WO2022193751A1 - 时隙配置方法、业务路径创建方法、装置、设备及介质 - Google Patents

时隙配置方法、业务路径创建方法、装置、设备及介质 Download PDF

Info

Publication number
WO2022193751A1
WO2022193751A1 PCT/CN2021/137688 CN2021137688W WO2022193751A1 WO 2022193751 A1 WO2022193751 A1 WO 2022193751A1 CN 2021137688 W CN2021137688 W CN 2021137688W WO 2022193751 A1 WO2022193751 A1 WO 2022193751A1
Authority
WO
WIPO (PCT)
Prior art keywords
time slot
information
service
current node
configuration
Prior art date
Application number
PCT/CN2021/137688
Other languages
English (en)
French (fr)
Inventor
温建中
陈捷
刘爱华
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2022193751A1 publication Critical patent/WO2022193751A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a time slot configuration method, a time slot configuration-based service path creation method, a time slot configuration apparatus, a time slot configuration-based service path creation apparatus, network equipment, and a storage medium.
  • control plane In the mobile network architecture, in order to improve the reliability, flexibility and scalability of the system, the control plane is separated from the forwarding plane, that is, the control plane performs unified policy control to ensure flexible traffic scheduling and connection management, and the forwarding plane focuses on services For data routing and forwarding, the two work independently as much as possible without affecting each other.
  • the time slots configured by the control plane may not be optimal for forwarding behavior.
  • the time slot position relationship has specific requirements, it is difficult for the control plane to implement the special requirements for the time slot configuration of the forwarding planes of different devices.
  • the embodiments of the present application provide a time slot configuration method, a service path creation method based on time slot configuration, a time slot configuration apparatus, a service path creation apparatus based on time slot configuration, a network device, and a storage medium.
  • an embodiment of the present application provides a time slot configuration method, which is applied to a forwarding plane of a network device, including: acquiring service information and link information of a current node, where the service information is used to represent service parameters, and the The link information is used to represent the forwarding path; according to the service information, the link information and the preset time slot configuration rule, the outgoing time slot information of the current node is configured.
  • an embodiment of the present application provides a method for creating a service path based on time slot configuration, which is applied to a forwarding plane of a network device, including: acquiring service information and link information of a current node, where the service information is used to represent service parameters, the link information is used to represent the forwarding path; according to the service information, the link information and the preset time slot configuration rule, configure the outgoing time slot information of the current node; according to the outgoing time slot
  • the slot information configures the slot frame structure, and according to the link information, the configured first slot frame is forwarded to the next node.
  • an embodiment of the present application provides a time slot configuration device, which is applied to a forwarding plane of a network device, including: a service information acquisition unit configured to acquire service information of a current node, where the service information is used to represent a service parameters; a link information acquisition unit, configured to acquire link information of the current node, where the link information is used to represent a forwarding path; a time slot information configuration unit, configured to obtain the link information according to the service information and the link information and a preset time slot configuration rule, to configure the outgoing time slot information of the current node.
  • an embodiment of the present application provides an apparatus for creating a service path based on a time slot configuration, which is applied to a forwarding plane of a network device, and includes: a service information obtaining unit configured to obtain service information of the current node, where The service information is used to characterize service parameters; the link information obtaining unit is configured to obtain the link information of the current node, the link information is used to characterize the forwarding path; the time slot information configuration unit is configured to the service information, the link information and the preset time slot configuration rule, configure the outgoing time slot information of the current node; the time slot frame configuration unit is set to configure the time slot frame structure according to the outgoing time slot information ; a slotted frame transmission unit configured to receive forwarded slotted frames.
  • an embodiment of the present application provides a network device, the network device includes a memory, a processor, and a computer program stored on the memory and executable on the processor, the processor executing the The computer program implements: the time slot configuration method according to the first aspect, or the time slot configuration-based traffic path creation method according to the second aspect.
  • an embodiment of the present application provides a storage medium for computer-readable storage, where the storage medium stores one or more programs, and the one or more programs can be executed by one or more processors , to implement: the time slot configuration method according to the first aspect, or the time slot configuration-based service path creation method according to the second aspect.
  • FIG. 1 is a schematic flowchart of a time slot configuration method provided by an embodiment of the present application
  • FIG. 2 is a schematic flowchart of a time slot configuration method provided by another embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a method for creating a service path based on time slot configuration provided by an embodiment of the present application
  • FIG. 4 is a schematic flowchart of a method for creating a service path based on time slot configuration provided by another embodiment of the present application;
  • 5 is a time slot frame structure of a flexible Ethernet provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a forwarding path delivered by a control plane according to an embodiment of the present application.
  • FIG. 7 is link information delivered by the control plane provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of time slot configuration result forwarding of node A provided by an embodiment of the present application.
  • FIG. 9 is a time slot cross configuration result of Node B provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of forwarding a time slot configuration result of a Node B according to an embodiment of the present application
  • FIG. 11 is a schematic diagram of forwarding a time slot configuration result of node C according to an embodiment of the present application.
  • FIG. 12 is a schematic diagram of forwarding path and link information delivered by a control plane according to another embodiment of the present application.
  • FIG. 13 is a small particle time slot frame structure provided by another embodiment of the present application.
  • FIG. 14 is a schematic diagram of a forwarding path delivered by a control plane according to another embodiment of the present application.
  • FIG. 15 is link information represented by an abstract label method provided by another embodiment of the present application.
  • FIG. 16 is a small particle time slot frame structure of a distributed dynamic path scene provided by another embodiment of the present application.
  • FIG. 17 is a schematic diagram corresponding to the forwarding of the time slot configuration result of the A node of FIG. 16;
  • FIG. 18 is a schematic diagram of the forwarding of the time slot configuration result corresponding to the Node B of FIG. 16;
  • Figure 19 is a schematic diagram of the convergence of dynamic slot cross routing.
  • the traditional SDH (Synchronous Digital Hierarchy, Synchronous Digital Hierarchy) network provides a TDM (Time-division multiplexing, time division multiplexing) service, which provides users with a service forwarding path based on time slot crossing.
  • TDM Time-division multiplexing, time division multiplexing
  • This way of creating time-slot cross-service paths makes the management plane need to pay attention to the allocation of time slots on the forwarding plane. Since devices from different manufacturers are in different management domains, end-to-end time slot allocation needs to be achieved through collaboration between network managers of different manufacturers.
  • the time slot allocation method is complex and it is difficult to realize flexible networking across manufacturers.
  • ASON Automatically Switched Optical Network
  • RSVP-TE/LDP label distribution protocol
  • the embodiment of the present application proposes a time slot configuration method, a service path creation method based on time slot configuration, a time slot configuration device, a service path creation device based on time slot configuration, a network device and a storage medium.
  • the forwarding plane of the network device can automatically configure the time slot according to the actual time slot requirements, so that the time slot cross configuration of the forwarding plane can fit the characteristics of the forwarding device, reduce the complexity of service deployment, and improve the efficiency of service deployment. .
  • FIG. 1 is a schematic flowchart of a time slot configuration method provided by an embodiment of the present application, including at least:
  • Step S110 the forwarding plane of the network device obtains the service information and link information of the current node, the service information is used to represent the service parameter, and the link information is used to represent the forwarding path.
  • the service information is a service cross-path identifier.
  • service information is service information.
  • the business information is a business attribute. Specifically, it can be expressed as factors such as bandwidth and delay requirements.
  • the service information includes both service cross-path identifiers and service attributes, which together represent relevant service parameters.
  • the link information includes specific service transmission paths, and these specific service transmission paths may be represented by physical resource link information, or may be represented by abstract label link information.
  • Step S120 The forwarding plane of the network device configures the outgoing time slot information of the current node where the network device is located according to the service information, the link information and the preset time slot configuration rule.
  • the preset time slot configuration rules are artificially defined rules.
  • the preset time slot configuration rules are automatically configured by the forwarding plane in a specific or random order according to device characteristics or actual network conditions.
  • the forwarding plane of the network device can configure the outgoing time slot for the current node according to the service information, link information and the determined time slot configuration rule, and this time slot configuration method can be used without any control protocol.
  • the forwarding plane automatically configures the time slot according to the actual time slot requirements, so that the time slot cross configuration of the forwarding plane can match the characteristics of the forwarding device or the current network state, so as to reduce the complexity of service deployment and improve the efficiency of service deployment. Effect.
  • FIG. 2 is a schematic flowchart of a time slot configuration method provided by another embodiment of the present application. On the basis of the embodiment provided in FIG. 1 , this embodiment adds a step of forming a time slot cross relationship.
  • Step S110 the forwarding plane of the network device obtains the service information and link information of the current node, the service information is used to represent the service parameter, and the link information is used to represent the forwarding path.
  • Step S120 The forwarding plane of the network device configures the outgoing time slot information of the current node where the network device is located according to the service information, the link information and the preset time slot configuration rule.
  • Step S130 The forwarding plane of the network device acquires the inbound time slot information of the current node where the network device is located.
  • the inbound time slot information is forwarded by the previous node. Therefore, for other nodes except the head node, inbound slot information can be obtained.
  • Step S140 The forwarding plane of the network device generates time slot cross information of the current node where the network device is located according to the inbound time slot information and the outbound time slot information.
  • the time slot crossing information is delivered to and registered by the time slot crossing unit of the current node.
  • the forwarding plane can automatically configure the time slot according to the actual time slot requirement, and according to the inbound time slot information forwarded by the previous node, further Obtain time slot cross information to reduce the complexity of service deployment and improve the efficiency of service deployment.
  • FIG. 3 is a schematic flowchart of a method for creating a service path based on time slot configuration provided by an embodiment of the present application, which includes at least:
  • Step S210 The forwarding plane of the network device acquires the service information and link information of the current node, where the service information is used to represent the service parameter, and the link information is used to represent the forwarding path.
  • the service information is a service cross-path identifier.
  • service information is service information.
  • the business information is a business attribute. Specifically, it can be expressed as factors such as bandwidth and delay requirements.
  • the service information includes both service cross-path identifiers and service attributes, which together represent relevant service parameters.
  • the link information includes specific service transmission paths, and these specific service transmission paths may be represented by physical resource link information, or may be represented by abstract label link information.
  • Step S220 The forwarding plane of the network device configures the outgoing time slot information of the current node where the network device is located according to the service information, the link information and the preset time slot configuration rule.
  • the preset time slot configuration rules are artificially defined rules.
  • the preset time slot configuration rules are automatically configured by the forwarding plane in a specific or random order according to device characteristics or actual network conditions.
  • Step S230 The forwarding plane of the network device configures the time slot frame structure according to the outgoing time slot information, and forwards the configured first time slot frame to the next node according to the link information.
  • the forwarding plane can automatically configure the time slot according to the actual time slot requirement without relying on any control protocol, and redefine the frame structure to convert the time slot.
  • the transmission of slot information can not only achieve the alignment of the upstream and downstream time slots of the service, but also reduce the complexity of service deployment as a whole and improve the efficiency of service deployment.
  • FIG. 4 is a schematic flowchart of a method for creating a service path based on time slot configuration provided by another embodiment of the present application. On the basis of the embodiment provided in FIG. 3 , this embodiment adds a step of forming a time slot cross relationship.
  • Step S210 The forwarding plane of the network device acquires the service information and link information of the current node, where the service information is used to represent the service parameter, and the link information is used to represent the forwarding path.
  • Step S220 The forwarding plane of the network device configures the outgoing time slot information of the current node where the network device is located according to the service information, the link information and the preset time slot configuration rule.
  • Step S230 The forwarding plane of the network device configures the time slot frame structure according to the outgoing time slot information, and forwards the configured first time slot frame to the next node according to the link information.
  • Step S240 The forwarding plane of the network device acquires the second time slot frame forwarded by the node immediately preceding the current node where the network device is located.
  • the first slotted frame is a slotted frame that includes outgoing slot information for the current node and is forwarded by the current node to the next node
  • the second slotted frame is forwarded by a node immediately preceding the current node
  • the time slot information contained in the first time slot frame and the second time slot frame may be the same or may be different. In other embodiments of the present application, it may involve time slot frame forwarding between two or more nodes. Therefore, it is not specifically stated that the time slot frame is the first time slot frame or the second time slot frame, but is collectively referred to as a time slot.
  • other nodes except the head node can obtain the time slot frame forwarded by the previous node.
  • Step S250 The forwarding plane of the network device acquires the inbound time slot information of the current node where the network device is located according to the second time slot frame.
  • the second time slot frame carries the inbound time slot information configured by the previous node.
  • Step S260 The forwarding plane of the network device generates time slot cross information of the current node where the network device is located according to the inbound time slot information and the outbound time slot information.
  • the time slot crossing information is delivered to and registered by the time slot crossing unit of the current node.
  • the forwarding plane can automatically configure the time slot according to the actual time slot requirement without relying on any control protocol, and redefine the frame structure to convert the time slot.
  • the slot information is passed on, and according to the incoming time slot information obtained by analysis, the time slot intersection information is further obtained, which can not only realize the alignment of the upstream and downstream time slot positions of the service, but also reduce the overall complexity of service deployment and improve service deployment efficiency. .
  • FIG. 5 is a time slot frame structure of a flexible Ethernet provided by an embodiment of the present application.
  • flexible Ethernet FlexE uses "20blocks" (corresponding to slot0 to slot19) as a logical unit, based on the FlexE frame Structure, there are two Calendars in the multiframe overhead to represent the client service corresponding to the time slot, which is convenient for the receiving end to combine multiple time slots into one client layer MAC.
  • Calendar-A and Calendar-B are mainly used for configuration switching, so for the embodiment, the two have the same function.
  • the above-mentioned Calendar already contains the corresponding relationship between the customer service identifier and the time slot, which is used here to transmit the time slot information allocated by the upstream node for the service, so as to realize the alignment of the upstream and downstream time slot positions of the service.
  • a centralized controller is used to calculate the time-slot cross service path, that is, the controller sends link information to each node on the path, so there is no need to add an overhead field in Calendar, and only its meaning and function need to be changed , the recording of time slot information can be realized.
  • the centralized controller calculates the service forwarding path according to the service requirements, and as shown in Figure 6, the controller sends the calculation results to the relevant nodes on the service forwarding path respectively.
  • time slot configuration and service path creation are performed.
  • the controller uses the node + FlexE GroupID + FlexE ClientID to characterize the path, and each node only obtains its related information. Attributes, outbound FlexE GroupID+FlexE ClientID information of node A; only the end-to-end time slot cross service path identifier, service attributes, and inbound and outbound FlexE GroupID+FlexE ClientID information of node B are delivered to intermediate node B. Since the forwarding plane is used to configure the time slot, the time slot information delivered is Null.
  • the forwarding plane After each node obtains the service forwarding path delivered by the controller, the forwarding plane starts to configure time slots.
  • node A after receiving the service forwarding path configuration, node A judges that this node is the first node of the path, and the outgoing time slot is not allocated, then configures the outgoing time slot of this node, assuming that time slots 0 and 1 are allocated.
  • Node B receives the time slot frame shown in Figure 8 from the inbound port, and analyzes it to obtain the inbound time slot configuration information.
  • Node B obtains the outgoing link according to the service forwarding path representation issued by the centralized controller, and completes the outgoing time slot allocation on the outgoing link. Assuming that time slots 0 to 4 are occupied by other services, time slot 5 is allocated at this time. and 6.
  • Node B forms a time slot cross relationship according to the inbound time slot information and the configured outgoing time slot, and sends it to the time slot cross unit of its own node, as shown in Figure 9 .
  • the node B transmits the outgoing time slot information allocated for the service to the downstream, as shown in FIG. 10 .
  • the Z node obtains the inbound time slot information according to the received time slot frame, that is, the time slot allocated by the D node.
  • the inbound time of the tail node is completed. gap configuration. So far, the end-to-end time slot cross configuration of the service forwarding path is completed.
  • the centralized control plane only needs to calculate and generate service forwarding paths, and does not need to be responsible for the specific time slot configuration.
  • the time slot configuration work is completed by the forwarding plane of the device, and the The information transmitted in the frame structure realizes the alignment of upstream and downstream time slots, thus realizing the creation of automatic time-slot cross-service paths, reducing the complexity of service deployment as a whole, and improving service deployment efficiency.
  • time slot configuration and traffic path creation may be performed in parallel.
  • the embodiment of the present application provides a parallel-based time slot configuration and service path creation scheme.
  • the definition of the frame structure and the calculation and delivery of the service forwarding path by the controller are the same as those in the above-mentioned embodiments, and details are not repeated here.
  • the difference lies in the time slot configuration and the creation of the traffic path.
  • each node (A/B/C/D node) except the tail node on the forwarding path finds the FlexE GroupID+FlexE ClientID corresponding to the outgoing link according to the service forwarding path representation issued by the centralized controller , complete the outgoing time slot configuration on the link.
  • the A/B/C/D nodes simultaneously transmit the outgoing time slot information configured for the service to the downstream according to the defined time slot frame structure.
  • Each node B/C/D/Z node on the forwarding path except the head node obtains the incoming time slot information according to the received time slot frame.
  • Each node of the forwarding path forms a time slot cross relationship with the service ⁇ incoming time slot, outgoing time slot>, and sends it to the time slot cross unit of its own node.
  • the tail node only needs to configure the inbound link and the inbound time slot. . So far, the end-to-end time slot cross configuration of the service forwarding path is completed.
  • the time slot configuration and service path creation method provided by the application embodiment is more efficient and faster in the time slot configuration and service path creation process.
  • the method for creating a service path based on time slot configuration can also be applied to the creation of a small-granularity service path.
  • the fine-grained basic unit (fg-BU) defined on the basis of the MTN segment layer frame structure (see G.8312, which is an extension to FlexE) solves the problem that FlexE adopts 5G with too large granularity, and provides The 10M granularity small particle hard isolation service solution, that is, each 5G large particle time slot can be divided into 480 small particle time slots.
  • the time slot lossless adjustment overhead defined by fg-BU can be used to transmit downstream time slots.
  • MFI multi-frame indication, ranging from 0 to 19; when Flag is 00, it means time slot adjustment, when it is 11, it means that the frame carries GCC, and 00 means that the full amount of time slot information is transmitted Calendar; S /C/CR/CA is used for time slot adjustment and is set to all 0s when all time slots are transmitted; Client ID represents the customer service identifier; sub-slot ID represents the time slot corresponding to the customer service, ranging from 0 to 479.
  • a new Flag is defined exclusively for transmitting the full amount of time slot information, or the time slot information can be transmitted in both upstream and downstream time slots by placing the time slot information in the GCC through transmission, etc., which will not be described in detail here.
  • the method for creating a service path based on a time slot configuration may also be applied in SDH or OTN (optical transport network, optical transport network).
  • SDH SDH network
  • OTN optical transport network, optical transport network
  • the forwarding plane of the device can configure the time slot, and pass the time slot configuration information to the downstream through the idle overhead in the MS OH.
  • STM-64 only 64 Therefore, a configuration capable of transmitting 64 time slots is required.
  • the OSC channel or the Operator specific field in the OTU overhead SM can be used to transmit the slot configuration information.
