WO2008086704A1 - Système de production de cristaux utilisé dans un procédé bridgman-stockbarger par rotation de plusieurs creusets - Google Patents

Système de production de cristaux utilisé dans un procédé bridgman-stockbarger par rotation de plusieurs creusets Download PDF

Info

Publication number
WO2008086704A1
WO2008086704A1 PCT/CN2007/003852 CN2007003852W WO2008086704A1 WO 2008086704 A1 WO2008086704 A1 WO 2008086704A1 CN 2007003852 W CN2007003852 W CN 2007003852W WO 2008086704 A1 WO2008086704 A1 WO 2008086704A1
Authority
WO
WIPO (PCT)
Prior art keywords
crucible
rotating
lifting platform
crystal
furnace
Prior art date
Application number
PCT/CN2007/003852
Other languages
English (en)
French (fr)
Inventor
Youbao Wan
Original Assignee
Jiaxing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiaxing University filed Critical Jiaxing University
Publication of WO2008086704A1 publication Critical patent/WO2008086704A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/007Mechanisms for moving either the charge or the heater
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/002Crucibles or containers for supporting the melt
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state
    • Y10T117/1076Apparatus for crystallization from liquid or supercritical state having means for producing a moving solid-liquid-solid zone
    • Y10T117/108Including a solid member other than seed or product contacting the liquid [e.g., crucible, immersed heating element]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state
    • Y10T117/1092Shape defined by a solid member other than seed or product [e.g., Bridgman-Stockbarger]

