiespeicheristwertes Uc des nächsten zu schalteten Energiespeichers mit einem vorgegebenen Faktor bestimmt, wobei der SchaltZeitpunkt bestimmt wird, wenn der Betrag des Energiedifferenzwer- tes größer als der Betrag des Schaltschwellenwertes ist. Gemäß dieser vorteilhaften Weiterentwicklung wird der Energiedifferenzwert mit dem Energiespeicheristwert des nächsten zu schalteten Energiespeichers verglichen. Der Energiedifferenzwert kann positiv oder negativ sein. Übersteigt der Energie- speicheristwert beispielsweise die Hälfte des besagten Energiespeicheristwertes, wird der besagte Energiespeicher durch zweckmäßige Steuersignale an die abschaltbaren Leistungshalbleiter der Leistungshalbleiterschaltung zu- oder abgeschaltet. Ist der Energiedifferenzwert negativ, wird der als nach- ster abzuschaltende Energiespeicher im Schaltzeitpunkt abgeschaltet. Ist der Energiedifferenzwert positiv wird der nächste zuzuschaltende Energiespeicher im SchaltZeitpunkt zugeschaltet. Nach dem Zu- oder Abschalten wird der nächste zu schaltende Energiespeicher ausgewählt.
Vorteilhafterweise wird der Energiedifferenzwert über die Zeit unter Gewinnung eines Energiedifferenzintegralwertes integriert, wobei der Schaltzeitpunkt als der Zeitpunkt festge- legt wird, in dem der Betrag des Energiedifferenzintegralwertes den Betrag des Schaltschwellenwertes überschreitet. Gemäß dieser vorteilhaften Weiterentwicklung wird der Schaltschwellenwert durch Integration ermittelt. Dies erfordert zwar einen höheren Rechenaufwand, stellt jedoch einen Schaltzeit- punkt bereit, der für eine kleinere Differenz zwischen dem Energiespeichersummenistwert und Halbleitventilenergiesoll- wert sorgt .
Vorteilhafterweise werden der Energiespeicher eines Phasenmo- dulzweiges, der den größten Energiespeicherwert aufweist, unter Gewinnung eines Maximalenergieistwertes und der Energiespeicher eines Phasenmodulzweiges, der den kleinsten Energiespeicheristwert aufweist, unter Gewinnung eines Minimalistwertes bestimmt, die Differenz aus dem Maximalenergieistwer- tes und dem Minimalenergieistwertes unter Gewinnung eines
Größtenergieabweichungsistwertes gebildet, der Größtenergie- abweichungsistwert mit einem Größtenergieabweichungsschwel- lenwert verglichen und ein Zusatzschaltzeitpunkt festgelegt, wenn der Größtenergieabweichungsistwert den Größtenergieab- weichungsschwellenwert überschreitet, wobei im Zusatzschaltzeitpunkt in Abhängigkeit des Energieänderungszustandes ein Energiespeicher abgeschaltet wird und ein anderer Energiespeicher zugeschaltet wird. Auf diese Weise wird gewährleistet, dass die Differenz zwischen den extremen Energiespei- cheristwerten innerhalb eines Phasenmodulzweiges stets nur vorgegebene Werte annehmen kann. Dabei wird der Schaltungstakt oder die Schaltungsfrequenz nicht mehr als unbedingt nötig angehoben.
Bei einer diesbezüglich zweckmäßigen Weiterentwicklung wird bei einem Energieänderungszustand, in dem die Energiespeicher eines Phasenmodulzweiges aufgeladen werden können, im Zusatzschaltzeitpunkt der Energiespeicher abgeschaltet, der von den Energiespeichern eines Phasenmodulzweiges den größten Energiespeicheristwert aufweist, wobei gleichzeitig der Energiespeicher zugeschaltet wird, der von den Energiespeichern des gleichen Phasenmodulzweiges den kleinsten Energiespeicheristwert aufweist.
Gemäß einer weiteren zweckmäßigen Weiterentwicklung wird bei einem Energieänderungszustand, in dem die Energiespeicher eines Phasenmodulzweiges entladen werden können, im Zusatzschaltzeitpunkt der Energiespeicher abgeschaltet, der von den Energiespeichern eines Phasenmodulzweiges den kleinsten Energiespeicheristwert aufweist, wobei gleichzeitig der Energiespeicher zugeschaltet wird, der von den Energiespeichern des gleichen Phasenmodulzweiges den größten Energiespeicheristwert aufweist.
Weitere zweckmäßige Ausgestaltungen und Vorteile der Erfindung sind Gegenstand der nachfolgenden Beschreibung von Ausführungsbeispielen der Erfindung unter Bezug auf die Figur der Zeichnung, wobei gleiche Bezugszeichen auf gleich wirken- de Bauteile verweisen und wobei die
Figur 1 ein Ausführungsbeispiel eines Multilevel-
Stomrichters zur Durchführung des erfindungs- gemäßen Verfahrens in einer schematischen Darstellung,
Figur 2 eine Ersatzbilddarstellung eines Submoduls und eines Phasenmodulzweiges des Multilevel-
Stromrichters gemäß Figur 1 und
Figur 3 eine schematische Darstellung zur Verdeutlichung eines Ausführungsbeispiels des erfin- dungsgemäßen Verfahrens zeigen.
Figur 1 zeigt beispielhaft einen Multilevel-Stromrichter 1, der aus drei Phasenmodulen 2a, 2b und 2c zusammengesetzt ist. Jedes Phasenmodul 2a, 2b und 2c ist mit einer positiven Gleichspannungsleitung p sowie mit einer negativen Gleichspannungsleitung n verbunden, so dass jedes Phasenmodul 2a, 2b, 2c zwei Gleichspannungsanschlüsse aufweist. Ferner ist für jedes Phasenmodul 2a, 2b und 2c jeweils ein Wechselspan- nungsanschluss 3χ, 32 und 33 vorgesehen. Die Wechselspannungs- anschlüsse 3i, 32 und 3s sind über einen Transformator 4 mit einem dreiphasigen Wechselspannungsnetz 5 verbunden. An den Phasen des Wechselspannungsnetzes 5 fallen die Phasenspannungen Ul, U2 und U3 ab, wobei Netzströme InI, In2 und In3 fließen. Der wechselspannungsseitige Phasenstrom eines jeden Pha- senmoduls wird mit II, 12 und 13 bezeichnet. Der Gleichspannungsstrom ist Id- Zwischen jedem der Wechselspannungsanschlüsse 3χ, 32 oder 33 und der positiven Gleichspannungsleitung p erstrecken sich Phasenmodulzweige 6pl, 6p2 und 6p3. Zwischen jedem Wechselspannungsanschluss 3if 32, 33 und der negativen