  • the characterization method of physical resources is used to characterize the forwarding path, that is, the FlexE Group/FlexE Client method is used to characterize the forwarding path.
  • This characterization method is straightforward but relatively complicated. Therefore, in this embodiment, a more To represent the forwarding link in a simplified manner, that is, to define an abstract label to represent the link information.
  • the forwarding path can be represented as a set of abstract label link information.
  • the mapping relationship between labels and FlexE Group/FlexE Client needs to be configured in advance.
  • the way the controller describes the service forwarding path is similar to the MPLS label switching path, but the label needs to be converted into FlexE Group on the network device. /FlexE Client performs processing, and the processing method after conversion is the same as the above embodiment.
  • the situations involved in the above embodiments are that the centralized controller calculates and issues link information to the nodes, and the time slot configuration and service path creation methods provided in this application can also be applied to distributed network architectures, that is, nodes according to dynamic The network topology of the network calculates the link information and completes the configuration by itself.
  • the service forwarding path that supports small-granularity time-slot crossing is supported.
  • 100GE flexible Ethernet link Now create an A-->Z time-slot cross-service path with a bandwidth requirement of 30M, which corresponds to three 10M time-slot granular time slots, and use a dynamic way to calculate the path to achieve the purpose of flexible path selection when the network topology changes. .
  • a new small granularity time slot unit fg-BU frame structure is defined to include the destination node indicating the destination node ID (Destination Node ID).
  • the destination node ID can be used by the destination node. IP address, or the Node-SID of the node in the SR scheme.
  • the IP address of the destination node (assuming 10.10.5.1) is used here, and the client service identifier Client ID and time slot location information sub-slot ID that reach the destination node are indicated.
  • the Z node After receiving the service configuration request, deploy the IGP-TE protocol in the network.
  • the Z node assigns a locally unique Client ID (assuming 100001) as the tail node and publishes it to the A node.
  • This action adopts the BGP protocol, and can refer to the MPLS network PW label assignment mechanism.
  • Node A calculates the outgoing interface of the node according to the destination node identifier and the control plane protocols (such as OSPF-TE, ISIS-TE), and configures the outgoing time slot of the node in the outgoing interface. It is assumed that the time slot is configured. 0 and 6, 9.
  • OSPF-TE OSPF-TE
  • ISIS-TE ISIS-TE
  • the interface is actually a virtual interface created on the FlexE Client in a FlexE Group.
  • Node A transmits the time slot configured by this node to the downstream, as shown in Figure 17. Since the service is allocated 3 time slots, 3 frames in the multiframe are required to transmit the time slot information.
  • Node B receives the above-mentioned time slot frame from the direction of the incoming interface, obtains the information of the incoming interface, and parses to obtain the destination node identifier of the service, the client service identifier and the time slot configuration result.
  • Node B calculates the outbound interface of the node according to the destination node identifier, and the control plane protocol of the node calculates the outbound interface of the node according to the database of ISIS-TE, and completes the configuration of the corresponding outbound time slot. 10.
  • Node B forms a time slot cross relationship according to the obtained inbound time slot information and the calculated outgoing time slot information, and sends it to the time slot cross unit of the node to complete the registration.
  • Node B transmits the outgoing time slot information configured for the service to the downstream according to the defined time slot frame structure, as shown in FIG. 18 .
  • the Z node obtains the time slot information of the inbound link according to the received time slot frame, and completes the inbound time slot configuration of the node. So far, the end-to-end time slot cross configuration of the dynamic service forwarding path is completed.
  • the above steps will be re-executed while the IGP converges, and time slot configuration is performed on a new interface, and a new time slot cross-forwarding path is finally formed.
  • the time slot cross-path will be adjusted to A-B-C-F-G-Z.
  • the C node will start to re-adjust the forwarding path and time slot configuration.
  • the implementation process is the same as above.
  • the time slot configuration method and service path creation method based on the distributed architecture can better adapt to dynamically changing network topology, improve service deployment efficiency and optimization effect.
  • the time slot configuration rules can be preset manually. For example, nodes A and B expect time slots to be allocated continuously, while nodes C, D, and Z expect the time slots of a service to be evenly distributed in all time slots, and hope that the time slots in the outgoing direction should be the same as the time slots in the incoming direction as much as possible. In the event of a collision, the time slot in the outgoing direction is required to be larger than the time slot in the incoming direction, and the difference between the time slot in the outgoing direction and the time slot in the incoming direction is as small as possible. Under this premise, the time slot configuration in the parallel mode often cannot meet the requirements, and the serial mode needs to be used for configuration.
  • Node A configures time slots 0, 1, and 2 in the outbound direction to meet the requirement that the time slots are as continuous as possible;
  • Node B configures time slots 25, 26, and 27 in the outgoing direction to meet the requirement that the time slots are as continuous as possible (assuming 25 The position of three consecutive time slots could not be found before);
  • node C is configured with 0, 160, 320 in the outbound direction to meet the requirement of evenly distributing the time slots in 480 time slots;
  • node D is configured with 0, 160, 320 in the outbound direction 321 to meet the requirement that the outgoing time slot is the same as the incoming time slot as much as possible.
  • 321 is configured here to meet the requirement that the outgoing time slot is larger than the incoming time slot and is as close as possible.
  • the above time slot allocation process is the own behavior of the node forwarding plane, and does not affect the time slot transfer and the establishment process of the time slot cross path in the summary of the invention.
  • the time slot configuration method and the time slot-based service path creation method provided by the embodiments of the present application can more flexibly adapt to different network transmission requirements and network environments, and effectively expand application scenarios and applications. scope.
  • the embodiment of the present application also provides a time slot configuration device applied to a forwarding plane of a network device, including: a service information acquisition unit, configured to obtain the service information of the current node where the network device is located, and the service information is used to represent service parameters; link information The obtaining unit is used to obtain the link information of the current node where the network device is located, and the link information is used to represent the forwarding path; the time slot information configuration unit is used to configure the configuration according to the service information, link information and preset time slot configuration rules Outgoing time slot information of the current node where the network device is located.
  • a service information acquisition unit configured to obtain the service information of the current node where the network device is located, and the service information is used to represent service parameters
  • link information The obtaining unit is used to obtain the link information of the current node where the network device is located, and the link information is used to represent the forwarding path
  • the time slot information configuration unit is used to configure the configuration according to the service information, link information and preset time slot configuration rules Outgoing time
  • the time slot configuration apparatus further includes: a time slot information parsing unit, configured to analyze and obtain the inbound time slot information of the current node where the network device is located; For outgoing time slot information, the time slot cross information of the current node where the network device is located is generated.
  • the embodiment of the present application also provides an apparatus for creating a service path based on a time slot configuration applied to a forwarding plane of a network device, including: a service information obtaining unit configured to obtain service information of the current node where the network device is located, and the service information is used to represent Service parameters; a link information acquisition unit, configured to acquire the link information of the current node where the network device is located, the link information is used to represent the forwarding path; the time slot information configuration unit is set to The set time slot configuration rule configures the outgoing time slot information of the current node where the network device is located; the time slot frame configuration unit is set to configure the time slot frame structure according to the outgoing time slot information; the time slot frame transmission unit is set to receive and forward. slot frame.
  • the service path creation apparatus further includes: a time slot information parsing unit, configured to analyze the time slot frame to obtain the incoming time slot information of the current node where the network device is located; the time slot information configuration unit is further configured to analyze the time slot frame according to the incoming time slot information.
  • the time slot cross information of the current node where the network device is located is generated from the forward time slot information and the outgoing time slot information.
  • the apparatus for creating a service path further includes: a time slot crossing unit, configured to receive and register the time slot crossing information issued by the time slot information configuration unit.
  • the embodiment of the present application also provides a network device, the network device includes a memory, a processor, and a computer program stored in the memory and running on the processor.
  • the processor executes the computer program, the time slot configuration method involved in the above embodiments is implemented, Or, a service path creation method based on time slot configuration.
  • the embodiments of the present application further provide a storage medium for computer-readable storage, where the storage medium stores one or more programs, and the one or more programs can be executed by one or more processors to implement the time required by the foregoing embodiments.
  • the forwarding plane of the network device can obtain the service information and link information of the current node of the network device, and according to the service information, link information and preset time slot configuration rules, without the need to introduce Under the premise of any control protocol, the time slot configuration is automatically performed according to the actual time slot requirements, so that the time slot cross configuration of the forwarding plane can match the characteristics of the forwarding device itself, reduce the complexity of service deployment, and improve service deployment efficiency.
  • the division between functional modules/units mentioned in the above description does not necessarily correspond to the division of physical components; for example, one physical component may have multiple functions, or one function or step may be composed of several physical components Components execute cooperatively.
  • Some or all physical components may be implemented as software executed by a processor, such as a central processing unit, digital signal processor or microprocessor, or as hardware, or as an integrated circuit, such as an application specific integrated circuit .
  • Such software may be distributed on computer-readable media, which may include computer storage media (or non-transitory media) and communication media (or transitory media).
  • Computer storage media includes both volatile and nonvolatile implemented in any method or technology for storage of information, such as computer readable instructions, data structures, program modules or other data flexible, removable and non-removable media.
  • Computer storage media include, but are not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cartridges, magnetic tape, magnetic disk storage or other magnetic storage devices, or may Any other medium used to store desired information and which can be accessed by a computer.
  • communication media typically embodies computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism, and can include any information delivery media, as is well known to those of ordinary skill in the art .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

