WO2008068923A1 - 核酸分解剤および核酸の分解方法 - Google Patents

核酸分解剤および核酸の分解方法 Download PDF

Info

Publication number
WO2008068923A1
WO2008068923A1 PCT/JP2007/064073 JP2007064073W WO2008068923A1 WO 2008068923 A1 WO2008068923 A1 WO 2008068923A1 JP 2007064073 W JP2007064073 W JP 2007064073W WO 2008068923 A1 WO2008068923 A1 WO 2008068923A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
bacteria
ema
agent
solution
Prior art date
Application number
PCT/JP2007/064073
Other languages
English (en)
French (fr)
Inventor
Shinichi Yoshida
Takashi Soejima
Original Assignee
Morinaga Milk Industry Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Morinaga Milk Industry Co., Ltd. filed Critical Morinaga Milk Industry Co., Ltd.
Priority to EP07790835A priority Critical patent/EP2090169A4/en
Priority to US12/092,677 priority patent/US20100170777A1/en
Priority to CA2633591A priority patent/CA2633591C/en
Priority to AU2007302638A priority patent/AU2007302638B2/en
Priority to CN2007800044563A priority patent/CN101378657B/zh
Priority to NO20082129A priority patent/NO20082129L/no
Publication of WO2008068923A1 publication Critical patent/WO2008068923A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N33/00Biocides, pest repellants or attractants, or plant growth regulators containing organic nitrogen compounds
    • A01N33/26Biocides, pest repellants or attractants, or plant growth regulators containing organic nitrogen compounds containing nitrogen-to-nitrogen bonds, e.g. azides, diazo-amino compounds, diazonium compounds, hydrazine derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/473Quinolines; Isoquinolines ortho- or peri-condensed with carbocyclic ring systems, e.g. acridines, phenanthridines
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/34Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom
    • A01N43/40Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom six-membered rings
    • A01N43/42Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom six-membered rings condensed with carbocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/10Inactivation or decontamination of a medicinal preparation prior to administration to an animal or a person
    • A61K41/17Inactivation or decontamination of a medicinal preparation prior to administration to an animal or a person by ultraviolet [UV] or infrared [IR] light, X-rays or gamma rays
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents

Definitions

  • the present invention relates to a nucleic acid degrading agent comprising ethidium monoazide (also referred to as ethidium monoazide) as an active ingredient, and ethidium monoazide to a sample containing cells. It is a method for degrading cellular nucleic acid, comprising a step of degrading intracellular nucleic acid by irradiating visible light to the sample.
  • ethidium monoazide also referred to as ethidium monoazide
  • Ethiji 1 nom monoant (3-ammo— 8— azido— 5— ethy ⁇ 6— pheny ⁇ pnenanthridmium chlon de) This is an azide compound with a modified chemistry medium (Non-patent Document 1).
  • EMA is also known as a topoisomerase poison of eukaryotic cells (Non-patent Document 2), and as an agent such as probiotic musculare, a nuclear dye, Used! (Non-patent Document 3).
  • Non-Patent Document 1 Nucleic Acids Res., 5th, 1978, 4891-4903
  • Non-Patent Document 2 Biochemistry, Vol.36, No.50, 1997, pp. 1584-15891
  • Non-Patent Document 3 Applied and Environmental Mental Microbiology (Appl. Env iron. Microbiol.), No. 71, No. 2, 2005, pp. 1018-1024
  • An object of the present invention is to provide a nucleic acid degrading agent useful as an antibacterial agent such as a bactericidal or disinfecting agent.
  • the inventors of the present invention have made extensive studies on antibacterial agents, particularly agents that kill bacteria. Nucleolytic agents that permeate the cell walls of bacteria and act directly on the nucleic acids of the bacteria to cleave the nucleic acids. As a result of searching for substances having such actions, it was found that EMA, which is an azide compound, has the effect of permeating the cell walls of live bacteria and cleaving nucleic acids. Was completed.
  • a first invention of the present invention that solves the above-mentioned problems is a nucleic acid decomposing agent comprising ethidium monoazide as an active ingredient.
  • a second invention of the present invention that solves the above problems is an antibacterial agent comprising the nucleic acid degrading agent of the first invention.
  • a third invention of the present invention that solves the above-described problems includes a step of adding ethidium monoazide to a sample containing nucleic acid, and a step of decomposing nucleic acid in the sample by irradiating the sample containing the nucleic acid with visible light, This is a method for decomposing nucleic acid in a sample containing nucleic acid.
  • a fourth invention of the present invention that solves the above problems includes a step of adding ethidium monoazide to a sample containing cells, and a step of irradiating the sample containing cells with visible light to degrade nucleic acids in the cells. This is a method for degrading intracellular nucleic acids.
  • FIG. 1 is an electrophoretogram showing the effect of EMA in the in vitro mouth on Escherichia coli chromosomal DNA and rRNA.
  • M represents a molecular weight marker (ZECOT14 I digest).
  • IR (-) indicates no visible light irradiation, IR indicates visible light irradiation (500W halogen bulb, 20 minutes).
  • the numerical value of E0-1 00 n or ⁇ represents the final concentration of EMA (0-100 ng / ml or ⁇ g / ml).
  • FIG. 2 An electrophoretogram showing the effect of EMA on chromosomal DNA and rRNA in vivo.
  • M represents a molecular weight marker (ZECOT14 I digest).
  • IR (-) indicates no visible light irradiation, IR indicates visible light irradiation (500W halogen bulb, 20 minutes).
  • the numerical value of E0-1 00 n or ⁇ represents the final concentration of EMA (0-100 ng / ml or ⁇ g / ml).
  • FIG. 3 Antibacterial effect and dose response curve of EMA.
  • the X-axis shows the final concentration of EMA (g / ml).
  • the Y axis shows the decrease in the number of viable bacteria (CFU / ml) in each EMA-treated area with respect to the initial development by the common logarithm.
  • FIG. 4 is a photograph showing the results of observation of E. coli DH5 a chromosomal DNA with EMA and visible light irradiation (500 W halogen bulb, 20 minutes) under an electron microscope.
  • the final concentrations of EMA are (1) 0, (2) 0.0: g / ml, (3) 1
  • the nucleic acid degrading agent of the present invention has an effect of directly acting on an isolated nucleic acid and degrading it at random, and is also an active ingredient for nucleic acid present in a sample containing nucleic acid. Permeates into the sample and acts directly, and has the effect of randomly cleaving those nucleic acids.
  • the nucleic acid includes DNA and RNA.
  • Nucleic acids targeted by the nucleic acid degrading agent of the present invention include single-stranded DNA, double-stranded DNA, single-stranded RNA, and double-stranded RNA.
  • the sample to which the present invention is applied may contain two or more kinds which may contain any of these.
  • Examples of the target of the nucleic acid degrading agent of the present invention include chromosomal DNA and plasmid DNA, and rRNA, mRNA, and tRNA.
  • Samples containing nucleic acids include all biological cells, for example, prokaryotic cells (bacteria), eukaryotic cells, etc. (protists, fungi, plants, animals, etc.), viruses, etc., but bacteria, fungi, Viruses and the like are particularly preferable.
  • prokaryotic cells bacteria
  • eukaryotic cells etc.
  • protists fungi, plants, animals, etc.
  • viruses etc.
  • bacteria, fungi, Viruses and the like are particularly preferable.
  • the nucleic acid degrading agent of the present invention stops the growth of these bacteria, fungi, viruses, etc., and kills them by directly degrading intracellular nucleic acids. Has an effect. Therefore, for example, the nucleic acid degrading agent of the present invention is used as an antibacterial agent or disinfectant / disinfectant for environmental microorganisms, or an antiviral agent, etc. be able to.
  • Environmental microorganisms targeted by the antibacterial agent of the present invention are not particularly limited, but examples include pacteria and fungi.
  • Nocteria includes both gram-positive and gram-negative bacteria.
  • Gram-positive bacteria include Staphylococcus spp., Streptococcus spp., Listeria spp., Bacillus spp., Mycobacterium spp., Clostridium spp., Such as Staphylococcus epidermidis Examples include bacteria.
  • Gram-negative bacteria include Escherichia bacteria such as Escherichia coli, Enterobacteria group typified by Enterobacter bacteria, Salmonella bacteria, Vibrio bacteria, Syudomonas bacteria, Legionella bacteria And Campylobacter bacteria.
  • the fungi targeted by the antibacterial agent of the present invention are not particularly limited, and examples thereof include Candida bacteria, Aspergillus bacteria, Saccharomyces bacteria, and Pecyllium bacteria.
  • EMA 3-amino-8-azido-5-ethy ⁇ 6-phenyl-phenanthridinium chloride
  • the amount of the nucleic acid decomposing agent of the present invention can be appropriately selected depending on whether the nucleic acid to be decomposed extracellularly or intracellularly is degraded, and depending on the amount of the nucleic acid to be degraded.
  • the amount of EMA contained in the nucleic acid degrading agent at the time of use is 1 ⁇ g / ml to: L000 ⁇ g / m 1, preferably 10 ⁇ g / ml to: L000 ⁇ g / ml, particularly preferably 100 ⁇ g / ml to: L000 ⁇ g Zml concentration. Nucleic acid can be effectively degraded by allowing such a concentration of the nucleic acid degrading agent to act on the target.
  • nucleic acid degrading agent of the present invention can be used in a liquid or EMA itself. It may be appropriately diluted and dissolved occasionally.
  • the nucleic acid degrading agent of the present invention can also be used as an antibacterial agent.
  • the nucleic acid decomposing agent of the present invention is used as an antibacterial agent, it is the same as the nucleic acid decomposing agent.
  • visible light When decomposing nucleic acids, visible light is irradiated.
  • the wavelength of visible light to be irradiated is 380 nm to 800 nm, preferably 450 nm to 600 nm.
  • the visible light may be a single wavelength or a mixed light distributed in the above range. Further, it may contain light having a wavelength outside the above range.
  • the light source power and the distance to the sample can be appropriately selected as long as a sufficient amount of irradiation can be performed on the target sample.
  • visible light can also be irradiated by placing the target of the nucleic acid decomposing agent or antibacterial agent of the present invention under irradiation of natural light such as sunlight.
