WO2008074580A1 - Verfahren und vorrichtung zum messen der betriebstemperatur eines antriebsmotors - Google Patents

Verfahren und vorrichtung zum messen der betriebstemperatur eines antriebsmotors Download PDF

Info

Publication number
WO2008074580A1
WO2008074580A1 PCT/EP2007/062543 EP2007062543W WO2008074580A1 WO 2008074580 A1 WO2008074580 A1 WO 2008074580A1 EP 2007062543 W EP2007062543 W EP 2007062543W WO 2008074580 A1 WO2008074580 A1 WO 2008074580A1
Authority
WO
WIPO (PCT)
Prior art keywords
winding
tachogenerator
operating temperature
measuring
drive motor
Prior art date
Application number
PCT/EP2007/062543
Other languages
English (en)
French (fr)
Inventor
Hasan Gökcer ALBAYRAK
Lothar Knopp
Thomas Ludenia
Jörg SKRIPPEK
Original Assignee
BSH Bosch und Siemens Hausgeräte GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BSH Bosch und Siemens Hausgeräte GmbH filed Critical BSH Bosch und Siemens Hausgeräte GmbH
Priority to CN2007800472782A priority Critical patent/CN101568815B/zh
Priority to EP07822722A priority patent/EP2102617A1/de
Publication of WO2008074580A1 publication Critical patent/WO2008074580A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • H02P29/64Controlling or determining the temperature of the winding
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • H02P29/67Controlling or determining the motor temperature by back electromotive force [back-EMF] evaluation

