WO2008080740A1 - Procede d'estimation du couple d'un moteur de vehicule fourni par un motif d'injection comportant q injections - Google Patents

Procede d'estimation du couple d'un moteur de vehicule fourni par un motif d'injection comportant q injections Download PDF

Info

Publication number
WO2008080740A1
WO2008080740A1 PCT/EP2007/063289 EP2007063289W WO2008080740A1 WO 2008080740 A1 WO2008080740 A1 WO 2008080740A1 EP 2007063289 W EP2007063289 W EP 2007063289W WO 2008080740 A1 WO2008080740 A1 WO 2008080740A1
Authority
WO
WIPO (PCT)
Prior art keywords
injection
injections
pattern
equivalent
angle
Prior art date
Application number
PCT/EP2007/063289
Other languages
English (en)
Inventor
Guillermo Ballesteros
Michaël PARTOUCHE
Original Assignee
Renault S.A.S.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault S.A.S. filed Critical Renault S.A.S.
Publication of WO2008080740A1 publication Critical patent/WO2008080740A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2409Addressing techniques specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1002Output torque
    • F02D2200/1004Estimation of the output torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the invention relates to motor vehicle engines. It relates in particular to internal combustion engines with gasoline or diesel fuel, with direct or indirect fuel injection, whose cylinder number is greater than or equal to one.
  • the amount of fuel to be injected determines the characteristics of the combustion. It directly influences the level of pollutant emissions and the thermodynamics of the engine. The main benefits of the engine (pollution, consumption, performance and approval) are therefore directly related to controlling the amount of fuel injected.
  • an injection pattern can have up to six injections per cylinder and motor time. This increasing number of injections makes it difficult to control the torque provided by the engine and the focus tests to control the engine.
  • the means for estimating the torque as a function of the number of injections must be reviewed if the number of injections varies.
  • An object of the invention is to provide a simple and reliable method for evaluating the torque provided by a given injection pattern of an engine.
  • a torque estimation method of a vehicle engine provided by an injection pattern comprising q injections, wherein: a) It is estimated a torque value corresponding to the first two injections the reason; b) If the pattern includes at least one other injection immediately following, the equivalent injection (Q e q and ⁇ e q) corresponding to these two injections is estimated; c) The pattern is replaced by an equivalent pattern in which the first two injections are replaced by the equivalent injection; d) Steps a) to c) are repeated until the equivalent pattern is reduced to two injections, step a) being performed one last time to obtain the value of the torque provided by the injection pattern.
  • the invention makes it possible to predict in real time the torque developed by an injection pattern regardless of the number of injections, the quantity and the phasing of the injections and this, from the knowledge of the couple developed by a simple pattern comprising two injections.
  • the prediction of the torque indicated by means of the method of the invention simplifies the onboard torque structure in the engine control computer. It makes it possible to reduce considerably the number of tests as well as the size of the cartographies and thus the size of the memory of the computer. It compensates for the dependence between the realization of the couple and the injection pattern.
  • the torque estimation structure thus becomes independent of the number of injections.
  • the method according to the invention may also have at least one of the following characteristics:
  • the injection equivalent to the injections (1 to p) is determined at the angle ⁇ p + i, the phasing of the injection p + 1.
  • the injection equivalent to ⁇ p + i is determined by an equivalent injection angle Q eq i, P and an injected equivalent quantity Q eq i, P which guarantee the same thermodynamic properties and the same chemical conditions at the angle ⁇ p + i that the injections 1 to p.
  • - Qeqip is determined from a cartographic model or a combustion model.
  • step a) is carried out on the basis of a mapping based on the injection start angles, the quantities injected and the speed. - the quantities injected can be replaced by the fuel pressure and the activation time.
  • the equivalent injection angle Q eq i, P and the equivalent injected quantity Q eq i , p, the angle of injection are used.
  • FIG. 1 is a diagram showing the implementation of the method according to the invention.
  • FIG. 2 is a flowchart illustrating certain steps of the method of FIG. 1;
  • FIG. 3 illustrates a mapping step implemented in the method of FIG. 2;
  • FIG. 4 illustrates a variant of the step of FIG. 3
  • FIG. 5 is a diagram illustrating steps for implementing the method of FIG. 2.
  • FIG. 1 very schematically illustrates a motor 2 according to a preferred embodiment of the invention.
  • This is a conventional internal combustion engine.
  • Such an engine comprises several cylinders, for example four in number.
  • a sensor 16 of a conventional type is provided on the crankshaft 15 to which the connecting rods are connected in order to measure the angular position of the crankshaft and its rotational speed. This instantaneous position makes it possible to phase injections.
  • Each cylinder is also associated with an injector 18, the injectors being all connected to a common rail 20 (or rail) for supplying fuel under pressure.
  • the engine comprises a member 22 for measuring the fuel pressure in the ramp and a member 24 for measuring the temperature of the fuel in the ramp.
  • the engine comprises an engine control computer (ECU) 26 for controlling the engine and implementing the steps of the method according to the invention.
  • the vehicle comprises an accelerator pedal 30 actuated by the driver and whose position is communicated to the computer 26 to enable it to control the engine according to the will of the driver.
  • the position of the pedal allows the computer 26 to interpret the will of the driver on the form of a torque instruction as shown in block 32 of Figure 1.
  • An injection pattern is conventionally composed of a number q of injections phased angularly with respect to the angle ⁇ of the crankshaft, p denotes any injection among q injections of the pattern so that p is between 1 and q.
  • Each injection starts at a precise angle ⁇ p for the injection of a quantity Q p of fuel.
  • the choice of pattern and quantities injected depends on the operating point of the motor. It corresponds to the best compromise to satisfy the services of depollution, consumption, performance and approval of the engine. More specifically, the operating point of the engine is defined by all the engine status parameters and the systems linked to it (speed, load, water temperature, oil temperature, air temperature).
  • the computer 26 interprets the fuel mass instructions to be injected from each injection of the pattern. Each injector 18 is then activated for each injection p q injections of the pattern, for a duration Ti p called activation time of this p theme injection.
  • the computer 26 synchronizes and angularly positions the control of the injector as a function of the position of the crankshaft ⁇ p associated with the pth injection of the pattern. The calculator thus realizes the injection pattern, namely the q injections, in the cylinder.
  • the block 38 firstly collects the information concerning the pattern, that is to say the number of injections q and, for each injection p of the pattern, the injection start angle ⁇ p and the quantity of fuel to be injected Qp.
  • the computer 26 uses a map shown in FIG. 3 to predict the resulting indicated torque.
  • This cartography uses as input the knowledge of the angles ⁇ i, Q 2 of the beginning of injection, for example of the first two injections, the corresponding quantities of fuel injected Qi, Q2 and the engine speed, as well as the knowledge of the starting angle. the combustion cycle ⁇ o and the end angle of the combustion cycle ⁇ 3 .
  • the injected quantities are replaced by the pressure P m ⁇ i of the fuel in the ramp and the activation times T 1 , T 2 associated with each injection of the pattern.
  • This variant has the advantage of estimating the effects of the spreading of the injection, the particle size and depth of the jet. But the first method remains a good approximation.
  • the angle ⁇ o indicates the beginning of the admission associated with the pattern
  • the angle ⁇ i indicates the beginning of the first injection
  • the angle Q 2 the beginning of the second injection
  • the angle ⁇ 3 corresponds to the end of admission if the pattern comprises only 2 injections, or the start angle of the third injection if the pattern comprises more than 2 injections.
  • Cinst designates the instantaneous indicated gas or torque couple developed between the angle ⁇ o and the angle ⁇ 3.
  • Block 46 is then determined the angle of this equivalent injection.
  • This angle ⁇ eq i, 2 is obtained from a cartographic model or a physical model of combustion known in itself such as the Vibe, Heywood, Chmela models.
  • Such models include the estimation of the flow of material in and out (admission, exhaust and injection). These are modelizations that estimate the energy release and the evolution of the concentrations of the main reagents and products.
  • the knowledge of the concentrations of HC, O 2 , N 2 , CO 2 and H 2 O is sufficient.
  • a kinematic part and a thermodynamic part allow in the model to estimate the pressure and the temperature as well as the torque according to the angle of the crankshaft.
  • This equivalent angle ⁇ eq1 , 2 and this equivalent quantity Q eq i, 2 ensure that the angle ⁇ 3 (which corresponds to the angular window extending from the angle ⁇ o from the beginning of admission to the beginning angle injection of the third injection) has the same thermodynamic properties (temperature T 3 , pressure P 3 ) and the same chemical conditions (concentration of reagents HC, O 2 , N 2 , CO 2 , H 2 O: n H c, n 02 , n N2 , n C o2, n H2 o) as the beginning of the injection pattern that it synthesizes.
  • the indicated average torque corresponding to all the injections is equal to:
  • n is the total number of injections (n ⁇ 3)
  • the method therefore operates iteratively. He interprets two injections as an equivalent injection.
  • the third injection takes place at the angle Q p with a quantity of injected fuel Q p .
  • the p-th one injection took place with a quantity Q p i and an angle Q p .i.
  • the method performed all injections located between the first and p-2 ⁇ eme as an equivalent injection angle ⁇ eqp -2 and amount of fuel Q p eq-2-
  • the calculation of the average sliding torque between the angle ⁇ p .i and the angle ⁇ p is made from the two-shot mapping.
  • the combustion model makes it possible to calculate the angle ⁇ eqp -i equivalent to the previous injections having the equivalent quantity Q eq pi which ensures the same thermodynamic conditions of pressure, temperature and chemical composition for the angle ⁇ p where the pth injection.
  • the calculation of the torque for the p th th injection will then be between the angle ⁇ p -i and ⁇ p from the mapping.
  • step by step until the q : th injection which is the last, the process finally brings the pattern comprising q injections to a pattern comprising two injections.
  • the pair corresponding to the q injections pattern will be determined in block 40 as before using the angles ⁇ eq i, q -i and ⁇ q and the Quantities Q eq i, q -i and Q q
  • FIG. implementation of the method in the case of a four-injection pattern The feedback loop illustrated in Figure 2 is then traveled twice before obtaining the indicated torque.

Abstract

L'invention concerne un procédé d'estimation du couple d'un moteur de véhicule fourni par un motif d'injection comportant q injections: a) On estime une valeur de couple correspondant aux deux premières injections du motif; b) Si le motif comporte au moins une autre injection immédiatement suivante, on estime l'injection équivalente (Qeq et ϑeq) correspondant à ces deux injections; c) Le motif est remplacé par un motif équivalent dans lequel les deux premières injections sont remplacées par ladite injection équivalente; d) Les étapes a) à c) sont répétées jusqu'à ce que le motif équivalent se réduise à deux injections, l'étape a) étant réalisée une dernière fois pour obtenir la valeur du couple fourni par le motif d'injection.

Description

PROCEDE D'ESTIMATION DU COUPLE D'UN MOTEUR DE VEHICULE FOURNI PAR UN MOTIF D'INJECTION COMPORTANT q INJECTIONS
L'invention concerne les moteurs de véhicule automobile. Elle concerne en particulier les moteurs rotatifs à combustion interne à essence ou diesel, à injection directe ou indirecte de carburant, dont le nombre de cylindre est supérieur ou égal à un.
La quantité de carburant à injecter détermine les caractéristiques de la combustion. Elle influe directement sur le niveau des émissions de polluant et sur la thermodynamique du moteur. Les principales prestations du moteur (pollution, consommation, performance et agrément) sont donc directement liées à la maîtrise de la quantité de carburant injectée. Aujourd'hui, un motif d'injection peut comporter jusqu'à six injections par cylindre et par temps moteur. Ce nombre d'injections croissant rend difficile le contrôle du couple fourni par le moteur et les essais de mise au point permettant la commande du moteur. De plus, les moyens permettant d'estimer le couple en fonction du nombre d'injections doivent être revus si le nombre d'injections varie.
Un but de l'invention est de fournir un procédé simple et fiable pour évaluer le couple fourni par un motif d'injection donné d'un moteur.
A cet effet, on prévoit selon l'invention un procédé d'estimation de couple d'un moteur de véhicule fourni par un motif d'injection comportant q injections, dans lequel : a) On estime une valeur de couple correspondant aux deux premières injections du motif ; b) Si le motif comporte au moins une autre injection immédiatement suivante, on estime l'injection équivalente (Qeq et θeq) correspondant à ces deux injections ; c) Le motif est remplacé par un motif équivalent dans lequel les deux premières injections sont remplacées par ladite injection équivalente ; d) Les étapes a) à c) sont répétées jusqu'à ce que le motif équivalent se réduise à deux injections, l'étape a) étant réalisée une dernière fois pour obtenir la valeur du couple fourni par le motif d'injection.
L'invention permet de prédire en temps réel le couple développé par un motif d'injection quel que soit le nombre d'injections, la quantité et le phasage des injections et ce, à partir de la connaissance du couple développé par un motif simple comportant deux injections. La prédiction du couple indiqué au moyen du procédé de l'invention simplifie la structure de couple embarquée dans le calculateur de contrôle du moteur. Elle permet de réduire considérablement le nombre d'essais ainsi que la taille des cartographies et donc la taille de la mémoire du calculateur. Elle compense la dépendance entre la réalisation du couple et le motif d'injection. La structure d'estimation du couple devient ainsi indépendante du nombre d'injections. Le procédé selon l'invention pourra présenter en outre au moins l'une quelconque des caractéristiques suivantes :
- l'injection équivalente aux injections (1 à p) est déterminée à l'angle θp+i , phasage de l'injection p+1 .
- l'injection équivalente à θp+i est déterminée par un angle d'injection équivalent Qeqi,P et une quantité injectée équivalente Qeqi,P qui garantissent les mêmes propriétés thermodynamiques et les mêmes conditions chimiques à l'angle θp+i que les injections 1 à p.
- la quantité injectée équivalente est déterminée à partir de l'équation :
Figure imgf000004_0001
où Q1 est la quantité de carburant injectée pour une injection i, avec 1 < i < p
- Qeqip est déterminé à partir d'un modèle cartographique ou un modèle de combustion.
- l'étape a) est réalisée à partir d'une cartographie basée sur les angles de début d'injection, les quantités injectées et le régime. - les quantités injectées peuvent être remplacées par la pression du carburant et le temps d'activation.
- pour l'estimation d'un couple correspondant aux injections 1 à p+1 du motif, on utilise l'angle d'injection équivalent Qeqi,P et la quantité injectée équivalente Qeqi,p, l'angle d'injection θp+i et la quantité injectée Qp+i à l'injection p+1
D'autres caractéristiques et avantages de l'invention apparaîtront encore dans la description suivante d'un mode préféré de réalisation et de variantes donnés à titre d'exemples non limitatifs en référence aux dessins annexés sur lesquels :
- la figure 1 est un schéma montrant la mise en œuvre du procédé selon l'invention ;
- la figure 2 est un organigramme illustrant certaines étapes du procédé de la figure 1 ; - la figure 3 illustre une étape de cartographie mise en œuvre dans le procédé de la figure 2 ;
- la figure 4 illustre une variante de l'étape de la figure 3 ; et
- la figure 5 est un diagramme illustrant des étapes de mise en œuvre du procédé de la figure 2. La figure 1 illustre très schématiquement un moteur 2 selon un mode préféré de réalisation de l'invention. Il s'agit d'un moteur à combustion interne classique. Un tel moteur comprend plusieurs cylindres, par exemple au nombre de quatre. Un capteur 16 d'un type classique est prévu sur le vilebrequin 15 auquel sont reliées les bielles afin de mesurer la position angulaire du vilebrequin et sa vitesse de rotation. Cette position instantanée permet de phaser les injections. A chaque cylindre, est associé également un injecteur 18, les injecteurs étant tous connectés à une rampe commune 20 (ou rail), d'alimentation en carburant sous pression. Le moteur comprend un organe 22 de mesure de la pression du carburant dans la rampe ainsi qu'un organe 24 de mesure de la température du carburant dans la rampe. Le moteur comprend un calculateur de contrôle moteur (ECU) 26 assurant la commande du moteur et mettant en œuvre les étapes du procédé selon l'invention. Le véhicule comprend une pédale d'accélérateur 30 actionnée par le conducteur et dont la position est communiquée au calculateur 26 pour lui permettre de commander le moteur selon la volonté du conducteur. La position de la pédale permet au calculateur 26 d'interpréter la volonté du conducteur sur la forme d'une consigne de couple comme illustré au bloc 32 de la figure 1.
Plus précisément, cette volonté est auparavant arbitrée face aux demandes concurrentes des autres calculateurs habituels du véhicule calculateur de boîte de vitesse automatique, d'ESP (programme de stabilité électronique), d'ACC (Automative Cruise Control ou régulateur de vitesse), etc.
Au bloc 34 suivant relié au bloc 32, le procédé traduit la consigne de couple en un motif d'injection. Un motif d'injection est classiquement composé d'un nombre q d'injections phasées angulairement par rapport à l'angle θ du vilebrequin, p désigne une injection quelconque parmi les q injections du motif de sorte que p est compris entre 1 et q. Chaque injection débute à un angle θp précis pour l'injection d'une quantité Qp de carburant. Le choix du motif et des quantités injectées est fonction du point de fonctionnement du moteur. Il correspond au meilleur compromis pour satisfaire les prestations de dépollution, de consommation, de performance et d'agrément du moteur. Plus précisément, le point de fonctionnement du moteur est défini par l'ensemble des paramètres d'état du moteur et des systèmes qui lui sont liés (régime, charge, température d'eau, température d'huile, température d'air d'admission, température d'échappement, pression d'air d'admission, pression d'air d'échappement, état de chargement du filtre à particules, état de chargement du piège à oxydes d'azote, nombre d'injections dans le motif, proximité angulaire des injections au sein du même motif, etc.). Ce mode de fonctionnement est classique et ne sera pas ici détaillé. Au même bloc 34, le calculateur 26 interprète les consignes de masse de carburant à injecter de chacune des injections du motif. Chaque injecteur 18 est activé alors pour chaque injection p des q injections du motif, pendant une durée Tip nommée temps d'activation de cette pιeme injection. Le calculateur 26 synchronise et positionne angulairement la commande de l'injecteur en fonction de la position du vilebrequin θp associée à la pιeme injection du motif. Le calculateur réalise ainsi le motif d'injection, à savoir les q injections, dans le cylindre.
Dans une étape ultérieure du procédé illustrée au bloc 36, le calculateur 26 va prédire le couple indiqué équivalent à ce motif. Le détail des étapes mises en œuvre au bloc 36 est illustré à la figure 2.
A cette fin, le bloc 38 collecte tout d'abord les informations concernant le motif c'est-à-dire le nombre d'injections q et, pour chaque injection p du motif, l'angle de début d'injection θp et la quantité de carburant à injecter Qp.
Au bloc 40, le calculateur 26 utilise une cartographie illustrée à la figure 3 pour prédire le couple indiqué résultant. Cette cartographie utilise en entrée la connaissance des angles θi, Q2 de début d'injection par exemple des deux premières injections, des quantités de carburant injectées Qi, Q2 correspondantes et du régime du moteur, ainsi que la connaissance de l'angle de début du cycle de combustion θo et l'angle de fin du cycle de combustion θ3.
Par convention, pour un moteur à 4 temps, ΘO=O et Θ3=72O°.
Le diagramme de la figure 2 est tout d'abord considéré pour p=2, c'est-à-dire pour les deux premières injections d'un motif comme celui illustré sur le premier diagramme de la figure 5.
Dans une méthode alternative illustrée à la figure 4, on remplace les quantités injectées par la pression Pmιi du carburant dans la rampe et les temps d'activation T1, T2 associés à chaque injection du motif. Cette variante présente l'avantage d'estimer les effets de l'étalement de l'injection, de la granulométrie et de la profondeur du jet. Mais la première méthode reste néanmoins une bonne approximation.
Comme illustré sur le premier diagramme de la figure 5, l'angle θo indique le début de l'admission associée au motif, l'angle θi repère le début de la première injection, l'angle Q2 le début de la deuxième injection et l'angle Θ3 correspond à la fin de l'admission si le motif ne comporte que 2 injections, ou l'angle de début de la troisième injection si le motif comporte plus de 2 injections. En effet, cette cartographie permet d'estimer l'intégrale du couple sur une fenêtre angulaire de largeur Aθ = Θ3 - Θo , soit :
Θ3 ^ Cinst dθ
ΘO où Cinst désigne le couple gaz ou couple indiqué instantané développé entre l'angle θo et l'angle Θ3.
La valeur du couple indiqué moyen sur cette fenêtre angulaire est obtenue par le calcul :
Θ3
J Cinst dθ C(Θ3) = ^
#3 -00
Si le motif d'injection comprend seulement deux injections (p=2) alors AΘ=720°. Cette cartographie est suffisante pour produire le couple et le procédé prend fin.
Si le nombre total q d'injections du motif est supérieur à deux et par exemple égal à 4 comme illustré sur le premier diagramme de la figure 5, on procède de la façon suivante. Le bloc 44 calcul l'injection équivalente aux deux premières injections (p=2). Cette injection correspond à une quantité de carburant injectée Qeqi,2 égale à la somme des quantités injectées par les deux premières injections de sorte que :
Figure imgf000008_0001
Au bloc 46 est ensuite déterminé l'angle de cette injection équivalente. Cet angle θeqi,2 est obtenu à partir d'un modèle cartographique ou d'un modèle physique de combustion connu en lui-même tel que les modèles Vibe, Heywood, Chmela. De tels modèles intègrent l'estimation des flux de matière en entrée et en sortie (admission, échappement et injection). Il s'agit de modélisations qui estiment le dégagement d'énergie et l'évolution des concentrations des principaux réactifs et produits. Pour l'estimation du couple, la connaissance des concentrations de HC, O2, N2, CO2 et H2O est suffisante. Une partie cinématique et une partie thermodynamique permettent dans le modèle d'estimer la pression et la température ainsi que le couple en fonction de l'angle du vilebrequin.
Cet angle équivalent θeq1,2 et cette quantité équivalente Qeqi,2 garantissent que l'angle Θ3 (qui correspond à la fenêtre angulaire s'étendant depuis l'angle θo de début d'admission jusqu'à l'angle de début d'injection de la troisième injection) présente les mêmes propriétés thermodynamiques (température T3, pression P3) et les mêmes conditions chimiques (concentration des réactifs HC, O2, N2, CO2, H2O : nHc, n02, nN2, nCo2, nH2o) que le début du motif d'injection qu'il synthétise.
L'angle θeqi,2 est donc fonction des grandeurs suivantes :
- les quantités Q? et Q2 associées aux deux premières injections du motif ;
- les angles Θ1, Θ2 et Θ3 débutant les trois premières injections du motif ;
- la température et la pression dans le collecteur d'admission ; - la pression de carburant dans le rail ;
- la quantité de gaz d'échappement recirculé,
- le régime du moteur ;
- les températures d'eau et d'huile, etc.
Dans la mesure où le motif comporte 4 injections, le procédé incrémente (bloc 48) p d'une unité (soit p=3). L'étape correspondant au bloc
40 est de nouveau mise en œuvre avec la même cartographie que celle utilisée au bloc 40, et ceci pour déterminer une nouvelle valeur du couple moyen notée 0(64). Pour cela, les valeurs Θ1 et Q2 sont remplacées par respectivement les valeurs θeqi,2 et Q4, ce qui permet d'obtenir le couple moyen indiqué glissant correspondant aux trois premières injections. La valeur du couple moyen glissant C[Q4) est obtenue de la façon suivante : Au moyen de la cartographie, on détermine l'intégrale des couples :
Θ3 Θ4
^Cinstdθ et ^Cinstdθ
ΘO Θ3 La valeur du couple indiqué moyen glissant sera obtenue par le calcul :
Figure imgf000010_0001
Si, comme illustré au bloc 42 de la figure 2, le nombre d'injections était épuisé (cas de trois injections), le couple moyen indiqué C(Q4) aurait été obtenu et le procédé aurait pris fin, Q4 étant alors égal à 720°. A l'inverse, le nombre d'injections du motif étant supérieur à trois, les étapes 44 et 46 sont renouvelées. On calcule ainsi la nouvelle quantité équivalente Qeqi,3 correspondant aux injections à prendre en compte. On détermine l'angle Qeqi,3 équivalent et au moyen d'une nouvelle mise en œuvre de l'étape de cartographie. Avec le motif illustré sur le dernier diagramme de la figure 5, la dernière étape du procédé sera réalisée au bloc 40 avec la détermination du couple moyen glissant C(θ5), alors égal au couple moyen (Q5= 7200J, détermination obtenue à partir des valeurs Qeqi,3, Qs, Qeqi,3, et Q4.
De façon générale, le couple moyen indiqué correspondant à l'ensemble des injections est égal à :
Θ3 „ θk+1
ICinstdθ + ∑ ^Cinstdθ
(^ _ Θ0 k=3 θk
4π où n est le nombre total d'injections (n≥ 3)
Le procédé fonctionne donc de façon itérative. Il interprète deux injections comme une injection équivalente. La pιeme injection a lieu à l'angle Qp avec une quantité de carburant injectée Qp. Avant cette injection, la p-1eme injection a eu lieu avec une quantité Qp-i et un angle Qp.i. Auparavant, le procédé a interprété l'ensemble des injections situées entre la première et la p-2ιeme comme une injection équivalente d'angle θeqp-2 et de quantité de carburant Qeqp-2-
Le calcul du couple moyen glissant entre l'angle θp.i et l'angle θp est réalisé à partir de la cartographie à deux injections. Le modèle de combustion permet de calculer l'angle θeqp-i équivalent aux injections précédentes ayant la quantité équivalente Qeqp-i qui assure les mêmes conditions thermodynamiques de pression, de température et de composition chimique pour l'angle θp où se produira la pιeme injection. Le calcul du couple pour la pιeme injection se fera alors entre l'angle θp-i et θp à partir de la cartographie.
Ainsi, de proche en proche, jusqu'à la q:ème injection qui est la dernière, le procédé ramène finalement le motif comportant q injections à un motif comportant deux injections. La première a comme angle équivalent θeqi,q-i et comme quantité équivalente Qeqi,q-i = ∑Q, avec i compris entre 1 et q-1 , et la dernière injection a comme angle θq et comme quantité Qq.
Le couple correspondant au motif à q injections sera déterminé au bloc 40 comme précédemment en utilisant les angles θeqi,q-i et θq et les Quantités Qeqi,q-i et Qq On a ainsi illustré à la figure 5 la mise en œuvre du procédé dans le cas d'un motif à quatre injections. La boucle de rétroaction illustrée à la figure 2 est donc parcourue deux fois avant d'obtenir le couple indiqué.
Bien entendu, on pourra apporter à l'invention de nombreuses modifications sans sortir du cadre de celle-ci.

Claims

REVENDICATIONS
1 . Procédé d'estimation du couple d'un moteur de véhicule fourni par un motif d'injection comportant q injections : a) On estime une valeur de couple correspondant aux deux premières injections du motif ; b) Si le motif comporte au moins une autre injection immédiatement suivante, on estime l'injection équivalente (Qeq et θeq) correspondant à ces deux injections ; c) Le motif est remplacé par un motif équivalent dans lequel les deux premières injections sont remplacées par ladite injection équivalente ; d) Les étapes a) à c) sont répétées jusqu'à ce que le motif équivalent se réduise à deux injections, l'étape a) étant réalisée une dernière fois pour obtenir la valeur du couple fourni par le motif d'injection.
2. Procédé selon la revendication 1 , dans lequel l'injection équivalente aux injections (1 à p) est déterminée à l'angle θp+i , phasage de l'injection p+1 .
3. Procédé selon la revendication 2, dans lequel l'injection équivalente à θp+i est déterminée par un angle d'injection équivalent Qeqi,P et une quantité injectée équivalente Qeqi,P qui garantissent les mêmes propriétés thermodynamiques et les mêmes conditions chimiques à l'angle θp+i que les injections 1 à p
4. Procédé selon la revendication 3, dans lequel
Figure imgf000012_0001
où Q1 est la quantité de carburant injectée pour une injection i, avec 1 < i < p.
5. Procédé selon la revendication 3, dans lequel Qeqi,P est déterminé à partir d'un modèle cartographique ou un modèle de combustion.
6. Procédé selon les revendications 1 à 5, dans lequel l'étape a) est réalisée à partir d'une cartographie basée sur les angles de début d'injection, les quantités injectées et le régime.
7. Procédé selon la revendication 6, dans lequel les quantités injectées sont remplacées par la pression du carburant et le temps d'activation.
8. Procédé selon les revendications 6 ou 7, dans lequel pour l'estimation d'un couple correspondant aux injections 1 à p+1 du motif, on utilise l'angle d'injection équivalent Qeq1tP et la quantité injectée équivalente Qβqi,P, l'angle d'injection θp+i et la quantité injectée Qp+i à l'injection p+1
PCT/EP2007/063289 2006-12-21 2007-12-04 Procede d'estimation du couple d'un moteur de vehicule fourni par un motif d'injection comportant q injections WO2008080740A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0611182A FR2910547B1 (fr) 2006-12-21 2006-12-21 Procede d'estimation du couple d'un moteur de vehicule fourni par un motif d'injection comportant q injections.
FR06/11182 2006-12-21

Publications (1)

Publication Number Publication Date
WO2008080740A1 true WO2008080740A1 (fr) 2008-07-10

Family

ID=38216329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/063289 WO2008080740A1 (fr) 2006-12-21 2007-12-04 Procede d'estimation du couple d'un moteur de vehicule fourni par un motif d'injection comportant q injections

Country Status (2)

Country Link
FR (1) FR2910547B1 (fr)
WO (1) WO2008080740A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2754879A1 (fr) * 2013-01-15 2014-07-16 Robert Bosch GmbH Procédé et dispositif pour faire fonctionner un moteur à combustion interne

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10218552A1 (de) * 2001-04-27 2002-10-31 Denso Corp Drehmomentsteuerverfahren für Verbrennungsmotoren mit mehrstufiger Kraftstoffeinspritzung
US20040050360A1 (en) * 2000-12-27 2004-03-18 Werner Happenhofer Method for controlling an internal combustion engine
DE102004048008A1 (de) * 2004-10-01 2006-04-06 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040050360A1 (en) * 2000-12-27 2004-03-18 Werner Happenhofer Method for controlling an internal combustion engine
DE10218552A1 (de) * 2001-04-27 2002-10-31 Denso Corp Drehmomentsteuerverfahren für Verbrennungsmotoren mit mehrstufiger Kraftstoffeinspritzung
DE102004048008A1 (de) * 2004-10-01 2006-04-06 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2754879A1 (fr) * 2013-01-15 2014-07-16 Robert Bosch GmbH Procédé et dispositif pour faire fonctionner un moteur à combustion interne

Also Published As

Publication number Publication date
FR2910547A1 (fr) 2008-06-27
FR2910547B1 (fr) 2009-01-30

Similar Documents

Publication Publication Date Title
FR2982824A1 (fr) Procede de commande en regime transitoire d&#39;un systeme de propulsion hybride d&#39;un vehicule
FR3004493A1 (fr) Procede pour la mise en oeuvre d&#39;une fonction d&#39;apprentissage dans un vehicule automobile et des moyens pour appliquer le procede
WO2012100916A1 (fr) Procede de determination de la teneur en alcool d&#39;un nouveau melange de carburant dans un moteur a combustion interne d&#39;un vehicule, et dispositif pour sa mise en oeuvre
FR2964701A1 (fr) Systeme et procede de controle du nombre d&#39;injections pilotes
EP2956651B1 (fr) Procede de determination de la pression de gaz d&#39;echappement en amont du turbocompresseur et du debit traversant sa turbine
EP0686762A1 (fr) Procédé et dispositif de détermination des paramètres spécifiques des injecteurs d&#39;un moteur à combustion, notamment Diesel à pré-injection
EP1674699A1 (fr) Système de déclenchement d&#39;une purge de moyens de dépollution comportant un piège à NOx
FR2938877A1 (fr) Procede de pilotage d&#39;un moteur a combustion interne et moteur a combustion interne correspondant
FR2872203A1 (fr) Systeme d&#39;aide a la regeneration de moyens de depollution
FR2866957A1 (fr) Systeme de determination du taux de dilution d&#39;huile de lubrification d&#39;un moteur thermique de vehicule automobile
WO2008080740A1 (fr) Procede d&#39;estimation du couple d&#39;un moteur de vehicule fourni par un motif d&#39;injection comportant q injections
EP3201443A1 (fr) Moteur à combustion de véhicule automobile à pilotage de richesse amélioré
FR2894626A1 (fr) Procede de gestion d&#39;un moteur a combustion interne
FR2910550A1 (fr) Procede de correction des derives d&#39;un injecteur du moteur.
FR2910549A1 (fr) Procede de correction des derives des injecteurs d&#39;un moteur
FR2910551A1 (fr) Procede de correction des derives des injecteurs d&#39;un moteur
EP3215727B1 (fr) Procédé d&#39;estimation d&#39;une position d&#39;un papillon d&#39;arrivée des gaz pour le contrôle d&#39;un moteur à combustion interne
EP2743483A1 (fr) Procédé de contrôle d&#39;un moteur comprenant un cylindre équipé d&#39;une soupape d&#39;admission entrainée par un actionneur sans came
FR2903448A1 (fr) Procede de commande d&#39;un moteur de vehicule en fonction d&#39;une mesure d&#39;une position angulaire d&#39;un vilebrequin
FR2872202A1 (fr) Systeme d&#39;aide a la regeneration de moyens de depollution pour moteur de vehicule automobile
FR2916807A1 (fr) Determination et correction du phasage de la position angulaire d&#39;un moteur quatre temps a combustion interne a injection indirecte et a coupure d&#39;injection sequentielle / reinjection sequentielle controlee dans le temps
FR2912183A1 (fr) Systeme de controle pour moteur a allumage commande de vehicule automobile comportant un module de controle de la temperature des gaz d&#39;echappement de ce moteur
FR3059723A1 (fr) Procede de gestion de l&#39;injection dans un moteur de type diesel
EP3475556B1 (fr) Procede de determination de l&#39;avance a l&#39;allumage d&#39;un moteur a combustion interne et procede de controle d&#39;un moteur utilisant un tel procede
EP2438283A2 (fr) Contrôle du couple moteur lors d&#39;une phase d&#39;accélération suite à une phase de décélération

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07847790

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07847790

Country of ref document: EP

Kind code of ref document: A1