Definitions

  • the present invention relates to a crystal growth system, and more particularly to a rotating multi-turn down crystal growth system. Background technique
  • crystals such as lead tungstate crystals, Sb 2 0 3 misced lead tungstate crystals, Nb 2 0 5 doped lead tungstate crystals
  • growth system mainly adopt multi-turn-down crystal growth
  • the growth crucible support device can drive the crucible downward movement to achieve crystal growth under the control of the control device, and the system can accommodate a plurality of crystal growths in the furnace by extending the size of the crucible in one direction.
  • the quasi-rectangular radial temperature field thus formed was initially successful in the growth of a square shape of lead tungstate crystal.
  • the crucible support device can only drive the growth crucible up and down.
  • the melt and the crystal are relatively stationary. There is only natural convection and diffusion in the melt. The main power is at the crystal growth interface. And particle concentration gradients in the melt, temperature gradients, and gravity.
  • the transport of the particles in the melt which only relies on natural convection and diffusion acts is slow in transport rate, low in efficiency, simple in growth composition, close to the effective segregation coefficient of the component ions, and crystal composition and melting at the growth interface. It is suitable for crystals with similar body composition and low requirements for particle transport in the melt.
  • the crystal composition and the melt composition at the interface are different, and the effective ion segregation coefficient of the component ions is significantly different, the melt particle transport capacity is insufficient, so that the growth interface melt cannot be obtained in time.
  • Particles required for crystal growth, particles not required for interface (such as impurity particles generated by exhaustion) cannot be transferred in time, and the concentration accumulated excessively in the interface melt, which leads to excessive defects in the crystal, and even heterogeneous Severe macroscopic defects such as wraps, or uneven growth of doping ions in the crystal, may result in deterioration of crystal quality.
  • the radial temperature field of the furnace in this growth system is asymmetrical, which leads to the asymmetry of the radial temperature field in the crucible, which has an adverse effect on crystal growth.
  • the direct result is that it is difficult to grow a cylindrical single crystal.
  • the technical problem to be solved by the present invention is to provide a rotating multi-turn down method crystal growth system It can effectively improve the quality of grown crystals, and can grow high-quality crystals of climbing crystals, while also being able to grow round crystals that are difficult to obtain with existing multi-turn growth techniques.
  • a rotating multi-turn down crystal growth system comprising: a crystal furnace, a crucible and a supporting device thereof, wherein the crystal furnace comprises a furnace body, a furnace and a heating body; and the crucible supporting device comprises a lifting platform, a ⁇ guide tube bracket on the lifting platform and a ⁇ guiding tube on the guiding tube bracket, a lowering device connected to the lifting platform, a lifting motor and a power source connected to the lowering device, wherein the guiding tube bracket and the guiding tube are disposed between
  • the fastening device is placed in the ⁇ guide tube;
  • the ⁇ support device is a rotatable multi-turn support device, and the lower end of each guide tube bracket is provided with a rotating shaft, the rotating shaft extends through the lifting platform, and the lower end of the rotating shaft extends out of the lifting platform respectively
  • An intermeshing gear is coupled, wherein one of the rotating shafts is longer than the other rotating shafts, and the gears on the longer rotating shaft are coupled to
  • the rotation speed and direction of the rotary shaft can be adjusted as needed during crystal growth, so that the crucible in the crucible guide tube can be rotated in accordance with a certain procedure, and the rigid crystal and the crucible wall grown during growth are
  • the mechanical rotation of the rotating guide tube is synchronized with the rotating electric machine. Due to the inertia, the liquid melt moves relative to the crystal and the crucible wall, generating a similar stirring action to the melt, which causes forced convection of the melt.
  • the forced convection can greatly improve the material transport condition in the melt, so that the crystal growth solid-liquid interface particles and the growing crystal interface and the melt particle exchange can be solved, and the growing crystal can obtain the required particles. Unwanted particles produced by the impurities can be discharged into the melt in time, which is advantageous for improving the crystal integrity and improving the crystal quality.
  • the present invention increases the radial temperature symmetry of crystal growth while forcing the growth melt to force flow.
  • the effect of the rotation of the ⁇ guide tube on the symmetry of the radial temperature field of the furnace body is not very obvious, the radial temperature symmetry inside the cymbal inside each of the rotating guide tubes is greatly improved, and the reason for this effect is the rotation.
  • the temperature changes experienced by the faces of the same height of the guiding tube are exactly the same for a period of time.
  • the thermal insulation buffer between the inner wall of the guiding tube and the growth wall prevents the temperature of the crucible from being relatively stable, so that the radial direction of the crucible
  • the temperature field is substantially symmetrical, resulting in a circular radial symmetric temperature field similar to the pull-up growth technique. Since the temperature gradient is the main driving force for crystal growth, the symmetrical radial temperature field is favorable for the radial symmetry of the solid-liquid interface in growth, and the temperature driving force obtained by crystal development in all directions is similar, which greatly improves the crystal quality of growth.
  • the application of the invention enables the growth of the melt composition relative to Complex, component ions have a certain difference in the directional coagulation coefficient, or a cumbersome crystal, and can also grow to obtain circular crystals that are difficult to obtain by the existing multi-turn growth technique.
  • the invention can effectively improve the quality of the grown crystals, and can grow high-quality doped crystals, and at the same time grow to obtain circular crystals which are difficult to obtain by the existing multi-turn growth technique.
  • FIG. 1 is a schematic structural view of an embodiment of the present invention
  • FIG. 2 is an enlarged view of the crucible of the present invention and its supporting device. detailed description
  • a rotating multi-turn down crystal growth system includes: a crystal furnace 1, a crucible 2 and a supporting device 3 thereof, wherein the crystal furnace 4 includes a furnace body 4, a furnace 6 and the heating element 5; the crucible supporting device 3 comprises a lifting platform 301, a crucible guiding tube bracket 302 on the lifting platform 301 and a crucible guiding tube 303 on the guiding tube bracket, a lowering device 304 connected to the lifting platform, and guiding
  • the lifting motor 305 and the power source 306 are connected to the device 304, wherein a fastening device 307 is disposed between the guiding tube bracket 302 and the guiding tube 303, and the crucible 2 is placed in the crucible guiding tube 303; the crucible supporting device 3 is rotatable
  • the support device, the lower end of each of the guide tube brackets 302 is provided with a rotating shaft 308, the rotating shaft 308 is inserted through the lifting platform
  • a digital frequency converter 3012 is connected between the rotating electrical machine 3011 and the power source 306 described in this embodiment.
  • the introduction of a rotatable crucible support device also has a negative effect in the crystal growth system.
  • the rotating guide tube generates an upward flow of air in the furnace, and the faster the rotation speed, the more obvious the effect.
  • Both the airflow and the rotating guide tube will affect the temperature field in the furnace, especially the shape of the radial isothermal surface will change greatly, and the airflow generated along the guide tube wall will The heat transfer of the guide tube is accelerated.
  • These effects will have an effect on the temperature field distribution in the crucible, affecting the radial symmetry of the solid-liquid interface during growth.
  • These effects decrease rapidly as the rate of rotation of the guide tube decreases, and the thickness of the inner insulation layer of the thickened guide tube can also be used to reduce the effect of this unfavorable factor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

旋转多坩埚下降法晶体生长系统
技术领域
本发明涉及一种晶体生长系统, 特别涉及一种旋转多坩埚下降法晶体 生长系统。 背'景技术
现有多坩埚下降法晶体生长技术中晶体(如钨酸铅晶体、 Sb203惨杂钨 酸铅晶体、 Nb205掺杂钨酸铅晶体)生长系统主要采用多坩埚下降法晶体生 长系统, 其中的生长坩埚支撑装置可以在控制设备控制下, 按照要求带动 坩埚向下运动实现晶体生长, 这种系统中通过在一个方向延长炉膛尺寸, 使炉膛中能够同时容纳多根晶体生长。 这样形成的准长方形径向温度场在 生长外观为方形的钨酸铅晶体等获得初步成功。 但是这种晶体生长系统中 坩埚支撑装置只能够带动生长坩埚上下运动, 晶体生长时由于熔体和晶体 相对静止不动, 熔体中只存在着自然对流和扩散, 其主要动力是晶体生长 界面处和熔体中粒子浓度梯度、 温度梯度以及重心引力。 这种只依靠自然 对流和扩散作用输运生长粒子的熔体中粒子输运速率慢、 效率不高, 在生 长组分较简单、 组分离子有效分凝系数接近、 生长界面处晶体组成和熔体 组成相近、 对熔体中粒子输运要求不高的晶体时可以胜任。 当生长组分较 复杂、 界面处晶体组成和熔体组成相差较大、 组分离子有效分凝系数有明 显差别的晶体时, 熔体粒子输运力能力不足会使生长界面熔体不能及时得 到晶体生长需要的粒子、 界面不需要的粒子 (如排杂产生的杂质粒子) 不 能够及时转移, 在界面熔体中逐渐积累浓度过大, 这些都会导致晶体中缺 陷过多, 甚至会出现异相包裹物等严重宏观缺陷, 或在生长惨杂晶体时会 出现掺杂离子在晶体中浓度分布不均匀等严重结果, 导致晶体质量变坏。 而且这种生长系统中炉膛径向温度场不对称, 导致坩埚中径向温度场不对 称, 对晶体生长产生不利影响, 直接结果是生长圆柱形外观单晶体困难。 发明内容
本发明所要解决的技术问题是提供一种旋转多坩埚下降法晶体生长系 统, 可以有效提高生长晶体的质量, 而且可以生长出高质量的攀杂晶体, 同时还能够生长获得现有多坩埚下降生长技术很难获得的圆形晶体。
本发明所采用的技术方案是: 一种旋转多坩埚下降法晶体生长系统, 包括: 晶体炉、 坩埚及其支撑装置, 其中晶体炉包括炉体, 炉膛和发热体; 坩埚支撑装置包括升降台, 位于升降台上的坩埚导向管支架和导向管支架 上的坩埚导向管, 与升降台连接的引下装置, 与引下装置连接的升降电机 和电源, 其中导向管支架和导向管之间设置有紧固装置, 坩埚置于坩埚导 向管内; 坩埚支撑装置是可旋转多坩埚支撑装置, 每个导向管支架的下端 设置有旋转轴, 旋转轴贯穿升降台, 旋转轴下端伸出升降台的部分分别连 接有互相啮合的齿轮, 其中一个旋转轴比其它旋转轴长, 该较长旋转轴上 的齿轮通过联轴器连接一固定在升降台上的旋转电机。
由于采用可旋转的多坩埚支撑装置, 因此在晶体生长时可根据需要调 节旋转轴转速和方向, 使坩埚导向管内的坩埚能够按照一定程序进行变速 旋转, 生长中生长出的刚性晶体和坩埚壁在旋转导向管机械转动的带动下 与旋转电机同步, 由于惯性作用, 液态的熔体与晶体以及坩埚壁产生相对 运动, 产生与提拉法类似的对熔体的搅拌作用, 使熔体产生强迫对流, 强 迫对流的产生能够大大改善熔体中物料输运状况, 使晶体生长固液界面粒 子与生长中的晶体界面和熔体的粒子交换得以解善, 生长中的晶体能够获 得需要的粒子, 排杂产生的不需要的粒子可以及时排到熔体中, 这对提高 晶体的完整性、 提高晶体质量十分有利。