Definitions

  • the invention relates to a method for measuring the operating temperature of a drive motor, in particular a three-phase motor as a drive for a laundry treatment machine, which is fed via an operating and speed control, using the determination of the operating temperature proportional winding resistance and a comparison of the winding resistance in Cold state and in operating condition. Furthermore, the invention relates to a device for carrying out the method.
  • WO 02/087050 A1 teaches by means of measurements of electrical operating variables to the Windings of the motor to calculate the resistance of the windings and to close about the temperature costs of the winding material (copper) to the current temperature.
  • the absolute temperature fluctuations are so low that, with a justifiable electronic outlay, the measurement accuracy leaves something to be desired. With an increase in the measurement accuracy due to increased electronic complexity but also the susceptibility is higher, so that the measured values in turn can not be sufficiently reliable.
  • the invention has for its object to come in a method described above with less effort to more accurate and reliable readings.
  • this object is achieved in that the speed control of a rotatably connected to the motor and physically connected tachogenerator and that of values of the winding resistance of the tachogenerator, which are calculated taking into account measured electrical operating variables, the height of the operating temperature of the engine is derived ,
  • tachogenerators are anyway required and customary for speed control. Since the winding of the tachogenerator, on the one hand, has intimate thermal contact with the motor winding generating the current heat and, moreover, has a considerably higher ohmic resistance than the motor winding, a reaction is as fast as in the prior art, but much more accurate and reliable due to the temperature values obtained according to the invention. In addition, the electronic effort is lower and contains fewer failure hazards.
  • the a concrete representation of the measuring device is simplified by this embodiment of the invention in a hard to beat way.
  • another embodiment of the method according to the invention again increases the accuracy of the measurement results in that during the measurement operation of the tachogenerator from a frequency signal of the tachogenerator fundamental and harmonics are isolated from each other, and that of shaft portions generated from a self-resonance determined by the winding resistance be determined, the impedance of the winding of the tachometer generator.
  • the inventive method according to one of these variants if the operation and speed control is supplied with the derived temperature values and measures are taken to reduce the drive power due to a comparison of these temperature values with predetermined value levels, advantageously be further developed.
  • This makes it possible for the first time to adapt the drive power for the laundry drum of a laundry treatment machine in a very fine-grained way of the current load.
  • the operating and speed control when reaching different temperature levels different values for the duty cycle described above can be prescribed.
  • This makes it possible to differentiated approach the maximum load capacity of the drive motor used in comparison with certain parameters of the treatment programs and even taking into account the ambient temperature and - if necessary and probably only with immediate errors of the drive motor - totally off and to protect the engine so.
  • the motor can be dimensioned smaller using the invention, even at this page is still saving effort.
  • Fig. 1 shows an arrangement of a block diagram for the determination of the current resistance value of the tachogenerator winding by StrorrWSpannungsteil and
  • Fig. 2 shows another variant in the block diagram for determining the current resonant frequency of the tachogenerator winding due to a harmonic evaluation of the generated current oscillations.
  • the block diagrams show only schematically the symbol for the winding of the tachogenerator 1, which is thermally and mechanically intimately coupled with the winding of the drive motor, not shown.
  • the tachogenerator performs the same rotational movements as the shaft of the drive motor and its winding has the same temperature as the winding of the drive motor.
  • the tachogenerator 1 is supplied with a constant current via a switch 2, which connects it via its output 21 at the measuring times with the voltage source 3.
  • the switch 2 in the circuit of Fig. 1 by the operation and speed control 4, which contains a microprocessor, respectively triggered (line 41).
  • the tachogenerator in the drawn switch position via its input 22 constantly speed-dependent frequency signals to the signal processing 5, which forms processable signals for the speed control 4. These signals are then compared with comparison values in the speed control 4 and used to correct the engine speed.
  • the winding of the tachogenerator 1 is supplied with the stable current from the voltage source 3 and measured simultaneously by a voltmeter 6.
  • the measured voltage across the winding of the tachogenerator 1 is a measure of how large the resistance of the winding is, which deviates from its cold resistance value according to the heated in operation coil. From this voltage and the known voltage in the cold state arises in the operating and speed control 4 a comparison variable, which is compared with the control of predetermined brands.
  • Fig. 2 is closed by measuring the natural resonance of the tachogenerator winding 1 to the temperature equivalent.
  • a high-frequency generator 7 is used, the frequency-determining resonant circuit is completed by the winding of the tachometer generator 1 as inductance.
  • the high-frequency generator 7 is then periodically excited to oscillate by the operating and speed control 4, so that in the excited state, a signal is generated with an oscillation frequency determined by the temperature-dependent impedance of the winding of the tachogenerator 1.
  • This signal is output to a signal processor 8.
  • the signal processing 8 contains a band-pass filter whose cut-off frequencies comprise all possible oscillation frequencies of the high-frequency generator 7.
  • the signal processing 8 then a signal corresponding to the detected frequency signal to the operation and speed control 4, where in a comparable manner as in Fig. 1, a comparison is made, which is compared with predetermined brands.
  • the relatively low-frequency tachometer signals which are obtained from the measured speed, passed directly to the signal processing 9, which has a low-pass filter. This will the only these low-frequency measurement signals - processed accordingly - forwarded to the operation and speed control 4.
  • the associated motor temperature can be calculated via approximation equations or tables.
  • the engine is then always operated in such a way that the maximum permissible operating temperature is just not reached.
  • the associated measure is triggered. For example, when reaching a mark that corresponds to the engine temperature value of 100 0 C, the duty cycle is set to 80%. When higher temperature values are reached, the switch-on duration is lowered accordingly. In this way, the drive motor is controlled with an optimum power profile.
  • the maximum permissible operating temperature is exceeded, the motor is finally switched off. It can however be put back into operation after cooling down.
  • the controller 4 can thus - in a sense anticipatory - always control the engine in its permissible operating temperature according to the standard.
  • the engine no longer for a worst case operation (largest load, maximum ambient temperature, longest program with maximum water level, maximum unbalance, all cumulated) are designed, which may never be reached in the course of its service life.
  • An engine controlled according to the invention no longer becomes too warm and then shut down in normal operation when unfavorable operating conditions occur, but it is switched back in stages to lower switch-on durations, so that it will never reach too high an operating temperature. A total shutdown of the engine can therefore occur practically only in case of a fault on the engine.
  • a laundry treating machine can be equipped with a compact unit of motor, tachogenerator and electronic control, there is no need to cumbersome to find a program that is most difficult for the engine to assign to the engine its uniform duty cycle. Since the controller has the permissible switch-on If they have determined themselves, they can, as it were, be self-employed in situ.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Electric Motors In General (AREA)
  • Control Of Washing Machine And Dryer (AREA)

Abstract

Das Messverfahren für die Betriebstemperatur insbesondere eines Antriebs für eine Wäschebehandlungsmaschine beruht auf einer Messung des der Betriebstemperatur proportionalen Wicklungswiderstandes des Motors und eines Vergleiches der Wicklungswiderstände im Kaltzustand und im Betriebszustand. Das erfindungsgemäße Verfahren berücksichtigt die Betriebstemperatur der Wicklung mit einem geringeren Aufwand und kommt zu genaueren und zuverlässigeren Messwerten als die bekannten Verfahren. Dazu wird die Drehzahlsteuerung (4) von einem mit dem Motor drehfest und körperlich verbundenen Tachogenerator (1) geführt und die Höhe der Betriebstemperatur des Motors von Werten des Wicklungswiderstandes des Tachogenerators (1), die unter Berücksichtigung gemessener elektrischer Betriebsgrößen (Strom, Spannung, Frequenz) ermittelt werden, abgeleitet.

Description

Verfahren und Vorrichtung zum Messen der Betriebstemperatur eines
Antriebsmotors
[0001] Die Erfindung betrifft ein Verfahren zum Messen der Betriebstemperatur eines Antriebsmotors, insbesondere eines dreisträngigen Motors als Antrieb für eine Wäschebehandlungsmaschine, der über eine Betriebs- und Drehzahlsteuerung gespeist wird, mit Hilfe der Bestimmung eines der Betriebstemperatur proportionalen Wicklungswiderstandes und eines Vergleiches der Wicklungswiderstände im Kaltzustand und im Betriebszustand. Weiterhin betrifft die Erfindung eine Vorrichtung zur Durchführung des Verfahrens.
[0002] In der Antriebstechnik für Wäschebehandlungsmaschinen ist es üblich, die Antriebsmotoren in ihrer Leistung so auszulegen, dass sie bei Dauerbetrieb zu warm werden würden. Normalerweise werden sie für eine Einschaltdauer (auf dem Typenschild wird hierfür das Kürzel ED gebraucht) von 90 % ausgelegt. Das bedeutet, dass bei exakt 90 % der möglichen Einschaltdauer mit maximaler Belastung die maximale Betriebstemperatur erreicht werden würde. In der Praxis wird jedoch die maximale Belastung selten erreicht, so dass solche Antriebsmotoren regelmäßig überdimensioniert sind. Um an der Dimensionierung solcher Motoren sparen zu können, müsste die aktuelle Betriebstemperatur genau messbar sein.
[0003] Mangels so genau messbarer Temperatur hat man daher die überdimensionierte Auslegung hingenommen und lediglich für arge Überlastungsfälle einen mechanischen (z. B. Schmelzschalter) oder elektronischen (z. B. PTC-Sensor) Temperaturschutzschalter in die Wicklung des Antriebsmotors eingebaut (EP 0 456 874 B1 ).
[0004] Um auf Temperaturschwankungen des Antriebsmotors feiner reagieren und damit zusätzliche Steuerungen des Motors realisieren zu können, lehrt WO 02/087050 A1 , mithilfe von Messungen elektrischer Betriebsgrößen an den Wicklungen des Motors den Widerstand der Wicklungen zu errechnen und über die Temperaturkostanten des Wicklungswerkstoffes (Kupfer) auf die aktuelle Temperatur zu schließen. Beim Vergleich mit dem Kaltwiderstand der Wicklung ist eine Einschätzung der Belastung möglich. Allerdings sind bei dem äußerst geringen Wicklungswiderstand die absoluten Temperaturschwankungen so gering, dass bei einem vertretbaren elektronischen Aufwand die Messgenauigkeit zu wünschen übrig lässt. Bei einer Steigerung der Messgenauigkeit durch erhöhten elektronischen Aufwand ist aber auch die Störanfälligkeit höher, so dass die Messwerte wiederum nicht ausreichend zuverlässig sein können.
[0005] Der Erfindung liegt die Aufgabe zugrunde, bei einem eingangs beschriebenen Verfahren mit einem geringeren Aufwand zu genaueren und zuverlässigeren Messwerten zu kommen.
[0006] Erfindungsgemäß wird diese Aufgabe dadurch gelöst, dass die Drehzahlsteuerung von einem mit dem Motor drehfest und körperlich verbundenen Tachogenerator geführt und dass von Werten des Wicklungswiderstandes des Tachogenerators, die unter Berücksichtigung gemessener elektrischer Betriebsgrößen berechnet werden, die Höhe der Betriebstemperatur des Motors abgeleitet wird. Für Antriebsmotoren der Haushaltgerätetechnik sind zur Drehzahlregelung ohnehin Tachogeneratoren erforderlich und üblich. Da die Wicklung des Tachogenerators einerseits mit der die Stromwärme erzeugenden Motorwicklung innigen thermischen Kontakt hat und außerdem einen erheblich höheren ohmschen Widerstand aufweist als die Motorwicklung, ist eine Reaktion aufgrund der erfindungsgemäß erhaltenen Temperaturwerte ebenso flink wie im Stand der Technik aber deutlich genauer und zuverlässiger. Zudem ist der elektronische Aufwand geringer und enthält weniger Ausfallgefahren.
[0007] Zur Realisierung des erfindungsgemäßen Verfahren kann es von Vorteil sein, wenn während des Messbetriebs des Tachogenerators bei konstanter Messspannung bzw. konstantem Messstrom der Strom durch die Wicklung bzw. die Spannung an der Wicklung des Tachogenerators gemessen und über eine Beziehung R = U/l der Widerstand der Wicklung des Tachogenerators ermittelt wird. Die konkrete Darstellung der Messeinrichtung wird durch diese Ausbildung der Erfindung in einer kaum zu überbietenden Weise vereinfacht.
[0008] Eine andere Ausführungsform des erfindungsgemäßen Verfahrens steigert demgegenüber nochmals die Genauigkeit der Messergebnisse dadurch, dass während des Messbetriebs des Tachogenerators aus einem Frequenzsignal des Tachogenerators Grund- und Oberwellen voneinander isoliert werden, und dass aus Wellenanteilen, die aus einer vom Wicklungswiderstand bestimmten Eigenresonanz erzeugt werden, die Impedanz der Wicklung des Tachogenerators ermittelt wird.
[0009] Das erfindungsgemäße Verfahren gemäß einer dieser Varianten kann, wenn die Betriebs- und Drehzahlsteuerung mit den abgeleiteten Temperaturwerten versorgt wird und aufgrund eines Vergleichs dieser Temperaturwerte mit vorgegebenen Wertstufen Maßnahmen zur Reduzierung der Antriebsleistung getroffen werden, vorteilhaft fortgebildet werden. Damit ist es erstmals möglich, die Antriebsleistung für die Wäschetrommel einer Wäschebehandlungsmaschine in einer sehr feinstufigen Weise der aktuellen Belastung anzupassen. Beispielsweise können der Betriebs- und Drehzahlsteuerung beim Erreichen unterschiedlicher Temperaturstufen unterschiedliche Werte für die eingangs beschriebene Einschaltdauer vorgeschrieben werden. Dadurch ist es möglich, sich der maximalen Belastbarkeit des eingesetzten Antriebsmotors im Abgleich mit gewissen Parametern der Behandlungsprogramme und sogar unter Berücksichtigung der Umgebungstemperatur differenzierter zu nähern und - wenn nötig und wahrscheinlich nur bei unmittelbaren Fehlern des Antriebsmotors - total abzuschalten sowie den Motor damit zu schonen. Da außerdem bei Anwendung der Erfindung der Motor kleiner dimensioniert werden kann, ist auch an dieser Seite noch Aufwand einzusparen.
[0010] Die Merkmale der Unteransprüche sind einzeln oder in beliebiger Kombination mit den jeweiligen Hauptansprüchen anwendbar und können die Erfindung vorteilhaft weiterbilden.
[001 1] Anhand von in der Zeichnung dargestellten Ausführungsbeispielen für die Umsetzung des erfindungsgemäßen Verfahrens ist die Erfindung nachstehend näher erläutert. Es zeigen - A -
Fig. 1 eine Anordnung eines Blockschaltbildes für die Ermittlung des aktuellen Widerstandswertes der Tachogeneratorwicklung durch StrorrWSpannungsmessung und
Fig. 2 eine andere Variante im Blockschaltbild für die Ermittlung der aktuellen Resonanzfrequenz der Tachogeneratorwicklung aufgrund einer Oberwellenauswertung der erzeugten Stromschwingungen.
[0012] Die Blockschaltbilder zeigen nur schematisch das Symbol für die Wicklung des Tachogenerators 1 , die mit der nicht dargestellten Wicklung des Antriebsmotors thermisch und mechanisch innig gekoppelt ist. Dadurch vollführt der Tachogenerator dieselben Drehbewegungen wie die Welle des Antriebsmotors und hat seine Wicklung dieselbe Temperatur wie die Wicklung des Antriebsmotors. Der Tachogenerator 1 wird über einen Schalter 2, der ihn über seinen Ausgang 21 zu den Messzeitpunkten mit der Spannungsquelle 3 verbindet, mit einem konstanten Strom versorgt. Dazu wird der Schalter 2 in der Schaltung der Fig. 1 von der Betriebs- und Drehzahlsteuerung 4, die einen Mikroprozessor enthält, jeweils getriggert (Leitung 41 ).
[0013] Zur Bereitstellung von Drehzahlmesswerten, die der Regelung der gewünschten Drehzahl des Antriebsmotors dienen, gibt der Tachogenerator in der gezeichneten Schalterstellung über seinen Eingang 22 ständig drehzahlabhängige Frequenzsignale an die Signalverarbeitung 5, die für die Drehzahlsteuerung 4 verarbeitbare Signale formt. Diese Signale werden dann mit Vergleichswerten in der Drehzahlsteuerung 4 verglichen und zur Korrektur der Motordrehzahl verwendet.
[0014] In den Triggerphasen, in denen der Schalter den Ausgang 21 wirksam schaltet, wird die Wicklung des Tachogenerators 1 mit dem stabilen Strom aus der Spannungsquelle 3 versorgt und gleichzeitig von einem Spannungsmesser 6 gemessen. Die gemessene Spannung an der Wicklung des Tachogenerators 1 ist ein Maß dafür, wie große der Widerstand der Wicklung ist, der von ihrem Kaltwiderstandswert entsprechend der im Betrieb erwärmten Spule abweicht. Aus dieser Spannung und der bekannten Spannung im Kaltzustand entsteht in der der Betriebs- und Drehzahlsteu- erung 4 eine Vergleichsgröße, die mit der Steuerung vorgegebenen Marken verglichen wird.
[0015] In entsprechender Weise funktioniert eine gleichartige Anordnung, wenn anstelle eines konstanten Stromes eine konstante Spannung eingespeist wird. Dann wird anstelle der temperaturabhängigen Spannung der Strom durch die Tachogeneratorwicklung 1 gemessen und mit einem Wert für den Strom bei kalter Wicklung verglichen. In jedem Fall genügt es bereits, diese temperaturabhängigen Werte mit den entsprechenden Kaltwerten zu vergleichen. Man kann jedoch auch die Widerstandswerte für die Wicklung aus der Beziehung R= U/l ermitteln und mit den Kaltwerten vergleichen. Anstelle der Ausblendung des Frequenzsignals durch den getriggerten Schalter ist es auch möglich, die Messung stets vorzunehmen und im Messkreis durch Gegenkopplung mit dem drehzahlabhängigen Frequenzsignal die Messspannung bzw. den Messstrom herauszufiltern.
[0016] Beim Beispiel der Fig. 2 wird durch Messung der Eigenresonanz der Tachogenerator-Wicklung 1 auf das Temperaturäquivalent geschlossen. Dazu wird ein Hochfrequenzgenerator 7 verwendet, dessen frequenzbestimmender Schwingkreis durch die Wicklung des Tachogenerators 1 als Induktivität vervollständigt ist. Der Hochfrequenzgenerator 7 wird nun von der Betriebs- und Drehzahlregelung 4 periodisch zum Schwingen angeregt, so dass im Erregungszustand ein Signal mit einer durch die temperaturabhängige Impedanz der Wicklung des Tachogenerators 1 bestimmten Schwingfrequenz erzeugt wird. Dieses Signal wird an eine Signalverarbeitung 8 ausgegeben. Die Signalverarbeitung 8 enthält ein Bandpassfilter, dessen Grenzfrequenzen alle möglichen Schwingfrequenzen des Hochfrequenzgenerators 7 umfassen. Die Signalverarbeitung 8 dann ein der erkannten Frequenz entsprechendes Signal an die Betriebs- und Drehzahlsteuerung 4 weiter, wo in vergleichbarer Weise wie bei Fig. 1 eine Vergleichgröße hergestellt wird, die mit vorgegebenen Marken verglichen wird.
[0017] Demgegenüber werden die verhältnismäßig niederfrequenten Tachometer- Signale, die aus der gemessenen Drehzahl gewonnen werden, unmittelbar an die Signalverarbeitung 9 weitergegeben, die einen Tiefpassfilter aufweist. Dadurch wer- den nur diese niederfrequenten Messsignale - entsprechend aufbereitet - an die Betriebs- und Drehzahlsteuerung 4 weitergeleitet.
[0018] Wenn auf diese Weise Widerstandswerte der Tachogenerator-Wicklung 1 ermittelt sind, kann über Approximationsgleichungen oder Tabellen die zugeordnete Motortemperatur errechnet werden. Der Motor wird dann immer so betrieben, dass die maximal zulässige Arbeitstemperatur gerade noch nicht erreicht wird. Bei Übereinstimmung der ermittelten Motortemperatur mit einer der Marken wird die zugehörige Maßnahme ausgelöst. Beispielsweise wird beim Erreichen einer Marke, die dem Motortemperaturwert von 100 0C entspricht die Einschaltdauer auf 80 % gesetzt. Beim Erreichen höherer Temperaturwerte wird die Einschaltdauer entsprechend abgesenkt. Auf diese Weise wird der Antriebsmotor mit einem optimalen Leistungs- Profil gesteuert. Beim Überschreiten der maximal zulässigen Arbeitstemperatur wird der Motor schließlich abgeschaltet. Er kann aber nach Abkühlen wieder in Betrieb genommen werden. Die Steuerung 4 kann so - gewissermaßen vorausschauend - den Motor immer in seiner gemäß Norm zulässigen Betriebstemperatur ansteuern.
[0019] Verteil hafterweise muss bei Anwendung der Erfindung der Motor nicht mehr für einen ungünstigsten Betriebsfall (größte Beladung, maximale Umgebungstemperatur, längstes Programm mit maximalem Wasserstand, größtmögliche Unwucht, alles kumuliert) ausgelegt werden, der im Verlaufe seiner Betriebsdauer vielleicht nie erreicht wird. Ein erfindungsgemäß gesteuerter Motor wird im ordnungsgemäßen Betrieb beim Eintreten ungünstiger Bethebszustände nicht mehr zu warm und dann abgeschaltet, sondern er wird rechtzeitig stufenweise auf geringere Einschaltdauern zurück geschaltet, so dass er nie eine zu hohe Betriebstemperatur erreichen wird. Eine totale Abschaltung des Motors kann daher praktisch nur noch bei einem Fehler am Motor auftreten.
[0020] Für den Hersteller von Wäschebehandlungsmaschinen wird durch die Erfindung der Entwicklungsaufwand vermindert. Da eine Wäschebehandlungsmaschine mit einer kompakten Einheit aus Motor, Tachogenerator und elektronischer Steuerung ausgestattet werden kann, muss nicht mehr umständlich ein für den Motor schwierigstes Programm ermittelt werden, um dem Motor seine einheitlich zulässige Einschaltdauer zuzuweisen. Da die Steuerung die jeweils zulässigen Einschaltdau- erwerte selbst ermittelt, können sie gewissermaßen in situ selbsttätig eingestellt werden.
Auch für den Kunden ergeben sich Vorteile dadurch, dass die durchgeführten Programme in jedem Falle bis zum Ende abgearbeitet werden. Ihre Aufgaben werden in jedem Fall wie gewünscht durchgeführt, weil die Steuerung entsprechende Anpassungen je nach angepasster Einschaltdauer selbst vornimmt. Programmabbrüche sind nicht mehr zu befürchten.

Claims

Pate n ta ns prü c h e
1. Verfahren zum Messen der Betriebstemperatur eines Antriebsmotors, insbesondere als Antrieb für eine Wäschebehandlungsmaschine, der über eine Betriebs- und Drehzahlsteuerung gespeist wird, mit Hilfe der Bestimmung eines der Betriebstemperatur proportionalen Wicklungswiderstandes und eines Vergleiches der Wicklungswiderstände im Kaltzustand und im Betriebszustand, dadurch gekennzeichnet, dass
- die Drehzahlsteuerung von einem mit dem Motor drehfest und körperlich verbundenen Tachogenerator geführt wird und dass
- von Werten des Wicklungswiderstandes des Tachogenerators, die unter Berücksichtigung gemessener elektrischer Betriebsgrößen berechnet werden, die Höhe der Betriebstemperatur des Motors abgeleitet wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass während des Messbetriebs des Tachogenerators bei konstanter Messspannung bzw. konstantem Messstrom der Strom durch die Wicklung bzw. die Spannung an der Wicklung des Tachogenerators gemessen und über eine Beziehung R = U/l der Widerstand der Wicklung des Tachogenerators berechnet wird.
3. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass während des Messbetriebs des Tachogenerators aus einem Frequenzsignal des Tachogenerators Grund- und Oberwellen voneinander isoliert werden, und dass aus Wellenanteilen, die aus einer vom Wicklungswiderstand bestimmten Eigenresonanz erzeugt werden, die Impedanz der Wicklung des Tachogenerators ermittelt wird.
4. Verfahren zum Steuern des Antriebs einer Wäschebehandlungsmaschine nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass die Betriebs- und Drehzahlsteuerung mit den abgeleiteten Temperaturwerten versorgt wird und dass aufgrund eines Vergleichs dieser Temperaturwerte mit vorgegebenen Wertstufen Maßnahmen zur Reduzierung der Antriebsleistung getroffen werden.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die Maßnahmen aus einer Reduzierung der für die Betriebssteuerung vorgegebenen Einschaltdauer des Antriebsmotors bestehen.
6. Verfahren nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass die Maßnahmen aus einer Totalsperre für den Betrieb des Antriebsmotors bestehen.
7. Vorrichtung zum Durchführen des Verfahrens nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Wicklung des Tachogenerators in innigem thermischen Kontakt mit den Wicklungen des Antriebsmotors stehen.
PCT/EP2007/062543 2006-12-19 2007-11-20 Verfahren und vorrichtung zum messen der betriebstemperatur eines antriebsmotors WO2008074580A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2007800472782A CN101568815B (zh) 2006-12-19 2007-11-20 用于测量驱动电机的工作温度的方法和装置以及用于控制洗衣机的驱动装置的方法
EP07822722A EP2102617A1 (de) 2006-12-19 2007-11-20 Verfahren und vorrichtung zum messen der betriebstemperatur eines antriebsmotors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006060034.7 2006-12-19
DE102006060034A DE102006060034A1 (de) 2006-12-19 2006-12-19 Verfahren und Vorrichtung zum Messen der Betriebstemperatur eines Antriebsmotors

Publications (1)

Publication Number Publication Date
WO2008074580A1 true WO2008074580A1 (de) 2008-06-26

Family

ID=39200052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/062543 WO2008074580A1 (de) 2006-12-19 2007-11-20 Verfahren und vorrichtung zum messen der betriebstemperatur eines antriebsmotors

Country Status (5)

Country Link
EP (1) EP2102617A1 (de)
CN (1) CN101568815B (de)
DE (1) DE102006060034A1 (de)
RU (1) RU2400716C1 (de)
WO (1) WO2008074580A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102213623A (zh) * 2011-04-11 2011-10-12 黑龙江省电力科学研究院 汽轮发电机水冷绕组内部水循环系统检验方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008037157A1 (de) * 2008-08-08 2010-02-11 Oerlikon Textile Gmbh & Co. Kg Verfahren zum Betreiben einer Rotorspinnmaschine
DE102010063950A1 (de) 2010-12-22 2012-06-28 BSH Bosch und Siemens Hausgeräte GmbH Haushaltsgerät mit einem Antriebsmotor und Verfahren zum Betreiben eines solchen Haushaltsgerät
DE102015106051A1 (de) * 2015-04-21 2016-10-27 Miele & Cie. Kg Verfahren zum Betreiben einer Waschmaschine und Waschmaschine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4083001A (en) * 1976-12-29 1978-04-04 Westinghouse Electric Corporation Measurement of motor winding temperature
EP0284711A2 (de) * 1987-03-02 1988-10-05 Heidelberger Druckmaschinen Aktiengesellschaft Einrichtung zum Erfassen der Wicklungstemperatur eines bürstenlosen Gleichstrommotors
WO2002087050A1 (de) * 2001-04-19 2002-10-31 BSH Bosch und Siemens Hausgeräte GmbH Verfahren und vorrichtung zum messen der wicklungstemperatur eines antriebsmotors
US6504358B1 (en) * 1997-09-29 2003-01-07 Siemens Aktiengesellschaft Method for detecting the operating temperature of a motor
US20060179895A1 (en) * 2005-02-14 2006-08-17 Emerson Electric Co. Device and method for sensing temperature of a rotating electromagnetic machine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1011072B (zh) * 1988-12-05 1991-01-02 沈阳市产品质量监督检验所 电器温升自动检测装置
ES2057261T3 (es) * 1990-05-18 1994-10-16 Siemens Ag Proteccion contra sobrecarga para el arrollamiento de un motor de excitacion en serie-dc supervisado a traves de un dispositivo de registro del numero de revoluciones.
DE59007871D1 (de) * 1990-09-28 1995-01-12 Siemens Ag Waschautomat mit einer Überwachung der Motortemperatur.
DE10040080A1 (de) * 2000-08-16 2002-03-21 Pierburg Ag Motorschutzfunktion
DE102004050898B4 (de) * 2004-10-19 2007-04-12 Siemens Ag Verfahren und Einrichtung zur Überwachung einer Temperatur eines Lagers einer rotierend umlaufenden Welle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4083001A (en) * 1976-12-29 1978-04-04 Westinghouse Electric Corporation Measurement of motor winding temperature
EP0284711A2 (de) * 1987-03-02 1988-10-05 Heidelberger Druckmaschinen Aktiengesellschaft Einrichtung zum Erfassen der Wicklungstemperatur eines bürstenlosen Gleichstrommotors
US6504358B1 (en) * 1997-09-29 2003-01-07 Siemens Aktiengesellschaft Method for detecting the operating temperature of a motor
WO2002087050A1 (de) * 2001-04-19 2002-10-31 BSH Bosch und Siemens Hausgeräte GmbH Verfahren und vorrichtung zum messen der wicklungstemperatur eines antriebsmotors
US20060179895A1 (en) * 2005-02-14 2006-08-17 Emerson Electric Co. Device and method for sensing temperature of a rotating electromagnetic machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102213623A (zh) * 2011-04-11 2011-10-12 黑龙江省电力科学研究院 汽轮发电机水冷绕组内部水循环系统检验方法

Also Published As

Publication number Publication date
RU2400716C1 (ru) 2010-09-27
EP2102617A1 (de) 2009-09-23
CN101568815B (zh) 2011-06-29
CN101568815A (zh) 2009-10-28
DE102006060034A1 (de) 2008-06-26

Similar Documents

Publication Publication Date Title
EP2281935B1 (de) Wäschebehandlungsgerät mit einem Elektromotor
EP1036883B1 (de) Verfahren zum Beheizen der Einbaubohle eines Strassenfertigers, sowie entsprechender Strassenfertiger
DE102012018299A1 (de) Motorwindungsüberhitzungs-Schutzvorrichtung und Motorsteuervorrichtung
EP0056437A2 (de) Verfahren und Anordnung zur Belastungsermittlung von durch einen Elektromotor angetriebenen Geräten
WO2008074580A1 (de) Verfahren und vorrichtung zum messen der betriebstemperatur eines antriebsmotors
EP2541262B1 (de) Verlustleistungsmessung in einem wechselrichter
EP3571749A1 (de) Wicklungstemperaturüberwachung
EP2725331B1 (de) Verfahren und Vorrichtung zum Bestimmen einer Betriebstemperatur eines Elektromotors
DE102006049395A1 (de) Verfahren zum Schutz eines Heizelementes sowie Heizvorrichtung
DE112020005865T5 (de) Verarbeitungseinrichtung und verfahren zur bestimmung eines modells zur berechnung von wicklungstemperaturen
EP0224689A1 (de) Vorrichtung zur Temperaturüberwachung von Gleichstromnebenschlussmotoren an Rotationsdruckmaschinen
DE102006032698A1 (de) Vorrichtung und Verfahren zur Steuerung und Absicherung eines Heizelements
EP2184830B1 (de) Vorrichtung zur Temperaturüberwachung einer mehrphasigen Stromwicklung einer elektrischen Maschine
WO1999017127A1 (de) Verfahren und vorrichtung zum erfassen der betriebstemperatur von motoren
EP1702096B2 (de) Wäschebehandlungsgerät mit einer steueranordnung zum be treiben eines elektrischen motors
DE102010063950A1 (de) Haushaltsgerät mit einem Antriebsmotor und Verfahren zum Betreiben eines solchen Haushaltsgerät
EP1450460B1 (de) Verfahren zur Temperaturüberwachung eines Elektromotors
DE102007030633A1 (de) Verfahren zur Temperaturüberwachung und zum thermischen Schutz von elektrischen Maschinen mit einem dynamischen Temperaturmodell
EP0948126B2 (de) Verfahren zur Erfassung eines Parameters eines Asynchronmotors
DE19946808A1 (de) Elektrische Startervorrichtung für eine Brennkraftmaschine
EP3750221A1 (de) Schaltungsanordnung und verfahren zum überlastschutz eines ec-motors
DE102007053755A1 (de) Verfahren und Einrichtung zur Überwachung einer Läufertemperatur einer permanent erregten elektrischen Maschine
DE202017106549U1 (de) Anordnung zur Überwachung der Wicklungsgrenztemperatur
WO2014082850A1 (de) Verfahren und vorrichtung zur leistungsbestimmung eines haushaltsgerätes
DE968692C (de) Vorrichtung zur reihenweisen gleich starken Erhitzung gleicher Teile mittels induzierter Stroeme, insbesondere von Netzfrequenz

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780047278.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07822722

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007822722

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2009122360

Country of ref document: RU

Kind code of ref document: A