WO2008072547A1 - Promoter and expression vector for actinomycetes - Google Patents

Promoter and expression vector for actinomycetes Download PDF

Info

Publication number
WO2008072547A1
WO2008072547A1 PCT/JP2007/073586 JP2007073586W WO2008072547A1 WO 2008072547 A1 WO2008072547 A1 WO 2008072547A1 JP 2007073586 W JP2007073586 W JP 2007073586W WO 2008072547 A1 WO2008072547 A1 WO 2008072547A1
Authority
WO
WIPO (PCT)
Prior art keywords
actinomycetes
promoter
dna
seq
vector
Prior art date
Application number
PCT/JP2007/073586
Other languages
French (fr)
Japanese (ja)
Inventor
Eitora Yamamura
Noboru Fujimoto
Keiji Sakamoto
Original Assignee
Daiichi Fine Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiichi Fine Chemical Co., Ltd. filed Critical Daiichi Fine Chemical Co., Ltd.
Priority to JP2008549273A priority Critical patent/JP5155880B2/en
Publication of WO2008072547A1 publication Critical patent/WO2008072547A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/76Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Actinomyces; for Streptomyces
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione

Definitions

  • the present invention relates to a promoter for actinomycetes, an expression vector for actinomycetes having the promoter, and actinomycetes transformed with the expression vector.
  • the present invention also relates to a method for producing a target protein in actinomycetes using these promoters, vectors or transformants.
  • Actinomycetes of the genus Rhodococcus are known to produce enzymes involved in the metabolism of nitriles and enzymes that asymmetrically reduce aminoketones (aminoketone asymmetric reductases).
  • Rhodococcus erythropolis is known to have an extremely high aminoketone asymmetric reduction activity.
  • actinomycetes and enzymes act on ⁇ -amino ketones to produce optically active / 3-amino alcohols with high yield and high selectivity (for example, Patent Documents 1 and 2). Therefore, the development of recombinant DNA technology aimed at mass production of useful enzymes in actinomycetes, especially the development of host vector systems, has long been expected.
  • Escherichia coli, yeast, Bacillus subtilis, etc. are generally used as host microorganisms in the production of recombinants and transformants using recombinant DNA technology, and many expression vectors have been developed for this purpose. Development of expression vectors and promoters that use force S and actinomycetes as hosts is delayed.
  • the present inventors have already developed a novel shuttle vector aimed at high expression of a protein using Rhodococcus actinomycetes as a host (Patent Document 3). These shuttle vectors were derived from Rhodococcus actinomycetes and Escherichia coli, and were confirmed to function in both Rhodococcus actinomycetes and Escherichia coli. However, development of vectors and promoters for high expression of the target protein in actinomycetes including Rhodococcus is still expected.
  • Non-Patent Document 1 discloses a promoter derived from the lactic acid bacterium Lactobacillus plantarum. It is disclosed that these promoters function in lactic acid bacteria and E. coli. However, the use and function of these promoters in actinomycetes are not known.
  • Patent Document 1 International Publication WO01 / 73100 Pamphlet
  • Patent Document 2 International Publication WO02 / 070714 Pamphlet
  • Patent Document 3 International Publication WO05 / 042739 Pamphlet
  • Non-Patent Document 1 M. Kakikawa et al., Gene, 215, 371-379 (1998) Disclosure of the Invention
  • the present invention provides a promoter capable of highly expressing a target protein by promoting gene expression in actinomycetes, an expression vector having the promoter, and a transformant having the vector introduced therein.
  • the purpose is to provide.
  • Another object of the present invention is to provide a method for producing a target protein capable of mass-producing the target protein using the promoter, vector or transformant.
  • promoters pR and pL derived from the lactic acid bacterium Lactobacillus plant arum disclosed in Non-Patent Document 1 It has been found that it functions in actinomycetes and has as high an activity as a promoter derived from actinomycetes, and the present invention has been completed.
  • a promoter for actinomycetes having the base sequence described in SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 4.
  • the base sequences described in SEQ ID NOs: 1 and 2 are complementary to each other and contain promoters pR and pL regions derived from lactic acid bacteria Lactobacillus plantarum, respectively.
  • the base sequence described in base sequence 3 is a pR promoter region derived from the lactobacillus Lactobacillus plantarum
  • the base sequence described in base sequence 4 is a pL promoter region derived from the lactic acid bacterium Lactobacillus plantarum.
  • a base sequence containing these base sequences can function as a promoter in actinomycetes.
  • the ability S to express a target gene or a target protein at high levels in actinomycetes can be obtained.
  • the promoter for actinomycetes is preferably used as a promoter for Rhodococcus actinomycetes, Mycobacterium sp.
  • an expression vector for actinomycetes having the above! / Or any promoter.
  • the expression vector and the target protein can be expressed at high levels in actinomycetes.
  • actinomycetes transformed with the above expression vector are provided.
  • the target gene and the target protein can be highly expressed in the transformant.
  • the present invention there is provided a method for producing a target protein using the transformant. According to the method for producing a target protein of the present invention, the target protein can be efficiently mass-produced in the transformant.
  • a gene encoding the target protein is inserted into the expression vector having the above! /, One of the promoters so that the gene can be expressed downstream of the promoter.
  • the target protein can be efficiently mass-produced in actinomycetes.
  • a target gene or target protein can be realized in actinomycetes, and various useful proteins can be efficiently mass-produced depending on the purpose. can do.
  • Such proteins also contribute to various industrial production.
  • an enzyme oxidoreductase, transferase, hydrolase, lyase, isomerase, ligase and the like can be efficiently produced in large quantities.
  • the target protein is an aminoketone asymmetric reductase, it enables high-yield and highly selective production of optically active / 3-amino alcohol.
  • the method for producing the target protein of the present invention According to the method, the target protein can be efficiently mass-produced in actinomycetes.
  • for actinomycetes means to function in actinomycetes. That is, in the case of a promoter for actinomycetes, when the promoter is introduced into actinomycetes in some form (for example, in a form incorporated into a vector), it is expressed in actinomycetes! This means that the protein encoded by the gene can be produced. In the case of an actinomycetes expression vector, when the vector is introduced into actinomycetes, it can be replicated in the actinomycetes or inserted into the actinomycetes genome, and the actinomycetes contained in the expression vector This means that the promoter can also function.
  • gene expression refers to both transcription into mRNA and translation of the protein from the mRNA force.
  • protein expression refers to the synthesis of a protein as a result of transcription of a gene and translation.
  • the first promoter of the present invention is characterized by having the base sequence set forth in SEQ ID NO: 1.
  • the base sequence described in SEQ ID NO: 1 is a sequence contained in a phage isolated from the lactic acid bacterium Lactobacillus plantarum, and includes a pR promoter region that is a lactic acid bacterium promoter, a transcription initiation site, and a base sequence corresponding to the GATAC box, respectively. It is. It was first demonstrated by the present inventors that a nucleic acid comprising this base sequence functions as a promoter even in actinomycetes.
  • the first promoter of the present invention is a translation initiation site, translation termination site, transcription initiation site, ribosome binding site, transcription regulatory gene region, upstream or / and downstream of the nucleotide sequence set forth in SEQ ID NO: 1. (Repressor, enhancer, etc.), terminator, or restriction enzyme sites for gene recombination or any other base sequence that does not inhibit the promoter function.
  • the length of the first promoter of the present invention is 173 bp or more, preferably 173 bp to 500 bp, more preferably ⁇ 173 bp to 300 bp.
  • the first promoter of the present invention may be a synthetic oligonucleotide, and also uses two partially complementary synthetic oligonucleotides such as those shown in SEQ ID NOs: 13 and 14, for example. It can be amplified by PCR (Polymerase Chain Reaction), or can be amplified by PCR using an appropriate template and primers. Examples of such a cage include lactic acid bacteria Lactobacillus plantarum template phage ⁇ gle and a plasmid, vector or genome having the base sequence described in SEQ ID NO: 1. Such a primer is not particularly limited as long as it is a primer capable of amplifying the first promoter, but can be designed by those skilled in the art as needed.
  • the second promoter of the present invention is characterized by having the base sequence set forth in SEQ ID NO: 2.
  • the base sequence described in SEQ ID NO: 2 is a sequence contained in a phage isolated from the lactic acid bacterium Lactobacillus plantarum, and includes a pL promoter region that is a lactic acid bacterium promoter and a base sequence corresponding to the GATAC box. .
  • the present inventors have proved for the first time that a nucleic acid comprising this nucleotide sequence functions as a promoter in actinomycetes.
  • the second promoter of the present invention is a translation initiation site, translation termination site, transcription initiation site, ribosome binding site, transcription regulatory gene region, upstream or / and downstream of the base sequence set forth in SEQ ID NO: 2. (Repressor, enhancer, etc.), terminator, or restriction enzyme sites for gene recombination or any other base sequence that does not inhibit the promoter function.
  • the length of the second promoter of the present invention is 172 bp or more, preferably 172 bp to 500 bp, more preferably ⁇ 172 bp to 300 bp.
  • the second promoter of the present invention may be a synthetic oligonucleotide, or by PCR using two partially complementary synthetic oligonucleotides such as those shown in SEQ ID NOs: 13 and 14, for example. It can also be amplified, or can be amplified by PCR using appropriate cages and primers. Examples of such cages include lactic acid bacteria Lactobacill us plantarum template phage ⁇ gle and a plasmid, vector or genome having the base sequence set forth in SEQ ID NO: 2. Such a primer is not particularly limited as long as it is a primer capable of amplifying the second promoter, but can be designed as needed by those skilled in the art.
  • a third promoter of the present invention is characterized by having the base sequence set forth in SEQ ID NO: 3. To do.
  • the base sequence described in SEQ ID NO: 3 is a base sequence corresponding to the pR promoter region contained in a phage isolated from the lactic acid bacterium Lactobacillus plantarum.
  • the third promoter of the present invention includes a translation initiation site, a translation termination site, a transcription initiation site, a ribosome binding site, a transcription regulatory gene region, upstream or / and downstream of the base sequence shown in SEQ ID NO: 3. (Repressor, enhancer, etc.), terminator, or restriction enzyme sites for gene recombination or any other base sequence that does not inhibit the promoter function.
  • the third promoter of the present invention may have one or more bases deleted, substituted or added in the base sequence other than the pR region of the first promoter of the present invention.
  • the length of the third promoter of the present invention is 32 bp or more, preferably 32 bp to 500 bp, more preferably ⁇ 32 bp to 300 bp.
  • the third promoter of the present invention may be a synthetic oligonucleotide, or may be amplified by PCR using an appropriate cage and primer as necessary. Furthermore, the third promoter of the present invention can be obtained by substitution, deletion or addition of one or more bases in the base sequence other than the pR region of the first promoter of the present invention.
  • the fourth promoter of the present invention is characterized by having the base sequence set forth in SEQ ID NO: 4.
  • the base sequence described in SEQ ID NO: 4 is a base sequence corresponding to the pL promoter region contained in a phage isolated from the lactic acid bacterium Lactobacillus plantarum.
  • the fourth promoter of the present invention is a translation initiation site, translation termination site, transcription initiation site, ribosome binding site, transcription regulatory gene region, upstream or / and downstream of the base sequence shown in SEQ ID NO: 4. (Repressor, enhancer, etc.), terminator, or restriction enzyme sites for gene recombination or any other base sequence that does not inhibit the promoter function.
  • the fourth promoter of the present invention may have one or more bases deleted, substituted or added in the base sequence other than the pL region of the second promoter of the present invention.
  • the length of the fourth promoter of the present invention is 27 bp or more, preferably 27 bp to 500 bp, more preferably ⁇ 27 bp to 300 bp.
  • the fourth promoter of the present invention may be a synthetic oligonucleotide or may be amplified by PCR using an appropriate cage and primer as necessary. Furthermore, the fourth promoter of the present invention has a nucleotide sequence other than the pL region of the second promoter of the present invention. It can be obtained by substitution, deletion or addition of one or more bases.
  • the expression vector of the present invention is characterized by having the first, second, third or fourth promoter of the present invention and can function in a host cell when introduced into an actinomycete host. wear.
  • functioning means that it is possible to express a foreign gene inserted downstream of the promoter.
  • introduction into an actinomycete host means insertion into the genome gene of the host cell, or presence as a plasmid capable of self-proliferation outside the host cell chromosome. It leads to sustained or transient expression of the gene.
  • the entire expression vector may be inserted into the host cell genomic gene.
  • the promoter of the present invention A region and a gene region encoding a target protein downstream thereof may be inserted, and a marker region such as a reporter gene may be inserted as necessary.
  • the insertion may be a random recombination or a homologous recombination targeting a specific position on the genome.
  • homologous recombination a sequence having homology with the DNA sequence in the expression vector before, after, or both of the target region to be inserted into the host genome, and before, after, or both of the target specific positions.
  • to introduce! / Preferably to introduce! / ,.
  • the expression vector of the present invention when the expression vector of the present invention is introduced into a host cell and exists as a plasmid that can self-replicate outside the host cell chromosome, the expression vector of the present invention is a self-replicating vector having self-replicating ability. Is preferred. In this case, the number of expression increases by self-replication, and the expression level of the foreign gene in the host can be increased.
  • at least one DNA replication region and a region encoding a protein involved in DNA replication hereinafter referred to as a DNA replication-related protein coding region
  • a DNA replication-related protein coding region are at least one. It is preferable to provide one.
  • the DNA replication region and the coding region of the DNA replication-related protein may be those that are generally known and have different forces depending on the plasmid or microorganism.
  • the base sequence described in SEQ ID NOs: 19 to 21 has been identified as the DNA replication region
  • the coding region of the DNA replication related protein has been identified as SEQ ID NO: 22-24) base sequence (orfl), arrangement Base sequence described in column number 25 (orf2), base sequence described in sequence numbers 26-37 (orf3), base sequence described in sequence numbers 38-42 (orf4), base sequence described in sequence numbers 43-47 (Orf5), base sequence (orf 6) described in SEQ ID NO: 48 or 49, base sequence (orf 7) described in base sequence 50 or 51, base sequence (orf8) described in SEQ ID NO: 52 or 53, SEQ ID NO: The nucleotide sequence (orf 9) described in 54 or
  • the DNA replication region has been identified by the nucleotide sequence set forth in SEQ ID NOs: 56-58, and the coding region of DNA replication-related protein is SEQ ID NO: 59.
  • the base sequence (orf20) and the base sequences (orf21) described in SEQ ID NOs: 83 to 89 have been identified.
  • the vector of the present invention is a self-replicating vector, for example, at least one DNA replication region derived from pRETl 100 or pRETl 000 and a coding region of a DNA replication-related protein derived from pRETl 100 or pRETlOOO ( orf) is preferred.
  • the expression vector of the present invention is a gene encoding a multicloning site necessary for gene recombination, a drug resistance marker gene or reporter gene for selecting a transformant, and other proteins, if necessary. It may contain a region (open reading frame; orf), a translation initiation site, a translation termination site, a transcription initiation site, a ribosome binding site, a transcription regulatory gene region (such as rebresser and enhancer), and a terminator. These are all known in the art.
  • the drug resistance marker gene includes a neomycin resistance gene, a kanamycin resistance gene, and a neugromycin resistance gene. Reporter genes include the lacZ gene.
  • the expression vector of the present invention can be constructed using a conventional DNA recombination technique based on a known plasmid or vector.
  • a promoter derived from Rhodococcus spp. such as pRET1000, pRETHOO, pRET1200, pRET1300, pRET1400, pRET1500, pRET1600, pRET1700, pRET1800, and pRET0500 is inserted into any one of the first to fourth promoters of the present invention. It is obtained by doing.
  • Rhodococcus erythropolis IAM 1400, IAM1503, JCM2893, JCM2894 and JCM2895
  • Rhodococcus rhodnii JCM3203 forces.
  • R. erythropolis IAM1400 and IAM1503 are described in “IAM Catalog of Strains, Third Edition, 2004” published by the Institute for Molecular Cell Biology, University of Tokyo, and can be obtained from the laboratory.
  • R. erythropolis JCM2893, JCM2894 and JCM2895, and R. rhodnii JCM3203 are described in the “JCM Catalog of Strains, Eighth Edition 2002” published by RIKEN It can be obtained.
  • the expression vector of the present invention can be obtained in large quantities, it can be replicated in E. coli.
  • a part of the vector for E. coli preferably the DNA replication region for E. coli and the DNA replication-related protein code
  • a shuttle vector of a plasmid derived from actinomycetes and a plasmid or vector for E. coli is preferably used.
  • sequences that are not related to self-replication and sequences of other unnecessary genes can be cleaved and removed by restriction enzyme treatment.
  • the expression vector of the present invention can be inserted into a host chromosome to produce the target protein.
  • the expression vector of the present invention is preferably about 2 kbp or more, more preferably 2 kbp to 20 kbp, particularly preferably 3 kbp to;! Okbp.
  • actinomycetes refers to all microorganisms belonging to actinomycetes, and representative actinomycetes include Rhodococcus, Mycobacterium, Goldia, Dieza or Amicolatopsis. Examples include microorganisms.
  • Rhodococcus actinomycetes include Rhodococcus baikon urensis, Rhodococcus coprophilus, Rhodococcus corvnebactenoides, R hodococcus equi, Rhodococcus erythropolis, Rhodococcus fascians, R hodococcus globerulus, Rhodococcus gordoniae, Rhodococcus imteche nsis, Rhodococcus jostii, Rhodococcus koreensis, Rhodococcus kroppe nstedtii, Rhodococcus maanshanensis ⁇ Rhocenocs Examples include Rhodococcus rhodochrous, Rhodococcus ruber, Rhodococcus triatomae, Rhodococcus tukisamuensis, Rhodococcu s wratislaviensis, Rhodococcus yunnanensis ⁇ Rhodococcus zop
  • Mycobacterium actinomycetes include Mycobacteri um acapulcensis, Mycobacterium agreste, Mycobacterium agn, Mycob acterium aichiense, Mycobacterium alvei, Mycobacterium aiaticum, Mycobacterium aurum, Mycobacterium austroafricanum, Mycobacterium brumae, My cobacterium celatum, Mycobacterium chelonae, Mycobacterium chim aera, Mycobacterium chitae, Mycobacterium chlorophenolicum ⁇ Mycob acterium chubuense, Mycobacterium confluentis, Mycobacterium con spicuum, Mycobacterium convolutum ⁇ Mycobacterium cookri, Mycoba cterium cosmeticum, Mycobacterium coernhoferi, Mycobacterium elephantis, Mycobacteriu m iailax s Mycobacterium flavescens, Myco
  • Representative Gordonia actinomycetes include Gordonia aichiensis, Gor doma alkanivorans ⁇ Gordonia amarae ⁇ Gordonia amicalis ⁇ gordonia ar aii Gordonia bronchialis Gordonia desulfuricans Gordonia effusa Goordonia ordusa nitsonia ns, Gordonia polyisoprenivorans ⁇ Gordonia rhizosphera, Gordonia rubri pertincta, ordonia rubropertinctus ⁇ Gordonia shandongensis s Gordonia sihwensis, Gordonia sinesedis, Gordonia soli, Gordonia sputi, Gordon ia terrap
  • Representative Dietzia actinomycetes include Dietzia cinnamea, Dietzia kunjamensis, Dietzia maris s uietzia natronolimnaea ⁇ Dietzia natronoli mnaios, Dietzia psychralcaliphila and the like.
  • Typical Amycolatopsis (Amycolatopsis) actinomycetes include Amycolatopsis alba, Amycolatopsis a! Bidoflavus, Amycolatopsis azurea, Amycolatopsis benzoatilytica, Amycolatopsis coloradensis, Amycolatopsis echigonen sis, Amycolatopmy e , Amycolatopsis japonica, Amycolatopsis jejuensis ⁇ Amy colatopsis kentuckyensis s Amycolatopsis keratiniphila subsp. keratini phila, Amycolatopsis keratiniphila subsp.
  • the expression vector can be introduced by a known method, for example, a calcium phosphate method, a lipolysis method, an electo-poration method, a microinjection method, or the like.
  • a first method for producing a protein of the present invention uses the transformant of the present invention described above. It is characterized by that. First, a vector in which a gene encoding a target protein is inserted downstream of the promoter of the present invention is introduced into the transformant. Next, by culturing the transformant, the target protein is expressed by the function of the promoter of the present invention, and the target protein can be produced by purifying the protein.
  • a gene encoding the target protein can be expressed downstream of the promoter in an expression vector having any one of the promoters of the first to fourth aspects of the present invention.
  • To obtain an expression vector capable of expressing the target protein transforming actinomycetes with the obtained expression vector, obtaining a transformant, and proliferating the obtained transformant.
  • the target protein is not particularly limited as long as it can be synthesized in actinomycetes, and examples thereof include proteins and peptides having various useful enzymes and physiological functions.
  • enzymes include oxidoreductase, transferase, hydrolase, lyase, isomerase, and ligase.
  • the aminoketone asymmetric reductase produced by Rhodococcus Ellis mouth police is particularly preferable because it is very useful for the production of optically active amino alcohols.
  • the gene encoding the target protein may be any gene that contains an open reading frame (ORF) from the start codon to the stop codon that encodes all the amino acid sequences of the target protein. It may be a cDNA consisting of only.
  • the length of the gene is not particularly limited, but is preferably lOObp to 10 kbp, more preferably 300 bp to 4 kbp
  • To insert so that it can be expressed downstream of the promoter means to insert a gene encoding the target protein downstream (3 ') of the promoter and under the control of the promoter. .
  • a promoter In order to obtain an expression vector capable of expressing the target protein, for example, a promoter can be first inserted into the vector, and then a gene encoding the target protein can be expressed further downstream of the promoter. How to insert, or promoter and target tamper There is a method in which a DNA fragment gene having both a protein encoding gene is prepared in advance so that it can be expressed, and then inserted into a vector.
  • a promoter is first amplified by PCR with a primer to which a restriction enzyme site is added, the promoter and vector are treated with a restriction enzyme, ligated by a known ligation method, and then the target protein is similarly produced.
  • the gene that codes for is inserted.
  • the insertion position should be designed in advance so that the frame of the gene does not shift.
  • a treatment for smoothening the ends of the DNA after the restriction enzyme treatment may be performed.
  • a gene encoding a target protein is amplified by PCR using a primer containing a nucleotide sequence corresponding to a restriction enzyme site and a promoter, and after ligation to a vector by a known ligation method after restriction enzyme treatment.
  • primers should be designed in advance so that the frame of the gene does not shift.
  • a treatment for smoothening the ends of the DNA after the restriction enzyme treatment may be performed.
  • the methods such as restriction enzyme treatment, PCR, ligation and the like can be performed according to the instruction manual using commercially available reagent kits.
  • the original vector does not have an appropriate restriction enzyme site, it is possible to insert it into another vector first, cut out the necessary part with an appropriate restriction enzyme, and then insert it into the target vector. It is.
  • Such techniques are well known in the art.
  • the expression vector obtained in this step is the same as the expression vector of the present invention described above, the description of the vector is omitted here.
  • step S for transforming actinomycetes with the obtained expression vector to obtain a transformant the transformation method and the transformant are as described above.
  • the obtained transformant is cultured in a medium capable of growth.
  • the medium for culturing the transformant is not particularly limited as long as the microorganism to be used can grow, and a known method can be used. Usually, a liquid medium containing a carbon source, a nitrogen source, and other nutrients is used. . As the carbon source of the medium, any of the above microorganisms can be used.
  • glucose, fructose, sucrose, dextrin, Sugars such as starch and sorbitol, alcohols such as methanol, ethanol and glycerol, organic acids such as fumaric acid, citrate, acetic acid and propionic acid and salts thereof, hydrocarbons such as paraffin, and mixtures thereof can be used.
  • sugars such as starch and sorbitol
  • alcohols such as methanol, ethanol and glycerol
  • organic acids such as fumaric acid, citrate, acetic acid and propionic acid and salts thereof
  • hydrocarbons such as paraffin, and mixtures thereof
  • any of the above microorganisms can be used.
  • ammonium salts of inorganic acids such as ammonium chloride, ammonium sulfate, and ammonium phosphate
  • ammonium salts of organic acids such as ammonium fumarate and ammonium quenate
  • nitrates such as sodium nitrate and potassium nitrate
  • meat Inorganic or organic nitrogen-containing compounds such as extract, yeast extract, malt extract, and peptone, or a mixture thereof
  • nutrient sources used in normal culture such as inorganic salts, trace metal salts, and vitamins may be added to the medium as appropriate.
  • the medium may contain substances that promote the growth of microorganisms, buffer substances that are effective for maintaining the pH of the medium, and the like.
  • the transformant can be cultured under conditions suitable for growth. Specifically, the medium can be heated at pH 3 to 10, preferably 4 to 9, and temperature 0 to 50 ° C, preferably 20 to 40 ° C. Microbial culture can be performed under aerobic or anaerobic conditions. The culture time is preferably 10 to 150 hours, but should be appropriately determined according to each microorganism.
