WO2012065466A1 - 一种包交换网络中聚合链路带宽的分配方法及装置 - Google Patents

一种包交换网络中聚合链路带宽的分配方法及装置 Download PDF

Info

Publication number
WO2012065466A1
WO2012065466A1 PCT/CN2011/078709 CN2011078709W WO2012065466A1 WO 2012065466 A1 WO2012065466 A1 WO 2012065466A1 CN 2011078709 W CN2011078709 W CN 2011078709W WO 2012065466 A1 WO2012065466 A1 WO 2012065466A1
Authority
WO
WIPO (PCT)
Prior art keywords
bandwidth
link
new
requested
member link
Prior art date
Application number
PCT/CN2011/078709
Other languages
English (en)
French (fr)
Inventor
王煊
杨发明
孙德胜
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012065466A1 publication Critical patent/WO2012065466A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/12Avoiding congestion; Recovering from congestion
    • H04L47/125Avoiding congestion; Recovering from congestion by balancing the load, e.g. traffic engineering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/24Multipath
    • H04L45/245Link aggregation, e.g. trunking

Definitions

  • the present invention relates to a packet switching network, and more particularly to a method and apparatus for allocating bandwidth of an aggregated link in a packet switching network.
  • MPLS Multi-Protocol Label Switching
  • MPLS-TP Multi-Protocol Label Switching
  • MPLS-Transport Profile MPLS-Transport Profile
  • Packet switching networks such as PBB (Provider Backbone Bridge) and Virtual Local Area Network (VLAN) switching have been widely used.
  • the packet switching network has the following advantages: Supports multiple bidirectional point-to-point connection channels based on packet switching services, and has the ability to adapt to various granular services and end-to-end networking capabilities, thus providing more suitable Internet Protocol (IP).
  • IP Internet Protocol
  • link aggregation technology can be used to simplify the network topology. Its
  • the link aggregation technology refers to: Combining several physical links between two devices into one logical link, which can be called an aggregation link.
  • the aggregation link is logically integrated, that is: It appears to the other device to be a link that masks the internal composition and details of the transmitted data.
  • the internal physical links of the aggregation can complete the data transmission and reception tasks and back up each other, and load balancing the user services, thereby greatly improving service transmission efficiency and reliability.
  • the service provider needs to charge according to different bandwidths provided for different users. Therefore, it is necessary to plan and determine the service flow bandwidth parameters in advance, and it is also an important feature of the traffic engineering (TE, Traffic Engineering) technology.
  • TE Traffic Engineering
  • the control plane needs to allocate bandwidth on the member links of the aggregated link according to the predetermined service flow bandwidth. How to select the optimal member link bearer service from the member links during the allocation. In order to ensure the load balancing between member links as much as possible and improve the efficiency of service forwarding, it is an important issue that needs to be solved. Summary of the invention
  • the main purpose of the present invention is to provide a method and a device for allocating bandwidth of an aggregated link in a packet-switched network, which can ensure load balancing between member links, reduce link congestion, and improve service forwarding efficiency.
  • the present invention provides a method for allocating bandwidth of an aggregate link in a packet switching network, and the method includes:
  • the fault-free member link with the smallest bandwidth utilization is selected to allocate bandwidth for the service flow.
  • the non-fault member link with the smallest bandwidth utilization is used to allocate bandwidth for the service flow, which is:
  • Bandwidth utilization of all non-faulty member links that satisfy the requested bandwidth as small as possible Arranging in a large order, selecting a faultless member link with the smallest bandwidth utilization to allocate a working bandwidth to the service flow, and then increasing the currently occupied bandwidth of the non-fault member link with the smallest bandwidth utilization by the requested bandwidth.
  • the method when the attribute of the service flow is the protection in the aggregation link, after the working bandwidth is allocated, the method further includes:
  • the bandwidth utilization of all the non-faulty member links that satisfy the requested bandwidth are arranged in order from small to large, and the non-fault member link with the smallest bandwidth utilization is selected to allocate protection bandwidth to the service flow, and then the bandwidth is allocated.
  • the currently occupied bandwidth of the least-utilized, non-faulty member link increases the requested bandwidth.
  • the method further includes:
  • the current occupied bandwidth of each member link is subtracted from the preemptible protection bandwidth, and a new current occupied bandwidth is obtained, according to the new current
  • the occupied bandwidth calculates the new idle bandwidth and the new bandwidth utilization
  • the method further includes:
  • the new idle bandwidth of each member link except the member link that allocates the working bandwidth to the service flow in the aggregated link is matched with the requested bandwidth, and all the non-faulty members that satisfy the requested bandwidth are matched.
  • the method further includes:
  • the new idle bandwidth of each member link except the member link that allocates the working bandwidth to the service flow in the aggregated link is matched with the requested bandwidth, and all the non-faulty members that meet the requested bandwidth are matched. Linking; selecting the non-fault member link with the smallest new bandwidth utilization to allocate protection bandwidth to the service flow, and then subtracting the currently occupied bandwidth of the non-fault member link that minimizes the new bandwidth utilization. After the protected bandwidth is preempted, the requested bandwidth is increased.
  • the method further includes: allocating bandwidth for the occupied preemptible protection bandwidth on the other member links.
  • the method further includes: after the allocation is successful, recalculating according to the allocation result Calculate the TE parameters of the aggregated link and flood it through the routing protocol.
  • the present invention also provides a device for allocating bandwidth of an aggregated link in a packet-switched network, the device comprising: a bandwidth allocation module, configured to respectively match an idle bandwidth of each member link in the aggregated link with a service flow request bandwidth, Matching all the faultless member links that satisfy the requested bandwidth; selecting the non-fault member link with the smallest bandwidth utilization to allocate bandwidth for the service flow.
  • a bandwidth allocation module configured to respectively match an idle bandwidth of each member link in the aggregated link with a service flow request bandwidth, Matching all the faultless member links that satisfy the requested bandwidth; selecting the non-fault member link with the smallest bandwidth utilization to allocate bandwidth for the service flow.
  • the device further includes: a calculating module, configured to: after receiving the allocation result sent by the bandwidth allocation module, recalculate the TE parameter of the aggregation link according to the allocation result, and perform flooding by using a routing protocol;
  • the bandwidth allocation module is further configured to send the allocation result to the computing module after the allocation is successful.
  • the device further includes: a link resource management module, configured to: after receiving the allocation result sent by the bandwidth allocation module, establish an association between the occupied preemptible protection bandwidth and its working bandwidth according to the allocation result; And send the result of the distribution to the link resource management module.
  • the method and device for allocating aggregated link bandwidth in a packet-switched network provided by the present invention match the idle bandwidth of each member link in the aggregated link with the service flow request bandwidth, and match all the faults that satisfy the requested bandwidth.
  • Member link select the non-fault member link with the smallest bandwidth utilization to allocate bandwidth for the service flow. In this way, load balancing between member links can be ensured, link congestion can be reduced, and service forwarding efficiency can be improved.
  • the current occupied bandwidth of each member link is subtracted from the preemptible protection bandwidth, and a new current occupied bandwidth is obtained.
  • the current occupied bandwidth calculates the new idle bandwidth and the new bandwidth utilization, and then selects the non-fault member link with the smallest new bandwidth utilization to allocate bandwidth for the service flow, so that the member link can be better guaranteed. Load balancing between them further improves service forwarding efficiency.
  • FIG. 1 is a schematic flowchart of a method for allocating an aggregate link bandwidth in a packet switching network according to the present invention
  • FIG. 2 is a schematic diagram of an aggregated link of a packet transport network according to an embodiment of the present invention.
  • the method for allocating the bandwidth of the aggregated link in the packet switching network of the present invention includes the following steps:
  • Step 101 Match the idle bandwidth of each member link in the aggregated link with the service flow request bandwidth, and match all the faultless member links that meet the requested bandwidth.
  • each member link is allocated with the maximum allowed bandwidth, and the idle bandwidth of each member link is the maximum bandwidth minus the remaining bandwidth of the currently occupied bandwidth; wherein, the currently occupied bandwidth includes: working bandwidth, not available
  • the protected bandwidth is preempted and the protected bandwidth can be preempted.
  • the all non-faulty member links that satisfy the requested bandwidth are: The idle bandwidth is greater than all of the non-faulty member links that are equal to the requested bandwidth.
  • the service flow may be a label switching path (LSP, Label Switching Path), a VLAN, a VLAN, a media access control (MAC), or a MAC or the like.
  • LSP Label Switching Path
  • VLAN virtual local area network
  • MAC media access control
  • the upstream node refers to a starting node that starts data transmission.
  • the current state of all member links in the aggregated link is saved on the upstream node.
  • the current state refers to whether the link is currently in a fault state or a faultless state.
  • a fault-free member link is available from the current state of the saved member link.
  • Step 102 Select a faultless member link with the smallest bandwidth utilization to allocate a bandwidth to the service flow.
  • the bandwidth utilization of all the non-faulty member links that satisfy the requested bandwidth Arranging in order from small to large, selecting a faultless member link with the smallest bandwidth utilization to allocate a working bandwidth to the service flow, and then increasing the currently occupied bandwidth of the non-fault member link with the smallest bandwidth utilization.
  • Request bandwidth where, when the bandwidth utilization of two or more non-faulty member links is the same, the random arrangement is adopted. If there are more than two non-fault member links with the smallest bandwidth utilization, Then, the ranked non-faulty member link is used to allocate working bandwidth to the service flow.
  • the bandwidth utilization is the ratio of the currently occupied bandwidth to the maximum bandwidth.
  • the method may further include:
  • the bandwidth utilization of all the non-faulty member links that satisfy the requested bandwidth are arranged in order from small to large, and the non-fault member link with the smallest bandwidth utilization is selected to allocate protection bandwidth to the service flow, and then the bandwidth is allocated.
  • the currently occupied bandwidth of the least-utilized, non-faulty member link increases the requested bandwidth.
  • the TE parameters of the aggregated link are recalculated based on the allocation result and flooded through the routing protocol.
  • the specific implementation is well known to those skilled in the art and will not be described here.
  • the matching When the matching is performed, if the fault-free member link that satisfies the requested bandwidth is not matched, the currently occupied bandwidth of each member link is subtracted from the preemptible protection bandwidth, and a new current occupied bandwidth is obtained. Calculate the new idle bandwidth and the new bandwidth utilization according to the new currently occupied bandwidth, and re-execute steps 101 and 102 to select the faultless The member link allocates bandwidth for the service flow.
  • the member links of the member links in the aggregation link The new idle bandwidth is matched with the requested bandwidth respectively, and all the non-fault member links satisfying the requested bandwidth are matched; the new bandwidth utilization of all the non-fault member links satisfying the requested bandwidth is Arranging in order from small to large, selecting the non-fault member link with the smallest new bandwidth utilization to allocate working bandwidth to the service flow, and then the current non-fault member link with the minimum bandwidth utilization is currently occupied. After the bandwidth is subtracted from the preemptive protection bandwidth, the requested bandwidth is increased.
  • the member links of the aggregation link are The new idle bandwidth is matched with the requested bandwidth respectively, and all the non-fault member links satisfying the requested bandwidth are matched; the new bandwidth utilization of all the non-fault member links satisfying the requested bandwidth is Arranging in order from small to large, selecting the non-fault member link with the smallest new bandwidth utilization to allocate working bandwidth to the service flow, and then the current non-fault member link with the minimum bandwidth utilization is currently occupied. After the bandwidth is subtracted from the preemptive protection bandwidth, the requested bandwidth is increased;
  • the new idle bandwidth of each member link except the member link that allocates the working bandwidth to the service flow in the aggregated link is matched with the requested bandwidth, and all the non-faulty members that satisfy the requested bandwidth are matched.
  • the aggregation link is divided into the service flow.
  • the link resource management module of the upstream node is notified, and the preemptible protection bandwidth of the member link is occupied, and steps 101 and 102 are re-executed.
  • a bandwidth is allocated to the occupied preemptible protection bandwidth on the other member links, and the link resource management module establishes an association between the occupied preemptible protection bandwidth and its working bandwidth according to the allocation result.
  • the currently occupied bandwidth includes: working bandwidth, non-preemptive protection bandwidth, and preemptible protection bandwidth. If all of the non-faulty member links that satisfy the occupied preemptible protection bandwidth are not matched at the time of allocation, the occupied preemptible protection bandwidth cannot be allocated.
  • the bandwidth allocation fails, and the service to the upstream node is performed.
  • the flow management module reports a message that the resource allocation failed. If the attribute of the service flow is not an intra-link protection, the unmatched member link that satisfies the requested bandwidth is: the working bandwidth does not match the non-faulty member that satisfies the requested bandwidth. a link, if the attribute of the service flow is an intra-link protection, the unmatched member link that satisfies the requested bandwidth is: the working bandwidth or the protection bandwidth is not matched to meet the requested bandwidth. The faultless member link.
  • FIG. 2 is a schematic diagram of an aggregated link of a packet transport network (PTN, Packet Transport Network).
  • PTN Packet Transport Network
  • the upstream node is U
  • the downstream node is D
  • B1 which contains four member links: Ll, L2, L3, and L4, all of which are fault-free links.
  • M2 150M
  • M3 200M
  • M4 150M.
  • a service flow with a request bandwidth of 30M and an internal link protection attribute of the aggregate link passes through U, B1, and D, and member link selection is required on the U.
  • the bandwidth allocation module of U processes according to the following steps:
  • Each of the four member links is a member link that satisfies the requested bandwidth.
  • the bandwidth allocation module allocates working bandwidth and protection bandwidth for the service flow on L3 and L1, respectively, and the service flow bandwidth allocation process ends.
  • the present invention further provides a device for allocating aggregated link bandwidth in a packet switching network, the device comprising: a bandwidth allocation module, configured to aggregate each member link in the link The idle bandwidth is matched with the service flow request bandwidth, and all the non-fault member links satisfying the requested bandwidth are matched. The non-fault member link with the smallest bandwidth utilization is selected to allocate bandwidth for the service flow.
  • the device may further include: a calculating module, configured to: after receiving the allocation result sent by the bandwidth allocation module, recalculate the TE parameter of the aggregated link according to the allocation result, and perform flooding by using a routing protocol;
  • the bandwidth allocation module is further configured to send the allocation result to the computing module after the allocation is successful.
  • the device may further include: a link resource management module, configured to receive a notification sent by the bandwidth allocation module;
  • the bandwidth allocation module is further configured to notify the link resource management module that the preemptible protection bandwidth of the member link is occupied after the service flow occupies the preemptible protection bandwidth of the member link. Bandwidth allocates bandwidth, and sends the allocation result to the link resource management module;
  • the link resource management module is further configured to: after receiving the allocation result sent by the bandwidth allocation module, establish an association between the occupied preemptible protection bandwidth and its working bandwidth according to the allocation result.
  • the device may further include a service flow management module, configured to receive a message that the resource allocation failure reported by the bandwidth allocation module fails;
  • the bandwidth allocation module is further configured to report a resource allocation failure message to the service flow management module when the faultless member link that satisfies the requested bandwidth is not matched.
  • the method and device for allocating aggregated link bandwidth in the packet switching network of the present invention match the idle bandwidth of each member link in the aggregated link with the service flow request bandwidth, and match all the non-faulty members that satisfy the requested bandwidth.
  • Link select the fault-free member chain with the lowest bandwidth utilization
  • the method allocates bandwidth for the service flow, ensures load balancing between member links, reduces link congestion, and improves service forwarding efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明公开了一种包交换网络中聚合链路带宽的分配方法,该方法包括:将聚合链路中各成员链路的空闲带宽与服务流请求带宽分别进行匹配,匹配出满足所述请求带宽的所有无故障成员链路;选用带宽利用率最小的无故障成员链路为所述服务流分配带宽。本发明同时公开了一种包交换网络中聚合链路带宽的分配装置,采用本发明的方法及装置,能保证成员链路之间的负载均衡,减少链路的拥塞,进而能提高业务转发效率。

Description

一种包交换网络中聚合链路带宽的分配方法及装置 技术领域
本发明涉及包交换网络, 特别是指一种包交换网络中聚合链路带宽的 分配方法及装置。 背景技术
随着数据业务量的增长和对服务质量要求的提高, 目前釆用多协议 标签交换(MPLS , Multi-Protocol Label Switching ) 、 传送多协议标签交 换( MPLS-TP, MPLS-Transport Profile )、运营商骨干桥接( PBB, Provider Backbone Bridge )、以及虚拟局域网( VLAN, Virtual Local Area Network ) 交换等技术的包交换网络得到了广泛应用。
包交换网络具有以下优点: 支持多种基于分组交换业务的双向点对点 连接通道, 具有适合各种粗细颗粒业务、 端到端的组网能力, 如此, 能提 供更加适合于因特网协议( IP , Internet Protocol )业务特性的"柔性"传输管 道; 点对点连接通道的保护切换可以在 50毫秒内完成, 如此, 能实现传输 级别的业务保护和恢复; 继承了同步数字体系 (SDH, Synchronous Digital Hierarchy )技术的操作、 管理和维护机制, 具有点对点连接的完整操作、 管理及维护 ( OAM, Operation Administration and Maintenance ), 如此, 能保证网络具备保护切换、 错误检测以及通道监控的能力; 完成了与 IP/MPLS多种方式的互连互通, 无缝 载核心 IP业务; 网管系统可以控制 连接信道的建立和设置, 如此, 能实现业务服务质量 (QoS , Quality of Service ) 的区分和保证, 灵活提供服务等级协议 ( SLA , Service-Level Agreement )等。
在包交换网络中, 使用链路聚合技术能达到简化网络拓朴的目的。 其 中, 链路聚合技术是指: 将两台设备间的数条物理链路组合成逻辑上的一 条链路, 可以称为一条聚合链路, 该聚合链路在逻辑上是一个整体, 即: 在其它设备看来是一条链路, 屏蔽了内部的组成和传输数据的细节。 另外, 聚合内部的物理链路能共同完成数据收发任务并相互备份, 还可以对用户 业务进行负载分担, 从而大大提高了业务传送效率和可靠性。
在实际应用过程中, 服务提供者需要根据为不同用户提供的不同带宽 进行收费, 因此, 事先规划并确定服务流带宽参数是必须的, 同时也是流 量工程(TE, Traffic Engineering )技术的重要特征之一。 在传输业务时, 控制平面需要依据事先确定的服务流带宽, 在聚合链路的成员链路上进行 带宽分配, 在分配时, 如何能从成员链路中选择出最优的成员链路承载业 务, 以尽可能地保证成员链路之间负载均衡并能提高业务转发效率, 成为 当前需要解决的一个重要问题。 发明内容
有鉴于此, 本发明的主要目的在于提供一种包交换网络中聚合链路带 宽的分配方法及装置, 能保证成员链路之间的负载均衡, 减少链路的拥塞, 进而能提高业务转发效率。
为达到上述目的, 本发明的技术方案是这样实现的:
本发明提供了一种包交换网络中聚合链路带宽的分配方法, 该方法包 括:
将聚合链路中各成员链路的空闲带宽与服务流请求带宽分别进行匹 配, 匹配出满足所述请求带宽的所有无故障成员链路;
选用带宽利用率最小的无故障成员链路为所述服务流分配带宽。
上述方案中, 所述选用带宽利用率最小的无故障成员链路为所述服务 流分配带宽, 为:
将满足所述请求带宽的所有无故障成员链路的带宽利用率, 按照从小 到大的顺序依次排列, 选择带宽利用率最小的无故障成员链路为所述服务 流分配工作带宽, 之后将带宽利用率最小的无故障成员链路的当前已占用 的带宽增加所述请求带宽。
上述方案中, 所述服务流的属性为聚合链路内保护时, 在分配完工作 带宽后, 该方法进一步包括:
将聚合链路中除为所述服务流分配工作带宽的成员链路外的各成员链 路的空闲带宽与所述请求带宽分别进行匹配, 匹配出满足所述请求带宽的 所有无故障成员链路;
将满足所述请求带宽的所有无故障成员链路的带宽利用率, 按照从小 到大的顺序依次排列, 选择带宽利用率最小的无故障成员链路为所述服务 流分配保护带宽, 之后将带宽利用率最小的无故障成员链路的当前已占用 的带宽增加所述请求带宽。
上述方案中, 该方法进一步包括:
未匹配出满足所述请求带宽的无故障成员链路时, 将每个成员链路的 当前已占用的带宽减去可被抢占保护带宽, 得到新的当前已占用的带宽, 根据新的当前已占用的带宽计算新空闲带宽和新带宽利用率;
将聚合链路中各成员链路的所述新空闲带宽与所述请求带宽分别进行 匹配, 匹配出满足所述请求带宽的所有无故障成员链路;
选择所述新带宽利用率最小的无故障成员链路为所述服务流分配工作 带宽, 之后将所述新带宽利用率最小的无故障成员链路的当前已占用的带 宽减去可被抢占保护带宽后, 再增加所述请求带宽。
上述方案中, 该方法进一步包括:
在分配工作带宽时未匹配出满足所述请求带宽的无故障成员链路时, 将每个成员链路的当前已占用的带宽减去可被抢占保护带宽 , 得到新的当 前已占用的带宽, 根据新的当前已占用的带宽, 计算新空闲带宽和新带宽 利用率;
将聚合链路中各成员链路的所述新空闲带宽与所述请求带宽分别进行 匹配, 匹配出满足所述请求带宽的所有无故障成员链路;
选择所述新带宽利用率最小的无故障成员链路为所述服务流分配工作 带宽, 之后将所述新带宽利用率最小的无故障成员链路的当前已占用的带 宽减去可被抢占保护带宽后, 再增加所述请求带宽;
之后将聚合链路中除为所述服务流分配工作带宽的成员链路外的各成 员链路的新空闲带宽与所述请求带宽分别进行匹配, 匹配出满足所述请求 带宽的所有无故障成员链路; 选择所述新带宽利用率最小的无故障成员链 路为所述服务流分配保护带宽, 之后将所述新带宽利用率最小的无故障成 员链路的当前已占用的带宽减去可被抢占保护带宽后 , 再增加所述请求带 宽。
上述方案中, 该方法进一步包括:
在分配保护带宽时未匹配出满足所述请求带宽的无故障成员链路时, 将每个成员链路的当前已占用的带宽减去可被抢占保护带宽 , 得到新的当 前已占用的带宽, 根据新的当前已占用的带宽, 计算新空闲带宽和新带宽 利用率;
将聚合链路中除为所述服务流分配工作带宽的成员链路外的各成员链 路的新空闲带宽, 与所述请求带宽分别进行匹配, 匹配出满足所述请求带 宽的所有无故障成员链路; 选择所述新带宽利用率最小的无故障成员链路 为所述服务流分配保护带宽, 之后将所述新带宽利用率最小的无故障成员 链路的当前已占用的带宽减去可被抢占保护带宽后, 再增加所述请求带宽。
上述方案中, 该方法进一步包括: 在其它成员链路上为被占用的可抢 占保护带宽分配带宽。
上述方案中, 该方法进一步包括: 分配成功后, 根据分配结果重新计 算聚合链路的 TE参数, 并通过路由协议进行洪泛。
本发明还提供了一种包交换网络中聚合链路带宽的分配装置, 该装置 包括: 带宽分配模块, 用于将聚合链路中各成员链路的空闲带宽与服务流 请求带宽分别进行匹配, 匹配出满足所述请求带宽的所有无故障成员链路; 选用带宽利用率最小的无故障成员链路为所述服务流分配带宽。
上述方案中, 该装置进一步包括: 计算模块, 用于收到所述带宽分配 模块发送的分配结果后, 根据分配结果重新计算聚合链路的 TE参数, 并通 过路由协议进行洪泛;
所述带宽分配模块, 还用于分配成功后, 将分配结果发送给计算模块。 上述方案中, 该装置进一步包括: 链路资源管理模块, 用于收到带宽 分配模块发送的分配结果后, 根据分配结果建立所述被占用的可抢占保护 带宽与其工作带宽的关联; 带宽分配带宽, 并将分配结果发送给链路资源管理模块。
本发明提供的包交换网络中聚合链路带宽的分配方法及装置, 将聚合 链路中各成员链路的空闲带宽与服务流请求带宽分别进行匹配, 匹配出满 足所述请求带宽的所有无故障成员链路; 选用带宽利用率最小的无故障成 员链路为所述服务流分配带宽。 如此, 能保证成员链路之间的负载均衡, 减少链路的拥塞, 进而能提高业务转发效率。
另外, 当没有匹配出满足所述请求带宽的无故障成员链路时, 将每个 成员链路的当前已占用的带宽减去可被抢占保护带宽, 得到新的当前已占 用的带宽, 利用新的当前已占用的带宽计算新空闲带宽和新带宽利用率, 进而选用所述新带宽利用率最小的无故障成员链路为所述服务流分配带 宽, 如此, 能更好的保证成员链路之间的负载均衡, 进一步提高业务转发 效率。 附图说明
图 1为本发明包交换网络中聚合链路带宽的分配方法流程示意图; 图 2为本发明实施例的分组传送网络的聚合链路示意图。 具体实施方式
下面结合附图及具体实施例对本发明再作进一步详细的说明。
本发明包交换网络中聚合链路带宽的分配方法, 如图 1 所示, 包括以 下步骤:
步骤 101 :将聚合链路中各成员链路的空闲带宽与服务流请求带宽分别 进行匹配, 匹配出满足所述请求带宽的所有无故障成员链路;
这里, 每个成员链路都分配有所允许的最大带宽, 每个成员链路的空 闲带宽为最大带宽扣除当前已占用的带宽的剩余带宽; 其中, 当前已占用 的带宽包括: 工作带宽、 不可被抢占保护带宽及可被抢占保护带宽。
所述满足所述请求带宽的所有无故障成员链路是指: 空闲带宽大于等 于所述请求带宽的所有无故障成员链路。
所述服务流可以是标记交换路径( LSP, Label Switching Path )、 VLAN、 VLAN+媒体访问控制(MAC, Media Access Control ), 或 MAC等标识对应 的各种服务流。
在实际应用时, 本发明包交换网络中聚合链路带宽分配的具体操作是 在上游节点上进行的。 其中, 所述上游节点是指开始数据发送的起始节点。
上游节点上保存有聚合链路中所有成员链路的当前状态, 当前状态是 指链路当前处于故障状态还是无故障状态。 从保存的成员链路的当前状态 中可以获得无故障的成员链路。
步骤 102:选用带宽利用率最小的无故障成员链路为所述服务流分配带 宽。
具体地, 将满足所述请求带宽的所有无故障成员链路的带宽利用率, 按照从小到大的顺序依次排列, 选择带宽利用率最小的无故障成员链路为 所述服务流分配工作带宽, 之后将带宽利用率最小的无故障成员链路的当 前已占用的带宽增加所述请求带宽; 其中, 在排列时, 如果两个以上无故 障成员链路的带宽利用率相同时, 则釆取随机排列的方式, 如果带宽利用 率最小的无故障成员链路有两条以上时, 则选用排列在前的无故障成员链 路为所述服务流分配工作带宽。
这里, 带宽利用率为当前已占用的带宽与最大带宽的比值。
当所述服务流的属性为聚合链路内保护时, 在分配完工作带宽后, 该 方法还可以进一步包括:
将聚合链路中除为所述服务流分配工作带宽的成员链路外的各成员链 路的空闲带宽与所述请求带宽分别进行匹配, 匹配出满足所述请求带宽的 所有无故障成员链路;
将满足所述请求带宽的所有无故障成员链路的带宽利用率, 按照从小 到大的顺序依次排列, 选择带宽利用率最小的无故障成员链路为所述服务 流分配保护带宽, 之后将带宽利用率最小的无故障成员链路的当前已占用 的带宽增加所述请求带宽。
所述服务流的属性事先已作规定, 具体处理过程与现有技术的处理过 程完全相同, 这里不再赘述。
分配成功后, 根据分配结果重新计算聚合链路的 TE参数, 并通过路由 协议进行洪泛。 其中, 具体实现属于本领域技术人员公知技术, 这里不再 赘述。
当进行匹配后, 没有匹配出满足所述请求带宽的无故障成员链路时, 将每个成员链路的当前已占用的带宽减去可被抢占保护带宽 , 得到新的当 前已占用的带宽, 根据新的当前已占用的带宽, 计算新空闲带宽和新带宽 利用率, 重新执行步骤 101和 102, 选用所述新带宽利用率最小的无故障成 员链路为所述服务流分配带宽, 此时, 有以下三种处理过程: 第一, 当所述服务流的属性不是聚合链路内保护时, 将聚合链路中各 成员链路的所述新空闲带宽与所述请求带宽分别进行匹配, 匹配出满足所 述请求带宽的所有无故障成员链路; 将满足所述请求带宽的所有无故障成 员链路的所述新带宽利用率, 按照从小到大的顺序依次排列, 选择所述新 带宽利用率最小的无故障成员链路为所述服务流分配工作带宽, 之后将所 述新带宽利用率最小的无故障成员链路的当前已占用的带宽减去可被抢占 保护带宽后, 再增加所述请求带宽。
第二, 当所述服务流的属性是聚合链路内保护, 且在分配工作带宽时 未匹配出满足所述请求带宽的无故障成员链路时, 将聚合链路中各成员链 路的所述新空闲带宽与所述请求带宽分别进行匹配, 匹配出满足所述请求 带宽的所有无故障成员链路; 将满足所述请求带宽的所有无故障成员链路 的所述新带宽利用率, 按照从小到大的顺序依次排列, 选择所述新带宽利 用率最小的无故障成员链路为所述服务流分配工作带宽, 之后将所述新带 宽利用率最小的无故障成员链路的当前已占用的带宽减去可被抢占保护带 宽后, 再增加所述请求带宽;
之后将聚合链路中除为所述服务流分配工作带宽的成员链路外的各成 员链路的新空闲带宽与所述请求带宽分别进行匹配, 匹配出满足所述请求 带宽的所有无故障成员链路; 选择所述新带宽利用率最小的无故障成员链 路为所述服务流分配保护带宽, 之后将所述新带宽利用率最小的无故障成 员链路的当前已占用的带宽减去可被抢占保护带宽后 , 再增加所述请求带 宽。
第三, 当所述服务流的属性是聚合链路内保护, 且在分配保护带宽时 未匹配出满足所述请求带宽的无故障成员链路时, 将聚合链路中除为所述 服务流分配工作带宽的成员链路外的各成员链路的新空闲带宽, 与所述请 求带宽分别进行匹配, 匹配出满足所述请求带宽的所有无故障成员链路; 选择所述新带宽利用率最小的无故障成员链路为所述服务流分配保护带 宽, 之后将所述新带宽利用率最小的无故障成员链路的当前已占用的带宽 减去可被抢占保护带宽后, 再增加所述请求带宽。
当所述服务流占用了成员链路的可抢占保护带宽后, 则通知所述上游 节点的链路资源管理模块, 成员链路的可抢占保护带宽已被占用, 同时重 新执行步骤 101和 102,在其它成员链路上为被占用的可抢占保护带宽分配 带宽, 链路资源管理模块根据分配结果建立所述被占用的可抢占保护带宽 与其工作带宽的关联。 此时, 在执行步骤 101和 102时, 当前已占用的带 宽包括: 工作带宽、 不可被抢占保护带宽及可被抢占保护带宽。 如果在分 配时, 未能匹配出满足所述被占用的可抢占保护带宽的所有无故障成员链 路, 则所述被占用的可抢占保护带宽不能被分配。
如果在计算出新空闲带宽及新带宽利用率, 并在进行匹配后, 仍未匹 配出满足所述请求带宽的无故障成员链路时, 则说明此次带宽分配失败, 则向上游节点的服务流管理模块上报资源分配失败的消息。 其中, 如果所 述服务流的属性不是聚合链路内保护, 则所述未匹配出满足所述请求带宽 的无故障成员链路是指: 工作带宽未匹配出满足所述请求带宽的无故障成 员链路, 如果所述服务流的属性为聚合链路内保护, 则所述未匹配出满足 所述请求带宽的无故障成员链路是指: 工作带宽或保护带宽未匹配出满足 所述请求带宽的无故障成员链路。
下面结合实施例对本发明再做进一步详细的描述。
图 2为分组传送网络 ( PTN, Packet Transport Network ) 的聚合链路示 意图, 结合图 2, 本实施例的应用场景是: 上游节点为 U, 下游节点为 D, U和 D两个网元之间存在一条聚合链路 Bl , B1 包含四条成员链路: Ll、 L2、 L3 以及 L4, 均为无故障链路, 四条成员链路的最大带宽分别为: Ml = 100M、 M2= 150M、 M3 = 200M、 以及 M4= 150M。 四条成员链路当前 已占用的带宽分别为: C1 =30M、 C2 = 75M、 C3 = 50M、 以及 C4 = 60M。 一条请求带宽为 30M且具有聚合链路内部保护属性的服务流经过 U、 B1 及 D, 在 U上需要进行成员链路选择。
按照本发明提供的方法, U的带宽分配模块按照以下步骤进行处理: 根据当前成员链路的资源利用情况, 可以计算出 Ll、 L2、 L3及 L4的 带宽利用率分别为: Rl =30%、 R2 = 50%、 R3=25%、 以及 R4 = 40%。 四 条成员链路的空闲带宽分别为: Fl =M1-C1=70M、 F2 = M2-C2=75M、 F3 = M3-C3= 150M、 以及 F4 = M4-C4=90M,四条成员链路的空闲带宽均大于 所述服务流请求的带宽, 四条成员链路均为满足所述请求带宽的成员链路; 将四条成员链路的带宽利用率按照从小到达的顺序依次排列, 得到: R3 < Rl < R4 < R2, 因此, 选择在 L3上为所述服务流分配工作带宽, 在 L3 上分配完工作带宽后, L3当前已占用的带宽变为 C3 = 50M + 30M = 80M;
由于所述服务流的属性为聚合链路内部保护, 因此需要继续为其分配 大小为 30M的保护带宽。 除去 L3的三条成员链路的当前已占用带宽分别 为: C1 =30M、 C2 = 75M、 以及 C4 = 60M, 带宽利用率分别为: Rl =30%、 R2 = 50%、以及 R4 = 40%,空闲带宽分别为: Ml - Cl= 70M、 M2 - C2= 75M、 以及 M4 - C4= 90M , 三条链路的空闲带宽均大于所述服务流请求的带宽; 将三条成员链路的带宽利用率按照从小到达的顺序依次排列, 得到: R1 <R4<R2, 因此, 选择在 L1上为所述服务流分配保护带宽, 在 L1上分 配完保护带宽后, L1当前已占用的带宽变为 CI =30M + 30M = 60M;
至此, 带宽分配模块分别在 L3和 L1上为所述服务流分配了工作带宽 和保护带宽, 所述服务流带宽分配流程结束。
为实现上述方法, 本发明还提供了一种包交换网络中聚合链路带宽的 分配装置, 该装置包括: 带宽分配模块, 用于将聚合链路中各成员链路的 空闲带宽与服务流请求带宽分别进行匹配, 匹配出满足所述请求带宽的所 有无故障成员链路; 选用带宽利用率最小的无故障成员链路为所述服务流 分配带宽。
其中, 该装置还可以进一步包括: 计算模块, 用于收到所述带宽分配 模块发送的分配结果后, 根据分配结果重新计算聚合链路的 TE参数, 并通 过路由协议进行洪泛;
所述带宽分配模块, 还用于分配成功后, 将分配结果发送给计算模块。 该装置还可以进一步包括: 链路资源管理模块, 用于接收所述带宽分 配模块发送的通知;
所述带宽分配模块, 还用于当所述服务流占用了成员链路的可抢占保 护带宽后, 通知链路资源管理模块, 成员链路的可抢占保护带宽已被占用。 带宽分配带宽, 并将分配结果发送给链路资源管理模块;
所述链路资源管理模块, 还用于收到带宽分配模块发送的分配结果后, 根据分配结果建立所述被占用的可抢占保护带宽与其工作带宽的关联。
该装置还可以进一步包括服务流管理模块, 用于接收所述带宽分配模 块上报的资源分配失败的消息;
所述带宽分配模块, 还用于在未匹配出满足所述请求带宽的无故障成 员链路时, 向服务流管理模块上报资源分配失败的消息。
这里, 本发明的所述装置中的带宽分配模块的具体处理过程已在上文 中详述, 不再赘述。 工业实用性
本发明的包交换网络中聚合链路带宽的分配方法及装置, 将聚合链路 中各成员链路的空闲带宽与服务流请求带宽分别进行匹配, 匹配出满足所 述请求带宽的所有无故障成员链路; 选用带宽利用率最小的无故障成员链 路为所述服务流分配带宽, 能保证成员链路之间的负载均衡, 减少链路的 拥塞, 进而能提高业务转发效率。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围, 凡在本发明的精神和原则之内所作的任何修改、 等同替换和改进 等, 均应包含在本发明的保护范围之内。

Claims

权利要求书
1、 一种包交换网络中聚合链路带宽的分配方法, 其特征在于, 该方法 包括:
将聚合链路中各成员链路的空闲带宽与服务流请求带宽分别进行匹 配, 匹配出满足所述请求带宽的所有无故障成员链路;
选用带宽利用率最小的无故障成员链路为所述服务流分配带宽。
2、 根据权利要求 1所述的方法, 其特征在于, 所述选用带宽利用率最 小的无故障成员链路为所述服务流分配带宽, 为:
将满足所述请求带宽的所有无故障成员链路的带宽利用率, 按照从小 到大的顺序依次排列, 选择带宽利用率最小的无故障成员链路为所述服务 流分配工作带宽, 之后将带宽利用率最小的无故障成员链路的当前已占用 的带宽增加所述请求带宽。
3、 根据权利要求 2所述的方法, 其特征在于, 所述服务流的属性为聚 合链路内保护时, 在分配完工作带宽后, 该方法进一步包括:
将聚合链路中除为所述服务流分配工作带宽的成员链路外的各成员链 路的空闲带宽与所述请求带宽分别进行匹配, 匹配出满足所述请求带宽的 所有无故障成员链路;
将满足所述请求带宽的所有无故障成员链路的带宽利用率, 按照从小 到大的顺序依次排列, 选择带宽利用率最小的无故障成员链路为所述服务 流分配保护带宽, 之后将带宽利用率最小的无故障成员链路的当前已占用 的带宽增加所述请求带宽。
4、 根据权利要求 2所述的方法, 其特征在于, 该方法进一步包括: 未匹配出满足所述请求带宽的无故障成员链路时, 将每个成员链路的 当前已占用的带宽减去可被抢占保护带宽, 得到新的当前已占用的带宽, 根据新的当前已占用的带宽计算新空闲带宽和新带宽利用率; 将聚合链路中各成员链路的所述新空闲带宽与所述请求带宽分别进行 匹配, 匹配出满足所述请求带宽的所有无故障成员链路;
选择所述新带宽利用率最小的无故障成员链路为所述服务流分配工作 带宽, 之后将所述新带宽利用率最小的无故障成员链路的当前已占用的带 宽减去可被抢占保护带宽后, 再增加所述请求带宽。
5、 根据权利要求 3所述的方法, 其特征在于, 该方法进一步包括: 在分配工作带宽时未匹配出满足所述请求带宽的无故障成员链路时, 将每个成员链路的当前已占用的带宽减去可被抢占保护带宽 , 得到新的当 前已占用的带宽, 根据新的当前已占用的带宽, 计算新空闲带宽和新带宽 利用率;
将聚合链路中各成员链路的所述新空闲带宽与所述请求带宽分别进行 匹配, 匹配出满足所述请求带宽的所有无故障成员链路;
选择所述新带宽利用率最小的无故障成员链路为所述服务流分配工作 带宽, 之后将所述新带宽利用率最小的无故障成员链路的当前已占用的带 宽减去可被抢占保护带宽后, 再增加所述请求带宽;
之后将聚合链路中除为所述服务流分配工作带宽的成员链路外的各成 员链路的新空闲带宽与所述请求带宽分别进行匹配, 匹配出满足所述请求 带宽的所有无故障成员链路; 选择所述新带宽利用率最小的无故障成员链 路为所述服务流分配保护带宽, 之后将所述新带宽利用率最小的无故障成 员链路的当前已占用的带宽减去可被抢占保护带宽后 , 再增加所述请求带 宽。
6、 根据权利要求 3所述的方法, 其特征在于, 该方法进一步包括: 在分配保护带宽时未匹配出满足所述请求带宽的无故障成员链路时, 将每个成员链路的当前已占用的带宽减去可被抢占保护带宽 , 得到新的当 前已占用的带宽, 根据新的当前已占用的带宽, 计算新空闲带宽和新带宽 利用率;
将聚合链路中除为所述服务流分配工作带宽的成员链路外的各成员链 路的新空闲带宽, 与所述请求带宽分别进行匹配, 匹配出满足所述请求带 宽的所有无故障成员链路; 选择所述新带宽利用率最小的无故障成员链路 为所述服务流分配保护带宽, 之后将所述新带宽利用率最小的无故障成员 链路的当前已占用的带宽减去可被抢占保护带宽后, 再增加所述请求带宽。
7、 根据权利要求 4、 5或 6所述的方法, 其特征在于, 该方法进一步 包括:
在其它成员链路上为被占用的可抢占保护带宽分配带宽。
8、 根据权利要求 1至 6任一项所述的方法, 其特征在于, 该方法进一 步包括:
分配成功后, 根据分配结果重新计算聚合链路的流量工程(TE )参数, 并通过路由协议进行洪泛。
9、 一种包交换网络中聚合链路带宽的分配装置, 其特征在于, 该装置 包括: 带宽分配模块, 用于将聚合链路中各成员链路的空闲带宽与服务流 请求带宽分别进行匹配, 匹配出满足所述请求带宽的所有无故障成员链路; 选用带宽利用率最小的无故障成员链路为所述服务流分配带宽。
10、 根据权利要求 9所述的装置, 其特征在于, 该装置进一步包括: 计算模块, 用于收到所述带宽分配模块发送的分配结果后, 根据分配结果 重新计算聚合链路的 TE参数, 并通过路由协议进行洪泛;
所述带宽分配模块, 还用于分配成功后, 将分配结果发送给计算模块。
11、 根据权利要求 9或 10所述的装置, 其特征在于, 该装置进一步包 括: 链路资源管理模块, 用于收到带宽分配模块发送的分配结果后, 根据 分配结果建立所述被占用的可抢占保护带宽与其工作带宽的关联; 带宽分配带宽, 并将分配结果发送给链路资源管理模块。
PCT/CN2011/078709 2010-11-18 2011-08-22 一种包交换网络中聚合链路带宽的分配方法及装置 WO2012065466A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010551261.4 2010-11-18
CN201010551261.4A CN102469019B (zh) 2010-11-18 2010-11-18 一种包交换网络中聚合链路带宽的分配方法及装置

Publications (1)

Publication Number Publication Date
WO2012065466A1 true WO2012065466A1 (zh) 2012-05-24

Family

ID=46072216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/078709 WO2012065466A1 (zh) 2010-11-18 2011-08-22 一种包交换网络中聚合链路带宽的分配方法及装置

Country Status (2)

Country Link
CN (1) CN102469019B (zh)
WO (1) WO2012065466A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110519782A (zh) * 2019-09-24 2019-11-29 广东电网有限责任公司 一种通信网多通道选择方法及装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103716252A (zh) * 2012-09-29 2014-04-09 中兴通讯股份有限公司 一种分发流量的链路聚合方法及设备
CN104917677A (zh) * 2014-03-10 2015-09-16 中兴通讯股份有限公司 数据流转发的控制方法及系统
CN105376168B (zh) 2014-08-25 2019-06-11 深圳市中兴微电子技术有限公司 一种负载均衡的方法与装置
CN106487680B (zh) * 2015-08-31 2019-08-23 中国电信股份有限公司 用于建立专用通路的方法、系统及通路计算装置
CN107547385B (zh) * 2017-08-31 2020-10-27 新华三技术有限公司 Bfd协议报文的传输方法和装置
CN110932923B (zh) 2018-09-20 2022-04-01 中国移动通信有限公司研究院 计算带宽利用率的方法及设备
CN114500287B (zh) * 2021-12-30 2023-09-22 广州趣丸网络科技有限公司 一种带宽资源的智能分配方法及装置
WO2023168657A1 (en) * 2022-03-10 2023-09-14 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for selecting lag port for ip flow

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1859298A (zh) * 2005-10-26 2006-11-08 华为技术有限公司 一种选择路径的方法
US20060251074A1 (en) * 2005-05-06 2006-11-09 Corrigent Systems Ltd. Tunnel provisioning with link aggregation
EP1921808A1 (en) * 2006-11-10 2008-05-14 Lucent Technologies Inc. Preemptive transmission protection scheme for data services
CN101471693A (zh) * 2007-12-27 2009-07-01 华为技术有限公司 一种实现共享网格保护的方法和装置
CN101841487A (zh) * 2010-05-24 2010-09-22 中兴通讯股份有限公司 聚合链路服务流的配置方法及包交换装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101656630B (zh) * 2009-09-09 2015-09-16 中兴通讯股份有限公司 一种业务保护方法和系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060251074A1 (en) * 2005-05-06 2006-11-09 Corrigent Systems Ltd. Tunnel provisioning with link aggregation
CN1859298A (zh) * 2005-10-26 2006-11-08 华为技术有限公司 一种选择路径的方法
EP1921808A1 (en) * 2006-11-10 2008-05-14 Lucent Technologies Inc. Preemptive transmission protection scheme for data services
CN101471693A (zh) * 2007-12-27 2009-07-01 华为技术有限公司 一种实现共享网格保护的方法和装置
CN101841487A (zh) * 2010-05-24 2010-09-22 中兴通讯股份有限公司 聚合链路服务流的配置方法及包交换装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110519782A (zh) * 2019-09-24 2019-11-29 广东电网有限责任公司 一种通信网多通道选择方法及装置
CN110519782B (zh) * 2019-09-24 2023-04-14 广东电网有限责任公司 一种通信网多通道选择方法及装置

Also Published As

Publication number Publication date
CN102469019A (zh) 2012-05-23
CN102469019B (zh) 2015-04-01

Similar Documents

Publication Publication Date Title
WO2012065466A1 (zh) 一种包交换网络中聚合链路带宽的分配方法及装置
US9705735B2 (en) System and method using RSVP hello suppression for graceful restart capable neighbors
JP4796157B2 (ja) ネットワーク通信における資源配分を実施するためのシステム及び方法
US7327675B1 (en) Fairness of capacity allocation for an MPLS-based VPN
CN102132525B (zh) 用于建立业务连接及相关监控连接的方法
US8320380B2 (en) Under-assigning resources to video in triple-play virtual topologies to protect data-class traffic
WO2008098451A1 (fr) Procédé d&#39;établissement de tunnel, dispositif de noeud de réseau et système de réseau
WO2005109756A1 (fr) Reseau porteur d&#39;anneaux et procede de mise en oeuvre de porteur de services
WO2011022998A1 (zh) 自动保护倒换方法、设备和系统
US20080225716A1 (en) Quality of service admission control network
WO2006034644A1 (fr) Reseau en anneau et methode de mise en oeuvre de ses services
EP2594042A1 (en) Sharing resource reservations among different sessions in rsvp-te
CN103765834B (zh) 用于最小化数据网络中的抢占的软抢占的方法及装置
CN102132524B (zh) 用于建立业务连接及相关监控连接的方法
WO2016119265A1 (zh) 一种网络业务建立方法、协作控制中心及网络系统
WO2007019758A1 (fr) Méthode, système et appareil d’implémentation d’ingénierie de trafic
WO2015024440A1 (zh) 一种获取ip链路的链路开销值的方法及系统
WO2012068911A1 (zh) 一种保护带宽资源的预留方法及系统
WO2008119277A1 (fr) Procédé et dispositif pour mettre en oeuvre mpls-te sur une interface vlan
WO2012068834A1 (zh) 聚合链路的管理方法及系统
CN110892687B (zh) 多级资源预留
Srikitja et al. On providing survivable QoS services in the next generation Internet
Kaur An overview of quality of service computer network
Petersson MPLS based recovery mechanisms
Suhaimy et al. Analysis of MPLS-TP network for different applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11840812

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11840812

Country of ref document: EP

Kind code of ref document: A1