  • nucleic acid degradation agent of the present invention for example, 0.5 5: when irradiated with light intensity of LOOWZcm 2, 5 minutes to 1 hour, preferably about sufficiently nuclease effect in about 5 to 30 minutes Can be demonstrated.
  • the irradiation time is about 5 minutes to 1 hour, preferably 5 to 30 minutes, and the nucleic acid degradation effect can be sufficiently exerted.
  • the effect of the nucleic acid decomposing agent of the present invention can be evaluated by electrophoresis of nucleic acids before and after the addition of the nucleic acid decomposing agent and the visible light irradiation treatment, and comparing them.
  • it when applied to bacteria, it can also be indirectly evaluated by measuring the number of viable bacteria.
  • the nucleic acid degrading agent of the present invention may be used alone or in combination with other components.
  • other components include known nucleolytic agents, such as endonucleases such as exonuclease and restriction enzymes for DNA and RNA, and the combined use with these can further enhance the nucleolytic effect. .
  • the usage form of the antibacterial agent of the present invention is not particularly limited. For example, it may be added to the solution and used, or an appropriately diluted solution may be sprayed.
  • the dosage form of the antibacterial agent of the present invention can be appropriately selected according to the use, usage form, and the like, and is not particularly limited, and examples thereof include liquids, granules, tablets and the like.
  • the antibacterial agent of the present invention may be used alone or in combination with other components.
  • antibacterial agents and fungicides such as antibiotics, alcohols such as ethanol and isopropyl alcohol, phenol and cresol, halogen compounds (chlorine, iodine, etc.) and peroxides (ozone, ozone, etc.).
  • halogen compounds chlorine, iodine, etc.
  • peroxides ozone, ozone, etc.
  • oxidants such as hydrogen peroxide
  • heavy metal compounds and the like
  • the antibacterial agent of the present invention can be suitably used, for example, for disinfection of instruments and the like and disinfection of wall surfaces and floor surfaces.
  • by spraying the antibacterial agent of the present invention in indoor spaces it is possible to sterilize bacteria (pathogenic Escherichia coli, tuberculosis bacteria, Clostridium botulinum, Bacillus anthracis, etc.) that are highly likely to become serious when infected to humans. Very useful.
  • the antibacterial agent of the present invention can be directly degraded by acting on nucleic acids in cells, it is unnecessary to consider the problem of resistance in bacteria. Therefore, it has excellent antibacterial activity and has a broad antibacterial spectrum.
  • the prepared nucleic acid solution was adjusted to 175 ng / ⁇ 1 with sterile water, and this nucleic acid solution was collected in a microtube for 4 minutes, and each of the above EMA aqueous solutions (0, 0.02, 0. 2, 2, 20, 200 gZml) was added to the plate and left at 4 ° C for 1 hour in the dark. Thereafter, the sample was irradiated with visible light from a 500 W halogen bulb (FLOOD PRF 100V 500W; Iwasaki Electric, Tokyo) for 20 minutes at a distance of 2 Ocm from the sample, and the entire amount was electrophoresed on a 0.7% agarose gel.
  • FLOOD PRF 100V 500W Iwasaki Electric, Tokyo
  • E-EcoT14 I digest (Takara Bio Inc.) was used as a molecular weight marker.
  • the gel after electrophoresis was stained with 1 ⁇ g Zml bromide solution, irradiated with UV 254 nm using a UV transilluminator, and the image was recorded on Polaroid film 667.
  • a non-treated ( ⁇ : 0 / ⁇ 8 ⁇ 1, non-irradiated visible light) nucleic acid solution was used for electrophoretic movement in the same manner.
  • Figure 1 shows the results of this test. As a result, it was confirmed that the band derived from chromosomal DNA around 19,329 bp gradually decreased from lOOngZml to 1 ⁇ gZml and disappeared remarkably at 10 ⁇ gZml. It became apparent that chromosomal DNA in nucleic acids isolated from fungi (E. coli) was degraded.
  • Test method EMA was dissolved in sterilized water to prepare a 1000 ⁇ g ZmlEMA solution, which was aseptically filtered through a 0.2 ⁇ m filter (Minisart-plus; manufactured by Sartorius AG). Using this EMA solution, the final concentration force of EMA SO (unattached caro) for 1.0 ml of live suspension of E. coli / DH5 ⁇ strain of 1.0 X 10 6 CFU / ml .01, 0.1, 1, 10, and 100 g / ml were added, and the mixture was allowed to stand at 4 ° C for 1 hour in the dark.
  • EMA SO unattached caro
  • the mixture was cooled and centrifuged at 15,000 Xg and 4 ° C for 10 minutes, the supernatant was removed, and 0.4 ml of 70% cold ethanol was added to wash the pellet (precipitate) (hereinafter referred to as “the pellet”).
  • the above-mentioned series of operations may be abbreviated as “phenol Z black mouth form extraction”).
  • 0.5 ml of 10 mM Tris-HCl buffer + lmM EDTA ′ 2Na solution (TE buffer 1) was added to the pellet, and the mixture was left overnight at 4 ° C. to dissolve the nucleic acid.
  • Evaluate the concentration of the purified nucleic acid solution by UV260nm absorbance (nucleic acid 50 / z gZml OD l, cell length lcm: OD)
  • the purity of the purified nucleic acid was evaluated by OD / OD.
  • Each nucleic acid solution was prepared at 175 ng / ⁇ l, and 4 ⁇ l was electrophoresed on a 0.7% agarose gel.
  • E-EcoT14 I digest (Takara Bio Inc.) was used as a molecular weight marker.
  • the gel after electrophoresis was stained with a 1 ⁇ g / ml bromide solution, irradiated with UV 254 nm using a UV transilluminator, and the image was recorded on Polaroid Film 667.
  • Con The trawl used was a nucleic acid extracted from an untreated E. coli suspension (EMA 0 ⁇ g / m without visible light irradiation).
  • Figure 2 shows the results of this test. As a result, it was confirmed that the band derived from chromosomal DNA at around 19,329 bp gradually decreased at 10 ⁇ gZml, and disappeared markedly at 100 ⁇ gZml. It was revealed that the chromosomal DNA present in) was degraded.
  • Ethidium monoazide was dissolved in sterilized water to prepare a 1000 ⁇ g ZmlEMA solution, which was sterile filtered through a 0.2 ⁇ m filter (Minisart-plus; manufactured by Sartorius AG). Using the EMA solution, 1. OX 10 6 CFU / ml of E. coli / DH5 a strain live cell suspension lml, EMA final concentration is 0 (not added), 0.01, After adding to 0.1, 1, 10, and 100 gZml, the mixture was allowed to stand at 4 ° C for 1 hour in the dark.
  • EMA Ethidium monoazide
  • the antimicrobial effect of EMA is shown in Figure 3 as a dose response curve.
  • E MA was reacted with E. coli at a concentration of 10 / z gZml
  • the number of viable bacteria was reduced to the order of 10 2 CFU / ml compared to the initial number of bacteria, and 100 g / ml
  • the reaction is carried out at a concentration of 1, the number of viable bacteria can be reduced to the order of 10 5 CFUZml compared to the number of first viable bacteria. It was confirmed.
  • the nucleic acid was dissolved in 9 ml of sterilized water. Gently load the prepared nucleic acid solution onto the top of a 32 ml sucrose density gradient (using 16 ml of 10% sucrose solution and 16 ml of 40% sucrose solution), and swing rotor (Hitachi Koki Co., Ltd .: RPS-2 7-2) was used for ultracentrifugation treatment at 20 ° C and 26, OOOrpm for 18 hours. After centrifugation, a hole was made in the bottom of the sucrose density gradient solution, and 1 ml was fractionated.
  • Figure 4 shows the results of this test.
  • Fig. 4 shows the results of observation of E. coli chromosomal DNA under an electron microscope after EMA was applied at a concentration of 0 to 1 O / z gZml and irradiated with visible light (500 W halogen bulb, 20 minutes).
  • visible light 500 W halogen bulb, 20 minutes.
  • the nucleic acid degrading agent of the present invention has the property of permeating the cell walls of living bacteria and can cleave the chromosomal DNA and RNA of the bacteria at random, bacteriology and living In the chemical field, it is extremely useful as an antibacterial agent against environmental microorganisms, especially as a disinfectant. Further, the nucleic acid degrading agent of the present invention can be suitably used in the research field.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Wood Science & Technology (AREA)
  • Environmental Sciences (AREA)
  • Zoology (AREA)
  • Dentistry (AREA)
  • Engineering & Computer Science (AREA)
  • Plant Pathology (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Oncology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Communicable Diseases (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Saccharide Compounds (AREA)