  • the last is a step of purifying the target protein from the transformant obtained in the culturing step.
  • the purification method is not particularly limited as long as the target protein can be obtained. For example, there are the following methods. First, if the target protein is synthesized and remains in the microbial cell, the cell must be disrupted. For example, the culture solution of the microbial cells cultured as described above is filtered or centrifuged, and the cells are thoroughly washed with water or a buffer solution. The washed cells are suspended in an appropriate amount of buffer, and the cells are disrupted.
  • the crushing method is not particularly limited, and examples thereof include mechanical crushing methods such as a mortar, dynomill, french press, and ultrasonic crusher.
  • Solids are removed from the resulting microorganism disruption solution by filtration or centrifugation to obtain a cell-free extract, and the target protein is collected from the extract by a conventional method for protein isolation.
  • the target protein is synthesized and secreted outside the microbial cell, it is not necessary to disrupt the cell.
  • the culture solution of the microbial cells cultured as described above is filtered or centrifuged to obtain a cell-free culture solution, and the target protein is collected from this culture solution by a conventional method for protein isolation.
  • a known method without particular limitation can be used. For example, salting out such as ammonium sulfate precipitation method; gel filtration method using cefadex, etc .; ! /, Is an ion-exchange chromatography method using a carrier having a carboxymethyl group or the like; a hydrophobic chromatography method using a carrier having a hydrophobic group such as a butyl group, an octyl group, or a phenyl group; Purification by gel chromatography method; electrophoresis method; permeation; ultrafiltration method; affinity chromatography method; high performance liquid chromatography method.
  • the protein can also be used as an immobilized enzyme.
  • immobilized proteins or protein-producing cells including carrier binding methods such as covalent bonding methods and adsorption methods, bridge methods, and comprehensive methods. Can be fixed by law.
  • carrier binding methods such as covalent bonding methods and adsorption methods, bridge methods, and comprehensive methods.
  • carrier binding methods such as covalent bonding methods and adsorption methods, bridge methods, and comprehensive methods.
  • carrier binding methods such as covalent bonding methods and adsorption methods, bridge methods, and comprehensive methods.
  • carrier binding methods such as covalent bonding methods and adsorption methods, bridge methods, and comprehensive methods.
  • carrier binding methods such as covalent bonding methods and adsorption methods, bridge methods, and comprehensive methods.
  • a condensing agent such as dartalaldehyde, hexamethylene diisocyanate, hexamethylene diisothiocyanate may be used as necessary.
  • immobilization methods include, for example, a monomer method in which a monomer is gelled by a polymerization reaction; a prepolymer method in which a molecule larger than a normal monomer is polymerized; a polymer method in which a polymer is gelled; Immobilization using polyacrylamide; Immobilization using natural polymers such as alginic acid, collagen, gelatin, agar, and Kappa Ichigo Laguinan; Immobilization using synthetic polymers such as photo-curing resin and urethane polymer Is mentioned.
  • the target protein thus purified is judged to be sufficiently purified if a single band is confirmed by electrophoresis (SDS-PAGE or the like).
  • restriction enzymes used in all examples are products of “Toyobo Co., Ltd.” unless otherwise specified.
  • Reagents other than restriction enzymes are “Wako Pure Chemical Industries, Ltd.” unless otherwise specified. Company "product.
  • Rhodococcus erythropolis IAM 1400 A plasmid derived from Rhodococcus erythropolis IAM 1400 was purified. Rhodoco ecus erythropolis IAM1400 (distributed by Cell Function Information Center, Institute of Molecular Cell Biology, The University of Tokyo) was planted in 5mL of GPY (containing 1% glucose, 0.5% bactopeptone and 0.3% yeast extratate). And cultured with shaking at 25 ° C. In the logarithmic growth phase, 250 L of a 100 mg / mL ampicillin solution was added, and the mixture was further cultured with shaking at 25 ° C for 2 hours.
  • GPY containing 1% glucose, 0.5% bactopeptone and 0.3% yeast extratate
  • the culture solution is centrifuged at 12, OOOrpm for 5 minutes, the supernatant is removed, and the bacteria are suspended in 1 mL of 50 mM Tris-HCl (pH 7.5), and centrifuged at 12, OOOrpm for 5 minutes. The supernatant was removed. 250 L of 10 mg / mL lysozyme solution dissolved in TE (containing 10 mM Tris-HCl (pH 7.5) and ImM EDTA (Dojindo Laboratories)) was added and suspended, and the mixture was allowed to stand at 37 ° C for 30 minutes. After standing, 100% 3 ⁇ 1 NaCl and 25% 10% SDS were added and left overnight at 20 ° C.
  • Plasmid DNA was purified from this solution using GFX TM PCR DNA and Gel Band Purification Kit (GE Healthcare Bioscience).
  • the obtained plasmid DN was a mixture of pRETl 100 (5444 bp) and pRET 1200 (5421 bp) disclosed in International Publication No. WO05 / 042739.
  • the plasmid DNA mixture obtained above was digested with Alw44 I at 37 ° C for 2 hours, and then blunt-ended using Blunting high (Toyobo) to obtain a DNA fragment derived from pRETl100. After digesting this DNA fragment and pHSG299 (Takara Bio) with Hinc II at 37 ° C for 2 hours, add phenol / chloroform / isoamyl alcohol solution as described above and precipitate with ethanol. The DNA fragment obtained by the above was ligated using Ligation high (Toyobo).
  • the ligation product was produced using E. coli using Competent high (Toyobo).
  • DH5a was transformed.
  • the obtained transformed Escherichia coli was divided into 30 0.1 M IPTG (isopropyl 1 / 3-galactoside) and 30% 4% X-gal (5-bromo-4 chloro-3-intoluene 13 for a 90 mm diameter petri dish.
  • LB 1% tryptone, 0.5% yeast extract and 1% sodium chloride; ⁇ 7.2 coated with —D galatatopyranoside) and containing lOO g / mL kanamycin; And left at 30 ° C for 60 hours.
  • plasmid DNA isolated and purified from Rhodococcus erythropolis IAM1400 was digested with BspLU 1 II (Roche Diagnostics) at 48 ° C for 2 hours, and then blunted with Blunting high. At the end, a DNA fragment derived from pRET1200 was obtained. This DNA fragment and the DNA fragment obtained by digesting pHSG299 with Hinc II at 37 ° C for 2 hours were ligated using Ligation high.
  • the ligation product was transformed into E. coli DH5 ⁇ using Competent high.
  • the resulting transformed E. coli was plated on a LB agar medium coated with 30 L of 0.1M I PTG and 30 L of 4% X-gal on a petri dish with a diameter of 90 mm and containing 100 g / mL kanamycin. And left at 30 ° C for 60 hours.
  • the PRET1102 obtained in Example 1 was digested with BamHI and HincII at 37 ° C for 2 hours and then subjected to 0.8% agarose gel electrophoresis using GFX TM PCR DNA and Ge 1 Band Purification Kit. And a DNA fragment of about 2.7 kbp was obtained. This The size marker used was Loading Quick DNA size Marker ⁇ / EcoR I + Hind III double digest (Toyobo).
  • This DNA fragment and pHSG299 were digested with BamH I and Hinc II at 37 ° C for 2 hours and then subjected to 0.8% agarose gel electrophoresis using GFX TM PCR DNA and Gel Band Purification Kit. The purified DNA fragment of about 2 ⁇ 7 kbp was ligated using Ligation high.
  • the ligation product was transformed into E. coli JM109 using Competent high.
  • the resulting transformed E. coli was plated on a LB agar medium coated with 30 L of 0.1M I PTG and 30 L of 4% X-gal on a petri dish with a diameter of 90 mm and containing 100 g / mL kanamycin. And left at 30 ° C for 60 hours.
  • This vector was digested with Pst I for 2 hours, blunt-ended using Blunting high, and ligated using Ligation high.
  • the ligation product was transformed into Escherichia coli JM109 using Competent high, plated on an LB agar medium containing lOO ⁇ g / mL kanamycin, and allowed to stand at 30 ° C for 36 hours.
  • the formed colonies were inoculated into an LB liquid medium containing 100 ⁇ g / mL kanamycin and cultured at 30 ° C for 24 hours, and then the vector DNA was purified using Labo Pass TM Mini. The obtained vector DNA was confirmed by subjecting it to 0.8% agarose gel electrophoresis. This vector was named PRET1132. This pRET1132 was digested with Pst 1 for 1 hour and then subjected to 0.8% agarose gel electrophoresis. As a result, it was confirmed that pRETl 132 was not cleaved by Pst I! /.
  • pRET1202 obtained in Example 1 was digested with EcoR I and Dra III (Roche Diagnostatus) for 2 hours, then blunted using Blunting high, and 0.8% agarose gel electrophoresis. And purified using GFX TM PCR DNA and Gel Band Purification Kit to obtain a DNA fragment of about 3.7 kbp. At this time, the size marker One used Loading Quick DNA size Marker ⁇ / EcoR I + Hind III double digest.
  • This DNA fragment and pHSG299 were digested with BamH I and Hinc II for 2 hours, then subjected to 0.8% agarose gel electrophoresis and purified using GFX TM PCR DNA and Gel Band Purification Kit The DNA fragment of about 2 ⁇ 7 kbp was ligated using Ligation high.
  • the ligation product was introduced into E. coli JM109 using Competent high.
  • the obtained transformed Escherichia coli was plated on a LB agar medium coated with 30 L of 0.1 M IPTG and 30 L of 4% X-gal on a petri dish with a diameter of 90 mm and containing 100 g / mL kanamycin. And left at 30 ° C for 60 hours.
  • Rhodococcus erythropolis MAK 34 (National Institute of Advanced Industrial Science and Technology, National Institute of Advanced Industrial Science and Technology (now National Institute of Advanced Industrial Science and Technology, Patent Biodeposition Center (IPOD)); 305—8566 Tsukuba Rokuto, Ibaraki, Japan 1-chome, 1st, center No. 6) Accession number: FERM BP-7451 (contracted on 15 February 2001) was inoculated into 5 mL of GPY medium and cultured at 30 ° C for 48 hours with shaking. Was transferred to lOOmL GPY medium and cultured at 30 ° C for 10 hours at 200 rpm. The culture solution was purified using Genomic DNA Buffer set (Qiagen) and Genomic tip 500 / g (Qiagen) to obtain genomic DNA.
  • Genomic DNA Buffer set Qiagen
  • Genomic tip 500 / g Qiagen
  • PCR product was treated with phenol / chloroform and ethanol precipitated, it was mixed with pUC18 (about 2 ⁇ 7kbp; Takara Bio) digested at 30 ° C for 2 hours using Sma I, and Ligation high was used. I ligated.
  • the resulting ligation product was transformed into E. coli DH5 a using Competent high, and the resulting transformed E. coli was treated with 30 a L of 0.1 M IPTG and 30 ⁇ L of a 90 mm diameter petri dish. Plated on LB agar medium coated with 4% X-gal and containing 100 g / mL kanamycin and left at 30 ° C for 60 hours.
  • PCR was further performed using the expression vector obtained above as a saddle type.
  • MAKPstF sense
  • MAKHisBglllR antisense
  • — C GCTTAGATCTCAGTTCGCCGAGCGCC-3' SEQ ID NO: 8
  • KOD-plus- denaturation of the truncated DNA at 94 ° C for 2 minutes, followed by 30 cycles of annealing at 68 ° C for 30 seconds and extension reaction at 68 ° C for 1 minute 50 seconds It was.
  • the obtained DNA fragment was digested with Bgl II at 37 ° C for 2 hours, then subjected to 1.5% agarose gel electrophoresis and purified using GFX TM PCR DNA and Gel Band Purification Kit (Approx. 0.8kbp).
  • This DNA fragment and pQE70 (Qiagen) were digested with Sph I at 37 ° C for 2 hours, then blunted with Blunting high, and further digested with Bgl II at 37 ° C for 2 hours. Obtained by subjecting to 8% agarose gel electrophoresis and purifying using G FX TM PCR DNA and Gel Band Purification Kit The obtained DNA fragment was ligated using Ligation high.
  • the obtained ligation product was transformed into Escherichia coli DH5 ⁇ using Competent high.
  • the obtained transformed E. coli was plated on LB agar medium containing lOO ⁇ g / mL ampicillin and allowed to stand at 30 ° C for 60 hours.
  • the formed colonies were cultured with shaking in LB liquid medium containing 100 ⁇ g / mL ampicillin at 30 ° C for 60 hours.
  • the vector DNA was purified from the culture solution using Labo Pass (trademark) Mini.
  • the resulting vector DNA was digested with Bgl II at 37 ° C for 2 hours, and confirmed by subjecting to 0.8% agarose gel electrophoresis. The total length was about 4.2 kbp, and the desired multicloning of pQE70 was performed. It was confirmed that the expression vector had the mak gene inserted into the site.
  • As the size markers Loading Quick DNA size Marker ⁇ / EcoRI + HindIII double digest and pQE70 were used. This expression vector was named PMAK8417-2.
  • pRET1204 was of a saddle type, and a part of the sequence derived from pRET1200 was amplified by PCR.
  • Primers include P1204rep—Ec2958 (sense): 5, 1 CGCGGAATTC GACCACCACGCACGCACACCGCA—3 ′ (SEQ ID NO: 9) and P 1200rep—Ps
  • the DNA fragment was purified using GFX TM PCR DNA and Gel Band Purification Kit, digested with restriction enzymes EcoR I and Pst I for 2 hours, and then subjected to 1.6% agarose gel electrophoresis.
  • the DNA fragment was purified using the GFX TM PCR DNA and Gel Band Purification Kit.
  • the obtained DNA fragment (approx. 0.6kbp) and ⁇ MAK8417-2 were digested with EcoR I and Pst I at 37 ° C for 2 hours, and then subjected to 0.8% agarose gel electrophoresis.
  • a DNA fragment (about 4.2 Kbp) purified using PCR DNA and Gel Band Purification Kit was ligated using Ligation high.
  • the ligation product was transformed into E. coli DH5 ⁇ using Competent high. It was. The obtained transformed E. coli was plated on an LB agar medium containing 100 g / mL ampicillin and left at 30 ° C. for 60 hours.
  • the formed colonies were cultured with shaking in LB liquid medium containing 100 ⁇ g / mL ampicillin at 30 ° C for 60 hours.
  • the culture solution was purified with Labo Pass TM Mini, digested with EcoR I at 37 ° C for 2 hours, and confirmed by 0.8% agarose gel electrophoresis. It was an expression vector (approximately 4 ⁇ 8kbp) in which the mak gene was inserted downstream of the promoter.
  • the obtained vector was made into a saddle type, and a promoter derived from pRET1200 and a portion of the mak gene downstream thereof were amplified by PCR.
  • PQE70Fl sense
  • pQE70R1135Bm antisense
  • KOD—plus— is used as a polymerase at 94 ° C. for 2 minutes.
  • the obtained PCR product was purified using GFX TM PCR DNA and Gel Band Purification Kit, the product was digested with EcoR I and BamH I for 2 hours, and then subjected to 0.8% agarose gel electrophoresis.
  • the DNA fragment was purified using the GFX TM PCR DNA and Gel Band Purification Kit. This DNA fragment (approximately 2.4 kbp) and a DNA fragment (approximately 5.3 kbp) obtained by digesting pRET 1132 with EcoR I and BamHI for 2 hours were subjected to 0.8% agarose gel electrophoresis, and GFX TM PCR DNA
  • the DNA fragment purified using the Gel Band Purification Kit was ligated using Ligation high.
  • the E. coli JM109 was transformed with the ligation product using Competent high, and the obtained transformed E. coli was plated on an LB agar medium containing 100 g / mL kanamycin and left at 30 ° C for 60 hours. did.
  • the obtained colonies were cultured in an LB liquid medium containing 100 ⁇ g / mL kanamycin, and then the vector DNA was purified using Labo Pass (trademark) Mini, and confirmed by 0.8% agarose gel electrophoresis.
  • the size marker is Loading Quick DNA size Marke r ⁇ / EcoR I + Hind III double digest was used.
  • the obtained vector DNA was digested with EcoR I at 37 ° C for 2 hours, and confirmed by 0.8% agarose gel electrophoresis.
  • Synthetic oligonucleotide PTRtF 5,-CAATAAGTCACTCACGCTTCA
  • PCR reaction solution was shaped into a bowl and further PCR was performed.
  • PTRRP SEQ ID NO: 15 and PTRREco—R: 5′-TGG AG AATTCTTAATGG ATATT ATATGTATCAGTA-3 ′ (SEQ ID NO: 16) were used, and KOD—pi us was used as a polymerase at 94 ° C.
  • KOD—pi us was used as a polymerase at 94 ° C.
  • PCR reaction was performed in 30 cycles of annealing at 50 ° C for 30 seconds and extension reaction at 68 ° C for 10 seconds.
  • the PCR product was subjected to 2.0% agarose gel electrophoresis, and the DNA fragment was purified using GFX TM PCR DNA and Gel Band Purification Kit.
  • the purified DNA fragment was digested with EcoR I and Pst I for 2 hours, then subjected to 2.0% agarose gel electrophoresis, and the approximately 0.2 kbp DNA fragment was obtained using the GFX TM PCR DNA and Gel Band Purification Kit. Purified.
  • lOObp DNA Ladder Toyobo was used as a size marker.
  • the obtained DNA fragment and pMAK8417-2 were treated with EcoR I and Pst I at 37 ° C for 2 hours. After digestion, it was subjected to 0.8% agarose gel electrophoresis and ligated with a DNA fragment (about 4.2 kbp) purified using GFX TM PCR DNA and Gel Band Purification Kit using Ligation high. .
  • the ligation product was transformed into E. coli DH5 ⁇ using Competent high.
  • the transformed E. coli was plated on LB agar medium containing 100 g / mL ampicillin and left at 30 ° C for 60 hours.
  • the formed colonies were cultured with shaking in LB liquid medium containing 100 ⁇ g / mL ampicillin at 30 ° C for 60 hours.
  • the culture solution was purified by vector DNA using Labo Pass TM Mini (Hokkaido System Science) and confirmed by 0.8% agarose gel electrophoresis (about 4.4 kbp). Further, the purified vector DNA was digested with EcoR I and Pst I for 2 hours, and a DNA fragment of about 0.2 kbp was confirmed by 2% agarose gel electrophoresis. As a result of analyzing the gene arrangement IJ of this DNA fragment, The base sequence described in No. 1 was obtained. This expression vector was named pM AK8417-17.
  • pQE70F l 5′-GGCGTATCACGAGGCCCT TTCGTCTTCACC-3 ′ (SEQ ID NO: 15) and pQE70R1 135Bm: 5′—GGTTGGmer, using KOD—plus—, 94 ° C.
  • PCR was performed in 30 cycles of annealing at 60 ° C for 30 seconds and extension reaction at 68 ° C for 3 minutes.
  • the PCR reaction solution was purified using GFX TM PCR DNA and Gel Band Purification Kit, the purified PCR product was digested with EcoRI and BamHI for 2 hours, and then subjected to 0.8% agarose gel electrophoresis.
  • the DNA fragment was purified using GFX TM PCR DNA and Ge 1 Band Purification Kit. This DNA fragment (about 2 kbp) and a DNA fragment obtained by digesting pRET 1 132 with EcoR I and BamH I for 2 hours were subjected to 0.8% agarose gel electrophoresis, and using GFX TM PCR DNA and Gel Band Purification Kit.
  • the purified DNA fragment (approximately 5.3 kbp) is mixed and ligated using Ligation high, then E. coli JM109 is transformed using Competent high and plated on LB agar medium containing 100 ⁇ g / mL kanamycin. did. 1 colony obtained After culturing in an LB liquid medium containing 00 ⁇ g / mL kanamycin, the vector DNA was purified using Labo Pass (trademark) Mini, and the nucleotide sequence described in SEQ ID NO: 1 was obtained by 0.8% agarose gel electrophoresis. The vector was confirmed to have a mak gene located downstream of it. At that time, as the size markers, Loading Quick DNA size Marker ⁇ / EcoRI + HindIII double digest and pRETl 132 were used. The vector obtained here was named pRETl137 (about 7.3 kbp).
  • Synthetic oligonucleotide PTRtF 5,-CAATAAGTCACTCACGCTTCA
  • the PCR product was subjected to 2.0% agarose gel electrophoresis, and the DNA fragment was purified using GFX (trademark) PCR DNA and Gel Band Purification Kit.
  • the purified PCR product was digested with EcoR I and Pst I for 2 hours, and then subjected to 2.0% agarose gel electrophoresis, and an approximately 0.2 kbp DNA fragment was obtained using GFX TM PCR DNA and Gel Band Purification Kit. Purified. At this time, lOObp DNA Ladder was used as a size marker.
  • the ligation product was transformed into E. coli DH5 ⁇ using Competent high.
  • the transformed E. coli was plated on LB agar medium containing 100 g / mL ampicillin and left at 30 ° C for 60 hours.
  • the formed colonies were cultured with shaking in LB liquid medium containing 100 g / mL ampicillin at 30 ° C for 60 hours.
  • the culture solution was DNA purified using Labo Pass (trademark) Mini, and confirmed by 0.8% agarose gel electrophoresis. Further, the purified vector DNA was digested with EcoR I and Pst I at 37 ° C for 2 hours, and a DNA fragment of about 0.2 kbp was confirmed by 2% agarose gel electrophoresis, and the gene sequence of this DNA fragment was analyzed. It was confirmed to contain the base sequence described in SEQ ID NO: 2. This expression vector was named pMAK8417-18.
  • the purified DNA fragment was blunt-ended at Blunting high, and this DNA fragment and pRETl 102 were digested with Hinc II at 37 ° C for 2 hours, and then purified using the GFX TM PCR DNA and Gel Band Purification Kit The DNA fragment (about 8 ⁇ lkbp) was mixed and ligated using Ligation high.
  • the ligation product was transformed into E. coli JM109 using Competent high, and the resulting transformed E. coli was plated on an LB agar medium containing 100 g / mL kanamycin.
  • the obtained colonies were cultured in an LB liquid medium containing 100 g / mL kanamycin, and then vector DNA was purified using Labo Pass (trademark) Mini.
  • this vector DNA was confirmed by 0.8% agarose gel electrophoresis, it was confirmed that it was an expression vector having the target nucleotide sequence of SEQ ID NO: 2 and the mak gene located downstream thereof.
  • the size marker is Loading Quick DNA size Marker ⁇ / EcoR I + Hind III double digest and pRETl 102 were used.
  • This vector was named pRET1122 (approximately 9. lkbp).
  • the activity of the promoter was measured by measuring the activity of the aminoketone asymmetric reductase.
  • the pRETl 137 and pRETl 138 obtained above were transformed into B. coli JM109 using Competent high, and the resulting transformed Escherichia coli was plated on an LB agar medium containing 100 Hg / mL kanamycin. After standing at 30 ° C for 24 hours, the obtained colonies were inoculated into 5 mL of LB liquid medium containing 100 11 g / mL kanamycin and cultured at 30 ° C for 24 hours.
  • the culture solution was transferred to a lOOmL LB liquid medium containing 100 g / mL kanamycin and cultured at 30 ° C for 24 hours.
  • the obtained culture solution was centrifuged at 12,000 rpm for 5 minutes at 4 ° C., the supernatant was removed, and the obtained bacterial cells were used for the measurement of reductase activity.
  • the synthesis of EAM was performed by the method described in the literature of rj. Am. Chem. Soc., (1928) 50, P2287-2292. After the reaction solution was shaken at 30 ° C for 16 hours, the bacterial cell reaction solution was centrifuged at 12, OOOrpm for 5 minutes, and the supernatant was transferred to HPLC (High Performance Liquid Chromatography LC—2010C; Shimadzu Corporation). Provided.
  • the analytical column is Inertsil Ph—3 3 ⁇ 0 X 75mm (Genore Science), and the column temperature is 40. C, the eluent was a 7% acetonitrile solution containing 0.05M sodium phosphate buffer (pH 6.0), and the detection wavelength was 22 Onm.
  • E. coli JM109 carrying pRETl137 showed an activity of 60 g / h / OD, and E. coli JM109 carrying pRET1138 could not be detected. It was found that pRET1138 contains a promoter region derived from Rhodococcus actinomycetes and does not function in E. coli.
  • R. erythropolis MAK-34 strain was inoculated into 5 mL of GPY medium and cultured with shaking at 30 ° C for 36 hours.
  • the culture solution (lmL) was transferred to lOOmL LB medium and cultured at 30 ° C for 10 hours at 200 rpm.
  • the cultured cells are collected by centrifugation (12 krpm, 5 minutes, 4 ° C).
  • the collected cells were washed twice with ultrapure water (milliQ; Nihon Millipore).
  • the washed cells were collected by centrifugation (12 krpm, 5 minutes, 4 ° C) and suspended in 2.4 mL of 10% glycerol solution.
  • the suspension was dispensed in 300 L aliquots and frozen at ⁇ 80 ° C. to obtain a competent cell.
  • the formed colonies were inoculated into 5 mL of LB liquid medium and cultured at 30 ° C for 72 hours.
  • the culture solution was centrifuged at 12,000 rpm for 5 minutes at 4 ° C, the supernatant was removed, and the resulting cells were used for the measurement of reductase activity.
  • the analytical column is Inertsil Ph— 3 3.0 X 75 mm, the column temperature is 40 ° C, the eluent is a 7% acetonitrile solution containing 0.05 M sodium phosphate buffer (pH 6.0), and the detection wavelength is 220 ⁇ m. ⁇ .
  • R. erythropolis MAK— 3 4 holding pRET1102 is 0.2; ⁇ / 1 ⁇ / ⁇ .
  • D. R. erythropolis M AK- 343 ⁇ 420 ag / / OD active with pRET1137 and R. erythro polis MAK- 34 with pRETl 138 active with 20 g / h / OD It was.
  • pRETl 122 and pRETl 137 contain a promoter derived from lactic acid bacteria, it has been confirmed that R. erythropolis highly expresses an aminoketone asymmetric reductase.
  • the activity of the promoter was equivalent to that of pRETl 138 containing a promoter derived from Rhodococcus actinomycetes. (Example 8) Measurement of activity of a predetermined promoter in actinomycetes other than Rhodococcus erythpolis
  • Rhodococcus zopfii JCM 9919 Rhodococcus tukisamuensis J CM 11308, Rhodococcus percolatus JCM 10087, Rhodococcus imte chensis JCM 13270, Gordonia bronchialis JCM 3231, Rhodococcus maanshanensis JCM 11374, Gordonia rubripertincta Joc 3396 And Rhodococcus opacus JCM 9703 (the above 14 strains were inoculated from JCM (independent administrative agency, BioResource Center, Microbial Materials Development Office, 2-1 hirosawa, Wako-shi, Saitama 351-0101)) at 25 ° C. Shake culture.
  • the culture solution was measured at a wavelength of 610 nm and cultured with shaking until the absorbance reached 0.8.
  • 3 mL of the culture solution was inoculated into lOOmL of LB medium and cultured with shaking at 25 ° C for 12 hours.
  • the cultured cells were collected by centrifugation (12 krpm, 5 minutes, 4 ° C), and the collected cells were washed twice with ultrapure water.
  • the washed cells were collected by centrifugation (12 krpm, 5 minutes, 4 ° C) and suspended in 2.4 mL of 10% glycerol solution. 300 L aliquots of the suspension were dispensed and frozen at ⁇ 80 ° C. to obtain a competent cell.
  • Each of the produced competent cells 90 a L and plasmid DNA 5 L of pRE T1102 or pRET1137 prepared with Labo Pass TM Mini were mixed on ice. Gently pour the mixture into a 0.1 cm cuvette chilled on ice, Gene Pulser II Electrop oration System ⁇ This set. Remove the LB medium at 20 kV / cm, 400 ⁇ , and 25 ⁇ F, and immediately remove the LB medium and leave it at 25 ° C for 3 hours. A part of the suspension was plated on LB agar medium containing 100 g / mL kanamycin and left at 25 ° C for 7 days.
  • the formed colonies were inoculated into 5 mL of LB liquid medium and cultured with shaking at 25 ° C for 7 days.
  • the culture solution was centrifuged at 4 ° C and 12 krpm for 5 minutes, the supernatant was removed, and the obtained cells were used for the measurement of reductase activity.
  • a target gene or target protein can be realized in actinomycetes, and various useful proteins can be efficiently mass-produced depending on the purpose. it can.
  • Such proteins also contribute to various industrial production.
  • an enzyme oxidoreductase, transferase, hydrolase, lyase, isomerase, ligase and the like can be efficiently produced in large quantities.
  • the target protein is an aminoketone asymmetric reductase, it enables high-yield and highly selective production of optically active / 3-amino alcohol.
  • the method for producing the target protein of the present invention According to the method, the target protein can be efficiently mass-produced in actinomycetes.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

It is intended to provide a promoter capable of highly expressing a target protein by promoting gene expression in actinomycetes, an expression vector containing the promoter, and a transformant transfected with the vector. It is also intended to provide a method for producing a target protein capable of producing a large amount of a target protein using the promoter, vector or transformant. A promoter for actinomycetes containing any of nucleotide sequences represented by SEQ ID NOS: 1 to 4, an expression vector for actinomycetes containing the promoter, actinomycetes transfected with the expression vector, and a method for producing a target protein using the transformant are provided.