Gleichspannungsleitung n sind die Phasenmodulzweige 6nl, 6n2 und 6n3 ausgebildet. Jeder Phasenmodulzweig 6pl, 6p2, 6p3, 6nl, 6n2 und 6n3 besteht aus einer Reihenschaltung aus in Figur 1 nicht ausführlich dargestellten Submodulen und einer Induktivität, die in Figur 1 mit LKr bezeichnet ist. In Figur 2 ist die Reihenschaltung der Submodule 7 und insbesondere der Aufbau -der Submodule durch ein elektrisches Ersatzschaltbild genauer dargestellt, wobei in Figur 2 lediglich der Phasenmodulzweig 6p1 herausgegriffen wurde. Die restlichen Phasenmodulzweige sind jedoch identisch aufgebaut. Es ist erkennbar, dass jedes Submodul 7 zwei in Reihe geschaltete abschaltbare Leistungshalbleiter Tl und T2 aufweist. Abschaltbare Leistungshalbleiter sind beispielsweise so genannte IGBTs, GTOs, IGCTs oder dergleichen. Diese sind dem Fachmann als solche bekannt, so dass eine ausführliche
Darstellung an dieser Stelle entfallen kann. Jedem abschaltbaren Leistungshalbleiter Tl, T2 ist eine Freilaufdiode Dl, D2 antiparallel geschaltet. Parallel zur Reihenschaltung der abschaltbaren Leistungshalbleiter Tl, T2 beziehungsweise der Freilaufdioden Dl und D2 ist ein Kondensator 8 als Energiespeicher geschaltet. Jeder Kondensator 8 ist unipolar aufgeladen. An den zweipoligen Anschlussklemmen Xl und X2 jedes Submoduls 7 können nunmehr zwei Spannungszustände erzeugt werden. Wird von einer Ansteuereinheit 9 beispielsweise ein Ansteuersignal erzeugt, mit dem der abschaltbare Leistungshalbleiter T2 in seine Durchgangsstellung überführt wird, in der ein Stromfluss über den Leistungshalbleiter T2 ermöglicht ist, fällt an den Klemmen Xl, X2 des Submoduls 7 die Spannung null ab. Dabei befindet sich der abschaltbare Leistungshalb- leiter Tl in seiner Sperrstellung, in der ein Stromfluss über den abschaltbaren Leistungshalbleiter Tl unterbrochen ist. Dies verhindert das Auf- oder Entladen des Kondensators 8. Wird hingegen der abschaltbare Leistungshalbleiter Tl in seine Durchgangsstellung, der abschaltbare Leistungshalbleiter T2 jedoch in seine Sperrstellung überführt, liegt an den
Klemmen Xl, X2 des Submoduls 7 die volle Kondensatorspannung Uc an. Der Kondensator 8 kann ferner je nach Richtung des Zweigstromes also in Abhängigkeit des Energieänderungszustan- des aufgeladen oder entladen werden. Jedes Submodul weist ferner einen figürlich nicht dargestellten Submodulsensor zum Erfassen einer an dem jeweiligen Kondensator 8 abfallenden KondensatorSpannung Uc auf, wobei ein der Kondensatorspannung Uc entsprechender Kondensatorspan- nungswert als Energiespeicheristwert für eine beliebige übergeordnete Regelungseinheit 9 bereitgestellt wird. Die Regelungseinheit 9 sorgt für die zum Schalten der Leistungshalbleiter Tl und T2 notwendigen Steuersignale, wobei das später genauer erläuterte Ausführungsbeispiel des erfindungsgemäßen Verfahrens angewendet wird.
Ein Multi-Level-Stromrichter gemäß der Figuren 1 und 2 ist beispielsweise zum Antrieb elektrischer Maschinen, wie Motoren oder dergleichen, geeignet. Darüber hinaus eignet sich ein solcher Multilevelstromrichter auch für einen Einsatz im Bereich der Energieverteilung und -Übertragung. So dient der Multilevel-Stromrichter beispielsweise als Bestandteil einer Kurzkupplung, die aus zwei gleichspannungsseitig miteinander verbundenen Multilevel-Stroinrichtern besteht, wobei diese - wie in Figur 1 gezeigt - jeweils mit einem Wechselspannungsnetz verbunden sind. Solche Kurzkupplungen werden zum Energieaustausch zwischen zwei Energieverteilungsnetzen eingesetzt, wobei die Energieverteilungsnetze beispielsweise eine unterschiedliche Frequenz, Phasenlage, Sternpunktbehandlung oder dergleichen aufweisen. Darüber hinaus kommen Anwendungen im Bereich der Blindleistungskompensation, als so genannte FACTS (Flexible AC Transmission Systems) in Betracht. Auch die Hochspannungsgleichstromübertragung über lange Strecken hinweg ist mit solchen Multilevelstromrichtern denkbar. Auf- grund der Fülle der unterschiedlichen Anwendungsmöglichkeiten ergeben sich viele unterschiedliche Betriebsspannungen, an welche die jeweilige erfindungsgemäße Vorrichtung anzupassen ist. Aus diesem Grunde kann die Anzahl der Submodule von ei- nigen wenigen bis hin zu mehreren hundert Submodulen 7 variieren.
Figur 3 verdeutlicht ein Ausführungsbeispiel des erfindungs- gemäßen Verfahrens mit Hilfe eines Diagramms, wobei das besagte Verfahren beispielsweise von einem Multilevel- Stromrichter 1 gemäß der Figuren 1 und 2 durchgeführt wird. In dem in Figur 3 gezeigten Diagramm ist auf der Abszisse die Zeit abgetragen, während auf der Ordinate im unteren Bereich mit 1, 2, 3, 4 die Anzahl der insgesamt vier zählenden Energiespeicher aufgetragen ist. Es sei darauf hingewiesen, dass jedes Submodul 7 einen Energiespeicher aufweist, der hier ein Kondensator ist, wobei auf die Kondensatoren im Allgemeinen mit dem Bezugszeichen 8 verwiesen wird. Die untere Kurve 10 verdeutlicht somit die Anzahl p der zugeschalteten Kondensatoren 8 in Abhängigkeit der Zeit.
Oberhalb der Kurve 10 ist die Spannung Uc als Funktion der Zeit aufgetragen, die an den vier Kondensatoren 8 jeweils ab- fällt. Bis zu einem mit tw bezeichneten Zeitpunkt ist der über den Phasenmodulzweig fließende Strom Izwgpl größer als null. Dies bedeutet, dass bis zum Zeitpunkt tw die Kondensatoren 8 der Submodule 7 jeweils aufgeladen werden können. In dem sich an den Zeitpunkt tw anschließenden Zeitraum können die jeweiligen Kondensatoren 8 hingegen nur entladen werden, wenn diese mittels der ihnen parallel geschalteten Leistungshalbleiterschaltung zugeschaltet werden.