Abstract

エチジウムモノアジドを有効成分とする殺菌、消毒剤等の抗菌剤として有用な核酸分解剤を提供する。

Description

明 細 書
核酸分解剤および核酸の分解方法
技術分野
[0001] 本発明は、ェチジゥムモノアジド (ェチジゥムモノアザイドとも呼ぶ)を有効成分とす る核酸分解剤、および細胞を含む試料にェチジゥムモノアジドを添加し、当該細胞を 含む試料に可視光線を照射して細胞内の核酸を分解する工程を含む、細胞の核酸 を分解する方法である。
背景技術
[0002] 従来、殺菌 ·消毒剤としては、アルコールやクレゾール、酸化剤等が代表的薬剤と して汎用されているが、これらはタンパク質変性剤であり、細菌を死滅させる点におい ては即効性に欠けるものであった。また、抗菌剤としては、細胞壁合成阻害剤、タン パク質合成阻害剤、核酸代謝阻害剤、エネルギー代謝阻害剤、代謝拮抗剤等が例 示されるが、抗菌剤としての作用の発揮には、いずれも細菌の増殖が関与しており、 瞬時に効果を期待するという点では十分ではな力つた。
[0003] ェチジ 1ノムモノアント (3— ammo— 8— azido— 5— ethy卜 6— pheny卜 pnenanthridmium chlon de :以下 EMAと略記することがある)は、 DNAに光ラベリングを行うために合成され た臭化工チジゥムを基本骨格とするアジドィ匕合物である (非特許文献 1)。また、 EM Aは、真核細胞のトポイソメラーゼポイズンとして知られており(非特許文献 2)、核染 色剤であるプロビジゥムョーダイドのような薬剤と同様に、細胞の生死判別剤として利 用されて!ヽた (非特許文献 3)。
[0004] し力しながら、 EMAが細胞の核酸をランダムに切断すると 、う作用につ 、ては従来 より知られていなかった。
非特許文献 1 :ヌクレイック 'ァシッズ'リサーチ(Nucleic Acids Res.)、第 5卷、 1978年 、第 4891— 4903頁
非特許文献 2 :バイオケミストリー(Biochemistry)、第 36卷、第 50号、 1997年、第 15 884〜15891頁
非特許文献 3:アプライド ·アンド ·エンバイ口メンタル ·マイクロバイオロジー(Appl. Env iron. Microbiol.)、第 71卷、第 2号、 2005年、第 1018〜1024頁
発明の開示
[0005] 本発明は、殺菌、消毒剤等の抗菌剤として有用な核酸分解剤を提供することを課 題とする。
[0006] 本発明者らは、抗菌剤、特に細菌を死滅させる薬剤について鋭意検討を重ね、細 菌の細胞壁を透過して、直接、細菌の核酸に作用し、当該核酸を切断する核酸分解 剤に着目し、このような作用を有する物質について探索を行った結果、アジドィ匕合物 である EMAが、生細菌の細胞壁を透過し、核酸を切断する効果を有することを見出 し、本発明を完成させた。
[0007] 前記課題を解決する本発明の第一の発明は、ェチジゥムモノアジドを有効成分と する核酸分解剤である。
前記課題を解決する本発明の第二の発明は、第一の発明の核酸分解剤を含む抗 菌剤である。
前記課題を解決する本発明の第三の発明は、核酸を含む試料にェチジゥムモノア ジドを添加する工程、および当該核酸を含む試料に可視光線を照射して試料中の 核酸を分解する工程を含む、核酸を含む試料中の核酸を分解する方法である。 前記課題を解決する本発明の第四の発明は、細胞を含む試料にェチジゥムモノア ジドを添加する工程、および当該細胞を含む試料に可視光線を照射して細胞内の 核酸を分解する工程を含む、細胞内の核酸を分解する方法である。
図面の簡単な説明
[0008] [図 1]インビト口における EMAが大腸菌染色体 DNAおよび rRNA等に及ぼす影響を 示す電気泳動写真である。 Mは分子量マーカー( ZECOT14 I digest)を表す。 IR( -)は可視光照射無し、 IRは可視光照射(500Wハロゲン電球、 20分)を表す。 E0- 1 00 nまたは μの数値は EMAの終濃度(0-100 ng/mlまたは μ g/ml)を表す。
[図 2]インビボにおける EMAが大腸菌染色体 DNAおよび rRNA等に及ぼす影響を 示す電気泳動写真である。 Mは分子量マーカー( ZECOT14 I digest)を表す。 IR( -)は可視光照射無し、 IRは可視光照射(500Wハロゲン電球、 20分)を表す。 E0- 1 00 nまたは μの数値は EMAの終濃度(0-100 ng/mlまたは μ g/ml)を表す。 [図 3]EMAによる抗菌効果及び用量反応曲線である。 X軸は EMAの終濃度 g/ ml)を示す。 Y軸は各 EMA処理区における生菌数(CFU/ml)の初発生菌数に対す る減少を常用対数によって表示して 、る。
[図 4]大腸菌 E. coli DH5 a染色体 DNAを EMA及び可視光照射処理(500Wハロゲ ン電球、 20分)し、電子顕微鏡下で観察した結果を示す写真である。 EMAの終濃度 は、(1) 0、 (2) 0.0: g/ml、 (3) 1
Figure imgf000005_0001
発明を実施するための最良の形態
[0009] 次に、本発明の好ましい実施形態について詳細に説明する。ただし、本発明は以 下の好ましい実施形態に限定されず、本発明の範囲内で自由に変更することができ るものである。尚、本明細書において百分率は特に断りのない限り質量による表示で ある。
[0010] 本発明の核酸分解剤は、単離された核酸に直接作用してランダムに分解する効果 を有するとともに、核酸を含む試料中に存在する核酸に対しても、有効成分である E MAが試料中に浸透して直接作用し、それらの核酸をランダムに切断する効果を有 する。
なお、本発明において、核酸には DNA及び RNAが含まれる。本発明の核酸分解 剤が対象とする核酸には、 1本鎖 DNA、 2本鎖 DNA、 1本鎖 RNA、及び 2本鎖 RN Aが含まれる。本発明を適用する試料にはこれらのいずれが含まれていても良ぐ 2 種以上が含まれていても良い。また、本発明の核酸分解剤の対象としては、例えば、 染色体 DNA及びプラスミド DNA、並びに rRNA、 mRNA及び tRNA等が挙げられ る。
[0011] 核酸を含む試料としては、全ての生物細胞、例えば、原核細胞 (バクテリア)や真核 細胞等 (原生生物、真菌、植物、動物等)、ウィルス等が挙げられるが、バクテリアや 真菌、ウィルス等が特に好ましい。
[0012] 本発明の核酸分解剤は、バクテリアや真菌、ウィルス等に作用させた場合、細胞内 の核酸を直接分解する作用により、それらのバクテリアや真菌、ウィルス等の増殖を 停止させ、死滅させる効果を有する。従って、例えば、本発明の核酸分解剤は、環境 微生物に対する抗菌剤若しくは殺菌 ·消毒剤等、又は抗ウィルス剤等として使用する ことができる。
[0013] 本発明の抗菌剤が対象とする環境微生物は特に限定されないが、例としてパクテリ ァ及び真菌類が挙げられる。ノ クテリアにはグラム陽性菌及びグラム陰性菌のいず れもが含まれる。グラム陽性菌としては、ブドウ球菌 (スタフイロコッカス'ェビダーミデ イス(Staphylococcus epidermidis) )等のスタフイロコッカス属細菌、ストレプトコッカス 属細菌、リステリア属細菌、バチルス属細菌、マイコバクテリゥム属細菌、クロストリジゥ ム属細菌等が挙げられる。また、グラム陰性菌としては、ェシエリヒア'コリ(Escherichia coli)等のエシ リヒア属細菌、ェンテロバクター属細菌に代表される腸内細菌群、サ ルモネラ属細菌、ビブリオ属細菌、シユードモナス属細菌、レジオネラ属細菌、カンピ ロバクター属細菌等が挙げられる。
[0014] 本発明の抗菌剤が対象とする真菌類は特に限定されないが、カンジダ属細菌、ァ スペルギルス属細菌、サッカロマイセス属細菌、ぺ-シリウム属細菌等が挙げられる。
[0015] 本発明の有効成分である、ェチジゥムモノアジド(3-amino-8-azido-5-ethy卜 6-phe nyl-phenanthridinium chloride: EMA)は、化学式(1)で示される化合物である。ェチ ジゥムモノアジドは巿販のものを使用することが可能である。
[化 1]
Figure imgf000006_0001