Description

明 細 書  Specification
放線菌用プロモータ及び発現ベクター  Actinomycetes promoter and expression vector
技術分野  Technical field
[0001] 本発明は、放線菌用プロモータ、該プロモータを有する放線菌用発現ベクター、及 び該発現ベクターで形質転換された放線菌に関する。本発明は、またこれらのプロ モータ、ベクター又は形質転換体を用いた放線菌における目的タンパク質の製造方 法に関する。  [0001] The present invention relates to a promoter for actinomycetes, an expression vector for actinomycetes having the promoter, and actinomycetes transformed with the expression vector. The present invention also relates to a method for producing a target protein in actinomycetes using these promoters, vectors or transformants.
背景技術  Background art
[0002] ロドコッカス(Rhodococcus)属放線菌は、二トリル類の代謝に関与する酵素やアミ ノケトンを不斉的に還元する酵素(アミノケトン不斉還元酵素)を産生することが知ら れている。特に、 Rhodococcus erythropolisは、極めて高いアミノケトン不斉還元 活性を有することが知られている。このような放線菌及び酵素は、 α アミノケトンに 作用して、光学活性 /3—ァミノアルコールを高収率かつ高選択的に生産する(例え ば、特許文献 1及び 2)。したがって、放線菌において、有用な酵素等の大量生産を 目的とする組換え DNA技術、特に宿主 ベクター系の開発が以前から期待されて きた。  [0002] Actinomycetes of the genus Rhodococcus are known to produce enzymes involved in the metabolism of nitriles and enzymes that asymmetrically reduce aminoketones (aminoketone asymmetric reductases). In particular, Rhodococcus erythropolis is known to have an extremely high aminoketone asymmetric reduction activity. Such actinomycetes and enzymes act on α-amino ketones to produce optically active / 3-amino alcohols with high yield and high selectivity (for example, Patent Documents 1 and 2). Therefore, the development of recombinant DNA technology aimed at mass production of useful enzymes in actinomycetes, especially the development of host vector systems, has long been expected.
[0003] しかし、組換え DNA技術を利用した組換え体や形質転換体の作製における宿主 微生物として、一般に大腸菌や酵母、枯草菌などが用いられており、そのための発現 ベクターが多く開発されてきた力 S、放線菌を宿主とする発現ベクターやプロモータの 開発は遅れている。  [0003] However, Escherichia coli, yeast, Bacillus subtilis, etc. are generally used as host microorganisms in the production of recombinants and transformants using recombinant DNA technology, and many expression vectors have been developed for this purpose. Development of expression vectors and promoters that use force S and actinomycetes as hosts is delayed.
[0004] 本発明者らは、ロドコッカス属放線菌を宿主とするタンパク質の高発現を目的とする 新規なシャトルベクターを既に開発して!/、る(特許文献 3)。これらのシャトルベクター は、ロドコッカス属放線菌及び大腸菌由来のものであり、ロドコッカス属放線菌及び大 腸菌の両方で機能することが確認された。し力もながら、ロドコッカス属を含む放線菌 において目的タンパク質を高発現させるためのベクターやプロモータの開発が依然 と期待されている。  [0004] The present inventors have already developed a novel shuttle vector aimed at high expression of a protein using Rhodococcus actinomycetes as a host (Patent Document 3). These shuttle vectors were derived from Rhodococcus actinomycetes and Escherichia coli, and were confirmed to function in both Rhodococcus actinomycetes and Escherichia coli. However, development of vectors and promoters for high expression of the target protein in actinomycetes including Rhodococcus is still expected.
[0005] 一方、非特許文献 1には乳酸菌 Lactobacillus plantarum由来のプロモータが 開示されており、これらのプロモータが乳酸菌及び大腸菌内で機能することが知られ ている。しかし、これらのプロモータの放線菌における利用や機能については知られ ていない。 [0005] On the other hand, Non-Patent Document 1 discloses a promoter derived from the lactic acid bacterium Lactobacillus plantarum. It is disclosed that these promoters function in lactic acid bacteria and E. coli. However, the use and function of these promoters in actinomycetes are not known.
特許文献 1:国際公開 WO01/73100号パンフレット  Patent Document 1: International Publication WO01 / 73100 Pamphlet
特許文献 2:国際公開 WO02/070714号パンフレット  Patent Document 2: International Publication WO02 / 070714 Pamphlet
特許文献 3:国際公開 WO05/042739号パンフレット  Patent Document 3: International Publication WO05 / 042739 Pamphlet
非特許文献 1 : M. Kakikawaら、 Gene, 215巻、 371— 379頁(1998年) 発明の開示  Non-Patent Document 1: M. Kakikawa et al., Gene, 215, 371-379 (1998) Disclosure of the Invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] 本発明は、放線菌において遺伝子発現を促進させることにより目的タンパク質を高 発現させることができるプロモータ、並びに該プロモータを有する発現ベクター及び 該ベクターが導入された形質転換体を提供することを提供することを目的とする。本 発明は、また、上記プロモータ、ベクター又は形質転換体を用いた目的タンパク質を 大量生産できる目的タンパク質の製造方法を提供することを目的とする。 [0006] The present invention provides a promoter capable of highly expressing a target protein by promoting gene expression in actinomycetes, an expression vector having the promoter, and a transformant having the vector introduced therein. The purpose is to provide. Another object of the present invention is to provide a method for producing a target protein capable of mass-producing the target protein using the promoter, vector or transformant.
課題を解決するための手段  Means for solving the problem
[0007] 本発明者らが、上記の課題を解決するために、放線菌で機能するプロモータを鋭 意スクリーニングした結果、非特許文献 1で開示された乳酸菌 Lactobacillus plant arum由来のプロモータ pR及び pL力 放線菌で機能し、放線菌由来のプロモータと 同じくらい高い活性を有することを見出し、本発明を完成することに至った。  [0007] As a result of intensive screening of promoters that function in actinomycetes by the present inventors in order to solve the above-mentioned problems, promoters pR and pL derived from the lactic acid bacterium Lactobacillus plant arum disclosed in Non-Patent Document 1 It has been found that it functions in actinomycetes and has as high an activity as a promoter derived from actinomycetes, and the present invention has been completed.
[0008] 即ち、本願発明によれば、配列番号 1、配列番号 2、配列番号 3又は配列番号 4に 記載の塩基配列を有する放線菌用プロモータが提供される。配列番号 1及び 2に記 載の塩基配列は互いに相補鎖であり、それぞれ乳酸菌 Lactobacillus plantarum 由来のプロモータ pR及び pL領域を含む。また、塩基配列 3に記載の塩基配列は乳 酸菌 Lactobacillus plantarum由来の pRプロモータ領域であり、塩基配列 4に記 載の塩基配列は乳酸菌 Lactobacillus plantarum由来の pLプロモータ領域であ る。これらの塩基配列を含む塩基配列は、放線菌でプロモータとして機能することが できる。本発明のプロモータによれば、放線菌で目的遺伝子や目的タンパク質を高 発現させること力 Sでさる。 [0009] 上記放線菌用プロモータは、好ましくはロドコッカス属放線菌、マイコバクテリゥム属 放線菌、ゴルドユア属放線菌、ディエツァ属放線菌又はアミコラトプシス属放線菌の プロモータとして使用される。 That is, according to the present invention, there is provided a promoter for actinomycetes having the base sequence described in SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 4. The base sequences described in SEQ ID NOs: 1 and 2 are complementary to each other and contain promoters pR and pL regions derived from lactic acid bacteria Lactobacillus plantarum, respectively. The base sequence described in base sequence 3 is a pR promoter region derived from the lactobacillus Lactobacillus plantarum, and the base sequence described in base sequence 4 is a pL promoter region derived from the lactic acid bacterium Lactobacillus plantarum. A base sequence containing these base sequences can function as a promoter in actinomycetes. According to the promoter of the present invention, the ability S to express a target gene or a target protein at high levels in actinomycetes can be obtained. [0009] The promoter for actinomycetes is preferably used as a promoter for Rhodococcus actinomycetes, Mycobacterium sp.
[0010] また、本発明によれば、上記!/、ずれかのプロモータを有する放線菌用発現ベクター が提供される。本発明の発現ベクターによれば、放線菌で目的遺伝子や目的タンパ ク質を高発現させること力でさる。  [0010] Further, according to the present invention, there is provided an expression vector for actinomycetes having the above! / Or any promoter. According to the expression vector of the present invention, the expression vector and the target protein can be expressed at high levels in actinomycetes.
[0011] また、本発明によれば、上記の発現ベクターで形質転換された放線菌が提供され る。本発明の形質転換された放線菌(形質転換体)によれば、該形質転換体におい て目的遺伝子や目的タンパク質を高発現させることができる。  [0011] Further, according to the present invention, actinomycetes transformed with the above expression vector are provided. According to the transformed actinomycetes (transformant) of the present invention, the target gene and the target protein can be highly expressed in the transformant.
[0012] また、本発明によれば、上記の形質転換体を用いた目的タンパク質の製造方法を 提供される。本発明の目的タンパク質の製造方法によれば、該形質転換体において 目的タンパク質を効率よく大量生産することが可能となる。  [0012] Further, according to the present invention, there is provided a method for producing a target protein using the transformant. According to the method for producing a target protein of the present invention, the target protein can be efficiently mass-produced in the transformant.
[0013] また、本発明によれば、 目的タンパク質をコードする遺伝子を、上記の!/、ずれかの プロモータを有する発現ベクターに、該プロモータの下流に発現可能なように揷入し [0013] Further, according to the present invention, a gene encoding the target protein is inserted into the expression vector having the above! /, One of the promoters so that the gene can be expressed downstream of the promoter.
、 目的タンパク質を発現できる発現ベクターを得るステップと、得られた発現ベクター によって放線菌を形質転換し、形質転換体を得るステップと、得られた形質転換体を 増殖可能な培地中で培養するステップと、上記培養するステップで得られた形質転 換体から目的タンパク質を精製するステップとを含む目的タンパク質の製造方法が提 供される。本発明の目的タンパク質の製造方法によれば、放線菌において目的タン ノ^質を効率よく大量生産することが可能となる。 A step of obtaining an expression vector capable of expressing the target protein, a step of transforming actinomycetes with the obtained expression vector, obtaining a transformant, and a step of culturing the obtained transformant in a growth medium And a step of purifying the target protein from the transformant obtained in the culturing step. According to the method for producing a target protein of the present invention, the target protein can be efficiently mass-produced in actinomycetes.
発明の効果  The invention's effect
[0014] 本発明のプロモータ、発現ベクター又は形質転換体によれば、放線菌において目 的遺伝子や目的タンパク質の高発現が実現でき、 目的に応じて様々な有用なタンパ ク質を効率よく大量生産することができる。このようなタンパク質はまた様々な工業生 産に貢献する。例えば酵素においては、酸化還元酵素、転移酵素、加水分解酵素、 リアーゼ、イソメラーゼ、リガーゼなどを効率よく大量に生産することができる。 目的タ ンパク質がアミノケトン不斉還元酵素である場合、光学活性 /3—ァミノアルコールの 高収率かつ高選択的な製造を可能とする。また、本発明の目的タンパク質の製造方 法によれば、放線菌において目的タンパク質を効率よく大量生産することができる。 発明を実施するための最良の形態 [0014] According to the promoter, expression vector or transformant of the present invention, high expression of a target gene or target protein can be realized in actinomycetes, and various useful proteins can be efficiently mass-produced depending on the purpose. can do. Such proteins also contribute to various industrial production. For example, in an enzyme, oxidoreductase, transferase, hydrolase, lyase, isomerase, ligase and the like can be efficiently produced in large quantities. When the target protein is an aminoketone asymmetric reductase, it enables high-yield and highly selective production of optically active / 3-amino alcohol. Also, the method for producing the target protein of the present invention According to the method, the target protein can be efficiently mass-produced in actinomycetes. BEST MODE FOR CARRYING OUT THE INVENTION
[0015] 以下、本発明を好適な実施形態に従って説明する。 Hereinafter, the present invention will be described according to preferred embodiments.
[0016] 本明細書において、「放線菌用」とは、放線菌において機能することを意味する。即 ち、放線菌用プロモータの場合、プロモータが何らかの形(例えばベクターに組み込 まれた形)で放線菌に導入されたとき、放線菌にお!/、てプロモータの下流に位置する 遺伝子の発現を促進し、遺伝子のコードするタンパク質を産生させることができること を意味する。また、放線菌用発現ベクターの場合、ベクターが放線菌に導入されたと き、放線菌において自己複製すること又は放線菌のゲノムに揷入されることができ、 かつ発現ベクターに含まれる放線菌用プロモータも機能することができることを意味 する。  In the present specification, “for actinomycetes” means to function in actinomycetes. That is, in the case of a promoter for actinomycetes, when the promoter is introduced into actinomycetes in some form (for example, in a form incorporated into a vector), it is expressed in actinomycetes! This means that the protein encoded by the gene can be produced. In the case of an actinomycetes expression vector, when the vector is introduced into actinomycetes, it can be replicated in the actinomycetes or inserted into the actinomycetes genome, and the actinomycetes contained in the expression vector This means that the promoter can also function.
[0017] また、ここで遺伝子の発現とは、 mRNAに転写されることと、該 mRNA力、らタンパク 質が翻訳されることの両方をいう。ここでタンパク質の発現とは、遺伝子が転写され、 翻訳された結果タンパク質が合成されることをレヽぅ。  [0017] Here, gene expression refers to both transcription into mRNA and translation of the protein from the mRNA force. Here, protein expression refers to the synthesis of a protein as a result of transcription of a gene and translation.
[0018] 本発明の第 1のプロモータは、配列番号 1に記載の塩基配列を有することを特徴と する。配列番号 1に記載の塩基配列は、乳酸菌 Lactobacillus plantarumから分 離されたファージに含有される配列であり、乳酸菌プロモータである pRプロモータ領 域、転写開始部位及び GATACボックスに相当する塩基配列がそれぞれ含まれて いる。この塩基配列からなる核酸は放線菌においてもプロモータとして機能すること が本発明者らによって初めて証明された。  [0018] The first promoter of the present invention is characterized by having the base sequence set forth in SEQ ID NO: 1. The base sequence described in SEQ ID NO: 1 is a sequence contained in a phage isolated from the lactic acid bacterium Lactobacillus plantarum, and includes a pR promoter region that is a lactic acid bacterium promoter, a transcription initiation site, and a base sequence corresponding to the GATAC box, respectively. It is. It was first demonstrated by the present inventors that a nucleic acid comprising this base sequence functions as a promoter even in actinomycetes.
[0019] 本発明の第 1のプロモータは、配列番号 1に記載の塩基配列の上流又は/及び下 流に、翻訳開始部位、翻訳終止部位、転写開始部位、リボソーム結合部位、転写調 節遺伝子領域(リブレッサー、ェンハンサーなど)、ターミネータ一、又は遺伝子組み 換えのための制限酵素サイトやその他の該プロモータ機能を阻害しないあらゆる塩 基配列を含み得る。本発明の第 1のプロモータの長さは 173bp以上であり、好ましく は 173bp〜500bp、より好まし <は 173bp〜300bpである。  [0019] The first promoter of the present invention is a translation initiation site, translation termination site, transcription initiation site, ribosome binding site, transcription regulatory gene region, upstream or / and downstream of the nucleotide sequence set forth in SEQ ID NO: 1. (Repressor, enhancer, etc.), terminator, or restriction enzyme sites for gene recombination or any other base sequence that does not inhibit the promoter function. The length of the first promoter of the present invention is 173 bp or more, preferably 173 bp to 500 bp, more preferably <173 bp to 300 bp.
[0020] 本発明の第 1のプロモータは、合成オリゴヌクレオチドであってよぐまた、例えば配 列番号 13及び 14に示したような一部相補的な 2本の合成オリゴヌクレオチドを用い て PCR (Polymerase Chain Reaction)によって増幅したり、若しくは適切な铸型 及びプライマーを用いて PCRによって増幅することがしたりすることもできる。このよう な铸型としては、乳酸菌 Lactobacillus plantarumテンプレートファージ φ gleや、 配列番号 1に記載の塩基配列を有するプラスミド、ベクター若しくはゲノムなどが挙げ られる。また、このようなプライマーとしては、該第 1のプロモータを増幅できるプライマ 一であれば特に限定されないが、当業者が必要に応じて設計することができるもので ある。 [0020] The first promoter of the present invention may be a synthetic oligonucleotide, and also uses two partially complementary synthetic oligonucleotides such as those shown in SEQ ID NOs: 13 and 14, for example. It can be amplified by PCR (Polymerase Chain Reaction), or can be amplified by PCR using an appropriate template and primers. Examples of such a cage include lactic acid bacteria Lactobacillus plantarum template phage φgle and a plasmid, vector or genome having the base sequence described in SEQ ID NO: 1. Such a primer is not particularly limited as long as it is a primer capable of amplifying the first promoter, but can be designed by those skilled in the art as needed.
[0021] 本発明の第 2のプロモータは、配列番号 2に記載の塩基配列を有することを特徴と する。配列番号 2に記載の塩基配列は、乳酸菌 Lactobacillus plantarumから分 離されたファージに含有される配列であり、乳酸菌プロモータである pLプロモータ領 域、及び GATACボックスに相当する塩基配列がそれぞれ含まれている。この塩基 配列からなる核酸は放線菌においてもプロモータとして機能することが本発明者らに よって初めて証明された。  [0021] The second promoter of the present invention is characterized by having the base sequence set forth in SEQ ID NO: 2. The base sequence described in SEQ ID NO: 2 is a sequence contained in a phage isolated from the lactic acid bacterium Lactobacillus plantarum, and includes a pL promoter region that is a lactic acid bacterium promoter and a base sequence corresponding to the GATAC box. . The present inventors have proved for the first time that a nucleic acid comprising this nucleotide sequence functions as a promoter in actinomycetes.
[0022] 本発明の第 2のプロモータは、配列番号 2に記載の塩基配列の上流又は/及び下 流に、翻訳開始部位、翻訳終止部位、転写開始部位、リボソーム結合部位、転写調 節遺伝子領域(リブレッサー、ェンハンサーなど)、ターミネータ一、又は遺伝子組み 換えのための制限酵素サイトやその他の該プロモータ機能を阻害しないあらゆる塩 基配列を含み得る。本発明の第 2のプロモータの長さは 172bp以上であり、好ましく は 172bp〜500bp、より好まし <は 172bp〜300bpである。  [0022] The second promoter of the present invention is a translation initiation site, translation termination site, transcription initiation site, ribosome binding site, transcription regulatory gene region, upstream or / and downstream of the base sequence set forth in SEQ ID NO: 2. (Repressor, enhancer, etc.), terminator, or restriction enzyme sites for gene recombination or any other base sequence that does not inhibit the promoter function. The length of the second promoter of the present invention is 172 bp or more, preferably 172 bp to 500 bp, more preferably <172 bp to 300 bp.
[0023] 本発明の第 2のプロモータは、合成オリゴヌクレオチドであってよぐまた、例えば配 列番号 13及び 14に示したような一部相補的な 2本の合成オリゴヌクレオチドを用い て PCRによって増幅したり、若しくは適切な铸型及びプライマーを用いて PCRによつ て増幅すること力したりすることもできる。このような铸型としては、乳酸菌 Lactobacill us plantarumテンプレートファージ φ gleや、配列番号 2に記載の塩基配列を有す るプラスミド、ベクター若しくはゲノムなどが挙げられる。また、このようなプライマーとし ては、該第 2のプロモータを増幅できるプライマーであれば特に限定されないが、当 業者が必要に応じて設計することができるものである。  [0023] The second promoter of the present invention may be a synthetic oligonucleotide, or by PCR using two partially complementary synthetic oligonucleotides such as those shown in SEQ ID NOs: 13 and 14, for example. It can also be amplified, or can be amplified by PCR using appropriate cages and primers. Examples of such cages include lactic acid bacteria Lactobacill us plantarum template phage φgle and a plasmid, vector or genome having the base sequence set forth in SEQ ID NO: 2. Such a primer is not particularly limited as long as it is a primer capable of amplifying the second promoter, but can be designed as needed by those skilled in the art.
[0024] 本発明の第 3のプロモータは、配列番号 3に記載の塩基配列を有することを特徴と する。配列番号 3に記載の塩基配列は、乳酸菌 Lactobacillus plantarumから分 離されたファージに含有される pRプロモータ領域に相当する塩基配列である。 [0024] A third promoter of the present invention is characterized by having the base sequence set forth in SEQ ID NO: 3. To do. The base sequence described in SEQ ID NO: 3 is a base sequence corresponding to the pR promoter region contained in a phage isolated from the lactic acid bacterium Lactobacillus plantarum.
[0025] 本発明の第 3のプロモータは、配列番号 3に記載の塩基配列の上流又は/及び下 流に、翻訳開始部位、翻訳終止部位、転写開始部位、リボソーム結合部位、転写調 節遺伝子領域(リブレッサー、ェンハンサーなど)、ターミネータ一、又は遺伝子組み 換えのための制限酵素サイトやその他の該プロモータ機能を阻害しないあらゆる塩 基配列を含み得る。さらに、本発明の第 3のプロモータは、本発明の第 1のプロモー タの pR領域以外の塩基配列において 1以上の塩基が欠失、置換若しくは付加され たものであってもよい。本発明の第 3のプロモータの長さは 32bp以上であり、好ましく は 32bp〜500bp、より好まし <は 32bp〜300bpである。  [0025] The third promoter of the present invention includes a translation initiation site, a translation termination site, a transcription initiation site, a ribosome binding site, a transcription regulatory gene region, upstream or / and downstream of the base sequence shown in SEQ ID NO: 3. (Repressor, enhancer, etc.), terminator, or restriction enzyme sites for gene recombination or any other base sequence that does not inhibit the promoter function. Furthermore, the third promoter of the present invention may have one or more bases deleted, substituted or added in the base sequence other than the pR region of the first promoter of the present invention. The length of the third promoter of the present invention is 32 bp or more, preferably 32 bp to 500 bp, more preferably <32 bp to 300 bp.
[0026] 本発明の第 3のプロモータは、合成オリゴヌクレオチドであってよぐ又は必要に応 じて適切な铸型及びプライマーを用いて PCRによって増幅してもよい。さらに、本発 明の第 3のプロモータは、本発明の第 1のプロモータの pR領域以外の塩基配列にお いて 1以上の塩基の置換、欠失若しくは付加することによって得ること力 Sできる。  [0026] The third promoter of the present invention may be a synthetic oligonucleotide, or may be amplified by PCR using an appropriate cage and primer as necessary. Furthermore, the third promoter of the present invention can be obtained by substitution, deletion or addition of one or more bases in the base sequence other than the pR region of the first promoter of the present invention.
[0027] 本発明の第 4のプロモータは、配列番号 4に記載の塩基配列を有することを特徴と する。配列番号 4に記載の塩基配列は、乳酸菌 Lactobacillus plantarumから分 離されたファージに含有される pLプロモータ領域に相当する塩基配列である。  [0027] The fourth promoter of the present invention is characterized by having the base sequence set forth in SEQ ID NO: 4. The base sequence described in SEQ ID NO: 4 is a base sequence corresponding to the pL promoter region contained in a phage isolated from the lactic acid bacterium Lactobacillus plantarum.
[0028] 本発明の第 4のプロモータは、配列番号 4に記載の塩基配列の上流又は/及び下 流に、翻訳開始部位、翻訳終止部位、転写開始部位、リボソーム結合部位、転写調 節遺伝子領域(リブレッサー、ェンハンサーなど)、ターミネータ一、又は遺伝子組み 換えのための制限酵素サイトやその他の該プロモータ機能を阻害しないあらゆる塩 基配列を含み得る。さらに、本発明の第 4のプロモータは、本発明の第 2のプロモー タの pL領域以外の塩基配列において 1以上の塩基が欠失、置換若しくは付加された ものであってもよい。本発明の第 4のプロモータの長さは 27bp以上であり、好ましくは 27bp〜500bp、より好まし <は 27bp〜300bpである。  [0028] The fourth promoter of the present invention is a translation initiation site, translation termination site, transcription initiation site, ribosome binding site, transcription regulatory gene region, upstream or / and downstream of the base sequence shown in SEQ ID NO: 4. (Repressor, enhancer, etc.), terminator, or restriction enzyme sites for gene recombination or any other base sequence that does not inhibit the promoter function. Furthermore, the fourth promoter of the present invention may have one or more bases deleted, substituted or added in the base sequence other than the pL region of the second promoter of the present invention. The length of the fourth promoter of the present invention is 27 bp or more, preferably 27 bp to 500 bp, more preferably <27 bp to 300 bp.
[0029] 本発明の第 4のプロモータは、合成オリゴヌクレオチドであってよぐ又は必要に応 じて適切な铸型及びプライマーを用いて PCRによって増幅してもよい。さらに、本発 明の第 4のプロモータは、本発明の第 2のプロモータの pL領域以外の塩基配列にお いて 1以上の塩基の置換、欠失若しくは付加することによって得ること力 sできる。 [0029] The fourth promoter of the present invention may be a synthetic oligonucleotide or may be amplified by PCR using an appropriate cage and primer as necessary. Furthermore, the fourth promoter of the present invention has a nucleotide sequence other than the pL region of the second promoter of the present invention. It can be obtained by substitution, deletion or addition of one or more bases.
[0030] 本発明の発現ベクターは、本発明の第 1、第 2、第 3又は第 4のプロモータを有する ことを特徴とし、放線菌宿主に導入された場合、宿主細胞において機能することがで きる。ここで、機能することとは、上記プロモータの下流に揷入された外来遺伝子を発 現させること力 Sできることを意味する。また、放線菌宿主へ導入されることとは、宿主細 胞のゲノム遺伝子に揷入されること、又は宿主細胞の染色体外で自己増殖できるプ ラスミドとして存在することを意味し、宿主細胞において外来遺伝子の持続的発現又 は一過性発現をもたらす。  [0030] The expression vector of the present invention is characterized by having the first, second, third or fourth promoter of the present invention and can function in a host cell when introduced into an actinomycete host. wear. Here, functioning means that it is possible to express a foreign gene inserted downstream of the promoter. In addition, introduction into an actinomycete host means insertion into the genome gene of the host cell, or presence as a plasmid capable of self-proliferation outside the host cell chromosome. It leads to sustained or transient expression of the gene.
