WO2008083584A1 - Procédé et dispositif de commande de l'agrégation de liaisons - Google Patents

Procédé et dispositif de commande de l'agrégation de liaisons Download PDF

Info

Publication number
WO2008083584A1
WO2008083584A1 PCT/CN2007/071327 CN2007071327W WO2008083584A1 WO 2008083584 A1 WO2008083584 A1 WO 2008083584A1 CN 2007071327 W CN2007071327 W CN 2007071327W WO 2008083584 A1 WO2008083584 A1 WO 2008083584A1
Authority
WO
WIPO (PCT)
Prior art keywords
link
data
sink
transmitted
carry
Prior art date
Application number
PCT/CN2007/071327
Other languages
English (en)
French (fr)
Inventor
Jixiong Dong
Hongguang Guan
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Priority to EP07846153A priority Critical patent/EP2086197B1/en
Publication of WO2008083584A1 publication Critical patent/WO2008083584A1/zh
Priority to US12/468,578 priority patent/US7949011B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • H04L47/82Miscellaneous aspects
    • H04L47/825Involving tunnels, e.g. MPLS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/24Multipath
    • H04L45/245Link aggregation, e.g. trunking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • H04L47/72Admission control; Resource allocation using reservation actions during connection setup
    • H04L47/724Admission control; Resource allocation using reservation actions during connection setup at intermediate nodes, e.g. resource reservation protocol [RSVP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/50Reducing energy consumption in communication networks in wire-line communication networks, e.g. low power modes or reduced link rate

