WO2011023040A1 - 光网络中的信息处理方法、光通信装置和光通信系统 - Google Patents

光网络中的信息处理方法、光通信装置和光通信系统 Download PDF

Info

Publication number
WO2011023040A1
WO2011023040A1 PCT/CN2010/075283 CN2010075283W WO2011023040A1 WO 2011023040 A1 WO2011023040 A1 WO 2011023040A1 CN 2010075283 W CN2010075283 W CN 2010075283W WO 2011023040 A1 WO2011023040 A1 WO 2011023040A1
Authority
WO
WIPO (PCT)
Prior art keywords
oduflex
time slot
service
traffic parameter
slot resource
Prior art date
Application number
PCT/CN2010/075283
Other languages
English (en)
French (fr)
Inventor
资小兵
林毅
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2011023040A1 publication Critical patent/WO2011023040A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1605Fixed allocated frame structures
    • H04J3/1652Optical Transport Network [OTN]

Definitions

  • the present invention relates to the field of optical communication technologies, and in particular, to an information processing method, an optical communication device, and an optical communication system in an optical network.
  • Optical Transport Network (OTN) technology is a new optical transmission technology that enables flexible scheduling and management of large-capacity services. It has become the mainstream technology of backbone transmission networks.
  • Optical Channel Data Unit 1 (ODU1, Optical Channel Data Unit 1), ODU2, and ODU3, which respectively include 1, 4, and 16 time slots, and the time slot types are It is 2.5Gb/s and has a fixed bandwidth.
  • the RSVP-TE signaling message of the Resource Reservation Protocol-Traffic Engineering (RSVP-TE) extended by the GMPLS (General MultiProtocal Label Switching) is carried in the control plane, and carries the signal type. Automatic establishment of ODU1/ODU2/ODU3 connections can be achieved.
  • RSVP-TE Resource Reservation Protocol-Traffic Engineering
  • GMPLS General MultiProtocal Label Switching
  • ODU flexible bandwidth ODU
  • the embodiment of the invention provides an ODUflex signal type and an ODUflex service.
  • Information processing methods, optical communication devices, and optical communication systems in optical networks are provided.
  • An information processing method in an optical network comprising:
  • the first node sends an indication message to the second node, where the indication message carries a traffic parameter for establishing a service connection, where the traffic parameter includes an optical channel data unit whose signal type is flexible bandwidth.
  • ODUflex signal type ODUflex service bandwidth
  • the second node allocates a time slot resource for the service of the ODUflex according to the received traffic parameter in the indication message, and establishes a cross-connection of the associated ODUflex signal according to the allocated time slot resource information, and returns the carried to the first node. a response message of the time slot resource information;
  • the first node establishes a cross-connection of the associated ODUflex signal according to the received time slot resource information.
  • An information processing method in an optical network comprising:
  • the first node allocates a time slot resource for the service of the ODUflex according to the traffic parameter used to establish the service connection;
  • the traffic parameter includes a signal type of the optical channel data unit ODUflex with a flexible bandwidth, and a service bandwidth of the ODUflex;
  • the first node sends an indication message to the second node, where the indication message carries the traffic parameter and time slot resource information allocated for the service of the ODUflex;
  • the second node establishes a cross-connection of the associated ODUflex signal according to the received traffic parameter in the indication message and the time slot resource information, and returns a response message to the first node; After the response message, a cross-connection of the associated ODUflex signal is established according to the time slot resource information.
  • An information processing method in an optical network comprising:
  • the first node allocates a time slot resource for the service of the ODUflex according to the traffic parameter used to establish the service connection;
  • the traffic parameter includes a signal type of the optical channel data unit ODUflex with a flexible bandwidth, and a service bandwidth of the ODUflex;
  • the first node establishes a cross-connection of the associated ODUflex signal according to the time slot resource information; Sending, by the first node, an indication message to the second node, where the indication message carries the traffic parameter and time slot resource information allocated for the service of the ODUflex;
  • the second node establishes a cross-connection of the associated ODUflex signal according to the traffic parameter in the received indication message and the time slot resource information.
  • An optical communication system comprising:
  • a first optical communication device configured to send an indication message to the second optical communication device, where the indication message carries a traffic parameter for establishing a service connection, where the traffic parameter includes a signal of an optical channel data unit ODUflex with a flexible signal type Type, the service bandwidth of the ODUflex; establishing a cross-connection of the associated ODUflex signal according to the slot resource information carried in the response message returned by the second optical communication device;
  • a second optical communication device configured to allocate a time slot resource for the service of the ODUflex according to the received traffic parameter in the indication message, establish a cross-connection of the associated ODUflex signal according to the allocated time slot resource information, and send the first connection to the first
  • the optical communication device returns the response message carrying the slot resource information.
  • An optical communication system comprising:
  • the first optical communication device allocates a time slot resource for the service of the ODUflex according to the traffic parameter used for establishing the service connection;
  • the traffic parameter includes a signal type of the optical channel data unit ODUflex with a flexible signal type and a service bandwidth of the ODUflex;
  • Sending an indication message to the second optical communication device where the indication message carries the traffic parameter and time slot resource information allocated for the service of the ODUflex; after receiving the response message returned by the second optical communication device, according to the time slot Resource information, establishing a cross-connection of the associated ODUflex signal;
  • a second optical communication device configured to establish a cross-connection of the associated ODUflex signal according to the received traffic parameter in the indication message and the time slot resource information, and return the response message to the first optical communication device .
  • An optical communication system comprising:
  • the first optical communication device is the industry of ODUflex Allocating time slot resources; the traffic parameters include optical channel data units whose signal type is flexible bandwidth
  • a second optical communication device configured to establish a cross-connection of the associated ODUflex signal according to the received traffic parameter in the indication message and the time slot resource information.
  • An optical communication device includes:
  • a message receiving unit configured to receive an indication message sent by a neighboring optical communication device, where the indication message carries a traffic parameter used to establish a service connection, where the traffic parameter includes a signal type of an optical channel data unit ODUflex with a flexible bandwidth ODUflex's service bandwidth;
  • a time slot resource allocation unit configured to allocate a time slot resource for the service of the ODUflex according to the traffic parameter in the indication message received by the message receiving unit;
  • a cross-connection establishing unit configured to establish a cross-connection of the associated ODUflex signal according to the time slot resource information determined by the time slot resource allocation unit;
  • a message sending unit configured to return, to the neighboring optical communication device, a response message carrying the time slot resource information determined by the time slot resource allocation unit, so that the neighboring optical communication device is configured according to the time slot resource information , establish a cross-connection of the associated ODUflex signal.
  • An optical communication device includes:
  • the time slot resource allocation unit allocates a time slot resource for the service of the ODUflex according to the traffic parameter used to establish the service connection;
  • the traffic parameter includes a signal type of the optical channel data unit ODUflex with a flexible bandwidth, and a service bandwidth of the ODUflex;
  • a message sending unit configured to send an indication message to the neighboring optical communication device, where the indication message carries the traffic parameter and time slot resource information determined by the time slot resource allocation unit, so that the adjacent optical communication device is configured according to The received traffic parameter in the indication message and the time slot resource information establish a cross-connection of an associated ODUflex signal;
  • a message receiving unit configured to receive the adjacent optical communication device to establish an associated ODUflex signal a response message returned after the cross connection
  • a cross-connection establishing unit configured to establish, after the message receiving unit receives the response message, a cross-connection of the associated ODUflex signal according to the time slot resource information.
  • An optical communication device includes:
  • the time slot resource allocation unit allocates a time slot resource for the service of the ODUflex according to the traffic parameter used to establish the service connection;
  • the traffic parameter includes a signal type of the optical channel data unit ODUflex with a flexible bandwidth, and a service bandwidth of the ODUflex;
  • a message sending unit configured to send an indication message to the neighboring optical communication device, where the indication message carries the traffic parameter and time slot resource information determined by the time slot resource allocation unit, so that the adjacent optical communication device is configured according to The received traffic parameter in the indication message and the time slot resource information establish a cross-connection of an associated ODUflex signal;
  • a cross-connection establishing unit configured to establish a cross-connection of the associated ODUflex signal according to the time slot resource information.
  • the indication message sent by the first node to the second node in the embodiment of the present invention carries the traffic parameter used to establish the service connection, where the traffic parameter includes the light of the flexible bandwidth.
  • the signal type of the channel data unit ODUflex and the service bandwidth of the ODUflex can be used to support the ODUflex signal type.
  • the second node can allocate time slot resources according to the traffic parameters in the indication message, and establish according to the allocated time slot resource information. Correlating the cross-connection of the ODUflex signal, and returning a response message carrying the time slot resource information to the first node; the first node may establish an association of the associated ODUflex signal according to the received time slot resource information Connection, thus establishing the ODUflex service.
  • the first node in the embodiment of the present invention allocates a time slot resource for the service of the ODUflex according to the traffic parameter used to establish the service connection;
  • the traffic parameter includes the signal type being flexible bandwidth.
  • the signal type of the optical channel data unit ODUflex and the service bandwidth of the ODUflex can support the ODUflex signal type by using the information; the first node can send the traffic parameter carrying the traffic parameter and the ODUflex to the second node.
  • the second node may establish a cross connection of the associated ODUflex signal according to the received traffic parameter and the time slot resource information in the indication message; the first node may also be based on The time slot resource information is used to establish a cross-connection of the associated ODUflex signal. Therefore, the establishment of the ODUflex service can be implemented.
  • the cross-connection of the first node to establish the associated ODUflex signal may be performed at the stage of sending the indication message to the second node, or may be performed after receiving the response message returned by the second node, so the application is flexible.
  • FIG. 1 is a flowchart of an information processing method in an optical network according to Embodiment 1 of the present invention
  • FIG. 2 is a flowchart of an information processing method in an optical network according to Embodiment 2 of the present invention.
  • FIG. 3 is a flowchart of an information processing method in an optical network according to Embodiment 3 of the present invention.
  • FIG. 4 is a schematic diagram of a format of a traffic parameter according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of an application scenario of an embodiment of the present invention.
  • FIG. 6 is a flowchart of an information processing method according to Embodiment 4 of the present invention.
  • Figure ⁇ is a flowchart of an information processing method according to Embodiment 5 of the present invention.
  • FIG. 9 is a schematic structural diagram of an optical communication system according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram showing the structure of an optical communication device according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram showing the structure of an optical communication device according to an embodiment of the present invention.
  • FIG. 12 is a third schematic diagram showing the structure of an optical communication device according to an embodiment of the present invention.
  • the embodiment of the invention provides an information processing method in an optical network capable of supporting an ODUflex signal type and establishing an ODUflex service.
  • Embodiments of the present invention also provide corresponding optical communication devices and optical communication systems. The details are described below separately.
  • Embodiment 1 is a flowchart of an information processing method in an optical network according to Embodiment 1 of the present invention, which mainly includes the following steps:
  • Step 101 The first node sends an indication message to the second node, where the indication message carries a traffic parameter used to establish a service connection, where the traffic parameter includes a signal type of an optical channel data unit ODUflex with a flexible bandwidth, ODUflex Service bandwidth
  • Step 102 The second node allocates a time slot resource for the service of the ODUflex according to the received traffic parameter in the indication message, and establishes a cross connection of the associated ODUflex signal according to the allocated time slot resource information, and performs the first connection to the first The node returns a response message carrying the time slot resource information.
  • Step 103 The first node establishes a cross connection of the associated ODUflex signal according to the received time slot resource information.
  • the traffic parameter of the indication message further includes a bit rate tolerance of the ODUflex
  • the method specifically includes: the second node allocates a time slot resource for the service of the ODUflex according to the service bandwidth of the ODUflex and the bit rate tolerance of the ODUflex in the traffic parameter.
  • the indication message sent by the first node to the second node in the embodiment of the present invention carries the traffic parameter used to establish the service connection, where the traffic parameter includes the optical channel data unit ODUflex with the flexible bandwidth.
  • the information can be used to support the ODUflex signal type.
  • the second node can allocate time slot resources according to the traffic parameters in the indication message, and establish an associated ODUflex signal according to the allocated time slot resource information. Cross-connecting, and returning a response message carrying the time slot resource information to the first node; the first node may establish an associated ODUflex signal according to the received time slot resource information Cross-connect, thus establishing the ODUflex service.
  • FIG. 2 is a flowchart of an information processing method in an optical network according to Embodiment 2 of the present invention, which mainly includes the following steps:
  • Step 201 The first node allocates a time slot resource for the service of the ODUflex according to the traffic parameter used to establish the service connection.
  • the traffic parameter includes a signal type of the optical channel data unit ODUflex with a flexible bandwidth, and a service bandwidth of the ODUflex.
  • Step 202 The first node sends an indication message to the second node, where the indication message carries the traffic parameter and time slot resource information allocated for the service of the ODUflex.
  • Step 203 The second node establishes a cross-connection of the associated ODUflex signal according to the received traffic parameter in the indication message and the time slot resource information, and returns a response message to the first node.
  • Step 204 After receiving the response message, the first node establishes a cross-connection of the associated ODUflex signal according to the time slot resource information.
  • the traffic parameter further includes an ODUflex bit rate tolerance
  • the method specifically includes: the first node allocates a time slot resource for the service of the ODUflex according to the service bandwidth of the ODUflex and the bit rate tolerance of the ODUflex in the traffic parameter.
  • the first node in the embodiment of the present invention allocates time slot resources for the service of the ODUflex according to the traffic parameters used for establishing the service connection;
  • the traffic parameter includes the optical channel whose signal type is flexible bandwidth.
  • the signal type of the data unit ODUflex and the service bandwidth of the ODUflex can support the ODUflex signal type by using the information;
  • the first node can send the slot resource information that carries the traffic parameter and the service allocated for the ODUflex to the second node.
  • the second node may establish a cross-connection of the associated ODUflex signal according to the received traffic parameter and the slot resource information in the indication message; the first node may also be based on the time slot.
  • the resource information is used to establish a cross-connection of the ODUflex signal. Therefore, the ODUflex service can be established.
  • the first node establishes a cross connection of the associated ODUflex signal may receive the second The response message returned by the node is performed, so the application is more flexible.
  • Embodiment 3 is a flowchart of an information processing method in an optical network according to Embodiment 3 of the present invention, which mainly includes the following steps:
  • Step 301 The first node allocates a time slot resource for the service of the ODUflex according to the traffic parameter used to establish the service connection.
  • the traffic parameter includes a signal type of the optical channel data unit ODUflex with a flexible bandwidth, and a service bandwidth of the ODUflex.
  • Step 302 The first node establishes a cross-connection of the associated ODUflex signal according to the time slot resource information.
  • Step 303 The first node sends an indication message to the second node, where the indication message carries the traffic parameter and slot resource information allocated for the service of the ODUflex.
  • steps 302 and 303 have no order relationship.
  • Step 304 The second node establishes a cross-connection of the associated ODUflex signal according to the received traffic parameter in the indication message and the time slot resource information.
  • the traffic parameter further includes an ODUflex bit rate tolerance
  • the method specifically includes: the first node allocates a time slot resource for the service of the ODUflex according to the service bandwidth of the ODUflex and the bit rate tolerance of the ODUflex in the traffic parameter.
  • the first node in the embodiment of the present invention allocates time slot resources for the service of the ODUflex according to the traffic parameters used for establishing the service connection;
  • the traffic parameter includes the optical channel whose signal type is flexible bandwidth.
  • the signal type of the data unit ODUflex and the service bandwidth of the ODUflex can support the ODUflex signal type by using the information;
  • the first node can send the slot resource information that carries the traffic parameter and the service allocated for the ODUflex to the second node.
  • the second node may establish a cross-connection of the associated ODUflex signal according to the received traffic parameter and the slot resource information in the indication message; the first node may also be based on the time slot.
  • the resource information is used to establish a cross-connection of the ODUflex signal. Therefore, the ODUflex service can be established.
  • the cross connection of the first node establishing the associated ODUflex signal may be in the second The node sends the indication message at the stage, and the application is more flexible.
  • the technical solution of the embodiment of the present invention may include the traffic parameter in the indication message, for example, the connection establishment request message, where the traffic parameter includes the signal type of the ODUflex, the service bandwidth of the ODUflex, and the bit rate tolerance of the ODUflex; then each node may use the information according to the information.
  • the method mainly includes allocating time slot resources to nodes in each link through which the service connection passes, and configuring the allocated time slot resources to transmit ODUflex signals, and establishing, by each node, a cross connection of the associated ODUflex signals.
  • FIG. 4 is a schematic diagram of a format of a traffic parameter according to an embodiment of the present invention.
  • Figure 4 also includes the service bandwidth Bandwidth field of the ODUflex, which is used to represent the average service bandwidth of the ODUflex service, and can be expressed in the form of floating point numbers.
  • the other fields in Figure 4 are the same as the existing ones.
  • FIG. 4 may further include a bit rate tolerance Tolerance ODUflex field, a bit rate tolerance in parts per million (PPM, parts per million) 0 ODUflex the bandwidth services is allowed to float within a small range.
  • the role of the bit rate tolerance is to indicate the maximum floating range of the bandwidth of the ODUflex service. According to the service bandwidth field and the bit rate tolerance field, the actual service bandwidth range of the ODUflex can be more accurately indicated, so that the number of time slots resources required for the ODUflex service can be calculated more accurately, and the time slot resources are allocated for the ODUflex service.
  • support service provided ODUflex 1 Gbps bandwidth, bit rate tolerance of 10 (i.e., persons lOppm), then the actual traffic bandwidth range: (1-10 * 10- 6) Gbps - (1 + 10 * 10- "Gbps .
  • the following content in combination with an application scenario, respectively introduces the fourth embodiment to the sixth embodiment
  • the specific parameters of the ODUflex service are implemented by the traffic parameters provided by the embodiments of the present invention.
  • the service bandwidth cartridge is referred to as bandwidth
  • the bit rate tolerance is simply referred to as tolerance.
  • FIG. 5 is a schematic diagram of an application scenario of an embodiment of the present invention.
  • the network includes nodes A, B, and C, it is necessary to establish an ODUflex service with a bandwidth of 2.5 Gbps and a tolerance of 20 ppm.
  • the actual bandwidth of the service is: (2.5-20* 10' 6 - 2.5+20* 10 ⁇ ) Gbps )
  • ⁇ _ set the service path has been determined from node A to node B, then to node C, and the link type between node A and node B is ODU2, between node B and node C
  • the link type is ODU4.
  • the network uses the extended GMPLS RSVP-TE protocol to build the road.
  • Embodiment 4 allocates time slot resources mainly by downstream nodes.
  • Step 601 Node A sends a connection request message (Path message) to the Node B, where the Path message carries an extended traffic parameter, and the traffic parameter is specified in the traffic parameter.
  • the signal type is ODUflex, the service bandwidth is 2.5 Gbps, and the tolerance is 20 ppm.
  • Step 602 After receiving the Path message, the Node B forwards the Path message to the Node C, where the traffic parameter does not change.
  • Step 603 The node C allocates a slot resource, and sends a resource reservation message (Resv message) to the node B.
  • Resv message resource reservation message
  • the node C is the destination node of the service, and the node C calculates the time slot resource that needs to be reserved for the link BC between the node B and the node C according to the traffic parameter, thereby allocating the time slot resource.
  • the link type between the links BC is ODU4
  • the bandwidth of a single time slot of the ODU4 is about 1.301711855 Gbps
  • the tolerance is 20 ppm, that is, each time slot of the ODU 4 can provide at least ( 1.301711855-20* 10' 6 ) Gbps bandwidth. Therefore, only 2 time slots are required to provide the bandwidth required for the ODUflex service.
  • the node C reserves two idle time slots from the link BC as the allocated time slot resources, configures the allocated time slot resources to transmit the ODUflex signal, and reserves the time slot resources and the most in the link BC.
  • a cross-connection of the associated ODUflex signal is established between the ports corresponding to the ODUflex signal of the client side, that is, the ODUflex signal of the client side can be transmitted on the link BC.
  • the node C sends a Resv message to the Node B, and the Resv message includes a label, which is used to indicate two time slots reserved for the link B-C.
  • Step 604 The Node B allocates a slot resource, and sends a Resv message to the node A.
  • the Node B After receiving the Resv message, the Node B calculates the time slot resource that the link AB needs to reserve according to the traffic parameter. Since the link type between the links AB is ODU2, and the bandwidth of a single time slot of the ODU2 is about 1.249412119 Gbps, the tolerance is 20 ppm, that is, each time slot of the ODU2 can be provided at most (1.249412119+20 * 10- tf ) Gbps bandwidth, 2 time slots can only provide about 2.498 Gbps of bandwidth, which is not enough to provide sufficient bandwidth for ODUflex services, so Node B needs to reserve 3 time slots for service use.
  • the Node B reserves 3 idle time slots from the link AB as the allocated time slot resources, and configures the time zone resources reserved in the link AB and the link BC to transmit the ODUflex signal, and is in the link. A cross-connection of the associated ODUflex signal is established between the slot resource reserved in the AB and the port of the slot resource reserved in the link BC.
  • the Node B also sends a Resv message to the Node A, where the Resv message includes a label, which is used to indicate three time slots reserved for the link A-B.
  • Step 605 The node A establishes a cross-connection of the associated ODUflex signal according to the slot resource information.
  • the A-slot resource reserved for the link AB is configured to transmit the ODUflex signal, and between the time slot resource reserved in the link AB and the port corresponding to the final client-side ODUflex signal. , establish a cross-connection of the associated ODUflex signal. At this point, the ODUflex business was established.
  • the Path message sent by the upstream node carries the traffic parameter
  • the traffic parameter includes the signal type of the ODUflex, the service bandwidth of the ODUflex, and the bit rate tolerance of the ODUflex.
  • the ODUflex signal type can be implemented.
  • the node can determine the time slot resources to be reserved for use by the ODUflex service to implement the establishment of the ODUflex service.
  • Embodiment 5 mainly allocates time slot resources by an upstream node.
  • FIG. ⁇ is a flowchart of an information processing method according to Embodiment 5 of the present invention, which mainly includes the following steps: Step 701: Node A allocates a slot resource, and sends a Path message to Node B.
  • Node A calculates the time slot resources that need to be reserved for link A-B according to the bandwidth required by the ODUflex service.
  • the tolerance is 20 ppm, that is, each time slot of the ODU2 can be provided at most (1.249412119+20 * 10- 6 ) Gbps bandwidth, 2 time slots can only provide about 2.498 Gbps of bandwidth, which is not enough to provide sufficient bandwidth for ODUflex services, so Node B needs to reserve 3 time slots for service use.
  • the node A reserves the three idle time slots from the link AB as the allocated time slot resources, and sends a Path message to the Node B.
  • the Path message carries the extended traffic parameter.
  • the specified signal type in the traffic parameter is ODUflex, and the service bandwidth is For 2.5 Gbps, the tolerance is ⁇ 20 ppm, and the 3 time slots reserved for link AB are also indicated in the label of the Path message.
  • Step 702 Node B allocates a slot resource, and sends a Path message to the node C.