In der Figur 3 sind beispielhaft die Kondensatorspannungen Uc der vier Kondensatoren 11, 12, 13 und 14 des Phasenmodulzwei- ges 6pl in Abhängigkeit der Zeit t aufgetragen. Im Zeitpunkt tw sind gemäß dem Kurvenverlauf 10 zwei Kondensatoren zugeschaltet, nämlich die Kondensatoren 11 und 12. Da der über den Phasenmodulzweig 6pl fließende Strom I größer als null ist, steigt die an ihnen abfallende Spannung Uc und somit der von den SubitiodulSensoren erfasste Energiespeicheristwert linear an. Als nächster abzuschaltender Kondensator wird der Kondensator 12 ausgewählt, da die an ihm abfallende Spannung größer ist als diejenige des Kondensators 11. Die Kondensatoren 13 und 14 sind bereits abgeschaltet und können daher nicht als nächste abzuschaltende Kondensatoren ausgewählt werden. Die Regelungseinheit 9 verfügt über einen Phasenmo- dulzweigenergiesollwert, der sich über die Zeit hinweg än- dert. In dem Zeitintervall zwischen tθ und tl wird der Pha- senmodulzweigenergiesollwert fortwährend kleiner. Im Zeitpunkt tl ist der Betrag der Differenz zwischen dem Phasenmo- dulzweigenergiesollwert und einem Energiespeichersummenist- wert, der aus Summe der Kondensatorspannungen Uc der Konden- satoren 11 und 12 gebildet wird, kleiner als die Hälfte der
Kondensatorspannung des nächsten abzuschaltenden Kondensators 12, so dass ein Schaltzeitpunkt festgelegt wird, in dem der Kondensator 12 abgeschaltet wird. Nunmehr ist nur noch der Kondensator 11 zugeschaltet. Der Spannungsverlauf der Konden- satoren 12, 13 und 14 weist die Steigung null auf. Die Kondensatoren 12, 13 und 14 werden nicht mehr geladen.
Der zeitliche Verlauf des Phasenmodulzweigsollwertes ist sinusförmig. Im Zeitintervall zwischen tl und t2 erreicht der Halbleiterenergiesollwert sein Minimum und steigt anschließend wieder an. Um diesem vorgegebenen Kurvenverlauf zu folgen, müssen bislang abgeschaltete Kondensatoren von der Regelungseinheit zugeschaltet werden. Der Zweigstrom Izwgl ist positiv. Als nächster zuzuschaltender Kondensator wird daher der Kondensator 13 ausgewählt, an dem geringste Spannung abfällt, so dass dieser aufgeladen werden kann und das Spannungsniveau der andern Kondensatoren erreicht. Im Schaltzeitpunkt t2 ist der Betrag der Differenz aus Phasenmodulzweig- energiesollwert und Energiespeichersummenistwert, der in die- sem Fall gleich der Kondensatorspannung Uc des einzigen zugeschalteten Kondensators 11 ist, größer als der Betrag des Schaltschwellenwertes, der wieder aus der Multiplikation der Kondensatorspannung des zu schaltenden Kondensators - hier Kondensator 13 - mit dem Faktor % gebildet wird. Nunmehr werden die Kondensatoren 11 und 13 geladen.
Die Kondensatorspannung des Kondensators 13 übersteigt schließlich die Kondensatorspannung des Kondensators 12, so dass der Kondensator 12 als nächster zuzuschaltender Kondensator ausgewählt wird. Die Summe der KondensatorSpannungen der Kondensatoren 11 und 13 ist nunmehr der Energiespeicher- summenistwert . Im Schaltzeitpunkt t3 ist der Betrag der Differenz aus Phasenmodulzweigenergiesollwert und Energiespei- chersummenistwert, also die Summe der Kondensatorspannungen der Kondensatoren 11 und 13, größer als die Hälfte der an dem Kondensator 12 abfallenden Kondensatorspannung, so dass nunmehr auch der Kondensator 12 zugeschaltet wird.
Im Zusatzschaltzeitpunkt tz ist die Spannungsdifferenz Δü zwischen der kleinsten Kondensatorspannung, die an dem Kondensator 14 abfällt und der größten Kondensatorspannung, die an dem Kondensator 11 abfällt, größer als ein von der Steuereinheit vorgegebener Größtenergieabweichungsschwellenwert . Aus diesem Grunde schaltet die Regelungseinheit 9 den Kondensator 11, an dem die größte Kondensatorspannung Uc abfällt, ab und im gleichen Zeitpunkt den Kondensator 14, an dem im Zeitpunkt tz die kleinste Kondensatorspannung abfällt, zu. Durch diese Maßnahme wird sichergestellt, dass die Kondensa- torspannungen Uc der Kondensatoren eines Phasenmodulzweiges keine stark unterschiedlichen Werte annehmen. Dies hätte eine ungleiche Spannungsbelastung und somit eine Beschädigung der Submodule 7 zur Folge. Im Zeitpunkt tw wird der über den Phasenmodulzweig fließende Zweigstrom, der in Figur 3 aus Gründen der Übersicht nur mit I bezeichnet ist, negativ. Die zugeschalteten Kondensatoren 12, 13 und 14 werden daher entladen. Als nächster zuzuschal- tender Kondensator wird zwangsläufig der einzige abgeschaltete Kondensator 11 ausgewählt. Im Zeitpunkt t4 ist die Differenz zwischen Halbleiterenergiesollwert und Energiespeicher- summenistwert, der aus der Summe der an den Kondensatoren 12, 13 und 14 abfallenden Kondensatorspannungen gebildet wird, größer als die Hälfte der Kondensatorspannung Uc des Kondensators 11, so dass es zum Zuschalten des Kondensators 11 kommt. Alle Kondensatoren werden nunmehr entladen.
Im Zeitintervall zwischen t4 und t5 durchläuft der vorgegebe- ne Phasenmodulzweigenergiesollwert ein Maximum und wird anschließend wieder kleiner, so dass Kondensatoren 8 aus der Reihendschaltung der Submodule 7 des Phasenmodulzweiges βpl abgeschaltet werden müssen. Als nächster abzuschaltender Kondensator wird der Kondensator 14 ausgewählt, da an diesem die kleinste Spannung abfällt und in dem somit die geringste
Energie gespeichert ist. Die Steuerung sorgt nunmehr für einen abnehmenden Halbleiterenergiesollwert. Im Zeitpunkt t5 ist die Differenz aus Halbleiterenergiesollwert und Energie- speichersummenwert negativ und kleiner als ein negativer Energiedifferenzwert. Es kommt zum Abschalten des Kondensators 14. Entsprechend wird zu den Schaltzeitpunkten tβ und t7 verfahren.