一种时隙配置方法、基于时隙配置的业务路径创建方法、时隙配置装置、基于时隙配置的业务路径创建装置、网络设备及存储介质,通过网络设备的转发平面根据实际时隙需求自动进行时隙配置,使转发平面的时隙交叉配置能够契合转发设备自身特性。

Description

时隙配置方法、业务路径创建方法、装置、设备及介质
相关申请的交叉引用
本申请基于申请号为202110276173.6、申请日为2021年3月15日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及通信技术领域,尤其涉及一种时隙配置方法、基于时隙配置的业务路径创建方法、时隙配置装置、基于时隙配置的业务路径创建装置、网络设备及存储介质。
背景技术
移动网络架构中,为了提升系统的可靠性、灵活性以及可扩展性,将控制平面与转发平面分离,即控制平面进行统一的策略控制,保证灵活的流量调度和连接管理,转发平面专注于业务数据的路由转发,两者尽量独立工作,互不影响。
但由于控制平面与转发平面相互分离的特性,可能导致控制平面配置的时隙对转发行为来说不是最优的,例如,转发平面本身对时隙的间插、分布,以及出时隙与入时隙位置关系有特定的需求时,控制平面很难实现不同设备转发平面对时隙配置的特殊要求。
发明内容
本申请实施例提出一种时隙配置方法、基于时隙配置的业务路径创建方法、时隙配置装置、基于时隙配置的业务路径创建装置、网络设备及存储介质。
第一方面,本申请实施例提供了一种时隙配置方法,应用于网络设备的转发平面,包括:获取当前节点的业务信息及链路信息,所述业务信息用于表征业务参数,所述链路信息用于表征转发路径;根据所述业务信息、所述链路信息以及预设的时隙配置规则,配置所述当前节点的出向时隙信息。
第二方面,本申请实施例提供了一种基于时隙配置的业务路径创建方法,应用于网络设备的转发平面,包括:获取当前节点的业务信息及链路信息,所述业务信息用于表征业务参数,所述链路信息用于表征转发路径;根据所述业务信息、所述链路信息以及预设的时隙配置规则,配置所述当前节点的出向时隙信息;根据所述出向时隙信息配置时隙帧结构,并根据所述链路信息,将配置后的第一时隙帧转发至下一节点。
第三方面,本申请实施例提供了一种时隙配置装置,应用于网络设备的转发平面,包括:业务信息获取单元,被设置成获取当前节点的业务信息,所述业务信息用于表征业务参数;链路信息获取单元,被设置成获取当前节点的链路信息,所述链路信息用于表征转发路径;时隙信息配置单元,被设置成根据所述业务信息、所述链路信息以及预设的时隙配置规则,配置所述当前节点的出向时隙信息。
第四方面,本申请实施例提供了一种基于时隙配置的业务路径创建装置,应用于网络设备的转发平面,包括:业务信息获取单元,被设置成获取所述当前节点的业务信息,所述业 务信息用于表征业务参数;链路信息获取单元,被设置成获取所述当前节点的链路信息,所述链路信息用于表征转发路径;时隙信息配置单元,被设置成根据所述业务信息、所述链路信息以及预设的时隙配置规则,配置所述当前节点的出向时隙信息;时隙帧配置单元,被设置成根据所述出向时隙信息配置时隙帧结构;时隙帧传输单元,被设置成接收转发时隙帧。
第五方面,本申请实施例提供了一种网络设备,所述网络设备包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现:如第一方面所述的时隙配置方法,或,如第二方面所述的基于时隙配置的业务路径创建方法。
第六方面,本申请实施例提供了一种存储介质,用于计算机可读存储,所述存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现:如第一方面所述的时隙配置方法,或,如第二方面所述的基于时隙配置的业务路径创建方法。
本申请的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请而了解。本申请的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
图1是本申请一实施例提供的时隙配置方法流程示意图;
图2是本申请另一实施例提供的时隙配置方法流程示意图;
图3是本申请一实施例提供的基于时隙配置的业务路径创建方法流程示意图;
图4是本申请另一实施例提供的基于时隙配置的业务路径创建方法流程示意图;
图5是本申请一实施例提供的灵活以太网的时隙帧结构;
图6是本申请一实施例提供的由控制平面下发的转发路径示意图;
图7是本申请一实施例提供的由控制平面下发的链路信息;
图8是本申请一实施例提供的A节点的时隙配置结果转发示意图;
图9是本申请一实施例提供的B节点的时隙交叉配置结果;
图10是本申请一实施例提供的B节点的时隙配置结果转发示意图;
图11是本申请一实施例提供的C节点的时隙配置结果转发示意图;
图12是本申请另一实施例提供的由控制平面下发的转发路径与链路信息示意图;
图13是本申请另一实施例提供的小颗粒时隙帧结构;
图14是本申请另一实施例提供的由控制平面下发的转发路径示意图;
图15是本申请另一实施例提供的采用抽象标签方式表征的链路信息;
图16是本申请另一实施例提供的分布式动态路径场景小颗粒时隙帧结构;
图17是对应于图16的A节点的时隙配置结果转发示意图;
图18是对应于图16的B节点的时隙配置结果转发示意图;
图19是动态时隙交叉路由的收敛示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的在一些实施例中实施例仅仅用以解释本申 请,并不用于限定本申请。不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
本申请实施例的描述中,使用用于表示元件的诸如“模块”、“部件”或“单元”的后缀仅为了有利于本申请的说明,其本身没有特有的意义。因此,“模块”、“部件”或“单元”可以混合地使用。
需要说明的是,虽然在装置示意图中进行了功能模块划分,在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于装置中的模块划分,或流程图中的顺序执行所示出或描述的步骤。说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。另外,除非另有明确的限定,设置、安装、连接等词语应做广义理解,所属技术领域技术人员可以结合技术方案的具体内容合理确定上述词语在本申请实施例中的具体含义。
传统的SDH(Synchronous Digital Hierarchy,同步数字体系)网络提供了一种TDM(Time-division multiplexing,时分复用)业务,该业务为用户提供了一种基于时隙交叉的业务转发路径,由于SDH设备缺乏设备之间业务时隙对齐的协商机制,因此需要通过SDH网管进行集中式算路和分配时隙。这种时隙交叉业务路径的创建方式使得管理平面需要关注转发面时隙的分配,而由于不同厂商设备在不同管理域,需要通过异厂商网管之间协同来实现端到端时隙分配,导致时隙分配方式复杂且难以实现跨厂商的灵活组网。
在ASON(Automatically Switched Optical Network,自动光交换网络网络)中提供了一种时隙自动化分配的解决方案,通过分布式节点或集中式控制器实现路径计算,再通过在控制平面引入标签分发协议(RSVP-TE/LDP)的扩展来传递时隙分配信息,实现上下游之间的时隙对齐,从而完成端到端时隙交叉路径的创建。这种时隙交叉业务路径的创建方式需要部署复杂的控制面协议,导致网络部署复杂,难以在大型网络以及跨域网络中部署应用。
而伴随着新一代5G网络的兴起,在移动回传网络中提出了一种基于FlexE Shim层66bit时隙码块交叉的MTN Channel转发路径,以在基于以太网技术的分组网络中提供低时延、低抖动的N*5G颗粒的时隙交叉业务转发路径;更进一步地,为满足垂直行业更灵活的带宽业务需求,又出现了在MTN Channel基础上进一步划分的N*10M颗粒的时隙交叉业务转发路径需求。因此,在网络极简化、智能化的发展趋势下,需要有一种更简洁高效的机制来实现这类时隙交叉业务转发路径的配置。
基于此,本申请实施例提出了一种时隙配置方法、基于时隙配置的业务路径创建方法、时隙配置装置、基于时隙配置的业务路径创建装置、网络设备及存储介质,在不需要引入任何控制协议的前提下,通过网络设备的转发平面根据实际时隙需求自动进行时隙配置,使转发平面的时隙交叉配置能够契合转发设备自身特性,降低业务部署复杂度,提升业务部署效率。
图1是本申请一实施例提供的时隙配置方法流程示意图,至少包括:
步骤S110:网络设备的转发平面获取当前节点的业务信息及链路信息,业务信息用于表征业务参数,链路信息用于表征转发路径。
在一些实施例中,业务信息为业务交叉路径标识。本领域技术人员可以知晓,能够清晰有效地对业务传输路径进行标识的信息均为业务信息。
在一些实施例中,业务信息为业务属性。具体地,可以表现为带宽、时延需求等因素。
在一些实施例中,业务信息既包括业务交叉路径标识,也包括业务属性,两者共同表征了相关业务参数。
在一些实施例中,链路信息包括具体的业务传输的路径,这些具体的业务传输的路径可以通过物理资源链路信息表示,也可以通过抽象标签链路信息表示。
步骤S120:网络设备的转发平面根据业务信息、链路信息以及预设的时隙配置规则,配置网络设备所在当前节点的出向时隙信息。
在一些实施例中,预设的时隙配置规则是人为定义的规则。
在一些实施例中,预设的时隙配置规则是转发平面根据设备特性或网络实际情况按照特定或随机的顺序自动进行配置的。
可以知晓的是,网络设备的转发平面能够根据业务信息、链路信息以及确定的时隙配置规则为当前节点进行出向时隙的配置,而这种时隙配置方法能够在不依赖任何控制协议的前提下,由转发平面根据实际时隙需求自动进行时隙配置,使转发平面的时隙交叉配置能够契合转发设备自身特性或契合当前网路状态,实现降低业务部署复杂度,提升业务部署效率的效果。
图2是本申请另一实施例提供的时隙配置方法流程示意图,在图1提供的实施例的基础上,本实施例增加了时隙交叉关系的形成步骤。
步骤S110:网络设备的转发平面获取当前节点的业务信息及链路信息,业务信息用于表征业务参数,链路信息用于表征转发路径。
步骤S120:网络设备的转发平面根据业务信息、链路信息以及预设的时隙配置规则,配置网络设备所在当前节点的出向时隙信息。
步骤S130:网络设备的转发平面获取网络设备所在当前节点的入向时隙信息。
在一些实施例中,入向时隙信息由上一节点转发而来。因此,对于除首节点以外的其他节点,可以获取入向时隙信息。
步骤S140:网络设备的转发平面根据入向时隙信息、出向时隙信息,生成网络设备所在当前节点的时隙交叉信息。
在一些实施例中,时隙交叉信息被下发至当前节点的时隙交叉单元,并由该单元寄存。
根据本实施例提供的时隙配置方法,能够在不依赖任何控制协议的前提下,由转发平面根据实际时隙需求自动进行时隙配置,且根据上一节点转发的入向时隙信息,进一步获得时隙交叉信息,实现降低业务部署复杂度,提升业务部署效率的效果。
图3是本申请一实施例提供的基于时隙配置的业务路径创建方法流程示意图,至少包括:
步骤S210:网络设备的转发平面获取当前节点的业务信息及链路信息,业务信息用于表征业务参数,链路信息用于表征转发路径。
在一些实施例中,业务信息为业务交叉路径标识。本领域技术人员可以知晓,能够清晰有效地对业务传输路径进行标识的信息均为业务信息。
在一些实施例中,业务信息为业务属性。具体地,可以表现为带宽、时延需求等因素。
在一些实施例中,业务信息既包括业务交叉路径标识,也包括业务属性,两者共同表征了相关业务参数。
在一些实施例中,链路信息包括具体的业务传输的路径,这些具体的业务传输的路径可以通过物理资源链路信息表示,也可以通过抽象标签链路信息表示。
步骤S220:网络设备的转发平面根据业务信息、链路信息以及预设的时隙配置规则,配置网络设备所在当前节点的出向时隙信息。
在一些实施例中,预设的时隙配置规则是人为定义的规则。
在一些实施例中,预设的时隙配置规则是转发平面根据设备特性或网络实际情况按照特定或随机的顺序自动进行配置的。
步骤S230:网络设备的转发平面根据出向时隙信息配置时隙帧结构,并根据链路信息,将配置后的第一时隙帧转发至下一节点。
本领域技术人员可知,不同的网络架构中基于不同协议的帧结构往往也不相同,本申请实施例提供的基于时隙配置的业务路径创建方法能够应用在多种网络中,因此根据对应的网络协议,重新定义用于传输时隙信息的帧结构,并将配置后的时隙帧转发至下一节点。
根据本实施例提供的基于时隙配置的业务路径创建方法,能够在不依赖任何控制协议的前提下,由转发平面根据实际时隙需求自动进行时隙配置,并通过重新定义帧结构,将时隙信息传递下去,不仅能够实现业务的上下游时隙位置对齐,还能在整体上降低业务部署复杂度,提升业务部署效率。
图4是本申请另一实施例提供的基于时隙配置的业务路径创建方法流程示意图,在图3提供的实施例的基础上,本实施例增加了时隙交叉关系的形成步骤。
步骤S210:网络设备的转发平面获取当前节点的业务信息及链路信息,业务信息用于表征业务参数,链路信息用于表征转发路径。
步骤S220:网络设备的转发平面根据业务信息、链路信息以及预设的时隙配置规则,配置网络设备所在当前节点的出向时隙信息。
步骤S230:网络设备的转发平面根据出向时隙信息配置时隙帧结构,并根据链路信息,将配置后的第一时隙帧转发至下一节点。
步骤S240:网络设备的转发平面获取网络设备所在当前节点的上一节点转发的第二时隙帧。
在一些实施例中,第一时隙帧是包括当前节点的出向时隙信息且被当前节点转发至下一节点的时隙帧,而第二时隙帧是由当前节点的上一节点转发且包括当前节点入向时隙信息的时隙帧,第一时隙帧与第二时隙帧包含的时隙信息可能相同,也可能不同。在本申请其它实施例中,可能涉及两个及以上节点之间的时隙帧转发,因此,不特殊说明时隙帧是第一时隙帧或第二时隙帧,而是统称为时隙帧,此外,除首节点以外的其他节点能够获取上一节点转发的时隙帧。
步骤S250:网络设备的转发平面根据第二时隙帧获取网络设备所在当前节点的入向时隙信息。
在一些实施例中,第二时隙帧中携带有上一节点配置的入向时隙信息。
步骤S260:网络设备的转发平面根据入向时隙信息、出向时隙信息,生成网络设备所在当前节点的时隙交叉信息。
在一些实施例中,时隙交叉信息被下发至当前节点的时隙交叉单元,并由该单元寄存。
根据本实施例提供的基于时隙配置的业务路径创建方法,能够在不依赖任何控制协议的前提下,由转发平面根据实际时隙需求自动进行时隙配置,并通过重新定义帧结构,将时隙 信息传递下去,且根据解析获得的入向时隙信息,进一步获得时隙交叉信息,不仅能够实现业务的上下游时隙位置对齐,还能在整体上降低业务部署复杂度,提升业务部署效率。
在下文的实施例中,将进一步具体阐释时隙交叉业务路径创建过程,并通过不同的应用场景,说明本申请时隙交叉业务路径创建的方法具有普遍应用性。
图5是本申请一实施例提供的灵活以太网的时隙帧结构,如图所示,灵活以太网FlexE在Calendar中,将“20blocks”(对应slot0至slot19)作为一个逻辑单元,基于FlexE帧结构,在复帧开销中存在两个Calendar用于表征时隙对应的客户业务,便于接收端将多个时隙合并为一个客户层MAC。其中,Calendar-A和Calendar-B主要用于配置切换,因此对实施例来说,两者作用相同。上述Calendar中已包含客户业务标识和时隙的对应关系,在此将其用于传递上游节点为业务分配的时隙信息,以实现业务的上下游时隙位置对齐。
在本实施例中,采用集中式控制器计算时隙交叉业务路径,即控制器给路径上的每一个节点下发链路信息,因此Calendar中无需新增开销字段,只需变更其含义和作用,就能够实现对时隙信息的记载。
在明确定义时隙帧结构后,集中式控制器根据业务需求计算出业务转发路径,并如图6所示,控制器将计算结果分别下发到业务转发路径上的相关节点,在本实施例中,采取串行方式进行时隙配置以及业务路径的创建。如图7所示,控制器采用节点+FlexE GroupID+FlexE ClientID方式表征路径,同时每个节点仅获得与其相关的信息,例如,向首节点A只下发端到端时隙交叉业务路径标识、业务属性、A节点的出向FlexE GroupID+FlexE ClientID信息;向中间节点B只下发端到端时隙交叉业务路径标识、业务属性、B节点的入向和出向FlexE GroupID+FlexE ClientID信息。由于采用转发平面配置时隙,则下发的时隙信息为空Null。
在每个节点获取到控制器下发的业务转发路径后,转发平面开始进行时隙配置。
如图8所示,A节点收到业务转发路径配置后判断出本节点为路径首节点,且出向时隙未分配,则进行本节点的出向时隙配置,假设分配时隙0和1。B节点从入向端口收到图8所示的时隙帧,解析得到入向的时隙配置信息。B节点根据集中式控制器下发的业务转发路径表征,获得出向链路,完成该出向链路上的出向时隙分配,假设时隙0至4已被其它业务占用,此时分配时隙5和6。B节点根据入向时隙信息,结合配置的的出向时隙,形成时隙交叉关系,下发到本节点时隙交叉单元,如图9所示。B节点根据图5定义的时隙帧结构,向下游传递针对该业务分配的出向时隙信息,如图10所示。在其余中间节点重复上述步骤,直至Z节点,Z节点根据接收到的时隙帧,获得入向时隙信息,即D节点分配的时隙,如图11所示,完成尾节点的入向时隙配置。至此,完成了业务转发路径的端到端时隙交叉配置。
根据图5至图11提供的实施例,集中式控制面只需计算生成业务转发路径,不需要负责具体的时隙配置,时隙配置工作是由设备的转发平面来完成的,并在转发平面帧结构中传递信息实现上下游的时隙对齐,从而实现了自动化的时隙交叉业务路径创建,并且在整体上降低业务部署复杂度,提升业务部署效率。
在另一些实施例中,可以采取并行方式进行时隙配置以及业务路径的创建。
本申请实施例提供了一种基于并行方式的时隙配置以及业务路径的创建方案,其帧结构的定义以及由控制器计算和下发业务转发路径与上述实施例相同,在此不做赘述,其区别之处在于时隙配置以及业务路径的创建。
如图12所示,转发路径上除尾节点外的各节点(A/B/C/D节点)根据集中式控制器下发的业务转发路径表征,找到出向链路对应的FlexE GroupID+FlexE ClientID,完成该链路上的出向时隙配置。A/B/C/D节点根据定义的时隙帧结构,同时向下游传递针对该业务配置的出向时隙信息。转发路径上除首节点外的各节点B/C/D/Z节点根据接收到的时隙帧,获得入向时隙信息。转发路径的各节点将业务的<入向时隙,出向时隙>形成时隙交叉关系,下发到本节点时隙交叉单元,其中,尾节点仅需配置入向链路和入向时隙。至此,完成了业务转发路径的端到端时隙交叉配置。
申请实施例提供的时隙配置以及业务路径的创建方法相比上一实施例,时隙配置与业务路径创建的过程更加高效、快速。
值得注意的是,无论是图5至图11提供的串行方式或图12提供的并行方式,其针对的是以FlexE开销为基础的MTN Channel转发路径创建,即根据对FlexE开销的分析,借用其Calendar来实现上下游的时隙信息传递,由于标准FlexE只是一种接口技术,并没有MTN Channel转发路径,其Calendar仅用于下游将多个时隙恢复为同一个客户业务的MAC帧,而在本申请实施例中将其用于识别上游为某个客户分配的出各时隙,并用于本节点的入向时隙。
本申请实施例提供的基于时隙配置的业务路径创建方法还可以应用在小颗粒业务路径创建中。例如,在以MTN段层帧结构(见G.8312,是对FlexE的扩展)基础上定义的细粒度基本单元(fg-BU),解决了FlexE采用5G的颗粒度太大的问题,提供了10M粒度的小颗粒硬隔离业务解决方案,即每个5G大颗粒时隙中可划分480个小颗粒时隙。在创建小颗粒业务转发路径时,则可利用fg-BU定义的时隙无损调整开销来传递下游时隙,但由于无损调整开销传递时隙变化是增量的,因此其帧结构可配置为如图13所示的方式,MFI表示复帧指示,取值0~19;Flag取值为00时表示时隙调整,为11时表示该帧携带GCC,采用00表示传递全量时隙信息Calendar;S/C/CR/CA用于时隙调整,传递全量时隙时设置为全0;Client ID表示客户业务标识;sub-slot ID表示客户业务对应的时隙,取值0~479。
在另一些实施例中,定义新的Flag专用于传递全量时隙信息,或者把时隙信息放在GCC通过传输等均能实现上下游时隙的传递,在此不一一赘述。
本申请实施例提供的基于时隙配置的业务路径创建方法还可以应用在SDH或OTN(optical transport network,光传送网)中。例如,在SDH网络中,在创建VC4的转发路径时,可实现设备的转发平面配置时隙,并通过MS OH中的空闲开销向下游传递时隙配置信息,对于STM-64来说,只有64个时隙,因此需要通能够传递64个时隙的配置情况。而在OTN网络中,可利用OSC通道,或者OTU开销SM中Operator specific字段来传递时隙配置信息。
在上述实施例中,均采用物理资源的表征方法表征转发路径,即采用了FlexE Group/FlexE Client方式表征转发路径,这种表征方式直接清晰但比较复杂,因此,在本实施例中,采取更为简化的方式进行转发链路的表征,即定义抽象标签表征链路信息。
如图14与图15所示,采用一个标签来对应一个FlexE Group中的FlexE Client,则转发路径可表征为一组抽象的标签链路信息。采用该方式需要事先配置好标签与FlexE Group/FlexE Client的映射关系,在此前提下,控制器描述业务转发路径的方式与MPLS标签交换路径类似,但在网络设备上需将标签转换为FlexE Group/FlexE Client进行处理,转换后的处理方式同上述实施例相同。
至此,上述实施例涉及的情况均为集中式控制器计算下发链路信息给节点,而本申请提供的时隙配置以及业务路径的创建方法同样可以适用于分布式网络架构,即节点根据动态的网络拓扑结构自行计算链路信息并完成配置。
在本实施例中,基于小颗粒时隙FlexE网络,支持小颗粒时隙交叉的业务转发路径,其网络拓扑同图14相同,其中所有链路均为支持10M粒度的fg-BU(细粒度单元)的100GE灵活以太网链路。现创建一条A-->Z的时隙交叉业务路径,带宽需求为30M,即对应3个10M时隙颗粒时隙,且采用动态方式算路,实现在网络拓扑变化时能灵活选路的目的。
如图16所示,定义一种新的小颗粒时隙单元fg-BU帧结构进行,使其包含目的节点指示目的节点ID(Destination Node ID),在一些实施例中,目的节点ID可用目的节点的IP地址,或者在SR方案下用节点的Node-SID表示。在本实施例中,此处采用目的节的IP地址(假设为10.10.5.1),到达目的节点的客户业务标识Client ID和时隙位置信息sub-slot ID表示。
接收到业务配置请求后,在网络中部署IGP-TE协议。Z节点作为尾节点分配本地唯一的Client ID(假设为100001)并发布给A节点。此动作采用BGP协议,可参照MPLS网络PW标签分配机制。
A节点根据目的节点标识,结合控制面协议(如OSPF-TE、ISIS-TE),计算出本节点的出方向接口,并在该出接口内进行本节点的出向时隙配置,假设配置时隙0和6,9。
值得注意的是,本实施例中该接口实际为一个FlexE Group中FlexE Client上创建的虚接口。
A节点向下游传递本节点配置的时隙,如图17所示。由于该业务分配了3个时隙,因此需要复帧中的3帧来传递时隙信息。
B节点从入接口方向收到上述时隙帧,获得入向接口信息,并解析得到业务的目的节点标识、客户业务标识和时隙配置结果。B节点根据目的节点标识,由本节点控制面协议根据ISIS-TE的数据库,计算出本节点的出方向接口,并完成相应的出向时隙配置,在本实施例中,配置时隙1,5,10。B节点根据获得的入向时隙信息,以及计算出的出向时隙信息,形成时隙交叉关系,下发到本节点时隙交叉单元完成寄存。B节点根据定义的时隙帧结构,向下游传递针对该业务配置的出向时隙信息,如图18所示。
重复上述步骤直至到达尾节点。Z节点根据接收到的时隙帧,获得入向链路的时隙信息,完成本节点的入向时隙配置。至此,完成了动态业务转发路径的端到端时隙交叉配置。
在一些实施例中,当网络中出现故障,通过IGP收敛的同时,上述步骤会重新执行,在新的接口上进行时隙配置,最终形成新的时隙交叉转发路径。如图19所示,当C-D链路发生故障后,时隙交叉路径会调整为A-B-C-F-G-Z,此时C节点开始会重新调整转发路径和时隙配置,其实现过程同上。
上述实施例提供的基于分布式架构的时隙配置方法以及业务路径创建方法相比于集中式控制平面下发,能够更好适应动态变化的网络拓扑,提升业务部署效率以及优化效果。
在一些实施例中,时隙配置规则可以人为预设。例如,节点A、B期望时隙连续分配,而节点C、D、Z期望一条业务的时隙在所有时隙中均匀分布,且希望出方向的时隙尽量与入方向时隙相同,若遇冲突时则要求出方向时隙大于入方向时隙,且出方向时隙与入方向时隙的 差尽量小。那么在此前提下,并行方式的时隙配置往往不能满足需求,则需要采用串行方式进行配置。
仍以在FlexE Client中划分480个时隙,且需分配3个时隙为例。节点A在出方向上配置时隙0、1、2,以满足时隙尽量连续的需求;节点B在出方向上配置时隙25、26、27,以满足时隙尽量连续的需求(假设25之前找不到三个连续时隙位置);节点C在出方向配置0、160、320,以满足时隙尽量在480个时隙中均匀分布的需求;节点D在出方向配置0、160、321,以满足出时隙尽量与入时隙相同要求,假设时隙320已被其它业务占用,则此处配置321以满足出时隙比入时隙大且尽量靠近的需求。上述时隙分配过程是节点转发平面的自身行为,并不影响发明内容中的时隙传递和时隙交叉路径的建立过程。
通过上述实施例,可以看出,本申请实施例提供的时隙配置方法与基于时隙的业务路径创建方法能够更加灵活地适应不同的网络传输需求与网络环境,有效地扩大了应用场景与应用范围。
本申请实施例还提供了应用于网络设备的转发平面的时隙配置装置,包括:业务信息获取单元,用于获取网络设备所在当前节点的业务信息,业务信息用于表征业务参数;链路信息获取单元,用于获取网络设备所在当前节点的链路信息,链路信息用于表征转发路径;时隙信息配置单元,用于根据业务信息、链路信息以及预设的时隙配置规则,配置网络设备所在当前节点的出向时隙信息。
在一些实施例中,时隙配置装置还包括:时隙信息解析单元,用于解析获取网络设备所在当前节点的入向时隙信息;时隙信息配置单元还用于根据入向时隙信息、出向时隙信息,生成网络设备所在当前节点的时隙交叉信息。
本申请实施例还提供了应用于网络设备的转发平面的基于时隙配置的业务路径创建装置,包括:业务信息获取单元,被设置成获取网络设备所在当前节点的业务信息,业务信息用于表征业务参数;链路信息获取单元,被设置成获取网络设备所在当前节点的链路信息,链路信息用于表征转发路径;时隙信息配置单元,被设置成根据业务信息、链路信息以及预设的时隙配置规则,配置网络设备所在当前节点的出向时隙信息;时隙帧配置单元,被设置成根据出向时隙信息配置时隙帧结构;时隙帧传输单元,被设置成接收转发时隙帧。
在一些实施例中,业务路径创建装置还包括:时隙信息解析单元,被设置成解析时隙帧获取网络设备所在当前节点的入向时隙信息;时隙信息配置单元还被设置成根据入向时隙信息、出向时隙信息,生成网络设备所在当前节点的时隙交叉信息。
在一些实施例中,业务路径创建装置还包括:时隙交叉单元,被设置成接收并寄存时隙信息配置单元下发的时隙交叉信息。
本申请实施例还提供了网络设备,网络设备包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,处理器执行计算机程序时实现上述实施例涉及的时隙配置方法,或,基于时隙配置的业务路径创建方法。
本申请实施例还提供了存储介质,用于计算机可读存储,存储介质存储有一个或者多个程序,一个或者多个程序可被一个或者多个处理器执行,以实现上述实施例涉及的时隙配置方法,或,基于时隙配置的业务路径创建方法。
根据本申请实施例提出的方案,网络设备的转发平面能够通过获取网络设备当前节点的业务信息及链路信息,并根据业务信息、链路信息以及预设的时隙配置规则,在不需要引入 任何控制协议的前提下,结合实际时隙需求自动进行时隙配置,使转发平面的时隙交叉配置能够契合转发设备自身特性,降低业务部署复杂度,提升业务部署效率。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、设备中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。
在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
以上参照附图说明了本申请的一些实施例,并非因此局限本申请的权利范围。本领域技术人员不脱离本申请的范围和实质内所作的任何修改、等同替换和改进,均应在本申请的权利范围之内。

Claims (16)

  1. 一种时隙配置方法,应用于网络设备的转发平面,所述方法包括:
    获取当前节点的业务信息及链路信息,所述业务信息表征业务参数,所述链路信息表征转发路径;
    根据所述业务信息、所述链路信息以及预设的时隙配置规则,配置所述当前节点的出向时隙信息。
  2. 根据权利要求1所述的时隙配置方法,还包括:
    获取所述当前节点的入向时隙信息;
    根据所述入向时隙信息、所述出向时隙信息,生成所述当前节点的时隙交叉信息。
  3. 一种基于时隙配置的业务路径创建方法,应用于网络设备的转发平面,所述方法包括:
    获取当前节点的业务信息及链路信息,所述业务信息用于表征业务参数,所述链路信息用于表征转发路径;
    根据所述业务信息、所述链路信息以及预设的时隙配置规则,配置所述当前节点的出向时隙信息;
    根据所述出向时隙信息配置时隙帧结构;
    根据所述链路信息,将配置后的第一时隙帧转发至下一节点。
  4. 根据权利要求3所述的基于时隙配置的业务路径创建方法,还包括:
    获取所述当前节点的上一节点转发的第二时隙帧;
    根据所述第二时隙帧获取所述当前节点的入向时隙信息;
    根据所述入向时隙信息、所述出向时隙信息,生成所述当前节点的时隙交叉信息。
  5. 根据权利要求4所述的基于时隙配置的业务路径创建方法,其中,所述方法包括:
    将所述时隙交叉信息下发至所述当前节点的时隙交叉单元。
  6. 根据权利要求3至5任一项所述的基于时隙配置的业务路径创建方法,其中,获取所述当前节点的链路信息包括:
    根据所述网络设备的控制平面下发的业务转发路径获取当前节点的链路信息。
  7. 根据权利要求3至5任一项所述的基于时隙配置的业务路径创建方法,其中,获取所述当前节点的链路信息包括:
    所述当前节点根据目的节点查询路由信息,获取当前节点的链路信息。
  8. 根据权利要求3所述的时隙交叉业务路径配置方法,其中,所述业务信息至少包括以下之一:
    业务交叉路径标识、业务属性。
  9. 根据权利要求3所述的基于时隙配置的业务路径创建方法,其中,所述链路信息至少包括以下之一:
    物理资源链路信息、抽象标签链路信息。
  10. 一种时隙配置装置,应用于网络设备的转发平面,所述装置包括:
    业务信息获取单元,被设置成获取当前节点的业务信息,所述业务信息用于表征业务参数;
    链路信息获取单元,被设置成获取当前节点的链路信息,所述链路信息用于表征转发路径;
    时隙信息配置单元,被设置成根据所述业务信息、所述链路信息以及预设的时隙配置规则,配置所述当前节点的出向时隙信息。
  11. 根据权利要求10所述的时隙配置装置,还包括:
    时隙信息解析单元,被设置成解析获取所述当前节点的入向时隙信息;
    所述时隙信息配置单元还被设置成根据所述入向时隙信息、所述出向时隙信息,生成所述当前节点的时隙交叉信息。
  12. 一种基于时隙配置的业务路径创建装置,应用于网络设备的转发平面,其中,所述装置包括:
    业务信息获取单元,被设置成获取当前节点的业务信息,所述业务信息用于表征业务参数;
    链路信息获取单元,被设置成获取当前节点的链路信息,所述链路信息用于表征转发路径;
    时隙信息配置单元,被设置成根据所述业务信息、所述链路信息以及预设的时隙配置规则,配置所述当前节点的出向时隙信息;
    时隙帧配置单元,被设置成根据所述出向时隙信息配置时隙帧结构;
    时隙帧传输单元,被设置成接收转发时隙帧。
  13. 根据权利要求12所述的基于时隙配置的业务路径创建装置,还包括:
    时隙信息解析单元,被设置成解析时隙帧获取所述当前节点的入向时隙信息;
    所述时隙信息配置单元还被设置成根据所述入向时隙信息、所述出向时隙信息,生成所述当前节点的时隙交叉信息。
  14. 根据权利要求13所述的基于时隙配置的业务路径创建装置,其中,所述装置还包括:
    时隙交叉单元,被设置成接收并寄存所述时隙信息配置单元下发的时隙交叉信息。
  15. 一种电子设备,所述网络设备包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其中,所述处理器执行所述计算机程序时实现:
    如权利要求1或2所述的时隙配置方法,或,如权利要求3至9任一项所述的基于时隙配置的业务路径创建方法。
  16. 一种存储介质,用于计算机可读存储,其中,所述存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现:
    如权利要求1或2所述的时隙配置方法,或,如权利要求3至9任一项所述的基于时隙配置的业务路径创建方法。
PCT/CN2021/137688 2021-03-15 2021-12-14 时隙配置方法、业务路径创建方法、装置、设备及介质 WO2022193751A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110276173.6 2021-03-15
CN202110276173.6A CN115087106A (zh) 2021-03-15 2021-03-15 时隙配置方法、业务路径创建方法、装置、设备及介质

Publications (1)

Publication Number Publication Date
WO2022193751A1 true WO2022193751A1 (zh) 2022-09-22

Family

ID=83241426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/137688 WO2022193751A1 (zh) 2021-03-15 2021-12-14 时隙配置方法、业务路径创建方法、装置、设备及介质

Country Status (2)

Country Link
CN (1) CN115087106A (zh)
WO (1) WO2022193751A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120303788A1 (en) * 2010-01-22 2012-11-29 Siemens Atiegesellschaft Method for Associating Time Slots with Links Between Network Nodes of a Wireless Interconnected Network
CN107612825A (zh) * 2017-08-04 2018-01-19 华为技术有限公司 建立灵活以太网路径的方法和网络设备
CN110912736A (zh) * 2019-11-13 2020-03-24 中国联合网络通信集团有限公司 一种资源配置方法及装置
CN112235194A (zh) * 2020-09-03 2021-01-15 北京邮电大学 在线路由调度时延敏感流量的方法和装置
CN112333076A (zh) * 2020-11-25 2021-02-05 中盈优创资讯科技有限公司 通过FlexE通道承载VXLAN业务的方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120303788A1 (en) * 2010-01-22 2012-11-29 Siemens Atiegesellschaft Method for Associating Time Slots with Links Between Network Nodes of a Wireless Interconnected Network
CN107612825A (zh) * 2017-08-04 2018-01-19 华为技术有限公司 建立灵活以太网路径的方法和网络设备
CN110912736A (zh) * 2019-11-13 2020-03-24 中国联合网络通信集团有限公司 一种资源配置方法及装置
CN112235194A (zh) * 2020-09-03 2021-01-15 北京邮电大学 在线路由调度时延敏感流量的方法和装置
CN112333076A (zh) * 2020-11-25 2021-02-05 中盈优创资讯科技有限公司 通过FlexE通道承载VXLAN业务的方法及装置

Also Published As

Publication number Publication date
CN115087106A (zh) 2022-09-20

Similar Documents

Publication Publication Date Title
EP4027590B1 (en) Flexible ethernet-based service flow transmission
US9825845B2 (en) Path computation method, path computation element, node device, and network system
CN107438028B (zh) 一种客户业务处理的方法和设备
EP2352261B1 (en) Path computation method, node device and path computation element
WO2020001044A1 (zh) 用于获取网络切片的方法、装置和系统
US10491487B2 (en) Network service establishment method, orchestration control center, and network system
WO2018210169A1 (zh) 数据传输方法、装置、设备及系统
EP2667552A1 (en) Method for service transmission over optical transport network, device and system for realizing same
EP1983712B1 (en) An automatic discovering method and device for client layer link
WO2012065466A1 (zh) 一种包交换网络中聚合链路带宽的分配方法及装置
JP5739960B2 (ja) パケット光ネットワークの宛先ノードに外部の光データパケットを提供する方法及びシステム
US20160156523A1 (en) Method and System for Network Topology
US20140185607A1 (en) Communication system, communication path establishing method and management server
US10764659B2 (en) Coordinated and scheduled standards-based intervals in network elements
Vilalta et al. Network slicing using dynamic flex ethernet over transport networks
US8542687B2 (en) Node apparatus and route calculation method
WO2012130106A1 (zh) 一种控制平面带宽调整处理方法及系统
WO2022193751A1 (zh) 时隙配置方法、业务路径创建方法、装置、设备及介质
WO2022184129A1 (zh) 一种时隙分配处理方法、设备及存储介质
US20230412493A1 (en) Timeslot cross path configuration method, computer device and computer readable medium
EP4033703A1 (en) Method and device for establishing service path, electronic apparatus, and readable storage medium
EP2665324A1 (en) Connection establishment method and device for forwarding adjacency - label switched path
CN1881940A (zh) 分组地址交换或标签交换通信网络中连接路径的资源预留
EP2640011B1 (en) A method for transporting real time packets
WO2024001370A1 (zh) 细粒度能力的洪泛方法、细粒度的配置方法,节点及介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21931325

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE