WO2008075624A1 - テラヘルツ帯用光学部品 - Google Patents

テラヘルツ帯用光学部品 Download PDF

Info

Publication number
WO2008075624A1
WO2008075624A1 PCT/JP2007/074118 JP2007074118W WO2008075624A1 WO 2008075624 A1 WO2008075624 A1 WO 2008075624A1 JP 2007074118 W JP2007074118 W JP 2007074118W WO 2008075624 A1 WO2008075624 A1 WO 2008075624A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
optical component
thin plate
terahertz band
terahertz
Prior art date
Application number
PCT/JP2007/074118
Other languages
English (en)
French (fr)
Inventor
Takashi Fujii
Yoshifumi Sano
Kazuyuki Hirao
Original Assignee
Murata Manufacturing Co., Ltd.
Yamaguchi Mica Co., Ltd.
Kyoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd., Yamaguchi Mica Co., Ltd., Kyoto University filed Critical Murata Manufacturing Co., Ltd.
Priority to JP2008550128A priority Critical patent/JP4849695B2/ja
Publication of WO2008075624A1 publication Critical patent/WO2008075624A1/ja
Priority to US12/486,394 priority patent/US20090303624A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices

Definitions

  • the present invention relates to a terahertz band optical component as a terahertz band optical filter, and more particularly to improvement of characteristics based on a novel configuration.
  • terahertz band optical components such as filters and polarizers are essential, and various types of terahertz band optical components are available.
  • One force is to fabricate by forming a periodic pattern of conductors on one main surface of a thin substrate.
  • the thin substrate needs to have a high transmittance with respect to light in the terahertz band, and the light incident on the substrate interferes (equal tilt interference). It is also important not to wake up. Therefore, the material and thickness of the substrate must be selected so that high transmittance can be obtained and interference does not occur. As described later, it is preferable that the thickness of the substrate is sufficiently thin compared to the wavelength. .
  • the thin! / Substrate is formed of an organic material such as paper or plastic, and the optical component for the terahertz band is formed as shown in FIG.
  • the ability to form the structure shown in Fig. 2 has been proposed.
  • FIG. 1 shows an optical element 110 which is an example of an optical component for a terahertz band.
  • the 110 is a thin structure through which electromagnetic waves are transmitted /, and a structure in which lines 114 for reflecting electromagnetic waves are periodically formed on the substrate 112.
  • the substrate 112 is made of paper such as printing paper, and the lines 114 are made of aluminum, A metal such as gold, silver, or copper is used, and an ink containing the metal is printed on a sheet to form a line 114 (see, for example, Patent Document 1).
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2004-29153 (Claims 1 and 4, paragraphs [0031]-[0035], [0 050], Fig. 1 etc.)
  • the thin substrate is formed of an organic material such as paper or plastic. It is difficult to form the line 114, which is a conductor pattern, by subjecting the metal paste printing or the like to heat treatment. (2) Since the substrate is likely to be deformed by a temperature having a large linear expansion coefficient, it is difficult to accurately obtain the desired characteristics by forming the line 114 as the conductor pattern with high accuracy. (3) Not suitable for use in humid environments that are sensitive to humidity. (4) Since the substrate is easily deformed by an external force, there are some problems such as deformation easily occurring in the process of manufacture and use.
  • the present invention aims to provide a novel optical component for a terahertz band that has extremely high heat resistance and moisture resistance and is excellent in various properties such as a linear expansion coefficient. It is an object of the present invention to provide a terahertz optical component suitable for practical use against terahertz waves of about 1 to 2.5 THz.
  • the optical component for a terahertz band of the present invention includes a mica thin plate substrate, and a conductive pattern having periodicity on one main surface of the thin plate substrate. It was formed (claim 1).
  • the thin plate-like substrate preferably has a thickness of t ⁇ / 10 with respect to a terahertz wave having a wavelength of ⁇ (m) from the viewpoint of avoiding equi-tilt interference (claim 2). . ⁇ ! ⁇
  • the thin plate-like substrate has a thickness of 3 ⁇ ; 12 (am) in consideration of strength and the like! /, (Claim 3).
  • the conductor pattern has an island shape with periodicity. (Claim 4), and when forming a wire grid, the conductor pattern is preferably a parallel stripe pattern (Claim 5). Further, when forming a band-pass filter, the conductor pattern is preferably a holed pattern in which island-like holes having periodicity are formed (Claim 6).
  • a mica thin plate substrate is used instead of an organic material substrate such as paper or plastic, and a periodic conductor pattern is formed on one main surface thereof to form a terahertz.
  • a band optical component is formed.
  • mica is an inorganic material that is thin and easily peeled off, and can be formed on an extremely thin / thin plate-like substrate having excellent heat resistance.
  • this thin mica-like substrate has been confirmed to have a high light transmittance in the terahertz band by experiments and the like.
  • the present invention has been made by paying attention to the above characteristics of the mica sheet-like substrate, and since the mica sheet-like substrate is excellent in heat resistance, the conductor pattern on the sheet-like substrate is made of paper. It can be formed by heat-treating metal paste printing, etc., which was impossible when using an organic material substrate such as plastic.
  • the thin mica-like substrate of the mica has excellent characteristics such as being not easily deformed by an external force strong against humidity having a small linear expansion coefficient as compared with a substrate of organic material such as paper or plastic. Is provided.
  • a terahertz band optical component having a novel structure having excellent characteristics such as a thin, high heat resistance and sufficient tensile strength, which is difficult to realize with an organic material substrate such as paper or plastic, is provided. Can be provided.
  • the mica thin plate-like substrate is formed to have a specific thickness m) of 10 (m) or less so as not to cause isotropic interference, and the effect of claim 1 is achieved.
  • An optical component for the hertz band can be provided.
  • the thickness of the mica thin plate substrate is 3 to 12 m), it is highly interested in 0.;! To 2.5 Terahertz waves around 5 THz. It is possible to provide optical components for the terahertz band with the most preferable substrate thickness in consideration of equi-tilt interference and substrate strength.
  • the optical circuit for the terahertz band having the frequency cut filter structure that achieves the effects of claims 1 to 3 above. Parts can be provided.
  • the conductor pattern is a holed pattern in which island-like holes having periodicity are formed. It is possible to provide a terrahertz optical component having a structure.
  • FIG. 1 is a schematic perspective view of a terahertz band optical component according to a first embodiment.
  • FIG. 2 is a partially enlarged front view of one main surface side of the optical component for the terahertz band in FIG.
  • FIG. 3 is a transmission characteristic diagram of an example of a mica thin plate-like substrate provided in the optical component for the terahertz band in FIG. 1.
  • FIG. 4 is a reflection characteristic diagram of an example of a mica thin plate substrate provided in the terahertz optical component of FIG.
  • FIG. 5 is a transmittance characteristic diagram when the thickness of the mica thin plate-like substrate included in the optical component for the terahertz band in FIG. 1 is changed.
  • FIG. 6 is a transmission characteristic diagram of mica of the optical component for the terahertz band in FIG.
  • FIG. 7 is a schematic perspective view of an optical component for a terahertz band according to a second embodiment.
  • FIG. 8 is a transmission characteristic diagram of the optical component for the terahertz band in FIG.
  • FIG. 9 is a schematic perspective view of a part of the optical component for the terahertz band according to the third embodiment.
  • FIG. 10 is an explanatory diagram of a conventional example.
  • Fig. 1 shows a terahertz band optical component la formed in a specific frequency cut filter structure
  • Fig. 2 is a partially enlarged front view of one main surface side of the terahertz band optical component la. It is.
  • the island-like pattern described later is exaggerated and is different from the actual dimensional relationship.
  • Figures 3 and 4 show the transmission and reflection characteristics of an example of the thin plate-like substrate 2 of the optical component la for the terahertz band.
  • Figs. 5 and 6 show the transmission characteristics of the optical component la for the terahertz band. Indicates.
  • the optical component la for the terahertz band in FIG. 1 is formed in a specific frequency cut filter structure that cuts off a predetermined frequency in the terahertz band, and muscovite [KA1 (Si AD O (OH)
  • a periodic island-like pattern 4 in which silver circular dots 3 are scattered is formed as a predetermined conductor pattern on one main surface 2a of the thin-plate board 2. ing. The structure etc. will be described in detail below.
  • the thin plate substrate 2 will be described.
  • Various types of mica including muscovite are easy to peel off! /, Are inorganic materials that have properties, and can be formed into a very thin thin plate having excellent light transmittance and heat resistance. Compared to organic materials such as plastic and plastic, it has excellent characteristics such as low coefficient of linear expansion and not easily deformed by external force strong against humidity.
  • the melting point of mica is about 1200 ° C, and even in the case of natural mica, it is said to be extremely stable at a temperature of 700 ° C or less, which is the dehydrating power from 700 ° C to 800 ° C.
  • the muscovite thin plate-like substrate 2 is a square of 1 Ocm square of 1 Ocm (vertical) X 1 Ocm (horizontal), which is a substrate size suitable for mass production of this type of filter.
  • the thickness of the thin plate-like substrate 2 is set as described below.
  • the thickness of the thin plate substrate 2 is t (m)
  • the wavelength of light is ⁇ (m)
  • the refractive index of mica is ⁇ ( ⁇ )
  • the dielectric constant of mica is ⁇ ( ⁇ )
  • the light is
  • the basic equation of thickness t for preventing equi-tilt interference from occurring in the thin plate-like substrate 2 can be expressed by the following equation (1), and its dielectric
  • the rate ⁇ ( ⁇ ) can be expressed by Equation (2) in Equation 2.
  • the dielectric constant ⁇ ( ⁇ ) of mica is 6.5 (documented value), and in the terahertz band, it is 7 (measured value) by experiments. It turned out to be.
  • the refractive index ⁇ ( ⁇ ) of the terahertz band of mica is 2.5.
  • the thickness of the thin plate-like substrate 2 satisfies the following formula (3) in order to prevent the terahertz wave from causing the equi-tilt interference in the thin plate-like substrate 2. It turned out to be set to.
  • the thickness of the thin plate-like substrate 2 is set to a thickness t ([I m) of ⁇ / 10 or less with respect to a terahertz wave having a wavelength ⁇ ( ⁇ ⁇ ) so as not to cause equiangular interference. Set it to! /.
  • the thickness of the thin plate-like substrate 2 is set based on practical consideration not only from the surface of the equi-tilt angle interference but also from the strength and other aspects.
  • TH z-TDS method terahertz Time domain spectroscopy
  • the mica thin plate-like substrate 2 exhibits a high transmittance in the terahertz band when it is thinner than about 10 ⁇ m. Therefore, the mica lamellar substrate 2 is a substrate suitable for the terahertz band around 0. ITHz (3.3 cm in wave number to 2.5 THz (83 cm in wave number 1 , 120 m in wavelength)). If it is! /
  • the thickness of the thin plate-like substrate 2 is determined based on the condition of 0 ⁇ t ⁇ / 10 in the above formula (3) so as not to cause equi-tilt interference. 12 m is the upper limit, and in practice, the upper limit of the thickness of the thin-plate substrate 2 is considered to be 12 inches for terahertz waves of approximately 2 ⁇ 5 THz or less.
  • the lower limit of the thickness of the thin plate-like substrate 2 is considered to be about 3, im.
  • a thin plate-like substrate 2 having a thickness of 23 ⁇ 111, 18 ⁇ ⁇ 12 m, and 4 m was taken out from the same muscovite mica piece, and transmittance was measured by the THz-TDS method. The results are shown in Fig. 5. Actual in the figure! 3 ⁇ 4, k, 1, and m are transmittance characteristics of 23 111, 18 ⁇ ⁇ 12 m, and 4 m.
  • the thickness is 23 m or 18 m, a peak appears in the transmittance, which is due to isotropic tilt interference. As the wavelength becomes shorter, this peak is located on the high frequency side. If the distance is less than 12 m, this peak disappears at 0 ⁇ ;!
  • the thickness of the thin plate-like substrate 2 is set to a suitable thickness of 3 to 12 111, which is suitable for terahertz waves in the range of about 0.1 to ⁇ to about 2.5 to ⁇ . Set. Specifically, the above 8 ⁇ m is used.
  • the periodic island-like pattern 4 of the silver circular dots 3 as the conductive pattern is formed on the main surface 2a on the incident side of the thin plate-like substrate 2, for example. It is formed by a practical and suitable method for mass production by printing a metal paste and heat-treating the metal paste.
  • each circular dot 3 has a diameter of 200 ⁇ m and is arranged in a regular triangular lattice shape with a pitch of 300 m as shown in FIG.
  • a metal mask is prepared in which holes having a diameter of 200 ⁇ m are arranged in a regular triangular lattice with a pitch of 300 ⁇ m.
  • the metal mask is brought into close contact with one main surface 2a of the prepared muscovite thin plate-like substrate 2, and a silver paste is applied in this state. Thereafter, the metal mask is removed from the thin plate-like substrate 2, and circular dots 3 of silver paste are printed on the main surface 2a of the thin plate-like substrate 2 in the form of dots.
  • the thin plate-like substrate 2 on which the circular dots 3 of the silver paste are printed in the form of dots is placed in an oven and subjected to a heat treatment of, for example, 300 ° C for 1 hour. At this time, as shown in the partially enlarged view of FIG. 2, the circular dots 3 adhere firmly to the thin plate-like substrate 2.
  • the solid line e in Fig. 6 is the transmittance characteristic with respect to frequency
  • the solid line f is the phase characteristic of the transmitted light.
  • the terahertz optical component la has a cut frequency almost unchanged in the range of 25 ° C to 75 ° C and a temperature coefficient of 0.3 GHz / °. It was also confirmed that the temperature dependence at C was extremely small.
  • the light transmittance of the terahertz band is higher than that of a substrate made of an organic material such as paper or plastic, and a muscovite thin plate substrate 2 having high heat resistance is used.
  • the island-like pattern 4 as the conductor pattern on the substrate 2 is formed by printing a metal paste or heat treatment, which is impossible when using a substrate of organic material such as paper or plastic, A frequency cut filter structure can be formed.
  • the thin plate-like substrate 2 has a size of 10 cm x 10 cm, so that the size is suitable for silver paste printing.
  • the pattern 4 can be easily and inexpensively formed with high accuracy. it can.
  • the thin plate-like substrate 2 has excellent characteristics such as not easily deforming by an external force strong against humidity having a small linear expansion coefficient, as compared with a substrate made of an organic material such as paper or plastic.
  • the optical component la for the terahertz band is thin, has high heat resistance, has a low linear expansion coefficient, and has a sufficient tensile strength, which is difficult to realize with an organic material substrate such as paper or plastic. In addition, it can be formed easily and inexpensively and with high precision.
  • FIG. 7 shows a terahertz band optical component lb formed in a bandpass filter structure
  • FIG. 8 shows the transmission characteristics of the terahertz band optical component lb.
  • a perforated pattern which will be described later, is exaggerated and is different from the actual dimensional relationship.
  • terahertz optical component lb in the same figure represents a terahertz band using a thin-plate substrate 2 of muscovite.
  • This is a bandpass filter structure that allows the specified frequency to pass through, and differs from the terahertz optical component la in Fig. 1 as a periodic conductor pattern on one principal surface 2a of the thin plate substrate 2.
  • a holed pattern 5 in which island-like holes having periodicity are formed is formed instead of the island-like pattern 4 of the circular dots 3 in FIG.
  • holed pattern 5 has holes 7 of 200 m in diameter arranged on aluminum thin film 6 in a regular triangular lattice pattern at a pitch of 300 m as shown in Fig. 6. Shape.
  • a thin plate-like substrate 2 of 10 cm square and 8 ⁇ m thickness is prepared, a resist is applied to one main surface 2a, and a resist pattern is formed in a dot shape having a diameter of 200 m in one lithography process. .
  • the thin plate-like substrate 2 on which the perforated pattern 5 is formed is heat-treated at 120 ° C, for example.
  • the transmission characteristics were measured by the above-described "THz-T DS method" on the optical component lb for the terahertz band formed as described above, the measurement results shown in Fig. 8 were obtained.
  • the solid line h in Fig. 8 is the transmittance characteristic with respect to the wave number
  • the solid line i is the phase characteristic of the transmitted light.
  • the optical component lb for the terahertz band forms a good band-pass filter having a transmittance of 70% at ITHz and a half-value width of 300 GHz.
  • a light-transmitting muscovite thin plate-like substrate 2 having a high terahertz band light transmittance compared with a substrate made of an organic material such as paper or plastic is used. Therefore, the perforated pattern 5 as the conductor pattern on the thin plate-like substrate 2 can be formed by the heat treatment of the metal vapor deposition film, which is impossible when using a substrate of organic material such as paper or plastic.
  • the bandpass filter structure can be formed by forming the conductor pattern easily and inexpensively with high accuracy.
  • the thin plate-like substrate 2 has excellent characteristics such that it does not easily deform due to an external force strong against humidity with a small linear expansion coefficient, compared to a substrate of organic material such as paper or plastic. Therefore, the optical component lb for the terahertz band also has excellent characteristics such as thin, high heat resistance, low linear expansion coefficient and sufficient tensile strength, which are difficult to realize with organic material substrates such as paper and plastic. In addition, it can be easily and inexpensively formed with high precision and force.
  • FIG. 9 is a perspective view of a part of the optical component lc for the terahertz band formed in the wire grid structure.
  • the vertical stripe pattern described later is exaggerated and the actual dimensional relationship is shown. It is different from the person in charge.
  • the optical component lc for the terahertz band in FIG. 9 is formed in a structure that becomes a polarizer in the vicinity of the terahertz band, for example, about 0.; Is
  • a muscovite thin plate-like substrate 2 and a metal mask having 50 m wide vertical stripe-like holes arranged in parallel at a pitch of 200 m are prepared.
  • the main surface 2a of the thin plate substrate 2 is brought into contact with the main surface 2a, and the silver paste is applied in this state.
  • the metal mask is removed from the thin plate-like substrate 2, and a vertical stripe pattern 9 of vertical stripes 8 is formed on one main surface 2a of the thin plate-like substrate 2 with silver paste.
  • the thin plate-like substrate 2 on which the vertical stripe pattern 9 is formed is put in an oven and subjected to a heat treatment of, for example, 300 ° C.
  • the transmission characteristics of the optical component lc for the terahertz band lc were measured by the above-mentioned "THz-TDS method", it was confirmed to operate as a polarizer at 0.;! To 0.3 THz. .
  • a light-transmitting muscovite thin plate-like substrate 2 having a high terahertz band light transmittance, which is higher than that of an organic material substrate such as paper or plastic is used.
  • the vertical stripe pattern 9 as the conductor pattern on the thin plate-like substrate 2 can be formed by heat treatment of a metal pattern, which was impossible when using a substrate of organic material such as paper or plastic.
  • a wire grid structure can be formed by forming a conductor pattern easily and inexpensively with high accuracy.
  • the thin plate-like substrate 2 has excellent characteristics such that it does not easily deform with an external force strong against humidity with a small linear expansion coefficient, as compared with a substrate made of organic materials such as paper and plastic. Therefore, the optical component lc for the terahertz band also has excellent properties such as thin, high heat resistance, low linear expansion coefficient and sufficient tensile strength, which are difficult to realize with organic material substrates such as paper and plastic. In addition, it can be easily and inexpensively formed with high precision and force.
  • the present invention is not limited to the above-described embodiments, and various modifications other than those described above can be made without departing from the gist thereof.
  • the thin plate-like substrate 2 Mica is not limited to muscovite mica [K (Mg, Fe) (Si AD O (OH)], synthetic mica [fluor phlogopite KMg (Si A1) 0 F, K
  • the thin plate-like substrate 2 may have any size and shape on the main surface. However, in practice, the thin plate-like substrate 2 has a fixed shape suitable for mass production of a certain size of about 10 cm square as described above. In order to achieve such a size that is desirable, the material of the thin plate substrate 2 is actually limited to muscovite and synthetic mica.
  • one main surface 2a of the thin plate-like substrate 2 may be the main surface on the outgoing light side depending on the use and function of the optical component for the terahertz band.
  • the shape, size, arrangement, etc. of the periodic conductor pattern may be appropriately set according to the use of the optical component for the terahertz band.
  • Optical component for belts La island-shaped pattern 4 dot shape and terahertz belt optical component lb perforated hole 5
  • the hole shape is not limited to a circle but may be a rectangular shape, etc.
  • the pitch of patterns 4 and 5 may be set appropriately according to the desired frequency characteristics.
  • the thickness of the thin plate-like substrate 2 is not limited as long as it satisfies the condition of the formula (3).
  • To ⁇ 2 ⁇ 5 THz terahertz wave is not limited to 3 to 12 mm
  • the conductor pattern may be formed of a conductor material such as various metals and metal compounds, and the formation method is not limited to the method of each of the above embodiments.
  • the present invention can be applied to terahertz optical components having various functions and characteristics.

Abstract

 耐熱性が極めて高く、線膨張係数や湿度等の諸特性に優れた新規なテラヘルツ帯用光学部品を提供する。  雲母の薄板状基板2の一主面2a上に所定の導体パターンとしての周期的な島状のパターン4を形成し、耐熱性が極めて高く、線膨張係数や湿度等の諸特性に優れた新規なテラヘルツ帯用光学部品1aを形成する。

Description

明 細 書
テラへルツ帯用光学部品
技術分野
[0001] この発明は、テラへルツ帯の光学的フィルタとしてのテラへルツ帯用光学部品に関 し、詳しくは、新規な構成に基づく特性の向上等に関する。
背景技術
[0002] 近年、癌治療等の医療分野を始めとする種々の分野において、略 0. ;!〜 10THz ( ITHzは 1012Hz)のテラへルツ帯が注目され、各種のテラへルツ帯利用技術が開発 されつつある。
[0003] そして、前記テラへルツ帯の測定や検出には、フィルタや偏光子等となるテラヘル ッ帯用光学部品が必須であり、このテラへルツ帯用光学部品には、種々の形式があ る力 その一つとして薄い基板の一主面に導体の周期的なパターンを印刷等して形 成してあ作製でさる。
[0004] ところで、前記の薄い基板は、テラへルツ帯の光に対し、高い透過率を有しているこ とが必要であり、また、基板へ入射した光が干渉(等傾角干渉)を起こさないことも重 要である。従って、基板の材質や厚みは、高い透過率が得られるように、かつ、干渉 を起こさないように選定する必要がある力 後述する通り、基板の厚みは波長に比較 して十分薄いことが好ましい。
[0005] そして、強度や柔軟性、作製の容易さ等を考慮して、前記薄!/、基板を紙、プラスチ ック等の有機材料で形成し、テラへルツ帯用光学部品を図 10に示す構造に形成す ること力提案されている。
[0006] 同図はテラへルツ帯用光学部品の一例である光学素子 110を示し、この光学素子
110は、電磁波が透過する薄!/、基体 112に電磁波を反射するライン 114を周期的に 形成した構造であり、基体 112には印刷用紙等の紙が使用され、ライン 114にはアル ミニゥム、金、銀、銅等の金属が使用され、該金属を含有するインクを用紙上に印刷 してライン 114が形成されて!/、る (例えば、特許文献 1参照)。
特許文献 1 :特開 2004— 29153号公報 (請求項 1、 4、段落 [0031]— [0035]、 [0 050]、図 1等)
発明の開示
発明が解決しょうとする課題
[0007] 従来提案のテラへルツ帯用光学部品である前記図 10の光学素子 110の場合、薄 い基板が紙やプラスチック等の有機材料で形成されるため、(1)耐熱性に乏しぐ導 体のパターンであるライン 114を金属ペーストの印刷等に熱処理を施して形成するこ とは困難である。 (2)基板の線膨張係数が大きぐ温度による変形が生じ易いので、 前記導体のパターンであるライン 114を高精度に形成して正確に所望の特性を得る ことが困難である。 (3)湿度に弱ぐ湿度の高い環境下での使用に向かない。 (4)基 板が外力で容易に変形するため、製造や使用の過程において変形等が容易に生じ る、などいつた問題点がある。
[0008] したがって、この種のテラへルツ帯用光学部品において、紙やプラスチック等の有 機材料で基板を形成することは適当でなぐ関心の高い 0.;!〜 2· 5THz前後のテラ ヘルツ波に対しても、等傾角干渉や強度等を考慮すると、紙やプラスチック等の有機 材料の基板を用いることは実用上は困難であると考えられる。
[0009] 本発明は、耐熱性や耐湿性が極めて高く、線膨張係数等の諸特性に優れた新規 なテラへルツ帯用光学部品を提供することを目的とし、とくに従来は困難であった 0. 1〜2· 5THz前後のテラへルツ波に対して実用上から好適なテラへルツ帯用光学部 品を提供することを目的とする。
課題を解決するための手段
[0010] 上記した目的を達成するために、本発明のテラへルツ帯用光学部品は、雲母の薄 板状基板を備え、該薄板状基板の一主面上に周期性がある導体パターンを形成し たことを特徴としている(請求項 1)。
[0011] 前記薄板状基板は、波長 λ ( m)のテラへルツ波に対して、厚み が t≤ λ /10であることが等傾角干渉を避ける面から好ましく(請求項 2)、とくに 0.;!〜 2. 5Τ Hz前後のテラへルツ波に対しては、強度等も考慮して前記薄板状基板が、 3〜; 12 ( a m)の厚みであることが実用的で好まし!/、 (請求項 3)。
[0012] そして、周波数カットフィルタを形成する場合、導体パターンは、周期性がある島状 のパターンであることが好ましく(請求項 4)、ワイヤーグリッドを形成する場合、前記導 体パターンは、平行なストライプ状のパターンであることが好ましい (請求項 5)。さらに 、バンドパスフィルタを形成する場合、前記導体パターンは、周期性がある島状の空 孔が形成された穴あきパターンであることが好ましレ、(請求項 6)。
発明の効果
[0013] 請求項 1の発明によれば、紙やプラスチック等の有機材料の基板ではなく雲母の薄 板状基板を使用し、その一主面上に周期性がある導体パターンを形成してテラヘル ッ帯用光学部品が形成される。
[0014] この場合、雲母は薄く剥がれ易い性質がある無機材料であり、耐熱性に優れた極 めて薄!/、薄板状基板に形成することが可能である。
[0015] しかも、この雲母の薄板状基板は、実験等によってテラへルツ帯の光透過率が高い ことが確かめられた。
[0016] そして、本発明は、雲母の薄板状基板の上記特性に着目してなされたものであり、 前記雲母の薄板状基板が耐熱性に優れるため、薄板状基板上の導体パターンを、 紙やプラスチック等の有機材料の基板を使用した場合は不可能であった金属ペース トの印刷等に加熱処理を施して形成することを可能とする。
[0017] この場合、前記雲母の薄板状基板は、紙やプラスチック等の有機材料の基板に比 して、線膨張係数が小さぐ湿度に強ぐ外力で容易には変形しない等の優れた特性 を備える。
[0018] したがって、紙やプラスチック等の有機材料の基板では実現困難な、薄くて耐熱性 が高ぐ十分な引っ張り強度等を有する優れた特性を備えた新規な構造のテラヘル ッ帯用光学部品を提供することができる。
[0019] 請求項 2の発明によれば、雲母の薄板状基板を等傾角干渉が生じないぇ/10 ( m)以下の具体的な厚み m)に形成して請求項 1の効果を奏するテラへルツ帯用 光学部品を提供することができる。
[0020] 請求項 3の発明によれば、雲母の薄板状基板を 3〜; 12 m)の厚みにするため、 関心の高い 0. ;!〜 2. 5THz前後のテラへルツ波に対して、等傾角干渉や基板強度 等を考慮した最も好ましい基板厚さのテラへルツ帯用光学部品を提供することができ [0021] 請求項 4の発明によれば、導体パターンを周期性がある島状のパターンにすること で、上記請求項 1〜3の効果を奏する周波数カットフィルタ構造のテラへルツ帯用光 学部品を提供することができる。
[0022] 請求項 5の発明によれば、導体パターンを平行なストライプ状のパターンにすること で、上記請求項 1〜3の効果を奏するワイヤーグリッド構造のテラへルツ帯用光学部 品を提供すること力 Sできる。
[0023] 請求項 6の発明によれば、導体パターンを周期性がある島状の空孔が形成された 穴あきパターンにすることで、上記請求項;!〜 3の効果を奏するバンドパスフィルタ構 造のテラへルツ帯用光学部品を提供することができる。
図面の簡単な説明
[0024] [図 1]第 1の実施形態のテラへルツ帯用光学部品の模式的な斜視図である。
[図 2]図 1のテラへルツ帯用光学部品の一主面側の部分的な拡大正面図である。
[図 3]図 1のテラへルツ帯用光学部品が備える雲母の薄板状基板の一例の透過特性 図である。
[図 4]図 1のテラへルツ帯用光学部品が備える雲母の薄板状基板の一例の反射特性 図である。
[図 5]図 1のテラへルツ帯用光学部品が備える雲母の薄板状基板の厚みを変化させ た場合の、透過率特性図である。
[図 6]図 1のテラへルツ帯用光学部品の雲母の透過特性図である。
[図 7]第 2の実施形態のテラへルツ帯用光学部品の模式的な斜視図である。
[図 8]図 7のテラへルツ帯用光学部品の透過特性図である。
[図 9]第 3の実施形態のテラへルツ帯用光学部品の一部の模式的な斜視図である。
[図 10]従来例の説明図である。
符号の説明
[0025] la、 lb、 lc テラへルツ帯用光学部品
2 薄板状基板
2a 一主面 4 島状のパターン
5 穴あきパターン
8 ストライプ
9 縦縞のパターン
発明を実施するための最良の形態
[0026] つぎに、本発明をより詳細に説明するため、実施形態について、図 1〜図 9にした 力 Sつて詳述する。
[0027] (第 1の実施形態)
請求項 1〜4に対応する第 1の実施形態について、図 1〜図 6を参照して説明する。
[0028] 図 1は特定周波数カットフィルタ構造に形成されたテラへルツ帯用光学部品 laを示 し、図 2はテラへルツ帯用光学部品 laの一主面側の部分的な拡大正面図である。な お、図 1においては、後述の島状のパターンを誇張して示し、実際の寸法関係とは異 なる。
[0029] 図 3、図 4はテラへルツ帯用光学部品 laの薄板状基板 2の一例の透過特性、反射 特性を示し、図 5、図 6はテラへルツ帯用光学部品 laの透過特性を示す。
[0030] 図 1のテラへルツ帯用光学部品 laは、テラへルツ帯の所定周波数を遮断する特定 周波数カットフィルタ構造に形成されたものであり、白雲母 [KA1 (Si AD O (OH)
2 3 10 2
]の薄板状基板 2を備え、この薄板状基板 2の一主面 2a上に、所定の導体パターンと して、銀の円形ドット 3が散点した周期的な島状のパターン 4が形成されている。以下 に、構造等を詳述する。
[0031] (薄板基板 2)
まず、薄板状基板 2について説明する。
[0032] 前記白雲母を始めとする各種雲母は薄くはがれやす!/、性質がある無機材料であり 、光透過率及び耐熱性に優れた極めて薄い薄板状に形成することが可能であり、紙 やプラスチック等の有機材料の基板に比して、線膨張係数が小さぐ湿度に強ぐ外 力で容易には変形しない等の優れた特性を備える。なお、雲母の融点は 1200°C程 度であり、また、天然雲母の場合でも、 700°Cから 800°Cで脱水する力 700°C以下 の温度では、極めて安定といわれている。 [0033] そして、白雲母の薄板状基板 2は、この種のフィルタの量産に適した基板サイズで ある 1 Ocm (縦) X 1 Ocm (横)の 1 Ocm角の正方形である。
[0034] また、薄板状基板 2の厚みは、つぎに説明するように設定される。
[0035] まず、薄板状基板 2の厚みを t ( m)、光の波長を λ ( m)、雲母の屈折率を η ( λ )、雲母の誘電率を ε (λ)とすると、光が薄板状基板 2で等傾角干渉を起こさないよ うにするための厚み tの基本式は、よく知られているように、つぎの数 1の式(1)で表わ すことができ、その誘電率 ε (λ)は数 2の式(2)で表わすことができる。
[0036] [数 1]
0 < t≤λ/ (4 X η (λ) ) … (1)
[0037] [数 2]
Ε (1) = in U) } 2 … (2)
[0038] そして、雲母の誘電率 ε (λ)は、マイクロ波帯ではよく知られているように 6. 5 (文 献値)であり、テラへルツ帯では実験等によって 7 (測定値)であることが判明した。
[0039] そこで、雲母のテラへルツ帯の屈折率 η( λ )は 2· 5とすることが適当であり、上記式
(1)において、
Figure imgf000008_0001
5とすることで、薄板状基板 2の厚みは、テラへルツ波が薄 板状基板 2で等傾角干渉を起こさないようにするため、つぎの数 3の式(3)を満足す るように設定すればよいことが判明した。
[0040] [数 3]
0 < t≤λ/ΐ 0 (3) [0041] したがって、薄板状基板 2の厚みは、等傾角干渉を起こさないようにするため、波長 λ ( μ ΐη)のテラへルツ波に対して λ / 10以下の厚み t ( [I m)に設定すればよ!/、。
[0042] ところで、薄板状基板 2の厚みは、実用上からは、等傾角干渉の面からだけでなく 強度その他の面から総合的に判断して設定することが望ましい。
[0043] そこで、本実施形態においては、注目度が高い略 0. ;!〜 2. 5THz (波長え = 300 0〜; 1 20 m)のテラへルツ波に対して、薄板状基板 2の厚みを、つぎに説明するよう に、 1 = 3- 12 ^ mに設定する。
[0044] すなわち、薄板状基板 2の厚みが 8 a mの場合、テラへルツ帯の光に対して、「TH z—TDS法」と称される周知のテラへルツ時間領域分光法(Terahertz Time - Do main Spectroscopy)で透過特性、反射特性を実測したところ、図 3の透過特性、 図 4の反射特性の実測結果が得られた。なお、図 3の実線 aは波数に対する透過率 の特性であり、実線 bは透過光の位相特性である。また、図 4の実線 cは波数に対す る反射率の特性であり、実線 dは反射光の位相特性である。
[0045] この図 3、図 4の実測結果から、雲母の薄板状基板 2は、 10 μ m前後の厚みより薄 い場合にテラへルツ帯で高い透過率を示すことが判明した。このことから、雲母の薄 板状基板 2は、 0. ITHz (波数で 3. 3cm— 〜2. 5THz (波数で 83cm— 1、波長で 1 20 m)前後のテラへルツ帯に好適な基板であると!/、える。
[0046] そして、 2 · 5THz以下のテラへルツ波に対しては、等傾角干渉を起こさないための 前記式(3)の 0 < t≤ λ / 10という条件から、薄板状基板 2の厚みは 12 mが上限と なり、実用上は、略 2 · 5THz以下のテラへルツ波に対して、薄板状基板 2の厚みの 上限が 12 inとなると考えられる。
[0047] 一方、雲母の剥離限界や強度等を考慮すると、薄板状基板 2の厚みの下限は 3 ,i m程度であると考えられる。
[0048] 同一の白雲母片から厚み、 23 ^ 111, 18 μ ΐΐΐ^ 12 m、 4 mの厚みの薄板状基板 2を取り出して THz— TDS法により透過率の測定を行った。その結果を図 5に示す。 図中の実! ¾、 k、 1、 mは 23 111、 18 μ ηι^ 12 m、 4 mの透過率特性である。そし て、厚みが 23 m、 18 mの場合は、透過率にピークが現れ、これは等傾角干渉に よるものである。波長が短くなるとこのピークは高周波側に位置するようになる力 厚 みを 12 m以下にすれば、注目度が高い 0·;!〜 2· 5ΤΗζでこのピークはなくなり、 その結果、この領域での等傾角干渉の影響が排除できる。そこで、本実施形態にお いては、薄板状基板 2の厚みを、注目度の高い 0. 1ΤΗζ〜2. 5ΤΗζ前後の範囲の テラへルツ波に好適な 3〜; 12 111の適当な厚みに設定する。具体的には、前記の 8 μ mどする。
[0049] そして、材料の白雲母を冶具を使って薄く剥がし、上述の lOcm X 10cmの矩形で 厚み t = 8 mの薄板状基板 2を形成する。
[0050] (島状のパターン 4)
つぎに、前記導体パターンとしての島状のパターン 4について説明する。
[0051] まず、薄板状基板 2が耐熱性に優れるので、導体パターンとしての銀の円形ドット 3 の周期的な島状のパターン 4は、薄板状基板 2の例えば入射側の一主面 2aに、金属 ペーストを印刷し、その金属ペーストを加熱処理する実用的で量産に適した手法で 形成される。
[0052] このとき、例えば ITHzの周波数をカットするため、各円形ドット 3は直径 200 μ mで あり、図 1に示すように 300 mピッチの正三角形格子状に配列される。
[0053] つぎに、島状のパターン 4の具体的な形成手法を説明する。
[0054] まず、直径 200 μ mの空孔を 300 μ mピッチの正三角形格子状に配列したメタルマ スクを用意する。
[0055] つぎに、用意した白雲母の薄板状基板 2の一主面 2a上に前記メタルマスクを密着 状態に接触させ、この状態で銀ペーストを塗布する。その後、前記メタルマスクを薄 板状基板 2から取り外し、薄板状基板 2の一主面 2a上に銀ペーストの円形ドット 3を散 点状に印刷する。
[0056] つぎに、銀ペーストの円形ドット 3が散点状に印刷された薄板状基板 2をオーブンに 入れ、例えば 300°C1時間の加熱処理を施す。このとき、図 2の部分拡大図に示すよ うに、薄板状基板 2に各円形ドット 3が強固に付着する。
[0057] (テラへルツ帯用光学部品 laの特性)
上記のようにして形成されたテラへルツ帯用光学部品 laにっき、前記の「THz— T DS法」によって透過特性を測定したところ、図 6に示す測定結果が得られた。なお、 図 6の実線 eが周波数に対する透過率の特性であり、実線 fが透過光の位相の特性 である。
[0058] 図 6からも明らかなようにテラへルツ帯用光学部品 laは、図中の矢印線 gに示す略 1000GHz (= ITHz)を銀の円形ドット 3によって吸収する特性であり、 ITHzを良好 にカットするテラへルツ帯の特定周波数カットフィルタを形成する。
[0059] また、テラへルツ帯用光学部品 laの— 25°C〜75°Cの温度依存性を測定したところ 。つぎの表 1の結果が得られた。
[0060] [表 1]
Figure imgf000011_0001
[0061] この表 1からも明らかなように、テラへルツ帯用光学部品 laは— 25°C〜75°Cの範 囲において、カット周波数がほとんど変らず、温度係数が 0. 3GHz/°Cで温度依存 性が極めて小さいことも確かめられた。
[0062] したがって、本実施形態の場合、紙やプラスチック等の有機材料の基板ではなぐ テラへルツ帯の光透過率が高ぐしかも、耐熱性が高い白雲母の薄板状基板 2を使 用することにより、基板 2上の導体パターンとしての島状のパターン 4を、紙やプラス チック等の有機材料の基板を使用した場合は不可能であった金属ペーストの印刷、 加熱処理で形成して、周波数カットフィルタ構造を形成することができる。
[0063] このとき、薄板状基板 2は 10cm X 10cmの大きさとすることで、銀ペーストの印刷に 適した大きさであり、この銀ペーストの印刷によりパターン 4を簡単かつ安価に高精度 に形成できる。
[0064] しかも、薄板状基板 2は、紙やプラスチック等の有機材料の基板に比して、線膨張 係数が小さぐ湿度に強ぐ外力で容易には変形しない等の優れた特性を備える。
[0065] そのため、テラへルツ帯用光学部品 laは、紙やプラスチック等の有機材料の基板 では実現困難な、薄くて耐熱性が高ぐ線膨張係数が小さぐ十分な引っ張り強度等 を有する優れた特性を備え、その上、簡単かつ安価に、し力、も精度よく形成すること ができる。
[0066] (第 2の実施形態)
請求項;!〜 3、 6に対応する第 2の実施形態について、図 7、図 8を参照して説明す
[0067] 図 7はバンドパスフィルタ構造に形成されたテラへルツ帯用光学部品 lbを示し、図 8はテラへルツ帯用光学部品 lbの透過特性を示す。なお、図 7においては、後述の 穴あきパターンを誇張して示し、実際の寸法関係とは異なる。
[0068] そして、図 7において、図 1と同一符号は同一又は相当するものを示し、同図のテラ ヘルツ帯用光学部品 lbは、白雲母の薄板状基板 2を使用してテラへルツ帯の所定 周波数を通すバンドパスフィルタ構造に形成されたものであり、図 1のテラへルツ帯 用光学部品 laと異なる点は、薄板状基板 2の一主面 2aに周期的な導体パターンとし て、図 1の円形ドット 3の島状のパターン 4に代え、周期性がある島状の空孔が形成さ れた穴あきパターン 5を形成した点である。
[0069] 穴あきパターン 5は、 ITHzのバンドパスフィルタを形成するため、図 6に示すように アルミ薄膜 6に直径 200 mの空孔 7を 300 mピッチで正三角形格子状に散点配 置した形状である。
[0070] つぎに、穴あきパターン 5の具体的な形成手法を説明する。
[0071] まず、 10cm角で 8 μ m厚の薄板状基板 2を用意し、その一主面 2aにレジストを塗 布し、リソグラフィ一の工程で直径 200 mのドット状にレジストパターンを形成する。
[0072] つぎに、そのレジストパターンの表面にアルミ蒸着を行い、その後、リフトオフのェ 程で不用部分をフォトレジストと共に除去し、穴あきパターン 5を形成する。
[0073] そして、この穴あきパターン 5が形成された薄板状基板 2を例えば 120°Cで熱処理 する。
[0074] 上記のようにして形成されたテラへルツ帯用光学部品 lbにっき、前記の「THz—T DS法」によって透過特性を測定したところ、図 8に示す測定結果が得られた。なお、 図 8の実線 hが波数に対する透過率の特性であり、実線 iが透過光の位相の特性であ [0075] 図 8からも明らかなようにテラへルツ帯用光学部品 lbは、 ITHzで透過率が 70%、 半値幅 300GHzの良好なバンドパスフィルタを形成する。
[0076] そして、本実施形態の場合、紙やプラスチック等の有機材料の基板ではなぐテラ ヘルツ帯の光透過率が高ぐしかも、耐熱性が高い白雲母の薄板状基板 2を使用す ることにより、薄板状基板 2上の導体パターンとしての穴あきパターン 5を、紙やプラス チック等の有機材料の基板を使用した場合は不可能であった金属蒸着膜の加熱処 理で形成することができ、導体パターンを簡単かつ安価に高精度に形成してバンド パスフィルタ構造を形成することができる。
[0077] しかも、薄板状基板 2は、紙やプラスチック等の有機材料の基板に比して、線膨張 係数が小さぐ湿度に強ぐ外力で容易には変形しない等の優れた特性を備えるた め、テラへルツ帯用光学部品 lbも、紙やプラスチック等の有機材料の基板では実現 困難な、薄くて耐熱性が高ぐ線膨張係数が小さぐ十分な引っ張り強度等を有する 優れた特性を備え、その上、簡単かつ安価に、し力、も精度よく形成すること力できる。
[0078] (第 3の実施形態)
請求項;!〜 3、 5に対応する第 3の実施形態について、図 9を参照して説明する。
[0079] 図 9はワイヤーグリッド構造に形成されたテラへルツ帯用光学部品 lcの一部の斜視 図であり、同図においては、後述の縦縞のパターンを誇張して示し、実際の寸法関 係とは異なる。
[0080] そして、図 9のテラへルツ帯用光学部品 lcは白雲母の薄板状基板 2を使用してテラ ヘルツ帯の例えば 0. ;!〜 0. 5THz近傍で偏光子となる構造に形成されたものである
[0081] 具体的には、白雲母の薄板状基板 2と、幅 50 mの上下方向のストライプ状の空 孔が 200 mピッチで平行に配列されたメタルマスクとを用意し、このメタルマスクを 薄板状基板 2の一主面 2aに密着状態に接触させ、この状態で銀ペーストを塗布する 。その後、前記メタルマスクを薄板状基板 2から取り外し、薄板状基板 2の一主面 2a 上に銀ペーストによって上下方向のストライプ 8の縦縞のパターン 9を形成する。そし て、縦縞のパターン 9が形成された薄板状基板 2をオーブンに入れ、例えば 300°C、 1時間の加熱処理を施してテラへルツ帯用光学部品 lcを形成する。 [0082] このテラへルツ帯用光学部品 lcについて、前記の「THz—TDS法」により透過特 性を測定したところ、 0. ;!〜 0. 3THzで偏光子として動作することが確かめられた。
[0083] そして、本実施形態の場合も、紙やプラスチック等の有機材料の基板ではなぐテラ ヘルツ帯の光透過率が高ぐしかも、耐熱性が高い白雲母の薄板状基板 2を使用す ることにより、薄板状基板 2上の導体パターンとしての縦縞のパターン 9を、紙やブラ スチック等の有機材料の基板を使用した場合は不可能であった金属パターンの加熱 処理で形成することができ、導体パターンを簡単かつ安価に高精度に形成してワイ ヤーグリッド構造を形成することができる。
[0084] しかも、薄板状基板 2は、紙やプラスチック等の有機材料の基板に比して、線膨張 係数が小さぐ湿度に強ぐ外力で容易には変形しない等の優れた特性を備えるた め、テラへルツ帯用光学部品 lcも、紙やプラスチック等の有機材料の基板では実現 困難な、薄くて耐熱性が高ぐ線膨張係数が小さぐ十分な引っ張り強度等を有する 優れた特性を備え、その上、簡単かつ安価に、し力、も精度よく形成すること力できる。
[0085] そして、本発明は上記した各実施形態に限定されるものではなぐその趣旨を逸脱 しない限りにおいて上述したもの以外に種々の変更を行なうことが可能であり、例え ば、薄板状基板 2の材料としての雲母は、白雲母に限られるものではなぐ金雲母 [K (Mg, Fe) (Si AD O (OH) ]、合成雲母 [フッ素金雲母 KMg (Si A1) 0 F、 K
3 3 10 2 3 3 10 2 型フッ素四ケィ素雲母 KMg Si〇 F ]であってもよい。
2. 5 4 10 2
[0086] そして、薄板状基板 2は主面がどのような大きさ、形状であってもよいが、実用上は 、上記したような 10cm角程度のある程度の大きさの量産に向く定型状であることが 好ましぐそのような大きさとするためには、実際には薄板状基板 2の材料は白雲母と 合成雲母とに限られると考えられる。
[0087] また、薄板状基板 2の一主面 2aは、テラへルツ帯用光学部品の用途や機能によつ ては出射光側の主面であってもよレ、。
[0088] つぎに、前記の周期的な導体パターンの形状や大きさ、配置等は、テラへルツ帯用 光学部品の用途等にしたがって適当に設定してよぐ具体的には、テラへルツ帯用 光学部品 laの島状のパターン 4のドット形状やテラへルツ帯用光学部品 lbの穴あき ノ ターン 5の空孔形状は円形に限られるものではなぐ矩形状等であってもよぐまた 、パターン 4、 5のピッチ等は所望する周波数特性に応じて適当に設定すればよい。
[0089] また、薄板状基板 2の厚みは、前記式(3)の条件を満足するものであればよぐ 0.
;!〜 2· 5THzのテラへルツ波に対しても 3〜12〃mの厚みに限るものではない。
[0090] さらに、導体パターンは種々の金属、金属化合物等の導電体材料で形成してよい のは勿論であり、その形成手法も前記各実施形態の手法に限られるものではない。 産業上の利用可能性
[0091] 本発明は、種々の機能、特性のテラへルツ帯用光学部品に適用することができる。

Claims

請求の範囲
[1] 雲母の薄板状基板を備え、該薄板状基板の一主面上に周期性がある導体パター ンを形成した構造であることを特徴とするテラへルツ帯用光学部品。
[2] 前記薄板状基板は、波長え m)に対して、厚み t m)が 0 < t≤ λ /10である ことを特徴とする請求項 1記載のテラへルツ帯用光学部品。
[3] 前記薄板状基板は、 3〜12 m)の厚みであることを特徴とする請求項 1記載のテ ラヘルツ帯用光学部品。
[4] 前記導体パターンは、周期性がある島状のパターンであることを特徴とする請求項
;!〜 3のいずれ力、 1項に記載のテラへルツ帯用光学部品。
[5] 前記導体パターンは、平行なストライプ状のパターンであることを特徴とする請求項
;!〜 3のいずれ力、 1項に記載のテラへルツ帯用光学部品。
[6] 前記導体パターンは、周期性がある島状の空孔が形成された穴あきパターンであ ることを特徴とする請求項 1〜3のいずれ力、 1項に記載のテラへルツ帯用光学部品。
PCT/JP2007/074118 2006-12-19 2007-12-14 テラヘルツ帯用光学部品 WO2008075624A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008550128A JP4849695B2 (ja) 2006-12-19 2007-12-14 テラヘルツ帯用光学部品
US12/486,394 US20090303624A1 (en) 2006-12-19 2009-06-17 Terahertz-band optical component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-341139 2006-12-19
JP2006341139 2006-12-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/486,394 Continuation US20090303624A1 (en) 2006-12-19 2009-06-17 Terahertz-band optical component

Publications (1)

Publication Number Publication Date
WO2008075624A1 true WO2008075624A1 (ja) 2008-06-26

Family

ID=39536255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/074118 WO2008075624A1 (ja) 2006-12-19 2007-12-14 テラヘルツ帯用光学部品

Country Status (3)

Country Link
US (1) US20090303624A1 (ja)
JP (1) JP4849695B2 (ja)
WO (1) WO2008075624A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009229622A (ja) * 2008-03-21 2009-10-08 Murata Mfg Co Ltd 自立型バンドパスフィルタ及びその製造方法
WO2011070817A1 (ja) * 2009-12-09 2011-06-16 株式会社村田製作所 空隙配置構造体が保持された分光測定用デバイス、それに用いられる枠部材、および、分光器
JP2011253142A (ja) * 2010-06-04 2011-12-15 National Institute For Materials Science バンドパスフィルター
EP2503310A2 (en) 2011-03-23 2012-09-26 Seiko Epson Corporation Terahertz wave detection device, terahertz wavelength filter, imaging device, and measurement device
JP2013171177A (ja) * 2012-02-21 2013-09-02 Nippon Signal Co Ltd:The 光学フィルタ及び光学フィルタの製造方法
US8841616B2 (en) 2011-10-24 2014-09-23 Seiko Epson Corporation Terahertz wave detecting device, imaging device, and measuring device
WO2023145143A1 (ja) * 2022-01-28 2023-08-03 国立研究開発法人産業技術総合研究所 テラヘルツ帯バンドパス偏光子およびテラヘルツ帯バンドパス偏光子の製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103311363A (zh) * 2012-03-12 2013-09-18 杜邦太阳能有限公司 太阳能电池模组及其制作方法
US9888283B2 (en) 2013-03-13 2018-02-06 Nagrastar Llc Systems and methods for performing transport I/O
USD758372S1 (en) 2013-03-13 2016-06-07 Nagrastar Llc Smart card interface
USD864968S1 (en) 2015-04-30 2019-10-29 Echostar Technologies L.L.C. Smart card interface

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004502978A (ja) * 2000-07-10 2004-01-29 テヒニシェ・ウニベルジテート・ブラウンシュバイク・カロロ−ビルヘルミナ 光学素子
JP2004109827A (ja) * 2002-09-20 2004-04-08 Communication Research Laboratory テラヘルツ帯光学素子用の薄膜形成方法
WO2007077658A1 (ja) * 2005-12-28 2007-07-12 Murata Manufacturing Co., Ltd. テラヘルツ帯光学フィルタ、その設計方法および製造方法
JP2007178886A (ja) * 2005-12-28 2007-07-12 Murata Mfg Co Ltd テラヘルツ帯光学フィルタおよびその製造方法
JP2007193298A (ja) * 2006-01-18 2007-08-02 Seoul National Univ Industry Foundation 形態共振テラヘルツ波または赤外線フィルター
JP2007322738A (ja) * 2006-05-31 2007-12-13 Murata Mfg Co Ltd テラヘルツ帯光学フィルタ、その設計方法および製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050191419A1 (en) * 2003-04-11 2005-09-01 Helt James M. Fabrication of nanostructures
JP5768429B2 (ja) * 2011-03-23 2015-08-26 セイコーエプソン株式会社 テラヘルツ波検出装置、テラヘルツ波長フィルター、イメージング装置および計測装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004502978A (ja) * 2000-07-10 2004-01-29 テヒニシェ・ウニベルジテート・ブラウンシュバイク・カロロ−ビルヘルミナ 光学素子
JP2004109827A (ja) * 2002-09-20 2004-04-08 Communication Research Laboratory テラヘルツ帯光学素子用の薄膜形成方法
WO2007077658A1 (ja) * 2005-12-28 2007-07-12 Murata Manufacturing Co., Ltd. テラヘルツ帯光学フィルタ、その設計方法および製造方法
JP2007178886A (ja) * 2005-12-28 2007-07-12 Murata Mfg Co Ltd テラヘルツ帯光学フィルタおよびその製造方法
JP2007193298A (ja) * 2006-01-18 2007-08-02 Seoul National Univ Industry Foundation 形態共振テラヘルツ波または赤外線フィルター
JP2007322738A (ja) * 2006-05-31 2007-12-13 Murata Mfg Co Ltd テラヘルツ帯光学フィルタ、その設計方法および製造方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009229622A (ja) * 2008-03-21 2009-10-08 Murata Mfg Co Ltd 自立型バンドパスフィルタ及びその製造方法
WO2011070817A1 (ja) * 2009-12-09 2011-06-16 株式会社村田製作所 空隙配置構造体が保持された分光測定用デバイス、それに用いられる枠部材、および、分光器
JP5605372B2 (ja) * 2009-12-09 2014-10-15 株式会社村田製作所 空隙配置構造体が保持された分光測定用デバイス、それに用いられる枠部材、および、分光器
JP2011253142A (ja) * 2010-06-04 2011-12-15 National Institute For Materials Science バンドパスフィルター
EP2503310A2 (en) 2011-03-23 2012-09-26 Seiko Epson Corporation Terahertz wave detection device, terahertz wavelength filter, imaging device, and measurement device
JP2012202689A (ja) * 2011-03-23 2012-10-22 Seiko Epson Corp テラヘルツ波検出装置、テラヘルツ波長フィルター、イメージング装置および計測装置
US8946633B2 (en) 2011-03-23 2015-02-03 Seiko Epson Corporation Terahertz wave detection device, terahertz wavelength filter, imaging device, and measurement device
US8841616B2 (en) 2011-10-24 2014-09-23 Seiko Epson Corporation Terahertz wave detecting device, imaging device, and measuring device
JP2013171177A (ja) * 2012-02-21 2013-09-02 Nippon Signal Co Ltd:The 光学フィルタ及び光学フィルタの製造方法
WO2023145143A1 (ja) * 2022-01-28 2023-08-03 国立研究開発法人産業技術総合研究所 テラヘルツ帯バンドパス偏光子およびテラヘルツ帯バンドパス偏光子の製造方法

Also Published As

Publication number Publication date
JPWO2008075624A1 (ja) 2010-04-08
JP4849695B2 (ja) 2012-01-11
US20090303624A1 (en) 2009-12-10

Similar Documents

Publication Publication Date Title
WO2008075624A1 (ja) テラヘルツ帯用光学部品
Poorgholam-Khanjari et al. Reconfigurable Vivaldi THz antenna based on graphene load as hyperbolic metamaterial for skin cancer spectroscopy
EP1961077A2 (en) Selective reflective and absorptive surfaces and method for resonantly coupling incident radiation
US20170338567A1 (en) Multiband wavelength selective structure
JP5190088B2 (ja) 電磁気バンドギャップパターン及びその製造方法、並びに電磁気バンドパターンを利用した保安製品
US20230350120A1 (en) Low cost dispersive optical elements
US20030080921A1 (en) Planar band gap materials
KR101324523B1 (ko) 탄소나노튜브 시트 및 이를 이용한 편광자
Fu et al. Low-intensity ultraviolet detection using a surface acoustic-wave sensor with a Ag-doped ZnO nanoparticle film
WO1998035542A1 (fr) Nouveau reseau de conducteurs en boucle et materiau de blindage contre les ondes electromagnetiques a selectivite de frequence
Han et al. A frequency-scanning antenna based on hybridization of the quasi-TEM mode and spoof surface plasmon polaritons mode
Shi et al. High-performance copper mesh for optically transparent electromagnetic interference shielding
JP5137084B2 (ja) 偏光子、その製造方法及び光モジュール
Huang et al. Broadband stop filters for THz waves using H-shaped metamaterials with dual electronic-plasmonic functionality
CN105576335B (zh) 一种导模谐振品质因子可调的超材料谐振装置
Raad et al. A 2.45 GHz transparent antenna for wearable smart glasses
US10168232B2 (en) Non-contact temperature sensor
JP6983613B2 (ja) マイクロ波帯アンテナ
JP7250890B2 (ja) グラフェン膜の製造方法及びアンテナの製造方法
EP4318809A1 (en) High frequency diffusion sheet
KR20180018076A (ko) 가변형 메타물질 기반 흡광장치 및 이의 제조방법
CN111221066B (zh) 一种基于光调控的红外吸收器
JP4448143B2 (ja) フォトニックバンドギャップ構造を有するスロットライン型マイクロ波素子
JP7470950B2 (ja) アンテナ及びその製造方法
US11888225B2 (en) Metamaterial structure, metamaterial-type transparent heater, and radar apparatus using metamaterial-type transparent heater

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07850622

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008550128

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07850622

Country of ref document: EP

Kind code of ref document: A1