Claims

Patentansprüche
1. Verfahren zum Auf- und/oder Entladen von Energiespeichern eines Multilevel-Stromrichters mit wenigstens einem Phasenmo- dulzweig, der eine Reihenschaltung von Submodulen aufweist, die jeweils wenigstens eine Leistungshalbleiterschaltung zum Zu- oder Abschalten eines Energiespeichers in Parallelschaltung zur ■ Leistungshalbleiterschaltung und einen Submodulsen- sor zum Erfassen eines Energiespeicheristwertes Uc aufweisen, bei dem
- unter Gewinnung eines Energieänderungszustandes ermittelt wird, ob zugeschaltete Energiespeicher eines Phasenmodulzwei- ges aufgeladen oder entladen werden können,
- und der nächste zu schaltende Energiespeicher jedes Phasen- modulzweiges mittels einer vorgegebenen Logik in Abhängigkeit des Energieänderungszustandes ausgewählt wird, d a d u r c h g e k e n n z e i c h n e t , dass die Summe aller zugeschalteten Energiespeicheristwerte unter Gewinnung eines Energiespeichersummenistwertes gebildet wird, die Differenz zwischen einem vorgegebenen Phasenmodulzweig- energiesollwert und dem Energiespeichersummenistwert unter Gewinnung eines Energiedifferenzwertes bestimmt wird und ein Schaltzeitpunkt, in dem der ausgewählte Energiespeicher geschaltet wird, festgelegt wird, wenn der Betrag des Energie- differenzwertes oder der Betrag einer aus dem Energiedifferenzwert abgeleiteten Größe den Betrag eines Schaltschwellenwertes überschreitet.
2. Verfahren nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , dass der nächste zu schaltende Energiespeicher derjenige Energiespeicher ist, dessen Energiespeicheristwert je nach Energie- änderungszustand von allen Energiespeicheristwerten des gleichen Phasenmodulzweiges am kleinsten oder am größten ist.
3. Verfahren nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t , dass der Schaltschwellenwert durch Multiplikation des Energiespeicheristwertes Uc des nächsten zu schaltenden Energiespeichers mit einem vorgegebenen Faktor bestimmt wird, wobei der
Schaltzeitpunkt bestimmt wird, wenn der Betrag des Energiedifferenzwertes größer als der Betrag des Schaltschwellenwertes ist.
4. Verfahren nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t , dass der Energiedifferenzwert über die Zeit unter Gewinnung eines Energiedifferenzintegralwertes integriert wird, wobei der Schaltzeitpunkt als der Zeitpunkt festgelegt wird, in dem der Energiedifferenzintegralwert je nach Energieänderungszustand den positiven Schaltschellenwert D überschreitet oder den negativen Schaltschwellenwert -D unterschreitet.
5. Verfahren nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass der Energiespeicher eines Phasenmodulzweiges, der den größten Energiespeicheristwert aufweist, unter Gewinnung eines Maximalenergieistwertes und der Energiespeicher eines Phasenmodulzweiges, der den kleinsten Energiespeicheristwert auf- weist, unter Gewinnung eines Minimalenergieistwertes bestimmt werden, die Differenz aus dem Maximalenergieistwertes und dem Minimalenergieistwertes unter Gewinnung eines Größtenergieab- weichungsistwertes gebildet wird, der Größtenergieabwei- chungsistwert mit einem Größtenergieabweichungsschwellenwert verglichen wird, und ein Zusatzschaltzeitpunkt festgelegt wird, wenn der Größtenergieabweichungsistwert den Größtener- gieschwellenwert überschreitet, wobei im Zusatzschaltzeitpunkt in Abhängigkeit des Energieänderungszustandes ein Ener- giespeicher abgeschaltet und ein anderer Energiespeicher zugeschaltet wird.
6. Verfahren nach Anspruch 5, d a d u r c h g e k e n n z e i c h n e t , dass bei einem Energieänderungszustand, in dem die Energiespeicher eines Phasenmodulzweiges aufgeladen werden können, im Zusatzschaltzeitpunkt der Energiespeicher abgeschaltet wird, der von den Energiespeichern eines Phasenmodulzweiges den größten Energiespeicheristwert aufweist, wobei gleichzeitig der Energiespeicher zugeschaltet wird, der von den Energiespeichern des gleichen Phasenmodulzweiges den kleinsten Energiespeicheristwert aufweist.
7. Verfahren nach Anspruch 5, d a d u r c h g e k e n n z e i c h n e t , dass bei einem Energieänderungszustand, in dem die Energiespeicher eines Phasenmodulzweiges entladen werden können, im Zusatzschaltzeitpunkt der Energiespeicher abgeschaltet wird, der von den Energiespeichern eines Phasenmodulzweiges den kleinsten Energiespeicheristwert aufweist, wobei gleichzeitig der Energiespeicher zugeschaltet wird, der von den Energiespeichern des gleichen Phasenmodulzweiges den größten Energiespeicheristwert aufweist.
PCT/DE2007/000099 2007-01-17 2007-01-17 Ansteuerung eines phasenmodulzweiges eines multilevel-stromrichters WO2008086760A1 (de)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP07702379.4A EP2122817B1 (de) 2007-01-17 2007-01-17 Ansteuerung eines phasenmodulzweiges eines multilevel-stromrichters
PL07702379T PL2122817T3 (pl) 2007-01-17 2007-01-17 Sterowanie gałęzią modułu fazowego wielopoziomowego przekształtnika
DE112007003408T DE112007003408A5 (de) 2007-01-17 2007-01-17 Ansteuerung eines Phasenmodulzweiges eines Multilevel-Stromrichters
US12/523,461 US8390259B2 (en) 2007-01-17 2007-01-17 Driving of a phase module branch of a multilevel converter
JP2009545811A JP5247723B2 (ja) 2007-01-17 2007-01-17 マルチレベル電力変換器の相モジュールアームの制御方法
CN2007800500693A CN101584109B (zh) 2007-01-17 2007-01-17 多级变流器的相模块的控制
PCT/DE2007/000099 WO2008086760A1 (de) 2007-01-17 2007-01-17 Ansteuerung eines phasenmodulzweiges eines multilevel-stromrichters
ES07702379.4T ES2664868T3 (es) 2007-01-17 2007-01-17 Control de un ramal de módulo de fase de un convertidor multinivel
DK07702379.4T DK2122817T3 (en) 2007-01-17 2007-01-17 Control of a phase module branch of a multi-level converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/DE2007/000099 WO2008086760A1 (de) 2007-01-17 2007-01-17 Ansteuerung eines phasenmodulzweiges eines multilevel-stromrichters

Publications (1)

Publication Number Publication Date
WO2008086760A1 true WO2008086760A1 (de) 2008-07-24

Family

ID=38564435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2007/000099 WO2008086760A1 (de) 2007-01-17 2007-01-17 Ansteuerung eines phasenmodulzweiges eines multilevel-stromrichters

Country Status (9)

Country Link
US (1) US8390259B2 (de)
EP (1) EP2122817B1 (de)
JP (1) JP5247723B2 (de)
CN (1) CN101584109B (de)
DE (1) DE112007003408A5 (de)
DK (1) DK2122817T3 (de)
ES (1) ES2664868T3 (de)
PL (1) PL2122817T3 (de)
WO (1) WO2008086760A1 (de)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011098117A1 (en) * 2010-02-09 2011-08-18 Areva T&D Uk Limited Converter for high voltage dc dc transmission
WO2011110472A1 (de) 2010-03-10 2011-09-15 Abb Schweiz Ag Verfahren zum betrieb einer umrichterschaltung sowie vorrichtung zur durchführung des verfahrens
WO2011113471A1 (en) * 2010-03-15 2011-09-22 Areva T&D Uk Ltd Static var compensator with multilevel converter
WO2012038183A3 (de) * 2010-09-20 2012-10-18 Robert Bosch Gmbh System zum laden eines energiespeichers und verfahren zum betrieb des ladesystems
DE102011082946A1 (de) * 2011-09-19 2013-03-21 Siemens Aktiengesellschaft Schaltoptimierung für einen Multilevel-Generator
US8599591B2 (en) 2009-06-22 2013-12-03 Alstom Technology Ltd Converter
US8861234B2 (en) 2009-06-15 2014-10-14 Alstom Technology Ltd Voltage source converter having chain link converter for use in high voltage DC transmission
US8867244B2 (en) 2010-07-30 2014-10-21 Alstom Technology Ltd. HVDC converter including fullbridge cells for handling a DC side short circuit
US8867242B2 (en) 2010-04-15 2014-10-21 Alstom Technology Ltd Hybrid 2-level and multilevel HVDC converter
WO2014194968A1 (en) * 2013-06-07 2014-12-11 Abb Technology Ltd A converter arrangement for power compensation and a method for controlling a power converter
WO2014206704A1 (de) 2013-06-27 2014-12-31 Siemens Aktiengesellschaft Umrichteranordnung mit parallel geschalteten mehrstufen-umrichtern sowie verfahren zu deren steuerung
US8934268B2 (en) 2010-04-08 2015-01-13 Alstom Technology Ltd Power electronic converter for use in high voltage direct current power transmission
EP2611022A3 (de) * 2011-12-30 2015-01-21 LSIS Co., Ltd. Verfahren zur Zellspannungssymmetrierung in einem modularen Mehrstufenumrichter
US9065299B2 (en) 2010-06-18 2015-06-23 Alstom Technology Ltd Converter for HVDC transmission and reactive power compensation
US9209693B2 (en) 2011-11-07 2015-12-08 Alstom Technology Ltd Control circuit for DC network to maintain zero net change in energy level
WO2015188877A1 (de) 2014-06-13 2015-12-17 Siemens Aktiengesellschaft Umrichter zur blindleistungsabgabe sowie verfahren zu dessen regelung
US9350269B2 (en) 2009-07-31 2016-05-24 Alstom Technology Ltd. Configurable hybrid converter circuit
US9350250B2 (en) 2011-06-08 2016-05-24 Alstom Technology Ltd. High voltage DC/DC converter with cascaded resonant tanks
US9362848B2 (en) 2011-11-17 2016-06-07 Alstom Technology Ltd. Hybrid AC/DC converter for HVDC applications
US9479061B2 (en) 2011-08-01 2016-10-25 Alstom Technology Ltd. DC to DC converter assembly
US9698704B2 (en) 2013-01-31 2017-07-04 Siemens Aktiengesellschaft Modular high-frequency converter, and method for operating same
US9954358B2 (en) 2012-03-01 2018-04-24 General Electric Technology Gmbh Control circuit
US10248148B2 (en) 2014-05-22 2019-04-02 Siemens Aktiengesellschaft Converter for symmetrical reactive power compensation, and a method for controlling same
WO2020043263A1 (de) 2018-08-27 2020-03-05 Siemens Aktiengesellschaft Mehrphasiger mehrstufenstromrichter mit einer ansteuerung und einem passiven frequenzfilter und verfahren zur ansteuerung des mehrphasigen mehrstufenstromrichters

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE520193T1 (de) * 2009-04-02 2011-08-15 Abb Schweiz Ag Verfahren zum betrieb einer umrichterschaltung sowie vorrichtung zur durchführung des verfahrens
RU2536162C2 (ru) * 2009-10-15 2014-12-20 Абб Швайц Аг Способ работы преобразовательной схемы и устройство для его осуществления
US8837185B2 (en) * 2010-02-11 2014-09-16 Siemens Aktiengesellschaft Control of a modular converter having distributed energy stores with the aid of an observer for the currents and an estimating unit for the intermediate circuit energy
US8395280B2 (en) * 2010-02-16 2013-03-12 Infineon Technologies Ag Circuit arrangement including a multi-level converter
CN101795072A (zh) * 2010-03-03 2010-08-04 中国科学院电工研究所 一种高压直流-直流电力电子变压器
DE102010030078A1 (de) * 2010-06-15 2011-12-15 Siemens Aktiengesellschaft Verfahren zum Sperren eines Stromrichters mit verteilten Energiespeichern
JP5443289B2 (ja) * 2010-07-12 2014-03-19 株式会社東芝 電力変換装置
JP5721096B2 (ja) * 2010-08-23 2015-05-20 国立大学法人東京工業大学 電力変換器
US8618698B2 (en) * 2010-09-09 2013-12-31 Curtiss-Wright Electro-Mechanical Corporation System and method for controlling a M2LC system
RU2523332C1 (ru) * 2010-12-13 2014-07-20 Абб Текнолоджи Лтд. Многоуровневый преобразователь напряжения
FR2972085B1 (fr) * 2011-02-25 2015-01-16 Valeo Sys Controle Moteur Sas Dispositif de conversion d'energie et procede de repartition associe
CN102130619B (zh) * 2011-03-21 2014-07-02 中国电力科学研究院 一种模块化多电平变流器的均压控制方法
WO2012167833A1 (en) 2011-06-10 2012-12-13 Abb Technology Ag Methods for de-energizing a chain-link converter, controller, computer programs and computer program products
DE102012202173B4 (de) 2012-02-14 2013-08-29 Siemens Aktiengesellschaft Verfahren zum Betrieb eines mehrphasigen, modularen Multilevelstromrichters
JP5775033B2 (ja) * 2012-07-11 2015-09-09 株式会社日立製作所 電圧型電力変換装置の制御装置及び制御方法
US9276493B2 (en) 2012-11-27 2016-03-01 Abb Technology Ltd Multilevel converter with cells being selected based on phase arm current
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
KR101380079B1 (ko) 2013-05-28 2014-04-01 연세대학교 산학협력단 멀티레벨 컨버터의 제어방법
US9479075B2 (en) * 2013-07-31 2016-10-25 General Electric Company Multilevel converter system
CN103427652A (zh) * 2013-08-01 2013-12-04 南京南瑞继保电气有限公司 一种高压大功率直流-直流变换装置
US9252681B2 (en) 2013-08-30 2016-02-02 General Electric Company Power converter with a first string having controllable semiconductor switches and a second string having switching modules
US9325273B2 (en) 2013-09-30 2016-04-26 General Electric Company Method and system for driving electric machines
JP6219188B2 (ja) 2014-02-03 2017-10-25 株式会社東芝 電力変換装置
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
KR102020323B1 (ko) 2015-07-02 2019-11-04 엘에스산전 주식회사 모듈형 멀티 레벨 컨버터 및 모듈형 멀티 레벨 컨버터의 전압 밸런싱 제어 방법
US10855199B2 (en) * 2015-12-18 2020-12-01 Abb Power Grids Switzerland Ag Voltage balancing in a Modular Multilevel Converter having delta configuration
WO2018231810A1 (en) 2017-06-12 2018-12-20 Tae Technologies, Inc. Multi-level multi-quadrant hysteresis current controllers and methods for control thereof
EA202090065A1 (ru) 2017-06-16 2020-04-17 Таэ Текнолоджиз, Инк. Многоуровневые контроллеры напряжения гистерезиса для модуляторов напряжения и способы для их управления
US11095231B2 (en) * 2017-07-05 2021-08-17 Siemens Aktiengesellschaft Multilevel power converter
PE20201086A1 (es) 2018-03-22 2020-10-22 Tae Tech Inc Sistemas y metodos para gestion y control de potencia
KR20210141716A (ko) 2019-03-29 2021-11-23 티에이이 테크놀로지스, 인크. 종속 접속되고 상호 접속된 구성들이 가능한 모듈 기반 에너지 시스템들 및 이에 관련된 방법
JP2024511245A (ja) 2020-04-14 2024-03-13 ティーエーイー テクノロジーズ, インコーポレイテッド モジュールベースのカスケードエネルギーシステムを充電および放電するためのシステム、デバイス、および方法
WO2021231759A1 (en) 2020-05-14 2021-11-18 Tae Technologies, Inc. Systems, devices, and methods for rail-based and other electric vehicles with modular cascaded energy systems
KR20230074240A (ko) 2020-09-28 2023-05-26 티에이이 테크놀로지스, 인크. 다상 모듈 기반의 에너지 시스템 프레임워크 및 그것에 관련되는 방법
KR20230076831A (ko) 2020-09-30 2023-05-31 티에이이 테크놀로지스, 인크. 모듈 기반 캐스케이디드 에너지 시스템에서 위상 내 밸런싱 및 위상 간 밸런싱을 위한 시스템, 디바이스, 및 방법
US11888320B2 (en) 2021-07-07 2024-01-30 Tae Technologies, Inc. Systems, devices, and methods for module-based cascaded energy systems configured to interface with renewable energy sources