本発明の核酸分解剤の使用量は、細胞外、又は細胞内のいずれの核酸を分解す るかに応じて、また、分解する核酸の量に応じて適宜選択することが可能である。ま た、使用時に核酸分解剤中に含まれる EMA量としては、 1 μ g/ml〜: L000 μ g/m 1、好ましくは、 10 μ g/ml〜: L000 μ g/ml,特に好ましくは、 100 μ g/ml〜: L000 μ gZmlの濃度が挙げられる。このような濃度の核酸分解剤を対象に作用させること によって、効果的に核酸を分解することが可能である。
なお、本発明の核酸分解剤は液体であっても、 EMAそのものであっても良ぐ使用 時に適宜希釈、溶解すればよい。
[0017] また、本発明の核酸分解剤は抗菌剤としても使用可能である。本発明の核酸分解 剤を抗菌剤として使用する場合も、核酸分解剤と同様である。
[0018] また、核酸を分解させる際には、可視光線を照射する。照射する可視光線の波長 は、 380nm〜800nm、好ましくは 450nm〜600nmである。また、可視光線は単波 長であっても良ぐ前記範囲に分布する混合光であってもよい。また、上記範囲外の 波長の光を含んでいてもよい。なお、照射の際は、対象となる試料に対して十分量照 射が可能であれば、光源力も試料までの距離は適宜選択することが可能である。
[0019] なお、本発明の核酸分解剤または抗菌剤の対象を、太陽光など自然光の照射下 に置くことによつても、可視光線を照射することができる。
[0020] また、本発明の核酸分解剤は、例えば、 0. 5〜: LOOWZcm2の光強度で照射した 場合、 5分〜 1時間程度、好ましくは 5〜30分程度で十分に核酸分解効果を発揮さ せることができる。
例えば、 500Wのハロゲン電球を 20cmの距離力も照射する場合、照射時間は 5分 〜1時間程度、好ましくは 5〜30分で十分に核酸分解効果を発揮させることが可能 である。
[0021] 本発明の核酸分解剤の効果は、核酸分解剤の添加及び可視光線照射処理の前 後における核酸を電気泳動し、それらを比較することによって評価することができる。 また、菌に対して適用した際には、生菌数を測定することによつても間接的に評価す ることがでさる。
[0022] 本発明の核酸分解剤は、単独で使用してもよぐ他の成分と併用してもよい。他の 成分としては、公知の核酸分解剤、例えば DNAや RNAに対するェキソヌクレアーゼ や制限酵素類等のエンドヌクレアーゼ等が挙げられ、これらと併用することによってさ らに核酸分解効果を高めることができる。
[0023] 本発明の抗菌剤の使用形態は特に限定されないが、例えば、溶液中に添加して使 用してもよぐ適宜希釈した溶液を散布してもよい。また、本発明の抗菌剤の剤型は、 用途、使用形態等に応じて適宜選択することができ、特に限定されないが、例えば、 液剤、粒剤、錠剤等が挙げられる。 [0024] また、本発明の抗菌剤は、単独で使用してもよぐ他の成分と併用してもよい。他の 成分としては、公知の抗菌剤や殺菌剤、例えば、抗生物質、エタノールやイソプロピ ルアルコール等のアルコール類、フエノールやクレゾール、ハロゲン化合物(塩素、ョ ード等)や過酸化物 (オゾン、過酸化水素等)等の酸化剤、重金属化合物等が挙げら れ、これらと併用することによりさらに抗菌効果を高めることができる。
[0025] 本発明の抗菌剤は、例えば、器具等の消毒、壁面や床面等の消毒に好適に用い ることができる。また、本発明の抗菌剤を室内空間に散布することにより、ヒトへ感染し た場合に重篤化の恐れが高い細菌類 (病原性大腸菌、結核菌、ボツリヌス菌、炭疽 菌等)の殺菌に極めて有用である。
[0026] 本発明の抗菌剤は、細胞内の核酸に直接作用して分解させることが可能であること から、菌における耐性に対する問題を殆ど考慮する必要が無い点で、公知の抗菌剤 に比して優れた抗菌活性を有し、また、広い抗菌スペクトルを有する。
[0027] 次に実施例を示して本発明を更に詳細に説明するが、本発明は以下の実施例に 限定されるものではない。
実施例 1
[0028] インビト口における EMAが大腸菌染色体 DNA、および rRNA等の核酸に及ぼす 影響を調べるために行った。
(1)試験方法
1. O X 106CFU/mlの大腸菌 E. coli/DH5 α株の生菌懸濁液 lmlについて冷 却遠心処理を行ない、上清を除いたペレットに、 0. 5mlの 10mMトリス-塩酸緩衝溶 液(pH8. 0)を添加し、 1250UZmlプロティナーゼ K溶液を 10 1、および 10%SD S溶液を 200 /z l添加後、 50°Cにて、一晩、溶菌操作を行った。
[0029] その後、各処理液を 2ml用マイクロチューブ 2本に半量ずつ分注し、それぞれに飽 和フエノール溶液 0. 5mlを添カ卩して 15分間穏やかに混合した後、クロ口ホルムを 0. 5ml添加して 5分間穏やかに混合した。次いで、 6, 000 X g、 4°Cで 10分間冷却遠 心分離を行い、上層の水層部分を新しく用意した 2ml容マイクロチューブに移し、 3 M酢酸ナトリウム(pH5. 2)を 70 1、および 99. 5%冷エタノール 1. 21mlをそれぞ れ添加して穏やかに混合した。次いで、 15, 000 X g、 4°Cで 10分間冷却遠心分離 を行い、上清を除去した後、 70%冷エタノールを 0. 4ml添カ卩して、ペレット(沈殿物) を洗浄した (以下、上記一連の操作をフエノール Zクロ口ホルム抽出と略記することが ある。)。その後、ペレットに 10mMトリス—塩酸緩衝液(pH8. 0) + lmM EDTA- 2 Na溶液 (TEバッファー)を 0. 5ml添加し、 4°Cにて一晩放置して核酸を溶解した。精 製核酸溶液の濃度を UV260nmの吸光値 (核酸 gZmlを OD= l、セル長 lcm : OD )により評価した。
260
[0030] 調製した核酸溶液は滅菌水で 175ng/ μ 1に調整し、この核酸溶液をマイクロチュ ーフ Ίこ 4 1分取し、それぞれ【こ EMA水溶液(それぞれ 0、 0. 02、 0. 2、 2、 20、 20 0 gZml)を 4 1添カ卩して、遮光下、 4°Cで 1時間放置した。その後、サンプルから 2 Ocm離した状態で 500Wのハロゲン電球(FLOOD PRF 100V 500W;岩崎電気、東 京)の可視光線を 20分間照射し、全量を 0. 7%ァガロースゲルにより電気泳動した。 分子量マーカーとしてえ- EcoT14 I digest (宝バイオ社製)を使用した。泳動後のゲ ルは 1 μ gZml臭化工チジゥム溶液で染色し、 UVトランスイルミネーターを用いて U V254nmで照射し、その映像をポラロイドフイルム 667に記録した。コントロールとし て無処理 (ΕΜΑ: 0 /ζ 8Ζπι1、可視光未照射)の核酸溶液を用いて、同様に電気泳 動した。
[0031] (2)試験結果
本試験の結果を図 1に示す。その結果、 19, 329bp付近の染色体 DNA由来のバ ンドは、 EMAの濃度が lOOngZmlから 1 μ gZmlにかけて徐々に減少し、 10 μ gZ mlの時点で顕著に消失することが確認され、 EMAにより生菌(大腸菌)から単離した 核酸中の染色体 DNAが分解されることが明ら力となった。
また、 EMAの濃度が 1 μ gZmlで、 rRNA(16SrRNA、 23SrRNA)のバンド強度 が減少し、 10 gZml以上において消失することが確認され、 rRNAも分解されるこ とが明ら力となった。
実施例 2
[0032] インビボにおける EMAが大腸菌染色体 DNA、および rRNA等の核酸に及ぼす影 響を調べるために行った。
(1)試験方法 EMAを滅菌水で溶解して 1000 μ gZmlEMA溶液を調製し、これを 0. 2 μ mのフ ィルター(Minisart- plus;ザルトリウス AG社製)により無菌ろ過した。当該 EMA溶液を 用いて、 1. 0 X 106CFU/mlの大腸菌 E. coli/DH5 α株の生菌懸濁液 lmlに対 して、 EMAの終濃度力 SO (未添カロ)、 0. 01、 0. 1、 1、 10、及び 100 g/mlとなるよ うに添加後、遮光下 4°C、 1時間放置した。
[0033] その後、氷上で前記生菌懸濁液から 20cm離した状態で、 500Wのハロゲン電球( FLOOD PRF 100V 500W;岩崎電気、東京)の可視光線を 20分間照射した。 15, 00 0 X g、 4°C、 10分間で冷却遠心処理を行ない、上清を除き、核酸に共有結合しなか つた EMAの可視光照射物力 水と反応してできた生成物(ヒドロキシアミノエチジゥ ム)を除去した。ペレットに、 0. 5mlの 10mMトリス—塩酸緩衝溶液 (pH8. 0)を添カロ し、 1250U/mlプロティナーゼ K溶液を 10 1、および 10%SDS溶液を 200 1添 加後、 50°Cにて、一晩、溶菌操作を行った。
[0034] 各処理液を、 2ml用マイクロチューブ 2本に半量ずつ分注し、それぞれに飽和フエ ノール溶液 0. 5mlを添カ卩して 15分間穏やかに混合した後、クロ口ホルムを 0. 5ml添 カロして 5分間穏やかに混合した。次いで、 6, 000 X g、 4°Cで 10分間冷却遠心分離 を行い、上層の水層部分を新しく用意した 2ml容マイクロチューブに移し、 3M酢酸 ナトリウム(PH5. 2)を 70 1、および 99. 5%冷エタノール 1. 21mlをそれぞれ添カロ して穏やかに混合した。次いで、 15, 000 X g、 4°Cで 10分間冷却遠心分離を行い、 上清を除去した後、 70%冷エタノールを 0. 4ml添加して、ペレット(沈殿物)を洗浄し た(以下、上記一連の操作をフエノール Zクロ口ホルム抽出と略記することがある。)。 その後、ペレットに 10mMトリス塩酸緩衝液 + lmM EDTA' 2Na溶液(TEバッファ 一)を 0. 5ml添加し、 4°Cにて一晩放置して核酸を溶解した。精製核酸溶液の濃度 を UV260nmの吸光値(核酸 50 /z gZmlを OD = l、セル長 lcm : OD )により評価
260 し、精製核酸の純度を OD /ΟΌ により評価した。
260 280
[0035] 各核酸溶液を 175ng/ μ 1〖こ調製し、それぞれ 4 μ 1を、 0. 7%ァガロースゲルにて 電気泳動した。分子量マーカーとしてえ- EcoT14 I digest (宝バイオ社製)を使用した 。泳動後のゲルは 1 μ g/ml臭化工チジゥム溶液で染色し、 UVトランスイルミネータ 一を用いて UV254nmで照射し、その映像をポラロイドフイルム 667に記録した。コン トロールとして、大腸菌生菌懸濁液の無処理 (EMA 0 μ g/m 可視光未照射)の ものについて核酸抽出を行ったものを使用した。
[0036] (2)試験結果
本試験の結果を図 2に示す。その結果、 19, 329bp付近の染色体 DNA由来のバ ンドは、 EMAの濃度が 10 μ gZml力 徐々に減少し、 100 μ gZmlの時点で顕著 に消失することが確認され、 EMAにより生菌(大腸菌)内に存在する染色体 DNAが 分解されることが明らかとなった。
また、 EMAの濃度が 10 μ gZmlで、 rRNA(16SrRNA、 23SrRNA)のバンド強 度が減少し、生菌(大腸菌)内の rRNAも分解されることが明らかとなった。
実施例 3
[0037] EMAによる生菌に対する抗菌効果を調べるために行った。
(1)試験方法
ェチジゥムモノアジド (EMA)を滅菌水で溶解して 1000 μ gZmlEMA溶液を調製 し、これを 0. 2 μ mのフィルター(Minisart- plus;ザルトリウス AG社製)により無菌ろ過 した。当該 EMA溶液を用いて、 1. O X 106CFU/mlの大腸菌 E. coli/DH5 a株 の生菌懸濁液 lmlに対して、 EMAの終濃度が 0 (未添加)、 0. 01、 0. 1、 1、 10、及 び 100 gZmlとなるように添加後、遮光下 4°C、 1時間放置した。
[0038] その後、氷上で前記生菌懸濁液から 20cm離した状態で、 500Wのハロゲン電球( FLOOD PRF 100V 500W;岩崎電気、東京)の可視光線を 20分間照射した。 15, 00 0 X g、 4°C、 10分間冷却遠心処理を行ない、上清を除き、核酸に共有結合しなかつ た EMAの可視光照射物力 水と反応してできた生成物(ヒドロキシアミノエチジゥム) を除去した。ペレットに同量の生理食塩水を注いだ後、段階希釈を行ない L寒天平 板培地を用いて 37°C、 24時間培養により生菌数を測定した。
[0039] (2)試験結果
EMAによる抗菌効果を、用量反応曲線として図 3に示す。その結果、大腸菌に E MAを 10 /z gZmlの濃度で反応させた場合に、初発生菌数と比較して、生菌数が 1 02 CFU/mlのオーダーで低減し、 100 g/mlの濃度で反応させた場合に、初発 生菌数に比して生菌数は 105CFUZmlのオーダーで低減させることが可能であるこ とが確認された。
すなわち、 EMAは大腸菌(生菌)に対して抗菌効果を有することが明らかとなった 実施例 4
[0040] インビト口における EMAが大腸菌染色体 DNAに及ぼす影響を、電子顕微鏡で観 察するために行った。
(1)試験方法
前記実施例 1と同様の方法により、核酸を抽出した後、滅菌水 9mlに核酸を溶解し た。調製した核酸溶液を 32ml蔗糖密度勾配(16mlの 10%蔗糖溶液と 16mlの 40% 蔗糖溶液を使用)の上端に静かにロードし、スイングローター (日立工機社製: RPS- 2 7-2)を用いて、 20°Cにおいて 26, OOOrpmで 18時間の超遠心処理を行った。遠心 処理後、蔗糖密度勾配溶液の底に穴を空け、 1mlずつ分画した。
[0041] その後、各分画液に対し、 10% (vol/vol)となるように 3M酢酸ナトリウム溶液 (pH5 . 2)を添加し、更に 2倍量の 99. 5%エタノールを添カ卩した。次いで、 4°Cにおいて 15 , 000 X gで 10分間冷却遠心処理を行ってペレットを回収し、このペレットを 70%ェ タノールで洗浄後、滅菌水 100 1で溶解した。
[0042] 各分画液から得られたサンプルのうち、ァガロースゲル電気泳動で、 48kbpの長!ヽ 染色体 DNAのみを含むサンプルについて、さらに滅菌水を用いて DNA濃度が 175 となるように調製し、当該 DNA溶液 4 1に対して、 EMA水溶液(0、 0. 02、 2、 gZml)を 4 1添カ卩し、遮光下で、 4°C、 1時間放置した。その後、氷上で前 記の 500Wノ、ロゲン電球の可視光線を 20分間照射した。
[0043] 前記可視光照射後の DNA溶液 (8 1)について、滅菌水を用いて 5倍希釈(32 1 添加)した。 0. 02%チトクローム C溶液 1 μ 1を、 8%ホルムアルデヒド溶液 5 μ 1に添加 し、この全量を、先ほどの DNA溶液 40 1に混合し、 10分間室温にて放置した。そ の後、チトクローム C膜をピンセットで採取し、 90%エタノールで脱水処理を行った。 次いで、 0. 5mM酢酸ウラニウム Ζ0. 5mM塩酸 Ζ90%エタノール溶液で染色後、 90%エタノール、およびイソペンタンで脱水処理した。
電子顕微鏡で観察する際、シャドウイングを白金 パラジウム粉末で行い、電子顕 微鏡(日本電子社製、 JEOL T-2000 EX)にて写真撮影を行った。
[0044] (2)試験結果
本試験の結果を図 4に示す。図 4は大腸菌の染色体 DNAについて、 EMAを 0〜1 O /z gZmlの濃度で作用させ、可視光照射(500Wハロゲン電球、 20分間)後に電子 顕微鏡下で観察した結果を示している。その結果、 EMAを 0〜0. 01 μ gZmlで反 応させても染色体 DNAが切断されるという影響は観察されな力つた力 1 μ gZml以 上で反応させることによって、染色体 DNAの切断現象が確認された。この結果は、 実施例 1における結果とも対応し、 EMAによる染色体 DNAの切断現象が視覚的に 確認された。
産業上の利用可能性
[0045] 本発明の核酸分解剤は、生細菌の細胞壁を透過する性質を有し、当該細菌の染 色体 DNAや RNA等をランダムに切断することが可能であることから、細菌学及び生 化学分野において、環境微生物に対する抗菌剤、特に殺菌'消毒剤として極めて有 用である。また、本発明の核酸分解剤は、研究分野にも好適に使用することができる