Definitions

  • the invention relates to network technology, and in particular to a link aggregation control method and device.
  • Ethernet bandwidth is getting bigger and bigger, and 100M Ethernet and Gigabit Ethernet are gradually put into practical use.
  • the bandwidth of a single Ethernet link is still limited.
  • the transmission network generally an optical transmission network, such as GMPLS, Generalized Multiprotocol Label).
  • Switching / Automatic Switched Optical Network (ASON)
  • ASON Automatic Switched Optical Network
  • Ethernet edge devices and transport networks such as GMPLS/AOSN networks, Synchronous Digital Hierarchy (SDH)/ The Synchronous Optical Network (SONET)/Multi-Service Transport Platform (MSTP) network is implemented by an Ethernet link between edge devices such as MSTP.
  • transport networks such as GMPLS/AOSN networks, Synchronous Digital Hierarchy (SDH)/ The Synchronous Optical Network (SONET)/Multi-Service Transport Platform (MSTP) network is implemented by an Ethernet link between edge devices such as MSTP.
  • SDH Synchronous Digital Hierarchy
  • SONET Synchronous Optical Network
  • MSTP Multi-Service Transport Platform
  • LACP Link Aggregation Control Protocol
  • the LACP protocol is used to establish an aggregation link between the edge device of the Ethernet network and the edge device of the transport network.
  • the links are statically specified on the edge device and the specified Ethernet ports are specified.
  • the network links are aggregated into a single data channel with a larger bandwidth. Port information corresponding to the link after link aggregation is configured on the Ethernet device.
  • LACP will inform the Ethernet device to consider the port configured in the aggregate as an adapter for the aggregated link.
  • the data of the domain network is aggregated at the edge nodes El, E2 of the Ethernet metropolitan area network, and then the data will be transmitted by the transport network edge nodes C1 and C2 through the transport network.
  • the maximum bandwidth of the Ethernet link is 1 Gbit/s
  • the transmission network link is 10 Gbit/s
  • the data transmitted between El and E2 requires 4 Gbit/s.
  • Ethernet link aggregation is required between the Ethernet edge node and the transport network edge node to provide a single larger bandwidth transmission. aisle. Therefore, in the figure, it is required to statically specify on C1 and C2: At least four Ethernet physical links with a bandwidth of 1 Gbit/s are aggregated between E1 and C1 into a logical data channel chain with a bandwidth of 4 Gbit/s. The route, and between E2 and C2, aggregates at least four Ethernet links with a bandwidth of 1 Gbit/s into a link with a bandwidth of 4 Gbit/s.
  • the above prior art is essentially a static planning configuration method, and more and more is dynamic data transmission, so the above prior art is difficult to meet dynamic data transmission. Need. Moreover, it cannot solve the data congestion problem caused by the inconsistency of data bearer bandwidth.
  • the embodiment of the invention provides a link aggregation control method and device, which can be used for dynamic control of link aggregation.
  • the embodiment of the present invention discloses a link aggregation control method: detecting whether the available bandwidth of the bearer link of the transport path sink is sufficient to carry data to be transmitted; if the available bandwidth of the bearer link of the sink is insufficient to carry the to-be-transmitted Data, continue to determine whether the sink has enough available aggregated Ethernet links to carry data to be transmitted; if the sink has enough available aggregated Ethernet links to carry the data to be transmitted, Notifying the sink end of a link aggregation sufficient to carry the data to be transmitted.
  • the embodiment of the present invention further discloses a link aggregation control apparatus, including: a detection module, configured to detect whether an available bandwidth of a bearer link of a transmission path sink is sufficient to carry data to be transmitted; and a determining module, configured to receive the detection module As a result of the detection, when the result of the detection is that the available bandwidth of the bearer link of the sink is insufficient to carry the data to be transmitted, it is determined whether the sink has enough available aggregated Ethernet links to carry the to-be-transmitted a data aggregation module, configured to receive a determination result of the determining module, when the determining result is that the sink has enough available anggregatable Ethernet link to carry the data to be transmitted, notify the The sink performs a link aggregation sufficient to carry the data to be transmitted.
  • FIG. 1 is a schematic structural diagram of a network applied to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of an embodiment of an aggregate link method of the present invention.
  • FIG. 3 is a timing diagram of an embodiment of a link aggregation control method to which the present invention is applied;
  • FIG. 4 is a timing diagram showing an embodiment of a link aggregation control method to which the present invention is applied;
  • FIG. 5 is a schematic diagram of a network structure of an embodiment of a link aggregation control method to which the present invention is applied;
  • FIG. 6 is a timing diagram of an embodiment of a link aggregation control method to which the present invention is applied.
  • El and E2 are edge nodes of the aggregation network (for example, Metro Ethernet), and Cl and C2 are edge nodes of the switching network (that is, the transmission network).
  • El and E2 are edge nodes of the aggregation network (for example, Metro Ethernet)
  • Cl and C2 are edge nodes of the switching network (that is, the transmission network).
  • four 1 Gbit/s bandwidth Ethernet links have been aggregated between nodes E1 and C1 to provide 4 Gbit/s bandwidth, while only 3 1 Gbits are aggregated between nodes C2 and E2.
  • a second bandwidth Ethernet link to provide 3Gbits/sec of bandwidth.
  • the prior art may also cause the Ethernet link aggregation capability between the local transport network edge node and the aggregation network edge node to be inconsistent with the remote end, thereby causing an end-to-end bandwidth-guaranteed data connection to be established.
  • the Ethernet link aggregation capability between the local transport network edge node and the aggregation network edge node may be inconsistent with the remote end, thereby causing an end-to-end bandwidth-guaranteed data connection to be established.
  • two Ethernet links of 1 Gbit/s bandwidth can be aggregated between nodes E1 and C1
  • no corresponding Ethernet link can be aggregated between the corresponding nodes C2 and E2
  • the signaling processing on the node C2 may not be able to reserve sufficient bandwidth.
  • the root cause is that the aggregation capability of the edge node cannot be known when the connected ingress node traffic engineering is routed, and is processed accordingly.
  • the source end and the sink end of the data transmission path in FIG. 1 are both edge nodes of the transmission network, and the aggregation link is a link between the edge node of the transmission network and the edge node of the aggregation network.
  • the source terminal, the sink terminal part or all are not edge nodes, but the nodes inside the switching network, the above problem also occurs.
  • the source end and the sink end of the data transmission path are both edge nodes of the transport network
  • the aggregate link is a link between the edge node of the transport network and the edge node of the convergence network.
  • embodiments of the present invention may also be applied to the interior of a transport network to provide dynamic aggregation of Ethernet links, such as when two nodes across one or more intermediate nodes on the transmission path use Ethernet links as data.
  • a link, and the data link supports an Ethernet link aggregation function.
  • the present invention can be used to transmit traffic passing through the two nodes on a non-congested path.
  • the processing manner is basically similar to the following embodiment.
  • the transport network may be replaced with other networks such as an access network and an aggregation network, and Ethernet aggregation is performed on the network.
  • the link bandwidth is dynamically configured. Since the implementation method is the same as the embodiment of the present invention, for the sake of simplicity of description, these situations are not additionally described in the following embodiments.
  • a link aggregation control method provided by an embodiment of the present invention may aggregate an edge device between an access network and an edge device of a transport network (such as a GMPLS/AOSN network or an SDH/SONET/MSTP network) according to the need of transmitting data.
  • a transport network such as a GMPLS/AOSN network or an SDH/SONET/MSTP network
  • the Ethernet link, or the Ethernet link between the internal devices of the transport network, the network structure of the application is shown in Figure 1.
  • a link aggregation control method according to an embodiment of the present invention includes:
  • step S11 when there is data to be transmitted in the transmission network, when the transmission path needs to be established, the sink end (ie, the egress node) C2 and the aggregation network of the transmission path to be established are detected.
  • the aggregation network is a metropolitan area. Ethernet
  • the Ethernet bearer link between the edge nodes E2 to determine whether the bandwidth is sufficient to carry the data to be transmitted. If the bearer link between the sinker C2 and E2 (the sink bearer link may be a single link, It may be an aggregated link) the available bandwidth is sufficient to carry the data, then the process ends. Otherwise, step S12 is performed.
  • the specific determining manner is: determining whether the bandwidth of the bearer link of the sink is smaller than the bandwidth required for the data to be transmitted. If the bandwidth is less than, the available bandwidth of the bearer link of the sink is insufficient to carry the data to be transmitted.
  • step S11 is mainly to determine whether the available bandwidth of a link on the logical side of the sink is sufficient to carry the data to be transmitted.
  • step S12 the available bandwidth of the Ethernet link that can be aggregated by the sinking terminal C2 is determined, and it is determined whether the sinking end C2 has sufficient available bandwidth for carrying the data to be transmitted.
  • the determining method is: When the initialization and each chain change, the sink floods its maximum physical bandwidth, reserved bandwidth, and reservable bandwidth information. The source end determines the available space based on the received maximum physical bandwidth and reservable bandwidth of the sink. If the total bandwidth of the aggregated link is not less than the bandwidth of the data to be transmitted, if the determination result is yes, then step S14 is performed, and if the result of the determination is no, step S13 is performed. In other words, step S12 is mainly to determine whether the multiple links that the sink end can aggregate are enough to carry the data to be transmitted.
  • step S13 according to the pre-configured alarm policy, an alarm message is sent, indicating that the sink C2 cannot provide sufficient bandwidth, so the transmission path cannot be established normally.
  • the sinking end is configured to perform link aggregation, and after receiving the notification information, the sinking end establishes an aggregation link between the sinking end C2 and the edge node E2 of the convergence network, and the aggregated link bandwidth is not less than the data to be transmitted. Bandwidth.
  • the configured policy in a case where the available bandwidth of the Ethernet link that can be aggregated by the sinker E2 is insufficient to carry data, the configured policy is to issue an alarm message.
  • other strategies may also be used, such as: re-routing; re-segmenting data, adjusting the transmission path and the local path link bandwidth to be consistent with the available bandwidth of the sink Ethernet aggregation link.
  • step S13 can also be: Reduce the number of Ethernet links aggregated by the source aggregation link. In this way, unnecessary bandwidth waste is avoided at the source end.
  • the notification message may be sent by C1 to El, and the bandwidth of the data to be transmitted is reduced after receiving the notification message.
  • the alarm can be combined with the number of Ethernets that reduce the aggregation of the source aggregation link.
  • the method for determining the available bandwidth of the sink in step S12 may be various.
  • the request may be sent to the sink, and the sink directly directly feeds back the available bandwidth that can be provided.
  • the link aggregation control method of the present invention and the method for establishing the label switched path (LSP) are described in detail in a more specific embodiment.
  • FIG. 3 is a timing diagram of the first embodiment of the present invention.
  • the network structure of the application is the same as that of FIG. 1:
  • the metro Ethernet edge devices E1 and E2 and the ASON edge devices C1 and C2 respectively pass through multiple Ethernets.