  • the Node B After receiving the Path message, the Node B calculates the time slot resource that the link BC needs to reserve according to the traffic parameter. Since link BC between the link type is ODU4, while the bandwidth of a single slot ODU4 about 1.301711855Gbps, tolerance of 20ppm, i.e., each time slot may be provided at least ODU4 (1.301711855-20 * 10-5) Gbps bandwidth. Therefore, only 2 time slots are required to provide the bandwidth required for the ODUflex service.
  • the Node B reserves two idle time slots from the link BC as the allocated time slot resources, and sends a Path message to the Node C.
  • the Path message carries the extended traffic parameter, and the specified signal in the traffic parameter.
  • the type is ODUflex, the service bandwidth is 2.5 Gbps, and the tolerance is ⁇ 20 ppm.
  • the 2 slots reserved for the link BC are also indicated in the label of the Path message.
  • Step 703 The node C reserves the slot resource according to the indication, and sends a Resv message to the node B.
  • Node C is the destination node of the service.
  • the slot resource is reserved, and the allocated slot resource configuration is transmitted to the ODUflex signal.
  • a cross-connection of the associated ODUflex signal is established between the time slot resource reserved in the link B-C and the port corresponding to the final client-side ODUflex signal, that is, the ODUflex signal of the client side can be transmitted on the link B-C.
  • node C returns a Resv message to node B.
  • Step 704 The node B establishes a cross-connection of the associated ODUflex signal, and forwards the Resv message to the node A.
  • the Node B After receiving the Resv message, the Node B configures the time slot resources reserved in the link AB and the link BC to transmit the ODUflex signal, and reserves the time slot resources reserved in the link AB and the link BC. A cross-connection of the associated ODUflex signal is established between the ports of the time slot resource.
  • Node B forwards the esv message to Node A.
  • Step 705 Node A establishes a cross-connection of the associated ODUflex signal.
  • the A-slot resource reserved for the link AB is configured to transmit the ODUflex signal.
  • the time slot resource reserved in the link AB is between the port corresponding to the final client-side ODUflex signal. Establish a cross-connection that associates the ODUflex signal. At this point, the ODUflex business is established.
  • the slot resource allocation manners in the foregoing two embodiments may also be used in combination. For example, between node A and node B, the upstream node allocates slot resources, and node A notifies node B of the time slot in link AB; between node B and node C, the downstream node allocates slot resources. In the manner, the time slot in the link BC is allocated by the node C.
  • the Path message sent by the upstream node carries the traffic parameter, and the traffic parameter includes the signal type of the ODUflex, the service bandwidth of the ODUflex, and the bit rate tolerance of the ODUflex.
  • the information can be used to implement the ODUflex signal type.
  • Support, another upstream The node can also determine the time slot resources that need to be reserved according to the information for use by the downstream node.
  • the cross-connection of the ODUflex signal is done in the response (Resv message) phase.
  • the cross-connection of the associated ODUflex signal can also be completed in the request phase (Path message).
  • FIG. 8 is a flowchart of an information processing method according to Embodiment 6 of the present invention, which mainly includes the following steps: Step 801: Node A allocates a slot resource, establishes a cross-connection of an associated ODUflex signal, and sends a Path message to Node B.
  • the step 801 is basically the same as the step 701 in the fifth embodiment.
  • the difference from the step 701 in the fifth embodiment is that, in this embodiment, after the node A reserves the slot resource for the link AB, the node A also reserves the link AB.
  • the time slot resource is configured to transmit the ODUflex signal, and establish a cross-connection of the associated ODUflex signal between the time slot resource reserved in the link AB and the port corresponding to the final client-side ODUflex signal, that is, the association is completed in the request phase. Cross connection of ODUflex signals.
  • Step 802 The Node B allocates a slot resource, establishes a cross-connection of the associated ODUflex signal, and sends a Path message to the Node C.
  • the step 802 is basically the same as the step 702 in the fifth embodiment.
  • the difference from the step 702 in the fifth embodiment is that, in this embodiment, after the node B reserves the slot resource for the link BC, the link AB and the link BC are also used.
  • the reserved time slot resources are respectively configured to transmit the ODUflex signal, and establish a cross-connection of the associated ODUflex signal between the time slot resource reserved in the link AB and the port of the time slot resource reserved in the link BC. That is, the cross-connection of the associated ODUflex signal has been completed in the request phase.
  • Step 803 The node C reserves the slot resource according to the indication, and sends a Resv message to the node B.
  • the description of step 803 is the same as step 703 of the fifth embodiment.
  • the node C establishes a cross-connection of the associated ODUflex signal between the slot resource reserved in the link B-C and the port corresponding to the final client-side ODUflex signal.
  • Step 804 The Node B forwards the Resv message to the node A. After receiving the Resv message, Node B forwards the Resv message to Node A.
  • Step 805 Node A receives the Resv message.
  • Node A After receiving the Resv message, Node A indicates that the ODUflex service is established.
  • the timing of establishing the cross-connection of the associated ODUflex signal may be determined by each node separately.
  • the sixth embodiment has substantially the same effect as the fifth embodiment, except that the relevant connection is completed in the request phase (Path message).
  • the embodiment of the present invention provides an optical communication device and an optical communication system.
  • FIG. 9 is a schematic structural diagram of an optical communication system according to an embodiment of the present invention.
  • the optical communication system includes: a first optical communication device 901, and a second optical communication device.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the first optical communication device 901 is configured to send an indication message to the second optical communication device 902, where the indication message carries a traffic parameter for establishing a service connection, where the traffic parameter includes an optical channel data unit ODUflex with a flexible signal bandwidth. a signal type, a service bandwidth of the ODUflex; establishing a cross-connection of the associated ODUfle signal according to the slot resource information carried in the response message returned by the second optical communication device 902;
  • the second optical communication device 902 is configured to allocate a time slot resource for the service of the ODUflex according to the received traffic parameter in the indication message, and establish a cross connection of the associated ODUflex signal according to the allocated time slot resource information, and An optical communication device 901 returns the response message carrying the slot resource information.
  • the traffic parameter of the indication message may further include a bit rate tolerance of the ODUflex
  • the second optical communication device 902 is a service of the ODUflex according to the service bandwidth of the ODUflex and the bit rate tolerance of the ODUflex in the traffic parameter. Allocate time slot resources.
  • Embodiment 2 The first optical communication device 901 allocates time slot resources for the services of the ODUflex according to the traffic parameters used to establish the service connection; the traffic parameters include the signal type of the optical channel data unit ODUflex with the flexible signal type and the service bandwidth of the ODUflex. Sending an indication message to the second optical communication device 902, where the indication message carries the traffic parameter and time slot resource information allocated for the service of the ODUflex; after receiving the response message returned by the second optical communication device 902, Describe the time slot resource information, and establish a cross connection of the associated ODUflex signal;
  • the second optical communication device 902 is configured to establish a cross-connection of the associated ODUflex signal according to the received traffic parameter and the slot resource information in the indication message, and return a response message to the first optical communication device 901.
  • the traffic parameter further includes an ODUflex bit rate tolerance
  • the first optical communication device 901 specifically allocates time slot resources for the ODUflex service according to the service bandwidth of the ODUflex and the bit rate tolerance of the ODUflex in the traffic parameter.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the first optical communication device 901 allocates time slot resources for the services of the ODUflex according to the traffic parameters used to establish the service connection; the traffic parameters include the signal type of the optical channel data unit ODUflex with the flexible signal type and the service bandwidth of the ODUflex.
  • the two-optical communication device 902 is configured to establish a cross-connection of the associated ODUflex signal according to the received traffic parameter and the slot resource information in the received indication message.
  • the traffic parameter further includes an ODUflex bit rate tolerance
  • the first optical communication device 901 allocates time slot resources for the services of the ODUflex according to the service bandwidth of the ODUflex and the bit rate tolerance of the ODUflex in the traffic parameter.
  • FIG. 10 is a schematic diagram showing the structure of an optical communication apparatus according to an embodiment of the present invention.
  • the optical communication device includes:
  • the message receiving unit 1001 is configured to receive an indication message sent by a neighboring optical communication device, where the The message carries a traffic parameter for establishing a service connection, where the traffic parameter includes a signal type of an optical channel data unit ODUflex whose signal type is flexible bandwidth, and a service bandwidth of the ODUflex.
  • a time slot resource allocating unit 1002 configured to allocate a time slot resource for the service of the ODUflex according to the traffic parameter in the indication message received by the message receiving unit 1001;
  • the cross-connection establishing unit 1003 is configured to establish a cross-connection of the associated ODUflex signal according to the time slot resource information determined by the time slot resource allocating unit 1002.
  • the message sending unit 1004 is configured to return, to the neighboring optical communication device, a response message carrying the time slot resource information determined by the time slot resource allocating unit 1002, so that the adjacent optical communication device is configured according to the time slot. Resource information, establish a cross-connection of the associated ODUflex signal.
  • the traffic parameter of the indication message received by the message receiving unit 1001 further includes a bit rate tolerance of the ODUflex;
  • the time slot resource allocating unit 1002 allocates time slot resources for the service of the ODUflex according to the service bandwidth of the ODUflex and the bit rate tolerance of the ODUflex in the traffic parameter.
  • FIG. 11 is a schematic diagram showing the structure of an optical communication device according to an embodiment of the present invention.
  • the optical communication device includes:
  • the time slot resource allocating unit 1101 allocates a time slot resource for the service of the ODUflex according to the traffic parameter used to establish the service connection.
  • the traffic parameter includes the signal type of the optical channel data unit ODUflex with the flexible bandwidth and the service bandwidth of the ODUflex. ;
  • the message sending unit 1102 is configured to send an indication message to the neighboring optical communication device, where the indication message carries the traffic parameter and the slot resource information determined by the slot resource allocation unit 1101, so that the adjacent optical communication
  • the device establishes a cross-connection of the associated ODUflex signal according to the traffic parameter and the time slot resource information in the received indication message;
  • the message receiving unit 1103 is configured to receive a response message that is returned after the neighboring optical communication device establishes a cross-connection of the associated ODUflex signal;
  • the cross-connection establishing unit 1104 is configured to establish, after the message receiving unit 1103 receives the response message, a cross-connection of the associated ODUflex signal according to the time slot resource information.
  • the traffic parameter further includes a bit rate tolerance of the ODUflex;
  • the time slot resource allocation unit 1101 allocates time slot resources for the service of the ODUflex according to the service bandwidth of the ODUflex and the bit rate tolerance of the ODUflex in the traffic parameter.
  • FIG. 12 is a third schematic diagram showing the structure of an optical communication device according to an embodiment of the present invention.
  • the optical communication device includes:
  • the time slot resource allocating unit 1201 allocates a time slot resource for the service of the ODUflex according to the traffic parameter used to establish the service connection.
  • the traffic parameter includes the signal type of the optical channel data unit ODUflex with the flexible bandwidth and the service bandwidth of the ODUflex. ;
  • the message sending unit 1202 is configured to send an indication message to the neighboring optical communication device, where the indication message carries the traffic parameter and the slot resource information determined by the slot resource allocation unit 1201, so that the adjacent optical communication
  • the device establishes a cross-connection of the associated ODUflex signal according to the traffic parameter and the time slot resource information in the received indication message;
  • the cross-connection establishing unit 1203 is configured to establish a cross-connection of the associated ODUflex signal according to the time slot resource information.
  • the traffic parameter further includes an ODUflex bit rate tolerance
  • the time slot resource allocating unit 1201 allocates time slot resources for the service of the ODUflex according to the service bandwidth of the ODUflex and the bit rate tolerance of the ODUflex in the traffic parameter.
  • the program may be stored in a computer readable storage medium, and the storage medium may include: Read Only Memory (ROM), Random Access Memory (RAM), disk or optical disk.
  • ROM Read Only Memory
  • RAM Random Access Memory

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Description

光网络中的信息处理方法、 光通信装置和光通信系统 本申请要求了 2009年 8月 25 日提交的, 申请号为 200910161790.0, 发 明名称为 "光网络中的信息处理方法、 光通信装置和光通信系统" 的中国申 请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及光通信技术领域, 具体涉及一种光网络中的信息处理方法、 光通信装置和光通信系统。
背景技术
光传送网(OTN, Optical Transport Network )技术是一种新的光传送技术, 能够实现大容量业务的灵活调度和管理, 目前已经成为骨干传送网的主流技 术。
现有的 OTN中定义了 3种信号类型: 光通道数据单元 1 ( ODU1 , Optical Channel Data Unit 1 )、 ODU2、 ODU3 , 其分别包括 1个、 4个、 16个时隙, 并且时隙类型都是 2.5Gb/s, 且具有固定的带宽。 在控制平面利用通用多协议 标签交换( GMPLS, General MultiProtocal Label Switching )扩展的流量工程 扩展的资源预留协议 ( RSVP-TE , Resource Reservation Protocol-Traffic Engineering )RSVP-TE信令消息,携带信号类型,可以实现 ODU1/ODU2/ODU3 连接的自动建立。
在对此方法的研究和实践过程中, 本发明的发明人发现: 目前已经提出 了新的 ODU信号类型,即灵活带宽的 ODU( ODUflex, flexible ODU )。 ODUflex 信号类型的带宽不固定, 可以用于^^载多种粒度的客户信号, 但目前现有技 术釆用的信令消息所携带的信息不能支持 ODUflex信号类型和建立 ODUflex 业务。
发明内容
本发明实施例提供一种能够支持 ODUflex信号类型和建立 ODUflex业务 的光网络中的信息处理方法、 光通信装置和光通信系统。
一种光网络中的信息处理方法, 包括:
第一节点向第二节点发送指示消息, 所述指示消息携带用于建立业务连 接的流量参数, 所述流量参数包括信号类型为灵活带宽的光通道数据单元
ODUflex的信号类型、 ODUflex的业务带宽;
所述第二节点根据接收的所述指示消息中的流量参数, 为 ODUflex的业 务分配时隙资源, 根据分配的时隙资源信息建立关联 ODUflex信号的交叉连 接, 并向所述第一节点返回携带所述时隙资源信息的响应消息;
所述第一节点根据接收的所述时隙资源信息, 建立关联 ODUflex信号的 交叉连接。
一种光网络中的信息处理方法, 包括:
第一节点根据用于建立业务连接的流量参数, 为 ODUflex的业务分配时 隙资源; 所述流量参数包括信号类型为灵活带宽的光通道数据单元 ODUflex 的信号类型、 ODUflex的业务带宽;
所述第一节点向第二节点发送指示消息, 所述指示消息携带所述流量参 数和为 ODUflex的业务分配的时隙资源信息;
所述第二节点根据接收的所述指示消息中的所述流量参数和所述时隙资 源信息建立关联 ODUflex信号的交叉连接,并向所述第一节点返回响应消息; 所述第一节点接收所述响应消息后, 根据所述时隙资源信息, 建立关联 ODUflex信号的交叉连接。
一种光网络中的信息处理方法, 包括:
第一节点根据用于建立业务连接的流量参数, 为 ODUflex的业务分配时 隙资源; 所述流量参数包括信号类型为灵活带宽的光通道数据单元 ODUflex 的信号类型、 ODUflex的业务带宽;
所述第一节点根据所述时隙资源信息建立关联 ODUflex信号的交叉连 接; 所述第一节点向第二节点发送指示消息, 所述指示消息携带所述流量参 数和为 ODUflex的业务分配的时隙资源信息;
所述第二节点根据接收的所述指示消息中的所述流量参数和所述时隙资 源信息建立关联 ODUflex信号的交叉连接。
一种光通信系统, 包括:
第一光通信装置, 用于向第二光通信装置发送指示消息, 所述指示消息 携带用于建立业务连接的流量参数, 所述流量参数包括信号类型为灵活带宽 的光通道数据单元 ODUflex的信号类型、 ODUflex的业务带宽; 根据所述第 二光通信装置返回的响应消息中携带的时隙资源信息, 建立关联 ODUflex信 号的交叉连接;
第二光通信装置, 用于根据接收的所述指示消息中的流量参数, 为 ODUflex的业务分配时隙资源, 根据分配的时隙资源信息建立关联 ODUflex 信号的交叉连接, 并向所述第一光通信装置返回携带所述时隙资源信息的所 述响应消息。
一种光通信系统, 包括:
第一光通信装置, 根据用于建立业务连接的流量参数, 为 ODUflex的业 务分配时隙资源; 所述流量参数包括信号类型为灵活带宽的光通道数据单元 ODUflex的信号类型、 ODUflex的业务带宽; 向第二光通信装置发送指示消 息, 所述指示消息携带所述流量参数和为 ODUflex的业务分配的时隙资源信 息; 接收所述第二光通信装置返回的响应消息后, 根据所述时隙资源信息, 建立关联 ODUflex信号的交叉连接;
第二光通信装置, 用于根据接收的所述指示消息中的所述流量参数和所 述时隙资源信息建立关联 ODUflex信号的交叉连接, 并向所述第一光通信装 置返回所述响应消息。
一种光通信系统, 包括:
第一光通信装置, 根据用于建立业务连接的流量参数, 为 ODUflex的业 务分配时隙资源; 所述流量参数包括信号类型为灵活带宽的光通道数据单元
ODUflex的信号类型、 ODUflex的业务带宽; 向第二光通信装置发送指示消 息, 所述指示消息携带所述流量参数和为 ODUflex的业务分配的时隙资源信 息; 根据所述时隙资源信息, 建立关联 ODUflex信号的交叉连接;
第二光通信装置, 用于根据接收的所述指示消息中的所述流量参数和所 述时隙资源信息建立关联 ODUflex信号的交叉连接。
一种光通信装置, 包括:
消息接收单元, 用于接收相邻光通信装置发送的指示消息, 所述指示消 息携带用于建立业务连接的流量参数, 所述流量参数包括信号类型为灵活带 宽的光通道数据单元 ODUflex的信号类型、 ODUflex的业务带宽;
时隙资源分配单元, 用于根据所述消息接收单元接收的所述指示消息中 的流量参数, 为 ODUflex的业务分配时隙资源;
交叉连接建立单元, 用于根据所述时隙资源分配单元确定的时隙资源信 息, 建立关联 ODUflex信号的交叉连接;
消息发送单元, 用于向所述相邻光通信装置返回携带所述时隙资源分配 单元确定的所述时隙资源信息的响应消息, 使得所述相邻光通信装置根据所 述时隙资源信息, 建立关联 ODUflex信号的交叉连接。
一种光通信装置, 包括:
时隙资源分配单元, 根据用于建立业务连接的流量参数, 为 ODUflex的 业务分配时隙资源; 所述流量参数包括信号类型为灵活带宽的光通道数据单 元 ODUflex的信号类型、 ODUflex的业务带宽;
消息发送单元, 用于向相邻光通信装置发送指示消息, 所述指示消息携 带所述流量参数和所述时隙资源分配单元中确定的时隙资源信息, 使得所述 相邻光通信装置根据接收的所述指示消息中的所述流量参数和所述时隙资源 信息建立关联 ODUflex信号的交叉连接;
消息接收单元, 用于接收所述相邻光通信装置建立关联 ODUflex信号的 交叉连接后返回的响应消息;
交叉连接建立单元, 用于在所述消息接收单元接收所述响应消息后, 根 据所述时隙资源信息, 建立关联 ODUflex信号的交叉连接。
一种光通信装置, 包括:
时隙资源分配单元, 根据用于建立业务连接的流量参数, 为 ODUflex的 业务分配时隙资源; 所述流量参数包括信号类型为灵活带宽的光通道数据单 元 ODUflex的信号类型、 ODUflex的业务带宽;
消息发送单元, 用于向相邻光通信装置发送指示消息 , 所述指示消息携 带所述流量参数和所述时隙资源分配单元中确定的时隙资源信息, 使得所述 相邻光通信装置根据接收的所述指示消息中的所述流量参数和所述时隙资源 信息建立关联 ODUflex信号的交叉连接;
交叉连接建立单元, 用于根据所述时隙资源信息建立关联 ODUflex信号 的交叉连接。
上述本发明实施例第一技术方案可以看出, 本发明实施例第一节点向第 二节点发送的指示消息携带用于建立业务连接的流量参数, 所述流量参数包 括信号类型为灵活带宽的光通道数据单元 ODUflex的信号类型、 ODUflex的 业务带宽, 通过这些信息, 可以实现对 ODUflex信号类型的支持, 第二节点 可以根据指示消息中的流量参数分配时隙资源, 根据分配的时隙资源信息建 立关联 ODUflex信号的交叉连接, 并向所述第一节点返回携带所述时隙资源 信息的响应消息; 所述第一节点可以 4艮据接收的所述时隙资源信息, 建立关 联 ODUflex信号的交叉连接, 因此实现 ODUflex业务的建立。
上述本发明实施例第二技术方案可以看出, 本发明实施例第一节点根据 用于建立业务连接的流量参数, 为 ODUflex的业务分配时隙资源; 所述流量 参数包括信号类型为灵活带宽的光通道数据单元 ODUflex 的信号类型、 ODUflex的业务带宽, 通过这些信息, 可以实现对 ODUflex信号类型的支持; 第一节点可以向第二节点发送携带所述流量参数和为 ODUflex的业务分配的 时隙资源信息的指示消息; 所述第二节点可以根据接收的所述指示消息中的 所述流量参数和所述时隙资源信息建立关联 ODUflex信号的交叉连接; 所述 第一节点也可以根据所述时隙资源信息,建立关联 ODUflex信号的交叉连接, 因此, 可以实现 ODUflex业务的建立。
另外, 第一节点建立关联 ODUflex信号的交叉连接可以是在向所述第二 节点发送指示消息的阶段进行, 也可以在接收所述第二节点返回的响应消息 后进行, 因此应用较为灵活。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作筒单地介绍, 显而易见地, 下面 描述中的附图仅仅是本发明的一些实施例 , 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其它的附图。
图 1是本发明实施例一的光网络中的信息处理方法的流程图;
图 2是本发明实施例二的光网络中的信息处理方法的流程图;
图 3是本发明实施例三的光网络中的信息处理方法的流程图;
图 4是本发明实施例的流量参数的格式示意图;
图 5是本发明实施例的应用场景示意图;
图 6是本发明实施例四的信息处理方法流程图;
图 Ί是本发明实施例五的信息处理方法流程图;
图 8是本发明实施例六的信息处理方法流程图;
图 9是本发明实施例的光通信系统结构示意图;
图 10是本发明实施例的光通信装置结构一示意图;
图 11是本发明实施例的光通信装置结构二示意图;
图 12是本发明实施例的光通信装置结构三示意图。
具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而 不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作 出创造性劳动前提下所获得的所有其它实施例, 都属于本发明保护的范围。
本发明实施例提供一种能够支持 ODUflex信号类型和建立 ODUflex业务 的光网络中的信息处理方法。 本发明实施例还提供相应的光通信装置和光通 信系统。 以下分别进行详细说明。
图 1 是本发明实施例一的光网络中的信息处理方法的流程图, 主要包括 步骤:
步骤 101、 第一节点向第二节点发送指示消息, 所述指示消息携带用于建 立业务连接的流量参数, 所述流量参数包括信号类型为灵活带宽的光通道数 据单元 ODUflex的信号类型、 ODUflex的业务带宽;
步骤 102、 所述第二节点根据接收的所述指示消息中的流量参数, 为 ODUflex的业务分配时隙资源, 根据分配的时隙资源信息建立关联 ODUflex 信号的交叉连接, 并向所述第一节点返回携带所述时隙资源信息的响应消息; 步骤 103、 所述第一节点根据接收的所述时隙资源信息, 建立关联 ODUflex信号的交叉连接。
所述指示消息的流量参数中还包括 ODUflex的比特率容限;
该方法具体包括: 所述第二节点根据所述流量参数中的 ODUflex的业务 带宽和 ODUflex的比特率容限, 为 ODUflex的业务分配时隙资源。
从实施例一内容可以看出, 本发明实施例第一节点向第二节点发送的指 示消息携带用于建立业务连接的流量参数, 所述流量参数包括信号类型为灵 活带宽的光通道数据单元 ODUflex的信号类型、 ODUflex的业务带宽, 通过 这些信息, 可以实现对 ODUflex信号类型的支持, 第二节点可以根据指示消 息中的流量参数分配时隙资源, 根据分配的时隙资源信息建立关联 ODUflex 信号的交叉连接, 并向所述第一节点返回携带所述时隙资源信息的响应消息; 所述第一节点可以根据接收的所述时隙资源信息, 建立关联 ODUflex信号的 交叉连接, 因此实现 ODUflex业务的建立。
图 2是本发明实施例二的光网络中的信息处理方法的流程图, 主要包括 步骤:
步骤 201、 第一节点根据用于建立业务连接的流量参数, 为 ODUflex的 业务分配时隙资源; 所述流量参数包括信号类型为灵活带宽的光通道数据单 元 ODUflex的信号类型、 ODUflex的业务带宽;
步骤 202、所述第一节点向第二节点发送指示消息, 所述指示消息携带所 述流量参数和为 ODUflex的业务分配的时隙资源信息;
步骤 203、所述第二节点根据接收的所述指示消息中的所述流量参数和所 述时隙资源信息建立关联 ODUflex信号的交叉连接, 并向所述第一节点返回 响应消息;
步骤 204、 所述第一节点接收所述响应消息后, 根据所述时隙资源信息, 建立关联 ODUflex信号的交叉连接。
所述流量参数中还包括 ODUflex的比特率容限;
该方法具体包括: 所述第一节点根据所述流量参数中的 ODUflex的业务 带宽和 ODUflex的比特率容限, 为 ODUflex的业务分配时隙资源。
从实施例二内容可以看出, 本发明实施例第一节点才艮据用于建立业务连 接的流量参数, 为 ODUflex的业务分配时隙资源; 所述流量参数包括信号类 型为灵活带宽的光通道数据单元 ODUflex的信号类型、 ODUflex的业务带宽, 通过这些信息, 可以实现对 ODUflex信号类型的支持; 第一节点可以向第二 节点发送携带所述流量参数和为 ODUflex的业务分配的时隙资源信息的指示 消息; 所述第二节点可以根据接收的所述指示消息中的所述流量参数和所述 时隙资源信息建立关联 ODUflex信号的交叉连接; 所述第一节点也可以根据 所述时隙资源信息, 建立关联 ODUflex信号的交叉连接, 因此, 可以实现 ODUflex业务的建立。
另外, 第一节点建立关联 ODUflex信号的交叉连接可以在接收所述第二 节点返回的响应消息后进行, 因此应用较为灵活。
图 3是本发明实施例三的光网络中的信息处理方法的流程图, 主要包括 步骤:
步骤 301、 第一节点根据用于建立业务连接的流量参数, 为 ODUflex的 业务分配时隙资源; 所述流量参数包括信号类型为灵活带宽的光通道数据单 元 ODUflex的信号类型、 ODUflex的业务带宽;
步骤 302、 所述第一节点根据所述时隙资源信息, 建立关联 ODUflex信 号的交叉连接;
步骤 303、所述第一节点向第二节点发送指示消息, 所述指示消息携带所 述流量参数和为 ODUflex的业务分配的时隙资源信息;
需要说明的是, 步骤 302和 303没有顺序关系。
步骤 304、所述第二节点根据接收的所述指示消息中的所述流量参数和所 述时隙资源信息建立关联 ODUflex信号的交叉连接。
所述流量参数中还包括 ODUflex的比特率容限;
该方法具体包括: 所述第一节点根据所述流量参数中的 ODUflex的业务 带宽和 ODUflex的比特率容限, 为 ODUflex的业务分配时隙资源。
从实施例三内容可以看出, 本发明实施例第一节点才艮据用于建立业务连 接的流量参数, 为 ODUflex的业务分配时隙资源; 所述流量参数包括信号类 型为灵活带宽的光通道数据单元 ODUflex的信号类型、 ODUflex的业务带宽, 通过这些信息, 可以实现对 ODUflex信号类型的支持; 第一节点可以向第二 节点发送携带所述流量参数和为 ODUflex的业务分配的时隙资源信息的指示 消息; 所述第二节点可以根据接收的所述指示消息中的所述流量参数和所述 时隙资源信息建立关联 ODUflex信号的交叉连接; 所述第一节点也可以根据 所述时隙资源信息, 建立关联 ODUflex信号的交叉连接, 因此, 可以实现 ODUflex业务的建立。
另外, 第一节点建立关联 ODUflex信号的交叉连接可以是在向所述第二 节点发送指示消息的阶段进行, 应用较为灵活。
以下结合实施例四到实施例六对本发明实施例进行更详细介绍。
本发明实施例技术方案可以在指示消息例如是连接建立请求消息中携带 流量参数, 流量参数中包括 ODUflex的信号类型、 ODUflex的业务带宽以及 ODUflex 的比特率容限; 那么各节点可以根据这些信息, 确定需要预留的时 隙资源, 供 ODUflex业务使用。 具体主要包括为业务连接所经过的各链路中 的节点分配时隙资源, 以及将分配的时隙资源配置为传送 ODUflex信号, 并 由各节点建立关联 ODUflex信号的交叉连接。
本发明实施例中对现有的 OTN流量参数进行扩展, 具体参见图 4。 图 4 是本发明实施例的流量参数的格式示意图。
如图 4所示, 本发明实施例中新增一种信号类型, 即在现有的信号类型 Signal Type 字段的不同取值表示不同含义的基础上, 设定新的取值表示 ODUflex信号类型。例如取 Signal Type=14(也可以是其它目前还没使用的值), 表示是 ODUflex信号类型, 需要建立 ODUflex业务。
图 4中还包括 ODUflex的业务带宽 Bandwidth字段, 用于表示 ODUflex 业务的平均业务带宽, 可釆用浮点数的形式表示。 图 4 中其它字段与现有的 定义相同。
图 4中还可以包括 ODUflex的比特率容限 Tolerance字段, 比特率容限的 单位为百万分之一(PPM, parts per million )0 ODUflex业务的带宽是允许在 一个很小的范围内浮动。 比特率容限的作用是指明 ODUflex业务的带宽最大 浮动范围。根据业务带宽字段和比特率容限字段,可以更准确地指明 ODUflex 的实际业务带宽范围, 从而可以更准确地计算出 ODUflex业务所需要的时隙 资源数量, 并为 ODUflex业务分配时隙资源。
例如, 支设 ODUflex的业务带宽为 lGbps,比特率容限为 10(即士 lOppm ), 则实际业务带宽范围为: ( 1-10*10—6 ) Gbps - ( 1+10* 10-" Gbps。
以下内容, 结合一个应用场景分别详细介绍实施例四到实施例六利用本 发明实施例提供的流量参数实现 ODUflex业务的具体方案。 为描述的方便, 在下文中, 业务带宽筒称为带宽, 比特率容限简称为容限。
图 5是本发明实施例的应用场景示意图。
假设网络中包括节点 A、 B、 C, 需要建立一条带宽为 2.5 Gbps, 容限为 土 20ppm的 ODUflex业^ (业务的实际带宽范围为:( 2.5-20* 10'6 - 2.5+20* 10^ ) Gbps ) ), 并^ _设业务路径已经确定为从节点 A到节点 B, 再到节点 C , 且节 点 A与节点 B之间的链路类型为 ODU2,节点 B与节点 C之间的链路类型为 ODU4。 网络中釆用扩展的 GMPLS RSVP-TE协议进行建路。
实施例四: 实施例四主要由下游节点分配时隙资源。
图 6是本发明实施例四的信息处理方法流程图 , 主要包括步骤: 步骤 601、 节点 A向节点 B发送连接倚求消息( Path消息), Path消息中 携带扩展的流量参数, 流量参数中指定信号类型为 ODUflex, 业务带宽为 2.5 Gbps, 容限为士 20ppm。
流量参数中取 Signal Type=14 (也可以是其它目前还没使用的值;), 表示 是 ODUflex信号类型。
步骤 602、 节点 B收到 Path消息后, 向节点 C转发 Path消息, 其中的流 量参数不变。
步骤 603、节点 C分配时隙资源,并向节点 B发送则资源预留消息( Resv 消息)。
节点 C是业务的目的节点,节点 C根据流量参数计算节点 B与节点 C之 间的链路 B-C需要预留的时隙资源, 从而分配时隙资源。 由于链路 B-C之间 的链路类型是 ODU4, 而 ODU4的单个时隙的带宽约为 1.301711855Gbps, 容 限为 20ppm, 即 ODU4的每个时隙至少可以提供 ( 1.301711855-20* 10'6 ) Gbps 的带宽。 因此, 只需要 2个时隙就可以提供 ODUflex业务所需要的带宽。
节点 C从链路 B-C中预留 2个空闲的时隙作为分配的时隙资源, 将分配 的时隙资源配置为传送 ODUflex信号, 并在链路 B-C中预留的时隙资源与最 终的客户侧 ODUflex信号对应的端口之间, 建立关联 ODUflex信号的交叉连 接, 即可以在链路 B-C上传送客户侧的 ODUflex信号。
另外, 节点 C向节点 B发送 Resv消息, Resv消息中包含标签, 该标签 用于指示为链路 B-C预留的 2个时隙。
步骤 604、 节点 B分配时隙资源, 并向节点 A发送 Resv消息。
节点 B收到 Resv消息后 ,根据流量参数计算链路 A-B需要预留的时隙资 源。 由于链路 A-B之间的链路类型是 ODU2, 而 ODU2的单个时隙的带宽约 为 1.249412119Gbps, 容限为 20ppm, 即 ODU2 的每个时隙至多可以提供 ( 1.249412119+20 * 10-tf ) Gbps的带宽, 2个时隙至多只能提供大约 2.498Gbps 的带宽, 不足以为 ODUflex业务提供足够的带宽, 因此节点 B需要预留 3个 时隙供业务使用。
节点 B从链路 A-B中预留 3个空闲的时隙作为分配的时隙资源, 并将链 路 A-B及链路 B-C中预留的时隙资源, 分别配置为传送 ODUflex信号, 并在 链路 A-B中预留的时隙资源与链路 B-C中预留的时隙资源的端口之间, 建立 关联 ODUflex信号的交叉连接。
另外, 节点 B还向节点 A发送 Resv消息, Resv消息中包含标签, 该标 签用于指示为链路 A-B预留的 3个时隙。
步骤 605、 节点 A根据时隙资源信息, 建立关联 ODUflex信号的交叉连 接。
节点 A收到 Resv消息后, 将为链路 A-B预留的时隙资源, 配置为传送 ODUflex信号, 并在链路 A-B中预留的时隙资源与最终的客户侧 ODUflex信 号对应的端口之间, 建立关联 ODUflex信号的交叉连接。 至此, ODUflex业 务建立完成。
从实施例四可以看出, 上游节点发送的 Path消息中携带流量参数, 流量 参数中包括 ODUflex的信号类型、 ODUflex的业务带宽以及 ODUflex的比特 率容限, 通过这些信息, 可以实现对 ODUflex信号类型的支持, 那么下游各 节点可以根据这些信息确定需要预留的时隙资源, 供 ODUflex业务使用, 实 现 ODUflex业务的建立。
实施例五: 实施例五主要由上游节点分配时隙资源。
图 Ί是本发明实施例五的信息处理方法流程图 , 主要包括步骤: 步骤 701、 节点 A分配时隙资源, 并向节点 B发送 Path消息。
节点 A根据 ODUflex业务需要的带宽计算链路 A-B需要预留的时隙资 源。
由于链路 A-B之间的链路类型是 ODU2, 而 ODU2的单个时隙的带宽约 为 1.249412119Gbps, 容限为 20ppm, 即 ODU2 的每个时隙至多可以提供 ( 1.249412119+20 * 10-6 ) Gbps的带宽, 2个时隙至多只能提供大约 2.498Gbps 的带宽, 不足以为 ODUflex业务提供足够的带宽, 因此节点 B需要预留 3个 时隙供业务使用。
节点 A从链路 A-B中预留 3个空闲的时隙作为分配的时隙资源, 并向节 点 B发送 Path消息, Path消息中携带扩展的流量参数, 流量参数中指定信号 类型为 ODUflex, 业务带宽为 2.5 Gbps, 容限为 ± 20ppm, 另外还在 Path消息 的标签中指示为链路 A-B预留的 3个时隙。
流量参数中取 Signal Type=14 (也可以是其它目前还没使用的值;), 表示 是 ODUflex信号类型。
步骤 702、 节点 B分配时隙资源, 并向节点 C发送 Path消息。
节点 B收到 Path消息后,根据流量参数计算链路 B-C需要预留的时隙资 源。 由于链路 B-C之间的链路类型是 ODU4, 而 ODU4的单个时隙的带宽约 为 1.301711855Gbps, 容限为 20ppm , 即 ODU4 的每个时隙至少可以提供 ( 1.301711855-20*10-5 ) Gbps 的带宽。 因此, 只需要 2 个时隙就可以提供 ODUflex业务所需要的带宽。
节点 B从链路 B-C中预留 2个空闲的时隙作为分配的时隙资源, 并向节 点 C发送 Path消息, Path消息中携带扩展的流量参数, 流量参数中指定信号 类型为 ODUflex , 业务带宽为 2.5 Gbps, 容限为 ± 20ppm, 另外还在 Path消息 的标签中指示为链路 B-C预留的 2个时隙。
步骤 703、 节点 C根据指示预留时隙资源, 并向节点 B发送 Resv消息。 节点 C是业务的目的节点, 根据节点 B分配的时隙资源信息, 预留时隙 资源, 将分配的时隙资源配置传送 ODUflex信号。 在链路 B-C中预留的时隙 资源与最终的客户侧 ODUflex信号对应的端口之间, 建立关联 ODUflex信号 的交叉连接, 即可以在链路 B-C上传送客户侧的 ODUflex信号。
另外, 节点 C向节点 B返回 Resv消息。
步骤 704、 节点 B建立关联 ODUflex信号的交叉连接, 并向节点 A转发 Resv消息。
节点 B收到 Resv消息后, 将链路 A-B及链路 B-C中预留的时隙资源, 分别配置为传送 ODUflex信号, 并在链路 A-B中预留的时隙资源与链路 B-C 中预留的时隙资源的端口之间, 建立关联 ODUflex信号的交叉连接。
另外, 节点 B向节点 A转发 esv消息。
步骤 705、 节点 A建立关联 ODUflex信号的交叉连接。
节点 A收到 Resv消息后, 将为链路 A-B预留的时隙资源, 配置为传送 ODUflex信号, 在链路 A-B中预留的时隙资源与最终的客户侧 ODUflex信号 对应的端口之间, 建立关联 ODUflex信号的交叉连接。 至此, ODUflex业务 建立完成。
需要说明的是, 上述两个实施例中的时隙资源分配方式也可以结合起来 使用。 例如: 节点 A和节点 B之间, 采用上游节点分配时隙资源的方式, 由 节点 A通知节点 B在链路 A-B中的时隙; 节点 B和节点 C之间, 采用下游 节点分配时隙资源的方式, 由节点 C分配链路 B-C中的时隙。
从实施例五可以看出, 上游节点发送的 Path消息中携带流量参数, 流量 参数中包括 ODUflex的信号类型、 ODUflex的业务带宽以及 ODUflex的比特 率容限, 通过这些信息, 可以实现对 ODUflex信号类型的支持, 另外上游各 节点还可以根据这些信息确定需要预留的时隙资源, 供下游节点使用。
实施例六:
实施例六与上述两个实施例的区别是, 上述两个实施例中, 关于关联
ODUflex信号的交叉连接是在响应 (Resv消息) 阶段完成。 当由上游节点分 配时隙资源时, 例如实施例四中, 关于关联 ODUflex信号的交叉连接, 也可 以在请求阶段 ( Path消息)完成。
图 8是本发明实施例六的信息处理方法流程图, 主要包括步骤: 步骤 801、 节点 A分配时隙资源, 建立关联 ODUflex信号的交叉连接, 并向节点 B发送 Path消息。
步骤 801与实施例五中的步驟 701基本相同, 与实施例五步骤 701不同 的是, 本实施例中, 节点 A为链路 A-B预留时隙资源后, 还将为链路 A-B预 留的时隙资源, 配置为传送 ODUflex信号, 并在链路 A-B中预留的时隙资源 与最终的客户侧 ODUflex信号对应的端口之间, 建立关联 ODUflex信号的交 叉连接, 即在请求阶段已经完成关联 ODUflex信号的交叉连接。
步骤 802、 节点 B分配时隙资源, 建立关联 ODUflex信号的交叉连接, 并向节点 C发送 Path消息。
步骤 802与实施例五中的步骤 702基本相同, 与实施例五步骤 702不同 的是, 本实施例中, 节点 B为链路 B-C预留时隙资源后, 还将链路 A-B及链 路 B-C中预留的时隙资源, 分别配置为传送 ODUflex信号, 并在链路 A-B中 预留的时隙资源与链路 B-C中预留的时隙资源的端口之间,建立关联 ODUflex 信号的交叉连接, 即在请求阶段已经完成关联 ODUflex信号的交叉连接。
步骤 803、 节点 C根据指示预留时隙资源, 并向节点 B发送 Resv消息。 步骤 803的描述与实施例五的步骤 703相同。 该步骤中, 节点 C在链路 B-C中预留的时隙资源与最终的客户侧 ODUflex信号对应的端口之间, 建立 关联 ODUflex信号的交叉连接。
步骤 804、 节点 B向节点 A转发 Resv消息。 节点 B收到 Resv消息后, 向节点 A转发 Resv消息。
步骤 805、 节点 A接收 Resv消息。
节点 A收到 Resv消息后, 表示 ODUflex业务建立完成。
需要说明的是, 本发明实施例中, 关联 ODUflex信号的交叉连接建立的 时机可以由各节点单独决定。
实施例六与实施例五具有基本相同的效果, 所不同的是在请求阶段 ( Path 消息) 完成相关连接。
上述内容详细介绍了本发明实施例的光网络中的信息处理方法, 相应的 , 本发明实施例提供一种光通信装置和光通信系统。
图 9是本发明实施例的光通信系统结构示意图。
如图 9所示, 光通信系统包括: 第一光通信装置 901、 第二光通信装置
902。
实施方式一:
第一光通信装置 901, 用于向第二光通信装置 902发送指示消息, 所述指 示消息携带用于建立业务连接的流量参数, 所述流量参数包括信号类型为灵 活带宽的光通道数据单元 ODUflex的信号类型、 ODUflex的业务带宽; 根据 所述第二光通信装置 902返回的响应消息中携带的时隙资源信息, 建立关联 ODUfle 信号的交叉连接;
第二光通信装置 902, 用于根据接收的所述指示消息中的流量参数, 为 ODUflex的业务分配时隙资源, 根据分配的时隙资源信息建立关联 ODUflex 信号的交叉连接, 并向所述第一光通信装置 901返回携带所述时隙资源信息 的所述响应消息。
所述指示消息的流量参数中还可以包括 ODUflex的比特率容限, 则所述 第二光通信装置 902根据所述流量参数中的 ODUflex的业务带宽和 ODUflex 的比特率容限, 为 ODUflex的业务分配时隙资源。
实施方式二: 第一光通信装置 901, 根据用于建立业务连接的流量参数, 为 ODUflex 的业务分配时隙资源; 所述流量参数包括信号类型为灵活带宽的光通道数据 单元 ODUflex的信号类型、 ODUflex的业务带宽; 向第二光通信装置 902发 送指示消息, 所述指示消息携带所述流量参数和为 ODUflex的业务分配的时 隙资源信息; 接收所述第二光通信装置 902返回的响应消息后, 根据所述时 隙资源信息, 建立关联 ODUflex信号的交叉连接;
第二光通信装置 902,用于根据接收的所述指示消息中的所述流量参数和 时隙资源信息建立关联 ODUflex信号的交叉连接, 并向所述第一光通信装置 901返回响应消息。
所述流量参数中还包括 ODUflex的比特率容限;
所述第一光通信装置 901具体 4艮据所述流量参数中的 ODUflex的业务带 宽和 ODUflex的比特率容限, 为 ODUflex的业务分配时隙资源。
实施方式三:
第一光通信装置 901, 根据用于建立业务连接的流量参数, 为 ODUflex 的业务分配时隙资源; 所述流量参数包括信号类型为灵活带宽的光通道数据 单元 ODUflex的信号类型、 ODUflex的业务带宽; 向第二光通信装置 902发 送指示消息, 所述指示消息携带所述流量参数和为 ODUflex的业务分配的时 隙资源信息; 根据所述时隙资源信息, 建立关联 ODUflex信号的交叉连接; 第二光通信装置 902,用于根据接收的所述指示消息中的所述流量参数和 时隙资源信息建立关联 ODUflex信号的交叉连接。
所述流量参数中还包括 ODUflex的比特率容限;
所述第一光通信装置 901具体根据所述流量参数中的 ODUflex的业务带 宽和 ODUflex的比特率容限, 为 ODUflex的业务分配时隙资源。
图 10是本发明实施例的光通信装置结构一示意图。
如图 10所示, 光通信装置包括:
消息接收单元 1001 , 用于接收相邻光通信装置发送的指示消息, 所述指 示消息携带用于建立业务连接的流量参数, 所述流量参数包括信号类型为灵 活带宽的光通道数据单元 ODUflex的信号类型、 ODUflex的业务带宽;
时隙资源分配单元 1002,用于根据所述消息接收单元 1001接收的所述指 示消息中的流量参数, 为 ODUflex的业务分配时隙资源;
交叉连接建立单元 1003 ,用于根据所述时隙资源分配单元 1002确定的时 隙资源信息, 建立关联 ODUflex信号的交叉连接;
消息发送单元 1004, 用于向所述相邻光通信装置返回携带所述时隙资源 分配单元 1002确定的所述时隙资源信息的响应消息, 使得所述相邻光通信装 置根据所述时隙资源信息, 建立关联 ODUflex信号的交叉连接。
所述消息接收单元 1001接收的指示消息的流量参数中还包括 ODUflex的 比特率容限;
所述时隙资源分配单元 1002根据所述流量参数中的 ODUflex的业务带宽 和 ODUflex的比特率容限, 为 ODUflex的业务分配时隙资源。
图 11是本发明实施例的光通信装置结构二示意图。
如图 11所示, 光通信装置包括:
时隙资源分配单元 1101 ,根据用于建立业务连接的流量参数,为 ODUflex 的业务分配时隙资源; 所述流量参数包括信号类型为灵活带宽的光通道数据 单元 ODUflex的信号类型、 ODUflex的业务带宽;
消息发送单元 1102, 用于向相邻光通信装置发送指示消息, 所述指示消 息携带所述流量参数和所述时隙资源分配单元 1101中确定的时隙资源信息, 使得所述相邻光通信装置根据接收的所述指示消息中的所述流量参数和所述 时隙资源信息建立关联 ODUflex信号的交叉连接;
消息接收单元 1103, 用于接收所述相邻光通信装置建立关联 ODUflex信 号的交叉连接后返回的响应消息;
交叉连接建立单元 1104,用于在所述消息接收单元 1103接收所述响应消 息后, 根据所述时隙资源信息, 建立关联 ODUflex信号的交叉连接。 所述流量参数中还包括 ODUflex的比特率容限;
所述时隙资源分配单元 1101具体根据所述流量参数中的 ODUflex的业务 带宽和 ODUflex的比特率容限, 为 ODUflex的业务分配时隙资源。
图 12是本发明实施例的光通信装置结构三示意图。
如图 12所示, 光通信装置包括:
时隙资源分配单元 1201 ,根据用于建立业务连接的流量参数,为 ODUflex 的业务分配时隙资源; 所述流量参数包括信号类型为灵活带宽的光通道数据 单元 ODUflex的信号类型、 ODUflex的业务带宽;
消息发送单元 1202, 用于向相邻光通信装置发送指示消息, 所述指示消 息携带所述流量参数和所述时隙资源分配单元 1201中确定的时隙资源信息, 使得所述相邻光通信装置根据接收的所述指示消息中的所述流量参数和所述 时隙资源信息建立关联 ODUflex信号的交叉连接;
交叉连接建立单元 1203 , 用于根据所述时隙资源信息建立关联 ODUflex 信号的交叉连接。
所述流量参数中还包括 ODUflex的比特率容限;
所述时隙资源分配单元 1201具体根据所述流量参数中的 ODUflex的业务 带宽和 ODUflex的比特率容限, 为 ODUflex的业务分配时隙资源。
需要说明的是, 上述装置和系统内的各单元之间的信息交互、 执行过程 等内容, 由于与本发明方法实施例基于同一构思, 具体内容可参见本发明方 法实施例中的叙述, 此处不再赘述。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步 骤是可以通过程序来指令相关的硬件来完成, 该程序可以存储于一计算机可 读存储介质中,存储介质可以包括: 只读存储器( ROM, Read Only Memory )、 随机存取存储器 ( RAM, Random Access Memory )、 磁盘或光盘等。
以上对本发明实施例所提供的光网络中的信息处理方法、 光通信装置和 光通信系统进行了详细介绍, 本文中应用了具体个例对本发明的原理及实施 方式进行了阐述, 以上实施例的说明只是用于帮助理解本发明的方法及其核 心思想; 同时, 对于本领域的一般技术人员, 依据本发明的原理, 在具体实 施方式及应用范围上均会有改变之处, 综上所述, 本说明书内容不应理解为 对本发明的限制。

Claims

权利 要求 书
1、 一种光网络中的信息处理方法, 其特征在于, 包括:
第一节点向第二节点发送指示消息, 所述指示消息携带用于建立业务连接 的流量参数,所述流量参数包括信号类型为灵活带宽的光通道数据单元 ODUflex 的信号类型、 ODUflex的业务带宽;
所述第二节点根据接收的所述指示消息中的流量参数, 为 ODUflex的业务 分配时隙资源, 根据分配的时隙资源信息建立关联 ODUflex信号的交叉连接, 并向所述第一节点返回携带所述时隙资源信息的响应消息;
所述第一节点根据接收的所述时隙资源信息, 建立关联 ODUflex信号的交 叉连接。
2、 根据权利要求 1所述的光网络中的信息处理方法, 其特征在于: 所述指示消息的流量参数中还包括 ODUflex的比特率容限;
该方法具体包括: 所述第二节点根据所述流量参数中的 ODUflex的业务带 宽和 ODUflex的比特率容限, 为 ODUflex的业务分配时隙资源。
3、 一种光网络中的信息处理方法, 其特征在于, 包括:
第一节点根据用于建立业务连接的流量参数, 为 ODUflex的业务分配时隙 资源; 所述流量参数包括信号类型为灵活带宽的光通道数据单元 ODUflex的信 号类型、 ODUflex的业务带宽;
所述第一节点向第二节点发送指示消息, 所述指示消息携带所述流量参数 和为 ODUflex的业务分配的时隙资源信息;
所述第二节点根据接收的所述指示消息中的所述流量参数和所述时隙资源 信息建立关联 ODUflex信号的交叉连接, 并向所述第一节点返回响应消息; 所述第一节点接收所述响应消息后, 根据所述时隙资源信息, 建立关联 ODUflex信号的交叉连接。
4、 根据权利要求 3所述的光网络中的信息处理方法, 其特征在于: 所述流量参数中还包括 ODUflex的比特率容限;
该方法具体包括: 所述第一节点根据所述流量参数中的 ODUflex的业务带 宽和 ODUflex的比特率容限, 为 ODUflex的业务分配时隙资源。
5、 一种光网络中的信息处理方法, 其特征在于, 包括:
第一节点根据用于建立业务连接的流量参数, 为 ODUflex的业务分配时隙 资源; 所述流量参数包括信号类型为灵活带宽的光通道数据单元 ODUflex的信 号类型、 ODUflex的业务带宽;
所述第一节点根据所述时隙资源信息建立关联 ODUflex信号的交叉连接; 所述第一节点向第二节点发送指示消息, 所述指示消息携带所述流量参数 和为 ODUflex的业务分配的时隙资源信息;
所述第二节点根据接收的所述指示消息中的所述流量参数和所述时隙资源 信息建立关联 ODUflex信号的交叉连接。
6、 根据权利要求 5所述的光网络中的信息处理方法, 其特征在于: 所述流量参数中还包括 ODUflex的比特率容限;
该方法具体包括: 所述第一节点根据所述流量参数中的 ODUflex的业务带 宽和 ODUflex的比特率容限, 为 ODUflex的业务分配时隙资源。
7、 一种光通信系统, 其特征在于, 包括:
第一光通信装置, 用于向第二光通信装置发送指示消息, 所述指示消息携 带用于建立业务连接的流量参数, 所述流量参数包括信号类型为灵活带宽的光 通道数据单元 ODUflex的信号类型、 ODUflex的业务带宽; 根据所述第二光通 信装置返回的响应消息中携带的时隙资源信息, 建立关联 ODUflex信号的交叉 连接; 第二光通信装置,用于根据接收的所述指示消息中的流量参数,为 ODUflex 的业务分配时隙资源, 根据分配的时隙资源信息建立关联 ODUflex信号的交叉 连接, 并向所述第一光通信装置返回携带所述时隙资源信息的所述响应消息。
8、 根据权利要求 7所述的光通信系统, 其特征在于:
所述第一光通信装置发送的指示消息的流量参数中还包括 ODUflex的比特 率容限;
所述第二光通信装置根据所述流量参数中的 ODUflex 的业务带宽和 ODUflex的比特率容限, 为 ODUflex的业务分配时隙资源。
9、 一种光通信系统, 其特征在于, 包括:
第一光通信装置, 根据用于建立业务连接的流量参数, 为 ODUflex的业务 分配时隙资源; 所述流量参数包括信号类型为灵活带宽的光通道数据单元 ODUflex的信号类型、 ODUflex的业务带宽; 向第二光通信装置发送指示消息, 所述指示消息携带所述流量参数和为 ODUflex的业务分配的时隙资源信息; 接 收所述第二光通信装置返回的响应消息后, 根据所述时隙资源信息, 建立关联 ODUfle 信号的交叉连接;
第二光通信装置, 用于根据接收的所述指示消息中的所述流量参数和所述 时隙资源信息建立关联 ODUflex信号的交叉连接, 并向所述第一光通信装置返 回所述响应消息。
10、 根据权利要求 9所述的光通信系统, 其特征在于:
所述流量参数中还包括 ODUflex的比特率容限;
所述第一光通信装置具体根据所述流量参数中的 ODUflex 的业务带宽和 ODUflex的比特率容限, 为 ODUflex的业务分配时隙资源。
I K 一种光通信系统, 其特征在于, 包括:
第一光通信装置, 根据用于建立业务连接的流量参数, 为 ODUflex的业务 分配时隙资源; 所述流量参数包括信号类型为灵活带宽的光通道数据单元 ODUflex的信号类型、 ODUflex的业务带宽; 向第二光通信装置发送指示消息, 所述指示消息携带所述流量参数和为 ODUflex的业务分配的时隙资源信息; 根 据所述时隙资源信息, 建立关联 ODUflex信号的交叉连接;
第二光通信装置, 用于根据接收的所述指示消息中的所述流量参数和所述 时隙资源信息建立关联 ODUflex信号的交叉连接。
12、 根据权利要求 11所述的光通信系统, 其特征在于:
所述流量参数中还包括 ODUflex的比特率容限;
所述第一光通信装置具体根据所述流量参数中的 ODUflex 的业务带宽和 ODUflex的比特率容限, 为 ODUflex的业务分配时隙资源。
13、 一种光通信装置, 其特征在于, 包括:
消息接收单元, 用于接收相邻光通信装置发送的指示消息, 所述指示消息 携带用于建立业务连接的流量参数, 所述流量参数包括信号类型为灵活带宽的 光通道数据单元 ODUflex的信号类型、 ODUflex的业务带宽;
时隙资源分配单元, 用于根据所述消息接收单元接收的所述指示消息中的 流量参数, 为 ODUflex的业务分配时隙资源;
交叉连接建立单元, 用于根据所述时隙资源分配单元确定的时隙资源信息, 建立关联 ODUflex信号的交叉连接;
消息发送单元, 用于向所述相邻光通信装置返回携带所述时隙资源分配单 元确定的所述时隙资源信息的响应消息, 使得所述相邻光通信装置根据所述时 隙资源信息, 建立关联 ODUflex信号的交叉连接。
14、 根据权利要求 13所述的光通信装置, 其特征在于: 所述消息接收单元接收的指示消息的流量参数中还包括 ODUflex的比特率 容限;
所述时隙资源分配单元根据所述流量参数中的 ODUflex 的业务带宽和 ODUflex的比特率容限, 为 ODUflex的业务分配时隙资源。
15、 一种光通信装置, 其特征在于, 包括:
时隙资源分配单元, 根据用于建立业务连接的流量参数, 为 ODUflex的业 务分配时隙资源; 所述流量参数包括信号类型为灵活带宽的光通道数据单元 ODUflex的信号类型、 ODUHex的业务带宽;
消息发送单元, 用于向相邻光通信装置发送指示消息, 所述指示消息携带 所述流量参数和所述时隙资源分配单元中确定的时隙资源信息, 使得所述相邻 光通信装置根据接收的所述指示消息中的所述流量参数和所述时隙资源信息建 立关联 ODUflex信号的交叉连接;
消息接收单元, 用于接收所述相邻光通信装置建立关联 ODUflex信号的交 叉连接后返回的响应消息;
交叉连接建立单元, 用于在所述消息接收单元接收所述响应消息后, 根据 所述时隙资源信息, 建立关联 ODUflex信号的交叉连接。
16、 根据权利要求 15所述的光通信装置, 其特征在于:
所述流量参数中还包括 ODUflex的比特率容限;
所述时隙资源分配单元具体根据所述流量参数中的 ODUflex的业务带宽和 ODUflex的比特率容限, 为 ODUflex的业务分配时隙资源。
17、 一种光通信装置, 其特征在于, 包括: 时隙资源分配单元, 根据用于 建立业务连接的流量参数, 为 ODUflex的业务分配时隙资源; 所述流量参数包 括信号类型为灵活带宽的光通道数据单元 ODUflex的信号类型、 ODUflex的业 务带宽;
消息发送单元, 用于向相邻光通信装置发送指示消息, 所述指示消息携带 所述流量参数和所述时隙资源分配单元中确定的时隙资源信息, 使得所述相邻 光通信装置根据接收的所述指示消息中的所述流量参数和所述时隙资源信息建 立关联 ODUflex信号的交叉连接;
交叉连接建立单元, 用于根据所述时隙资源信息建立关联 ODUflex信号的 交叉连接。
18、 根据权利要求 17所述的光通信装置, 其特征在于:
所述流量参数中还包括 ODUflex的比特率容限;
所述时隙资源分配单元具体根据所述流量参数中的 ODUflex的业务带宽和 ODUflex的比特率容限, 为 ODUflex的业务分配时隙资源。
PCT/CN2010/075283 2009-08-25 2010-07-20 光网络中的信息处理方法、光通信装置和光通信系统 WO2011023040A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 200910161790 CN101998182B (zh) 2009-08-25 2009-08-25 光网络中的信息处理方法、光通信装置和光通信系统
CN200910161790.0 2009-08-25

Publications (1)

Publication Number Publication Date
WO2011023040A1 true WO2011023040A1 (zh) 2011-03-03

Family

ID=43627230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/075283 WO2011023040A1 (zh) 2009-08-25 2010-07-20 光网络中的信息处理方法、光通信装置和光通信系统

Country Status (2)

Country Link
CN (1) CN101998182B (zh)
WO (1) WO2011023040A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102761384B (zh) * 2011-04-29 2015-09-02 华为技术有限公司 Otn网络中线性变带宽时钟跟踪方法和装置
CN102857837B (zh) * 2011-06-30 2017-11-07 中兴通讯股份有限公司 灵活栅格光网络的波长标签编码方法、处理方法及节点
CN102439921B (zh) * 2011-09-22 2014-02-19 华为技术有限公司 一种时隙资源配置方法及装置
CN103079119A (zh) * 2011-10-26 2013-05-01 中兴通讯股份有限公司 一种灵活栅格光网络的波长资源编码、处理方法及节点
CN104348754B (zh) * 2013-07-26 2019-08-23 中兴通讯股份有限公司 一种光突发环网的带宽分配方法和装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1770886A1 (en) * 2005-09-29 2007-04-04 Fujitsu Ltd. Signal multiplexing apparatus and stuff controlling method therein
CN101389146A (zh) * 2007-09-13 2009-03-18 华为技术有限公司 光传送网同步交叉调度的方法和装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1323497C (zh) * 2002-07-30 2007-06-27 中兴通讯股份有限公司 光传输网络中面向连接的手工业务配置方法
US7831700B2 (en) * 2006-10-16 2010-11-09 Futurewei Technologies, Inc. Distributed PCE-based system and architecture in multi-layer network
CN101179351B (zh) * 2006-11-07 2012-05-09 中兴通讯股份有限公司 同步数字体系设备空时分交叉时隙资源的动态分配方法
CN100583901C (zh) * 2007-01-08 2010-01-20 清华大学 宽带无线接入网媒体接入控制层服务质量保证方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1770886A1 (en) * 2005-09-29 2007-04-04 Fujitsu Ltd. Signal multiplexing apparatus and stuff controlling method therein
CN101389146A (zh) * 2007-09-13 2009-03-18 华为技术有限公司 光传送网同步交叉调度的方法和装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
NETWORK WORKING GROUP: "Generalized Multi-Protocol abel Switching (GMPLS) Signaling Extensions for the evolving G.709 Optical Transport Networks Control, draft-zhang-ccamp-gmpls-evolving-g709-05", INTERNET DRAFT, 9 July 2010 (2010-07-09) *
NETWORK WORKING GROUP: "Generalized Multi-Protocol Label Switching (GMPLS) Signaling Extensions for the evolving G.709 Optical Transpo Networks Control", RFC4328, January 2006 (2006-01-01) *
NETWORK WORKING GROUP: "Generalized Multi-Protocol Label Switching (GMPLS) Signaling Extensions for the evolving G.709 Optical Transport Networks Control, draft-zhang-ccamp-gmpls-evolving-g709-01", INTERNET DRAFT, 13 July 2009 (2009-07-13) *

Also Published As

Publication number Publication date
CN101998182B (zh) 2013-08-14
CN101998182A (zh) 2011-03-30

Similar Documents

Publication Publication Date Title
US10334335B2 (en) Method for assigning and processing a label in an optical network, optical communication device, and optical communication system
CN106803814B (zh) 一种灵活以太网路径的建立方法、装置及系统
EP2627043B1 (en) Method, device and system for lossless bandwidth adjustment
EP3413499B1 (en) Method, apparatus, and system for assigning tributary port number
US20050030951A1 (en) Reservation protocol signaling extensions for optical switched networks
EP1953956A1 (en) Communication network system and leaf-node network element of the multicasting tree signal transmission method and node network element thereof
EP2352261A1 (en) Path computation method, node device and path computation element
EP1890436B1 (en) Method and apparatus for managing and transmitting fine granularity services
WO2008083584A1 (fr) Procédé et dispositif de commande de l'agrégation de liaisons
WO2011023040A1 (zh) 光网络中的信息处理方法、光通信装置和光通信系统
EP1983712B1 (en) An automatic discovering method and device for client layer link
US20100329155A1 (en) method and apparatus for realizing source routing in the blocked cross network
WO2021238195A1 (zh) 业务资源预配置方法、设备和系统
WO2011029347A1 (zh) 实现节点发布链路信息的方法和装置
WO2010130177A1 (zh) 业务连接建立方法、路径计算单元设备及网络系统
EP2665324B1 (en) Connection establishment method and device for forwarding adjacency - label switched path
EP2466767B1 (en) Adapting equipment and method
Pradhan et al. Multicast protection and grooming scheme in survivable WDM optical networks
WO2012149760A1 (zh) 一种时隙资源配置方法及装置
CN103098416B (zh) 一种保护资源分配方法、装置和系统
Muñoz et al. Design and experimental evaluation of dynamic inverse-multiplexing provisioning in GMPLS-controlled flexi-grid DWDM networks with sliceable OTN BVTs
CN102687473B (zh) 端到端标签交换路径的建立方法和系统
Morea et al. Cost benefits of asymmetric IP-over-DWDM networks with elastic transceivers
WO2022193751A1 (zh) 时隙配置方法、业务路径创建方法、装置、设备及介质
WO2012088956A1 (zh) Oduflex无损调整能力路由洪泛方法、装置及节点

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10811200

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10811200

Country of ref document: EP

Kind code of ref document: A1