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1541407A1 (de) * 2002-06-21 2005-06-15 Nissan Diesel Motor Co., Ltd. Fahrzeugenergiespeichersteuerung

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2729014A1 (fr) * 1994-12-29 1996-07-05 Gec Alsthom Transport Sa Dispositif electronique de conversion de l'energie electrique et installation d'alimentation en faisant usage
DE102005041087A1 (de) * 2005-08-30 2007-03-01 Siemens Ag Stromrichterschaltung mit verteilten Energiespeichern
DE102005045090B4 (de) * 2005-09-21 2007-08-30 Siemens Ag Verfahren zur Steuerung eines mehrphasigen Stromrichters mit verteilten Energiespeichern
DE112006004197A5 (de) * 2006-12-08 2009-11-12 Siemens Aktiengesellschaft Steuerung eines modularen Stromrichters mit verteilten Energiespeichern

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1541407A1 (de) * 2002-06-21 2005-06-15 Nissan Diesel Motor Co., Ltd. Fahrzeugenergiespeichersteuerung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LESNICAR A ET AL: "A new modular voltage source inverter topology", 2003, XP002454302, Retrieved from the Internet <URL:http://www.unibw.de/eit62/forsch/SP/M2LC/m2lcveroef> [retrieved on 20071010] *

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8861234B2 (en) 2009-06-15 2014-10-14 Alstom Technology Ltd Voltage source converter having chain link converter for use in high voltage DC transmission
US8599591B2 (en) 2009-06-22 2013-12-03 Alstom Technology Ltd Converter
US9350269B2 (en) 2009-07-31 2016-05-24 Alstom Technology Ltd. Configurable hybrid converter circuit
WO2011098117A1 (en) * 2010-02-09 2011-08-18 Areva T&D Uk Limited Converter for high voltage dc dc transmission
US8861231B2 (en) 2010-02-09 2014-10-14 Alstom Technology Ltd Converter
WO2011110472A1 (de) 2010-03-10 2011-09-15 Abb Schweiz Ag Verfahren zum betrieb einer umrichterschaltung sowie vorrichtung zur durchführung des verfahrens
WO2011113471A1 (en) * 2010-03-15 2011-09-22 Areva T&D Uk Ltd Static var compensator with multilevel converter
US9130458B2 (en) 2010-03-15 2015-09-08 Alstom Technology Ltd. Static VAR compensator with multilevel converter
US8934268B2 (en) 2010-04-08 2015-01-13 Alstom Technology Ltd Power electronic converter for use in high voltage direct current power transmission
US8867242B2 (en) 2010-04-15 2014-10-21 Alstom Technology Ltd Hybrid 2-level and multilevel HVDC converter
US9490693B2 (en) 2010-06-18 2016-11-08 Alstom Technology Ltd. Converter for HVDC transmission and reactive power compensation
US9065299B2 (en) 2010-06-18 2015-06-23 Alstom Technology Ltd Converter for HVDC transmission and reactive power compensation
US8867244B2 (en) 2010-07-30 2014-10-21 Alstom Technology Ltd. HVDC converter including fullbridge cells for handling a DC side short circuit
US9373970B2 (en) 2010-09-20 2016-06-21 Robert Bosch Gmbh System for charging an energy store, and method for operating the charging system
WO2012038183A3 (de) * 2010-09-20 2012-10-18 Robert Bosch Gmbh System zum laden eines energiespeichers und verfahren zum betrieb des ladesystems
US9350250B2 (en) 2011-06-08 2016-05-24 Alstom Technology Ltd. High voltage DC/DC converter with cascaded resonant tanks
US9509218B2 (en) 2011-08-01 2016-11-29 Alstom Technology Ltd. DC to DC converter assembly
US9479061B2 (en) 2011-08-01 2016-10-25 Alstom Technology Ltd. DC to DC converter assembly
DE102011082946B4 (de) * 2011-09-19 2013-12-19 Siemens Aktiengesellschaft Schaltoptimierung für einen Multilevel-Generator
DE102011082946A1 (de) * 2011-09-19 2013-03-21 Siemens Aktiengesellschaft Schaltoptimierung für einen Multilevel-Generator
US9209693B2 (en) 2011-11-07 2015-12-08 Alstom Technology Ltd Control circuit for DC network to maintain zero net change in energy level
US9362848B2 (en) 2011-11-17 2016-06-07 Alstom Technology Ltd. Hybrid AC/DC converter for HVDC applications
US9052726B2 (en) 2011-12-30 2015-06-09 Lsis Co., Ltd. Method of controlling multi level converter
EP2611022A3 (de) * 2011-12-30 2015-01-21 LSIS Co., Ltd. Verfahren zur Zellspannungssymmetrierung in einem modularen Mehrstufenumrichter
US9954358B2 (en) 2012-03-01 2018-04-24 General Electric Technology Gmbh Control circuit
US9698704B2 (en) 2013-01-31 2017-07-04 Siemens Aktiengesellschaft Modular high-frequency converter, and method for operating same
WO2014194968A1 (en) * 2013-06-07 2014-12-11 Abb Technology Ltd A converter arrangement for power compensation and a method for controlling a power converter
US9876358B2 (en) 2013-06-07 2018-01-23 Abb Schweiz Ag Converter arrangement for power compensation and a method for controlling a power converter
WO2014206704A1 (de) 2013-06-27 2014-12-31 Siemens Aktiengesellschaft Umrichteranordnung mit parallel geschalteten mehrstufen-umrichtern sowie verfahren zu deren steuerung
DE102013212426A1 (de) 2013-06-27 2014-12-31 Siemens Aktiengesellschaft Umrichteranordnung mit parallel geschalteten Mehrstufen-Umrichtern sowie Verfahren zu deren Steuerung
US10248148B2 (en) 2014-05-22 2019-04-02 Siemens Aktiengesellschaft Converter for symmetrical reactive power compensation, and a method for controlling same
WO2015188877A1 (de) 2014-06-13 2015-12-17 Siemens Aktiengesellschaft Umrichter zur blindleistungsabgabe sowie verfahren zu dessen regelung
US9819286B2 (en) 2014-06-13 2017-11-14 Siemens Aktiengesellschaft Converter for outputting reactive power, and method for controlling said converter
WO2020043263A1 (de) 2018-08-27 2020-03-05 Siemens Aktiengesellschaft Mehrphasiger mehrstufenstromrichter mit einer ansteuerung und einem passiven frequenzfilter und verfahren zur ansteuerung des mehrphasigen mehrstufenstromrichters
US11139751B2 (en) 2018-08-27 2021-10-05 Siemens Energy Global GmbH & Co. KG Multiphase multilevel power converter having a drive and a passive frequency filter, and method for driving the multiphase multilevel power converter

Also Published As

Publication number Publication date
US8390259B2 (en) 2013-03-05
PL2122817T3 (pl) 2018-06-29
EP2122817A1 (de) 2009-11-25
JP5247723B2 (ja) 2013-07-24
US20100060235A1 (en) 2010-03-11
CN101584109A (zh) 2009-11-18
DE112007003408A5 (de) 2009-12-24
JP2010517496A (ja) 2010-05-20
CN101584109B (zh) 2012-07-04
EP2122817B1 (de) 2018-01-03
DK2122817T3 (en) 2018-03-12
ES2664868T3 (es) 2018-04-23

Similar Documents

Publication Publication Date Title
EP2122817B1 (de) Ansteuerung eines phasenmodulzweiges eines multilevel-stromrichters
EP3496259B1 (de) Elektrisches umrichtersystem
EP2996235B1 (de) Dc/dc-wandler
EP3014725B1 (de) Energiespeichereinrichtung mit gleichspannungsversorgungsschaltung und verfahren zum bereitstellen einer gleichspannung aus einer energiespeichereinrichtung
DE102014206304B4 (de) Mehrstufige Umformschaltung
EP2100365A1 (de) Überwachung der alterung der kondensatoren in einem umrichter mittels kapazitätsmessung
EP2458725A1 (de) Elektrisches Energiewandlersystem und Verfahren zu dessen Betrieb
EP3211784A1 (de) Doppel-submodul für einen modularen mehrpunktstromrichter und modularer mehrpunktstromrichter mit diesem
EP3255773A1 (de) Verlustarmes doppel-submodul für einen modularen mehrpunktstromrichter und modularer mehrpunktstromrichter mit diesem
WO2015007302A1 (de) Modularer multi level dc/dc wandler für hvdc anwendungen
EP2845303B1 (de) Stromrichter und betriebsverfahren zum wandeln von spannungen
WO2014206704A1 (de) Umrichteranordnung mit parallel geschalteten mehrstufen-umrichtern sowie verfahren zu deren steuerung
EP2928060A1 (de) Modulare Stromrichterschaltung mit Submodulen, die unterschiedliches Schaltvermögen aufweisen
WO2001050583A1 (de) Netzrückwirkungsarmes dreiphasen-stromzwischenkreis-pulsgleich-richtersystem mit weitem stellbereich der ausgangsspannung
EP3713073A1 (de) Stromrichter und verfahren zu dessen regelung
DE19526836A1 (de) Vorrichtung zum Ladungsausgleich zwischen einer Vielzahl von Energiespeichern oder -wandlern
EP3602762A1 (de) Wechselrichter
DE102020131349B3 (de) Schaltungsanordnung und Verfahren zum Steuern und Freischalten der Verbindung von elektrischen Betriebsmitteln und/oder Netzleitungsabschnitten
DE102013109714A1 (de) Verfahren zum Betreiben einer elektrischen Schaltung sowie elektrische Schaltung
EP2733837A1 (de) Umrichter
EP2928055B1 (de) Modularer Stromrichter und Verfahren zur Erzeugung einer sinusförmigen Ausgangsspannung mit reduziertem Oberschwingungsgehalt
EP0865138A1 (de) Verfahren und Schaltungsanordnung zur Wechselspannungsformung
WO2019166082A1 (de) Vorrichtung und verfahren zum steuern eines lastflusses in einem wechselspannungsnetz
DE102013207894A1 (de) Elektrische Schaltung
AT404415B (de) Weitbereichs-dreiphasen-dreipunkt- pulsgleichrichtersystem

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780050069.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07702379

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007702379

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2009545811

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12523461

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120070034084

Country of ref document: DE

REF Corresponds to

Ref document number: 112007003408

Country of ref document: DE

Date of ref document: 20091224

Kind code of ref document: P