  • the network links are connected.
  • the data from E1 to E2 first arrives at E1 and converges at E1, and then transmits it to the edge node C1 of the ASON through the directly connected Ethernet link, and sends the data to the edge node C2 in the ASON network by establishing a connected path.
  • C1 is directly connected to C2, or there is at least one ASON intermediate node P between C1 and C2, and then the data is transmitted to the metro Ethernet edge device E2 through the Ethernet link between C2 and E2.
  • each node in the transport network releases information through flooding when the system is initialized and each link (including the logical link formed by the aggregation) changes.
  • the edge nodes C1 and C2 obtain correlations with each other.
  • Information and storage form a traffic engineering database, you can learn about each other's bandwidth resources, such as whether they can be brought together, and the effect of the convergence.
  • Some of the attribute information is original traffic engineering information, and some of them are extended information. In this embodiment, they are collectively referred to as traffic engineering information, including, for example, maximum physical bandwidth, reserved bandwidth, and reservable bandwidth.
  • MTU maximum transmission unit
  • VLAN virtual local area network
  • LSP-K In order to transmit E1 to E2 data, Metro Ethernet needs to establish a GMPLS LSP from C1 to C2 across the ASON network, which is referred to as LSP-K.
  • the E1 sends the signaling carrying the bandwidth reservation request to the ASON network edge node C1.
  • the signaling is RSVP (Resource ReSerVation Protocol)-TE Path signaling, which is used to trigger C1.
  • RSVP Resource ReSerVation Protocol
  • LSP-2 is used to provide transport services for establishing LSP-1.
  • the RSVP-TE Path signaling sent by C1 will be processed hop by hop on the selected path until it reaches the edge node C2.
  • C2 checks the bandwidth reservation requirement and the traffic engineering database based on the signaling, and checks the relationship between C2 and E2. Reserve link bandwidth. If the reservable link bandwidth between C2 and E2 can meet the service requirements, C2 passes.
  • the RSVP-TE Resv signaling sends the RSVP-TE Path signaling along the CI to reserve the bandwidth in the reverse direction and allocates labels to directly establish the LSP-2. If the Ethernet link between C2 and E2 can reserve bandwidth, the bandwidth is insufficient. The data is transmitted, but the required reservable bandwidth is obtained by the aggregation of the Ethernet link between C2 and E2. Then, C2 is notified to perform link aggregation, and C2 is used to aggregate the Ethernet link with E2 through LACP. The bandwidth between the aggregated C2 and E2 is made to meet the needs of data transmission.
  • C2 establishes LSP-2 by using RSVP-TE Resv signaling to reserve bandwidth and allocate labels in the reverse direction in the ASON network along the path from C1; if the convergence fails, or C2 If the required reserved bandwidth is not provided between the E2 and the E2, it is processed according to the pre-configured policy, such as alarming to the NMS.
  • C1 After LSP-2 is successfully established, C1 will transparently transmit RSVP-TE Path signaling from E1 to C2 through LSP-2 to establish LSP-1. C2 will transmit it to E2 after local processing, and E2 will process the trailing edge. The path from E1 is reserved in the opposite direction and a label is issued to establish LSP-1. After the LSP-1 is successfully established, the data between E1 and E2 can be transmitted normally.
  • FIG. 4 is a timing diagram of a second embodiment of the present invention.
  • the network structure of the application is the same as that of FIG. 1: the metro Ethernet edge devices E1 and E2 are respectively associated with the edge device C1 of the ASON network under GMPLS control.
  • C2 is directly connected through multiple Ethernet links.
  • the data that needs to pass through E1 to E2 first arrives at E1 and is aggregated at E1, and then transmitted to the edge node C1 of ASON through the directly connected Ethernet link.
  • the data reaches the edge node C2, Cl, through the connected path in ASON.
  • C2 is directly connected, or has at least one intermediate node of ASON, and finally transmitted to the metro Ethernet edge device E2 through the directly connected Ethernet link.
  • each node in the system is initialized in a manner, and the edge nodes, ci, and C2 obtain related information and store each other, and form a stream engineering database. Whether each other's bandwidth resources can be brought together, and the effects after convergence.
  • the attribute information in this embodiment includes, for example: maximum physical bandwidth, reserved bandwidth, reservable bandwidth, maximum transmission unit MTU, working mode simplex or duplex, virtual local area network VLAN identification, whether LACP is supported and enabled, LACP: The working mode is automatic configuration or manual configuration. This information can be published, for example, on the basis of existing published traffic engineering information.
  • the GMPLS LSP is recorded as LSP-1 to transmit data between the two.
  • the E1 sends the signaling carrying the bandwidth reservation requirement information to the ASON network edge node C1.
  • the signaling is RSVP-TE Path signaling
  • the C1 is based on the bandwidth reservation requirement and the synchronous traffic engineering in the signaling.
  • the database checks the reservable bandwidth status between C2 and E2: If it is sufficient to carry the data to be transmitted, the LSP-2 path between C1 and C2 is directly established, and the establishment method is the same as the prior art.
  • C1 sends a direct message notification C2 across multiple points, in this embodiment, the message
  • the RSVP-TE Notify message can be used to collect the Ethernet link between the E2 and the E2 through the LACP to meet the needs of the data to be transmitted.
  • C1 may initiate a request for establishing LSP-2, and C1 sends RSVP-TE Path signaling to hop-by-hop processing on the selected path until reaching edge node C2, and C2 passes RSVP-TE Resv signaling along path from C1 in ASON.
  • the bandwidth is reserved in the opposite direction within the network and labels are assigned to establish LSP-2. If the aggregation fails, or if the required reserved bandwidth is not available between C2 and E2, the pre-configured policy is used, for example, to notify the NMS.
  • E1 After LSP-2 is successfully established, E1 sends RSVP-TE Path signaling through LSP-2. C1 transparently transmits the signaling to C2. After C2 local processing, it transmits it to E2. After E2 processes it, it follows the path from E1. The direction reserves bandwidth and the label is advertised to establish LSP-1.
  • FIG. 6 Please refer to FIG. 6 for the timing diagram.
  • the network structure applied in this embodiment is substantially the same as that of the first and second embodiments. The difference is that the resource controller (RC, Resource Control) is added in this embodiment.
  • RC Resource Control
  • the metro Ethernet edge devices E 1 and E2 are directly connected to the edge devices C1 and C2 of the ASON network under GMPLS control through multiple Ethernet links.
  • the data from E1 to E2 first arrives at E1 and is aggregated at E1, and then transmitted to the edge node C1 of ASON through the directly connected Ethernet link. These data arrive at the edge node C2, C1 and C2 through the connected path in the ASON.
  • Cl and C2 advertise Ethernet link aggregation attribute information to the resource controller when the system is initialized and each link (including the logical link formed by the aggregation) changes.
  • the attribute information in this embodiment includes, for example: maximum physical bandwidth, reserved bandwidth, reservable bandwidth, maximum transmission unit MTU, working mode simplex or duplex, virtual local area network VLAN identification, whether to support and enable LACP, LACP
  • the working mode is automatic configuration or manual configuration. This information can be published, for example, on the basis of existing published traffic engineering information, which is stored by the resource controller to form a traffic engineering database.
  • the metro Ethernet is to establish a GMPLS LSP (referred to as LSP-1) from C1 to C2 across the ASON network, and E1 first sends signaling carrying the bandwidth reservation requirement to the edge node C1 of the ASON network.
  • the signaling is RSVP-TE Path signaling
  • C1 sends a query request to the resource controller RC through SNMP (Simple Network Management Protocol), and the resource controller RC passes the bandwidth reservation requirement and the traffic engineering.
  • the database queries whether the reservable bandwidth between C2 and ⁇ 2 on the specified path is sufficient to carry the data to be transmitted.
  • C1 informs C2 through the resource controller RC, and C2 uses the LACP protocol to aggregate the Ethernet link with ⁇ 2 to meet the needs of the data to be transmitted between El and ⁇ 2.
  • the link convergence between C2 and ⁇ 2 is successful. Then, C1 initiates a request for establishing LSP-2, and C1 sends RSVP-TE Path signaling to hop-by-hop processing on the selected path until reaching edge node C2, and C2 passes RSVP-TE Resv signaling along the path from C1 in the ASON network.
  • the bandwidth is reserved in the opposite direction and labels are assigned to establish LSP-2. If the convergence fails or the required reserved bandwidth is not provided between the C2 and the E2, the exception processing is performed according to the pre-configured policy, for example, alarming to the NMS.
  • E1 After LSP-2 is successfully established, E1 sends RSVP-TE Path signaling through LSP-2. C1 transparently transmits the signaling to C2. After C2 local processing, it transmits it to E2. After E2 processes it, it follows the path from E1. The direction reserves bandwidth and the label is advertised to establish LSP-1.
  • the embodiment of the invention further provides a link aggregation control device, which is used for performing Ethernet link aggregation.
  • the apparatus includes: a detection module, a determination module, and a link aggregation module.
  • the device may be a standalone system (such as the resource controller described in the previous embodiment) or may be integrated at the source end of the transmission path to be established.
  • the detecting module is configured to detect whether the available bandwidth of the bearer link of the transport path sink is sufficient to carry the service data to be transmitted; the determining module is configured to receive the detection result of the detecting module, and when the detection result is a bearer link of the sink end When it is insufficient to carry the service data to be transmitted, it is determined whether the sink end has sufficient aggregated Ethernet link available; the link aggregation module is configured to receive the judgment result of the determining module, and when the judgment result of the determining module is a sink When there is enough aggregated Ethernet link available, the sink is notified to perform link aggregation.
  • the device may further include: a link reduction module, configured to: when the determining result of the determining module is that the sink end has insufficient aggregated Ethernet links, and the bearer link of the source end of the to-be-established transmission path is an aggregation When a link is used, the number of Ethernet links aggregated by the source aggregate link is reduced.
  • a link reduction module configured to: when the determining result of the determining module is that the sink end has insufficient aggregated Ethernet links, and the bearer link of the source end of the to-be-established transmission path is an aggregation When a link is used, the number of Ethernet links aggregated by the source aggregate link is reduced.
  • the apparatus may further include an alarm module, configured to issue a warning message to notify the abnormal situation when the judgment module determines that the sink end has insufficient aggregated Ethernet links available.
  • the device may further include a convergence information distribution module, configured to send the convergence information of the sink to the detection module, and the detection module detects the bandwidth of the service sink according to the convergence information.
  • the aggregation information issuance module may also send the aggregation information to the judging module, and further, the judging module determines, according to the aggregation information, whether there is enough available anggregatable Ethernet link to carry the to-be-transmitted data.
  • the above description is only a specific embodiment of the present invention, and it should be noted that those skilled in the art can make some improvements and refinements without departing from the principles of the present invention, for example, applying the present invention.
  • the label switching path established in the data network is multi-protocol label switching MPLS, and one or both of the original and sink endpoints may also be non-edge nodes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Description

一种链路聚合控制方法及装置
本申请要求于 2006 年 12 月 27 日提交中国专利局、 申请号为 200610157744.X,发明名称为"一种链路聚合控制方法及装置"的中国专利申请 的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明有关于网络技术 , 特别有关于一种链路聚合控制方法及装置。
背景技术
由于技术的成熟和产品的廉价, 当前以太网设备在接入城域网(汇聚网) 中占绝对主导位置。 以太网带宽越来越大, 百兆以太网、 千兆以太网都逐渐 投入实际应用。 然而相对传输网的带宽而言, 单条以太网链路的带宽仍然有 限, 当数据在城域网汇聚后进入到传输网 (一般是光传输网, 如通用多协议 标签交换 ( GMPLS, Generalized Multiprotocol Label Switching) /智能光网 络(ASON, Automatic Switched Optical Network ) 时, 必须在城域网边缘 设备与传输网边缘设备之间进行链路汇聚形成聚合链路, 这样才能保证数据 的无阻塞的有序传输。
随着以太网技术的发展, 将数据从城域以太网中向传输网中汇聚, 是通 过聚合以太网边缘设备与传输网(如 GMPLS/AOSN 网络、 同步数字体系 ( SDH, Synchronous Digital Hierarchy ) /光纤同步网络( SONET, Synchronous Optical Network ) /多业务传送平台( MSTP, Multi-Service Transport Platform ) 网络)边缘设备如 MSTP之间的以太网链路来实现。
当前, 以太网链路的聚合是通过链路聚合控制协议 ( LACP , Link Aggregation Control Protocol )控制。 在网络规划的时候, 就在以太城域网边 缘设备与传输网边缘设备之间通过静态配置 LACP协议来建立聚合链路, 在 边缘设备上静态指定哪些链路聚合在一起, 将指定的若干以太网链路汇聚成 一个单一的具备更大带宽的数据通道。 在以太网设备上配置链路聚合之后, 链路对应的端口信息。 LACP会通知以太网设备将在聚合中配置的端口作为 聚合链路的一个适配器来考虑。
现在结合图 1的网络结构对现有技术进行具体介绍, 如图所示, 来自城 域网的数据在以太城域网络边缘节点 El、 E2汇聚, 然后这些数据将由传输 网边缘节点 C1和 C2通过传输网传输。 假设其中以太网链路最大带宽为 1G 比特 /秒,传输网链路为 10G比特 /秒, El、 E2间传输的数据需要的带宽为 4G 比特 /秒。 为保证数据有序且无拥塞地由以太城域网边缘节点传输到传输网边 缘节点, 在以太网边缘节点和传输网边缘节点之间需要通过以太网链路聚合 来提供单一更大带宽的传输通道。于是,在图中需要在 C1和 C2上静态指定: 在 E1与 C1之间将至少 4条带宽为 1G比特 /秒的以太网物理链路汇聚成一条 带宽为 4G比特 /秒的逻辑数据通道链路, 以及在 E2与 C2之间将至少 4条带 宽为 1G比特 /秒的以太网链路汇聚成一条带宽为 4G比特 /秒的链路。
然而, 经过发明人的深入研究, 发现上述现有技术在本质上是一种静态 规划配置的方法, 而在现在越来越多的是动态数据传输, 因此上述现有技术 很难满足动态数据传输的需要。 而且, 也无法解决数据承载带宽的不一致性 引起的数据拥塞问题。
发明内容
本发明实施例提供一种链路聚合控制方法及装置, 可用于对链路聚合进 行动态控制。
本发明实施例公开了一种链路聚合控制方法: 检测传输路径宿端的承载 链路的可用带宽是否足以承载待传输数据; 若所述宿端的承载链路的可用带 宽不足以承载所述待传输数据, 则继续判断所述宿端是否有足够可用的可聚 合以太网链路来承载待传输数据; 若所述宿端有足够可用的可聚合以太网链 路来承载所述待传输数据, 则通知所述宿端进行足以承载所述待传输数据的 链路聚合。
本发明实施例还公开了一种链路聚合控制装置, 包括: 检测模块, 用于检 测传输路径宿端的承载链路的可用带宽是否足以承载待传输数据; 判断模块, 用于接收所述检测模块的检测结果,当检测结果是所述宿端的承载链路的可用 带宽不足以承载所述待传输数据时,判断所述宿端是否有足够可用的可聚合以 太网链路来承载所述待传输数据;链路聚合模块, 用于接收所述判断模块的判 断结果,当所述判断结果是所述宿端有足够可用的可聚合以太网链路来承载所 述待传输数据时, 通知所述宿端进行足以承载所述待传输数据的链路聚合。 应用本发明实施例 ,首先判断宿端承载链路的可用带宽是否足以承载待传 输数据,如果结果为否, 则继续判断宿端是否存在足够可用的可聚合以太网链 路来承载待传输数据,如果存在, 则在宿端进行足以承载所述待传输数据的链 路聚合,从而实现了对链路聚合的动态控制, 可以较好满足动态数据传输的需 要。 同时也在解决了数据承载带宽不一致性引起的数据拥塞问题。
附图说明
图 1是本发明实施例所应用的网络结构示意图;
图 2本发明聚合链路方法实施例示意图;
图 3是应用本发明链路聚合控制方法的实施例的时序示意图;
图 4是应用本发明链路聚合控制方法的实施例的时序示意图;
图 5是应用本发明链路聚合控制方法的实施例的网络结构示意图; 图 6是应用本发明链路聚合控制方法的实施例的时序示意图。
具体实施方式
如图 1 所示, El、 E2是汇聚网 (例如城域以太网) 的边缘节点, Cl、 C2是交换网 (即传输网)边缘节点。 现实中, 假设节点 E1和 C1之间已经 聚合了 4个 1G比特 /秒带宽的以太网络链路以提供 4G比特 /秒的带宽, 而在 节点 C2和 E2之间仅聚合了 3个 1G比特 /秒带宽的以太网络链路以提供 3G 比特 /秒的带宽。
显然, 在现有技术中, 当在 El、 E2间建立连接用以传输 4G比特 /秒的 数据时, 数据就会在节点 C2处发生拥塞。 因为现有技术在本质上是一种静 态规划配置的方法, 在动态数据传输导致的动态带宽需求面前, 它无法提供 在动态数据中的控制链路聚合的能力, 也就无法通过保持数据承载带宽一致 性以解决流量拥塞的问题。
现有技术还可能导致本地传输网边缘节点与汇聚网边缘节点之间的以太 网链路聚合能力与在远端不一致, 从而引起端到端的有带宽保证的数据连接 无法建立。 如图 1网络结构, 如果此时节点 E1和 C1之间可以聚合 2个 1G 比特 /秒带宽的以太网络链路,而对应的节点 C2和 E2之间不能再聚合任何独 立的以太网链路,那么如果试图从节点 E 1向节点 E2建立一条预留带宽为 2G 比特 /秒的数据连接, 在节点 C2上的信令处理会因为无法预留足够的带宽而 失败, 这样的信令失败会无谓的耗费宝贵的网络资源和系统资源, 同时在一 定程度上造成带宽的浪费。 而其根本原因是在连接的入口节点流量工程选路 的时候无法了解边缘节点的聚合能力 , 并据此进行处理。
需要特别说明的是, 图 1中数据传输路径的源端和宿端均为传输网的边 缘节点, 聚合链路为传输网边缘节点与汇聚网边缘节点之间的链路。 然而实 际上, 当所述的源端、 宿端部分或者全部不是边缘节点, 而是交换网内部的 节点时, 也同样会出现上述的问题。
下面结合实施例及附图对本发明进行具体说明。 为方便说明, 实施例中 数据传输路径的源端和宿端均为传输网的边缘节点, 聚合链路为传输网边缘 节点与汇聚网边缘节点之间的链路。 然而实际上, 本发明实施例也可以应用 于传输网内部, 来提供以太网链路的动态聚合功能, 例如当传输路径上跨越 一个或多个中间节点的两个节点使用以太网链路作为数据链路 , 且该数据链 路支持以太网链路聚合功能, 应用本发明可以使得途经这两个节点的业务在 一条无拥塞的路径上传送, 由于处理方式与下面的实施例基本相似, 所述领 域普通技术人员可以根据本实施例轻易推导得出其它情况的实施方式, 所以 以下不再赞述。 此外, 需要特别说明的是: 除了本发明实施例提到的传输网 的链路聚合, 在其它实施方式中, 可以将传输网替换成接入网、 汇聚网等其 它网络, 对其以太网聚合链路带宽进行动态配置, 由于实现方法与本发明实 施例雷同, 为描述简便, 对这些情况在以下实施例中也不再额外进行描述。