[0031] 本発明の発現ベクターが宿主細胞のゲノム遺伝子に揷入される場合、発現べクタ 一の全長が宿主細胞のゲノム遺伝子に揷入されてもよぐまた、例えば、少なくとも本 発明のプロモータ領域、及びその下流の目的タンパク質をコードする遺伝子領域が 揷入され、必要に応じてリポーター遺伝子などのマーカー領域が揷入されてもよい。 揷入は、ランダムな組換えであってもよぐゲノム上の特定位置を標的とした相同組換 えであってもよい。相同組換えの場合、発現ベクターにおいて宿主ゲノムに揷入した い目的領域の前、後又はその双方に、標的である特定位置の前、後又はその双方 にある DNA配列とそれぞれ相同性を有する配列を導入することが好まし!/、。  [0031] When the expression vector of the present invention is inserted into a host cell genomic gene, the entire expression vector may be inserted into the host cell genomic gene. For example, at least the promoter of the present invention A region and a gene region encoding a target protein downstream thereof may be inserted, and a marker region such as a reporter gene may be inserted as necessary. The insertion may be a random recombination or a homologous recombination targeting a specific position on the genome. In the case of homologous recombination, a sequence having homology with the DNA sequence in the expression vector before, after, or both of the target region to be inserted into the host genome, and before, after, or both of the target specific positions. Preferably to introduce! / ,.
[0032] 一方、本発明の発現ベクターが宿主細胞に導入され、宿主細胞の染色体外で自 己増殖できるプラスミドとして存在する場合、本発明の発現ベクターが自己複製能を 有する自己複製ベクターであることが好ましい。この場合、発現が自己複製によって 数を増やし、宿主において外来遺伝子の発現量を増加させることができる。本発明 の発現ベクターが放線菌において自己複製するために、 DNA複製領域を少なくとも 1つ及び DNA複製に関与するタンパク質をコードする領域 (以下、 DNA複製関連タ ンパク質のコード領域という)を少なくとも 1つ備えることが好ましい。  [0032] On the other hand, when the expression vector of the present invention is introduced into a host cell and exists as a plasmid that can self-replicate outside the host cell chromosome, the expression vector of the present invention is a self-replicating vector having self-replicating ability. Is preferred. In this case, the number of expression increases by self-replication, and the expression level of the foreign gene in the host can be increased. In order for the expression vector of the present invention to self-replicate in actinomycetes, at least one DNA replication region and a region encoding a protein involved in DNA replication (hereinafter referred to as a DNA replication-related protein coding region) are at least one. It is preferable to provide one.
[0033] このような DNA複製領域及び DNA複製関連タンパク質のコード領域は、プラスミド や微生物によって異なる力 一般的に知られているものであればよい。例えば、 Rho dococcus erythropolis IAM1400由来 pRETl lOOの場合、 DNA複製領域とし ては、配列番号 19〜21に記載の塩基配列が同定されており、また、 DNA複製関連 タンパク質のコード領域としては、配列番号(22〜24)に記載の塩基配列(orfl)、配 列番号 25に記載の塩基配列(orf2)、配列番号 26〜37に記載の塩基配列(orf3)、 配列番号 38〜42に記載の塩基配列(orf4)、配列番号 43〜47に記載の塩基配列( orf5)、配列番号 48又は 49に記載の塩基配列(orf 6)、塩基配列 50又は 51に記載 の塩基配列(orf 7)、配列番号 52又は 53に記載の塩基配列(orf8)、配列番号 54又 は 55に記載の塩基配列(orf 9)が同定されている。 [0033] The DNA replication region and the coding region of the DNA replication-related protein may be those that are generally known and have different forces depending on the plasmid or microorganism. For example, in the case of pRETl lOO derived from Rho dococcus erythropolis IAM1400, the base sequence described in SEQ ID NOs: 19 to 21 has been identified as the DNA replication region, and the coding region of the DNA replication related protein has been identified as SEQ ID NO: 22-24) base sequence (orfl), arrangement Base sequence described in column number 25 (orf2), base sequence described in sequence numbers 26-37 (orf3), base sequence described in sequence numbers 38-42 (orf4), base sequence described in sequence numbers 43-47 (Orf5), base sequence (orf 6) described in SEQ ID NO: 48 or 49, base sequence (orf 7) described in base sequence 50 or 51, base sequence (orf8) described in SEQ ID NO: 52 or 53, SEQ ID NO: The nucleotide sequence (orf 9) described in 54 or 55 has been identified.
[0034] また、 Rhodococcus rhodnii JCM3203由来の pRETlOOOの場合、 DNA複製 領域としては、配列番号 56〜58に記載の塩基配列が同定されており、 DNA複製関 連タンパク質のコード領域としては、配列番号 59〜62に記載の塩基配列(orf 10)、 配列番号 63又は 64に記載の塩基配列(orf 11)、配列番号 65に記載の塩基配列(o rf 12)、配列番号 66又は 67に記載の塩基配列(orf 13)、配列番号 68〜70に記載 の塩基配列(orf 14)、配列番号 71又は 72に記載の塩基配列(orf 15)、配列番号 7 3又は 74に記載の塩基配列(orf 16)、配列番号 75に記載の塩基配列(orf 17)、配 列番号 76〜80に記載の塩基配列(orf 18)、配列番号 81に記載の塩基配列(orf 19 )、配列番号 82に記載の塩基配列(orf20)、配列番号 83〜89に記載の塩基配列( orf21)が同定されている。  [0034] In addition, in the case of pRETlOOO derived from Rhodococcus rhodnii JCM3203, the DNA replication region has been identified by the nucleotide sequence set forth in SEQ ID NOs: 56-58, and the coding region of DNA replication-related protein is SEQ ID NO: 59. The base sequence described in -62 (orf 10), the base sequence described in SEQ ID NO: 63 or 64 (orf 11), the base sequence described in SEQ ID NO: 65 (orf 12), the base described in SEQ ID NO: 66 or 67 Sequence (orf 13), base sequence (orf 14) described in SEQ ID NOs: 68 to 70, base sequence (orf 15) described in SEQ ID NO: 71 or 72, base sequence (orf 16 described in SEQ ID NO: 73 or 74) ), The base sequence described in SEQ ID NO: 75 (orf 17), the base sequence described in SEQ ID NOS: 76 to 80 (orf 18), the base sequence described in SEQ ID NO: 81 (orf 19), and the sequence described in SEQ ID NO: 82 The base sequence (orf20) and the base sequences (orf21) described in SEQ ID NOs: 83 to 89 have been identified.
[0035] したがって、本発明のベクターは、自己複製ベクターである場合、例えば、 pRETl 100又は pRETl 000由来の DNA複製領域を少なくとも 1つ、及び pRETl 100又は pRETlOOO由来の DNA複製関連タンパク質のコード領域(orf)を少なくとも 1っ備 えることが好ましい。  [0035] Therefore, when the vector of the present invention is a self-replicating vector, for example, at least one DNA replication region derived from pRETl 100 or pRETl 000 and a coding region of a DNA replication-related protein derived from pRETl 100 or pRETlOOO ( orf) is preferred.
[0036] 本発明の発現ベクターは、さらに必要に応じて、遺伝子組み換えに必要なマルチク ローニングサイトや、形質転換体を選択するための薬剤耐性マーカー遺伝子又はリ ポーター遺伝子、その他のタンパク質をコードする遺伝子領域 (オープンリーデイン グフレーム; orf)、翻訳開始部位、翻訳終止部位、転写開始部位、リボソーム結合部 位、転写調節遺伝子領域 (リブレッサー、ェンハンサーなど)、ターミネータ一などを 含んでもよい。これらはいずれも本技術分野において知られているものである。例え ば、薬剤耐性マーカー遺伝子としては、ネオマイシン耐性遺伝子、カナマイシン耐性 遺伝子及びノヽィグロマイシン耐性遺伝子が挙げられる。また、リポーター遺伝子とし ては lacZ遺伝子などがある。 [0037] 本発明の発現ベクターは、既知のプラスミドやベクターに基づいて通常な DNA組 み換え手法を用いて構築することができる。例えば、 pRET1000、 pRETHOO, pR ET1200、 pRET1300、 pRET1400、 pRET1500、 pRET1600、 pRET1700、 p RET1800及び pRET0500などのロドコッカス属放線菌由来のプラスミドに、本発明 の第 1〜第 4のいずれかのプロモータを揷入することによって得られる。これらのプラ スミドは、 Rhodococcus erythropolis (IAM 1400、 IAM1503、 JCM2893、 JC M2894及び JCM2895)、及び Rhodococcus rhodnii (JCM3203)力、ら分離する こと力 Sできる。なお、 R. erythropolis IAM1400及び IAM1503は、東京大学分子 細胞生物学研究所が発行した「IAM Catalogue of Strains, Third Edition, 2004」に記載されており、当該研究所から入手することができる。また、 R. erythrop olis JCM2893、JCM2894及び JCM2895、並びに R. rhodnii JCM3203は、 独立行政法人理化学研究所が発行した「JCM Catalogue of Strains, Eighth Edition 2002」に記載されており、当該研究所力、ら入手することができる。 [0036] The expression vector of the present invention is a gene encoding a multicloning site necessary for gene recombination, a drug resistance marker gene or reporter gene for selecting a transformant, and other proteins, if necessary. It may contain a region (open reading frame; orf), a translation initiation site, a translation termination site, a transcription initiation site, a ribosome binding site, a transcription regulatory gene region (such as rebresser and enhancer), and a terminator. These are all known in the art. For example, the drug resistance marker gene includes a neomycin resistance gene, a kanamycin resistance gene, and a neugromycin resistance gene. Reporter genes include the lacZ gene. [0037] The expression vector of the present invention can be constructed using a conventional DNA recombination technique based on a known plasmid or vector. For example, a promoter derived from Rhodococcus spp. Such as pRET1000, pRETHOO, pRET1200, pRET1300, pRET1400, pRET1500, pRET1600, pRET1700, pRET1800, and pRET0500 is inserted into any one of the first to fourth promoters of the present invention. It is obtained by doing. These plasmids can be separated from Rhodococcus erythropolis (IAM 1400, IAM1503, JCM2893, JCM2894 and JCM2895) and Rhodococcus rhodnii (JCM3203) forces. R. erythropolis IAM1400 and IAM1503 are described in “IAM Catalog of Strains, Third Edition, 2004” published by the Institute for Molecular Cell Biology, University of Tokyo, and can be obtained from the laboratory. R. erythropolis JCM2893, JCM2894 and JCM2895, and R. rhodnii JCM3203 are described in the “JCM Catalog of Strains, Eighth Edition 2002” published by RIKEN It can be obtained.
[0038] また、本発明の発現ベクターは、ベクターを大量に取得するため、大腸菌でも複製 できるように、例えば、大腸菌用のベクターの一部(好ましく大腸菌用 DNA複製領域 及び DNA複製関連タンパク質のコード領域を含む)を含むことが好ましい。例えば、 放線菌由来のプラスミドと大腸菌用プラスミド若しくはベクターとのシャトルベクターが 好ましく用いられる。この場合、自己複製と関係のない配列や、他の不必要な遺伝子 の配列を制限酵素処理などによって切断して除くことができる。さらに、本発明の発 現ベクターは、宿主染色体に揷入され、 目的のタンパク質を製造することができる。  [0038] Furthermore, since the expression vector of the present invention can be obtained in large quantities, it can be replicated in E. coli. For example, a part of the vector for E. coli (preferably the DNA replication region for E. coli and the DNA replication-related protein code) Including the region). For example, a shuttle vector of a plasmid derived from actinomycetes and a plasmid or vector for E. coli is preferably used. In this case, sequences that are not related to self-replication and sequences of other unnecessary genes can be cleaved and removed by restriction enzyme treatment. Furthermore, the expression vector of the present invention can be inserted into a host chromosome to produce the target protein.
[0039] 本発明の発現ベクターは、約 2kbp以上であることが好ましぐ 2kbp〜20kbpである こと力 り好ましく、 3kbp〜; !Okbpであることが特に好ましい。  [0039] The expression vector of the present invention is preferably about 2 kbp or more, more preferably 2 kbp to 20 kbp, particularly preferably 3 kbp to;! Okbp.
[0040] 本発明の形質転換された放線菌(形質転換体)は、本発明の発現ベクターで形質 転換されることを特徴とする。本明細書における「放線菌」とは、放線菌に属する全て の微生物をいい、代表的な放線菌としては、ロドコッカス属、マイコバクテリウム属、ゴ ルド二ァ属、ディエツァ属又はアミコラトプシス属微生物が挙げられる。  [0040] The transformed actinomycetes (transformants) of the present invention are characterized by being transformed with the expression vector of the present invention. In the present specification, “actinomycetes” refers to all microorganisms belonging to actinomycetes, and representative actinomycetes include Rhodococcus, Mycobacterium, Goldia, Dieza or Amicolatopsis. Examples include microorganisms.
[0041] 代表的なロドコッカス属(Rhodococcus)放線菌としては、 Rhodococcus baikon urensis、 Rhodococcus coprophilus、 Rhodococcus corvnebactenoides、 R hodococcus equi、 Rhodococcus erythropolis、 Rhodococcus fascians、 R hodococcus globerulus、 Rhodococcus gordoniae、 Rhodococcus imteche nsis、 Rhodococcus jostii、 Rhodococcus koreensis、 Rhodococcus kroppe nstedtii、 Rhodococcus maanshanensis^ Rhodococcus marinonascens、 R hodococcus opacus、 Rhodococcus percolatus、 Rhodococcus pyridinivor ans、 Rhodococcus rhodnii、 Rhodococcus rhodochrous、 Rhodococcus ru ber、 Rhodococcus triatomae、 Rhodococcus tukisamuensis、 Rhodococcu s wratislaviensis、 Rhodococcus yunnanensis^ Rhodococcus zopfiiなどカ 挙げられる。 [0041] Representative Rhodococcus actinomycetes include Rhodococcus baikon urensis, Rhodococcus coprophilus, Rhodococcus corvnebactenoides, R hodococcus equi, Rhodococcus erythropolis, Rhodococcus fascians, R hodococcus globerulus, Rhodococcus gordoniae, Rhodococcus imteche nsis, Rhodococcus jostii, Rhodococcus koreensis, Rhodococcus kroppe nstedtii, Rhodococcus maanshanensis ^ Rhocenocs Examples include Rhodococcus rhodochrous, Rhodococcus ruber, Rhodococcus triatomae, Rhodococcus tukisamuensis, Rhodococcu s wratislaviensis, Rhodococcus yunnanensis ^ Rhodococcus zopfii.
代表的なマイコバクテリゥム属(Mycobacterium)放線菌としては、 Mycobacteri um acapulcensis、 Mycobacterium agreste、 Mycobacterium agn、 Mycob acterium aichiense、 Mycobacterium alvei、 Mycobacterium asiaticum、 Mycobacterium aurum、 Mycobacterium austroafricanum、 Mycobacteri um bohemicum、 Mycobacterium branderi、 Mycobacterium brumae、 My cobacterium celatum、 Mycobacterium chelonae、 Mycobacterium chim aera、 Mycobacterium chitae、 Mycobacterium chlorophenolicum^ Mycob acterium chubuense、 Mycobacterium confluentis、 Mycobacterium con spicuum、 Mycobacterium convolutum^ Mycobacterium cookii、 Mycoba cterium cosmeticum、 Mycobacterium diernhoferi、 Mycobacterium dori cum、 Mycobacterium duvalii、 Mycobacterium elephantis、 Mycobacteriu m iailaxs Mycobacterium flavescens、 Mycobacterium florentinum、 My cobacterium xenopi、 Mycobacterium f luoranthenivorans s Mycobacteriu m fortuitum subsp. acetamidolyticum、 Mycobacterium fortuitum su bsp. fortuitum^ Mycobacterium gadium、 Mycobacterium piscium、 My cobacterium gallinarum、 Mycobacterium gastri、 Mycobacterium gilvu m、 Mycobacterium goodii、 Mycobacterium gordonae、 Mycobacterium hassiacum、 Mycobacterium hiberniae、 Mycobacterium hodleri、 Mycoba cterium holsaticum^ Mycobacterium immunogenum、 Mycobacterium i ntermedium Mycobacterium intracellulare Mycobacterium kansasii Mycobacterium kubicae Mycobacterium kumamotonense Mycobacter ium lentiflavum Mycobacterium madagascariense Mycobacterium ma geritense Mycobacterium malmoense Mycobacterium marinum Myco bacterium moriokaense Mycobacterium mucogenicum Mycobacteriu m murale Mycobacterium neoaurum Mycobacterium nonchromogeni cum Mycobacterium novum s Mycobacterium obuense Mycobacterium parafortuitum Mycobacterium parascromlaceum Mycobacterium tri viale Mycobacterium parmense Mycobacterium peregrimim Mycobac terium phlei Mycobacterium porci m Mycobacterium poriferae My cobacterium psychrotolerans Mycobacterium pulveris Mycobacterium rhodesiae Mycobacterium rhodochrous Mycobacterium runyonn^ My cobacterium saskatchewanense Mycobacterium scrofulaceum Mycoba cterium septicum Mycobacterium shimoidei Mycobacterium shottsn Mycobacterium simiae Mycobacterium smegmatis Mycobacterium s zulgai Mycobacterium terrae Mycobacterium thermoresistibile Myco bacterium tokaiense Mycobacterium triplex^ Mycobacterium tusciae Mycobacterium vaccae Mycobacterium vanbaalenii^ Mycobacterium wolinskyi Mycobacterium abscessus Mycobacterium avium subsp. a vium Mycobacterium avium subsp. paratuberculosis Mycobacteriu m bovis Mycobacterium chelonae chemovar niacinogenes Mycobact erium microti^ Mycobacterium paraffinicum Mycobacterium petroleop hilum等が挙げられる。 Representative Mycobacterium actinomycetes include Mycobacteri um acapulcensis, Mycobacterium agreste, Mycobacterium agn, Mycob acterium aichiense, Mycobacterium alvei, Mycobacterium aiaticum, Mycobacterium aurum, Mycobacterium austroafricanum, Mycobacterium brumae, My cobacterium celatum, Mycobacterium chelonae, Mycobacterium chim aera, Mycobacterium chitae, Mycobacterium chlorophenolicum ^ Mycob acterium chubuense, Mycobacterium confluentis, Mycobacterium con spicuum, Mycobacterium convolutum ^ Mycobacterium cookri, Mycoba cterium cosmeticum, Mycobacterium coernhoferi, Mycobacterium elephantis, Mycobacteriu m iailax s Mycobacterium flavescens, Mycobacterium florentinum, My cobacterium xenopi, Mycobacterium f luoranthenivorans s Mycobacteriu m fortuitum subsp.acetamidolyticum, Mycobacterium fortuitum s u bsp. fortuitum ^ Mycobacterium gadium, Mycobacterium piscium, My cobacterium gallinarum, Mycobacterium gastri, Mycobacterium gilvum, Mycobacterium goodii, Mycobacterium gordonae, Mycobacterium hassiacum, Mycobacterium hiberniae, Mycobacterium hodleri, Mycoba cterium holsgenum ^ Mycobacterium ntermedium Mycobacterium intracellulare Mycobacterium kansasii Mycobacterium kubicae Mycobacterium kumamotonense Mycobacter ium lentiflavum Mycobacterium madagascariense Mycobacterium ma geritense Mycobacterium malmoense Mycobacterium marinum Myco bacterium moriokaense Mycobacterium mucogenicum Mycobacteriu m murale Mycobacterium neoaurum Mycobacterium nonchromogeni cum Mycobacterium novum s Mycobacterium obuense Mycobacterium parafortuitum Mycobacterium parascromlaceum Mycobacterium tri viale Mycobacterium parmense Mycobacterium peregrimim Mycobac terium phlei Mycobacterium porci m Mycobacterium poriferae My cobacterium psychrotolerans Mycobacterium pulveris Mycobacterium rhodeche Mycobacterium rhodochrous Mycobacterium runyonn ^ My cobacterium saskatchewanense Mycobacterium scrofulaceum Mycobai erium tokaiense Mycobacterium triplex ^ Mycobacterium tusciae Mycobacterium vaccae Mycobacterium vanbaalenii ^ Mycobacterium wolinskyi Mycobacterium abscessus Mycobacterium avium subsp. a vium Mycobacterium avium subsp. paratuberculosis Mycobacteriu m bovis Mycobacterium chelonae microco
代表的なゴルドニァ属(Gordonia)放線菌としては、 Gordonia aichiensis, Gor doma alkanivorans^ Gordonia amarae^ Gordonia amicalis^ gordonia ar aii Gordonia bronchialis Gordonia desulfuricans Gordonia effusa Go rdonia hirsuta Gordonia hydrophobica Gordonia jacobaea Gordonia namibiensis Gordonia nitida Gordonia otitidis Gordonia paraffinivora ns、 Gordonia polyisoprenivorans^ Gordonia rhizosphera、 Gordonia rubri pertincta、 ordonia rubropertinctus^ Gordonia shandongensis s Gordonia sihwensis、 Gordonia sinesedis、 Gordonia soli、 Gordonia sputi、 Gordon ia terrae、 Gordonia westfalica、 Gordonia wrightpattersonensis等力挙け られる。 Representative Gordonia actinomycetes include Gordonia aichiensis, Gor doma alkanivorans ^ Gordonia amarae ^ Gordonia amicalis ^ gordonia ar aii Gordonia bronchialis Gordonia desulfuricans Gordonia effusa Goordonia ordusa nitsonia ns, Gordonia polyisoprenivorans ^ Gordonia rhizosphera, Gordonia rubri pertincta, ordonia rubropertinctus ^ Gordonia shandongensis s Gordonia sihwensis, Gordonia sinesedis, Gordonia soli, Gordonia sputi, Gordon ia terrap
[0044] 代表的なディエツァ属(Dietzia)放線菌としては、 Dietzia cinnamea、 Dietzia kunjamensis、 Dietzia maris s uietzia natronolimnaea^ Dietzia natronoli mnaios、 Dietzia psychralcaliphila等力、举げられる。 [0044] Representative Dietzia actinomycetes include Dietzia cinnamea, Dietzia kunjamensis, Dietzia maris s uietzia natronolimnaea ^ Dietzia natronoli mnaios, Dietzia psychralcaliphila and the like.
[0045] 代表的なアミコラトプシス属(Amycolatopsis)放/線菌としては、 Amycolatopsis alba、 Amycolatopsis a!bidoflavus、 Amycolatopsis azurea、 Amycolatopsis benzoatilytica、 Amycolatopsis coloradensis、 Amycolatopsis echigonen sis、 Amycolatopsis eurytherma、 Amycolatopsis fastidiosa、 Amycolatops is halotolerans、 Amycolatopsis japonica、 Amycolatopsis jejuensis^ Amy colatopsis kentuckyensis s Amycolatopsis keratiniphila subsp. keratini phila、 Amycolatopsis keratiniphila subsp. nogabecina、 Amycolatopsis 丄 exingtonensis、 Amycolatopsis iurida、 Amycolatopsis mediterraneiゝ Am ycolatopsis methanolica、 Amycolatopsis minnesotensis^ Amycolatopsis nigrescens、 Amycolatopsis migatensis、 Amycolatopsis orientalis、 Amy colatopsis orientalis subsp. lurida、 Amycolatopsis palatopharyngis、 A mycolatopsis plumensis、 Amycolatopsis pretoriensis、 Amycolatopsis rif amycinica、 Amycolatopsis rubida、 Amycolatopsis rugosa、 Amycolatopsi s saccharic Amycolatopsis sulphurea、 Amycolatopsis thermoflava、 Amy colatopsis tolypomycina、 Amycolatopsis taiwanensis、 Amycolatopsis to lypophorus等が挙げられる。 [0045] Typical Amycolatopsis (Amycolatopsis) actinomycetes include Amycolatopsis alba, Amycolatopsis a! Bidoflavus, Amycolatopsis azurea, Amycolatopsis benzoatilytica, Amycolatopsis coloradensis, Amycolatopsis echigonen sis, Amycolatopmy e , Amycolatopsis japonica, Amycolatopsis jejuensis ^ Amy colatopsis kentuckyensis s Amycolatopsis keratiniphila subsp. keratini phila, Amycolatopsis keratiniphila subsp. nogabecina, Amycolatopsis丄exingtonensis, Amycolatopsis iurida, Amycolatopsis mediterraneiゝAm ycolatopsis methanolica, Amycolatopsis minnesotensis ^ Amycolatopsis nigrescens, Amycolatopsis migatensis, Amycolatopsis orientalis, Amy colatopsis orientalis subsp.lurida, Amycolatopsis palatopharyngis, A mycolatopsis plumensis, Amycolatopsis pretoriensis, Amycolatopsis rif amycinica, Amycolatopsis rubida, Amycolatopsis rugosa, Amycolatopsi s s saccharic A Examples include mycolatopsis sulphurea, Amycolatopsis thermoflava, Amy colatopsis tolypomycina, Amycolatopsis taiwanensis, and Amycolatopsis to lypophorus.
[0046] 発現ベクターの導入方法としては、公知の方法、例えば、リン酸カルシウム法、リポ フエクシヨン法、エレクト口ポレーシヨン法、マイクロインジェクション法などで行うことが 可能である。  [0046] The expression vector can be introduced by a known method, for example, a calcium phosphate method, a lipolysis method, an electo-poration method, a microinjection method, or the like.
[0047] 本発明の第 1の目的タンパク質の製造方法は、上記の本発明の形質転換体を用い ることを特徴とする。まず、上記の形質転換体には、本発明のプロモータの下流に目 的タンパク質をコードする遺伝子が揷入されたベクターが導入される。次に、該形質 転換体を培養することで、本発明のプロモータが機能することによって目的タンパク 質を発現し、該タンパク質を精製することで目的タンパク質を製造することができる。 [0047] A first method for producing a protein of the present invention uses the transformant of the present invention described above. It is characterized by that. First, a vector in which a gene encoding a target protein is inserted downstream of the promoter of the present invention is introduced into the transformant. Next, by culturing the transformant, the target protein is expressed by the function of the promoter of the present invention, and the target protein can be produced by purifying the protein.
[0048] 本発明の第 2の目的タンパク質の製造方法は、 目的タンパク質をコードする遺伝子 を、本発明の第 1〜4のいずれかのプロモータを有する発現ベクターに、該プロモー タの下流に発現可能なように揷入し、 目的タンパク質を発現できる発現ベクターを得 るステップと、得られた発現ベクターによって放線菌を形質転換し、形質転換体を得 るステップと、得られた形質転換体を増殖可能な培地中で培養するステップと、上記 培養するステップで得られた形質転換体から目的タンパク質を精製するステップとを 含むことを特徴とする。 [0048] In the second method for producing a target protein of the present invention, a gene encoding the target protein can be expressed downstream of the promoter in an expression vector having any one of the promoters of the first to fourth aspects of the present invention. To obtain an expression vector capable of expressing the target protein, transforming actinomycetes with the obtained expression vector, obtaining a transformant, and proliferating the obtained transformant. A step of culturing in a possible medium, and a step of purifying the target protein from the transformant obtained in the step of culturing.
[0049] 目的タンパク質は、放線菌において合成できるものであれば特に限定されないが、 様々な有用な酵素や生理機能を有するタンパク質やペプチドが挙げられる。例えば 酵素においては、酸化還元酵素、転移酵素、加水分解酵素、リアーゼ、イソメラーゼ 、リガーゼなどが挙げられる。上述したように、ロドコッカス エリス口ポリスが産生する アミノケトン不斉還元酵素は、光学活性ァミノアルコールの製造に大変有用であるた め、特に好ましい。  [0049] The target protein is not particularly limited as long as it can be synthesized in actinomycetes, and examples thereof include proteins and peptides having various useful enzymes and physiological functions. Examples of enzymes include oxidoreductase, transferase, hydrolase, lyase, isomerase, and ligase. As described above, the aminoketone asymmetric reductase produced by Rhodococcus Ellis mouth police is particularly preferable because it is very useful for the production of optically active amino alcohols.
[0050] 目的タンパク質をコードする遺伝子は、 目的タンパク質の全てのアミノ酸配列をコー ドする開始コドンから終止コドンまでのオープンリーディングフレーム(ORF)が含まれ る遺伝子であればよぐまた遺伝子のェキソン領域のみからなる cDNAであってもよ い。遺伝子の長さは特に限定されないが、好ましく lOObp〜; 10kbp、より好ましくは 3 00bp〜4kbpである  [0050] The gene encoding the target protein may be any gene that contains an open reading frame (ORF) from the start codon to the stop codon that encodes all the amino acid sequences of the target protein. It may be a cDNA consisting of only. The length of the gene is not particularly limited, but is preferably lOObp to 10 kbp, more preferably 300 bp to 4 kbp
[0051] プロモータの下流に発現可能なように揷入するというのは、プロモータの下流(3' ) 側に、かつ該プロモータのコントロール下に、 目的タンパク質をコードする遺伝子を揷 入することをいう。  [0051] To insert so that it can be expressed downstream of the promoter means to insert a gene encoding the target protein downstream (3 ') of the promoter and under the control of the promoter. .
[0052] 目的タンパク質を発現できる発現ベクターを得るためには、必要に応じて、例えば、 プロモータを先にベクターに揷入してから、 目的タンパク質をコードする遺伝子をさら にプロモータの下流に発現可能なように揷入する方法、又はプロモータと目的タンパ ク質をコードする遺伝子との両方を有する DNA断片遺伝子が発現可能なように予め 用意し、その後ベクターに揷入する方法がある。 [0052] In order to obtain an expression vector capable of expressing the target protein, for example, a promoter can be first inserted into the vector, and then a gene encoding the target protein can be expressed further downstream of the promoter. How to insert, or promoter and target tamper There is a method in which a DNA fragment gene having both a protein encoding gene is prepared in advance so that it can be expressed, and then inserted into a vector.
[0053] 前者の場合、例えば、制限酵素サイトが付加されたプライマーによって PCRでまず プロモータを増幅し、プロモータ及びベクターを制限酵素によって処理し、既知のラ ィゲーシヨン法によってライゲーシヨンした後、同様に目的タンパク質をコードする遺 伝子を揷入することが挙げられる。このとき、遺伝子のフレームがずれないように揷入 する位置を予め設計しておくとよい。また、場合によって制限酵素処理後の DNAの 末端を平滑化にする処理を行ってもよい。  [0053] In the former case, for example, a promoter is first amplified by PCR with a primer to which a restriction enzyme site is added, the promoter and vector are treated with a restriction enzyme, ligated by a known ligation method, and then the target protein is similarly produced. The gene that codes for is inserted. At this time, the insertion position should be designed in advance so that the frame of the gene does not shift. In some cases, a treatment for smoothening the ends of the DNA after the restriction enzyme treatment may be performed.
[0054] 後者の場合、例えば制限酵素サイト及びプロモータに相当する塩基配列を含むプ ライマーによって PCRで目的タンパク質をコードする遺伝子を増幅し、制限酵素処理 後、既知のライゲーシヨン法によってベクターにライゲーシヨンすることが挙げられる。 このときも、遺伝子のフレームがずれないようにプライマーを予め設計しておくとよい。 また、場合によって制限酵素処理後の DNAの末端を平滑化にする処理を行っても よい。  [0054] In the latter case, for example, a gene encoding a target protein is amplified by PCR using a primer containing a nucleotide sequence corresponding to a restriction enzyme site and a promoter, and after ligation to a vector by a known ligation method after restriction enzyme treatment. Is mentioned. Also at this time, primers should be designed in advance so that the frame of the gene does not shift. In some cases, a treatment for smoothening the ends of the DNA after the restriction enzyme treatment may be performed.
[0055] 上記制限酵素処理、 PCR、ライゲーシヨンなどの方法は、レ、ずれも市販の試薬ゃキ ットを用いて取扱説明書通りに行うことができる。また、元となるベクターには適切な 制限酵素サイトがない場合、先に他のベクターに揷入し、適切な制限酵素によって 必要な部分を切り出してから、 目的のベクターに揷入することも可能である。このよう な手法は、本技術分野において公知である。また、このステップで得られる発現べク ターは、上記の本発明の発現ベクターと同じであるため、ベクターに関する説明はこ こで省略する。  [0055] The methods such as restriction enzyme treatment, PCR, ligation and the like can be performed according to the instruction manual using commercially available reagent kits. In addition, if the original vector does not have an appropriate restriction enzyme site, it is possible to insert it into another vector first, cut out the necessary part with an appropriate restriction enzyme, and then insert it into the target vector. It is. Such techniques are well known in the art. Further, since the expression vector obtained in this step is the same as the expression vector of the present invention described above, the description of the vector is omitted here.
[0056] 次は、得られた発現ベクターによって放線菌を形質転換し形質転換体を得るステツ プである力 S、形質転換手法及び形質転換体に関しては上記で説明した通りである。  [0056] Next, the step S for transforming actinomycetes with the obtained expression vector to obtain a transformant, the transformation method and the transformant are as described above.
[0057] 次は、得られた形質転換体を増殖可能な培地中で培養するステップである。形質 転換体を培養する培地としては、使用する微生物が生育可能な条件であれば特に 制限はなく公知の方法が使用でき、通常、炭素源、窒素源、その他養分を含む液体 培地が使用される。培地の炭素源としては、上記微生物が利用可能であればいずれ でも使用できる。具体的には、グルコース、フルクトース、シュクロース、デキストリン、 デンプン、ソルビトール等の糖類、メタノール、エタノール、グリセロール等のアルコー ノレ類、フマル酸、クェン酸、酢酸、プロピオン酸等の有機酸類およびその塩類、パラ フィン等の炭化水素類、あるいはこれらの混合物等が使用できる。窒素源としては上 記微生物が利用可能であればいずれでも使用できる。具体的には、塩化アンモユウ ム、硫酸アンモニゥム、リン酸アンモニゥム等の無機酸のアンモニゥム塩;フマル酸ァ ンモニゥム、クェン酸アンモニゥム等の有機酸のアンモニゥム塩;硝酸ナトリウム、硝 酸カリウム等の硝酸塩;肉エキス、酵母エキス、麦芽エキス、ペプトン等の無機または 有機含窒素化合物、あるいはこれらの混合物等が使用できる。また、培地には、無機 塩、微量金属塩、ビタミン類等の通常の培養に用いられる栄養源を適宜添加してもよ い。また、必要に応じて、培地には、微生物の増殖を促進する物質、培地の pH保持 に有効な緩衝物質等を添加してもよい。 [0057] Next, the obtained transformant is cultured in a medium capable of growth. The medium for culturing the transformant is not particularly limited as long as the microorganism to be used can grow, and a known method can be used. Usually, a liquid medium containing a carbon source, a nitrogen source, and other nutrients is used. . As the carbon source of the medium, any of the above microorganisms can be used. Specifically, glucose, fructose, sucrose, dextrin, Sugars such as starch and sorbitol, alcohols such as methanol, ethanol and glycerol, organic acids such as fumaric acid, citrate, acetic acid and propionic acid and salts thereof, hydrocarbons such as paraffin, and mixtures thereof Can be used. As the nitrogen source, any of the above microorganisms can be used. Specifically, ammonium salts of inorganic acids such as ammonium chloride, ammonium sulfate, and ammonium phosphate; ammonium salts of organic acids such as ammonium fumarate and ammonium quenate; nitrates such as sodium nitrate and potassium nitrate; meat Inorganic or organic nitrogen-containing compounds such as extract, yeast extract, malt extract, and peptone, or a mixture thereof can be used. In addition, nutrient sources used in normal culture such as inorganic salts, trace metal salts, and vitamins may be added to the medium as appropriate. If necessary, the medium may contain substances that promote the growth of microorganisms, buffer substances that are effective for maintaining the pH of the medium, and the like.
[0058] 形質転換体の培養は、生育に適した条件下で行うことができる。具体的には培地の pH3~10,好ましくは 4〜9、温度 0〜50°C、好ましくは 20〜40°Cで fiうことカできる 。微生物の培養は、好気的または嫌気的条件下で行うことができる。培養時間は 10 〜; 150時間が好ましいが、それぞれの微生物により適宜決められるべきである。  [0058] The transformant can be cultured under conditions suitable for growth. Specifically, the medium can be heated at pH 3 to 10, preferably 4 to 9, and temperature 0 to 50 ° C, preferably 20 to 40 ° C. Microbial culture can be performed under aerobic or anaerobic conditions. The culture time is preferably 10 to 150 hours, but should be appropriately determined according to each microorganism.
[0059] 最後は、上記培養するステップで得られた形質転換体から目的タンパク質を精製 するステップである。精製方法としては、 目的タンパク質を取得することができれば特 に限定されないが、例えば、以下のような方法がある。まず、 目的タンパク質が合成さ れた後微生物細胞内に留まる場合、細胞を破砕する必要がある。例えば、上記で培 養された微生物細胞の培養液をろ過または遠心分離して、その細胞を水又は緩衝 液でよく洗浄する。洗浄した細胞は適量の緩衝液に懸濁し、細胞を破砕する。破砕 の方法としては特に制限はないが、例えば、乳鉢、ダイノミル、フレンチプレス、超音 波破砕機等の機械的破砕法が挙げられる。得られた微生物の破砕液中より、固形物 をろ過または遠心分離によって除去して無細胞抽出液中を取得し、その抽出液から 目的タンパク質はタンパク質単離の常法によって採取する。また、 目的タンパク質が 合成された後微生物細胞外に分泌される場合、細胞を破砕する必要がない。例えば 、上記で培養された微生物細胞の培養液をろ過または遠心分離して、無細胞培養液 を取得し、この培養液から目的タンパク質をタンパク質単離の常法によって採取する 〇 [0059] The last is a step of purifying the target protein from the transformant obtained in the culturing step. The purification method is not particularly limited as long as the target protein can be obtained. For example, there are the following methods. First, if the target protein is synthesized and remains in the microbial cell, the cell must be disrupted. For example, the culture solution of the microbial cells cultured as described above is filtered or centrifuged, and the cells are thoroughly washed with water or a buffer solution. The washed cells are suspended in an appropriate amount of buffer, and the cells are disrupted. The crushing method is not particularly limited, and examples thereof include mechanical crushing methods such as a mortar, dynomill, french press, and ultrasonic crusher. Solids are removed from the resulting microorganism disruption solution by filtration or centrifugation to obtain a cell-free extract, and the target protein is collected from the extract by a conventional method for protein isolation. In addition, when the target protein is synthesized and secreted outside the microbial cell, it is not necessary to disrupt the cell. For example, the culture solution of the microbial cells cultured as described above is filtered or centrifuged to obtain a cell-free culture solution, and the target protein is collected from this culture solution by a conventional method for protein isolation. Yes
[0060] タンパク質単離の方法としては特に制限はなぐ公知の方法を用いることができるが 、例えば、硫酸アンモニゥム沈殿法等の塩析;セフアデックス等によるゲルろ過法;ジ ェチルアミノエチル基ある!/、はカルボキシメチル基等を持つ担体等を用いたイオン交 換クロマトグラフィー法;ブチル基、ォクチル基、フエ二ル基等疎水性基を持つ担体等 を用いた疎水性クロマトグラフィー法;色素ゲルクロマトグラフィー法;電気泳動法;透 析;限外ろ過法;ァフィ二ティークロマトグラフィー法;高速液体クロマトグラフィー法等 により精製することカでさる。  [0060] As a protein isolation method, a known method without particular limitation can be used. For example, salting out such as ammonium sulfate precipitation method; gel filtration method using cefadex, etc .; ! /, Is an ion-exchange chromatography method using a carrier having a carboxymethyl group or the like; a hydrophobic chromatography method using a carrier having a hydrophobic group such as a butyl group, an octyl group, or a phenyl group; Purification by gel chromatography method; electrophoresis method; permeation; ultrafiltration method; affinity chromatography method; high performance liquid chromatography method.
[0061] さらに、前記タンパク質を固定化酵素として用いることもできる。このような方法として は特に制限はなぐ公知の方法を用いることができる力 タンパク質又はタンパク質産 生細胞を固定化したものが挙げられ、共有結合法や吸着法といった担体結合法、架 橋法、包括法等により固定化できる。また、ダルタルアルデヒド、へキサメチレンジイソ シァネート、へキサメチレンジイソチオシァネート等の縮合剤を必要に応じて使用して もよい。また、他の固定化法としては、例えば、モノマーを重合反応でゲル化させて 行うモノマー法;通常のモノマーよりも大きな分子を重合させるプレポリマー法;ポリマ 一をゲル化させて行うポリマー法;ポリアクリルアミドを用いた固定化;アルギン酸、コ ラーゲン、ゼラチン、寒天、 κ一力ラギーナン等の天然高分子を用いた固定化;光硬 化性樹脂、ウレタンポリマー等の合成高分子を用いた固定化が挙げられる。  [0061] Furthermore, the protein can also be used as an immobilized enzyme. Examples of such methods include the ability to use known methods that are not particularly limited and include immobilized proteins or protein-producing cells, including carrier binding methods such as covalent bonding methods and adsorption methods, bridge methods, and comprehensive methods. Can be fixed by law. Further, a condensing agent such as dartalaldehyde, hexamethylene diisocyanate, hexamethylene diisothiocyanate may be used as necessary. Other immobilization methods include, for example, a monomer method in which a monomer is gelled by a polymerization reaction; a prepolymer method in which a molecule larger than a normal monomer is polymerized; a polymer method in which a polymer is gelled; Immobilization using polyacrylamide; Immobilization using natural polymers such as alginic acid, collagen, gelatin, agar, and Kappa Ichigo Laguinan; Immobilization using synthetic polymers such as photo-curing resin and urethane polymer Is mentioned.
[0062] このようにして精製された目的タンパク質は、電気泳動(SDS— PAGE等)によって 単一バンドが確認されれば精製が十分に行われたものと判断される。  [0062] The target protein thus purified is judged to be sufficiently purified if a single band is confirmed by electrophoresis (SDS-PAGE or the like).
実施例  Example
[0063] 以下、実施例により本発明をさらに具体的に説明するが、これらの実施例は本発明 の技術範囲を限定するものではない。なお、全ての実施例で使用した制限酵素につ いては、特に明記しない限り「東洋紡績株式会社」の製品であり、制限酵素以外の試 薬については、特に明記しない限り「和光純薬工業株式会社」の製品である。  [0063] Hereinafter, the present invention will be described more specifically by way of examples. However, these examples do not limit the technical scope of the present invention. The restriction enzymes used in all examples are products of “Toyobo Co., Ltd.” unless otherwise specified. Reagents other than restriction enzymes are “Wako Pure Chemical Industries, Ltd.” unless otherwise specified. Company "product.
[0064] (実施例 1 ) ロドコッカス属放線菌由来のプラスミドの一部と pHSG299の一部との シャトルベクターの構築  [0064] (Example 1) Construction of a shuttle vector comprising a part of a plasmid derived from Rhodococcus actinomycetes and a part of pHSG299
Rhodococcus erythropolis IAM 1400由来のプラスミドを精製した。 Rhodoco ecus erythropolis IAM1400 (東京大学分子細胞生物学研究所 細胞機能情 報センターより分譲)を、 5mLの GPY (1 %グルコース、 0. 5%バクトペプトン及び 0. 3%イーストエキストラタトを含む)培地に植菌し、 25°Cで振盪培養した。対数増殖期 に 100mg/mLアンピシリン溶液を 250 L添加し、さらに 25°Cで 2時間振盪培養し た。 A plasmid derived from Rhodococcus erythropolis IAM 1400 was purified. Rhodoco ecus erythropolis IAM1400 (distributed by Cell Function Information Center, Institute of Molecular Cell Biology, The University of Tokyo) was planted in 5mL of GPY (containing 1% glucose, 0.5% bactopeptone and 0.3% yeast extratate). And cultured with shaking at 25 ° C. In the logarithmic growth phase, 250 L of a 100 mg / mL ampicillin solution was added, and the mixture was further cultured with shaking at 25 ° C for 2 hours.
[0065] 培養液を 12, OOOrpmにて 5分間遠心分離し、上清を取り除き、さらに lmLの 50m M Tris -HCl (pH7. 5)で菌を懸濁し、 12, OOOrpmにて 5分間遠心分離し上清を 取り除いた。 TE (10mM Tris -HCl (pH7. 5)及び ImM EDTA (同仁化学研究 所)を含む)に溶解した 10mg/mLリゾチーム溶液を 250 L加え懸濁し、 37°Cで 3 0分間放置した。放置後、 100 しの3^1 NaCl及び 25 しの 10%SDSを加え、 20°Cで一晩放置した。  [0065] The culture solution is centrifuged at 12, OOOrpm for 5 minutes, the supernatant is removed, and the bacteria are suspended in 1 mL of 50 mM Tris-HCl (pH 7.5), and centrifuged at 12, OOOrpm for 5 minutes. The supernatant was removed. 250 L of 10 mg / mL lysozyme solution dissolved in TE (containing 10 mM Tris-HCl (pH 7.5) and ImM EDTA (Dojindo Laboratories)) was added and suspended, and the mixture was allowed to stand at 37 ° C for 30 minutes. After standing, 100% 3 ^ 1 NaCl and 25% 10% SDS were added and left overnight at 20 ° C.
[0066] その後、 12, OOOrpmにて 5分間遠心分離し、上清に 50 g/mL Proteinase [0066] Thereafter, the mixture was centrifuged at 12, OOOrpm for 5 minutes, and 50 g / mL proteinase was added to the supernatant.
K (キアゲン)及び SO ^ g/mL RNase A (キアゲン)をそれぞれ 0· 5 L加え 37°C で 15分間放置した後、 375 Lのフエノール/クロ口ホルム/イソァミルアルコール 溶液を添加した。 12, OOOrpmにて 5分間遠心分離した後、上清を 300 し取り、 75 O ^ Lのエタノールを加え、 12, OOOrpmにて 5分間遠心分離しし、 50 Lの滅菌水 に沈殿を溶解した。 After adding 0.5 L of K (Qiagen) and SO ^ g / mL RNase A (Qiagen), each was allowed to stand at 37 ° C for 15 minutes, and then 375 L of phenol / chloroform / isoamyl alcohol solution was added. After centrifuging at 12, OOOrpm for 5 minutes, remove the supernatant 300, add 75 O ^ L ethanol, and centrifuge at 12, OOOrpm for 5 minutes to dissolve the precipitate in 50 L of sterile water .
[0067] この溶液を GFX (商標) PCR DNA and Gel Band Purification Kit (GE ヘルスケア バイオサイエンス)でプラスミド DNAを精製した。得られたプラスミド DN Αίま、国際公開 WO05/042739号ノ ンフレツ卜 ίこ開示の pRETl 100 (5444bp)及 び pRET1200 (5421bp)の混合物であった。  [0067] Plasmid DNA was purified from this solution using GFX ™ PCR DNA and Gel Band Purification Kit (GE Healthcare Bioscience). The obtained plasmid DN was a mixture of pRETl 100 (5444 bp) and pRET 1200 (5421 bp) disclosed in International Publication No. WO05 / 042739.
[0068] 上記で得られたプラスミド DNA混合物を Alw44 Iを用いて 37°Cで 2時間消化した 後、 Blunting high (東洋紡績)を用いて平滑末端にし、 pRETl 100由来の DNA 断片を得た。この DNA断片と、 pHSG299 (タカラバイオ)を Hinc IIを用いて 37°C で 2時間消化した後、上記のようにフエノール/クロ口ホルム/イソァミルアルコール 溶液を添加し、エタノールで沈殿させることにより得られた DNA断片とを Ligation h igh (東洋紡績)を用いてライゲーシヨンした。  [0068] The plasmid DNA mixture obtained above was digested with Alw44 I at 37 ° C for 2 hours, and then blunt-ended using Blunting high (Toyobo) to obtain a DNA fragment derived from pRETl100. After digesting this DNA fragment and pHSG299 (Takara Bio) with Hinc II at 37 ° C for 2 hours, add phenol / chloroform / isoamyl alcohol solution as described above and precipitate with ethanol. The DNA fragment obtained by the above was ligated using Ligation high (Toyobo).
[0069] その後、ライゲーシヨン産物を Competent high (東洋紡績)を用いて、 E. coli DH5 aを形質転換した。得られた形質転換大腸菌を、直径 90mmのシャーレに対 して 30 しの 0. 1M IPTG (イソプロピル一 /3—ガラクトシド)及び 30 しの 4%X— gal (5—ブロモー 4 クロロー 3—イントールー 13—D ガラタトピラノシド)が塗布され 、かつ lOO g/mLカナマイシンを含有する LB (1 %トリプトン、 0· 5%イーストェキ ストラクト及び 1 %塩化ナトリウムを含む; ρΗ7· 2)寒天培地にプレーティングし、 30°C で 60時間放置した。 [0069] After that, the ligation product was produced using E. coli using Competent high (Toyobo). DH5a was transformed. The obtained transformed Escherichia coli was divided into 30 0.1 M IPTG (isopropyl 1 / 3-galactoside) and 30% 4% X-gal (5-bromo-4 chloro-3-intoluene 13 for a 90 mm diameter petri dish. LB (1% tryptone, 0.5% yeast extract and 1% sodium chloride; ρΗ7.2) coated with —D galatatopyranoside) and containing lOO g / mL kanamycin; And left at 30 ° C for 60 hours.
[0070] 出現したコロニーのうち白色のコロニーを 100 g/mLカナマイシンを含有する LB 液体培地に植菌し、 30°Cで 60時間振盪培養した。得られた培養液を Labo Pass ( 商標) Mini (北海道システム ·サイエンス)を用いてベクター DNAを精製した。得られ たベクター DNAを 0. 8%ァガロースゲル電気泳動(ナカライテスタ)で確認した。この ベクターを pRETl 102と命名した。  [0070] Among the appearing colonies, white colonies were inoculated into LB liquid medium containing 100 g / mL kanamycin, and cultured with shaking at 30 ° C for 60 hours. Vector DNA was purified from the obtained culture solution using Labo Pass (trademark) Mini (Hokkaido System Science). The obtained vector DNA was confirmed by 0.8% agarose gel electrophoresis (Nacalai Tester). This vector was named pRETl102.
[0071] 上記とは別に、 Rhodococcus erythropolis IAM1400から分離及び精製した プラスミド DNAを BspLU 1 II (ロシュ ·ダイァグノスティックス)を用いて 48°Cで 2時 間消化した後に Blunting highを用いて平滑末端にし、 pRET1200由来の DNA 断片を得た。この DNA断片と、 pHSG299を Hinc IIを用いて 37°Cで 2時間消化し て得られた DNA断片とを Ligation highを用いてライゲーシヨンした。  [0071] In addition to the above, plasmid DNA isolated and purified from Rhodococcus erythropolis IAM1400 was digested with BspLU 1 II (Roche Diagnostics) at 48 ° C for 2 hours, and then blunted with Blunting high. At the end, a DNA fragment derived from pRET1200 was obtained. This DNA fragment and the DNA fragment obtained by digesting pHSG299 with Hinc II at 37 ° C for 2 hours were ligated using Ligation high.
[0072] ライゲーシヨン産物を Competent highを用いて E. coli DH5 αを形質転換し た。得られた形質転換大腸菌を、直径 90mmのシャーレに対して 30 Lの 0. 1M I PTG及び 30 Lの 4%X—galが塗布され、かつ 100 g/mLカナマイシンを含有 する LB寒天培地にプレーティングし、 30°Cで 60時間放置した。  [0072] The ligation product was transformed into E. coli DH5α using Competent high. The resulting transformed E. coli was plated on a LB agar medium coated with 30 L of 0.1M I PTG and 30 L of 4% X-gal on a petri dish with a diameter of 90 mm and containing 100 g / mL kanamycin. And left at 30 ° C for 60 hours.
[0073] 出現したコロニーのうち白色のコロニーを 100 g/mLカナマイシンを含有する LB 液体培地に植菌し、 30°Cで 60時間振盪培養した。得られた培養液を Labo Pass ( 商標) Miniを用いてベクター DNAを精製した。得られたベクター DNAを 0. 8%ァガ ロースゲル電気泳動に供して確認した。このベクターを pRET1202と命名した。  [0073] Among the appearing colonies, white colonies were inoculated into LB liquid medium containing 100 g / mL kanamycin, and cultured with shaking at 30 ° C for 60 hours. From the obtained culture broth, vector DNA was purified using Labo Pass (trademark) Mini. The obtained vector DNA was confirmed by subjecting to 0.8% agarose gel electrophoresis. This vector was named pRET1202.
[0074] (実施例 2) pRET1102及び pRET1202のサイズの縮小  (Example 2) Reduction in size of pRET1102 and pRET1202
実施例 1で得られた PRET1102を BamH I及び Hinc IIで 37°Cにて 2時間消化 した後、 0. 8%ァガロースゲル電気泳動に供し、 GFX (商標) PCR DNA and Ge 1 Band Purification Kitを用いて精製し、約 2. 7kbpの DNA断片を得た。この 際、サイズマーカーは Loading Quick DNA size Marker λ /EcoR I + H ind III double digest (東洋紡績)を使用した。 The PRET1102 obtained in Example 1 was digested with BamHI and HincII at 37 ° C for 2 hours and then subjected to 0.8% agarose gel electrophoresis using GFX ™ PCR DNA and Ge 1 Band Purification Kit. And a DNA fragment of about 2.7 kbp was obtained. this The size marker used was Loading Quick DNA size Marker λ / EcoR I + Hind III double digest (Toyobo).
[0075] この DNA断片と、 pHSG299を BamH I及び Hinc IIで 37°Cにて 2時間消化した 後 0. 8%ァガロースゲル電気泳動に供し GFX (商標) PCR DNA and Gel Ban d Purification Kitを用いて精製した約 2· 7kbpの DNA断片とを Ligation high を用いてライゲーシヨンした。  [0075] This DNA fragment and pHSG299 were digested with BamH I and Hinc II at 37 ° C for 2 hours and then subjected to 0.8% agarose gel electrophoresis using GFX ™ PCR DNA and Gel Band Purification Kit. The purified DNA fragment of about 2 · 7 kbp was ligated using Ligation high.
[0076] ライゲーシヨン産物を Competent highを用いて E. coli JM109を形質転換し た。得られた形質転換大腸菌を、直径 90mmのシャーレに対して 30 Lの 0. 1M I PTG及び 30 Lの 4%X—galが塗布され、かつ 100 g/mLカナマイシンを含有 する LB寒天培地にプレーティングし、 30°Cで 60時間放置した。  [0076] The ligation product was transformed into E. coli JM109 using Competent high. The resulting transformed E. coli was plated on a LB agar medium coated with 30 L of 0.1M I PTG and 30 L of 4% X-gal on a petri dish with a diameter of 90 mm and containing 100 g / mL kanamycin. And left at 30 ° C for 60 hours.
[0077] 形成したコロニーのうち白色のコロニーを 100 g/mLカナマイシンを含有する LB 液体培地に植菌し、 30°Cで 60時間振盪培養した。得られた培養液を Labo Pass ( 商標) Miniを用いてベクター DNAを精製した。得られたベクター DNAを 0. 8%ァガ 口ースゲル電気泳動に供し確認した。  [0077] Among the formed colonies, white colonies were inoculated into LB liquid medium containing 100 g / mL kanamycin, and cultured with shaking at 30 ° C for 60 hours. From the obtained culture broth, vector DNA was purified using Labo Pass (trademark) Mini. The obtained vector DNA was confirmed by subjecting it to 0.8% capillary gel electrophoresis.
[0078] このベクターを Pst Iで 2時間消化した後 Blunting highを用いて平滑末端にし、 Ligation highを用いてライゲーシヨンした。ライゲーシヨン産物を Competent hig hを用いて Ε· coli JM109を形質転換し、 lOO ^ g/mLカナマイシンを含む LB寒 天培地にプレーティングし、 30°Cにて 36時間放置した。  [0078] This vector was digested with Pst I for 2 hours, blunt-ended using Blunting high, and ligated using Ligation high. The ligation product was transformed into Escherichia coli JM109 using Competent high, plated on an LB agar medium containing lOO ^ g / mL kanamycin, and allowed to stand at 30 ° C for 36 hours.
[0079] 形成されたコロニーを 100 μ g/mLカナマイシンを含む LB液体培地に植菌し 30 °Cで 24時間培養した後、 Labo Pass (商標) Miniを用いてベクター DNAを精製し た。得られたベクター DNAを 0. 8%ァガロースゲル電気泳動に供し確認した。この ベクターを PRET1132と命名した。なお、この pRET1132を Pst 1で1時間消化した 後 0· 8%ァガロースゲル電気泳動に供して確認したところ、 pRETl 132が Pst Iに よって切断されな!/、ことが確認された。  [0079] The formed colonies were inoculated into an LB liquid medium containing 100 µg / mL kanamycin and cultured at 30 ° C for 24 hours, and then the vector DNA was purified using Labo Pass ™ Mini. The obtained vector DNA was confirmed by subjecting it to 0.8% agarose gel electrophoresis. This vector was named PRET1132. This pRET1132 was digested with Pst 1 for 1 hour and then subjected to 0.8% agarose gel electrophoresis. As a result, it was confirmed that pRETl 132 was not cleaved by Pst I! /.
[0080] また、実施例 1で得られた pRET1202を EcoR I及び Dra III (ロシュ ·ダイァグノス テイツタス)で 2時間消化した後、 Blunting highを用いて平滑末端にし、 0. 8%ァガ ロースゲル電気泳動に供した後 GFX (商標) PCR DNA and Gel Band Purifi cation Kitを用いて精製し、約 3. 7kbpの DNA断片を得た。この際、サイズマーカ 一は Loading Quick DNA size Marker λ /EcoR I + Hind III double digestを使用した。 [0080] In addition, pRET1202 obtained in Example 1 was digested with EcoR I and Dra III (Roche Diagnostatus) for 2 hours, then blunted using Blunting high, and 0.8% agarose gel electrophoresis. And purified using GFX ™ PCR DNA and Gel Band Purification Kit to obtain a DNA fragment of about 3.7 kbp. At this time, the size marker One used Loading Quick DNA size Marker λ / EcoR I + Hind III double digest.
[0081] この DNA断片と、 pHSG299を BamH I及び Hinc IIで 2時間消化した後 0. 8% ァガロースゲル電気泳動に供し GFX (商標) PCR DNA and Gel Band Purifi cation Kitを用いて精製して得た約 2 · 7kbpの DNA断片とを Ligation highを用 いてライゲーシヨンした。  [0081] This DNA fragment and pHSG299 were digested with BamH I and Hinc II for 2 hours, then subjected to 0.8% agarose gel electrophoresis and purified using GFX ™ PCR DNA and Gel Band Purification Kit The DNA fragment of about 2 · 7 kbp was ligated using Ligation high.
[0082] ライゲーシヨン産物を Competent highを用いて E. coli JM109に遺伝子導入 した。得られた形質転換大腸菌を、直径 90mmのシャーレに対して 30 Lの 0. 1M IPTG及び 30 Lの 4%X—galが塗布され、かつ 100 g/mLカナマイシンを含 有する LB寒天培地にプレーティングし、 30°Cで 60時間放置した。  [0082] The ligation product was introduced into E. coli JM109 using Competent high. The obtained transformed Escherichia coli was plated on a LB agar medium coated with 30 L of 0.1 M IPTG and 30 L of 4% X-gal on a petri dish with a diameter of 90 mm and containing 100 g / mL kanamycin. And left at 30 ° C for 60 hours.
[0083] 出現したコロニーのうち白色のコロニーを 100 g/mLカナマイシンを含有する LB 液体培地に植菌し、 30°Cで 60時間振盪培養した。得られた培養液を Labo Pass ( 商標) Miniを用いてベクター DNAを精製した。このベクターを Sac I、 BamH I、 Ps t I又は EcoR Iで 2時間消化してベクターの確認を行ったところ、ロドコッカス属菌 由来の領域が自然発生的に約 500bpが削れたことが判明した。このベクターを pRE T1204 (約 5. 9kbp)と命名した。  [0083] Among the appearing colonies, white colonies were inoculated into LB liquid medium containing 100 g / mL kanamycin, and cultured with shaking at 30 ° C for 60 hours. From the obtained culture broth, vector DNA was purified using Labo Pass (trademark) Mini. When this vector was digested with Sac I, BamH I, Pst I or EcoR I for 2 hours to confirm the vector, it was found that the region derived from Rhodococcus sp. This vector was named pRE T1204 (about 5.9 kbp).
[0084] (実施例 3) アミノケトン不斉還元酵素遺伝子が揷入された発現ベクターの構築  (Example 3) Construction of an expression vector inserted with an aminoketone asymmetric reductase gene
Rhodococcus erythropolis MAK— 34 (経済産業省産業技術総合研究所生 命工学工業技術研究所 (現 独立行政法人産業技術総合研究所特許生物寄託セン ター(IPOD) ; 305— 8566 日本国茨城県つくば巿東 1丁目 1番地 中央第 6)受 託番号: FERM BP— 7451 ;平成 13年 2月 15日に受託)を 5mLの GPY培地に植 菌し 30°Cで 48時間振盪培養した後、その培養液を lOOmLの GPY培地に植え継ぎ 30°Cで 10時間、 200rpmで培養した。培養液を Genomic DNA Buffer set (キ ァゲン)及び Genomic— tip 500/g (キアゲン)を用いて精製し、ゲノム DNAを 取得した。 Rhodococcus erythropolis MAK— 34 (National Institute of Advanced Industrial Science and Technology, National Institute of Advanced Industrial Science and Technology (now National Institute of Advanced Industrial Science and Technology, Patent Biodeposition Center (IPOD)); 305—8566 Tsukuba Rokuto, Ibaraki, Japan 1-chome, 1st, center No. 6) Accession number: FERM BP-7451 (contracted on 15 February 2001) was inoculated into 5 mL of GPY medium and cultured at 30 ° C for 48 hours with shaking. Was transferred to lOOmL GPY medium and cultured at 30 ° C for 10 hours at 200 rpm. The culture solution was purified using Genomic DNA Buffer set (Qiagen) and Genomic tip 500 / g (Qiagen) to obtain genomic DNA.
[0085] 取得したゲノム DNAを铸型として、アミノケトン不斉還元酵素遺伝子 (mak遺伝子) に相当する塩基配列を PCR法によって増幅した。プライマーとしては、 MAKF1 (セ ンス):5, - GAATCTTCTCGTTGATGCAGATCAGGTC - 3 ' (配列番号 5)、 及び MAKR2 (アンチセンス):5,— CTGACTCCGTAGTGTTCTGCCAGTTC - 3 ' (配列番号 6)を使用し、ポリメラーゼとしては KOD— plus—(東洋紡績)を用い 、反応条件としては、 94°C、 2分間にて铸型 DNAの変性を行った後、アニーリングが 68。C30禾少、 ί申長反応力 680C 1分 50禾少で、 30サイクノレを fiつた。 [0085] Using the obtained genomic DNA as a saddle type, the base sequence corresponding to the aminoketone asymmetric reductase gene (mak gene) was amplified by PCR. As a primer, MAKF1 (serum ): 5,-GAATCTTCTCGTTGATGCAGATCAGGTC-3 '(SEQ ID NO: 5), and MAKR2 (antisense): 5, — CTGACTCCGTAGTGTTCTGCCAGTTC-3' (SEQ ID NO: 6), and KOD— plus— (Toyobo) as the polymerase As a reaction condition, annealing was performed after denaturation of the truncated DNA at 94 ° C for 2 minutes. C30 was less, ίSung chi was responsive 68 0 C 1 minute 50 less, fifty 30 cyclists.
[0086] PCR産物をフエノール/クロ口ホルム処理及びエタノール沈澱した後、 Sma Iを用 いて 30°Cで 2時間消化した pUC 18 (約 2· 7kbp ;タカラバイオ)と混合し、 Ligation highを用いてライゲーシヨンした。得られたライゲーシヨン産物を Competent high を用いて E. coli DH5 aを形質転換し、得られた形質転換大腸菌を、直径 90m mのシャーレに対して 30 a Lの 0. 1M IPTG及び 30 μ Lの 4%X— galが塗布され、 かつ 100 g/mLカナマイシンを含有する LB寒天培地にプレーテリングし、 30°Cで 60時間放置した。 [0086] After the PCR product was treated with phenol / chloroform and ethanol precipitated, it was mixed with pUC18 (about 2 · 7kbp; Takara Bio) digested at 30 ° C for 2 hours using Sma I, and Ligation high was used. I ligated. The resulting ligation product was transformed into E. coli DH5 a using Competent high, and the resulting transformed E. coli was treated with 30 a L of 0.1 M IPTG and 30 μL of a 90 mm diameter petri dish. Plated on LB agar medium coated with 4% X-gal and containing 100 g / mL kanamycin and left at 30 ° C for 60 hours.
[0087] 出現したコロニーのうち白色のコロニーを選択し 100 g/mLアンピシリンを含む L B液体培地で 30°C、 60時間振盪培養した。得られた培養液を Labo Pass (商標) M iniを用いてベクター DNAを精製した。このベクターを 0. 8 %ァガロースゲル電気泳 動に供し確認した。  [0087] Among the appearing colonies, white colonies were selected and cultured with shaking in an LB liquid medium containing 100 g / mL ampicillin at 30 ° C for 60 hours. From the obtained culture broth, vector DNA was purified using Labo Pass (trademark) Mini. This vector was confirmed by subjecting it to 0.8% agarose gel electrophoresis.
[0088] 次に、上記で得られた発現ベクターを铸型として、さらに PCRを行った。プライマー としては、 MAKPstF (センス):5, - GACCACTGCAGATCAATCAACTCTG ATGAGGTCC - 3 ' (配列番号 7)、及び MAKHisBglllR (アンチセンス): 5,— C GCTTAGATCTCAGTTCGCCGAGCGCC - 3 ' (配列番号 8)を用い、ポリメラ ーゼとしては KOD— plus—を用いて、 94°C、 2分間にて铸型 DNAの変性を行った 後、アニーリングが 68°C30秒、伸長反応が 68°C 1分 50秒で、 30サイクルを行った。  [0088] Next, PCR was further performed using the expression vector obtained above as a saddle type. As primers, MAKPstF (sense): 5,-GACCACTGCAGATCAATCAACTCTG ATGAGGTCC-3 '(SEQ ID NO: 7), and MAKHisBglllR (antisense): 5, — C GCTTAGATCTCAGTTCGCCGAGCGCC-3' (SEQ ID NO: 8) as a polymerase Uses KOD-plus-, denaturation of the truncated DNA at 94 ° C for 2 minutes, followed by 30 cycles of annealing at 68 ° C for 30 seconds and extension reaction at 68 ° C for 1 minute 50 seconds It was.
[0089] 得られた DNA断片を Bgl IIを用いて 37°Cで 2時間消化した後、 1. 5%ァガロース ゲル電気泳動に供し、 GFX (商標) PCR DNA and Gel Band Purification Kitを用いて精製した(約 0· 8kbp)。この DNA断片と、 pQE70 (キアゲン)を Sph I を用いて 37°Cで 2時間消化した後 Blunting high を用いて平滑末端にし、さらに Bgl IIを用いて 37°Cで 2時間消化した後 0. 8 %ァガロースゲル電気泳動に供し、 G FX (商標) PCR DNA and Gel Band Purification Kitを用いて精製して得 られた DNA断片とを Ligation highを用いてライゲーシヨンした。 [0089] The obtained DNA fragment was digested with Bgl II at 37 ° C for 2 hours, then subjected to 1.5% agarose gel electrophoresis and purified using GFX ™ PCR DNA and Gel Band Purification Kit (Approx. 0.8kbp). This DNA fragment and pQE70 (Qiagen) were digested with Sph I at 37 ° C for 2 hours, then blunted with Blunting high, and further digested with Bgl II at 37 ° C for 2 hours. Obtained by subjecting to 8% agarose gel electrophoresis and purifying using G FX ™ PCR DNA and Gel Band Purification Kit The obtained DNA fragment was ligated using Ligation high.
[0090] 得られたライゲーシヨン産物を Competent highを用いて Ε· coli DH5 αを形 質転換した。得られた形質転換大腸菌を、 lOO ^ g/mLアンピシリンを含む LB寒天 培地にプレーティングし、 30°Cで 60時間放置した。 [0090] The obtained ligation product was transformed into Escherichia coli DH5α using Competent high. The obtained transformed E. coli was plated on LB agar medium containing lOO ^ g / mL ampicillin and allowed to stand at 30 ° C for 60 hours.
[0091] 形成したコロニーを 100 μ g/mLアンピシリンを含む LB液体培地で 30°C、 60時 間振盪培養した。培養液を Labo Pass (商標) Miniを用いてベクター DNAを精製し た。得られたベクター DNAを Bgl IIを用いて 37°Cで 2時間消化し、 0. 8%ァガロー スゲル電気泳動に供し確認したところ、全長が約 4. 2kbpであり、 目的とした pQE70 のマルチクローニングサイトに mak遺伝子が揷入された発現ベクターであることが確 認された。この際、サイズマーカーは Loading Quick DNA size Marker λ /E coR I + Hind III double digest及び pQE70を用いた。この発現ベクターを PMAK8417 - 2と命名した。 [0091] The formed colonies were cultured with shaking in LB liquid medium containing 100 µg / mL ampicillin at 30 ° C for 60 hours. The vector DNA was purified from the culture solution using Labo Pass (trademark) Mini. The resulting vector DNA was digested with Bgl II at 37 ° C for 2 hours, and confirmed by subjecting to 0.8% agarose gel electrophoresis. The total length was about 4.2 kbp, and the desired multicloning of pQE70 was performed. It was confirmed that the expression vector had the mak gene inserted into the site. At this time, as the size markers, Loading Quick DNA size Marker λ / EcoRI + HindIII double digest and pQE70 were used. This expression vector was named PMAK8417-2.
[0092] また、 pRET1204を鍀型とし、 pRET1200由来の一部の配列を PCRによって増幅 した。プライマーとしては、 P1204rep— Ec2958 (センス): 5, 一 CGCGGAATTC GACCACCACGCACGCACACCGCA— 3 ' (配列番号 9)及び P 1200rep— Ps [0092] In addition, pRET1204 was of a saddle type, and a part of the sequence derived from pRET1200 was amplified by PCR. Primers include P1204rep—Ec2958 (sense): 5, 1 CGCGGAATTC GACCACCACGCACGCACACCGCA—3 ′ (SEQ ID NO: 9) and P 1200rep—Ps
CCATTG- 3' (配列番号 10)を用い、ポリメラーゼとしては KOD— plus—を用いて 、 94°C、 2分間にて铸型 DNAの変性を行った後、アニーリングが 60°C30秒、伸長 反応が 68°C50秒で、 30サイクルを行った。 Using CCATTG-3 '(SEQ ID NO: 10) and KOD-plus- as the polymerase, denaturation of the truncated DNA at 94 ° C for 2 minutes, followed by annealing at 60 ° C for 30 seconds 30 cycles at 68 ° C for 50 seconds.
[0093] PCR反応後 GFX (商標) PCR DNA and Gel Band Purification Kitを用 いて DNA断片を精製し、制限酵素 EcoR I及び Pst Iで 2時間消化した後、 1. 6% ァガロースゲル電気泳動に供し、 DNA断片を GFX (商標) PCR DNA and Gel Band Purification Kitを用いて精製した。得られた DNA断片(約 0· 6kbp)と、 ρ MAK8417— 2を EcoR I及び Pst Iを用いて 37°Cで 2時間消化した後、 0. 8%ァ ガロースゲル電気泳動に供し、 GFX (商標) PCR DNA and Gel Band Purifi cation Kitを用いて精製した DNA断片(約 4· 2kbp)とを Ligation highを用いて ライゲーシヨンした。 [0093] After the PCR reaction, the DNA fragment was purified using GFX ™ PCR DNA and Gel Band Purification Kit, digested with restriction enzymes EcoR I and Pst I for 2 hours, and then subjected to 1.6% agarose gel electrophoresis. The DNA fragment was purified using the GFX ™ PCR DNA and Gel Band Purification Kit. The obtained DNA fragment (approx. 0.6kbp) and ρ MAK8417-2 were digested with EcoR I and Pst I at 37 ° C for 2 hours, and then subjected to 0.8% agarose gel electrophoresis. ) A DNA fragment (about 4.2 Kbp) purified using PCR DNA and Gel Band Purification Kit was ligated using Ligation high.
[0094] ライゲーシヨン産物を Competent highを用いて E. coli DH5 αを形質転換し た。得られた形質転換大腸菌を 100 g/mLアンピシリンを含む LB寒天培地にプ レーティングし、 30°Cで 60時間放置した。 [0094] The ligation product was transformed into E. coli DH5 α using Competent high. It was. The obtained transformed E. coli was plated on an LB agar medium containing 100 g / mL ampicillin and left at 30 ° C. for 60 hours.
[0095] 形成したコロニーを 100 μ g/mLアンピシリンを含む LB液体培地で 30°C、 60時 間振盪培養した。培養液を Labo Pass (商標) Miniを用いて DNA精製し、 EcoR I を用いて 37°Cで 2時間消化した後、 0. 8%ァガロースゲル電気泳動で確認したとこ ろ、 目的とした pRET1200由来のプロモータの下流に mak遺伝子が揷入された発 現ベクター(約 4· 8kbp)であった。 [0095] The formed colonies were cultured with shaking in LB liquid medium containing 100 µg / mL ampicillin at 30 ° C for 60 hours. The culture solution was purified with Labo Pass ™ Mini, digested with EcoR I at 37 ° C for 2 hours, and confirmed by 0.8% agarose gel electrophoresis. It was an expression vector (approximately 4 · 8kbp) in which the mak gene was inserted downstream of the promoter.
[0096] 得られたベクターを铸型とし、 pRET1200由来のプロモータ及びその下流の mak 遺伝子の部分を PCRによって増幅した。プライマーとしては、 pQE70Fl (センス): 5 び pQE70R1135Bm (アンチセンス):5,— GGTTGGATCCGTCATCACCGA AACGCGCGAGGCAG - 3 ' (配列番号 12)を用い、ポリメラーゼとしては KOD— plus—を用いて、 94°C、 2分間にて铸型 DNAの変性を行った後、アニーリングが 60 °C30秒、伸長反応が 68°C3分間で、 30サイクルを行った。 [0096] The obtained vector was made into a saddle type, and a promoter derived from pRET1200 and a portion of the mak gene downstream thereof were amplified by PCR. PQE70Fl (sense): 5 and pQE70R1135Bm (antisense): 5, —GGTTGGATCCGTCATCACCGA AACGCGCGAGGCAG-3 ′ (SEQ ID NO: 12) is used as a primer, and KOD—plus— is used as a polymerase at 94 ° C. for 2 minutes. After denaturation of the cage DNA at 30 ° C., 30 cycles were performed with annealing at 60 ° C. for 30 seconds and extension reaction at 68 ° C. for 3 minutes.
[0097] 得られた PCR産物を GFX (商標) PCR DNA and Gel Band Purification Kitを用いて精製し、その産物を EcoR I及び BamH Iで 2時間消化した後 0. 8% ァガロースゲル電気泳動に供し、 DNA断片を GFX (商標) PCR DNA and Gel Band Purification Kitを用いて精製した。この DNA断片(約 2· 4kbp)と、 pRET 1132を EcoR I及び BamH Iで 2時間消化した DNA断片(約 5· 3kbp)を 0. 8%ァ ガロースゲル電気泳動に供し、 GFX (商標) PCR DNA and Gel Band Purifi cation Kitを用いて精製した DNA断片とを、 Ligation highを用いてライゲーショ ンした。 [0097] The obtained PCR product was purified using GFX ™ PCR DNA and Gel Band Purification Kit, the product was digested with EcoR I and BamH I for 2 hours, and then subjected to 0.8% agarose gel electrophoresis. The DNA fragment was purified using the GFX ™ PCR DNA and Gel Band Purification Kit. This DNA fragment (approximately 2.4 kbp) and a DNA fragment (approximately 5.3 kbp) obtained by digesting pRET 1132 with EcoR I and BamHI for 2 hours were subjected to 0.8% agarose gel electrophoresis, and GFX ™ PCR DNA The DNA fragment purified using the Gel Band Purification Kit was ligated using Ligation high.
[0098] ライゲーシヨン産物を Competent highを用いて E. coli JM109を形質転換し 、得られた形質転換大腸菌を 100 g/mLカナマイシンを含む LB寒天培地にプレ 一ティングし、 30°Cで 60時間放置した。  [0098] The E. coli JM109 was transformed with the ligation product using Competent high, and the obtained transformed E. coli was plated on an LB agar medium containing 100 g / mL kanamycin and left at 30 ° C for 60 hours. did.
[0099] 得られたコロニーを 100 μ g/mLカナマイシンを含む LB液体培地で培養した後 L abo Pass (商標) Miniを用いてベクター DNAを精製し、 0. 8%ァガロースゲル電気 泳動で確認した。その際、サイズマーカーは Loading Quick DNA size Marke r λ /EcoR I + Hind III double digestを使用した。得られたベクター DNA を EcoR Iを用いて 37°Cで 2時間消化した後、 0. 8%ァガロースゲル電気泳動で確 認したところ、 目的とした pRET1200由来のプロモータ及びその下流に位置する ma k遺伝子を有するベクター(約 7. 7kbp)であることが確認された。このベクターを pRE Ti l 38と命名した。 [0099] The obtained colonies were cultured in an LB liquid medium containing 100 µg / mL kanamycin, and then the vector DNA was purified using Labo Pass (trademark) Mini, and confirmed by 0.8% agarose gel electrophoresis. At that time, the size marker is Loading Quick DNA size Marke rλ / EcoR I + Hind III double digest was used. The obtained vector DNA was digested with EcoR I at 37 ° C for 2 hours, and confirmed by 0.8% agarose gel electrophoresis. The target pRET1200-derived promoter and the mak gene located downstream It was confirmed that the vector (about 7.7 kbp) has This vector was named pRE Ti 38.
[0100] (実施例 4) アミノケトン不斉還元酵素遺伝子が揷入された発現ベクターの構築 2  [0100] (Example 4) Construction of an expression vector inserted with an aminoketone asymmetric reductase gene 2
合成オリゴヌクレオチドである PTRtF : 5, - CAATAAGTCACTCACGCTTCA Synthetic oligonucleotide PTRtF: 5,-CAATAAGTCACTCACGCTTCA
ACAATTATT  ACAATTATT
- 3' (配列番号 13) 及び PTRtR: 5,  -3 '(SEQ ID NO: 13) and PTRtR: 5,
GTGTATCGG'  GTGTATCGG '
TGACGATACTTAAAGTATCG - 3 ' (配列番号 14)を使用し、 KOD— plus— を使用して、 94°C、 2分間にて铸型 DNAの変性を行った後、アニーリングが 50°C30 秒、伸長反応が 68°C10秒間、 5サイクルで PCR反応を行った。  Using TGACGATACTTAAAGTATCG-3 '(SEQ ID NO: 14), denaturation of the truncated DNA at 94 ° C for 2 minutes using KOD-plus-, followed by annealing at 50 ° C for 30 seconds and extension reaction PCR reaction was performed in 5 cycles at 68 ° C for 10 seconds.
[0101] PCR反応液の一部を铸型とし、さらに PCRを行った。プライマーとしては、 PTRRP 配列番号 15)、及び PTRREco— R : 5' - TGG AG AATTCTTAATGG ATATT ATATGTATCAGTA- 3 ' (配列番号 16)を用い、ポリメラーゼとしては KOD— pi us を使用して、 94°C、 2分間にて铸型 DNAの変性を行った後、アニーリングが 50 °C30秒、伸長反応が 68°C10秒間、 30サイクルで PCR反応を行った。 [0101] A portion of the PCR reaction solution was shaped into a bowl and further PCR was performed. As a primer, PTRRP SEQ ID NO: 15) and PTRREco—R: 5′-TGG AG AATTCTTAATGG ATATT ATATGTATCAGTA-3 ′ (SEQ ID NO: 16) were used, and KOD—pi us was used as a polymerase at 94 ° C., After denaturation of the truncated DNA in 2 minutes, PCR reaction was performed in 30 cycles of annealing at 50 ° C for 30 seconds and extension reaction at 68 ° C for 10 seconds.
[0102] PCR産物を 2· 0%ァガロースゲル電気泳動に供し、 DNA断片を GFX (商標) PC R DNA and Gel Band Purification Kitを用いて精製した。精製した DNA 断片を EcoR I及び Pst Iで 2時間消化した後 2. 0%ァガロースゲル電気泳動に供 し、約 0. 2kbpの DNA断片を GFX (商標) PCR DNA and Gel Band Purific ation Kitを用いて精製した。この際、サイズマーカーは lOObp DNA Ladder ( 東洋紡績)を使用した。 [0102] The PCR product was subjected to 2.0% agarose gel electrophoresis, and the DNA fragment was purified using GFX ™ PCR DNA and Gel Band Purification Kit. The purified DNA fragment was digested with EcoR I and Pst I for 2 hours, then subjected to 2.0% agarose gel electrophoresis, and the approximately 0.2 kbp DNA fragment was obtained using the GFX ™ PCR DNA and Gel Band Purification Kit. Purified. At this time, lOObp DNA Ladder (Toyobo) was used as a size marker.
[0103] 得られた DNA断片と、 pMAK8417— 2を EcoR I及び Pst Iを用いて 37°Cで 2時 間消化した後、 0· 8 %ァガロースゲル電気泳動に供し、 GFX (商標) PCR DNA a nd Gel Band Purification Kitを用いて精製した DNA断片(約 4· 2kbp)とを、 Ligation highを用いてライゲーシヨンした。 [0103] The obtained DNA fragment and pMAK8417-2 were treated with EcoR I and Pst I at 37 ° C for 2 hours. After digestion, it was subjected to 0.8% agarose gel electrophoresis and ligated with a DNA fragment (about 4.2 kbp) purified using GFX ™ PCR DNA and Gel Band Purification Kit using Ligation high. .
[0104] ライゲーシヨン産物を Competent highを用いて E. coli DH5 αを形質転換し た。形質転換大腸菌を 100 g/mLアンピシリンを含む LB寒天培地にプレーティン グし、 30°Cで 60時間放置した。  [0104] The ligation product was transformed into E. coli DH5α using Competent high. The transformed E. coli was plated on LB agar medium containing 100 g / mL ampicillin and left at 30 ° C for 60 hours.
[0105] 形成したコロニーを 100 μ g/mLアンピシリンを含む LB液体培地で 30°C60時間 振盪培養した。培養液を Labo Pass (商標) Mini (北海道システム .サイエンス)を用 いてベクター DNA精製し、 0· 8 %ァガロースゲル電気泳動で確認した(約 4· 4kbp) 。さらに精製したベクター DNAを EcoR I及び Pst Iで 2時間消化し、 2%ァガロース ゲル電気泳動で、約 0. 2kbpの DNA断片が確認され、この DNA断片の遺伝子配 歹 IJを解析した結果、配列番号 1に記載の塩基配列であった。この発現ベクターを pM AK8417 - 17と命名した。  [0105] The formed colonies were cultured with shaking in LB liquid medium containing 100 µg / mL ampicillin at 30 ° C for 60 hours. The culture solution was purified by vector DNA using Labo Pass ™ Mini (Hokkaido System Science) and confirmed by 0.8% agarose gel electrophoresis (about 4.4 kbp). Further, the purified vector DNA was digested with EcoR I and Pst I for 2 hours, and a DNA fragment of about 0.2 kbp was confirmed by 2% agarose gel electrophoresis. As a result of analyzing the gene arrangement IJ of this DNA fragment, The base sequence described in No. 1 was obtained. This expression vector was named pM AK8417-17.
[0106] pMAK8417— 17を铸型とし、 pQE70F l : 5 ' - GGCGTATCACGAGGCCCT TTCGTCTTCACC - 3 ' (配列番号 15)及び pQE70R1 135Bm : 5 '— GGTTGG マーとして、 KOD— plus—を使用して、 94°C、 2分間にて铸型 DNAの変性を行つ た後、アニーリングが 60°C30秒、伸長反応が 68°C3分間、 30サイクルで PCR反応を 行った。  [0106] Using pMAK8417—17 as a saddle, pQE70F l: 5′-GGCGTATCACGAGGCCCT TTCGTCTTCACC-3 ′ (SEQ ID NO: 15) and pQE70R1 135Bm: 5′—GGTTGGmer, using KOD—plus—, 94 ° C. After denaturation of the truncated DNA in 2 minutes, PCR was performed in 30 cycles of annealing at 60 ° C for 30 seconds and extension reaction at 68 ° C for 3 minutes.
[0107] PCR反応液を GFX (商標) PCR DNA and Gel Band Purification Kitを 用いて精製し、精製した PCR産物を EcoR I及び BamH Iで 2時間消化した後 0. 8 %ァガロースゲル電気泳動に供し、 DNA断片を GFX (商標) PCR DNA and Ge 1 Band Purification Kitを用いて精製した。この DNA断片(約 2kbp)と、 pRET 1 132を EcoR I及び BamH Iで 2時間消化した DNA断片を 0. 8 %ァガロースゲル 電気泳動に供し、 GFX (商標) PCR DNA and Gel Band Purification Kit を用いて精製した DNA断片(約 5. 3kbp)を混合し Ligation highを用いてライゲ ーシヨンした後、 Competent highを用いて E. coli JM109を形質転換し 100〃 g/mLカナマイシンを含む LB寒天培地にプレーティングした。得られたコロニーを 1 00 μ g/mLカナマイシンを含む LB液体培地で培養した後 Labo Pass (商標) Mini を用いてベクター DNAを精製し、 0. 8%ァガロースゲル電気泳動で目的とした配列 番号 1に記載の塩基配列及びその下流に位置する mak遺伝子を有するベクターで あることが確認された。その際、サイズマーカーは Loading Quick DNA size M arker λ /EcoR I + Hind III double digest及び pRETl 132を使用した。 ここで得られたベクターを pRETl 137 (約 7. 3kbp)と命名した。 [0107] The PCR reaction solution was purified using GFX ™ PCR DNA and Gel Band Purification Kit, the purified PCR product was digested with EcoRI and BamHI for 2 hours, and then subjected to 0.8% agarose gel electrophoresis. The DNA fragment was purified using GFX ™ PCR DNA and Ge 1 Band Purification Kit. This DNA fragment (about 2 kbp) and a DNA fragment obtained by digesting pRET 1 132 with EcoR I and BamH I for 2 hours were subjected to 0.8% agarose gel electrophoresis, and using GFX ™ PCR DNA and Gel Band Purification Kit. The purified DNA fragment (approximately 5.3 kbp) is mixed and ligated using Ligation high, then E. coli JM109 is transformed using Competent high and plated on LB agar medium containing 100 〃g / mL kanamycin. did. 1 colony obtained After culturing in an LB liquid medium containing 00 μg / mL kanamycin, the vector DNA was purified using Labo Pass (trademark) Mini, and the nucleotide sequence described in SEQ ID NO: 1 was obtained by 0.8% agarose gel electrophoresis. The vector was confirmed to have a mak gene located downstream of it. At that time, as the size markers, Loading Quick DNA size Marker λ / EcoRI + HindIII double digest and pRETl 132 were used. The vector obtained here was named pRETl137 (about 7.3 kbp).
[0108] (実施例 5) アミノケトン不斉還元酵素遺伝子が揷入された発現ベクターの構築 3 (Example 5) Construction of an expression vector inserted with an aminoketone asymmetric reductase gene 3
合成オリゴヌクレオチドである PTRtF : 5, - CAATAAGTCACTCACGCTTCA Synthetic oligonucleotide PTRtF: 5,-CAATAAGTCACTCACGCTTCA
ACAATTATT  ACAATTATT
- 3' (配列番号 13) 及び PTRtR: 5,  -3 '(SEQ ID NO: 13) and PTRtR: 5,
GTGTATCGG'  GTGTATCGG '
TGACGATACTTAAAGTATCG - 3 ' (配列番号 14)を使用し、 KOD— plus— を使用して、 94°C、 2分間にて铸型 DNAの変性を行った後、アニーリングが 50°C30 秒、伸長反応が 68°C10秒間で、 5サイクルで PCR反応を行った。  Using TGACGATACTTAAAGTATCG-3 '(SEQ ID NO: 14), denaturation of the truncated DNA at 94 ° C for 2 minutes using KOD-plus-, followed by annealing at 50 ° C for 30 seconds and extension reaction PCR reaction was performed in 5 cycles at 68 ° C for 10 seconds.
[0109] PCR反応液の一部を铸型とし、 PTRLEco— F (センス):5,一 AGACGAATTCA ATAAGTCGCTC ACGCTTC ATTTTT - 3 ' (配列番号 17)、及び PTRLPst— [0109] A portion of the PCR reaction solution is made into a bowl, PTRLEco— F (sense): 5, 1 AGACGAATTCA ATAAGTCGCTC ACGCTTC ATTTTT-3 ′ (SEQ ID NO: 17), and PTRLPst—
GTA- 3' (配列番号 18)をプライマーとして、 KOD— plus を使用して、ァユーリン グが 50°C30秒、伸長反応が 68°C10秒間で、 30サイクルで PCR反応を行った。 Using GOD-3 '(SEQ ID NO: 18) as a primer, KOD-plus was used, and PCR was performed in 30 cycles at 50 ° C for 30 seconds and elongation at 68 ° C for 10 seconds.
[0110] PCR産物を 2· 0%ァガロースゲル電気泳動に供し、 DNA断片を GFX (商標) PC R DNA and Gel Band Purification Kitを用いて精製した。精製した PCR 産物を EcoR I及び Pst Iで 2時間消化した後 2. 0%ァガロースゲル電気泳動に供 し、約 0. 2kbpの DNA断片を GFX (商標) PCR DNA and Gel Band Purific ation Kitを用いて精製した。この際、サイズマーカーは lOObp DNA Ladderを 使用した。 [0110] The PCR product was subjected to 2.0% agarose gel electrophoresis, and the DNA fragment was purified using GFX (trademark) PCR DNA and Gel Band Purification Kit. The purified PCR product was digested with EcoR I and Pst I for 2 hours, and then subjected to 2.0% agarose gel electrophoresis, and an approximately 0.2 kbp DNA fragment was obtained using GFX ™ PCR DNA and Gel Band Purification Kit. Purified. At this time, lOObp DNA Ladder was used as a size marker.
[0111] 得られた DNA断片と、 pMAK8417— 2を EcoR I及び Pst Iを用いて 37°Cで 2時 間消化した後、 0· 8%ァガロースゲル電気泳動に供し、 GFX (商標) PCR DNA a nd Gel Band Purification Kitを用いて精製した DNA断片(約 0· 2kbp)とを、 Ligation highを用いてライゲーシヨンした。 [0111] Obtained DNA fragment and pMAK8417-2 using EcoR I and Pst I at 37 ° C for 2 hours After digestion, it was subjected to 0 · 8% agarose gel electrophoresis and ligated with a DNA fragment (about 0 · 2kbp) purified using GFX ™ PCR DNA and Gel Band Purification Kit using Ligation high. .
[0112] ライゲーシヨン産物を Competent highを用いて E. coli DH5 αを形質転換し た。形質転換大腸菌を 100 g/mLアンピシリンを含む LB寒天培地にプレーティン グし、 30°Cで 60時間放置した。形成したコロニーを 100 g/mLアンピシリンを含む LB液体培地で 30°C60時間振盪培養した。  [0112] The ligation product was transformed into E. coli DH5α using Competent high. The transformed E. coli was plated on LB agar medium containing 100 g / mL ampicillin and left at 30 ° C for 60 hours. The formed colonies were cultured with shaking in LB liquid medium containing 100 g / mL ampicillin at 30 ° C for 60 hours.
[0113] 培養液を Labo Pass (商標) Miniを用いて DNA精製し、 0· 8%ァガロースゲル電 気泳動で確認した。さらに精製したベクター DNAを EcoR I及び Pst Iで 37°C2時 間消化し、 2%ァガロースゲル電気泳動で、約 0. 2kbpの DNA断片を確認され、こ の DNA断片の遺伝子配列を解析したところ、配列番号 2に記載の塩基配列を含む ことが確認された。この発現ベクターを pMAK8417— 18と命名した。  [0113] The culture solution was DNA purified using Labo Pass (trademark) Mini, and confirmed by 0.8% agarose gel electrophoresis. Further, the purified vector DNA was digested with EcoR I and Pst I at 37 ° C for 2 hours, and a DNA fragment of about 0.2 kbp was confirmed by 2% agarose gel electrophoresis, and the gene sequence of this DNA fragment was analyzed. It was confirmed to contain the base sequence described in SEQ ID NO: 2. This expression vector was named pMAK8417-18.
[0114] pMAK8417— 18を EcoR Iで 37°C2時間消化及び精製した後 Hind IIIで 37°C 2時間消化した DNA断片を 1 · 0%ァガロースゲル電気泳動に供し、約 1. Okbpの D NA断片を GFX (商標) PCR DNA and Gel Band Purification Kitを用い て精製した。その際、サイズマーカーは Loading Quick DNA size Marker λ /EcoR I + Hind III double digestを使用した。  [0114] After digesting and purifying pMAK8417-18 with EcoR I at 37 ° C for 2 hours and then digesting with Hind III at 37 ° C for 2 hours, the DNA fragment was subjected to 1 · 0% agarose gel electrophoresis and approximately 1. Okbp DNA fragment Was purified using the GFX ™ PCR DNA and Gel Band Purification Kit. At that time, as a size marker, Loading Quick DNA size Marker λ / EcoRI + HindIII double digest was used.
[0115] 精製した DNA断片を Blunting highで平滑末端にし、この DNA断片と、 pRETl 102を Hinc IIで 37°C2時間消化した後 GFX (商標) PCR DNA and Gel Ban d Purification Kitを用いて精製した DNA断片(約 8· lkbp)とを混合し Ligation highを用いてライゲーシヨンした。  [0115] The purified DNA fragment was blunt-ended at Blunting high, and this DNA fragment and pRETl 102 were digested with Hinc II at 37 ° C for 2 hours, and then purified using the GFX ™ PCR DNA and Gel Band Purification Kit The DNA fragment (about 8 · lkbp) was mixed and ligated using Ligation high.
[0116] ライゲーシヨン産物を Competent highを用いて E. coli JM109を形質転換し 、得られた形質転換大腸菌を 100 g/mLカナマイシンを含む LB寒天培地にプレ 一ティングした。得られたコロニーを 100 g/mLカナマイシンを含む LB液体培地 で培養した後、 Labo Pass (商標) Miniを用いてベクター DNAを精製した。このべ クタ一 DNAを 0. 8%ァガロースゲル電気泳動で確認したところ、 目的とした配列番 号 2に記載の塩基配列及びその下流に位置する mak遺伝子を有する発現ベクター であることが確認された。その際、サイズマーカーは Loading Quick DNA size Marker λ /EcoR I + Hind III double digest、及び pRETl 102を使用し た。このベクターを pRET1122 (約 9. lkbp)と命名した。 [0116] The ligation product was transformed into E. coli JM109 using Competent high, and the resulting transformed E. coli was plated on an LB agar medium containing 100 g / mL kanamycin. The obtained colonies were cultured in an LB liquid medium containing 100 g / mL kanamycin, and then vector DNA was purified using Labo Pass (trademark) Mini. When this vector DNA was confirmed by 0.8% agarose gel electrophoresis, it was confirmed that it was an expression vector having the target nucleotide sequence of SEQ ID NO: 2 and the mak gene located downstream thereof. At that time, the size marker is Loading Quick DNA size Marker λ / EcoR I + Hind III double digest and pRETl 102 were used. This vector was named pRET1122 (approximately 9. lkbp).
[0117] (実施例 6) E. coliにおける所定プロモータの活性測定 [0117] (Example 6) Measurement of activity of a predetermined promoter in E. coli
プロモータの活性測定はアミノケトン不斉還元酵素の活性測定によって行われた。 上記で得られた pRETl 137及び pRETl 138を Competent highを用いて Ε· co liJM109を形質転換し、得られた形質転換大腸菌を 100 H g/mLカナマイシンを含 む LB寒天培地にプレーティングした。 30°Cで 24時間放置後、得られたコロニーを 1 00 11 g/mLカナマイシンを含む 5mLの LB液体培地に植菌し 30°Cで 24時間培養 した。培養液を 100 g/mLカナマイシンを含む lOOmLの LB液体培地に植え継ぎ 、 30°Cで 24時間培養した。得られた培養液を 4°Cで 12, 000rpm、 5分間遠心分離 し、上清を取り除いて、得られた菌体を還元酵素活性の測定に使用した。  The activity of the promoter was measured by measuring the activity of the aminoketone asymmetric reductase. The pRETl 137 and pRETl 138 obtained above were transformed into B. coli JM109 using Competent high, and the resulting transformed Escherichia coli was plated on an LB agar medium containing 100 Hg / mL kanamycin. After standing at 30 ° C for 24 hours, the obtained colonies were inoculated into 5 mL of LB liquid medium containing 100 11 g / mL kanamycin and cultured at 30 ° C for 24 hours. The culture solution was transferred to a lOOmL LB liquid medium containing 100 g / mL kanamycin and cultured at 30 ° C for 24 hours. The obtained culture solution was centrifuged at 12,000 rpm for 5 minutes at 4 ° C., the supernatant was removed, and the obtained bacterial cells were used for the measurement of reductase activity.
[0118] 活性測定は、 O. D. = 5の菌量で、 2%グルコース及び 0. 2Mリン酸ナトリウム緩衝 液(ρΗ6· 0)を含む 3%ΕΑΜ (2 - Ethylamino - 1 - phenyl - propan - 1 - one) を含む反応液で行った。なお、 EAMの合成は、 rj. Am. Chem. Soc. 、 (1928) 5 0、 P2287— 2292」の文献に記載されている方法で行った。反応液を 30°Cで 16時 間振盪し反応させた後、菌体反応液を 12, OOOrpmで 5分間遠心分離し、上清を H PLC (高速液体クロマトグラフィー LC— 2010C ;島津製作所)に供した。分析カラム は Inertsil Ph— 3 3· 0 X 75mm (ジーェノレ サイエンス)、カラム温度は 40。C、溶 離液は 0. 05Mリン酸ナトリウム緩衝液(pH6. 0)を含む 7%ァセトニトリル溶液、検出 波長は 22 Onmで fiつた。  [0118] The activity was determined by measuring the amount of bacteria with OD = 5 and containing 3% ΕΑΜ (2-Ethylamino-1-phenyl-propan-1-containing 2% glucose and 0.2M sodium phosphate buffer (ρΗ6 · 0). one). The synthesis of EAM was performed by the method described in the literature of rj. Am. Chem. Soc., (1928) 50, P2287-2292. After the reaction solution was shaken at 30 ° C for 16 hours, the bacterial cell reaction solution was centrifuged at 12, OOOrpm for 5 minutes, and the supernatant was transferred to HPLC (High Performance Liquid Chromatography LC—2010C; Shimadzu Corporation). Provided. The analytical column is Inertsil Ph—3 3 · 0 X 75mm (Genore Science), and the column temperature is 40. C, the eluent was a 7% acetonitrile solution containing 0.05M sodium phosphate buffer (pH 6.0), and the detection wavelength was 22 Onm.
[0119] 還元酵素活性を測定した結果、 pRETl 137を保持する E. coli JM109は 60 g/h/O. D.の活性を示し、 pRET1138を保持する E. coli JM109は活性が検 出できなかった。 pRET1138は、ロドコッカス属放線菌由来のプロモータ領域を含ん でレ、る力 大腸菌にお!/、て機能しな!/、ことが判明した。  [0119] As a result of measuring the reductase activity, E. coli JM109 carrying pRETl137 showed an activity of 60 g / h / OD, and E. coli JM109 carrying pRET1138 could not be detected. It was found that pRET1138 contains a promoter region derived from Rhodococcus actinomycetes and does not function in E. coli.
[0120] (実施例 7) ロドコッカス 'ェリスポリスにおける所定プロモータの活性測定  [0120] (Example 7) Measurement of activity of a predetermined promoter in Rhodococcus ellispolis
5mLの GPY培地に R. erythropolis MAK— 34株を植菌し、 30°Cで 36時間 振盪培養した。その培養液 lmLを lOOmLの LB培地に植え継ぎ、 30°Cで 10時間、 200rpmで培養した。培養した菌体を遠心分離(12krpm、 5分間、 4°C)により集菌し 、集菌した菌体を超純水 (milliQ ;日本ミリポア)で 2回洗浄した。洗浄し終えた菌体を 遠心分離(12krpm、 5分間、 4°C)により集菌し、 2. 4mLの 10%グリセロール溶液に 懸濁した。懸濁液を 300 Lずつ分注し、—80°Cで凍結してコンビテントセルとした。 R. erythropolis MAK-34 strain was inoculated into 5 mL of GPY medium and cultured with shaking at 30 ° C for 36 hours. The culture solution (lmL) was transferred to lOOmL LB medium and cultured at 30 ° C for 10 hours at 200 rpm. The cultured cells are collected by centrifugation (12 krpm, 5 minutes, 4 ° C). The collected cells were washed twice with ultrapure water (milliQ; Nihon Millipore). The washed cells were collected by centrifugation (12 krpm, 5 minutes, 4 ° C) and suspended in 2.4 mL of 10% glycerol solution. The suspension was dispensed in 300 L aliquots and frozen at −80 ° C. to obtain a competent cell.
[0121] 作製したコンビテントセル 90 Lと Labo Pass (商標) Miniで調整した pRETl 102 、 pRET1122、 pRET1137又は pRET1138のプラスミド DNA5〃Lを氷上で混合 した。混合溶液を氷上で冷却した 0. lcm cuvette (日本バイオ'ラッド ラボラトリー ズ)に静力、に流し込み、 Gene Pulser II Electroporation System (日本ノィォ 'ラッド ラボラトリーズ) ίこセットした。 20kV/cm、 400 Ω、 25〃 Fでノ ノレスし、直ち に 300 Lの LB培地を加え、 25°Cで 3時間放置した。その懸濁液の一部を 100 g /mLカナマイシンを含む LB寒天培地にプレーティングし、 30°Cで 72時間放置した[0121] 90 L of the prepared competent cell and 5 L of plasmid DNA of pRETl102, pRET1122, pRET1137 or pRET1138 prepared with Labo Pass (trademark) Mini were mixed on ice. The mixed solution was poured into a 0.1 lcm cuvette (Nippon Bio Rad Laboratories) cooled on ice, and set in a Gene Pulser II Electroporation System (Nippon Bio Rad Laboratories). It was knocked at 20 kV / cm, 400 Ω, 25 ° F., 300 L of LB medium was immediately added, and the mixture was allowed to stand at 25 ° C. for 3 hours. A part of the suspension was plated on LB agar medium containing 100 g / mL kanamycin and left at 30 ° C for 72 hours.
Yes
[0122] 形成されたコロニーを 5mLの LB液体培地に植菌し、 30°Cで 72時間培養した。培 養液を 4°Cで 12, 000rpm、 5分間遠心分離し、上清を取り除いて、得られた菌体を 還元酵素活性の測定に使用した。  [0122] The formed colonies were inoculated into 5 mL of LB liquid medium and cultured at 30 ° C for 72 hours. The culture solution was centrifuged at 12,000 rpm for 5 minutes at 4 ° C, the supernatant was removed, and the resulting cells were used for the measurement of reductase activity.
[0123] 活性測定は、 O. D. = 5の菌量で、 2%グルコース及び 0. 2Mリン酸ナトリウム緩衝 液 (pH6. 0)を含む 3%EAMの反応液で行った。反応液を 30°Cで 16時間振盪反応 した後、菌体反応液を 12, OOOrpmで 5分間遠心分離し、上清を HPLCに供した。 分析カラムは Inertsil Ph— 3 3. 0 X 75mm、カラム温度は 40°C、溶離液は 0. 05 Mリン酸ナトリウム緩衝液(pH6. 0)を含む 7%ァセトニトリル溶液、検出波長は 220η mで Ττつた。  [0123] The activity was measured in a 3% EAM reaction solution containing 2% glucose and 0.2 M sodium phosphate buffer (pH 6.0) at a bacterial mass of O. D. = 5. After the reaction solution was shaken at 30 ° C for 16 hours, the bacterial cell reaction solution was centrifuged at 12, OOOrpm for 5 minutes, and the supernatant was subjected to HPLC. The analytical column is Inertsil Ph— 3 3.0 X 75 mm, the column temperature is 40 ° C, the eluent is a 7% acetonitrile solution containing 0.05 M sodium phosphate buffer (pH 6.0), and the detection wavelength is 220 ηm. Ττ.
[0124] ΕΑΜ反応を測定した結果、 pRET1102を保持する R. erythropolis MAK— 3 4は 0. 2 ;^/1ι/θ. D. 、 pRET1122を保持する R. erythropolis MAK— 34 は lO g/h/O. D.の活性を示し、 pRET1137を保持する R. erythropolis M AK- 34¾20 a g/ /O. D.の活性を示し、 pRETl 138を保持する R. erythro polis MAK— 34は 20 g/h/O. D.の活性を示した。 pRETl 122及び pRETl 137は、乳酸菌由来のプロモータを含んでいるが、 R. erythropolisにおいてァミノ ケトン不斉還元酵素を高発現させることが確認された。また、そのプロモータの活性 は、ロドコッカス属放線菌由来のプロモータを含む pRETl 138と同等のものであった [0125] (実施例 8) ロドコッカス'エリスポリス以外の放線菌における所定プロモータの活性 測定 [0124] As a result of measuring ΕΑΜ reaction, R. erythropolis MAK— 3 4 holding pRET1102 is 0.2; ^ / 1ι / θ. D. R. erythropolis M AK- 34¾20 ag / / OD active with pRET1137 and R. erythro polis MAK- 34 with pRETl 138 active with 20 g / h / OD It was. Although pRETl 122 and pRETl 137 contain a promoter derived from lactic acid bacteria, it has been confirmed that R. erythropolis highly expresses an aminoketone asymmetric reductase. In addition, the activity of the promoter was equivalent to that of pRETl 138 containing a promoter derived from Rhodococcus actinomycetes. (Example 8) Measurement of activity of a predetermined promoter in actinomycetes other than Rhodococcus erythpolis
5mLの LBi夜体培地に Amycolatopsis methanolica NBRC 15065、 Dietzi a maris NBRC 15801、 Rhodococcus globerulus NBRC 14531、 Rhod ococcus rhodochrous NBRC 15564、 Rhodococcus ruber NBRC 1559 1、 Mycobacterium diernhoferi NBRC3707 (上記 6株は、 NBRC (独立行政 法人 製品評価技術基盤機構 バイオテクノロジー本部 生物遺伝資源部門、〒29 2 - 0818 千葉県木更津巿かずさ鎌足 2— 5— 8)より分譲)、 Rhodococcus kore ensis JCM 10743、 Rhodococcus kroppenstedtii JCM 130丄 1、 Rhodoco ecus yunnanensis JCM 13366、 Rhodococcus corynebacterioides JCM Amycolatopsis methanolica NBRC 15065, Dietzi a maris NBRC 15801, Rhodococcus globerulus NBRC 14531, Rhodococcus rhodochrous NBRC 15564, Rhodococcus ruber NBRC 1559 1, Mycobacterium diernhoferi NBRC3707 (the above 6 Biotechnology Headquarters, Biotechnology Headquarters, National Institute for Evaluation Technology, Sold from Chiba Prefecture Kisarazu Kazusa Kamasa 2-5-8), Rhodococcus kore ensis JCM 10743, Rhodococcus kroppenstedtii JCM 130 丄 1, Rhodoco ecus yunnanensis JCM 13366, Rhodococcus corynebacterioides JCM
3376、 Rhodococcus zopfii JCM 9919、 Rhodococcus tukisamuensis J CM 11308、 Rhodococcus percolatus JCM 10087、 Rhodococcus imte chensis JCM 13270、 Gordonia bronchialis JCM 3231、 Rhodococcus maanshanensis JCM 11374、 Gordonia rubripertincta JCM 3199、 Rho dococcus triatomae JCM 13396、 Rhodococcus rhodnii JCM 3203、及 び Rhodococcus opacus JCM 9703 (上記 14株は、 JCM (独立行政法人 理化 学研究所 バイオリソースセンター 微生物材料開発室 〒 351— 0198 埼玉県和 光市広沢 2— 1 )より分譲)を植菌し 25°Cで振盪培養した。島津紫外可視分光光度計 UV— 160A (株式会社島津製作所)を使用して、培養液を波長 610nmで測定し、 吸光度が 0. 8に達するまで振盪培養した。その培養液 3mLを lOOmLの LB培地に 植え継ぎ、 25°Cで 12時間振盪培養した。培養した菌体を遠心分離(12krpm、 5分 間、 4°C)により集菌し、集菌した菌体を超純水で 2回洗浄した。洗浄し終えた菌体を 遠心分離(12krpm、 5分間、 4°C)により集菌し、 2. 4mLの 10%グリセロール溶液に 懸濁した。懸濁液を 300 Lずつ分注し、—80°Cで凍結してコンビテントセルとした。 3376, Rhodococcus zopfii JCM 9919, Rhodococcus tukisamuensis J CM 11308, Rhodococcus percolatus JCM 10087, Rhodococcus imte chensis JCM 13270, Gordonia bronchialis JCM 3231, Rhodococcus maanshanensis JCM 11374, Gordonia rubripertincta Joc 3396 And Rhodococcus opacus JCM 9703 (the above 14 strains were inoculated from JCM (independent administrative agency, BioResource Center, Microbial Materials Development Office, 2-1 hirosawa, Wako-shi, Saitama 351-0101)) at 25 ° C. Shake culture. Using a Shimadzu UV-Visible spectrophotometer UV-160A (Shimadzu Corporation), the culture solution was measured at a wavelength of 610 nm and cultured with shaking until the absorbance reached 0.8. 3 mL of the culture solution was inoculated into lOOmL of LB medium and cultured with shaking at 25 ° C for 12 hours. The cultured cells were collected by centrifugation (12 krpm, 5 minutes, 4 ° C), and the collected cells were washed twice with ultrapure water. The washed cells were collected by centrifugation (12 krpm, 5 minutes, 4 ° C) and suspended in 2.4 mL of 10% glycerol solution. 300 L aliquots of the suspension were dispensed and frozen at −80 ° C. to obtain a competent cell.
[0126] 作製した各々のコンビテントセル 90 a Lと Labo Pass (商標) Miniで調整した pRE T1102または pRET1137のプラスミド DNA5 Lを氷上で混合した。混合溶液を氷 上で冷却した 0· 1cmのキュベットに静かに流し込み、 Gene Pulser II Electrop oration System^こセットした。 20kV/cm、 400 Ω、 25 μ Fでノ ノレスし、直ち ίこ 30 0〃しの LB培地をカロえ、 25°Cで 3時間放置した。その懸濁液の一部を 100 g/mL のカナマイシンを含む LB寒天培地にプレーティングし、 25°Cで 7日間放置した。形 成されたコロニーを 5mLの LB液体培地に植菌し、 25°Cで 7日間振盪培養した。培 養液を 4°Cで 12krpm、 5分間遠心分離し、上清を取り除いて、得られた菌体を還元 酵素活性の測定に使用した。 [0126] Each of the produced competent cells 90 a L and plasmid DNA 5 L of pRE T1102 or pRET1137 prepared with Labo Pass ™ Mini were mixed on ice. Gently pour the mixture into a 0.1 cm cuvette chilled on ice, Gene Pulser II Electrop oration System ^ This set. Remove the LB medium at 20 kV / cm, 400 Ω, and 25 μF, and immediately remove the LB medium and leave it at 25 ° C for 3 hours. A part of the suspension was plated on LB agar medium containing 100 g / mL kanamycin and left at 25 ° C for 7 days. The formed colonies were inoculated into 5 mL of LB liquid medium and cultured with shaking at 25 ° C for 7 days. The culture solution was centrifuged at 4 ° C and 12 krpm for 5 minutes, the supernatant was removed, and the obtained cells were used for the measurement of reductase activity.
[0127] 活性測定は、 O. D. = 5の菌量で、 2%グルコース及び 0. 2Mリン酸ナトリウム緩衝 液 (pH6. 0)を含む 3%EAMの反応液で行った。反応液を 30°Cで 16時間振盪反応 した後、菌体反応液を 12krpmで 5分間遠心分離し、上清を HPLCに供した。分析力 ラムは Inertsil Ph— 3 3· 0 X 75mm、カラム温度は 40°C、溶離液は 0· 05Mリン 酸ナトリウム緩衝液(ρΗ6. 0)を含む 7%ァセトニトリル溶液、検出波長は 220nmで 行った。 [0127] The activity was measured in a 3% EAM reaction solution containing 2% glucose and 0.2 M sodium phosphate buffer (pH 6.0) at a bacterial mass of O. D. = 5. After the reaction solution was shaken at 30 ° C for 16 hours, the bacterial cell reaction solution was centrifuged at 12 krpm for 5 minutes, and the supernatant was subjected to HPLC. Analytical power Ram is Inertsil Ph—33 x 75 mm, column temperature is 40 ° C, eluent is 7% acetonitrile solution containing 0.05M sodium phosphate buffer (ρΗ6.0), detection wavelength is 220nm It was.
[0128] 活性測定した結果を表 1にまとめた。表 1に示したすべての放線菌について、 pRE Tl 102を保持する放線菌と比較すると pRETl 137を保持する放線菌には高!/、活性 がみられた。  [0128] The results of activity measurement are summarized in Table 1. For all actinomycetes shown in Table 1, the actinomycetes carrying pRETl137 showed higher activity than the actinomycetes carrying pRET102.
[0129] [表 1] [0129] [Table 1]
PRET1102活性 PRET1137活性 放線菌 PRET1102 activity PRET1137 activity Actinomycetes
(/ig/ml -hr/0D) (/ig/ml -hr/0D) (/ ig / ml -hr / 0D) (/ ig / ml -hr / 0D)
Mycobacterium diernhoferi NBRC 3707 0.1 6 Mycobacterium diernhoferi NBRC 3707 0.1 6
Gordon i a bronchial is JCM 3231 0.2 22  Gordon i a bronchial is JCM 3231 0.2 22
Rhodococcus globerulus NBRC 14531 0.1 12  Rhodococcus globerulus NBRC 14531 0.1 12
Rhodococcus kroppenstedti i JCM 13011 0.2 14  Rhodococcus kroppenstedti i JCM 13011 0.2 14
Rhodococcus maanshanens i s JCM 11374 0.1 4  Rhodococcus maanshanens i s JCM 11374 0.1 4
Rhodococcus rhodochrous NBRC 15564 0.3 73  Rhodococcus rhodochrous NBRC 15564 0.3 73
Gordon i a rubr ipertincta JCM 3199 0.1 12  Gordon i a rubr ipertincta JCM 3199 0.1 12
Rhodococcus tr iatomae JCM 13396 0.1 4  Rhodococcus tr iatomae JCM 13396 0.1 4
Dietzia maris NBRC 15801 0.6 65  Dietzia maris NBRC 15801 0.6 65
Rhodococcus imtechensis JCM 13270 0.7 69  Rhodococcus imtechensis JCM 13270 0.7 69
Rhodococcus yunnanensis JCM 13366 1.2 66  Rhodococcus yunnanensis JCM 13366 1.2 66
Rhodococcus corynebacter ioides JCM 3376 0.4 52  Rhodococcus corynebacter ioides JCM 3376 0.4 52
Rhodococcus koreensis JCM 10743 0.8 72  Rhodococcus koreensis JCM 10743 0.8 72
Amyco I atops i s methanol ica NBRC 15065 0.2 44  Amyco I atops i s methanol ica NBRC 15065 0.2 44
Rhodococcus zopf i i JCM 9919 0.3 40  Rhodococcus zopf i i JCM 9919 0.3 40
Rhodococcus tuki samuens i s JCM 11308 0.2 70  Rhodococcus tuki samuens i s JCM 11308 0.2 70
Rhodococcus ruber NBRC 15591 0.2 55  Rhodococcus ruber NBRC 15591 0.2 55
Rhodococcus percolatus JCM 10087 0.6 51  Rhodococcus percolatus JCM 10087 0.6 51
Rhodococcus rhodni i JCM 3203 0.7 52  Rhodococcus rhodni i JCM 3203 0.7 52
Rhodococcus opacus JCM 9703 0.3 49 産業上の利用可能性  Rhodococcus opacus JCM 9703 0.3 49 Industrial applicability
本発明のプロモータ、発現ベクター又は形質転換体によれば、放線菌において目 的遺伝子や目的タンパク質の高発現が実現でき、 目的に応じて様々な有用なタンパ ク質を効率よく大量生産することができる。このようなタンパク質はまた様々な工業生 産に貢献する。例えば酵素においては、酸化還元酵素、転移酵素、加水分解酵素、 リアーゼ、イソメラーゼ、リガーゼなどを効率よく大量に生産することができる。 目的タ ンパク質がアミノケトン不斉還元酵素である場合、光学活性 /3—ァミノアルコールの 高収率かつ高選択的な製造を可能とする。また、本発明の目的タンパク質の製造方 法によれば、放線菌において目的タンパク質を効率よく大量生産することができる。 According to the promoter, expression vector or transformant of the present invention, high expression of a target gene or target protein can be realized in actinomycetes, and various useful proteins can be efficiently mass-produced depending on the purpose. it can. Such proteins also contribute to various industrial production. For example, in an enzyme, oxidoreductase, transferase, hydrolase, lyase, isomerase, ligase and the like can be efficiently produced in large quantities. When the target protein is an aminoketone asymmetric reductase, it enables high-yield and highly selective production of optically active / 3-amino alcohol. Also, the method for producing the target protein of the present invention According to the method, the target protein can be efficiently mass-produced in actinomycetes.

Claims

請求の範囲 The scope of the claims
[1] 配列番号 1に記載の塩基配列を有する、放線菌用プロモータ。  [1] A promoter for actinomycetes having the base sequence set forth in SEQ ID NO: 1.
[2] 配列番号 2に記載の塩基配列を有する、放線菌用プロモータ。 [2] A promoter for actinomycetes having the base sequence set forth in SEQ ID NO: 2.
[3] 配列番号 3に記載の塩基配列を有する、放線菌用プロモータ。 [3] A promoter for actinomycetes having the base sequence set forth in SEQ ID NO: 3.
[4] 配列番号 4に記載の塩基配列を有する、放線菌用プロモータ。 [4] A promoter for actinomycetes having the base sequence set forth in SEQ ID NO: 4.
[5] 前記放線菌は、ロドコッカス属放線菌、マイコバクテリゥム属放線菌、ゴルドニァ属 放線菌、ディエツァ属放線菌及びアミコラトプシス属放線菌から選択される 1種以上 の放線菌である、請求項;!〜 4のいずれか 1項に記載のプロモータ。 [5] The actinomycetes are one or more actinomycetes selected from Rhodococcus actinomycetes, Mycobacteria actinomycetes, Gordonia actinomycetes, Dieza actinomycetes, and Amycolatopsis actinomycetes, The promoter according to claim 1.
[6] 請求項;!〜 5のいずれか 1項記載のプロモータを有する放線菌用発現ベクター。 [6] Claims; An expression vector for actinomycetes, comprising the promoter according to any one of! To 5.
[7] 請求項 6記載の発現ベクターで形質転換された放線菌。 [7] Actinomycetes transformed with the expression vector according to claim 6.
[8] 請求項 7記載の形質転換体を用いた目的タンパク質の製造方法。 [8] A method for producing a target protein using the transformant according to claim 7.
[9] 目的タンパク質をコードする遺伝子を、請求項;!〜 5のいずれか 1項記載のプロモ ータを有する発現ベクターに、該プロモータの下流に発現可能なように揷入し、 目的 タンパク質を発現できる発現ベクターを得るステップと、 [9] A gene encoding the target protein is inserted into an expression vector having the promoter according to any one of claims;! To 5 so that the target protein can be expressed downstream of the promoter, and the target protein is inserted. Obtaining an expression vector capable of expression;
得られた発現ベクターによって放線菌を形質転換し、形質転換体を得るステップと 得られた形質転換体を増殖可能な培地中で培養するステップと、  Transforming actinomycetes with the obtained expression vector, obtaining a transformant, culturing the obtained transformant in a medium capable of growth, and
前記培養するステップで得られた形質転換体から目的タンパク質を精製するステツ プと  A step of purifying the target protein from the transformant obtained in the culturing step;
を含む目的タンパク質の製造方法。  A method for producing a target protein comprising:
PCT/JP2007/073586 2006-12-12 2007-12-06 Promoter and expression vector for actinomycetes WO2008072547A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008549273A JP5155880B2 (en) 2006-12-12 2007-12-06 Actinomycetes promoter and expression vector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-334865 2006-12-12
JP2006334865 2006-12-12

Publications (1)

Publication Number Publication Date
WO2008072547A1 true WO2008072547A1 (en) 2008-06-19

Family

ID=39511567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/073586 WO2008072547A1 (en) 2006-12-12 2007-12-06 Promoter and expression vector for actinomycetes

Country Status (2)

Country Link
JP (1) JP5155880B2 (en)
WO (1) WO2008072547A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005042739A1 (en) * 2003-10-31 2005-05-12 Daiichi Fine Chemical Co., Ltd. Novel plasmids and utilization thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005042739A1 (en) * 2003-10-31 2005-05-12 Daiichi Fine Chemical Co., Ltd. Novel plasmids and utilization thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KAKIKAWA M. ET AL.: "Promoter/repressor system of Lactobacillus plantarum phage phi-gle: characterization of the promoters pR49-pR-pL and overproduction of the Cro-like protein Cng in Escherichia coli", GENE, vol. 215, 1998, pages 371 - 379 *
LI M.Z. ET AL.: "Genetic analysis of the dsz promoter and associated regulatory regions of Rhodococcus erythropolis IGTS8", JOURNAL OF BACTERIOLOGY, vol. 178, no. 22, 1996, pages 6409 - 6418, XP002083417 *

Also Published As

Publication number Publication date
JPWO2008072547A1 (en) 2010-03-25
JP5155880B2 (en) 2013-03-06

Similar Documents

Publication Publication Date Title
Gabor et al. Construction, characterization, and use of small‐insert gene banks of DNA isolated from soil and enrichment cultures for the recovery of novel amidases
JP5551349B2 (en) Recombinant microorganism and method for producing poly-gamma-glutamic acid
Suzuki et al. High-throughput transposon mutagenesis of Corynebacterium glutamicum and construction of a single-gene disruptant mutant library
CN105683378B (en) Recombinant microorganisms for improved production of fine chemicals
CN107690478B (en) Recombinant microorganisms for improved alanine production
CN107750273B (en) Recombinant microorganisms for improved production of fine chemicals
JP4108766B2 (en) Improved transaminase biological transformation method
TWI327596B (en)
EP4090738A1 (en) Compositions and methods for enhanced protein production in bacillus licheniformis
US8524483B2 (en) Gene involved in quorum-sensing system of acetic acid bacterium, acetic acid bacterium bred by modification of the gene and method for production of vinegar by using the acetic acid bacterium
US20200048619A1 (en) Nucleic Acid Molecules Comprising a Variant RpoC Coding Sequence
KR19990077942A (en) Protein participating in activation of nitrile hydratase and gene encoding the same
JP2011200133A (en) Method for producing genetically modified microorganism
WO2008072547A1 (en) Promoter and expression vector for actinomycetes
Lahme et al. Benzoate mediates the simultaneous repression of anaerobic 4-methylbenzoate and succinate utilization in Magnetospirillum sp. strain pMbN1
US8329472B2 (en) Gene associated with foam formation in acetic acid bacterium, acetic acid bacterium modified to reduce foam formation, and a method for producing vinegar by culturing an acetic acid bacterium modified to reduce foam formation
US11549116B2 (en) Nucleic acid molecules comprising a variant inc coding strand
JP4586149B2 (en) Promoter and activation method thereof
Nehmé et al. The arginine deiminase locus of Oenococcus oeni includes a putative arginyl-tRNA synthetase ArgS2 at its 3′-end
KR101544270B1 (en) Method of GABA production using cell surface display system
JP4563789B2 (en) D-aminoacylase gene
JP5740955B2 (en) Random gene transfer tool for transformation of Rhodococcus bacteria
JP5213709B2 (en) Polypeptide having activity in degradation pathway of MTBE and use thereof
JP4569299B2 (en) Microorganism having ability to produce putrescine and method for producing putrescine using the same
RU2708312C1 (en) Recombinant microorganism for improved production of chemical products of fine organic synthesis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07850195

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008549273

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07850195

Country of ref document: EP

Kind code of ref document: A1