另外, 本发明在使生长熔体产生强迫对流动同时, 使晶体生长的径向 温度对称性增加。 虽然坩埚导向管的旋转对炉体的径向温度场对称性改善 的效果不十分明显, 但是旋转的每根导向管内坩埚内部的径向温度对称情 况会大大改善, 得到这种效果的原因是旋转的导向管的同一高度的各个面 在一段时间所经历的温度变化情况完全相同, 导向管内管壁与生长坩埚壁 之间的保温粉的保温缓冲作用使坩埚的温度得到相对稳定, 使坩埚内径向 温度场基本能够保持对称, 得到与提拉法生长技术相类似的圆形径向对称 温度场。 由于温度梯度是晶体生长的主要驱动力, 对称的径向温度场有利 于生长中的固液界面在径向对称, 晶体在各方向发育得到的温度驱动力相 近似, 大大提高生长的晶体质量。 因此应用本发明能够生长熔体组成相对 复杂、 组分离子有向分凝系数有一定差别、 或者惨杂的晶体, 同时还能够 生长获得现有多坩埚下降生长技术很难获得的圆形晶体。
本发明的有益效果是:
釆用本发明可以有效提高生长晶体的质量, 而且可以生长出高质量的 掺杂晶体, 同时还能够生长获得现有多坩埚下降生长技术很难获得的圆形 晶体。 附图说明
图 1是本发明一个实施例的结构示意图;
图 2是本发明坩埚及其支撑装置放大图。 具体实施方式
下面结合附图对本发明做进一步说明。
如图 1、 图 2所示, 本发明一实施例的一种旋转多坩埚下降法晶体生长 系统, 包括: 晶体炉 1、 坩埚 2及其支撑装置 3, 其中晶体炉 4包括炉体 4, 炉膛 6和发热体 5 ; 坩埚支撑装置 3包括升降台 301, 位于升降台 301上的 坩埚导向管支架 302和导向管支架上的坩埚导向管 303,与升降台连接的引 下装置 304, 与引下装置 304连接的升降电机 305和电源 306, 其中导向管 支架 302和导向管 303之间设置有紧固装置 307, 坩埚 2置于坩埚导向管 303内; 所述的坩埚支撑装置 3是可旋转多坩埚支撑装置, 每个导向管支架 302 ·的下端设置有旋转轴 308, 旋转轴 308贯穿升降台 301, 旋转轴 308下 端伸出升降台的部分分别连接有互相啮合的齿轮 309,其中一个旋转轴比其 它旋转轴长, 该较长旋转轴上的齿轮通过联轴器 3010连接一固定在升降台 上的旋转电机 3011。 发热体根据生长不同晶体需要可以替换。
为了有效控制结晶时坩埚的转速和方向, 本实施例中所述的旋转电机 3011和电源 306之间连接有数字变频器 3012。
但是在实际应用中, 可旋转坩埚支撑装置的引进在晶体生长系统中也 会产生一种负面效果, 旋转的导向管会在炉膛中产生向上的气流, 转速越 快这种效应就越明显。 气流和旋转的导向管都会对炉膛中的温度场产生影 响, 尤其是径向等温面的形状会发生较大改变, 沿导向管壁产生的气流会 使导向管的传热加快。 这些影响都会对坩埚内温度场分布产生作用, 影响 生长中固液界面的径向对称。 这些影响随着导向管的旋转速率降低迅速降 低, 也可以釆用加厚导向管内保温层的厚度来减小这一不利因素的影响。

Claims

权 利 要 求 书
1 . 一种旋转多坩埚下降法晶体生长系统, 包括: 晶体炉, 坩埚及其支撑装 置, 其中晶体炉包括炉体, 炉膛和发热体; 坩埚支撑装置包括升降台, 位于升降台上的坩埚导向管支架和导向管支架上的坩埚导向管,与升降 台连接的引下装置, 与引下装置连接的升降电机和电源,其中导向管支 架和导向管之间设置有紧固装置,坩埚置于坩埚导向管内;其特征在于: 所述的坩埚支撑装置是可旋转多坩埚支撑装置,每个导向管支架的下端 设置有旋转轴,旋转轴贯穿升降台,旋转轴下端伸出升降台的部分分别 连接有互相啮合的齿轮,其中一个旋转轴比其它旋转轴长, 该较长旋转 轴上的齿轮通过联轴器连接一固定在升降台上的旋转电机。
2. 如权利要求 1所述的旋转多坩埚下降法晶体生长系统,其特征在于:所 述的发热体根据生长不同晶体需要可以替换。
3. 如权利要求 1所述的旋转多坩埚下降法晶体生长系统,其特征在于:所 述的可旋转多坩埚支撑装置中旋转电机和电源之间连接有数字变频器。
PCT/CN2007/003852 2006-12-29 2007-12-27 Système de production de cristaux utilisé dans un procédé bridgman-stockbarger par rotation de plusieurs creusets WO2008086704A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200610148318XA CN101070608B (zh) 2006-12-29 2006-12-29 旋转多坩埚下降法晶体生长系统
CN200610148318.X 2006-12-29

Publications (1)

Publication Number Publication Date
WO2008086704A1 true WO2008086704A1 (fr) 2008-07-24

Family

ID=38898017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/003852 WO2008086704A1 (fr) 2006-12-29 2007-12-27 Système de production de cristaux utilisé dans un procédé bridgman-stockbarger par rotation de plusieurs creusets

Country Status (3)

Country Link
US (1) US8591648B2 (zh)
CN (1) CN101070608B (zh)
WO (1) WO2008086704A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101070608B (zh) * 2006-12-29 2010-06-23 嘉兴学院 旋转多坩埚下降法晶体生长系统
US9352389B2 (en) * 2011-09-16 2016-05-31 Silicor Materials, Inc. Directional solidification system and method
CN102677175A (zh) * 2012-05-28 2012-09-19 上海应用技术学院 一种砷化镓单晶的生长方法
CN103046115B (zh) * 2012-12-03 2015-04-01 长春理工大学 坩埚下降法晶体生长炉的下降装置
TWI643983B (zh) 2013-03-14 2018-12-11 美商希利柯爾材料股份有限公司 定向凝固系統及方法
JP6726910B2 (ja) * 2016-04-21 2020-07-22 国立大学法人信州大学 酸化ガリウム結晶の製造装置および酸化ガリウム結晶の製造方法
JP2018048043A (ja) * 2016-09-21 2018-03-29 国立大学法人信州大学 タンタル酸リチウム結晶の製造装置およびタンタル酸リチウム結晶の製造方法
JP6631460B2 (ja) * 2016-10-03 2020-01-15 株式会社Sumco シリコン単結晶の製造方法およびシリコン単結晶
JP6641317B2 (ja) * 2017-03-02 2020-02-05 不二越機械工業株式会社 単結晶製造装置
CN107687026B (zh) * 2017-08-23 2024-02-13 江苏星特亮科技有限公司 一种用于人工晶体生长的装置
CN110295394A (zh) * 2018-03-23 2019-10-01 中国科学院上海硅酸盐研究所 一种硅酸铋闪烁晶体的旋转下降法生长工艺
US11661672B2 (en) * 2018-08-06 2023-05-30 Carnegie Mellon University Method for producing a sheet from a melt by imposing a periodic change in the rate of pull
CN111379012B (zh) * 2020-04-24 2021-02-05 西安交通大学 一种提高引下管在单晶生长炉中装配精度的装置及方法
CN115404538B (zh) * 2022-07-20 2023-08-22 中国电子科技集团公司第二十六研究所 一种可实现晶体连续生长的装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3229698A1 (de) * 1982-08-10 1984-02-16 Jürgen 6074 Rödermark Wisotzki Halterung fuer das absenken mehrerer schmelztiegel im bridgman-zonenschmelzverfahren
US6241820B1 (en) * 1998-03-31 2001-06-05 Ngk Insulators, Ltd. Single crystal-manufacturing equipment and a method for manufacturing the same
CN101070608A (zh) * 2006-12-29 2007-11-14 万尤宝 旋转多坩埚下降法晶体生长系统
CN200992592Y (zh) * 2006-12-29 2007-12-19 万尤宝 多坩埚下降法晶体生长系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5944892A (en) 1996-02-28 1999-08-31 General Signal Technology Corporation Multiple station crystal growing system and method of using same
JP3775776B2 (ja) 1999-09-20 2006-05-17 ユニオンマテリアル株式会社 単結晶の製造方法
TW500839B (en) 2001-10-30 2002-09-01 Univ Nat Taiwan System and method for growing single crystal by rotary unidirectional setting
US7344598B2 (en) 2004-09-15 2008-03-18 National Taiwan University Rotationally-vibrated unidirectional solidification crystal growth system and its method
US8231968B2 (en) * 2006-05-03 2012-07-31 Noveko Trading 2008 Llc Natural tourmaline anion fiber and filter and producing method
CN101008100B (zh) * 2006-12-29 2010-05-19 嘉兴学院 温梯法旋转多坩埚晶体生长系统
CN101555620A (zh) 2008-04-07 2009-10-14 Axt公司 晶体生长装置及方法
WO2012170124A2 (en) 2011-06-06 2012-12-13 Gtat Corporation Heater assembly for crystal growth apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3229698A1 (de) * 1982-08-10 1984-02-16 Jürgen 6074 Rödermark Wisotzki Halterung fuer das absenken mehrerer schmelztiegel im bridgman-zonenschmelzverfahren
US6241820B1 (en) * 1998-03-31 2001-06-05 Ngk Insulators, Ltd. Single crystal-manufacturing equipment and a method for manufacturing the same
CN101070608A (zh) * 2006-12-29 2007-11-14 万尤宝 旋转多坩埚下降法晶体生长系统
CN200992592Y (zh) * 2006-12-29 2007-12-19 万尤宝 多坩埚下降法晶体生长系统

Also Published As

Publication number Publication date
US8591648B2 (en) 2013-11-26
CN101070608A (zh) 2007-11-14
CN101070608B (zh) 2010-06-23
US20100294198A1 (en) 2010-11-25

Similar Documents

Publication Publication Date Title
WO2008086704A1 (fr) Système de production de cristaux utilisé dans un procédé bridgman-stockbarger par rotation de plusieurs creusets
WO2008086705A1 (fr) Système de production de cristaux utilisé dans un procédé à gradient thermique par rotation de plusieurs creusets
TWI781759B (zh) 晶體生產方法
KR20070033516A (ko) 고품질 실리콘 단결정 잉곳의 성장장치, 그 장치를 이용한성장방법
JP5131170B2 (ja) 単結晶製造用上部ヒーターおよび単結晶製造装置ならびに単結晶製造方法
TW201005134A (en) Controlling a melt-solid interface shape of a growing silicon crystal using an unbalanced magnetic field and iso-rotation
JP3598972B2 (ja) シリコン単結晶の製造方法
JP6631460B2 (ja) シリコン単結晶の製造方法およびシリコン単結晶
TW202225501A (zh) 拉晶方法和拉晶裝置
JP4161655B2 (ja) 結晶製造用ヒーター及び結晶製造装置並びに結晶製造方法
TWI832389B (zh) 一種用於單晶生長的熱場調節裝置和方法
CN200992592Y (zh) 多坩埚下降法晶体生长系统
JP2010030867A (ja) シリコン単結晶の育成方法
JP2013516384A (ja) 単結晶成長装置の断熱装置およびこれを含む単結晶成長装置
TWI738466B (zh) 晶體生長裝置
CN114941171A (zh) 一种用直拉法生长准矩形柱体单晶硅的装置和工艺方法
CN200978306Y (zh) 晶体生长系统中的可旋转多坩埚支撑装置
JP4314974B2 (ja) シリコン単結晶の製造方法及びシリコン単結晶
CN200988869Y (zh) 温梯法旋转坩埚晶体生长系统
JP2012236755A (ja) 再使用が可能なシリコン溶融用二重坩堝を備える単結晶シリコンインゴット成長装置
TWI815688B (zh) 一種用於生產單晶矽棒的石英坩堝、坩堝元件及拉晶爐
JP2003012394A (ja) シリコンインゴット成長装置
TWI832757B (zh) 磷化銦晶體生長裝置
JPH07277870A (ja) 結晶成長方法および装置
JP2013082571A (ja) シリコン単結晶ウエーハ、エピタキシャルウエーハ、及びそれらの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07855853

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07855853

Country of ref document: EP

Kind code of ref document: A1