Claims

請求の範囲
[1] ェチジゥムモノアジドを有効成分とする核酸分解剤。
[2] 請求項 1に記載の核酸分解剤を含む抗菌剤。
[3] 核酸を含む試料にェチジゥムモノアジドを添加する工程、および当該核酸を含む 試料に可視光線を照射して試料中の核酸を分解する工程を含む、核酸を含む試料 中の核酸を分解する方法。
[4] 細胞を含む試料にェチジゥムモノアジドを添加する工程、および当該細胞を含む 試料に可視光線を照射して細胞内の核酸を分解する工程を含む、細胞内の核酸を 分解する方法。
PCT/JP2007/064073 2006-12-04 2007-07-17 核酸分解剤および核酸の分解方法 WO2008068923A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP07790835A EP2090169A4 (en) 2006-12-04 2007-07-17 NUCLEIC ACID-DEGRADING AGENT AND METHOD OF REMOVING NUCLEIC ACID
US12/092,677 US20100170777A1 (en) 2006-12-04 2007-07-17 Agent for degrading a nucleic acid and method of degrading a nucleic acid
CA2633591A CA2633591C (en) 2006-12-04 2007-07-17 Agent for degrading a nucleic acid and method of degrading a nucleic acid
AU2007302638A AU2007302638B2 (en) 2006-12-04 2007-07-17 Agent for degrading a nucleic acid and method of degrading a nucleic acid
CN2007800044563A CN101378657B (zh) 2006-12-04 2007-07-17 核酸降解剂和核酸的降解方法
NO20082129A NO20082129L (no) 2006-12-04 2008-05-07 Middel til nedbrytning av nukleinsyrer samt fremgangsmate for nedbrytning av nukleinsyrer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006326825A JP4113556B2 (ja) 2006-12-04 2006-12-04 核酸分解剤および核酸の分解方法
JP2006-326825 2006-12-04

Publications (1)

Publication Number Publication Date
WO2008068923A1 true WO2008068923A1 (ja) 2008-06-12

Family

ID=39491837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/064073 WO2008068923A1 (ja) 2006-12-04 2007-07-17 核酸分解剤および核酸の分解方法

Country Status (10)

Country Link
US (1) US20100170777A1 (ja)
EP (1) EP2090169A4 (ja)
JP (1) JP4113556B2 (ja)
KR (1) KR101017811B1 (ja)
CN (2) CN101378657B (ja)
AU (1) AU2007302638B2 (ja)
CA (1) CA2633591C (ja)
NO (1) NO20082129L (ja)
RU (1) RU2388473C2 (ja)
WO (1) WO2008068923A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015053293A1 (ja) * 2013-10-07 2015-04-16 三井化学株式会社 細菌dna増幅用のpcr用プライマーセット、細菌種の検出及び/または同定用キット及び細菌種の検出及び/または同定方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9458498B2 (en) 2011-01-24 2016-10-04 Takara Bio Inc. Method for modifying nucleic acids
CN108333350A (zh) * 2017-12-19 2018-07-27 宝瑞源生物技术(北京)有限公司 免疫探针降解pcr层析核酸检测法
WO2020027133A1 (ja) * 2018-07-30 2020-02-06 株式会社シーライブ 滅菌・核酸分解用組成物

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63313598A (ja) * 1987-03-11 1988-12-21 バイエル・コーポレーシヨン 核酸含有試料中の核酸配列のアツセイ
JP2003530118A (ja) * 2000-04-10 2003-10-14 マトフォルスク 細胞検出方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4695453A (en) * 1985-01-24 1987-09-22 Henkel Corporation Thickened alcoholic antimicrobial compositions
US5348855A (en) * 1986-03-05 1994-09-20 Miles Inc. Assay for nucleic acid sequences in an unpurified sample
US6815172B1 (en) * 1999-06-11 2004-11-09 The United States Of America As Represented By The Department Of Health And Human Services Methods and compositions for opsonophagocytic assays
CA2615984C (en) * 2005-07-21 2013-04-23 Morinaga Milk Industry Co., Ltd. Method for detection of microorganism and kit for detection of microorganism

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63313598A (ja) * 1987-03-11 1988-12-21 バイエル・コーポレーシヨン 核酸含有試料中の核酸配列のアツセイ
JP2003530118A (ja) * 2000-04-10 2003-10-14 マトフォルスク 細胞検出方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015053293A1 (ja) * 2013-10-07 2015-04-16 三井化学株式会社 細菌dna増幅用のpcr用プライマーセット、細菌種の検出及び/または同定用キット及び細菌種の検出及び/または同定方法
JPWO2015053293A1 (ja) * 2013-10-07 2017-03-09 三井化学株式会社 細菌dna増幅用のpcr用プライマーセット、細菌種の検出及び/または同定用キット及び細菌種の検出及び/または同定方法

Also Published As

Publication number Publication date
EP2090169A4 (en) 2010-02-10
EP2090169A1 (en) 2009-08-19
NO20082129L (no) 2008-08-28
RU2388473C2 (ru) 2010-05-10
CA2633591C (en) 2011-02-15
CN101378657A (zh) 2009-03-04
JP2008137962A (ja) 2008-06-19
CN102389577A (zh) 2012-03-28
CA2633591A1 (en) 2008-06-04
KR101017811B1 (ko) 2011-02-28
AU2007302638A1 (en) 2008-06-19
JP4113556B2 (ja) 2008-07-09
KR20080088581A (ko) 2008-10-02
US20100170777A1 (en) 2010-07-08
RU2008124804A (ru) 2009-12-27
AU2007302638B2 (en) 2010-09-02
CN101378657B (zh) 2012-05-30

Similar Documents

Publication Publication Date Title
Ouyang et al. Towards a better understanding of Pseudomonas putida biofilm formation in the presence of ZnO nanoparticles (NPs): Role of NP concentration
Chen et al. Antibiotic-resistance gene transfer in antibiotic-resistance bacteria under different light irradiation: Implications from oxidative stress and gene expression
Hong et al. Membrane lipid peroxidation in copper alloy-mediated contact killing of Escherichia coli
Dai et al. Unraveling the anti-bacterial mechanism of Litsea cubeba essential oil against E. coli O157: H7 and its application in vegetable juices
Setlow Spore resistance properties
Young et al. Mechanisms of Bacillus subtilis spore resistance to and killing by aqueous ozone
Santo et al. Bacterial killing by dry metallic copper surfaces
ES2908856T3 (es) Método y sistema para lisis microbiana mediante el uso de peryodatos
Loshon et al. Analysis of the killing of spores of Bacillus subtilis by a new disinfectant, Sterilox®
JP4918084B2 (ja) タンパク質、核酸分子、および微生物の変性、修飾、分解、溶解、および除去のための除染液とその使用
Leggett et al. Resistance to and killing by the sporicidal microbicide peracetic acid
Bartoli et al. Molecular mechanisms underlying the emergence of bacterial pathogens: an ecological perspective
WO2008068923A1 (ja) 核酸分解剤および核酸の分解方法
Li et al. Killing the spores of Bacillus species by molecular iodine
Dong et al. Killing of spores of Bacillus species by cetyltrimethylammonium bromide
Unterholzner et al. Characterisation of the stbD/E toxin–antitoxin system of pEP36, a plasmid of the plant pathogen Erwinia pyrifoliae
Redondo et al. Influence of selected bactericides on biofilm formation and viability of Xanthomonas citri subsp. citri
Mei et al. Changes in gene transcription induced by hydrogen peroxide treatment of verotoxin-producing Escherichia coli O157: H7 and non-O157 serotypes on romaine lettuce
Martin et al. Bacillus subtilis vegetative isolate surviving chlorine dioxide exposure: an elusive mechanism of resistance
Gonzales et al. A high number of multidrug-resistant and predominant genetically related cluster of Shigella flexneri strains isolated over 34 years in Brazil
Ghosh et al. Effects of the microbicide ceragenin CSA‐13 on and properties of Bacillus subtilis spores prepared on two very different media
WO2007061274A1 (fr) Kit universel pour la lyse cellulaire
Huang et al. LiaSR two-component system modulates the oxidative stress response in Streptococcus mutans
Fahmy et al. Detection of Burkholderia cepacia in pharmaceutical products
Kovács et al. Changes in the behavior of Staphylococcus aureus strains in the presence of oxacillin under the effect of gamma radiation

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2190/CHENP/2008

Country of ref document: IN

Ref document number: 2007790835

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12092677

Country of ref document: US

Ref document number: 567941

Country of ref document: NZ

Ref document number: 2007302638

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2633591

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 12008501137

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 1020087011899

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2008124804

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 200780004456.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07790835

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE