WO2008072436A1 - 二次電池の劣化判定装置及びバックアップ電源 - Google Patents

二次電池の劣化判定装置及びバックアップ電源 Download PDF

Info

Publication number
WO2008072436A1
WO2008072436A1 PCT/JP2007/071775 JP2007071775W WO2008072436A1 WO 2008072436 A1 WO2008072436 A1 WO 2008072436A1 JP 2007071775 W JP2007071775 W JP 2007071775W WO 2008072436 A1 WO2008072436 A1 WO 2008072436A1
Authority
WO
WIPO (PCT)
Prior art keywords
overdischarge
secondary battery
deterioration
value
unit
Prior art date
Application number
PCT/JP2007/071775
Other languages
English (en)
French (fr)
Inventor
Tadao Kimura
Tatsuhiko Suzuki
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Priority to US12/516,529 priority Critical patent/US8150642B2/en
Priority to CN2007800459468A priority patent/CN101558320B/zh
Publication of WO2008072436A1 publication Critical patent/WO2008072436A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/005Detection of state of health [SOH]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/005Testing of electric installations on transport means
    • G01R31/006Testing of electric installations on transport means on road vehicles, e.g. automobiles or trucks
    • G01R31/007Testing of electric installations on transport means on road vehicles, e.g. automobiles or trucks using microprocessors or computers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery

Definitions

  • the present invention relates to a secondary battery deterioration determination device and a background art relating to a backup power supply using the same.
  • Secondary batteries are widely used as power sources for mopile equipment and power sources for backup.
  • secondary batteries deteriorate due to repeated charge and discharge, use at high temperatures, overcharge and overdischarge. If the secondary battery deteriorates in this way, problems such as shortening the usable time or making the necessary backup impossible occur, so it is important to determine the deterioration of the secondary battery. is there.
  • a method for determining the deterioration of a secondary battery for example, a method of measuring the amount of voltage drop with respect to the current value at the time of discharge and calculating the internal resistance of the secondary battery to determine the deterioration state (for example, a special (See Permissible Literature 1).
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-243042
  • An object of the present invention is to provide a secondary battery deterioration determination device and a backup power supply using the same, which do not require discharge only for deterioration determination.
  • a deterioration determination device and a backup power source include an overdischarge detection unit that detects an overdischarge of a secondary battery that is a target of deterioration determination, and the overdischarge detection unit, A calculation unit that integrates a value indicating deterioration of the secondary battery during a period in which overdischarge is detected, and a determination that determines the deterioration state of the secondary battery based on the integrated value integrated by the calculation unit A part.
  • the overdischarge of the secondary battery that is subject to deterioration determination is detected by the overdischarge detection unit. Further, the value indicating the deterioration of the secondary battery is integrated during the period when the overdischarge of the secondary battery is detected by the overdischarge detection unit. Then, since the determination unit determines the deterioration state of the secondary battery based on the integrated value integrated by the calculation unit, the deterioration of the secondary battery that does not cause discharge to be performed only for the deterioration determination is reduced. IJ can determine the power.
  • FIG. 1 is a schematic configuration diagram of a system in an embodiment of the present invention.
  • FIG. 2 is a diagram showing a plurality of overdischarge determination levels and a state of a secondary battery voltage.
  • FIG. 3 is a graph showing the relationship between the number of charge / discharge cycles of a secondary battery and the discharge capacity.
  • the deterioration of the secondary battery is caused by the decrease of the electrolyte due to overcharge or the passivation of the active material, the decrease of the electrolyte due to the overdischarge or the passivation of the active material, Deactivation is often the main factor.
  • deterioration due to overcharge is usually designed to be resistant to some overcharge by optimizing the balance design of positive electrode capacity and negative electrode capacity, and so on. Is less likely to cause
  • deterioration due to overdischarge causes an electrochemical reaction that is completely different from the normal state, such as reversing the potential relationship between the positive and negative electrodes during overdischarge, so the degree of deterioration is much greater than overcharge.
  • secondary batteries used for backup power sources tend to increase in size and voltage with the development of information technology in recent years.
  • an increase in the output current causes an increase in Joule heat generation of the circuit and elements. Therefore, by increasing the output voltage, the output current can be increased while suppressing the increase in output current. It is common to increase the power.
  • the present invention when backup is necessary, the capability of the entire power supply is exhibited as much as possible, and the deterioration of the secondary battery due to overdischarge is accurately grasped to appropriately maintain the required battery.
  • the deterioration can be determined so that it can be carried out at the time.
  • FIG. 3 is a graph showing a result of an experiment comparing a case where the endurance test is performed while the secondary battery is overdischarged and a case where the endurance test is performed without overdischarge.
  • the battery used for the durability test is a 3000 mAh cylindrical nickel-metal hydride storage battery. This battery was fully charged by charging it to 3A under a 20 ° C environment until the battery voltage dropped 10mV from the peak value, and then discharged until the terminal voltage reached 0V with a discharge current of 10A.
  • the secondary battery that does not cause overdischarge stopped discharging.
  • two types of tests were subsequently conducted, at 10A, each with 20 seconds of overdischarge and 40 seconds of overdischarge.
  • the force that did not cause overdischarge and the Tatsu cell had a capacity of 98% or more of the initial value even after 100 cycles, and almost no deterioration occurred.
  • the discharge capacity of the cell that was overdischarged for 10 A for 20 seconds every discharge cycle decreased to 95% of the initial value at the 36th cycle and 90% of the initial value at the 68th cycle.
  • the discharge capacity of the cell that was overdischarged for 10 A for 40 seconds per discharge cycle decreased to 95% of the initial value at the 20th cycle and 90% of the initial value at the 36th cycle.
  • FIG. 1 is a schematic configuration diagram of a backup power supply system using a deterioration determination device in Embodiment 1 of the present invention.
  • the backup power supply system shown in Fig. 1 includes a battery module 1, a current measuring unit 4, an ECU (ECU)
  • the current measuring unit 4 and the ECU 5 constitute an example of a deterioration determination device!
  • the battery module 1 is connected in series with the current measuring unit 4 and further connected to a load.
  • the battery module 1 is configured by connecting at least one secondary battery 2 in series.
  • the voltage of the secondary battery 2 is connected to the input of the overdischarge detection unit 3 provided in the ECU 5.
  • the current measuring unit 4 is connected to an overdischarge electric quantity integration calculating unit 7 inside the ECU 5.
  • the ECU 5 further includes a memory 8 and a CPU 9 (determination unit).
  • CPU9 is inside ECU5 Is connected to memory 8, overdischarge detection unit 3, overdischarge electric energy integration calculation unit 7, and overdischarge time integration calculation unit 6 to send and receive data and control each unit.
  • the overdischarge detection unit 3 measures the voltage of each secondary battery 2 and sends data of the voltage value to the CPU 9.
  • the CPU 9 determines the overdischarge level based on the sent voltage value data.
  • the current measurement unit 4 measures the discharge current or the charge current of the battery module 1 and sends the charge / discharge current value data to the overdischarge electric quantity integration calculation unit 7.
  • the overdischarge detection unit 3 detects an overdischarge state and notifies the CPU9.
  • the CPU 9 uses the overdischarge time integration calculation unit 6 to integrate the duration of the overdischarge state. That is, the overdischarge time integration calculation unit 6 (overdischarge time measurement unit) measures the time when the voltage of the secondary battery 2 is lower than the overdischarge voltage value VI, and sets the integration time as T1. Furthermore, the overdischarge time integration calculation unit 6 calculates A XT1, which is a value proportional to the integration time T1, as an integration value.
  • the CPU 9 uses A XT1 calculated by the overdischarge time integration calculation unit 6 and proportional to the integration time T1 to determine the deterioration of the secondary battery.
  • A is a coefficient indicating the degree of deterioration, which is the degree of deterioration when the secondary battery 2 voltage voltage SV1 or less.
  • FIG. 3 shows the relationship between battery capacity and overdischarge time.
  • the battery capacity has a linear relationship with the number of charge / discharge cycles, i.e., overdischarge time, so if the integrated value AXT1 exceeds the predetermined value Z1, it is determined that the secondary battery 2 has deteriorated. can do.
  • the CPU 9 compares the integrated value AXT1 with Z1 stored in the memory 8 to determine whether or not the battery has deteriorated.
  • the CPU 9 determines that the secondary battery 2 has deteriorated when the integrated value AXT1 becomes equal to or greater than Z1, and if the integrated value AXT1 does not satisfy Z1, the secondary battery 2 Is determined not to deteriorate.
  • the backup power source shown in FIG. 1 determines the deterioration state of each secondary battery 2 from the accumulated amount of the overdischarge time of the secondary battery 2, so that the backup function is stopped to determine the deterioration. It is possible to determine the deterioration of the secondary battery without performing maintenance that causes discharge of the secondary battery. Therefore, if you want to actually back up between regular maintenance In this case, it is possible to avoid in advance a situation where the secondary battery has already deteriorated and / or a sufficient backup time cannot be obtained.
  • the CPU 9 stops the accumulation of the overdischarge time integration calculation unit 6 and the overdischarge time integration calculation unit 6
  • the accumulated time T1 accumulated by is stored in memory 8.
  • the overdischarge time integration calculation unit 6 starts the integration from the integration time T1 stored in the memory 8 when the overdischarge time integration starts again.
  • FIG. 2 is an explanatory diagram showing a plurality of overdischarge determination levels and the state of the battery voltage of the secondary battery 2.
  • Figure 2 shows two overdischarge levels. When the secondary battery 2 is discharged, the battery positive electrode is first overdischarged. The X area shown in Fig. 2 shows the state.
  • both the positive and negative electrodes move to a region where overdischarge occurs (Y in FIG. 2).
  • the battery voltage is below VI and above V2
  • the battery voltage is below V2.
  • Each state has a different degree of impact on battery degradation. Therefore, it is desirable to have multiple coefficients that determine the degree of deterioration and to measure the duration of each overdischarge state.
  • the deterioration determination of the secondary battery 2 can be performed in consideration of the degree of influence on the deterioration of the battery, so that the accuracy of the deterioration determination can be improved. wear.
  • the overdischarge deterioration of the secondary battery also depends on the discharge current in the overdischarge state.
  • the overdischarge detection unit 3 detects overdischarge of the secondary battery 2, it notifies the CPU 9 of it and calculates the overdischarge electricity quantity.
  • unit 7 uses the data of battery module discharge current I sent from current measuring unit 4 to start calculating the amount of discharge electricity.
  • C X I XT1 proportional to the integrated value of the overdischarge time T1 and the current I becomes the integrated value of the amount of overdischarge, and represents the degree of deterioration of the battery. It is determined that the battery has deteriorated when the integrated value of the amount of overdischarge obtained in this way becomes larger than the predetermined Z3.
  • C is a coefficient indicating the degree of deterioration (degree of deterioration) when the voltage of the secondary battery is VI or less.
  • the current measuring unit 4 measures the current at predetermined intervals. If the measurement period is At, the number of times the current is measured while overdischarge continues is N, the measured value of the kth current is I (k), and the degree of deterioration before detecting the current overdischarge is Z0, The new integrated value is calculated as Z0 + CX (1 (1) +1 (2) + ⁇ ⁇ ⁇ + ⁇ ( ⁇ — 1) + I (N)) X At by the overdischarge electricity calculation unit 7 .
  • the CPU 9 determines that the battery has deteriorated when the new integrated value obtained in this way becomes greater than a predetermined Z3.
  • Battery deterioration is affected by the overdischarge state that can be determined from the battery voltage, the discharge current at that time, and its duration. Also, depending on the operating status of the system, even if some of the batteries that make up the battery system (backup power supply) are overdischarged, other batteries may still be overdischarged! It may be desirable to continue the operation of the system without stopping it!
  • the CPU 9 determines that the battery has deteriorated when the value of CXIXT1 + DXIXT2 calculated by the overdischarge electricity calculation unit 7 becomes larger than a predetermined value Z3.
  • C and D are the degree of deterioration until the voltage of the secondary battery drops from VI to V2, respectively (degree of deterioration), and the degree of deterioration when the voltage of the secondary battery drops below V2! / Degree of degradation) and C ⁇ D.
  • the discharge current is not necessarily constant.
  • the current measurement cycle by the current measurement unit 4 is At, and the number of times the current is measured during the overdischarge state where the secondary battery voltage is between VI and V2 is N times, and the secondary battery voltage is less than V2. If the number of times the current was measured during the discharge state is M, the measured value of the kth current is I (k), and the degree of deterioration before detecting the current overdischarge is Z0, , The new integrated value, Z0
  • the CPU 9 determines that the secondary battery has deteriorated when the new integrated value force S, new force, or Z3 calculated by the overdischarge electric quantity calculation unit 7 becomes larger than the predetermined Z3. To do.
  • the calculation unit described in the claims is based on the overdischarge time integration calculation unit 6, the overdischarge electric quantity integration calculation unit 7, or the overdischarge time integration calculation unit according to each embodiment. Corresponds to a combination of 6 and the overdischarge electric energy integration calculation unit 7!
  • the overdischarge is detected by an overdischarge detection unit that detects overdischarge of a secondary battery that is subject to deterioration determination, and the overdischarge detection unit.
  • a calculation unit that integrates a value indicating deterioration of the secondary battery during a period of time, and a determination unit that determines a deterioration state of the secondary battery based on the integrated value integrated by the calculation unit.
  • the overdischarge of the secondary battery that is subject to deterioration determination is detected by the overdischarge detection unit.
  • the calculation unit accumulates values indicating the deterioration of the secondary battery. Then, the determination unit determines the deterioration state of the secondary battery based on the integrated value integrated by the calculation unit. Can be determined semi-IJ.
  • an overdischarge time measurement unit that measures a period during which the overdischarge is detected by the overdischarge detection unit as an overdischarge time is further provided, and the calculation unit is configured by the overdischarge time measurement unit. It is preferable to integrate the measured overdischarge time as a value indicating the deterioration of the secondary battery.
  • a period in which overdischarge is detected by the overdischarge detection unit is measured as an overdischarge time by the overdischarge time measurement unit. Then, the overdischarge time measured by the overdischarge time measuring unit is integrated by the calculation unit as a value indicating the deterioration of the secondary battery. Since the overdischarge time has a correlation with the deterioration of the secondary battery, the integrated value of the overdischarge time is suitable as a value indicating the deterioration of the secondary battery.
  • a determination level for determining the degree of overdischarge is set in advance, and the overdischarge detection unit detects the degree of overdischarge based on the determination level, and calculates The unit multiplies the overdischarge time measured by the overdischarge time measurement unit by a coefficient indicating the degree of overdischarge detected by the overdischarge detection unit, and integrates the value as a value indicating deterioration of the secondary battery.
  • the coefficient is set such that the value increases as the degree of overdischarge increases!
  • the overdischarge detection unit detects the degree of overdischarge based on the determination level for determining the degree of overdischarge.
  • the value obtained by multiplying the overdischarge time by the coefficient set so that the value increases as the degree of overdischarge detected by the overdischarge detection unit increases by the calculation unit will deteriorate the secondary battery. It is integrated as the indicated value. In this case, since the overdischarge time is integrated as a value indicating the deterioration of the secondary battery in consideration of the degree of overdischarge, the determination accuracy of the deterioration of the secondary battery is improved.
  • a current measurement unit that measures a value of a current flowing through the secondary battery is further provided, and the calculation unit measures the current during the period in which the overdischarge is detected by the overdischarge detection unit.
  • the current value measured by the unit is accumulated as a value indicating the deterioration of the secondary battery.
  • the current value flowing through the secondary battery is measured by the current measurement unit.
  • the current value measured by the current measuring unit is integrated as a value indicating the deterioration of the secondary battery. Since the current value in the overdischarge state has a correlation with the deterioration of the secondary battery, such an integrated value of the current values is suitable as a value indicating the deterioration of the secondary battery.
  • a determination level for determining the degree of overdischarge is set in advance, and the overdischarge detection unit detects the degree of overdischarge based on the determination level, and calculates And a coefficient indicating a degree of overdischarge detected by the overdischarge detection unit in a current value measured by the current measurement unit during a period in which the overdischarge is detected by the overdischarge detection unit. It is preferable that the values are multiplied and integrated as a value indicating the deterioration of the secondary battery, and the coefficient is set so that the value increases as the degree of overdischarge increases.
  • the overdischarge detection unit detects the degree of overdischarge based on the determination level for determining the degree of overdischarge.
  • the degree of overdischarge of the secondary battery increases to the current value measured by the current measurement unit.
  • the coefficient set so that the value becomes larger is multiplied and integrated as a value indicating the deterioration of the secondary battery.
  • the current value flowing through the secondary battery is integrated as a value indicating the deterioration of the secondary battery, so the accuracy of determining the deterioration of the secondary battery is improved.
  • the overdischarge detection unit detects an overdischarge of the secondary battery when a terminal voltage of the secondary battery is lower than a preset overdischarge voltage value! .
  • the determination level is a voltage value set so as to decrease as the degree of overdischarge increases, and the overdischarge detection unit detects the terminal voltage of the secondary battery and the determination level. Based on the comparison result with the bell! /, It is preferable to detect the degree of the overdischarge! /.
  • the determination level is set to a voltage value set so as to decrease as the degree of overdischarge increases. Based on the comparison result between the terminal voltage of the secondary battery and the determination level, the detection unit The degree of overdischarge can be easily detected.
  • the overdischarge is detected by a secondary battery, an overdischarge detection unit that detects overdischarge of the secondary battery, and the overdischarge detection unit.
  • a calculating unit that integrates a value indicating deterioration of the secondary battery during the period, and a determination unit that determines the deterioration state of the secondary battery based on the integrated value integrated by the calculating unit.
  • the overdischarge detector detects an overdischarge of the secondary battery.
  • the calculation unit accumulates values indicating the deterioration of the secondary battery. Then, since the determination unit determines the deterioration state of the secondary battery based on the integrated value integrated by the calculation unit, the deterioration of the secondary battery without causing the discharge to be performed only for the deterioration determination. Can be determined. Industrial applicability
  • the present invention is useful for determining the deterioration of a secondary battery, and is particularly effective when used for a backup power source.

Abstract

 劣化判定の対象となる二次電池の過放電を検出する過放電検出部と、前記過放電検出部によって、前記過放電が検出されている期間中、前記二次電池の劣化を示す値を積算する演算部と、前記演算部により積算された積算値に基づき、前記二次電池の劣化状態を判定する判定部とを備えた。

Description

明 細 書
二次電池の劣化判定装置及びバックアップ電源
技術分野
[0001] 本発明は、二次電池の劣化判定装置及びそれを用いたバックアップ電源に関する 背景技術
[0002] 二次電池は、モパイル機器の電源やバックアップ用の電源として広く普及している 。しかしながら二次電池は、充放電の繰り返しや高温での使用、過充電や過放電に よって劣化する。このように二次電池が劣化した場合には、使用できる時間が短くな つたり、必要なバックアップができなくなったりするなどの不具合が発生するので、二 次電池の劣化を判定することが重要である。
[0003] 二次電池の劣化判定方法としては、例えば放電時の電流値に対して電圧の降下 量を計測し、二次電池の内部抵抗を算出して劣化状態を判定する方法 (例えば、特 許文献 1参照)などが提案されている。
[0004] しかしながら、ノ^クアップ用の電源などの場合は、特許文献 1のように放電が始ま つた時点で劣化が判定されたのでは、既にその時点で十分な放電容量が得られな いのであり、バックアップ時間の不足などの不具合が発生することを回避できない。 従って、定期的に劣化判定のための放電を行うメンテナンスを実施するなどの手段 が必要である。そして、劣化判定のための放電を行うメンテナンスの実行中は、電源 のバックアップを行うことができないため、バックアップ機能を停止させる必要があるな どの不都合が生じる。
特許文献 1 :特開 2003— 243042号公報
発明の開示
[0005] 本発明の目的は、劣化判定のためだけに放電を行わせる必要のない、二次電池の 劣化判定装置及びそれを用いたバックアップ電源を提供することである。
[0006] 本発明の一局面に従う劣化判定装置及びバックアップ電源は、劣化判定の対象と なる二次電池の過放電を検出する過放電検出部と、前記過放電検出部によって、前 記過放電が検出されている期間中、前記二次電池の劣化を示す値を積算する演算 部と、前記演算部により積算された積算値に基づき、前記二次電池の劣化状態を判 定する判定部とを備える。
[0007] この構成によれば、過放電検出部によって、劣化判定の対象となる二次電池の過 放電が検出される。また、演算部によって、過放電検出部により二次電池の過放電 が検出されている期間中、当該二次電池の劣化を示す値が積算される。そして、判 定部によって、演算部により積算された積算値に基づき、当該二次電池の劣化状態 が判定されるので、劣化判定のためだけに放電を行わせることなぐ二次電池の劣化 を半 IJ定すること力できる。
図面の簡単な説明
[0008] [図 1]本発明の実施の形態におけるシステムの概略構成図である。
[図 2]過放電の複数の判定レベルと二次電池の電圧の状態を表す図である。
[図 3]二次電池の充放電サイクル数と放電容量との関係を示すグラフである。
発明を実施するための最良の形態
[0009] 以下、本発明に係る実施形態について、具体的に説明する前に、本発明における
、二次電池の劣化判定の原理につ!/、て説明する。
[0010] 一般に二次電池の劣化は、過充電による電解液の電気分解による減少や活物質 の不働態化によるものと、過放電による電解液の電気分解による減少や活物質の不 働態化、失活化によるものが主な要因である場合が多い。
[0011] この内、過充電による劣化については、通常、正極容量と負極容量のバランス設計 の適正化などにより多少の過充電に対しては耐性を持つように設計されているので、 急激な劣化を引き起こすことは少ない。一方、過放電による劣化については、過放電 時に正極と負極の電位関係が逆転するなど、通常状態とは全く異なる電気化学反応 を引き起こすため、劣化の程度は過充電に比べて非常に大きい。
[0012] ところで、バックアップ用の電源に用いられる二次電池は、近年情報化の発展に伴 い大型化、高電圧化する傾向にある。特に、消費電力が大きくなる場合には、出力 電流を増加させようとすると、回路や素子のジュール発熱が増大することが課題とな る。そのため、出力電圧を高電圧化することにより、出力電流の増大を抑制しつつ出 力電力を増大させることが、一般的である。
[0013] この場合、二次電池のセル電圧は電気化学的に決まっていることから、セル直列数 が増加することになる。しかしながらセルを直列に接続すると、直列接続された全て のセルに流れる電流が一定となるため、セル間の SOC (State Of Charge)の差により 、 SOCの小さいセル力 放電末期に過放電になってしまう。
[0014] 従って、過放電検出手段により過放電を回避する必要がある力 1セルの過放電で 放電を停止させてしまうと、他のセルに容量が残っていて十分にバックアップする能 力がある場合においても、容量の残っているセルの放電が制限されてしまうので、電 源全体としての能力を制限してしまうという問題がある。
[0015] そこで、本発明は、バックアップが必要な際には電源全体としての能力をできるだけ 発揮させながら、過放電による二次電池の劣化を正確に把握して必要な電池のメン テナンスを適切な時期に実施できるように劣化判定を行えるようにしたものである。
[0016] 図 3は、二次電池を過放電させながら耐久試験を実施した場合と過放電をさせずに 耐久試験を実施した場合の比較を行った実験結果を示すグラフである。耐久試験に 用いた電池は、 3000mAhの円筒形ニッケル水素蓄電池である。この電池を、 20°C 環境下で、充電電流を 3Aにして電池電圧がピーク値から 10mV低下するまで充電 することで満充電にし、さらに 10Aの放電電流で端子電圧が 0Vになるまで放電した
[0017] 過放電をさせない二次電池はここで放電を停止した。過放電をさせる二次電池に ついては、その後さらに 10Aで、それぞれ 20秒間の過放電を実施したものと、 40秒 間の過放電を実施したものの 2種類の試験を行った。過放電をさせな力、つたセルに ついては、 100サイクル後でも初期の 98%以上の容量を有しており、ほとんど劣化が 進んでいなかった。
[0018] 一方、毎放電サイクルごとに 10A、 20秒の過放電をさせたセルについては、 36サ イタル目で初期の 95%、 68サイクル目で初期の 90%に放電容量が低下した。また、 毎放電サイクルごとに 10A、 40秒の過放電をさせたセルについては、 20サイクル目 で初期の 95%、 36サイクル目で初期の 90%まで放電容量が低下した。
[0019] この結果から、電池の過放電が容量劣化を急激に促進していることが明らかである 。また、 10A、 20秒間の過放電のものに対して 10A、 40秒間の過放電のものがほぼ 2倍の速度で劣化していたことから、過放電の量と劣化の間に非常に良い相関が見 られることあ明らカゝである。
[0020] このように過放電量と電池の劣化に非常によい相関が見られることから、負荷電流 がほぼ想定されるような場合には、二次電池の過放電を検知して過放電が継続する 時間を積算することで二次電池の劣化を正確に把握することが可能となる。また、負 荷電流の変動が大きぐ電流値の想定が難しいような場合には、過放電時の電流と、 過放電の継続時間である過放電時間から求められる放電電気量を積算することで、 二次電池の劣化を正確に把握することができる。
[0021] さらに、電池の種類によっては、過放電のレベルが段階的に変化し、それぞれの段 階での劣化促進要因が異なるものもある。このような場合には、過放電の検出手段に 複数の判定レベルを設け、それぞれの判定レベルで判定された過放電時間、過放 電積算電気量を異なる係数で積算することで、二次電池の正確な劣化判定を行うこ と力 Sできる。
[0022] 以下、本発明を実施するための最良の形態について、図面を参照しながら説明す
[0023] (実施の形態 1)
図 1は、本発明の実施の形態 1における、劣化判定装置を用いたバックアップ電源 システムの概略構成図である。
[0024] 図 1に示すバックアップ電源システムは、電池モジュール 1と電流計測部 4と ECU (
Electric Control Unit) 5とを含む。この場合、電流計測部 4と ECU5とで、劣化 判定装置の一例が構成されて!/、る。
[0025] 電池モジュール 1は、電流計測部 4と直列に接続され、さらには負荷へ接続される。
電池モジュール 1は少なくとも一つ以上の二次電池 2が直列に接続されて構成される
。二次電池 2の電圧は、 ECU5内部に設けられた過放電検出部 3の入力に接続され
[0026] 電流計測部 4は、 ECU5内部の過放電電気量積算演算部 7に接続される。 ECU5 内部には、さらにメモリー 8と CPU9 (判定部)とが含まれる。 CPU9は、 ECU5の内部 でメモリー 8、過放電検出部 3、過放電電気量積算演算部 7、過放電時間積算演算 部 6と接続されてデータの送受信や各部の制御を行う。
[0027] 過放電検出部 3は、各二次電池 2の電圧を測定し、その電圧値のデータを CPU9 へ送る。 CPU9は、送られた電圧値データに基づいて過放電レベルの判定を行う。 電流計測部 4は、電池モジュール 1の放電電流あるいは充電電流を測定し、過放電 電気量積算演算部 7へ充放電電流値のデータを送る。
[0028] 電池モジュール 1から負荷へ放電されると、二次電池 2の電圧は下がり、ついには あらかじめ設定された過放電電圧値 VIよりも電圧が下回る。すると過放電検出部 3 が過放電状態を検出し、 CPU9へ通知する。 CPU9は、過放電時間積算演算部 6に よって、過放電状態の継続時間を積算させる。すなわち、過放電時間積算演算部 6 ( 過放電時間計測部)が、二次電池 2の電圧が過放電電圧値 VIよりも下回っている時 間を計測し、その積算時間を T1とする。さらに過放電時間積算演算部 6は、積算時 間 T1に比例した値である A XT1を、積算値として算出する。
[0029] そして、 CPU9は、過放電時間積算演算部 6によって算出された、積算時間 T1に 比例した値である A XT1を、二次電池の劣化判定に使用する。ここで Aは、二次電 池 2の電圧力 SV1以下のときの劣化の程度である劣化度を示す係数である。
[0030] 図 3に、電池容量と過放電時間との関係を示す。この結果からわかるように、電池容 量は充放電サイクル数、すなわち過放電時間と直線関係にあるので、積算値 AXT1 があらかじめ定められた値 Z1を超えると、二次電池 2が劣化したと判定することができ る。 CPU9は、積算値 AXT1を、メモリー 8に記憶されている Z1と比較をして電池が 劣化した力、どうかを判定する。
[0031] 具体的には、 CPU9は、積算値 AXT1が、 Z1以上になると、その二次電池 2が劣 化したと判定し、積算値 AXT1が、 Z1に満たなければ、その二次電池 2は劣化して いないと判定する。
[0032] このように、図 1に示すバックアップ電源は、各二次電池 2の劣化状態を二次電池 2 の過放電時間の積算量から判定するので、バックアップ機能を停止させて劣化判定 のための放電をさせるメンテナンスを行うことなく二次電池の劣化を判定することがで きる。従って、定期的に行われるメンテナンスの合間に実際にバックアップを行おうと する際に、既に二次電池が劣化して!/、て十分なバックアップ時間が得られなくなるよ うな事態を事前に回避することが可能となる。
[0033] そして、二次電池 2が充電されて電圧が VIを上回り、過放電状態から抜けると、 CP U9は、過放電時間積算演算部 6の積算を停止させ、過放電時間積算演算部 6により 積算された積算時間 T1を、メモリー 8へ記憶させる。過放電時間積算演算部 6は、再 び過放電時間の積算を開始するときは、メモリー 8に記憶されている積算時間 T1から 、積算を開始する。
[0034] (実施の形態 2)
二次電池 2の過放電のレベル(程度)には、二次電池 2の電池電圧によって複数の レベルが存在する。図 2は過放電の複数の判定レベルと二次電池 2の電池電圧の状 態を表す説明図である。図 2においては、 2つの過放電レベルを示す。二次電池 2が 放電されるとまず電池の正極が過放電となる。図 2に示す Xの領域がその状態を示し ている。
[0035] この状態からさらに放電されて二次電池 2の電池電圧が低下すると、正負極とも過 放電となる領域へ移る(図 2の Y)。 Xで示す領域では、電池電圧が VI以下かつ V2 以上、 Υで示す領域の状態では、電池電圧が V2未満とする。それぞれの状態では、 電池の劣化に与える影響の度合いが異なる。したがって、劣化度を決める係数は複 数持ち、かつ、それぞれの過放電状態の継続時間を計測することが望ましい。
[0036] すなわち、電池電圧が VI以下かつ V2以上である時間の積算時間を Tl、電池電 圧が V2未満である時間の積算時間を Τ2とすると、各々の過放電レベルでの積算値 の和である A XT1 + B X T2があらかじめ定められた値 Z2を超えると、電池が劣化し たと判定することができる。ここで A、 Bは、それぞれ電池電圧が VI以下かつ V2以上 のときの劣化度(劣化の程度)、電池電圧が V2未満のときの劣化度(劣化の程度)を 示す係数であり、 A< Bとなっている。
[0037] この場合、過放電の程度に応じて、電池の劣化に与える影響の度合いを考慮して 二次電池 2の劣化判定を行うことができるので、劣化判定の精度を向上することがで きる。
[0038] なお、ここでは過放電のレベルが 2つであるとして説明した力 S、レベル設定数はこの 限りではなぐ 3つ以上のレベルを設定し、積算をしても力、まわない。
[0039] (実施の形態 3)
二次電池の過放電劣化は、過放電状態での放電電流にも依存する。今、二次電 池 2の電圧があらかじめ定められた所定値 VI以下に下がり、過放電検出部 3が二次 電池 2の過放電を検出すると、それを CPU9へ通知し、過放電電気量演算部 7が CP U9の指示に従い、電流計測部 4から送られる電池モジュール放電電流 Iのデータを 用いて放電電気量の積算演算を開始する。
[0040] 放電電流 Iが一定であれば、過放電時間 T1と電流 Iの積算値に比例した C X I XT1 が過放電電気量の積算値となり、電池の劣化度を表す値となる。このようにして得ら れた過放電電気量の積算値があらかじめ定められた Z3よりも大きくなつたときに電池 が劣化したと判定する。ここで、 Cは、二次電池の電圧が VI以下のときの劣化度(劣 化の程度)を示す係数である。
[0041] なお放電電流は必ずしも、一定とは限らないので電流計測部 4はあらかじめ定めら れた周期毎に電流を測定する。測定周期を At、過放電継続中に電流を測定した回 数を N、 k回目の電流の測定値を I (k)とし、今回の過放電を検出する前の劣化度を Z 0とすると、過放電電気量演算部 7によって、新たな積算値は Z0 + C X (1 (1) +1 (2) + · · · +Ι (Ν— 1) +I (N) ) X Atとして算出される。
[0042] CPU9は、このようにして得られた新たな積算値力 あらかじめ定められた Z3よりも 大きくなつたときに電池が劣化したと判定する。
[0043] (実施の形態 4)
電池の劣化は電池電圧から判断できる過放電状態、その時の放電電流、その継続 時間の影響を受ける。またシステムの運転状況によっては、電池システム (バックアツ プ電源)を構成する一部の電池が過放電状態になっても、他の電池がまだ過放電に なって!/、な!/、のであれば敢えてシステムの運転を停止せずに継続するのが望まし!/ヽ 場合がある。
[0044] 今、二次電池の電圧が VIまで下がった後、さらに二次電池の電圧が VIから V2ま で下がるまでの時間を Tl、 V未満になっている時間を Τ2とし、放電電流を Iとすると、 このときの二次電池の劣化が、過放電電気量演算部 7によって、 C X I XT1 + D X I XT2として算出される。
[0045] そして、 CPU9は、過放電電気量演算部 7で算出された CXIXT1 + DXIXT2の 値力 あらかじめ定められた値 Z3よりも大きくなると電池が劣化したと判定する。ここ で、 C, Dは、それぞれ二次電池の電圧が VIから V2まで下がるまでの劣化度(劣化 の程度)、二次電池の電圧が V2未満になって!/、るときの劣化度(劣化の程度)を示 す係数であり、 C<Dとなっている。
[0046] 実施の形態 3でも述べたように、放電電流は必ずしも一定とは限らない。電流計測 部 4による電流の測定周期を At、二次電池の電圧が VIから V2の間である過放電 状態中に電流を測定した回数を N回、二次電池の電圧が V2未満である過放電状態 中に電流を測定した回数を M、 k回目の電流の測定値を I(k)とし、今回の過放電を 検出する前の劣化度を Z0とすると、過放電電気量演算部 7は、新たな積算値を、 Z0
+ CX (1(1) +1(2) + hI(N-l)+I(N)) XAt + DX (1(1) +1(2) + hl(
M—1)+I(M)) XAtとして算出する。
[0047] そして、 CPU9は、過放電電気量演算部 7により算出された新たな積算値力 S、あら 力、じめ定められた Z3よりも大きくなつたときに二次電池が劣化したと判定する。
[0048] なお特許請求の範囲に記載した演算部は、各実施の形態にお!/ヽて、過放電時間 積算演算部 6、過放電電気量積算演算部 7、または過放電時間積算演算部 6と過放 電電気量積算演算部 7とを組み合わせたものに相当して!/、る。
[0049] 本発明の一局面に従う劣化判定装置は、劣化判定の対象となる二次電池の過放 電を検出する過放電検出部と、前記過放電検出部によって、前記過放電が検出され ている期間中、前記二次電池の劣化を示す値を積算する演算部と、前記演算部によ り積算された積算値に基づき、前記二次電池の劣化状態を判定する判定部とを備え
[0050] この構成によれば、過放電検出部によって、劣化判定の対象となる二次電池の過 放電が検出される。また、演算部によって、過放電検出部により二次電池の過放電 が検出されている期間中、当該二次電池の劣化を示す値が積算される。そして、判 定部によって、演算部により積算された積算値に基づき、当該二次電池の劣化状態 が判定されるので、劣化判定のためだけに放電を行わせることなぐ二次電池の劣化 を半 IJ定すること力できる。
[0051] また、前記過放電検出部によって前記過放電が検出されている期間を、過放電時 間として計測する過放電時間計測部をさらに備え、前記演算部は、前記過放電時間 計測部によって計測された過放電時間を、前記二次電池の劣化を示す値として積算 することが好ましい。
[0052] この構成によれば、過放電時間計測部によって、過放電検出部により過放電が検 出されている期間が、過放電時間として計測される。そして、演算部によって、過放 電時間計測部で計測された過放電時間が、二次電池の劣化を示す値として積算さ れる。過放電時間は、二次電池の劣化と相関関係があるので、過放電時間の積算値 は、二次電池の劣化を示す値として好適である。
[0053] また、前記過放電の程度を判定するための判定レベルが予め設定されており、前 記過放電検出部は、前記判定レベルに基づいて、前記過放電の程度を検出し、前 記演算部は、前記過放電時間計測部によって計測された過放電時間に、前記過放 電検出部によって検出された過放電の程度を示す係数を乗じて、前記二次電池の 劣化を示す値として積算し、前記係数は、前記過放電の程度が増大するほど値が大 きくなるように設定されて!/、ること力 S好ましレ、。
[0054] この構成によれば、過放電検出部によって、過放電の程度を判定するための判定 レベルに基づいて、過放電の程度が検出される。また、演算部によって、過放電検出 部で検出された過放電の程度が増大するほど値が大きくなるように設定された係数と 過放電時間とが乗じられた値が、二次電池の劣化を示す値として積算される。この場 合、過放電の程度を考慮して、過放電時間が二次電池の劣化を示す値として積算さ れるので、二次電池の劣化の判定精度が向上する。
[0055] また、前記二次電池に流れる電流値を計測する電流計測部をさらに備え、前記演 算部は、前記過放電検出部によって前記過放電が検出されている期間において、前 記電流計測部によって計測された電流値を、前記二次電池の劣化を示す値として積 算するようにしてあよレヽ。
[0056] この構成によれば、電流計測部によって、二次電池に流れる電流値が計測される。
また、演算部によって、過放電検出部により過放電が検出されている期間において、 電流計測部で計測された電流値が、二次電池の劣化を示す値として積算される。過 放電状態における電流値は、二次電池の劣化と相関関係があるので、このような電 流値の積算値は、二次電池の劣化を示す値として好適である。
[0057] また、前記過放電の程度を判定するための判定レベルが予め設定されており、前 記過放電検出部は、前記判定レベルに基づいて、前記過放電の程度を検出し、前 記演算部は、前記過放電検出部によって前記過放電が検出されている期間におい て、前記電流計測部によって計測された電流値に、前記過放電検出部によって検出 された過放電の程度を示す係数を乗じて、前記二次電池の劣化を示す値として積算 し、前記係数は、前記過放電の程度が増大するほど値が大きくなるように設定されて いることが好ましい。
[0058] この構成によれば、過放電検出部によって、過放電の程度を判定するための判定 レベルに基づいて、過放電の程度が検出される。また、演算部によって、過放電検出 部で過放電が検出されて!/、る期間にぉレ、て、電流計測部で計測された電流値に、二 次電池の過放電の程度が増大するほど値が大きくなるように設定された係数が乗じ られて、二次電池の劣化を示す値として積算される。この場合、過放電の程度を考慮 して、二次電池に流れる電流値が二次電池の劣化を示す値として積算されるので、 二次電池の劣化の判定精度が向上する。
[0059] また、前記過放電検出部は、前記二次電池の端子電圧が、予め設定された過放電 電圧値を下回る場合、前記二次電池の過放電を検出することが好まし!/、。
[0060] 二次電池の端子電圧は、放電が進むにつれて低下するので、二次電池の端子電 圧が予め設定された過放電電圧値を下回るか否かによって、二次電池の過放電を 検出することで、過放電検出部の構成を簡素化することが容易である。
[0061] また、前記判定レベルは、前記過放電の程度が増大するほど低下するように設定さ れた電圧値であり、前記過放電検出部は、前記二次電池の端子電圧と前記判定レ ベルとの比較結果に基づ!/、て、前記過放電の程度を検出することが好まし!/、。
[0062] 二次電池の端子電圧は、過放電の程度が増大するほど低下するので、判定レベル を過放電の程度が増大するほど低下するように設定された電圧値とすることにより、 過放電検出部は、二次電池の端子電圧と判定レベルとの比較結果に基づいて、容 易に過放電の程度を検出することができる。
[0063] また、本発明の一局面に従うバックアップ電源は、二次電池と、前記二次電池の過 放電を検出する過放電検出部と、前記過放電検出部によって、前記過放電が検出さ れている期間中、前記二次電池の劣化を示す値を積算する演算部と、前記演算部 により積算された積算値に基づき、前記二次電池の劣化状態を判定する判定部とを 備える。
[0064] この構成によれば、過放電検出部によって、二次電池の過放電が検出される。また 、演算部によって、過放電検出部により二次電池の過放電が検出されている期間中 、当該二次電池の劣化を示す値が積算される。そして、判定部によって、演算部によ り積算された積算値に基づき、当該二次電池の劣化状態が判定されるので、劣化判 定のためだけに放電を行わせることなぐ二次電池の劣化を判定することができる。 産業上の利用可能性
[0065] 本発明は二次電池の劣化判定に有用であり、特にバックアップ電源に用いるとその 効果は大きい。

Claims

請求の範囲
[1] 劣化判定の対象となる二次電池の過放電を検出する過放電検出部と、
前記過放電検出部によって、前記過放電が検出されている期間中、前記二次電池 の劣化を示す値を積算する演算部と、
前記演算部により積算された積算値に基づき、前記二次電池の劣化状態を判定す る判定部と
を備える二次電池の劣化判定装置。
[2] 前記過放電検出部によって前記過放電が検出されている期間を、過放電時間とし て計測する過放電時間計測部をさらに備え、
前記演算部は、
前記過放電時間計測部によって計測された過放電時間を、前記二次電池の劣化 を示す値として積算する
請求項 1記載の二次電池の劣化判定装置。
[3] 前記過放電の程度を判定するための判定レベルが予め設定されており、
前記過放電検出部は、前記判定レベルに基づいて、前記過放電の程度を検出し、 前記演算部は、
前記過放電時間計測部によって計測された過放電時間に、前記過放電検出部に よって検出された過放電の程度を示す係数を乗じて、前記二次電池の劣化を示す 値として積算し、
前記係数は、前記過放電の程度が増大するほど値が大きくなるように設定されてい る
請求項 2記載の二次電池の劣化判定装置。
[4] 前記二次電池に流れる電流値を計測する電流計測部をさらに備え、
前記演算部は、
前記過放電検出部によって前記過放電が検出されている期間において、前記電流 計測部によって計測された電流値を、前記二次電池の劣化を示す値として積算する 請求項 1記載の二次電池の劣化判定装置。
[5] 前記過放電の程度を判定するための判定レベルが予め設定されており、 前記過放電検出部は、前記判定レベルに基づいて、前記過放電の程度を検出し、 前記演算部は、
前記過放電検出部によって前記過放電が検出されている期間において、前記電流 計測部によって計測された電流値に、前記過放電検出部によって検出された過放電 の程度を示す係数を乗じて、前記二次電池の劣化を示す値として積算し、
前記係数は、前記過放電の程度が増大するほど値が大きくなるように設定されてい る
請求項 4記載の二次電池の劣化判定装置。
[6] 前記過放電検出部は、
前記二次電池の端子電圧が、予め設定された過放電電圧値を下回る場合、前記 二次電池の過放電を検出する
請求項;!〜 5のいずれか 1項に記載の二次電池の劣化判定装置。
[7] 前記判定レベルは、前記過放電の程度が増大するほど低下するように設定された 電圧値であり、
前記過放電検出部は、前記二次電池の端子電圧と前記判定レベルとの比較結果 に基づいて、前記過放電の程度を検出する
請求項 3又は 5記載の二次電池の劣化判定装置。
[8] 二次電池と、
前記二次電池の過放電を検出する過放電検出部と、
前記過放電検出部によって、前記過放電が検出されている期間中、前記二次電池 の劣化を示す値を積算する演算部と、
前記演算部により積算された積算値に基づき、前記二次電池の劣化状態を判定す る判定部と
を備えるバックアップ電源。
PCT/JP2007/071775 2006-12-14 2007-11-09 二次電池の劣化判定装置及びバックアップ電源 WO2008072436A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/516,529 US8150642B2 (en) 2006-12-14 2007-11-09 Secondary battery deterioration judging device and backup power supply
CN2007800459468A CN101558320B (zh) 2006-12-14 2007-11-09 二次电池的劣化判定装置及备用电源

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006336834A JP2008151526A (ja) 2006-12-14 2006-12-14 二次電池の劣化判定装置及びバックアップ電源
JP2006-336834 2006-12-14

Publications (1)

Publication Number Publication Date
WO2008072436A1 true WO2008072436A1 (ja) 2008-06-19

Family

ID=39511461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/071775 WO2008072436A1 (ja) 2006-12-14 2007-11-09 二次電池の劣化判定装置及びバックアップ電源

Country Status (4)

Country Link
US (1) US8150642B2 (ja)
JP (1) JP2008151526A (ja)
CN (1) CN101558320B (ja)
WO (1) WO2008072436A1 (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5381664B2 (ja) * 2009-12-02 2014-01-08 トヨタ自動車株式会社 組電池の異常検出装置
WO2011118112A1 (ja) * 2010-03-26 2011-09-29 パナソニック株式会社 充電状態検出回路、電池電源装置、及び電池情報モニター装置
CN102959418B (zh) 2010-06-24 2016-04-27 松下知识产权经营株式会社 获取电池的劣化度的方法和系统
WO2012091076A1 (ja) * 2010-12-28 2012-07-05 三洋電機株式会社 電池の劣化度の検出方法
RU2461014C1 (ru) * 2011-05-12 2012-09-10 Общество с ограниченной ответственностью Научно-производственное предприятие "ВНИКО" Потенциостатический способ выявления аккумуляторов с пониженной емкостью в батарее никель-кадмиевых аккумуляторов
JP2012252823A (ja) * 2011-06-01 2012-12-20 Toyota Industries Corp 2次電池劣化度推定装置及びその方法
KR20120134415A (ko) * 2011-06-02 2012-12-12 에스케이이노베이션 주식회사 Ess의 배터리 수명 예측 시스템 및 그 방법
CN103718053B (zh) * 2011-08-03 2016-08-17 丰田自动车株式会社 二次电池的劣化状态推定装置和劣化状态推定方法
WO2013121466A1 (ja) * 2012-02-17 2013-08-22 トヨタ自動車株式会社 電池システムおよび劣化判別方法
JP5890513B2 (ja) * 2012-02-27 2016-03-22 京セラ株式会社 制御装置、制御システム及び蓄電池制御方法
CN104956538B (zh) * 2013-02-01 2018-05-01 丰田自动车株式会社 电池系统
KR20150081696A (ko) * 2014-01-06 2015-07-15 삼성에스디아이 주식회사 배터리 충전 장치 및 배터리 충전 방법
JP6304053B2 (ja) * 2015-01-20 2018-04-04 株式会社豊田自動織機 バッテリ式産業車両
US10408887B2 (en) * 2015-12-17 2019-09-10 Rohm Co., Ltd. Method for estimating degradation of rechargeable battery, degradation estimation circuit, electronic apparatus and vehicle including same
KR20180037760A (ko) 2016-10-05 2018-04-13 삼성전자주식회사 배터리 상태 추정 장치 및 방법
JP6787939B2 (ja) * 2018-02-20 2020-11-18 ファナック株式会社 エンコーダおよびバックアップ電流異常判定方法
US10725112B1 (en) * 2019-03-01 2020-07-28 Ses Holdings Pte. Ltd. Methods of controlling secondary lithium metal batteries to access reserve energy capacity and battery control systems incorporating the same
US20210098784A1 (en) * 2019-09-26 2021-04-01 Enevate Corporation Method and system for silicon dominant lithium-ion cells with controlled lithiation of silicon
JP7413806B2 (ja) * 2020-02-06 2024-01-16 トヨタ自動車株式会社 バッテリ劣化判定装置、バッテリ劣化判定方法、及びバッテリ劣化判定プログラム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0898418A (ja) * 1994-09-26 1996-04-12 Canon Inc 過放電防止装置
JP2003009406A (ja) * 2001-06-22 2003-01-10 Matsushita Electric Ind Co Ltd 二次電池の状態演算装置
JP2004222427A (ja) * 2003-01-15 2004-08-05 Matsushita Electric Ind Co Ltd 充電制御装置、電池管理システム、電池パック、及びそれらによる二次電池の劣化判定方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3545240B2 (ja) * 1999-01-28 2004-07-21 本田技研工業株式会社 バッテリ劣化判断装置
US6294894B1 (en) * 1999-08-09 2001-09-25 Hitachi Maxell, Ltd. Rechargeable battery arrangement
JP2002204532A (ja) * 2001-01-05 2002-07-19 Seiko Instruments Inc バッテリー状態監視回路およびバッテリー装置
JP2003243042A (ja) 2002-02-12 2003-08-29 Toyota Motor Corp 組電池を構成するリチウム電池の劣化度検知装置および方法
GB0312303D0 (en) * 2003-05-29 2003-07-02 Yuasa Battery Uk Ltd Battery life monitor and battery state of charge monitor
JP2006101635A (ja) * 2004-09-29 2006-04-13 Mitsumi Electric Co Ltd 過充電/過放電検出装置及び過充電/過放電検出回路並びに半導体装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0898418A (ja) * 1994-09-26 1996-04-12 Canon Inc 過放電防止装置
JP2003009406A (ja) * 2001-06-22 2003-01-10 Matsushita Electric Ind Co Ltd 二次電池の状態演算装置
JP2004222427A (ja) * 2003-01-15 2004-08-05 Matsushita Electric Ind Co Ltd 充電制御装置、電池管理システム、電池パック、及びそれらによる二次電池の劣化判定方法

Also Published As

Publication number Publication date
US8150642B2 (en) 2012-04-03
CN101558320B (zh) 2013-07-10
CN101558320A (zh) 2009-10-14
US20100030498A1 (en) 2010-02-04
JP2008151526A (ja) 2008-07-03

Similar Documents

Publication Publication Date Title
WO2008072436A1 (ja) 二次電池の劣化判定装置及びバックアップ電源
JP5179047B2 (ja) 蓄電装置の異常検出装置、蓄電装置の異常検出方法及びその異常検出プログラム
US8996324B2 (en) Battery-state monitoring apparatus
JP5248764B2 (ja) 蓄電素子の異常検出装置、蓄電素子の異常検出方法及びその異常検出プログラム
JP4798548B2 (ja) 電池パック
JP6056730B2 (ja) 蓄電システム
US20100164430A1 (en) Intelligent Adaptive Energy Management System and Method for Using
US6137292A (en) Self-adjusting battery diagnostic method for continuously providing best prediction of battery reserve time
US9112371B2 (en) Refresh charging method for an assembled battery constituted from a plurality of lead-acid storage batteries and charging apparatus
CN108604711B (zh) 借助于占空控制的有效电池平衡的方法和系统
US20080231284A1 (en) Method and Device for Detdermining the Ageing of a Battery
CN101911429A (zh) 一种平衡高压电池组的方法
JP5743634B2 (ja) 劣化測定装置、二次電池パック、劣化測定方法、およびプログラム
JP2010256323A (ja) 電源装置用状態検知装置
CN110462916B (zh) 蓄电元件管理装置以及蓄电元件管理方法
JP2010098866A (ja) 不均衡判定回路、不均衡低減回路、電池電源装置、及び不均衡判定方法
CA2899239A1 (en) Method for determining a state of charge and remaining operation life of a battery
JP2012253975A (ja) アルカリ蓄電池の充放電制御方法および充放電システム
KR101572494B1 (ko) 배터리팩의 수명 추정 장치
JP2007311255A (ja) 組電池状態測定装置、組電池劣化判定方法および組電池劣化判定プログラム
JP2017167163A (ja) 蓄電素子管理装置、及び、蓄電素子のsoc推定方法
JP2010164441A (ja) 二次電池の劣化診断装置
JP2009064682A (ja) 電池劣化判定装置及びそれを備えたリチウムイオン電池パック
KR20140053585A (ko) 배터리 잔존 수명 추정 장치 및 방법
JP2004271342A (ja) 充放電制御システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780045946.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07831506

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12516529

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07831506

Country of ref document: EP

Kind code of ref document: A1