应用本发明实施例提供的一种链路聚合控制方法, 可以根据传输数据的 需要, 聚合接入网边缘设备与传输网(如 GMPLS/AOSN 网络、 SDH/SONET/MSTP网络)边缘设备之间的以太网链路, 或者传输网内部设备 之间的以太网链路, 应用的网络结构如图 1所示。 请参看图 2, 本发明实施 例的一种链路聚合控制方法包括:
首先进行步骤 S11 , 当有数据要在传输网中传输, 需要建立传输路径时, 检测待建立的传输路径的宿端(即出口节点 ) C2与汇聚网(本实施例中该汇 聚网是城域以太网)边缘节点 E2之间的以太网承载链路,判断其带宽是否足 以承载需要传输的数据, 如果宿端 C2与 E2间的承载链路 (宿端承载链路可 能是单个链路, 也可能是聚合链路)可用带宽足以承载数据, 则结束流程, 否则进行步骤 S12。 本实施例中, 具体判断方式是: 判断宿端承载链路的带 宽是否小于需要传输的数据需求的带宽, 如果小于则说明该宿端承载链路可 用带宽不足以承载待传输的数据。 换而言之, 步骤 S11主要是判断宿端逻辑 上的一条链路可用带宽是否足以承载待传输数据。
该步骤 S12中, 对宿端 C2可以被聚合的以太网链路的可用带宽进行判 断, 判断宿端 C2是否有足够可用带宽用于承载待传输的数据, 本实施例中, 判断方法是: 系统初始化以及各链发生改变时, 宿端泛洪其最大物理带宽、 已预留带宽及可预留带宽信息 , 源端根据收到的宿端最大物理带宽及可预留 带宽, 判断宿端可用的可聚合链路的总带宽是否不小于待传输数据的带宽, 如果判断结果为是, 则进行步骤 S14, 如果判断结果为否, 则进行步骤 S13。 换而言之, 步骤 S12主要是判断宿端可聚合的多条链路聚合在一起是否足以 承载待传输数据。
该步骤 S13中, 按照预先配置的告警策略, 发出告警信息, 提示宿端 C2 无法提供足够的带宽, 因此该传输路径无法正常建立。
该步骤 S14中, 通告宿端进行链路聚合, 宿端收到通告信息后, 建立宿 端 C2与汇聚网边缘节点 E2之间的聚合链路, 聚合后的链路带宽不小于待传 输数据需求的带宽。
其中, 在本实施例的该步骤 S13 中, 在宿端 E2可聚合的以太网链路可 用带宽不足以承载数据的情况下, 配置的策略是发出告警信息。 在其它实施 例中, 也可以采用其它策略, 例如: 重新选路; 重新细分数据, 调整传输路 径与本地路径链路带宽保持与宿端以太网聚合链路可用带宽一致等。
另外, 在其它实施例中,如果步骤 S12的判断结果为否, 且待建立的传输 路径的源端 C1与以太城域网边缘节点 E1之间的, 用于传输待传输数据的链 路是已经聚合的聚合链路, 那么 S13也可以是: 减少源端聚合链路聚合的以 太网链路的数目。 这样可以避免源端不必要的带宽浪费, 在这样的实施方式 中, 可以由 C1发送通知消息给 El, El收到该通知消息后减少待传输数据的 带宽。此外,也可以将告警与减少源端聚合链路聚合的以太网数目结合起来。 同时, 步骤 S12中判断宿端可用带宽的方法可以有艮多种, 例如也可以通过 发送请求给宿端, 由宿端直接反馈其可以提供的可用带宽。 下面以更具体的实施例, 对本发明链路聚合控制方法及该方法用于标签 交换路径 ( LSP, Label Switched Path ) 的建立进行详细说明。
第一实施例
请参看图 3 , 图 3是本发明第一具体实施例时序示意图, 其应用的网络 结构与图 1相同: 城域以太网边缘设备 E1和 E2分别与 ASON的边缘设备 C1和 C2通过多条以太网链路相连。从 E1到 E2的数据首先到达 E1并在 E1 处汇聚,然后通过直连的以太网链路传输到 ASON的边缘节点 Cl,在 ASON 网络内通过建立有连接的路径将数据送达边缘节点 C2, C1与 C2直接连接, 或者 C1与 C2间有至少一个 ASON的中间节点 P, 然后通过 C2与 E2间的 以太网链路, 将数据传输到城域以太网边缘设备 E2。
本实施例中,传输网中各节点会在系统初始化以及各链路 (包括汇聚形成 的逻辑链路)发生改变时通过泛洪发布信息, 通过此种方式, 边缘节点 Cl、 C2获得彼此的相关信息并储存形成流量工程数据库,就可以了解到彼此的带 宽资源的相关信息, 例如是否可以汇聚到一起, 以及汇聚后的效果等信息。 这些属性信息有部分是原有的流量工程信息, 另外有一部分是扩展的信息, 本实施例中将其统称为流量工程信息, 包括例如: 最大物理带宽、 已预留带 宽、 可预留带宽、 最大传输单元 ( MTU , Maximum Transmission Unit )、 工 作模式单工还是双工、虚拟局域网(VLAN, Virtual Local Area Network )标识、 是否支持并启用 LACP、 LACP的工作模式是自动配置或者手动配置等。这些 信息可以例如在现在已有的发布流量工程信息的基础上发布。
为传输 E1到 E2的数据, 城域以太网需要建立跨越 ASON网络的从 C1 到 C2的 GMPLS LSP, 这里记做 LSP-K
首先, E1发送携带有带宽预留请求的信令到 ASON网络边缘节点 C1 , 本实施例中 ,该信令是 RSVP ( Resource ReSerVation Protocol,资源预留协议 ) -TE Path信令,用以触发 C1发起建立另外一条 GMPLS LSP(此处记做 LSP-2 ) 的信令, LSP-2用以为建立 LSP-1提供传输服务。 C1发送的 RSVP-TE Path 信令将在选择的路径上被逐跳处理后传输直至到达边缘节点 C2, 然后 C2基 于信令中带宽预留需求和流量工程数据库,检查 C2与 E2之间的可预留链路 带宽, 如果 C2与 E2 间的可预留链路带宽能满足业务需要, 则 C2就通过 RSVP-TE Resv信令沿着 CI发送 RSVP-TE Path信令的反方向预留带宽并分 配标签直接建立 LSP-2; 如果 C2与 E2之间的以太网链路可预留带宽不足以 承载待传输数据,但是可通过汇聚 C2与 E2之间的以太网链路得到所需要的 可预留带宽, 则通知 C2进行链路聚合, C2就通过 LACP协议汇聚与 E2之 间的以太网链路, 使得聚合后的 C2与 E2间带宽满足数据传输的需要。
如果通过本发明实施例链路汇聚成功, C2就通过 RSVP-TE Resv信令沿 着来自 C1的路径在 ASON网络内反方向预留带宽并分配标签来建立 LSP-2; 如果汇聚失败,或者 C2与 E2之间即便通过汇聚也不能提供所需的预留带宽, 就依据预先配置的策略进行处理, 比如向网管告警等。
LSP-2建立成功后 , C1将通过 LSP-2透传来自 E1的 RSVP-TE Path信令 给 C2, 用以建立 LSP-1 , C2在本地处理后将其传输给 E2, E2进行处理后沿 着来自 E1的路径反方向预留带宽并发布标签来建立 LSP-1。 LSP-1建立成功 后即可正常传输 E1到 E2间的数据。
第二实施例
请参看图 4, 图 4是本发明第二具体实施例时序示意图, 其应用的网络 结构与图 1相同: 城域以太网边缘设备 E1和 E2分别与 GMPLS控制下的 ASON网络的边缘设备 C1和 C2通过多条以太网链路直接相连。 需要通过 E1到 E2的数据首先到达 E1并在 E1出汇聚, 然后通过直连的以太网链路传 输到 ASON的边缘节点 Cl, 这些数据在 ASON内通过有连接的路径到达边 缘节点 C2, Cl、 C2直接连接, 或者其间有至少一个 ASON的中间节点, 最 后通过直连的以太网链路传输到城域以太网边缘设备 E2。
本实施例的方法与第一实施例相似, 传输网中各节点会在系统初始化以 种方式, 边缘节, ci、、 C2获得彼此的相关信息并储存,、形成流 工程数据 库, 就可以了解到彼此的带宽资源, 是否可以汇聚到一起, 以及汇聚后的效 果等信息。 本实施例中这些属性信息包括例如: 最大物理带宽、 已预留带宽、 可预留带宽、最大传输单元 MTU、工作模式单工还是双工、虚拟局域网 VLAN 标识、是否支持并启用 LACP、: LACP的工作模式是自动配置或者手动配置等。 这些信息可以例如在现在已有的发布流量工程信息的基础上发布。 本实施例中,为了在 E1、E2间传输数据,需要建立从 C1到 C2的 GMPLS LSP, 为便于区分, 把这个 GMPLS LSP记做 LSP-1 , 以便在二者之间传输数 据。 首先, E1发送携带有带宽预留需求信息的信令到 ASON 网络边缘节点 C1 , 本实施例中该信令为 RSVP-TE Path信令, C1基于信令中带宽预留需求 和同步的流量工程数据库检查 C2与 E2之间的可预留带宽状况: 如果足以承 载待传输数据, 则直接建立 C1与 C2间的 LSP-2路径, 其建立方法与现有技 术相同。 如果虽然不足以承载数据, 但是可通过汇聚 C2与 E2之间的以太网 链路来提供需要的可预留带宽,则 C1发送一个跨越多点的直达消息通知 C2, 本实施例中, 该消息例如是 RSVP-TE Notify消息, C2收到该消息后即可通 过 LACP汇聚与 E2之间的以太网链路, 以满足待传输数据的需要。
如果通过本发明链路汇聚方法, C2与 E2间的链路汇聚成功。 则 C1可 发起建立 LSP-2的请求, C1发送 RSVP-TE Path信令在选择的路径上逐跳处 理直至到达边缘节点 C2, C2就通过 RSVP-TE Resv信令沿着来自 C1的路径 在 ASON网络内反方向预留带宽并分配标签来建立 LSP-2。 如果汇聚失败, 或 C2与 E2之间即便通过汇聚也不能提供所需的预留带宽, 就依据预先配置 的策略进行处理, 比如向网管告警。
LSP-2建立成功后 , E1通过 LSP-2发送 RSVP-TE Path信令, C1透传该 信令到 C2, C2本地处理后将其传输给 E2, E2进行处理后沿着来自 E1的路 径反方向预留带宽, 并发布标签建立 LSP-1。
第三实施例
请参时序示意图请参看图 6, 本实施例所应用的网络结构与第一、 第二 实施例大致相同, 所不同之处是本实施例增设了资源控制器(RC, Resource Control ) 。 其应用的网络结构请参看图 5: 城域以太网边缘设备 E 1和 E2分 别与 GMPLS控制下的 ASON网络的边缘设备 C1和 C2通过多条以太网链路 直接相连。从 E1到 E2的数据首先到达 E1并在 E1出汇聚, 然后通过直连的 以太网链路传输到 ASON的边缘节点 Cl, 这些数据在 ASON内通过有连接 的路径到达边缘节点 C2, C1与 C2间可能有一个或多个中间节点 P, 然后通 过直连的以太网链路传输到城域以太网边缘设备 E2, 并且 Cl、 C2均与资源 控制器 RC相连。 本实施例中, Cl、 C2会在系统初始化以及各链路 (包括汇聚形成的逻辑 链路)发生改变时向资源控制器发布以太网链路聚合属性信息。本实施例中这 些属性信息包括例如: 最大物理带宽、 已预留带宽、 可预留带宽、 最大传输 单元 MTU、 工作模式单工还是双工、 虚拟局域网 VLAN标识、 是否支持并 启用 LACP、 LACP的工作模式是自动配置或者手动配置等。这些信息可以例 如在现在已有的发布流量工程信息的基础上发布, 资源控制器储存这些信息 形成流量工程数据库。
本实施例中,城域以太网为建立跨越 ASON网络的从 C1到 C2的 GMPLS LSP (这里记做 LSP-1), E1首先发送携带有带宽预留需求的信令到 ASON网 络边缘节点 Cl, 本实施例中该信令为 RSVP-TE Path信令, C1通过 SNMP ( Simple Network Management Protocol , 简单网络管理协议 ) 向资源控制器 RC发出查询请求, 资源控制器 RC通过带宽预留需求和流量工程数据库, 查 询指定路径上 C2与 Ε2之间的可预留带宽是否足以承载待传输数据, 如果不 足以承载待传输数据但是可通过汇聚 C2与 Ε2之间的以太网链路来提供需要 的可预留带宽, C1就通过资源控制器 RC通知 C2, C2使用 LACP协议汇聚 与 Ε2之间以太网链路, 以满足 El、 Ε2间待传输数据的需要。
如果通过本发明链路汇聚方法, C2与 Ε2间的链路汇聚成功。 则 C1发 起建立 LSP-2的请求, C1发送 RSVP-TE Path信令在选择的路径上逐跳处理 直至到达边缘节点 C2, C2就通过 RSVP-TE Resv信令沿着来自 C1的路径在 ASON网络内反方向预留带宽并分配标签来建立 LSP-2。 如果汇聚失败或 C2 与 E2之间即便通过汇聚也不能提供所需的预留带宽,就依据预先配置的策略 进行异常处理, 比如向网管告警。
LSP-2建立成功后 , E1通过 LSP-2发送 RSVP-TE Path信令, C1透传该 信令到 C2, C2本地处理后将其传输给 E2, E2进行处理后沿着来自 E1的路 径反方向预留带宽, 并发布标签建立起 LSP-1。
本领域普通技术人员可以理解实现上述方法实施例中的全部或部分步骤 是可以通过程序来指令相关的硬件来完成, 所述的程序可以存储于一计算机 可读存储介质中, 所述的存储介质, 如: R0M/RAM、 磁碟、 光盘等。
本发明实施例还提供了一种链路聚合控制装置, 用于进行以太网链路聚 合, 以便建立用于数据传输的传输路径, 该装置包括: 检测模块、 判断模块 以及链路聚合模块。 该装置可以是一个独立的系统(例如前述实施例中所述 的资源控制器), 也可以集成于待建立传输路径的源端。
其中: 检测模块, 用于检测传输路径宿端的承载链路的可用带宽是否足 以承载需要传输的业务数据; 判断模块, 用于接收所述检测模块的检测结果, 当检测结果是宿端的承载链路不足以承载需要传输的业务数据时, 判断所述 宿端是否有足够可用的可聚合以太网链路; 链路聚合模块, 用于接收判断模 块的判断结果, 当该判断模块的判断结果是宿端有足够可用的可聚合以太网 链路时, 通知宿端进行链路聚合。
另外, 该装置可进一步包括: 链路减少模块, 用于当该判断模块的判断 结果是宿端没有足够可用的可聚合以太网链路, 且待建立的传输路径的源端 的承载链路是聚合链路时, 减少该源端聚合链路所聚合的以太网链路数目。
此外, 该装置还可进一步包括告警模块, 用于当该判断模块的判断结果 是宿端没有足够可用的可聚合以太网链路时, 发出警告信息通告异常情况。
再者, 该装置可进一步包括汇聚信息发布模块, 用于发布宿端的汇聚信 息到检测模块, 所述检测模块根据该汇聚信息检测业务宿端的带宽。 当然, 所述汇聚信息发布模块还可以把汇聚信息发布到判断模块, 进而, 判断模块 根据所述汇聚信息判断端是否有足够可用的可聚合以太网链路来承载所述待 传输数据。
以上所述仅是本发明的具体实施方式, 应当指出, 对于本技术领域的普 通技术人员来说, 在不脱离本发明原理的前提下, 还可以做出若干改进和润 饰, 例如将本发明应用于交换网外的其它网络, 或者应用非 ASON网例如数 据网中, 在数据网中建立的标签交换路径是多协议标签交换 MPLS, 原、 宿 端点中的一个或者两个也可以是非边缘节点 , 这些改进和润饰也应视为本发 明的保护范围。

Claims

权 利 要 求
1、 一种链路聚合控制方法, 其特征在于, 包括:
检测传输路径宿端的承载链路的可用带宽是否足以承载待传输数据; 若所述宿端的承载链路的可用带宽不足以承载所述待传输数据, 则继续 判断所述宿端是否有足够可用的可聚合以太网链路来承载待传输数据;
若所述宿端有足够可用的可聚合以太网链路来承载所述待传输数据, 则 通知所述宿端进行足以承载所述待传输数据的链路聚合。
2、 如权利要求 1所述的链路聚合控制方法, 其特征在于, 进一步包括: 若所述宿端没有足够可用的可聚合以太网链路来承载所述待传输数据, 且所述传输路径源端的承载链路是聚合链路, 则减少所述源端聚合链路所聚 合的以太网链路数目。
3、 如权利要求 1所述的链路聚合控制方法, 其特征在于: 若所述宿端没 有足够可用的可聚合以太网链路来承载待传输数据, 则所述传输路径的源端 发出告警信息。
4、 如权利要求 1至 3中任一项所述的链路聚合控制方法, 其特征在于, 所述判断宿端是否有足够可用的可聚合以太网链路来承载待传输数据的步骤 具体包括:
所述传输路径的源端根据所述宿端泛洪的宿端汇聚信息, 判断所述宿端 是否有足够可用的可聚合以太网链路来承载所述待传输数据。
5、 如权利要求 1至 3中任一项所述的链路聚合控制方法, 其特征在于, 所 述判断宿端是否有足够可用的可聚合以太网链路来承载待传输数据的步骤具 体包括:
资源控制器根据所述宿端发送的宿端汇聚信息, 判断所述宿端是否有足 够可用的可聚合以太网链路来承载所述待传输数据。
6、 一种链路聚合控制装置, 其特征在于, 包括:
检测模块, 用于检测传输路径宿端的承载链路的可用带宽是否足以承载 待传输数据;
判断模块, 用于接收所述检测模块的检测结果, 当检测结果是所述宿端 的承载链路的可用带宽不足以承载所述待传输数据时, 判断所述宿端是否有 足够可用的可聚合以太网链路来承载所述待传输数据;
链路聚合模块, 用于接收所述判断模块的判断结果, 当所述判断结果是 所述宿端有足够可用的可聚合以太网链路来承载所述待传输数据时, 通知所 述宿端进行足以承载所述待传输数据的链路聚合。
7、 如权利要求 6所述的链路聚合控制装置, 其特征在于, 进一步包括: 链路减少模块, 用于当所述判断模块的判断结果是所述宿端没有足够可 用的可聚合以太网链路来承载所述待传输数据, 且传输路径源端的承载链路 是聚合链路时, 减少所述源端聚合链路所聚合的链路数目。
8、 如申请权利要求 6所述的链路聚合控制装置, 其特征在于, 进一步包 括:
告警模块, 用于当所述判断模块的判断结果是所述宿端没有足够可用的 可聚合以太网链路来承载所述待传输数据时, 发出警告信息。
9、 如申请权利要求 6所述的链路聚合控制装置, 其特征在于, 进一步包 括: 汇聚信息发布模块, 用于发布所述宿端的汇聚信息到所述检测模块; 所述检测模块具体用于根据所述汇聚信息检测所述宿端的承载链路的可 用带宽是否足以承载所述待传输数据。
10、 如申请权利要求 6至 9中任一项所述的链路聚合控制装置, 其特征 在于, 所述装置集成于所述传输路径的源端。
PCT/CN2007/071327 2006-12-27 2007-12-26 Procédé et dispositif de commande de l'agrégation de liaisons WO2008083584A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP07846153A EP2086197B1 (en) 2006-12-27 2007-12-26 A method and apparatus for controlling the link aggregation
US12/468,578 US7949011B2 (en) 2006-12-27 2009-05-19 Method and apparatus for controlling link aggregation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200610157744XA CN101212455B (zh) 2006-12-27 2006-12-27 一种链路聚合控制方法
CN200610157744.X 2006-12-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/468,578 Continuation US7949011B2 (en) 2006-12-27 2009-05-19 Method and apparatus for controlling link aggregation

Publications (1)

Publication Number Publication Date
WO2008083584A1 true WO2008083584A1 (fr) 2008-07-17

Family

ID=39608348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/071327 WO2008083584A1 (fr) 2006-12-27 2007-12-26 Procédé et dispositif de commande de l'agrégation de liaisons

Country Status (4)

Country Link
US (1) US7949011B2 (zh)
EP (1) EP2086197B1 (zh)
CN (1) CN101212455B (zh)
WO (1) WO2008083584A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101420332B (zh) * 2008-12-12 2010-12-08 杭州华三通信技术有限公司 一种成员端口配置情况的通知方法和网络设备
CN101815027B (zh) * 2009-02-20 2012-11-28 中国移动通信集团公司 确定捆绑链路是否可用的方法及装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101674231B (zh) * 2008-09-11 2012-11-21 华为技术有限公司 一种流量工程链路信息的处理方法及网络设备
CN101399737A (zh) * 2008-10-21 2009-04-01 中兴通讯股份有限公司 用于以太环网的链路聚合组的保护方法及装置
CN103051562B (zh) * 2008-12-01 2015-09-09 华为技术有限公司 一种资源预留协议链路的最大传输单元实现方法及设备
CN101969582B (zh) * 2009-07-27 2013-01-16 中兴通讯股份有限公司 一种捆束链路的标签分配系统及方法
CN102055676B (zh) * 2011-01-25 2013-11-27 杭州华三通信技术有限公司 Mstp组网环境中实现负载分担的方法及装置
US9167318B1 (en) * 2012-08-07 2015-10-20 Ciena Corporation Bandwidth advertisement systems and methods for optical transport network
CN109120524B (zh) 2018-08-23 2020-12-08 Oppo广东移动通信有限公司 链路聚合方法及相关设备
CN111817906B (zh) * 2019-04-11 2021-11-30 中国移动通信集团山东有限公司 数据处理方法、装置、网络设备和存储介质
DE102020122956A1 (de) * 2020-09-02 2022-03-03 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Übertragen eines Datenelements zwischen einem ersten Steuergerät eines Fahrzeugs und einem zweiten Steuergerät des Fahrzeugs, computerlesbares Medium, System und Fahrzeug

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020141412A1 (en) * 1998-02-13 2002-10-03 Broadcom Corporation Load balancing in link aggregation and trunking
EP1330084A1 (en) 2002-01-22 2003-07-23 Nippon Telegraph and Telephone Corporation Capacity variable link apparatus and capacity variable link setting method
CN1553628A (zh) * 2003-06-04 2004-12-08 深圳市中兴通讯股份有限公司南京分公 基于策略路由实现链路聚合功能的方法
CA2459027C (en) * 2001-06-15 2006-04-25 Tropic Networks Inc. Extension of link aggregation protocols over the network and a switching node therefor
CN1855890A (zh) * 2005-03-24 2006-11-01 阿尔卡特公司 系统级别的通信链路捆绑装置和方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6956824B2 (en) * 2001-06-14 2005-10-18 Tropic Networks Inc. Extension of link aggregation protocols over the network
JP2005184301A (ja) * 2003-12-18 2005-07-07 Fujitsu Ltd 仮想連結帯域の自動変更方法
GB2423447A (en) * 2005-02-16 2006-08-23 Marconi Comm Ltd Notification of faults in a system comprising two Ethernet networks interconnected by a synchronous transport network such as SDH
US7974202B2 (en) * 2005-05-06 2011-07-05 Corrigent Systems, Ltd. Tunnel provisioning with link aggregation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020141412A1 (en) * 1998-02-13 2002-10-03 Broadcom Corporation Load balancing in link aggregation and trunking
CA2459027C (en) * 2001-06-15 2006-04-25 Tropic Networks Inc. Extension of link aggregation protocols over the network and a switching node therefor
EP1330084A1 (en) 2002-01-22 2003-07-23 Nippon Telegraph and Telephone Corporation Capacity variable link apparatus and capacity variable link setting method
CN1553628A (zh) * 2003-06-04 2004-12-08 深圳市中兴通讯股份有限公司南京分公 基于策略路由实现链路聚合功能的方法
CN1855890A (zh) * 2005-03-24 2006-11-01 阿尔卡特公司 系统级别的通信链路捆绑装置和方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2086197A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101420332B (zh) * 2008-12-12 2010-12-08 杭州华三通信技术有限公司 一种成员端口配置情况的通知方法和网络设备
CN101815027B (zh) * 2009-02-20 2012-11-28 中国移动通信集团公司 确定捆绑链路是否可用的方法及装置

Also Published As

Publication number Publication date
US20090225777A1 (en) 2009-09-10
CN101212455A (zh) 2008-07-02
EP2086197A4 (en) 2009-11-18
EP2086197A1 (en) 2009-08-05
EP2086197B1 (en) 2012-11-07
CN101212455B (zh) 2013-01-30
US7949011B2 (en) 2011-05-24

Similar Documents

Publication Publication Date Title
WO2008083584A1 (fr) Procédé et dispositif de commande de l'agrégation de liaisons
US10250459B2 (en) Bandwidth on-demand services in multiple layer networks
CA2548960C (en) System and method for the automatic setup of switched circuits based on traffic prediction in a telecommunications network
EP1748599B1 (en) A ring carrying network and the method for implementing the service carry
US8867333B2 (en) Restoration path calculation considering shared-risk link groups in mesh networks
US8270300B2 (en) Extension to RSVP protocol for supporting OAM configuration
US20130232193A1 (en) Control-Plane Interface Between Layers in a Multilayer Network
US20040205239A1 (en) Primary/restoration path calculation in mesh networks based on multiple-cost criteria
US20070280251A1 (en) Ring Network And A Method For Implementing The Service Thereof
US20040205238A1 (en) Connection set-up extension for restoration path establishment in mesh networks
WO2011144172A1 (zh) 一种无损带宽调整方法、设备及系统
WO2007085173A1 (fr) Procédé de traitement d'une ressource de réseau et unité de réseau d'un réseau optique intelligent associé
EP1890436B1 (en) Method and apparatus for managing and transmitting fine granularity services
US20100284269A1 (en) Multi-Node State Recovery for a Communication Network
CN114285462B (zh) 一种业务保护方法和网络节点
US8897140B1 (en) Congestion managed traffic engineering services in multiprotocol label switching and generalized multiprotocol label switching networks
EP2154841B1 (en) A method and system for establishing service path, and a node device
WO2015024440A1 (zh) 一种获取ip链路的链路开销值的方法及系统
WO2008119277A1 (fr) Procédé et dispositif pour mettre en oeuvre mpls-te sur une interface vlan
US20030043427A1 (en) Method of fast circuit recovery using local restoration
WO2011023040A1 (zh) 光网络中的信息处理方法、光通信装置和光通信系统
Harrison et al. Protection and restoration in MPLS networks
WO2006039871A1 (fr) Procede pour la transmission de message de commande dans un reseau en boucle a commutation multiprotocole par etiquette
WO2013063751A1 (zh) 转发邻居-标签交换路径的连接建立方法及装置
WO2009071022A1 (fr) Procédé et dispositif pour établir un tunnel d'ingénierie de flux

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07846153

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007846153

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE