WO2008075620A1 - 回転角度検出装置 - Google Patents

回転角度検出装置 Download PDF

Info

Publication number
WO2008075620A1
WO2008075620A1 PCT/JP2007/074104 JP2007074104W WO2008075620A1 WO 2008075620 A1 WO2008075620 A1 WO 2008075620A1 JP 2007074104 W JP2007074104 W JP 2007074104W WO 2008075620 A1 WO2008075620 A1 WO 2008075620A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
magnetic
rotation angle
rotation
detection device
Prior art date
Application number
PCT/JP2007/074104
Other languages
English (en)
French (fr)
Inventor
Kengo Tanaka
Fumihiko Abe
Original Assignee
The Furukawa Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Furukawa Electric Co., Ltd. filed Critical The Furukawa Electric Co., Ltd.
Priority to EP07850608.6A priority Critical patent/EP2103909B1/en
Priority to US12/519,512 priority patent/US8183857B2/en
Publication of WO2008075620A1 publication Critical patent/WO2008075620A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/021Determination of steering angle
    • B62D15/0215Determination of steering angle by measuring on the steering column
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D2205/00Indexing scheme relating to details of means for transferring or converting the output of a sensing member
    • G01D2205/40Position sensors comprising arrangements for concentrating or redirecting magnetic flux

Definitions

  • the present invention relates to a rotation angle detection device that is attached to a rotating body and used to detect the rotation angle of the rotating body.
  • a rotation angle detection device that detects the rotation angle of a rotating shaft is known (see, for example, Patent Document 1).
  • a magnet formed in a disk shape is supported by a rotation shaft, and this magnet is configured to be rotatable in a predetermined direction around the rotation shaft.
  • This rotation angle detector has two magnetic sensors.
  • the two magnetic sensors are Hall elements and are arranged so that the angle between the center of the disk and the straight line passing through one magnetic sensor and the angle between the center of the disk and the straight line passing through the other magnetic sensor is approximately 90 degrees.
  • each magnetic sensor is arranged directly below the circumference of the magnet.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-75108 (Page 2-4, Figures 4 and 5)
  • the magnet is magnetized in the radial direction, and in order to improve the sensitivity of the sensor, a Hall element is arranged at the corner portion on the outer periphery of the magnet. ! /
  • a Hall element is arranged at the corner portion on the outer periphery of the magnet. ! /
  • Such a configuration can maintain high detection accuracy only when the relative positional relationship between the magnet and the Hall element does not change! /.
  • the rotation axis has a backlash in the radial direction, and the relative distance between the magnet and the Hall element changes dynamically, so that the Hall element rotates the rotation axis. The signal due to the movement of the magnet, which is unrelated to that, was detected, and there was a problem that the accuracy was not good and the angle could not be detected.
  • FIG. 10 is a schematic plan view of such a rotation angle detection device 5, and Hall elements 90 (91, 92) are arranged in the vicinity of the periphery of the magnet 50 at an angle of 90 ° in the circumferential direction.
  • FIG. 11 is a diagram schematically showing the lines of magnetic force 50A of the magnet 50 when such a rotation angle detection device 5 is optimally attached to a steering shaft (not shown) via the shaft 55.
  • the Hall element 90 Hall element 91 in FIG.
  • FIG. 12 shows that a certain amount of backlash between the stator and the rotor in the direction of the rotation center axis of the rotor of the rotation angle detection device 5 is allowed in order to improve the assembly of the rotation angle detection device 5 described above.
  • 11 shows a state in which the magnet 50 of the rotation angle detection device 5 shown in FIG. 11 is slightly displaced in the rotation center axis direction of the magnet 50 due to the play. Note that this shift amount is a shift amount necessary for improving the assemblability of the rotation angle detection device 5 as described above.
  • the rotation angle detection device 5 is in such a state, it can be seen that the magnetic force lines 50A of the magnet 50 are separated from the Hall element 90, and the detection characteristics of the Hall element 90 are extremely deteriorated.
  • a rotation angle detection device described in Japanese Patent Application Laid-Open No. 2006-105827 is also known.
  • This rotation angle detection device has a ring-shaped magnet, and increases the degree of freedom of the mounting position with respect to the vehicle steering by passing the magnet through the vehicle steering shaft.
  • a Hall element is arranged near the end where the curvature of the magnetic field lines of the magnet is the largest.
  • the rotation angle detector that is, the rotation center axis direction of the rotor between the rotor equipped with the magnet and the stator equipped with the hall element, that is, the rotation of the magnet. If the backlash in the central axis direction is allowed to some extent, the Hall element does not cross the magnetic circuit of the magnet due to variations in the relative positions of the stator and the rotor, resulting in a problem that the detection output characteristics deteriorate.
  • FIG. 13 is a diagram schematically showing the magnetic force lines 60A of the magnet 60 when such a rotation angle detection device 6 is attached to a shaft (not shown) with an optimal dimensional relationship.
  • a Hall element 90 is arranged near the end of the magnetic force line 60A of the magnet 60 that forms a ring, and the magnetic flux density is fixed on the hole on the substrate 80 that is fixed independently of the rotation of the magnet 60. Detection is performed by element 90.
  • FIG. 14 allows a certain amount of backlash in the rotation center axis direction of the rotor between the stator and the rotor of the rotation angle detection device 6 in order to improve the assembly property of the rotation angle detection device 6 described above.
  • the magnet 60 of the rotation angle detection device 6 shown in FIG. 13 is slightly displaced in the rotation center axis direction of the magnet 60 with respect to the Hall element 90 due to the play.
  • this shift amount is a shift amount necessary for improving the assemblability of the rotation angle detection device 6 as described above. In such a state, the magnetic force line 60A of the magnet 60 is separated from the Hall element 90, and the detection characteristic of the Hall element 90 is extremely reduced.
  • An object of the present invention is to provide a rotation angle detection device that can accurately measure the rotation angle of a rotating body to be measured even if shaft backlash or the like occurs on the rotating shaft of the rotating body to be measured. Means for solving the problem
  • a rotation angle detection device includes:
  • a rotation angle detection device for detecting a rotation angle of a rotating body to be measured, the magnetic detecting element being mounted around the rotating body to be measured and detecting a magnetic flux density of a magnet that rotates integrally with the rotating body to be measured; Rotation of the rotating body to be measured from the output from the magnetic detection element
  • a rotation angle detecting device comprising an arithmetic processing means for calculating an angle, comprising: a magnetic body having both ends at positions where the magnet is sandwiched and arranged along a region where a magnetic field line of the magnet is formed; , A gap between one end of the magnetic body and one side in the rotation center axis direction of the magnet and a gap between the other end of the magnetic body and the other side in the rotation center axis direction of the magnet. And the magnetic detection element is interposed on a magnetic field line passing through the magnetic body and is laid out.
  • the rotation angle detecting device which is the force of the present invention has such a configuration, so that the rotor provided with the magnet and the stator provided with the magnetic body and the magnetic detection element in the rotation center axis direction of the magnet. Even if the relative position shifts, the sum of the distance between one end of the magnetic body and one side in the rotation center axis direction of the magnet and the distance between the other end of the magnetic body and the other side in the rotation center axis direction of the magnet Is always constant. Therefore, the magnetic resistance of the magnetic path does not change. As a result, the magnetic sensing element always accurately measures the magnetic flux density of the magnet according to the rotation angle of the magnet, that is, the rotating body to be measured, without being affected by the relative displacement between the stator and the rotor. That's the power S.
  • the magnetic lines can be confined in the magnetic body by forming a magnetic path with the magnetic body, a magnet having a very small dimension in the direction of the rotation center axis can be used, and the rotation angle detection device itself can be downsized. .
  • the rotation angle detection device includes one end portion of the magnetic body facing one side in the rotation center axis direction of the magnet and the rotation of the magnet.
  • the other end of the magnetic body facing the other side in the central axis direction is provided with a protrusion extending along the direction of rotation of the magnet.
  • the magnetic body of the rotation angle detecting device which has the power according to the present invention has such a configuration, the rotor provided with the magnet in the direction perpendicular to the rotation center axis direction of the magnet, the magnetic body, and the magnetic detection element. Even if the relative position of the stator with the gap shifts, the magnetic field lines of the magnet are always formed stably along the magnetic body through the protrusions provided at both ends of the magnetic body, Even if the two deviate in the direction of the rotation center axis of the rotor due to backlash, the magnetic resistance of the magnetic path does not change depending on the amount of deviation between the two. As a result, the magnetic flux density of the magnet is adjusted so that the magnetic sensing element is not affected by the relative displacement between the rotor and the stator. It can always measure accurately according to the rotation angle of the magnet, that is, the rotating body to be measured.
  • the rotation angle detection device in addition to the rotation angle detection device described above, is provided at one end of the magnet at one end of the magnetic body facing one side in the rotation center axis direction of the magnet. And a projecting portion projecting toward the other side of the magnet at the other end of the magnetic body facing the other side in the rotation center axis direction of the magnet. Yes.
  • the magnetic body of the rotation angle detecting device that is the force of the present invention has such a shape
  • the magnetic body itself has a shape close to the magnetic field lines of the magnet, and the magnetic flux of the magnet is stably formed on the magnetic body. Therefore, even if the two are displaced in the direction of the rotation center axis of the rotor due to the backlash between the rotor and the stator, the magnetic resistance of the magnetic path does not change due to the amount of deviation between the two.
  • the magnitude and direction of the magnetic flux of the magnet can be adjusted via this magnetic body without being affected by the magnetic detection element force and the relative displacement between the rotor with the magnet and the stator with the magnetic detection element. More accurate measurement can be performed according to the rotation angle of the magnet, that is, the rotating body to be measured.
  • the rotation angle detection device includes a rotation center of the magnet based on a length of a portion of the magnetic body substantially parallel to the rotation center axis direction of the magnet. The distance between one end of the magnetic body facing one side in the axial direction and the other end of the magnetic body facing the other side in the rotation center axial direction of the magnet is short.
  • the magnetic body of the rotation angle detecting device that is a force of the present invention has such a shape, the magnetic force and the generated magnetic field lines are gathered in the magnetic body, and the magnetic flux of the magnet is stably formed in the magnetic body.
  • the magnetic resistance of the magnetic path is not changed by the amount of deviation between the two.
  • the magnitude and direction of the magnetic flux of the magnet can be adjusted via this magnetic body without being affected by the magnetic detection element force and the relative displacement between the rotor with the magnet and the stator with the magnetic detection element. More accurate measurement can be performed according to the rotation angle of the magnet (that is, the rotating body to be measured).
  • the magnet in addition to the rotation angle detection device described above, the magnet has a ring shape, and an N pole and an S pole are formed in a direction parallel to the rotation axis of the magnet. And the magnetic flux density changes periodically even along the rotation axis direction of the magnet.
  • the N pole and the S pole are formed as shown in FIG.
  • the rotation angle detection device according to the present invention can be configured without disposing the components of the rotation angle detection device in the hollow portion of the ring magnet. It is possible to reduce the size of the device itself.
  • FIG. 1 is a perspective view schematically showing a rotation angle detection device according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a substrate on which one magnet, a spacer, a magnetic body, and a Hall element of the rotation angle detecting device shown in FIG. 1 are mounted;
  • FIG. 3 An explanatory diagram partially showing the rotation angle detection principle of the rotation angle detection device shown in FIG. 1.
  • FIG. 4 A first modification of the rotation angle detection device shown in FIG. FIG. 5 is a partially enlarged perspective view of the rotation angle detection device shown in FIG.
  • FIG. 6 is a cross-sectional view corresponding to FIG. 2, corresponding to FIG. 2, and FIG. 7 is a third modification of the rotation angle detection device shown in FIG.
  • FIG. 8 is a characteristic diagram comparing the rotation angle detection device according to the present invention (this embodiment) and a conventional rotation angle detection device (comparative example).
  • FIG. 9 is a characteristic diagram comparing the rotation angle detection device according to the present invention (this example) and the conventional rotation angle detection device (comparative example) by a method different from FIG.
  • FIG. 10 is a schematic plan view of a conventional rotation angle detection device
  • FIG. 11 is a schematic side view of a conventional rotation angle detection device
  • FIG. 12 is a schematic side view showing a state where the substrate on which the Hall element of the rotation angle detection device is mounted is slightly shifted from the magnet, unlike FIG.
  • FIG. 13 is a partial schematic cross-sectional view of a conventional rotation angle detection device different from FIG.
  • FIG. 14 is a partial cross-sectional view showing a state where the substrate on which the Hall element of the rotation angle detection device is mounted is slightly displaced from the magnet, unlike FIG.
  • this rotation angle detection device in the steering device of an automobile, this rotation angle detection device is a steering shaft (hereinafter simply referred to as “shaft”) that is a rotating body to be measured. A case where the rotation angle of the handle is detected by attaching to the handle will be described. In order to facilitate understanding of the present invention, the cross-sectional hatching is omitted in the cross-sectional view.
  • a rotation angle detection device 1 includes a ring-shaped magnet 10 and a substrate 20 that is fixedly supported independently of the rotation of the magnet 10. (Shown only in FIG. 2) and a magnetic body 30 arranged in the circumferential direction of the magnet 10 so as to form a predetermined angle (eg, 90 °) with respect to the central axis of the ring-shaped magnet 10 in the circumferential direction. 30A, 30B) and Hall elements (magnetic detection elements) 40 (40A, 40B) interposed between the magnetic bodies 30! /.
  • the substrate 20 and the magnetic body 30 (30A, 30B) are fixed to a stator made up of a casing or the like (not shown).
  • a ring-shaped spacer 15 made of a nonmagnetic material is provided inside the magnet 10. Further, for example, a not-shown selection is formed on the inner peripheral surface of the ring-shaped spacer 15, for example, an automobile shaft (not shown) is passed through the inside of the spacer 15 to fit the shaft selection. It ’s going to be.
  • the magnet 10 rotates in the body as the shaft rotates.
  • the magnet 10 is rotatably supported on the substrate 20 or the housing by a bearing that does not affect the magnetic circuit.
  • the magnet 10 has one end in the circumferential direction (for example, the right side shown in FIG. 1) and one side in the rotation center axis direction of the magnet 10 (upper side shown in FIG. 1) is the S pole and the rotation center axis direction of the magnet 10
  • the other side (the lower side shown in Fig. 1) is formed as N pole, and one side of the other end in the circumferential direction (the left side shown in Fig. 1 at the end opposite to one end in the diameter direction) is the N pole. It has a configuration in which the side is formed as an S pole! Further, between the one end and the other end, the formation region of the N pole and the S pole is gradually switched in the direction of the rotation center axis of the magnet 10 (the thickness direction of the magnet 10).
  • the substrate 20 is fixed to a stator including a housing (not shown). Magnet 10 and spacer 15 constitute part or all of a rotor not described in detail here.
  • the magnet 10, the spacer 15, the substrate 20, and the magnetic body 30 are housed in a housing made of a material that shields magnetic flux from the outside.
  • the body is attached to a fixed part different from the shaft with a bracket (not shown). Na Since one magnetic body 30A and the other magnetic body 30B constituting the magnetic body 30 are equivalent in configuration, these components will be described with common reference numerals.
  • the magnetic body 30 (30A, 30B) is made of a soft magnetic material such as iron or a plastic magnet, and has a square U shape that is laterally viewed from the side as shown in FIG. 32 is sandwiching the magnet 10.
  • the substrate 20 is provided with the two Hall elements 40 (40A, 40B) as described above, and each Hall element 40 has a change in magnetic flux density caused by the rotation of the magnet 10 that rotates together with a shaft (not shown). Is supposed to detect
  • the magnetic body 30 has both end portions 31 and 32 at positions where the magnet 10 is sandwiched, and is disposed along a region where the magnetic force line 1 OA of the magnet 10 is formed. Yes.
  • the magnetic body 30 has a predetermined distance between the one side 11 in the rotation center axial direction of the magnet 10 and one end 31 of the magnetic body 30, and the other side in the rotation center axial direction of the magnet 10. A predetermined distance is also formed between 12 and the other end 32 of the magnetic body 30.
  • the extended portion 35 that is the most distant from the magnet 10 in the radial direction and is substantially parallel to the rotation center axis of the magnet 10 forms a gap with the approximate center separated by a predetermined interval, In this gap, the end of the substrate 20 and the Hall element 40 mounted thereon are inserted and arranged.
  • the output of the hole element 40 is not shown in detail here! /, And the calculation means is used to convert it into the rotation angle of the magnet 10, that is, the shaft.
  • the detection principle of the rotation angle of the magnet 10, that is, the shaft, using the Hall element 40 and the calculation means is as follows.
  • one Hall element 40A shown on the left side of FIG. It has the output characteristics shown.
  • the horizontal axis represents the rotation angle of the shaft, that is, the magnet 10
  • the vertical axis represents the magnitude of the magnetic flux density of the magnet 10 detected by the Hall element 40A.
  • the output characteristics of one Hall element 40A indicate a sine wave (!).
  • the other hall element 40B arranged above the magnet 10 in Fig. 3 (a) also has the output characteristics showing a sine wave as shown in Fig. 3 (b).
  • the output characteristics of the Hall element 40B are 90 ° out of phase with respect to the output characteristics of one Hall element 40A shown in FIG.
  • a saw-toothed output is obtained by taking ta ⁇ ⁇ / ⁇ ). The rotation angle is accurately detected by the calculation means.
  • the rotation angle detection device 1 Since the rotation angle detection device 1 according to the present embodiment has such a configuration, the relative position of the rotor provided with the magnet 10 and the stator provided with the magnetic body 30 and the hall element 40 with respect to the rotation center axis direction of the magnet 10.
  • the gap between the one side 11 in the rotation center axis direction of the magnet 10 and one end 31 of the magnetic body 30 and the other side 12 in the rotation center axis direction 12 of the magnet 10 and the other end of the magnetic body 30 The sum of intervals with 32 is always constant.
  • the Hall element 40 can always accurately measure the magnitude and direction of the magnetic flux of the magnet 10 through the magnetic body 30 according to the rotation angle of the magnet, that is, the shaft, without being affected by the displacement of the relative position. it can.
  • the rotation angle detection device 1A according to the first modification has the shape of the magnetic body 130 (130A, 130B) in addition to the shape of the magnetic body 10 described above, and the rotation of the magnet 110.
  • One end 131 of the magnetic body facing one side 111 in the central axis direction is provided with a protrusion 131a extending in the circumferential direction of the magnet 110, and the magnetic body facing the other side 112 in the rotational center axis direction of the magnet 110
  • a projecting portion 132 a extends along the circumferential direction of the magnet 112 at the other end portion 132 of 130.
  • the rotation angle detection device 1A With the rotation angle detection device 1A according to the first modification having such a configuration, the rotor including the magnet 110, the magnetic body 130, and the Hall element in the direction orthogonal to the rotation center axis direction of the magnet 110 Even if the relative position of the stator with 140 (140A, 140B) shifts, the magnetic field lines of the magnet 110 are always stable along the magnetic body 130 via the protrusions 131a and 132a provided at both ends of the magnetic body 130. Even if they are shifted in the direction of the rotation center axis of the rotor and the direction perpendicular thereto due to the backlash between the rotor and the stator, the magnetic resistance of the magnetic path will not change depending on the amount of displacement of both. .
  • the magnetic body 230 has a square C-shape, and both ends of the magnetic body 230 have the magnet 210 and the rotation center of the magnet 210. It is sandwiched by a predetermined distance from one side and the other side in the axial direction.
  • the magnetic body 230 includes a projecting portion 231a projecting toward the one side 211 of the magnet 210 at one end portion 231 facing the one side 211 in the rotation center axis direction of the magnet 210, and the magnet
  • the other end 232 of the 210 opposite to the other side 212 in the rotation center axis direction is provided with a projecting portion 232a projecting toward the other side 212 of the magnet 210.
  • the magnetic body 230 of the rotation angle detector 1B which has a force as in the second modification example, has such a shape, the magnetic body itself has a shape close to the magnetic field lines of the magnet 210.
  • the magnetic flux is stably formed, and even if the two are displaced in the direction of the rotation center axis of the rotor due to the backlash between the rotor and the stator, the magnetic resistance of the magnetic path is not changed by the amount of deviation of both.
  • the rotation angle detection device 1B has the rotor with the magnet 210 and the hall element 240.
  • the magnetic flux of the magnet 210 is not affected by the magnetic element 230 that the Hall element 240 does not receive the influence of the relative positional deviation between the rotor and the stator.
  • the force S measures the size and orientation more accurately according to the rotation angle of the magnet 210, that is, the shaft.
  • the magnetic body 330 has a laterally deformed square U-shape, and both ends of the magnetic body 330 are rotated by the magnet 310. They are sandwiched by a predetermined distance from one side and the other side in the central axis direction.
  • the length of the axial portion 335 parallel to the rotation center axial direction of the magnet 310 of the magnetic body 330 (the length between one end 335a and the other end 335b of the axial direction portion 335 in FIG. 7) )
  • One end 33 1 of the magnetic body 330 facing the rotation center axial direction one side 311 of the magnet 310 and the other end 33 2 of the magnetic body 330 facing the other side 312 of the rotation center axial direction of the magnet 310 (The separation between the end surface 331a of one end 331 and the end surface 332a of the other end 332) is shortened.
  • the magnetic body 330 of the rotation angle detector 1C which has a force as in the third modification, has such a shape, the magnetic body itself has a shape close to the lines of magnetic force of the magnet 310, and a backlash between the rotor and the stator.
  • the magnetic flux of the magnet 310 is stably formed on the magnetic body 330 regardless of the amount of displacement of both.
  • a certain amount of backlash occurs between the rotor with the magnet 310 and the stator with the hall element 340 of the rotation angle detection device 1C.
  • the Hall element 340 can change the magnitude and direction of the magnetic flux of the magnet 310 via the magnetic body 330 according to the rotation angle of the magnet 310, that is, the shaft, without being affected by the relative positional deviation between the rotor and the stator. It can be measured accurately.
  • an MR element is used instead of the Hall element described above as a magnetic detection element.
  • Force that can be used MR element can detect the magnitude of magnetic flux, but it cannot determine the polarity, Hall element force that can determine the magnitude and polarity of magnetic flux Detectable angle range per element It can be said that the utility value is high in terms of widening (double the theory). Therefore, it can be said that it is technically significant to use the Hall element in the rotation angle detection device according to the above-described embodiment and its various modifications.
  • this embodiment the rotation angle detection device according to the present invention
  • the conventional rotation angle detection device hereinafter referred to as "comparative example”
  • the comparative example is a rotation angle detecting device having a ring-shaped magnet as shown in FIGS. 13 and 14.
  • This example is a first modification of the present embodiment shown in FIGS.
  • a force and rotation angle detector was used.
  • the horizontal axis represents the relative movement (displacement) of the magnet and the Hall element in the Z direction (magnet rotation center axis direction), and the vertical axis represents the optimal dimensions of the magnet and the Hall element. It shows the rate of change of the Hall element detection output due to the amount of deviation in the Z direction with respect to the Hall element detection output in the relevant state.
  • the output of the Hall element when the magnet and the hall element are optimally arranged changes considerably.
  • the output of the Hall element hardly changes even if the amount of deviation between the magnet and the Hall element in the Z-axis direction increases.
  • the horizontal axis represents the relative movement (shift) in the X direction (direction perpendicular to the rotation center axis direction of the magnet), and the vertical axis represents the optimal dimensional relationship between the magnet and the Hall element.
  • the change rate of the detection output of the Hall element due to the amount of deviation in the Z direction with respect to the detection output of the Hall element in the state is shown.
  • the output of the hall element changes considerably when the magnet and the hall element are in an optimal arrangement state.
  • the rotation angle detection device is required to have a high rotation angle detection accuracy, and must allow a certain degree of component tolerance and backlash in the assembled state in order to improve the assemblability. It is particularly suitable for detecting the rotation angle.
  • the rotation angle detection device is not limited as long as it obtains the relative rotation angle and the rotation torque between the rotating shafts that rotate without being vibrated like a robot arm, for example. It can also be applied to things.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

 被測定回転体の回転角度を検出する回転角度検出装置であって、被測定回転体の周囲に取り付けられ当該被測定回転体と一体に回転する磁石10の磁束密度を検出する磁気検出素子40と、磁気検出素子からの出力から被測定回転体の回転角度を算出する演算処理手段とを備え、磁石を挟み込む位置に両端部を有しかつ磁石の磁力線が形成される領域に沿って配置される磁性体30を備え、磁性体の一方の端部と磁石の回転中心軸線方向一側との間及び磁性体の他方の端部と磁石の回転中心軸線方向他側との間がそれぞれ所定間隔隔たっており、かつ磁気検出素子が磁性体を通る磁力線上に介在されていることで、被測定回転体の回転軸に軸ガタなどが生じても当該被測定回転体の回転角度を正確に測定できる回転角度検出装置を提供する。

Description

明 細 書
回転角度検出装置
技術分野
[0001] 本発明は、回転体に取り付けてこの回転体の回転角度を検出するのに使用する回 転角度検出装置に関する。
背景技術
[0002] 従来から、例えば回転するシャフトの回転角度を検知する回転角度検出装置が知 られている(例えば、特許文献 1参照)。この回転角度検出装置は、円板状に形成さ れた磁石が回転軸に支持されており、この磁石が回転軸を中心として所定の方向に 回転可能に構成されている。また、この回転角度検出装置は 2つの磁気センサを備 えている。 2つの磁気センサはホール素子であり、円板の中心と一方の磁気センサを 通る直線、及び円板の中心と他方の磁気センサを通る直線とがなす角度が概ね 90 度になるように配置されている。また、各磁気センサは、磁石の円周の直下に共に配 置されている。
特許文献 1 :特開 2003— 75108号公報(第 2— 4頁、図 4、 5)
発明の開示
発明が解決しょうとする課題
[0003] ところで、上述したような従来の回転角度検出装置は、磁石が径方向に着磁されて おり、センサの感度を向上させるために磁石の外周の角の部分にホール素子を配置 させて!/、る。このような構成は磁石とホール素子との相対的位置関係が変わらな!/、場 合にのみ高い検出精度を維持できる。し力、しながら、実際の回転角度検出装置では 、回転軸には軸方向ゃ径方向にガタがあり、磁石とホール素子の相対距離がダイナ ミックに変化するため、ホール素子が回転軸の回転とは関係ない磁石の動きによる信 号を検出してしまい、精度の良レ、角度検出ができない問題があった。
[0004] 具体的には、例えば、車両のステアリングシャフトにこのような回転角度検出装置を 取り付ける際、限られた短いタクトタイム内でステアリングシャフトに回転角度検出装 置を迅速に取り付ける必要があり、このような組み付け性向上のために回転角度検 出装置のロータとステータ間の特にロータの軸線方向に関して、ある程度のガタを許 容することが通常行われて!/、る。
[0005] しかし、このようなガタを許容すると、回転角度検出装置のステータとロータとのロー タの軸線方向の相対的位置のばらつきが生じてしまい、ロータの軸線方向に関してこ の両者の相対的位置関係がずれることで、磁力線がホール素子を最適な状態で横 切らず、回転角度検出装置の高い検出精度を維持できなくなる。
[0006] これを図面に基づいてより詳細に説明する。図 10は、このような回転角度検出装置 5の概略平面図であり、磁石 50の周縁近傍に周方向 90° の角度をなしてホール素 子 90 (91 , 92)がそれぞれ配置されている。図 11は、シャフト 55を介してこのような 回転角度検出装置 5を図示しないステアリングシャフトに最適な状態で取り付けた場 合における磁石 50の磁力線 50Aを模式的に示した図である。同図では、円板状を なす磁石 50の磁力線 50Aの極率が最も大きい端部近傍にこの磁力線 50Aと交差す るようにホール素子 90 (図 11ではホール素子 91)が磁石 50の回転とは独立して固 定配置された基板 70上に配置されている。そして、この磁束密度の大きさをホール 素子 90で検出するようになっている。
[0007] 一方、図 12は、上述した回転角度検出装置 5の組み付け性向上のために、回転角 度検出装置 5のロータの回転中心軸線方向におけるステータとロータ間の或る程度 のガタを許容した場合に、このガタに起因して図 11に示した回転角度検出装置 5の 磁石 50がホール素子 91に対して磁石 50の回転中心軸線方向に若干ずれた状態を 示している。なお、このずれ量は、上述したように回転角度検出装置 5の組み付け性 向上を図るために必要なずれ量である。回転角度検出装置 5がこのような状態になる と、磁石 50の磁力線 50Aがホール素子 90から離れてしまい、ホール素子 90の検出 特性が極端に低下することが分かる。
[0008] 一方、例えば特開 2006— 105827号公報に記載の回転角度検出装置も知られて いる。この回転角度検出装置は、リング状の磁石を有し、車両のステアリングシャフト に磁石を貫通させて車両のステアリングに対する取り付け位置の自由度を高めてい る。し力もながら、このような回転角度検出装置においても、センサ自体の検出特性 を向上させるために磁石の磁力線の曲率が最も大きい端部近傍にホール素子が配 置され、上述した場合と同等の問題、即ち回転角度検出装置の組み付け性向上を 図るために磁石の備わったロータとホール素子の備わったステータ間のロータの回 転中心軸線方向、即ち磁石の回転中心軸線方向のガタを或る程度許容すると、ステ ータとロータとの相対的位置のばらつきにより磁石の磁気回路をホール素子が横切 らず、検出出力特性が低下する問題が生じている。
[0009] 図 13はこのような回転角度検出装置 6を図示しないシャフトに最適な寸法関係で取 り付けた場合における磁石 60の磁力線 60Aを模式的に表した図である。同図では、 リング状をなす磁石 60の磁力線 60Aの端部近傍にホール素子 90が配置され、この 磁束密度の大きさを磁石 60の回転とは独立して固定配置された基板 80上のホール 素子 90で検出するようになっている。
[0010] 一方、図 14は、上述した回転角度検出装置 6の組み付け性向上のために回転角 度検出装置 6のステータとロータ間のロータの回転中心軸線方向における或る程度 のガタを許容した場合に、図 13に示した回転角度検出装置 6の磁石 60が、このガタ に起因してホール素子 90に対して磁石 60の回転中心軸線方向に若干ずれた状態 を示している。なお、このずれ量は、上述したように回転角度検出装置 6の組み付け 性向上を図るために必要なずれ量である。このような状態になると、磁石 60の磁力線 60Aがホール素子 90から離れてしまい、ホール素子 90の検出特性が極端に低下す ること力 S分力、る。
[0011] また、上述した問題に関連して、磁石の回転中心軸線方向と直交する方向に関し て磁石とホール素子との相対位置がずれても、ホール素子が磁石の磁力線から離れ てしまうことで、同様な検出特性の低下を招いて!/ヽる。
[0012] 本発明の目的は、被測定回転体の回転軸に軸ガタなどが生じても当該被測定回 転体の回転角度を正確に測定できる回転角度検出装置を提供することにある。 課題を解決するための手段
[0013] 上述した課題を解決するために、本発明にかかる回転角度検出装置は、
被測定回転体の回転角度を検出する回転角度検出装置であって、前記被測定回 転体の周囲に取り付けられ当該被測定回転体と一体に回転する磁石の磁束密度を 検出する磁気検出素子と、前記磁気検出素子からの出力から被測定回転体の回転 角度を算出する演算処理手段とを備えている回転角度検出装置において、 前記磁石を挟み込む位置に両端部を有しかつ前記磁石の磁力線が形成される領 域に沿って配置される磁性体を備え、前記磁性体の一方の端部と前記磁石の回転 中心軸線方向一側との間及び前記磁性体の他方の端部と前記磁石の回転中心軸 線方向他側との間がそれぞれ所定間隔隔たっており、かつ前記磁気検出素子が前 記磁性体を通る磁力線上に介在されてレヽることを特徴として!/、る。
[0014] 本発明に力、かる回転角度検出装置がこのような構成を有することで、磁石の回転中 心軸線方向に関して磁石の備わったロータと磁性体や磁気検出素子の備わったステ ータの相対的位置がずれても、磁性体の一方の端部と磁石の回転中心軸線方向一 側との間隔と、磁性体の他方の端部と磁石の回転中心軸線方向他側との間隔の和 が常に一定となる。よって、磁路の磁気抵抗が変化することがない。その結果、磁気 検出素子がステータとロータの相対的位置のずれに影響を受けることなく磁性体を 介して磁石の磁束密度を磁石即ち被測定回転体の回転角度に応じて常に正確に測 定すること力 Sでさる。
[0015] また、磁性体によって磁路を形成することで磁力線を磁性体内に閉じ込めることが できるので、回転中心軸線方向の寸法の極めて小さな磁石を利用でき、回転角度検 出装置自体を小型化できる。
[0016] また、本発明にかかる回転角度検出装置は、上述の回転角度検出装置に加えて、 前記磁石の回転中心軸線方向一側と対向する磁性体の一方の端部及び前記磁 石の回転中心軸線方向他側と対向する磁性体の他方の端部に前記磁石の回転方 向に沿って延在する突出部がそれぞれ備わっていることを特徴としている。
[0017] 本発明に力、かる回転角度検出装置の磁性体がこのような構成を有することで、磁石 の回転中心軸線方向と直交する方向に関して磁石の備わったロータと磁性体ゃ磁 気検出素子の備わったステータとの相対的位置がずれても、この磁性体の両端に備 わった突出部を介して磁石の磁力線が磁性体に沿って常に安定して形成され、ロー タとステータ間のガタによりロータの回転中心軸線方向に両者がずれてもこの両者の ずれ量によって磁路の磁気抵抗が変化することがない。その結果、磁気検出素子が ロータとステータとの相対的位置のずれの影響を受けることなぐ磁石の磁束密度を 磁石即ち被測定回転体の回転角度に応じて常に正確に測定することができる。
[0018] また、本発明にかかる回転角度検出装置は、上述の回転角度検出装置に加えて、 前記磁石の回転中心軸線方向一側と対向する磁性体の一方の端部に前記磁石の 一側に向かって突出する突出部を備えると共に、前記磁石の回転中心軸線方向他 側と対向する磁性体の他方の端部に前記磁石の他側に向かって突出する突出部を 備えたことを特徴としている。
[0019] 本発明に力、かる回転角度検出装置の磁性体がこのような形状を有することで、磁性 体自体が磁石の磁力線に近い形状となり、磁性体に磁石の磁束が安定して形成さ れ、ロータとステータ間のガタによりロータの回転中心軸線方向に両者がずれてもこ の両者のずれ量によって磁路の磁気抵抗が変化することがない。その結果、磁気検 出素子力、磁石の備わったロータと磁気検出素子の備わったステータとの相対的位 置のずれの影響を受けることなくこの磁性体を介して磁石の磁束の大きさや向きを磁 石即ち被測定回転体の回転角度に応じてより正確に測定することができる。
[0020] また、本発明にかかる回転角度検出装置は、上述の回転角度検出装置に加えて、 前記磁性体の、前記磁石の回転中心軸線方向と略平行な部分の長さより前記磁石 の回転中心軸線方向一側と対向する前記磁性体の一方の端部と前記磁石の回転 中心軸線方向他側と対向する磁性体の他方の端部との間の距離が短いことを特徴と している。
[0021] 本発明に力、かる回転角度検出装置の磁性体がこのような形状を有することで、磁石 力、ら発せられる磁力線が磁性体に集まり、磁性体に磁石の磁束が安定して形成され 、ロータとステータ間のガタによりロータの回転中心軸線方向に両者がずれてもこの 両者のずれ量によって磁路の磁気抵抗が変化することがなくなる。その結果、磁気検 出素子力、磁石の備わったロータと磁気検出素子の備わったステータとの相対的位 置のずれの影響を受けることなくこの磁性体を介して磁石の磁束の大きさや向きを磁 石(即ち被測定回転体)の回転角度に応じてより正確に測定することができる。
[0022] また、本発明にかかる回転角度検出装置は、上述の回転角度検出装置に加えて、 前記磁石はリング状をなし、当該磁石の回転軸線と平行な方向に N極及び S極が 形成され、かつ当該磁石の回転軸線方向に沿っても周期的に磁束密度が変化する ように N極及び S極が形成されて!/、ることを特徴として!/、る。
[0023] 磁石がリング状をなす場合であっても、本発明に係る回転角度検出装置はリング状 磁石の中空部分に回転角度検出装置の構成部品を配置することなく構成できるので 、回転角度検出装置自体の小型化を図ることが可能となる。
図面の簡単な説明
[0024] [図 1]本発明の一実施形態にかかる回転角度検出装置を概略的に示す斜視図、
[図 2]図 1に示した回転角度検出装置の一方の磁石、スぺーサ、磁性体、及びホール 素子の実装された基板を示す断面図、
[図 3]図 1に示した回転角度検出装置の回転角度検出原理を部分的に示す説明図、 [図 4]図 1に示した回転角度検出装置の第 1変形例を図 1に対応して示す斜視図、 [図 5]図 4に示した回転角度検出装置を部分的に拡大して示す斜視図、
[図 6]図 1に示した回転角度検出装置の第 2変形例を図 2に対応して示す断面図、 [図 7]図 1に示した回転角度検出装置の第 3変形例を図 2に対応して示す断面図、 [図 8]本発明にかかる回転角度検出装置 (本実施例)と従来の回転角度検出装置(比 較例)とを比較した特性図、
[図 9]本発明にかかる回転角度検出装置 (本実施例)と従来の回転角度検出装置 (比 較例)とを図 8とは異なる方法で比較した特性図、
[図 10]従来の回転角度検出装置の概略平面図、
[図 11]従来の回転角度検出装置の概略側面図、
[図 12]図 11とは異なり回転角度検出装置のホール素子が実装された基板が磁石に 対して若干ずれた状態を示す概略側面図、
[図 13]図 11とは異なる従来の回転角度検出装置の部分的概略断面図、
[図 14]図 13とは異なり回転角度検出装置のホール素子が実装された基板が磁石に 対して若干ずれた状態を示す部分的断面図である。
発明を実施するための最良の形態
[0025] 以下、本発明の一実施形態に力、かる回転角度検出装置 1について図面に基いて 説明する。なお、この説明においては自動車のステアリング装置においてこの回転角 度検出装置を被測定回転体であるステアリングシャフト (以下、単に「シャフト」とする) に取り付けてハンドルの回転角度を検出する場合について説明する。なお、本発明 の理解の容易化を図るため、断面図においては断面ハッチングを省略して示してい
[0026] 本発明の一実施形態にかかる回転角度検出装置 1は、図 1及び図 2に示すように、 リング状の磁石 10と、磁石 10の回転とは独立して固定支持される基板 20 (図 2にの み図示)と、リング状の磁石 10の中心軸線に対して周方向互いに所定の角度(例え ば 90° )をなすように磁石 10の周方向に配置された磁性体 30 (30A, 30B)と、各磁 性体 30の間に介在されたホール素子(磁気検出素子) 40 (40A, 40B)を備えて!/、る 。なお、基板 20及び磁性体 30 (30A, 30B)は図示しない筐体等からなるステータに 固定されている。
[0027] そして、磁石 10の内側には非磁性材料製のリング状のスぺーサ 15が備わっている 。また、リング状のスぺーサ 15の内周面には例えば図示しないセレーシヨンが形成さ れ、スぺーサ 15の内側に例えば自動車のシャフト(図示せず)が貫通されてシャフト のセレーシヨンと嵌合するようになつている。そして、シャフトの回転と共にこの磁石 10 がー体に回転するようになっている。又、磁石 10は磁気回路に影響を与えない軸受 等で基板 20又は筐体に回転自在に支持されて!/、る。
[0028] 磁石 10は、周方向一方の端部(例えば図 1に示す右側)で磁石 10の回転中心軸 線方向一側(図 1に示す上側)が S極で磁石 10の回転中心軸線方向他側(図 1に示 す下側)が N極として形成され、周方向他方の端部(一方の端部と直径方向反対側 端部で図 1に示す左側)の一側が N極で他側が S極として形成される構成を有して!/、 る。また、この一方の端部と他方の端部との間では N極と S極との形成領域が磁石 10 の回転中心軸線方向(磁石 10の厚み方向)に徐々に入れ替わるようになつている。
[0029] なお、基板 20は図示しない筐体等からなるステータに固定されている。また、磁石 10とスぺーサ 15とはここでは詳細には説明しないロータの一部又は全部をなしてい
[0030] また、ここでは詳細には示さないが、磁石 10、スぺーサ 15、及び基板 20、磁性体 3 0は外部からの磁束を遮蔽する材質でできた筐体内に収容され、この筐体は図示し ないブラケット等でシャフトとは異なる固定部位に取り付けられるようになつている。な お、磁性体 30を構成する一方の磁性体 30Aと他方の磁性体 30Bはその構成が等価 的であるので、これらの構成要素については共通する符号を付して説明する。
[0031] 磁性体 30 (30A, 30B)は鉄やプラスチックマグネットなどの軟磁性材からなり、図 2 に示すように側面視で横向きになった角型 U字状をなし、この両端部 31 , 32が磁石 10を挟み込むようになつている。そして、基板 20には、前述したように 2つのホール 素子 40 (40A, 40B)が備わっており、図示しないシャフトと一体に回転する磁石 10 の回転による磁束密度の変化をそれぞれのホール素子 40が検出するようになってい
[0032] 磁性体 30は、図 2に詳細に説明するように、磁石 10を挟み込む位置に両端部 31 , 32を有しかつ磁石 10の磁力線 1 OAが形成される領域に沿って配置されている。ま た、磁性体 30は、磁石 10の回転中心軸線方向一側 11と磁性体 30の一方の端部 3 1との間が所定間隔隔たつていると共に、磁石 10の回転中心軸線方向他側 12と磁 性体 30の他方の端部 32との間も所定間隔隔たっている。また、磁石 10とその半径 方向で見て最も離れた部分であって磁石 10の回転中心軸線と略平行になった延在 部 35にはその略中央が所定間隔だけ隔たって隙間を形成し、この隙間に基板 20の 端部及びこれに実装されたホール素子 40が揷入配置されている。そして、このホー ル素子 40の出力をここでは詳細には示さな!/、演算手段を用レ、て磁石 10即ちシャフト の回転角度に換算している。
[0033] このホール素子 40及び上記演算手段を用レ、た磁石 10即ちシャフトの回転角度の 検出原理は、例えば図 3 (a)の左側に示す一方のホール素子 40Aが図 3 (b)に示す 出力特性を有することを利用している。ここで、図 3 (b)は、横軸がシャフト即ち磁石 1 0の回転角度を表わし、縦軸がホール素子 40Aによって検出される磁石 10の磁束密 度の大きさを示している。図 3 (b)から分力、るように一方のホール素子 40Aの出力特 性は sin波(正弦波)を示して!/、る。
[0034] なお、ここでは図示しないが、図 3 (a)において磁石 10の上方に配置した他方のホ ール素子 40Bについても同様に図 3 (b)のような正弦波を示す出力特性を有するが 、基板上での両者の配置態様からホール素子 40Bの出力特性は図 3 (b)に示す一 方のホール素子 40Aの出力特性に対して 90° 位相がずれるようになつている。そし て、この 90° 位相のずれたホール素子 40A, 40Bのそれぞれ出力を X, Yとすると ta ι χ/Υ)を取ることによって鋸刃状の出力が得られ、これによつて 360° 周期の 回転角度を演算手段で正確に検出するようになっている。
[0035] 続いて、上述の実施形態に力、かる回転角度検出装置の作用について説明する。
本実施形態に係る回転角度検出装置 1がこのような構成を有することで、磁石 10の 回転中心軸線方向に関して磁石 10の備わったロータと磁性体 30やホール素子 40 の備わったステータの相対的位置がずれても、磁石 10の回転中心軸線方向一側 11 と磁性体 30の一方の端部 31との間隔と、磁石 10の回転中心軸線方向他側 12と磁 性体 30の他方の端部 32との間隔の和が常に一定となる。そのため、磁性体内に形 成される磁力線がこのずれによって変化することがなぐロータとステータ間のガタに よりロータの回転中心軸線方向に両者がずれてもこの両者のずれ量によって磁路の 磁気抵抗が変化することがない。その結果、ホール素子 40がこの相対的位置のずれ に影響を受けることなく磁性体 30を介して磁石 10の磁束の大きさや向きを磁石即ち シャフトの回転角度に応じて常に正確に測定することができる。
[0036] 続いて、上述した実施形態にかかる回転角度検出装置の各種変形例について図 面に基づいて説明する。なお、以下に示す各種変形例は上述の実施形態と磁性体 の形状のみが異なり、その他の構成については上述の実施形態と同様であるので、 この上述の実施形態と同等の構成については対応する符号を付して詳細な説明を 省略する。また、磁石の周方向に配置された 2つの磁性体は、その構成が等価的で あるので、これらの構成要素については、上述の実施形態と同様に共通する符号を 付して説明する。
[0037] まず、本発明の上述した実施形態にかかる回転角度検出装置の第 1変形例につい て説明する。この第 1変形例に係る回転角度検出装置 1Aは、図 4及び図 5に示すよ うに磁性体 130 (130A, 130B)の形状が上述の磁性体 10の形状に加えて、磁石 1 10の回転中心軸線方向一側 111と対向する磁性体の一方の端部 131において磁 石 110の周方向に延在する突出部 131aが備わると共に、磁石 110の回転中心軸線 方向他側 112と対向する磁性体 130の他方の端部 132に磁石 112の周方向に沿つ て突出部 132aが延在している。 [0038] 第 1変形例に係る回転角度検出装置 1Aがこのような構成を有することで、磁石 11 0の回転中心軸線方向と直交する方向に関して磁石 110の備わったロータと磁性体 130やホール素子 140 (140A, 140B)の備わったステータの相対的位置がずれて も、この磁性体 130の両端に備わった突出部 131a, 132aを介して磁石 110の磁力 線が磁性体 130に沿って常に安定して形成され、ロータとステータ間のガタにより口 ータの回転中心軸線方向及びこれと直交する方向に両者がずれてもこの両者のず れ量によって磁路の磁気抵抗が変化することがなくなる。その結果、回転角度検出 装置 1Aのシャフトへの組み付け性向上を図るために、回転角度検出装置 1Aの磁石 110の備わったロータとホール素子 140の備わったステータ間に或る程度のガタが 生じることを許容しても、ロータとステータとの相対的位置のずれによるガタの影響を ホール素子 140が受けることなぐ磁石 110の磁束の大きさや向きを磁石 110即ちシ ャフトの回転角度に応じてこれを常に正確に検出することができ、シャフトの回転角度 を常に正確に測定する。
[0039] 続いて、本発明の上述した実施形態にかかる回転角度検出装置の第 2変形例に ついて説明する。この第 2変形例に係る回転角度検出装置 1Bは、図 6に示すように、 磁性体 230が角型 C字状を有し、この磁性体 230の両端部が磁石 210を磁石 210の 回転中心軸線方向一側と他側からそれぞれ所定間隔を隔てて挟み込むようになって いる。
[0040] そして、磁性体 230は、磁石 210の回転中心軸線方向一側 211と対向する一方の 端部 231に磁石 210の一側 211に向力、つて突出する突出部 231aを備えると共に、 磁石 210の回転中心軸線方向他側 212と対向する他方の端部 232に磁石 210の他 側 212に向力、つて突出する突出部 232aを備えている。
[0041] 第 2変形例に力、かる回転角度検出装置 1Bの磁性体 230がこのような形状を有する ことで、磁性体自体が磁石 210の磁力線に近い形状となり、磁性体 230に磁石 210 の磁束が安定して形成され、ロータとステータ間のガタによりロータの回転中心軸線 方向に両者がずれてもこの両者のずれ量により磁路の磁気抵抗が変化することがな くなる。その結果、回転角度検出装置 1Bのシャフトへの組み付け性向上を図るため に、回転角度検出装置 1Bの磁石 210の備わったロータとホール素子 240の備わつ たステータ間に或る程度のガタが生じることを許容しても、ロータとステータとの相対 的位置のずれの影響をホール素子 240が受けることなぐ磁性体 230を介して磁石 2 10の磁束の大きさや向きを磁石 210即ちシャフトの回転角度に応じてより正確に測 定すること力 Sでさる。
[0042] 続いて、本発明の上述した実施形態にかかる回転角度検出装置の第 3変形例に ついて説明する。この第 3変形例に係る回転角度検出装置 1Cは、図 7に示すように 、磁性体 330が横向きの異形角型 U字状を有し、この磁性体 330の両端部が磁石 3 10の回転中心軸線方向一側と他側からそれぞれ所定の間隔を空けて挟み込むよう になっている。
[0043] そして、磁性体 330の磁石 310の回転中心軸線方向と平行な軸線方向部分 335 の長さ(図 7中軸線方向部分 335の一方の端部 335aと他方の端部 335b間の長さ) より磁石 310の回転中心軸線方向一側 311と対向する磁性体 330の一方の端部 33 1と磁石 310の回転中心軸線方向他側 312と対向する磁性体 330の他方の端部 33 2との間の距離(一方の端部 331の端面 331aと他方の端部 332の端面 332aとの間 の £巨離)が短くなつている。
[0044] 第 3変形例に力、かる回転角度検出装置 1Cの磁性体 330がこのような形状を有する ことで、磁性体自体が磁石 310の磁力線に近い形状となり、ロータとステータ間のガ タによりロータの回転中心軸線方向に両者がずれてもこの両者のずれ量に関わらず 磁性体 330に磁石 310の磁束が安定して形成されるようになる。その結果、回転角 度検出装置 1Cのシャフトへの組み付け性向上を図るために、回転角度検出装置 1C の磁石 310の備わったロータとホール素子 340の備わったステータ間に或る程度の ガタが生じることを許容しても、このようなずれが生じても磁性体 330に磁石 310の磁 束が安定して形成され、磁路の磁気抵抗が変化することがない。その結果、ホール 素子 340が、ロータとステータとの相対的位置のずれの影響を受けることなく磁性体 330を介して磁石 310の磁束の大きさや向きを磁石 310即ちシャフトの回転角度に 応じてより正確に測定することができる。
[0045] なお、以上説明した実施形態及びその各種変形例に関する回転角度検出装置に おいて、磁気検出素子として上述したホール素子を使用する代わりに MR素子を使 用することも考えられる力 MR素子は磁束の大きさは判別できても極性までは判別 できず、磁束の大きさ及び極性を判別できるホール素子の方力 1つの素子あたりの 検出可能な角度範囲が広くなる(理論上 2倍になる)点で利用価値が高いと言える。 従って、上述の実施形態及びその各種変形例に関する回転角度検出装置にホール 素子を用いることは技術的意義があると言える。
実施例
[0046] 以下に、本発明に係る回転角度検出装置(以下、「本実施例」とする)と従来の回転 角度検出装置(以下、「比較例」とする)についてロータとステータ間の相対的位置の ずれに応じた検出特性を比較した評価試験を行ったので、その試験結果につ!/、て 説明する。なお、この実施例において、比較例は図 13及び図 14に示すリング状の磁 石を有する回転角度検出装置を用レ \本実施例は図 4及び図 5に示す本実施形態 の第 1変形例に力、かる回転角度検出装置を用いた。
[0047] 図 8は、横軸が磁石とホール素子の Z方向(磁石の回転中心軸線方向)の相対的な 移動量 (ずれ量)を表わし、縦軸が、磁石とホール素子が最適な寸法関係にある状態 でのホール素子の検出出力に対する Z方向のずれ量に起因したホール素子の検出 出力の変化率を示している。この特性図から明らかなように、比較例は磁石とホール 素子の Z方向のずれ量が大きくなると磁石とホール素子が最適な配置状態にある時 のホール素子の出力に対してかなり変化してしまうのに対し、本実施例では磁石とホ ール素子の Z軸方向のずれ量が大きくなつてもホール素子の出力が殆ど変化しない ことが分かる。
[0048] 図 9は、横軸が X方向(磁石の回転中心軸線方向と直交する方向)の相対的な移動 量 (ずれ量)を表わし、縦軸が、磁石とホール素子が最適な寸法関係にある状態での ホール素子の検出出力に対する Z方向のずれ量に起因したホール素子の検出出力 の変化率を示している。この特性図から明らかなように、比較例は磁石とホール素子 の Z方向の移動量が大きくなると磁石とホール素子が最適な配置状態にある時のホ ール素子の出力に対してかなり変化してしまうのに対し、本実施例では磁石とホール 素子の X軸方向の移動量が大きくなつてもホール素子の出力の変化の程度がかなり 小さいことが分った。 本発明にかかる回転角度検出装置は、高い回転角度検出精度を要求されると共に 、組み付け性向上のために或る程度の部品公差や組み付け状態でのガタを許容せ ざるを得ない車両用ステアリング装置の回転角度検出に特に適している。し力もなが ら、本発明にかかる回転角度検出装置は、例えば、ロボットアームのように振動しな 力 ¾回転する回転軸間の相対回転角度や回転トルクを求めるものであれば、どのよう なものにも適用可能である。

Claims

請求の範囲
[1] 被測定回転体の回転角度を検出する回転角度検出装置であって、前記被測定回 転体の周囲に取り付けられ当該被測定回転体と一体に回転する磁石の磁束密度を 検出する磁気検出素子と、前記磁気検出素子からの出力から被測定回転体の回転 角度を算出する演算処理手段とを備えている回転角度検出装置において、
前記磁石を挟み込む位置に両端部を有しかつ前記磁石の磁力線が形成される領 域に沿って配置される磁性体を備え、前記磁性体の一方の端部と前記磁石の回転 中心軸線方向一側との間及び前記磁性体の他方の端部と前記磁石の回転中心軸 線方向他側との間がそれぞれ所定間隔隔たっており、かつ前記磁気検出素子が前 記磁性体を通る磁力線上に介在されていることを特徴とする回転角度検出装置。
[2] 前記磁石の回転中心軸線方向一側と対向する磁性体の一方の端部及び前記磁 石の回転中心軸線方向他側と対向する磁性体の他方の端部に前記磁石の回転方 向に沿って延在する突出部がそれぞれ備わっていることを特徴とする、請求項 1に記 載の回転角度検出装置。
[3] 前記磁石の回転中心軸線方向一側と対向する磁性体の一方の端部に前記磁石の 一側に向かって突出する突出部を備えると共に、前記磁石の回転中心軸線方向他 側と対向する磁性体の他方の端部に前記磁石の他側に向かって突出する突出部を 備えたことを特徴とする、請求項 1又は請求項 2に記載の回転角度検出装置。
[4] 前記磁性体の、前記磁石の回転中心軸線方向と略平行な部分の長さより前記磁石 の回転中心軸線方向一側と対向する前記磁性体の一方の端部と前記磁石の回転 中心軸線方向他側と対向する磁性体の他方の端部との間の距離が短いことを特徴と する、請求項 1又は請求項 2に記載の回転角度検出装置。
[5] 前記磁石はリング状をなし、当該磁石の回転軸線と平行な方向に N極及び S極が 形成され、かつ当該磁石の回転方向に沿っても周期的に磁束密度が変化するように N極及び S極が形成されていることを特徴とする請求項 1乃至請求項 4の何れかに記 載の回転角度検出装置。
PCT/JP2007/074104 2006-12-18 2007-12-14 回転角度検出装置 WO2008075620A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP07850608.6A EP2103909B1 (en) 2006-12-18 2007-12-14 Rotation angle detection device
US12/519,512 US8183857B2 (en) 2006-12-18 2007-12-14 Rotation angle detection device for detecting rotation angle of a rotating body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-339417 2006-12-18
JP2006339417A JP5128120B2 (ja) 2006-12-18 2006-12-18 回転センサ

Publications (1)

Publication Number Publication Date
WO2008075620A1 true WO2008075620A1 (ja) 2008-06-26

Family

ID=39536251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/074104 WO2008075620A1 (ja) 2006-12-18 2007-12-14 回転角度検出装置

Country Status (4)

Country Link
US (1) US8183857B2 (ja)
EP (1) EP2103909B1 (ja)
JP (1) JP5128120B2 (ja)
WO (1) WO2008075620A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2034267A4 (en) * 2006-06-14 2011-04-27 Furukawa Electric Co Ltd ANGLE DETECTOR
FR2936307B1 (fr) * 2008-09-24 2010-09-17 Moving Magnet Tech Mmt Capteur de position lineaire ou rotatifa aimant permanent pour la detection d'une cible ferromagnetique
CN102597706B (zh) * 2009-11-13 2015-07-29 Cts公司 通轴旋转位置传感器
JP5218491B2 (ja) * 2010-07-29 2013-06-26 株式会社デンソー 回転角度検出装置
JP5765077B2 (ja) * 2011-06-20 2015-08-19 日立金属株式会社 回転センサ
CN102506696A (zh) * 2011-10-13 2012-06-20 广州中国科学院工业技术研究院 二维回转运动的误差测量方法及其磁力量规
CN103206916B (zh) * 2013-03-26 2015-08-05 洛阳轴研科技股份有限公司 一种带v形缺口回转件转动角度的信号采集方法
JP2015145816A (ja) * 2014-02-03 2015-08-13 アイシン精機株式会社 変位センサ
USD753004S1 (en) * 2015-01-16 2016-04-05 Yazaki North America, Inc. Indicator gauge
JP2019118195A (ja) 2017-12-27 2019-07-18 日本電産トーソク株式会社 電動アクチュエータ、回転制御機構
JP6895940B2 (ja) * 2018-11-19 2021-06-30 三菱電機株式会社 回転角度検出装置、回転電機、自動車駆動システム、および回転角度検出装置の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61278713A (ja) * 1985-06-03 1986-12-09 Dai Ichi Seiko Co Ltd 磁気式ロ−タリ−エンコ−ダ−
JPH08126380A (ja) * 1994-10-19 1996-05-17 Shibaura Eng Works Co Ltd 磁気センサ及びそれを用いたモータ
JP2003185470A (ja) * 2001-12-18 2003-07-03 Hitachi Ltd 回転位置センサ、及びこれを用いた電動式スロットル装置、アクセルポジションセンサ
JP2003262537A (ja) * 2002-03-07 2003-09-19 Kayaba Ind Co Ltd 回転角センサ

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5196794A (en) * 1989-03-14 1993-03-23 Mitsubishi Denki K.K. Hall-effect sensor with integrally molded frame, magnet, flux guide and insulative film
US5164668A (en) * 1991-12-06 1992-11-17 Honeywell, Inc. Angular position sensor with decreased sensitivity to shaft position variability
WO1997014608A1 (fr) * 1995-10-17 1997-04-24 Seiko Epson Corporation Dispositif de detection, dispositif fournissant une force d'entrainement a l'aide dudit dispositif et dispositif d'ajustement au point zero pour un detecteur de couple dans le dispositif fournissant une force d'entrainement
FR2746912B1 (fr) 1996-03-29 1998-06-05 Sagem Capteur magnetique de position
JP3757118B2 (ja) * 2001-01-10 2006-03-22 株式会社日立製作所 非接触式回転位置センサ及び非接触式回転位置センサを有する絞弁組立体
JP2003075108A (ja) 2001-09-04 2003-03-12 Asahi Kasei Corp 回転角度センサ
EP1509745A4 (en) * 2002-05-15 2006-12-20 American Electronic Components HOLE PASSAGE SENSOR POSITIONS
US7135857B2 (en) * 2003-12-12 2006-11-14 Honeywell International, Inc. Serially connected magnet and hall effect position sensor with air gaps between magnetic poles
JP2006105827A (ja) 2004-10-06 2006-04-20 Tokai Rika Co Ltd 回転角度センサ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61278713A (ja) * 1985-06-03 1986-12-09 Dai Ichi Seiko Co Ltd 磁気式ロ−タリ−エンコ−ダ−
JPH08126380A (ja) * 1994-10-19 1996-05-17 Shibaura Eng Works Co Ltd 磁気センサ及びそれを用いたモータ
JP2003185470A (ja) * 2001-12-18 2003-07-03 Hitachi Ltd 回転位置センサ、及びこれを用いた電動式スロットル装置、アクセルポジションセンサ
JP2003262537A (ja) * 2002-03-07 2003-09-19 Kayaba Ind Co Ltd 回転角センサ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2103909A4 *

Also Published As

Publication number Publication date
US8183857B2 (en) 2012-05-22
JP2008151628A (ja) 2008-07-03
EP2103909A1 (en) 2009-09-23
JP5128120B2 (ja) 2013-01-23
EP2103909A4 (en) 2011-05-25
EP2103909B1 (en) 2018-09-19
US20100007341A1 (en) 2010-01-14

Similar Documents

Publication Publication Date Title
WO2008075620A1 (ja) 回転角度検出装置
JP5041401B2 (ja) 回転センサ
US8519700B2 (en) Magnetic angular position sensor including an isotropic magnet
JP5666886B2 (ja) ロータリエンコーダ
CN101939623B (zh) 旋转角度检测装置、旋转机及旋转角度检测方法
JP5840374B2 (ja) アブソリュートエンコーダ装置及びモータ
JP5801566B2 (ja) 回転角度検出装置
JP4169536B2 (ja) アクチュエータ
JP4900835B2 (ja) 角度検出装置、バルブ装置および非接触式ボリューム
US8087305B2 (en) System including a magnet and first and second concentrators
EP1405042A1 (en) Arrangement for measuring the angular position of an object
JP2008128740A (ja) 回転センサ
JP2004271427A (ja) 回転角度検出装置
US7710110B2 (en) Rotary sensor with rotary sensing element and rotatable hollow magnet
JP2008216019A (ja) トルクセンサ及び電動式パワーステアリング装置
JP2010038765A (ja) 回転検出装置
JP2009271054A (ja) 位置検出装置およびそれを備えた回転直動モータ
JP2001133210A (ja) 非接触型位置センサ
JP5479695B2 (ja) 回転検出装置
JP5440125B2 (ja) エンコーダ
JP5006362B2 (ja) 回転センサ
JP2020060450A (ja) トルクセンサ
JP2013127390A (ja) 物理量測定機能を備えた回転機械

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07850608

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12519512

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007850608

Country of ref document: EP