WO2008068859A1 - Conveying equipment - Google Patents

Conveying equipment Download PDF

Info

Publication number
WO2008068859A1
WO2008068859A1 PCT/JP2006/324294 JP2006324294W WO2008068859A1 WO 2008068859 A1 WO2008068859 A1 WO 2008068859A1 JP 2006324294 W JP2006324294 W JP 2006324294W WO 2008068859 A1 WO2008068859 A1 WO 2008068859A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
transfer
vacuum
module
vacuum transfer
Prior art date
Application number
PCT/JP2006/324294
Other languages
French (fr)
Japanese (ja)
Inventor
Shojiro Hirata
Original Assignee
Hirata Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hirata Corporation filed Critical Hirata Corporation
Priority to PCT/JP2006/324294 priority Critical patent/WO2008068859A1/en
Publication of WO2008068859A1 publication Critical patent/WO2008068859A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68707Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a robot blade, or gripped by a gripper for conveyance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67196Apparatus for manufacturing or treating in a plurality of work-stations characterized by the construction of the transfer chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67763Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
    • H01L21/67766Mechanical parts of transfer devices

Definitions

  • the present invention is a transfer device used when transferring a sample in an apparatus that requires a consistent operation under vacuum, such as a semiconductor manufacturing apparatus, and in particular, a thin plate such as a wafer or the like is used in each processing chamber.
  • the present invention relates to a vacuum transfer device suitable for transfer to each processing chamber.
  • each process such as crystal growth, patterning, etching, doping, regrowth, and electrode formation is continuously performed in an ultra-high vacuum without causing deterioration of the processed surface.
  • Development of integrated vacuum process for manufacturing In this vacuum integrated process, a high-vacuum transfer device that transfers samples to each process device under ultra-high vacuum is indispensable.
  • a conventional ultra-high vacuum transfer device uses a stainless steel pipe that can be baked (heat degassing treatment) via a gasket such as copper in order to reach a vacuum level to the ultra-high vacuum region.
  • the system is connected with a flange. Therefore, the sample conveyance path and the process apparatus are connected by a rigid conveyance path (for example, Patent Document 1). Therefore, it is not easy to add process equipment.
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-176090
  • Patent Document 2 Japanese Patent No. 3522796
  • the number of processing chambers can be increased, and the number of processing chambers is not limited. It is an object of the present invention to provide a highly mobile transfer apparatus that can flexibly cope with the decrease.
  • the transfer apparatus of the present invention is a transfer apparatus that transfers a thin plate in a vacuum transfer chamber, and the vacuum transfer chamber includes at least one module chamber, and includes at least one process. Connected to the chamber.
  • the vacuum transfer chamber includes a transfer robot that can move linearly, and a moving guide that defines a moving direction of the transfer robot.
  • various utilities are provided outside the vacuum transfer chamber. Then, the various robots can perform various functions by the various utilities.
  • a transport apparatus for transporting a thin plate comprising a load lock chamber and a vacuum transport chamber that can be connected,
  • the vacuum transfer chamber is
  • the module chamber is connected in a direction different from the connection direction in which the module chambers are linearly connected so that at least one processing chamber and the thin plate can be moved in and out,
  • a linearly movable transfer robot is provided in the chamber, and the transfer robot takes out the thin plate from the load lock chamber, transfers it to the processing chamber for a predetermined process, and a connection direction in which the module chamber is linearly connected.
  • a linear movement guide is provided in the chamber so as to define the movement direction of the transfer robot,
  • a transfer device characterized in that the transfer robot performs various functions by the various utilities.
  • the load lock chamber is a device that connects the atmospheric system and the vacuum system.
  • a vacuum pump provided separately depressurizes the material carried from the atmospheric system into a vacuum atmosphere, and then creates a vacuum. Remove the item from the system.
  • the items brought in from the vacuum system are placed in an atmosphere (including special atmospheres such as argon) under a different pressure such as atmospheric pressure by a leak valve, etc., and are transported to that system.
  • the vacuum transfer chamber means a chamber (chamber) capable of transferring an object in a vacuum.
  • the vacuum transfer chamber includes a device for transferring a substrate or the like through a linear motor or the like in a passage placed in a vacuum. It's okay.
  • the load lock chamber and the vacuum transfer chamber are connected through a valve (for example, a gate valve) and a door at a connecting portion that can be sealed.
  • the thin plate may be a component that is subjected to a predetermined treatment, and typically includes a component having a dimension in the thickness direction smaller than the dimension in the vertical and horizontal directions, such as a substrate. For example, a silicon wafer may be included.
  • the module chamber includes a vacuum chamber used as a unit, and each module chamber is connected by a sealable connecting portion.
  • the second module chamber may be an additional module chamber connected to the first module chamber.
  • a vacuum transfer chamber composed of a module chamber is connected to the load lock chamber via a gate and a z or gate valve at one end of the first module chamber.
  • a connecting portion is provided at the other opposite end of the first module chamber, and is connected to the second module chamber. At the other end opposite to the connecting part that connects the first and second module chambers, there is a connecting part that can connect the third module chamber.
  • O The fourth and subsequent module chambers The same applies to. In this way, the plurality of module chambers are linearly connected.
  • the other end of the module chamber to be finally connected is kept closed from the outside system by a valve, a door, or the like that is not connected. Therefore, it may be in a state where no connection is made.
  • a plurality of module chambers can be connected linearly or linearly like a train. In general, the direction of such connection coincides with the longitudinal direction of each module chamber. Then, the transfer robot provided in each module chamber can move in the longitudinal direction or the connecting direction to transfer the thin plate. In this way, it is possible to provide a powerful connecting portion at each end portion of each module chamber facing the longitudinal direction. This allows connections to be made in series or linearly and is particularly limited. It can continue to be connected without being connected.
  • the gate valve is a valve that partitions the inside and outside of the system, and its shape and structure are not limited. Therefore, it may include things such as a butterfly valve, a screw-type stop valve, and a slide door that opens and closes in a sliding manner.
  • the processing chamber may mean a chamber (chamber) in which various processes such as etching, coating, doping, and heat treatment are performed on a thin plate to be transported or not. .
  • the content of the treatment can be changed as appropriate depending on the required characteristics of the product, manufacturing conditions, and the like.
  • the transfer robot holds the transfer object including the transfer device and auxiliary equipment, the gripping device that holds the transfer object, and auxiliary equipment, and moves the transfer object by its own movement. It may mean something that can be done.
  • “Linearly movable transfer robot” means a transfer robot that can move substantially linearly.
  • connection direction in which the module chambers are linearly connected generally does not need to be a straight line or substantially a straight line along the longitudinal direction of the module chamber. It may be a zigzag or meandering direction.
  • the inside of the chamber may include being in a vacuum chamber.
  • the outside of the chamber is basically a system having a different pressure or a different atmosphere, and can be referred to as the inside of the chamber in order to distinguish between the inside and outside of the system.
  • the linear movement guide may be a substantially linear guide member. Therefore, it is preferable to have a linear guide surface. Thereby, the transfer robot can move substantially linearly. This linear is preferably moving substantially linearly on substantially the same horizontal plane. This is because the weight of the transfer robot is added as a necessary force when moving if it deviates from the horizontal plane.
  • the movement position of the transfer robot may mean a position where the transfer robot can move in the vacuum transfer chamber. At this time, if the transfer robot itself does not move, the position where the transfer robot can move does not change even if the arm or the like is moved or driven to move the object to be transferred.
  • This movement position may be grasped as a position on the plane of the vacuum transfer chamber. This is because the trajectory in the vacuum transfer chamber is substantially the same in the height direction if the transfer robot moves substantially in a horizontal plane.
  • auxiliary members such as auxiliary members, auxiliary equipment, and auxiliary devices for performing necessary functions may be included, and energy sources such as a power source and a driving source may be included.
  • the vacuum transfer chamber may include control equipment, pneumatic equipment wiring, piping, and the like that require only a lifting drive source.
  • a utility is arranged above and Z or below the vacuum transfer chamber corresponding to the movement position, for example, because the transfer robot is a driving source for moving, and a hand for delivering the object to be transferred. This is because the driving or the like is performed according to the location. More specifically, for example, when the transfer robot moves to a position closest to the load lock chamber and stops, the direction of the hand is changed so that a thin plate can be delivered from the load lock chamber, and the height of the hand is also increased. Change the position or hold it with your hand. At this time, it is preferable to assist these movements by utility. Further, even when it is moved to a predetermined position near each processing chamber where it can be carried into each processing chamber and stopped, the delivery of the thin plate can be performed smoothly with the assistance of the utility.
  • the pedestal includes a simple pedestal with an angle. Moreover, what forms a so-called platform may be used.
  • the gantry mounts the vacuum transfer chamber, but it may be fixed to the mounting surface with screws or the like.
  • the mounting surface does not need to be flat, but it is preferable that the moving surface (the surface including the moving direction) of the transfer robot in the mounted vacuum transfer chamber is substantially horizontal.
  • the gantry may also be a dense block, such as a ramen structure with a gap or a wall-supported structure such as an empty box. However, in dense blocks where it is preferred that utilities be provided in the cradle, it is preferable to have a hole for that purpose.
  • the transfer robot includes a hand that holds the thin plate, and the transfer robot drives the lifting and lowering of the hand by the various utilities corresponding to the movement position in the vacuum transfer chamber, The transfer apparatus according to (1) or (2) above, wherein the thin plate is transferred to and from the processing chamber.
  • the hand may be one that can hold a thin plate against gravity.
  • it may be a member that holds the weight of the thin plate by three points that can define a substantially horizontal plane.
  • substrate may be sufficient.
  • the substrate When sandwiching the substrate, the substrate may be sandwiched in the thickness direction, but may be sandwiched in a direction parallel to the surface of the substrate.
  • two protruding flat plates or round bars can be used as a node. Delivery can be performed from the hand to the shelf using the weight of the thin plate in the same way as a forklift.
  • the lift pins are not particularly limited in shape, but are located outside the vacuum transfer chamber, that is, in an atmosphere other than vacuum, and drive the lift shaft in the vacuum transfer chamber. Therefore, since the raising / lowering pin operates between two different systems, a sealing maintaining structure such as an oiled O-ring can be provided in the middle thereof. Therefore, the lifting pins are preferably dense rods and the outer peripheral surface is preferably smooth. As other methods, for example, the lifting pin may be airtightly held in the bellows structure, and the lifting pin may be allowed to move up and down by the bellows. Specific examples of the bellows structure include bellows (including vacuum bellows).
  • the load lock chamber includes a mounting shelf having a plurality of stages in the chamber, and when the thin plate is loaded and unloaded, the mounting shelf is moved up and down to deliver the plurality of thin plates, and Z Alternatively, the number of stages of the mounting shelf that is configured to be able to perform noffering is determined according to the number of connected processing chambers and module chambers. (4) A transfer device can be provided with V or misalignment.
  • the mounting shelf is, for example, two flat plates or a round bar so that a thin plate to be placed can be easily delivered including a shelf partitioned by a normal plate. You may include what you have passed.
  • a method that generally uses a forklift to take out shelf-strength materials or places materials on the shelves can be used. Noffering means that the object to be processed stays between two processes where the processing speed is likely to fluctuate. It can mean to prevent deficiency. Specifically, intermediate products from the previous process can be collected to some extent and then passed to the next process.
  • the intermediate product can be passed to the next process.
  • the previous process is slow, the intermediate product can flow to the next process at the speed required by the next process regardless of the receiving speed from the previous process.
  • the delivery mode of a plurality of thin plates if there is a sufficient number of steps without increasing or decreasing the number of steps, the number of thin plates (substrates) placed on the mounting shelf can be changed to change the number of steps. You can also adjust the speed. EFEM force If a plurality of thin plates are transferred simultaneously and placed on the mounting shelf at the same time (or one at a time), the substrate transfer speed can be increased. For this purpose, for example, conveyance or delivery for each pallet or simple shelf can be performed.
  • the load lock chamber includes a device front end module on the opposite side of the vacuum transfer chamber side, and can be opened and closed on the side opposite to the load lock chamber side of the device front end module.
  • a front opening type storage box having a carry-out door is placed, and the front end module of the apparatus is provided with a carry-in door that faces the carry-out door and opens and closes in the same manner, and the carry-in door and the carry-out door are synchronized.
  • V deviation, which is characterized by opening and closing, can be provided.
  • a vacuum having a space that allows smooth connection between the EFEM and a variable number of processing apparatuses by expansion and allows installation of a robot lifting / lowering unit and utility below the substrate transfer height.
  • a transportation platform can be provided. This makes it possible to provide a platform that meets various layout requirements. Since the vacuum chamber and robot set can be connected in a modular structure, a vacuum transfer (robot) module that can be expanded to accommodate changes in the number of processing equipment can be easily realized. Also, even if the transport amount increases due to expansion, etc., it is possible to flexibly cope with increase / decrease in throughput by providing a load lock chamber having a multistage cassette that moves up and down.
  • a lifting drive source necessary for the delivery of the substrate by the robot is provided outside the chamber, reducing the burden on the robot itself and simplifying it, making it easy to construct a vacuum transfer module structure. As a result, it is possible to provide a highly mobile transfer robot in which a lifting drive source is provided outside the chamber.
  • FIGS. 1 and 2 show a transfer apparatus 10 having a substrate transfer platform.
  • FIG. 1 is a plan view of the substrate transfer platform.
  • the transfer device 10 having a substrate transfer platform includes, in order from the left, an EFEM (Equipment Front End Module) 12, a load lock chamber 14, a first vacuum transfer module (or first module channel) 16, and a second vacuum.
  • a vacuum transfer chamber including a transfer module (or second module chamber) 18 and a third vacuum transfer module (or third module chamber) 20 is mainly configured.
  • EFEM means a module device in which an atmospheric transfer wafer robot is installed in a frame equipped with an FFU (Fan Filter Unit) and a load port is attached to the front. Usually installed in front of process equipment.
  • This EFEM 12 has three front-opening unified pods (FOUPs) 13a, 13b and 13c at the left end of the force, which is a specific example of the front end module.
  • FOUP is a carrier for 300 mm wafers used in mini-environment semiconductor factories as defined in SEMI Standard E 47.1.
  • a storage box In these FOUPs 13a, 13b, and 13c, wafers 11a, l lb, and 11c for processing are arranged, respectively, and are indicated by arrows by the transfer robot 41 in the atmosphere corresponding to the first transfer robot on the EFEM 12. As shown in the figure, move in the vertical direction and stop before each FOUP 13a, 13b, 13c.
  • FIG. 11 shows a transparent side view of the load lock chamber (or chamber) 14.
  • the load lock chamber 14 includes an opening 14b on the EFEM 12 side and a door 14a that can close the opening 14c, and an opening 14c on the opposite side (vacuum transfer module side) and a vacuum chamber side door 14d that can close the opening 14c.
  • a substrate mounting shelf 14e is disposed on the mounting shelf lifting mechanism 14f.
  • the substrate mounting shelf 14e has a plurality of stages (shelf stages), and a wafer substrate can be placed on each stage.
  • the mounting shelf elevating mechanism 14f raises and lowers the entire substrate mounting shelf 14e so as to adjust the height between the transfer surface of the transfer robot 41 and the corresponding step of the substrate mounting shelf 14e. After mounting, the doors 14a and 14d on both sides are closed, and the load lock chamber 14 is evacuated.
  • the first vacuum transfer module 16 includes a processing chamber 22 and a gate valve capable of closing the opening and the opening through a processing chamber side door 22a as a gate valve capable of closing the opening and the opening.
  • a processing chamber side door 22a is connected to the processing chamber 24 via a processing chamber side door 24a.
  • the height positions of the doors 22a and 24a are arranged at positions corresponding to the transfer surface of the vacuum transfer robot 40.
  • the vacuum transfer robot 40 takes out the substrate 11 from the mounting shelf elevating mechanism 14f, and places the substrate 11 on the hand to transfer the substrate 11. Transport is performed by moving straight to the right along the horizontal arrow in the figure.
  • the vacuum transfer robot 40 stops at a position corresponding to each processing chamber 22, 24 on the line (left and right arrowheads) extending left and right in the figure. Then, by the motor provided in the vacuum transfer robot 40 in the first vacuum transfer module 16, the upper and lower hand forces rotate together by about 90 degrees along the direction of the vertical arrow in the figure. And along the direction of the vertical arrow in the figure, Only the lower hand uses the hand protrusion mechanism to transfer the substrate into the processing chamber 22 when the door 22a is open.
  • the first vacuum transfer module 16 is connected to the second vacuum transfer module 18 via a module connecting part (or connecting part) 16a. Accordingly, the first vacuum transfer module 16 and the second vacuum transfer module 18 maintain substantially the same degree of vacuum.
  • the third vacuum transfer module 20 is connected to the second vacuum transfer module 18 via a module connecting portion (or connecting portion) 18a.
  • the vacuum transfer robot 40 moves between the vacuum transfer modules 16, 18, 20 through the module connecting portions 16a, 18a. Similar to the first vacuum transfer module 16, the second vacuum transfer module 18 is connected to the processing chambers 26 and 28 via doors 26a and 28a. Similarly to the first vacuum transfer module 16, the third vacuum transfer module 20 is connected to the processing chambers 30 and 32 through doors 30a and 32a.
  • the vacuum transfer robot 40 places the substrates l le, l lf, l lg, 11 h, l li, and I lk in these processing chambers 22, 24, 26, 28, 30, and 32, respectively. Giving
  • FIG. 3 is a perspective view of a transfer apparatus 10a in which one vacuum transfer module 16 is incorporated
  • FIG. 4 is a plan view
  • FIG. 5 is a front view.
  • a plurality of FOUPs 13a, 13b, 13c, and 13d force are provided at the left end of the EFEM 12
  • the load lock chamber 14 is disposed at a substantially central position at the opposite right end
  • the load A vacuum transfer chamber including a vacuum transfer module 16 is disposed on the right side of the lock chamber 14.
  • the load lock chamber 14 and the vacuum transfer module 16 are placed on the upper surface of a common platform (platform) 50 and are configured so that the upper and lower positions of the opening closed by the gate valve or the door 14d can be easily aligned.
  • a utility or utility storage unit 22b, 24b is installed in the gap of the frame and directly under the vacuum transfer module 16. Is done. These you Tility drives the lifting mechanism of the vacuum transfer robot 40 when the vacuum transfer robot 40 stops at a predetermined position in the vacuum transfer module 16. In addition, other functions of the vacuum transfer robot 40 can be exhibited. Details of the drive mechanism of the vacuum transfer robot 40 will be described later.
  • the EFEM 12 is not placed on the common platform 50, but stands on its own leg, and is adjusted so that the height of the door 12a matches the opening 14b of the load lock chamber 14. Under each FOUP 13a, 13b, 13c, 13d, a door opening / closing mechanism is installed, and the doors are opened and closed synchronously to prevent contamination. Of course, EFEM can be mounted on a common platform.
  • FIG. 6 corresponds to the perspective plan view of FIG. 4 and shows the atmospheric transfer robot 41 in the EFEM 12 and the vacuum transfer robot 40 in the vacuum transfer chamber composed of the vacuum transfer module 16.
  • the processing chambers 22 and 24 are connected to the vacuum transfer chamber 16 via processing chamber side doors 22a and 24a, respectively.
  • the atmospheric transfer robot 41 moves so as to be able to stop in front of each FOUP 13a, 13b, 13c, 13d by traveling on a substantially horizontal traveling path 43.
  • the stopped atmospheric transfer robot 41 like the vacuum transfer robot 40, changes the direction of the hand 40a on which the wafer 11 is placed by the rotation of the motor provided, and takes out the wafer 11 in each FOUP 13a, 13b, 13c, 13d. I can do it.
  • FIG. 7 is a diagram for explaining the function of the vacuum transfer robot 40.
  • the vacuum transfer robot 40 is arranged in each connected vacuum transfer module 16, 18, 20 and can move linearly in these modules.
  • the travel guide 40b that defines the moving direction extends substantially linearly in the connecting direction of the modules.
  • the upper surface of the travel guide 40b becomes the travel guide surface, and the moving body 40i straddling the travel guide 40b moves along the travel guide 40b.
  • the driving force is below the traveling guide 40b and a vacuum system external force is also applied.
  • the traveling guide 40b guides together with the auxiliary traveling guide 40g (see FIG. 6) so that the vacuum transfer robot 40 can move horizontally.
  • a mechanism for driving the moving body 40i of the vacuum transfer robot 40 is provided outside the vacuum chamber.
  • a mechanism can be, for example, a ball screw or a linear motor.
  • a strong magnet that moves in the travel guide 40b with the ball screw is installed on the moving body. It is driven in a non-contact manner by a martensitic stainless steel that can stick to the magnet.
  • An elevating shaft 40c is guided to the movable body 40i so as to be movable up and down, and the elevating table 40d is fixed on the elevating shaft 40c.
  • the rotary table 40e is rotated on the lifting table 40d by a motor (not shown), and the hand guide 40f and the hand 40a fixed to the rotary table 40e rotate together.
  • a mechanism for sliding the upper and lower hands 40a is provided on the upper part of the hand guide 40f. In this mechanism, for example, the timing belt is stretched along the upper surface of the guide 40f, pulleys are placed on the left and right ends in the figure, and the member fixed to the timing belt is connected to the upper or lower hand 40a. It can be a thing!
  • the upper and lower hands 40a can be moved independently to the left and right in the figure by connecting the V ⁇ shift to the upper or lower hand 4 Oa.
  • the vacuum transfer robot 40 arrives at a position where the substrate 11 is transferred (for example, a predetermined position of the vacuum transfer robot 40 that can transfer the substrate 11 to the processing devices 22, 24, 26, 28, 30, 32) ).
  • the lift shaft 40c is raised by pushing up the lift pin 17a disposed outside the vacuum transfer chamber having the force of the vacuum transfer module 16, 18, 20 where the travel guide 40b is disposed.
  • FIG. 8 is a cross-sectional view illustrating the operation of the vacuum transfer robot 40 in a vacuum transfer chamber in which a plurality of vacuum transfer modules 16 and 18 are connected.
  • FIG. 9 is a BB cross-sectional view of FIG.
  • FIG. 10 is a cross-sectional view taken along the line AA in FIG.
  • the vacuum transfer robot 40 is in a place where it is not necessary to perform its loading / unloading function (the lifting pin 17a and the lifting shaft 40c are shifted in the figure), so that the lifting shaft is raised or lowered. Absent. However, in FIG. 8, the vacuum transfer robot 40 can exert its function because it has come to a predetermined position in front of the processing chamber 22.
  • FIG. 9 is a BB cross-sectional view of FIG.
  • FIG. 10 is a cross-sectional view taken along the line AA in FIG.
  • the vacuum transfer robot 40 is in a place where it is not necessary to perform its loading / unloading function (the lifting pin 17a and the lifting shaft 40
  • FIG. 8 is a partial cross-sectional view of the vacuum transfer chamber when the transfer apparatus 10 is viewed from the front side.
  • the elevating pins 17a of the utility storage unit arranged in the gantry 50 are pushed by winding an O-ring into an opening opened in the bottom wall of the vacuum transfer module. This prevents inflow of air into the vacuum transfer module. At this time, it is preferable to apply grease or oil with low vapor pressure to the O-ring.
  • the utility storage unit is provided with a mechanism for pushing up the lifting pins 17a.
  • the lifting pin 17a is pushed up, and the lifting shaft 40e is pushed up further.
  • the mechanism of the vacuum transfer robot 40 is simple, lightweight and easy to move. The same applies when the vacuum transfer robot 40 comes on the utility storage unit 24b on the right.
  • the traveling guide 40b has a continuous cross-sectional cap shape (a cup shape inverted) (Fig. 10). Inside, it is connected by another traveling guide 40b and a joint 16b. At this time, the upper surface serves as a guide surface and is joined by a pliers so that the traveling body 40i can be easily moved. Needless to say, it is possible to introduce an integrated long traveling guide that does not connect the traveling guides in this way. Which one to choose can be decided in view of cost, ease and other conditions.
  • FIG. 10 shows an AA cross-sectional view, and the traveling body 40i moves on the traveling guide 40b and the auxiliary traveling guide 40g.
  • a drive mechanism for the traveling body 40i is provided in the cap of the traveling guide 40b.
  • the transfer device of the present invention can be expanded, can flexibly respond to increase / decrease in production volume, and has the great effect of high mobility.
  • these examples are merely used to explain the present invention, and the contents of the present invention are not limited to these examples.
  • the moving route may have a straight route with a force of 2 or more, which has been made almost straight. Furthermore, it does not exclude that these routes cross each other.
  • FIG. 1 is a plan configuration diagram of a substrate transfer platform.
  • FIG. 2 is a layout diagram of a substrate transfer platform.
  • FIG. 3 is a perspective view of a substrate transfer platform having one vacuum transfer module.
  • FIG. 4 is a plan view of the substrate transfer platform.
  • FIG. 5 is a front view of the substrate transfer platform.
  • FIG. 6 is a partially transparent plan view of the substrate transfer platform.
  • FIG. 7 is a schematic configuration diagram (side view) of a vacuum transfer robot.
  • FIG. 8 is a partial cross-sectional view of a vacuum transfer chamber of a substrate transfer platform.
  • FIG. 9 is a BB sectional view of FIG.
  • FIG. 10 is a cross-sectional view taken along the line AA in FIG.
  • FIG. 11 is a transparent side view of the interior of the load lock chamber.

Abstract

High mobility vacuum conveying equipment which can be extended and can deal with increase/decrease in production flexibly. In the conveying equipment comprising an equipment front end module, a load lock chamber, and/or a vacuum conveyance chamber arranged to be coupled sequentially on a common frame, a conveyance robot movable substantially horizontally along a straight line is provided in the vacuum conveyance chamber. The vacuum conveyance chamber is constituted by coupling at least one module chamber along the moving direction of the conveyance robot. Various utilities are arranged under the installation plane of the common frame on the outside of the vacuum conveyance chamber and the conveyance robot exhibits its function depending on the position thereof.

Description

明 細 書  Specification
搬送装置  Transport device
技術分野  Technical field
[0001] 本発明は、半導体製造装置など真空下での一貫した操作を要する装置において 試料を搬送する際に使用される搬送装置であり、特にウェハ等のような薄板を各処 理室力 又は各処理室へと搬送するのに好適な真空搬送装置に関する。  [0001] The present invention is a transfer device used when transferring a sample in an apparatus that requires a consistent operation under vacuum, such as a semiconductor manufacturing apparatus, and in particular, a thin plate such as a wafer or the like is used in each processing chamber. The present invention relates to a vacuum transfer device suitable for transfer to each processing chamber.
背景技術  Background art
[0002] 半導体の製造における、結晶成長、パターユング、エッチング、ドーピング、再成長 、電極形成などの各プロセスを超高真空中で連続的に行うことにより、加工表面の劣 化をもたらさずに半導体を製造する真空一貫プロセスの開発がなされている。この真 空一貫プロセスにおいて、各プロセス装置に試料を超高真空下で搬送する高真空 搬送装置は必要不可欠なものである。  [0002] In semiconductor manufacturing, each process such as crystal growth, patterning, etching, doping, regrowth, and electrode formation is continuously performed in an ultra-high vacuum without causing deterioration of the processed surface. Development of integrated vacuum process for manufacturing. In this vacuum integrated process, a high-vacuum transfer device that transfers samples to each process device under ultra-high vacuum is indispensable.
[0003] 従来の超高真空の搬送装置は、真空度を超高真空領域まで到達させるために、ベ ィキング (加熱脱ガス処理)が可能なステンレス製のパイプを、銅等のガスケットを介し てフランジで接続する方式を取っている。そのため試料搬送路とプロセス装置との間 はリジッドに固定された搬送路で接続されている(例えば、特許文献 1)。従って、プロ セス装置の増設は容易ではな 、。  [0003] A conventional ultra-high vacuum transfer device uses a stainless steel pipe that can be baked (heat degassing treatment) via a gasket such as copper in order to reach a vacuum level to the ultra-high vacuum region. The system is connected with a flange. Therefore, the sample conveyance path and the process apparatus are connected by a rigid conveyance path (for example, Patent Document 1). Therefore, it is not easy to add process equipment.
[0004] また、プロセス装置が複数ある場合、高真空下の搬送装置の周りにこれらのプロセ ス装置を備える半導体製造装置が開示されているが (例えば、特許文献 2)、搬送装 置の周りでは、連結できるプロセス装置の数に限りがあり、多くの処理が要求されや す 、半導体製造装置には、必ずしも好まし 、ものではな 、。  [0004] Further, when there are a plurality of process apparatuses, a semiconductor manufacturing apparatus including these process apparatuses is disclosed around a transfer apparatus under high vacuum (for example, Patent Document 2). However, the number of process equipment that can be connected is limited, and a lot of processing is required. This is not necessarily preferable for semiconductor manufacturing equipment.
特許文献 1 :特開 2002— 176090号公報  Patent Document 1: Japanese Patent Laid-Open No. 2002-176090
特許文献 2:特許第 3522796号公報  Patent Document 2: Japanese Patent No. 3522796
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] 上記従来力 の課題に鑑みて、処理室の増設が可能であり、かつ、その数が限ら れず、種々の処理室を配置できるだけではなぐ処理されるウェハ等の生産量の増 減に柔軟に対応でき、機動性の高い搬送装置を提供することを目的とする。 [0005] In view of the above-mentioned problems of conventional power, the number of processing chambers can be increased, and the number of processing chambers is not limited. It is an object of the present invention to provide a highly mobile transfer apparatus that can flexibly cope with the decrease.
課題を解決するための手段  Means for solving the problem
[0006] 上記課題を解決するため、本発明の搬送装置では、真空搬送チャンバ内で薄板を 搬送する搬送装置であって、前記真空搬送チャンバは、少なくとも 1つのモジュール チャンバを備え、少なくとも 1つの処理室と連結される。前記真空搬送チャンバ内に は、リニアに移動可能な搬送ロボットと、該搬送ロボットの移動方向を規定する移動ガ イドとを備える。一方、各種のユーティリティが前記真空搬送チャンバ外に備えられる 。そして、前記各種ユーティリティにより、前記搬送ロボットが各種の機能を発揮する ことができる。  [0006] In order to solve the above-described problem, the transfer apparatus of the present invention is a transfer apparatus that transfers a thin plate in a vacuum transfer chamber, and the vacuum transfer chamber includes at least one module chamber, and includes at least one process. Connected to the chamber. The vacuum transfer chamber includes a transfer robot that can move linearly, and a moving guide that defines a moving direction of the transfer robot. On the other hand, various utilities are provided outside the vacuum transfer chamber. Then, the various robots can perform various functions by the various utilities.
より具体的には、以下のようなものを提供することができる。  More specifically, the following can be provided.
[0007] (1)連結可能なロードロックチャンバ及び真空搬送チャンバを備える薄板を搬送する 搬送装置であって、  (1) A transport apparatus for transporting a thin plate comprising a load lock chamber and a vacuum transport chamber that can be connected,
前記真空搬送チャンバは、  The vacuum transfer chamber is
少なくとも 1つのモジュールチャンバを備え、 2つ目力 のモジュールチャンバは 連結部を介してリニアに連結され、  It has at least one module chamber, and the second force module chamber is connected linearly via the connecting part,
前記モジュールチャンバがリニアに連結される連結方向とは異なる方向に、少なく とも 1つの処理室と前記薄板を出入可能に連結され、  The module chamber is connected in a direction different from the connection direction in which the module chambers are linearly connected so that at least one processing chamber and the thin plate can be moved in and out,
リニアに移動可能な搬送ロボットをチャンバ内に備え、該搬送ロボットは前記薄板 を前記ロードロックチャンバから取り出し、所定の処理のために前記処理室へ搬送し 前記モジュールチャンバがリニアに連結される連結方向に沿って、チャンバ内にリ ニァな移動ガイドを、前記搬送ロボットの移動方向を規定するように備え、  A linearly movable transfer robot is provided in the chamber, and the transfer robot takes out the thin plate from the load lock chamber, transfers it to the processing chamber for a predetermined process, and a connection direction in which the module chamber is linearly connected. A linear movement guide is provided in the chamber so as to define the movement direction of the transfer robot,
その上及び Z又は下に、前記真空搬送チャンバ内の前記搬送ロボットの移動位 置に対応して、各種のユーティリティを備え、  Various utilities are provided above and Z or below corresponding to the movement position of the transfer robot in the vacuum transfer chamber,
前記各種ユーティリティにより、前記搬送ロボットが各種の機能を発揮することを特 徴とする搬送装置。  A transfer device characterized in that the transfer robot performs various functions by the various utilities.
[0008] ここで、ロードロックチャンバとは、大気系と真空系をつなぐ装置で、通常別途設け られた真空ポンプにより、大気系から搬入された物を真空雰囲気下に減圧し、真空 系にその物を搬出する。また、逆に、真空系から搬入された物をリーク弁等により大 気圧下等の異なる圧力下の雰囲気 (アルゴン中等特殊雰囲気を含む)に置き、その 系へ搬出する。また、真空搬送チャンバとは、真空中で物を搬送可能なチャンバ(室 )を意味してよぐ例えば、真空中に置かれた通路内をリニアモータ等で基板等を搬 送する装置を含んでよい。これらのロードロックチャンバと真空搬送チャンバとは、密 閉可能な連結部で、バルブ (例えば、ゲートバルブ)やドアを通して、連結される。薄 板とは、所定の処理を被る部品であってよぐ典型的には、基板のような縦横の寸法 に比べ厚み方向の寸法が小さいものを含んでよい。例えば、シリコンウェハ等を含ん でよい。 Here, the load lock chamber is a device that connects the atmospheric system and the vacuum system. Usually, a vacuum pump provided separately depressurizes the material carried from the atmospheric system into a vacuum atmosphere, and then creates a vacuum. Remove the item from the system. On the other hand, the items brought in from the vacuum system are placed in an atmosphere (including special atmospheres such as argon) under a different pressure such as atmospheric pressure by a leak valve, etc., and are transported to that system. The vacuum transfer chamber means a chamber (chamber) capable of transferring an object in a vacuum. For example, the vacuum transfer chamber includes a device for transferring a substrate or the like through a linear motor or the like in a passage placed in a vacuum. It's okay. The load lock chamber and the vacuum transfer chamber are connected through a valve (for example, a gate valve) and a door at a connecting portion that can be sealed. The thin plate may be a component that is subjected to a predetermined treatment, and typically includes a component having a dimension in the thickness direction smaller than the dimension in the vertical and horizontal directions, such as a substrate. For example, a silicon wafer may be included.
また、モジュールチャンバとは、一つのユニットとして、用いられる真空槽を含んでよ ぐ各モジュールチャンバは、密閉可能な連結部で連結される。 2つ目からのモジュ ールチャンバとは、 1つ目のモジュールチャンバに連結される継ぎ足しのモジュール チャンバであってよい。モジュールチャンバから構成される真空搬送チャンバは、 1つ 目のモジュールチャンバの一端で、前記ロードロックチャンバにゲート及び z又はゲ ートバルブを介して、前記ロードロックチャンバに連結される。この 1つ目のモジュール チャンバの対向する他端には、連結部が備えられ、 2つ目のモジュールチャンバに連 結される。この 1つ目及び 2つ目のモジュールチャンバを連結する連結部に対向する 他端に、さらに、連結部を備え、 3つ目のモジュールチャンバを連結することができる o 4つ目以降のモジュールチャンバについて、同様である。このようにして、複数のモ ジュールチャンバがリニアに連結される。最後に連結されるモジュールチャンバの他 端は、連結されることなぐバルブやドア等によって、外の系から、一連のモジュール チャンバ内を閉じた状態に維持する。従って、その先は、連結をしない状態とされて よい。このように、複数のモジュールチャンバが、列車のように直線的に若しくはリニア に連なることができる。一般には、このような連結の方向が、各モジュールチャンバの 長手方向に一致する。そして、各モジュールチャンバ内に備えられる搬送ロボットが、 この長手方向又は連結方向に移動し、薄板を搬送することができる。このようにして、 各モジュールチャンバの長手方向に対向するそれぞれの端部に、力かる連結部を備 えることができる。これにより、連結は直列に、若しくは、リニアに行われ、特に制限さ れることなく連結され続けることができる。ここでリニアとは、直線的の意味であってよ ぐ直列に連結される状態を表す意味を含んでよい。ゲートバルブとは、系の中と外 を仕切るバルブであってよぐその形状、構造等は、限られることがない。従って、ノ タフライバルブのようなもの、スクリュー式のストップバルブのようなもの、スライド式に 開閉されるスライドドアのようなものを含んでよい。 The module chamber includes a vacuum chamber used as a unit, and each module chamber is connected by a sealable connecting portion. The second module chamber may be an additional module chamber connected to the first module chamber. A vacuum transfer chamber composed of a module chamber is connected to the load lock chamber via a gate and a z or gate valve at one end of the first module chamber. A connecting portion is provided at the other opposite end of the first module chamber, and is connected to the second module chamber. At the other end opposite to the connecting part that connects the first and second module chambers, there is a connecting part that can connect the third module chamber. O The fourth and subsequent module chambers The same applies to. In this way, the plurality of module chambers are linearly connected. The other end of the module chamber to be finally connected is kept closed from the outside system by a valve, a door, or the like that is not connected. Therefore, it may be in a state where no connection is made. Thus, a plurality of module chambers can be connected linearly or linearly like a train. In general, the direction of such connection coincides with the longitudinal direction of each module chamber. Then, the transfer robot provided in each module chamber can move in the longitudinal direction or the connecting direction to transfer the thin plate. In this way, it is possible to provide a powerful connecting portion at each end portion of each module chamber facing the longitudinal direction. This allows connections to be made in series or linearly and is particularly limited. It can continue to be connected without being connected. Here, the term “linear” may include a meaning that represents a state of being connected in series. The gate valve is a valve that partitions the inside and outside of the system, and its shape and structure are not limited. Therefore, it may include things such as a butterfly valve, a screw-type stop valve, and a slide door that opens and closes in a sliding manner.
[0010] ここで、処理室とは、搬送される薄板をエッチング、コーティング、ドーピング、熱処 理等、種々の処理を密閉して、若しくは、密閉しないで行うチャンバ(室)を意味して よい。その処理内容は、生産物の必要な特性、製造条件等によって適宜変更するこ とができる。搬送ロボットは、搬送のための装置や補器、被搬送物を保持する把持装 置や付帯機器等を含んでよぐ被搬送物を保持し、自身の移動により、その被搬送 物を移動させることができるものを意味してよい。「リニアに移動可能な搬送ロボット」 とは、実質的に直線的に移動可能な搬送ロボットを意味してょ 、。  [0010] Here, the processing chamber may mean a chamber (chamber) in which various processes such as etching, coating, doping, and heat treatment are performed on a thin plate to be transported or not. . The content of the treatment can be changed as appropriate depending on the required characteristics of the product, manufacturing conditions, and the like. The transfer robot holds the transfer object including the transfer device and auxiliary equipment, the gripping device that holds the transfer object, and auxiliary equipment, and moves the transfer object by its own movement. It may mean something that can be done. “Linearly movable transfer robot” means a transfer robot that can move substantially linearly.
[0011] また、モジュールチャンバがリニアに連結される連結方向は、概ね、モジュールチヤ ンバの長手方向に沿ってよぐ直線であること、若しくは、実質直線であることを要し ない。ジグザグや蛇行をした方向であってもよい。チャンバ内とは、真空槽内であるこ とを含んでよい。チャンバ外は、基本的に圧力の異なる若しくは雰囲気の異なる系で あり、系の内と外を区別するために、チャンバ内ということができる。リニアな移動ガイ ドは、実質的に直線的なガイドのできる部材であってよい。従って、直線的なガイド面 等を有することが好ましい。これにより、搬送ロボットは実質的に直線的に移動するこ とができる。この直線的とは、好ましくは、ほぼ同一水平面上に実質的に直線的に移 動することである。水平面からずれると、搬送ロボットの自重分も移動の際の必要な力 として加算されるからである。  [0011] In addition, the connection direction in which the module chambers are linearly connected generally does not need to be a straight line or substantially a straight line along the longitudinal direction of the module chamber. It may be a zigzag or meandering direction. The inside of the chamber may include being in a vacuum chamber. The outside of the chamber is basically a system having a different pressure or a different atmosphere, and can be referred to as the inside of the chamber in order to distinguish between the inside and outside of the system. The linear movement guide may be a substantially linear guide member. Therefore, it is preferable to have a linear guide surface. Thereby, the transfer robot can move substantially linearly. This linear is preferably moving substantially linearly on substantially the same horizontal plane. This is because the weight of the transfer robot is added as a necessary force when moving if it deviates from the horizontal plane.
[0012] 搬送ロボットの移動位置とは、真空搬送チャンバ内で搬送ロボットが移動し得る位 置を意味してよい。このとき、搬送ロボット自体が動かなければ、アーム等が移動若し くは駆動されて被搬送物を動かす場合であっても、搬送ロボットの移動し得る位置は 変わらない。この移動位置は、真空搬送チャンバの平面上の位置として把握してもよ い。搬送ロボットが実質的に水平面を移動するならば、真空搬送チャンバ内の軌跡 は、高さ方向においてほぼ同じであるからである。各種のユーティリティとは、真空搬 送チャンバ内で、必要な機能を果たすための補助部材、補助器材、補助装置等の補 助的なものを含んでよぐまた、動力源や駆動源等のエネルギー源を含んでよい。例 えば、昇降駆動源だけでなぐ制御機器、空圧機器配線、配管等も含んでよい。この ようなユーティリティの助けにより、真空搬送チャンバ内で必要な処置ができるのであ る。このようなユーティリティが移動位置に対応して真空搬送チャンバの上及び Z又 は下に配置されるのは、例えば、搬送ロボットが、移動するための駆動源、被搬送物 の受渡しのためのハンドの駆動等をその場所に応じて行うからである。より具体的に は、例えば、搬送ロボットがロードロックチャンバに最も近い位置まで移動し停止した 場合、その場所で、ロードロックチャンバから薄板を受渡し可能にハンドの向きを変え 、また、ハンドの高さを変え若しくはハンドで挟み付ける等の動作を行う。このとき、ュ 一ティリティにより、これらの動きを補助することが好ましい。更に、各処理室近傍であ つて、各処理室への搬入ができる所定の位置に移動し停止した場合も同様に薄板の 受渡しをユーティリティの補助によりスムーズに行うことができる。 [0012] The movement position of the transfer robot may mean a position where the transfer robot can move in the vacuum transfer chamber. At this time, if the transfer robot itself does not move, the position where the transfer robot can move does not change even if the arm or the like is moved or driven to move the object to be transferred. This movement position may be grasped as a position on the plane of the vacuum transfer chamber. This is because the trajectory in the vacuum transfer chamber is substantially the same in the height direction if the transfer robot moves substantially in a horizontal plane. Various utilities and vacuum transport In the feed chamber, auxiliary members such as auxiliary members, auxiliary equipment, and auxiliary devices for performing necessary functions may be included, and energy sources such as a power source and a driving source may be included. For example, it may include control equipment, pneumatic equipment wiring, piping, and the like that require only a lifting drive source. With the help of such utilities, the necessary treatment can be performed in the vacuum transfer chamber. Such a utility is arranged above and Z or below the vacuum transfer chamber corresponding to the movement position, for example, because the transfer robot is a driving source for moving, and a hand for delivering the object to be transferred. This is because the driving or the like is performed according to the location. More specifically, for example, when the transfer robot moves to a position closest to the load lock chamber and stops, the direction of the hand is changed so that a thin plate can be delivered from the load lock chamber, and the height of the hand is also increased. Change the position or hold it with your hand. At this time, it is preferable to assist these movements by utility. Further, even when it is moved to a predetermined position near each processing chamber where it can be carried into each processing chamber and stopped, the delivery of the thin plate can be performed smoothly with the assistance of the utility.
[0013] (2)少なくとも前記真空搬送チャンバを載置する架台を備え、前記架台は、前記各種 ユーティリティを収納可能な空間を備えることを特徴とする上記(1)記載の搬送装置 を提供できる。  [0013] (2) The transport apparatus according to (1), wherein the transport apparatus includes at least a mount on which the vacuum transfer chamber is placed, and the mount includes a space in which the various utilities can be stored.
[0014] ここで、架台とは、アングルを糸且んだ単なる台を含んでょ 、。また、 、わゆるプラット フォームを形成するものであってもよい。架台は、真空搬送チャンバを載置するが、 その載置面にねじ等により固定してもよぐ単においてもよい。載置面はフラットであ ることを要しないが、載置された真空搬送チャンバ内の搬送ロボットの移動面 (移動 方向を含む面)が実質的に水平になることが好ましい。架台は、また、隙間の空いた ラーメン構造のような構造や空き箱のような壁支持による構造をしていてもよぐ稠密 なブロックのようなものでもよい。但し、架台内にユーティリティが備えられることが好ま しぐ稠密なブロックでは、そのための穴があることが好ましい。  [0014] Here, the pedestal includes a simple pedestal with an angle. Moreover, what forms a so-called platform may be used. The gantry mounts the vacuum transfer chamber, but it may be fixed to the mounting surface with screws or the like. The mounting surface does not need to be flat, but it is preferable that the moving surface (the surface including the moving direction) of the transfer robot in the mounted vacuum transfer chamber is substantially horizontal. The gantry may also be a dense block, such as a ramen structure with a gap or a wall-supported structure such as an empty box. However, in dense blocks where it is preferred that utilities be provided in the cradle, it is preferable to have a hole for that purpose.
[0015] (3)前記搬送ロボットは、前記薄板を保持するハンドを備え、前記搬送ロボットは、前 記真空搬送チャンバ内の移動位置に対応する前記各種ユーティリティにより、前記 ハンドの昇降を駆動し、前記薄板を前記処理室との間で受渡しを行うことを特徴とす る上記(1)又は(2)記載の搬送装置を提供できる。 [0016] ここで、ハンドとは薄板を重力に抗して保持できるものであってよ 、。例えば、ほぼ 水平面を規定できる 3点により、薄板の自重を保持する部材であってもよい。また、基 板を挟むことにより固定できる装置でもよい。基板を挟むに際して、厚み方向に挟ん でもよいが、基板の面に平行な方向に挟んでもよい。例えば、フォークリフトのフォー クのように、 2本の突き出た平板若しくは丸棒をノヽンドとすることもできる。受渡しは、 薄板の自重を利用して、ハンドから棚等にフォークリフトと同様な手法で行うことがで きる。 (3) The transfer robot includes a hand that holds the thin plate, and the transfer robot drives the lifting and lowering of the hand by the various utilities corresponding to the movement position in the vacuum transfer chamber, The transfer apparatus according to (1) or (2) above, wherein the thin plate is transferred to and from the processing chamber. [0016] Here, the hand may be one that can hold a thin plate against gravity. For example, it may be a member that holds the weight of the thin plate by three points that can define a substantially horizontal plane. Moreover, the apparatus which can be fixed by pinching | interposing a board | substrate may be sufficient. When sandwiching the substrate, the substrate may be sandwiched in the thickness direction, but may be sandwiched in a direction parallel to the surface of the substrate. For example, like a forklift fork, two protruding flat plates or round bars can be used as a node. Delivery can be performed from the hand to the shelf using the weight of the thin plate in the same way as a forklift.
[0017] (4)前記ハンドの昇降は、前記真空搬送チャンバ外であって、前記各種ユーティリテ ィに備えられる昇降ピンを突上げることによって、真空搬送ロボットの昇降軸を突上げ て行うことを特徴とする上記 (3)記載の搬送装置を提供できる。  [0017] (4) The raising and lowering of the hand is performed outside the vacuum transfer chamber by pushing up a lifting pin of the vacuum transfer robot by pushing up a lifting pin provided in the various utilities. It is possible to provide the transfer device described in (3) above.
[0018] 昇降ピンは、特に形状を問わないが、真空搬送チャンバの外、即ち、真空以外の雰 囲気の中にあって、真空搬送チャンバ内の昇降軸を駆動するものである。従って、昇 降ピンは、 2つの異なる系の間で作動するため、その途中に、例えばオイルを付けた Oリングのような密閉維持構造を備えることができる。従って、昇降ピンは稠密なロッド であることが好ましく外周面は平滑であることが好ましい。これ以外の方法としては、 例えば、蛇腹構造のものに、昇降ピンが気密的に保持され、昇降ピンの上下は、蛇 腹により許容されてもよい。この蛇腹構造の具体例としては、ベローズ (真空べローズ を含む)が挙げられる。  [0018] The lift pins are not particularly limited in shape, but are located outside the vacuum transfer chamber, that is, in an atmosphere other than vacuum, and drive the lift shaft in the vacuum transfer chamber. Therefore, since the raising / lowering pin operates between two different systems, a sealing maintaining structure such as an oiled O-ring can be provided in the middle thereof. Therefore, the lifting pins are preferably dense rods and the outer peripheral surface is preferably smooth. As other methods, for example, the lifting pin may be airtightly held in the bellows structure, and the lifting pin may be allowed to move up and down by the bellows. Specific examples of the bellows structure include bellows (including vacuum bellows).
[0019] (5)前記ロードロックチャンバは、該チャンバ内に複数段を有する載置棚を備え、前 記薄板の搬入搬出時に該載置棚を昇降させて、複数の薄板の受渡し、及び Z又は 、ノッファリングを行い得るように構成され、前記複数段を有する載置棚の段の数が、 前記処理室及びモジュールチャンバの連結数に応じて決定されることを特徴とする 上記( 1)力も (4) V、ずれか記載の搬送装置を提供できる。  [0019] (5) The load lock chamber includes a mounting shelf having a plurality of stages in the chamber, and when the thin plate is loaded and unloaded, the mounting shelf is moved up and down to deliver the plurality of thin plates, and Z Alternatively, the number of stages of the mounting shelf that is configured to be able to perform noffering is determined according to the number of connected processing chambers and module chambers. (4) A transfer device can be provided with V or misalignment.
[0020] ここで、載置棚とは、通常の板で仕切られた棚を含んでよぐ載せられる薄板の受 渡しが容易に行われるように、例えば、 2本の平板若しくは丸棒等を渡したものも含ん でよい。受渡しは、例えば、一般的にフォークリフトで棚力 資材を取り出す、若しくは 、棚に資材を載置する方法と同じ若しくは類似する方法を用いることができる。ノ ッフ ァリングとは、処理速度が変動しやすい 2つの工程間で、被処理物が滞留若しくは欠 乏することを防ぐことを意味することができる。具体的には、前工程からの中間製品を ある程度溜めておいて、次工程に流すことができる。このとき、前工程からの中間製 品の受け取りや次工程への搬出が十分速く行うことができ、前工程が速くなれば、中 間製品を多く受取、在庫として溜め、次工程が要求する速度で該中間品を次工程に 流すことができる。一方、前工程が遅いときは、溜めてあった在庫を、前工程からの 受取速度とは無関係に、次工程が要求する速度で該中間品を次工程に流すことが できる。尚、具体的な複数の薄板の受渡し態様には、段の数を増減しなくても、十分 な段の数があるなら、載置棚に置く薄板 (基板)の数を変えることにより、搬送速度を 調節することもできる。そして、 EFEM力 複数の薄板を同時に搬送し、載置棚に同 時に(又は 1つずつ)置けば、基板の搬送速度を高くすることができる。このために、 例えば、パレット又は簡易棚毎の搬送や受渡を行うこともできる。 [0020] Here, the mounting shelf is, for example, two flat plates or a round bar so that a thin plate to be placed can be easily delivered including a shelf partitioned by a normal plate. You may include what you have passed. For delivery, for example, a method that generally uses a forklift to take out shelf-strength materials or places materials on the shelves can be used. Noffering means that the object to be processed stays between two processes where the processing speed is likely to fluctuate. It can mean to prevent deficiency. Specifically, intermediate products from the previous process can be collected to some extent and then passed to the next process. At this time, it is possible to receive intermediate products from the previous process and carry them out to the next process sufficiently quickly.If the previous process becomes faster, more intermediate products are received and stored in stock, and the speed required by the next process. The intermediate product can be passed to the next process. On the other hand, when the previous process is slow, the intermediate product can flow to the next process at the speed required by the next process regardless of the receiving speed from the previous process. In the delivery mode of a plurality of thin plates, if there is a sufficient number of steps without increasing or decreasing the number of steps, the number of thin plates (substrates) placed on the mounting shelf can be changed to change the number of steps. You can also adjust the speed. EFEM force If a plurality of thin plates are transferred simultaneously and placed on the mounting shelf at the same time (or one at a time), the substrate transfer speed can be increased. For this purpose, for example, conveyance or delivery for each pallet or simple shelf can be performed.
[0021] (6)前記ロードロックチャンバは、前記真空搬送チャンバ側の反対側に、装置前端部 モジュールを備え、前記装置前端部モジュールの前記ロードロックチャンバ側とは反 対側に、開閉可能な搬出ドアを持つ正面開口式保管箱が載置され、前記装置前端 部モジュールは、該搬出ドアに対向し、同方式で開閉する搬入ドアを備え、前記搬 入ドア及び前記搬出ドアは、同期して開閉することを特徴とする上記(1)から (5) V、 ずれか記載の搬送装置を提供できる。  [0021] (6) The load lock chamber includes a device front end module on the opposite side of the vacuum transfer chamber side, and can be opened and closed on the side opposite to the load lock chamber side of the device front end module. A front opening type storage box having a carry-out door is placed, and the front end module of the apparatus is provided with a carry-in door that faces the carry-out door and opens and closes in the same manner, and the carry-in door and the carry-out door are synchronized. (1) to (5) V, deviation, which is characterized by opening and closing, can be provided.
[0022] ここで、同期して開閉するとは、例えば、下にスライドして閉じられるドアの場合、両 ドアが同期して下にスライドして閉じる。  Here, for example, in the case of a door that is slid down and closed, both doors slide down and close synchronously.
発明の効果  The invention's effect
[0023] 本発明によれば、 EFEMと増設により数可変の処理装置とのスムーズな連結を可 能にし、基板搬送高さより下側にロボット用昇降駆動部やユーティリティを設置可能 なスペースを有する真空搬送プラットフォームを提供できる。これにより様々なレイァ ゥトの要求に応えるプラットフォームを提供可能となる。真空チャンバとロボットのセッ トを連結可能なモジュール構造とするので、処理装置数の変化に対応した増設可能 な真空搬送 (ロボット)モジュールが容易に実現できる。また、増設等によって搬送量 が増加しても、昇降する多段カセットを有するロードロックチャンバを設けることによつ てスループットの増減に柔軟に対応できる。一方、増設ない場合でも、基板数の増減 に柔軟に対応できる。ロボットによる基板の受渡しで必要な昇降駆動源をチャンバ外 に設けて、ロボット自体の負担を減らしシンプルィ匕するので、真空搬送モジュール構 造の構築が容易になる。それにより、昇降駆動源をチャンバ外に設けた機動性高い 搬送ロボットを提供することができる。 [0023] According to the present invention, a vacuum having a space that allows smooth connection between the EFEM and a variable number of processing apparatuses by expansion and allows installation of a robot lifting / lowering unit and utility below the substrate transfer height. A transportation platform can be provided. This makes it possible to provide a platform that meets various layout requirements. Since the vacuum chamber and robot set can be connected in a modular structure, a vacuum transfer (robot) module that can be expanded to accommodate changes in the number of processing equipment can be easily realized. Also, even if the transport amount increases due to expansion, etc., it is possible to flexibly cope with increase / decrease in throughput by providing a load lock chamber having a multistage cassette that moves up and down. On the other hand, even if there is no expansion, increase / decrease in the number of boards Can respond flexibly. A lifting drive source necessary for the delivery of the substrate by the robot is provided outside the chamber, reducing the burden on the robot itself and simplifying it, making it easy to construct a vacuum transfer module structure. As a result, it is possible to provide a highly mobile transfer robot in which a lifting drive source is provided outside the chamber.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0024] 以下、図面に基づいて、本発明の実施の形態をより詳しく説明するが、これは、本 発明を説明するためであって、本発明の内容を以下の実施の形態に限定するもので な!、ことは 、うまでもな!/、。  [0024] Hereinafter, embodiments of the present invention will be described in more detail with reference to the drawings. However, this is for explaining the present invention, and the contents of the present invention are limited to the following embodiments. Well! , That's ugly! /.
[0025] 図 1及び 2は、基板搬送プラットフォームを有する搬送装置 10を示している。図 1は 、基板搬送プラットフォームの平面構成図である。基板搬送プラットフォームを有する 搬送装置 10は、左から順に、 EFEM (Equipment Front End Module) 12と、 ロードロック室 14と、第 1の真空搬送モジュール(又は第 1のモジュールチャンノ) 16 、第 2の真空搬送モジュール (又は第 2のモジュールチャンバ) 18、第 3の真空搬送 モジュール (又は第 3のモジュールチャンバ) 20からなる真空搬送チャンバとによって 、主に構成される。ここで、 EFEMとは、 FFU (Fan Filter Unit)を備えたフレーム 内に大気搬送ウェハロボットを設置し、前面にロードポートを取り付けたモジュール機 器のことを意味する。通常プロセス装置の前面に設置される。この EFEM12は、装 置前端部モジュールの具体例である力 左側端部に FOUP (Front— Opening U nified Pod) 13a、 13b、 13cを 3つ備える。ここで、 FOUPは、 SEMIスタンダード E 47. 1に規定されている、ミニエンバイロメント方式の半導体工場で使われる 300mm ウェハ用の搬送、保管を目的としたキャリアであり、正面開口式カセット一体型搬送、 保管箱である。これらの FOUP13a、 13b、 13cには、それぞれ、処理用のウェハ 11 a、 l lb、 11cが配置され、 EFEM12上にある第 1の搬送ロボットに相当する大気中 の搬送ロボット 41により、矢印に示すように、図中垂直方向の移動をして、各 FOUP 13a、 13b、 13cの前に停止する。その前で停止したいずれかの FOUPにアクセスし て、処理用のウエノヽ l la、 l ib, 11cを取り出す。このとき、 FOUP13a、 13b、 13cの 各ドアは、 EFEM12のドアと同期して開閉する。より具体的には、それぞれのドアの ドア板が同期して上下に動き、ドアの開閉を行う。更に、搬送ロボット 41は、ロードロッ ク室 14に対面する位置にまで移動して、取り出した処理用のウェハ l la、 l lb、 11c を、ロードロック室 14内に載置する。このとき、 EFEM12とロードロック室 14の間には ドア 12aがあり(図 4参照)、載置後、このドア 12aが閉じられ、真空引きが行われる。 [0025] FIGS. 1 and 2 show a transfer apparatus 10 having a substrate transfer platform. FIG. 1 is a plan view of the substrate transfer platform. The transfer device 10 having a substrate transfer platform includes, in order from the left, an EFEM (Equipment Front End Module) 12, a load lock chamber 14, a first vacuum transfer module (or first module channel) 16, and a second vacuum. A vacuum transfer chamber including a transfer module (or second module chamber) 18 and a third vacuum transfer module (or third module chamber) 20 is mainly configured. Here, EFEM means a module device in which an atmospheric transfer wafer robot is installed in a frame equipped with an FFU (Fan Filter Unit) and a load port is attached to the front. Usually installed in front of process equipment. This EFEM 12 has three front-opening unified pods (FOUPs) 13a, 13b and 13c at the left end of the force, which is a specific example of the front end module. Here, FOUP is a carrier for 300 mm wafers used in mini-environment semiconductor factories as defined in SEMI Standard E 47.1. A storage box. In these FOUPs 13a, 13b, and 13c, wafers 11a, l lb, and 11c for processing are arranged, respectively, and are indicated by arrows by the transfer robot 41 in the atmosphere corresponding to the first transfer robot on the EFEM 12. As shown in the figure, move in the vertical direction and stop before each FOUP 13a, 13b, 13c. Access one of the FOUPs that were stopped before that, and remove the processing ueno l la, l ib, 11c. At this time, the doors of FOUPs 13a, 13b, and 13c open and close in synchronization with the doors of EFEM12. More specifically, the door plates of each door move up and down synchronously to open and close the door. In addition, the transfer robot 41 The processing wafer l la, l lb, 11c is moved to a position facing the chamber 14 and placed in the load lock chamber 14. At this time, there is a door 12a between the EFEM 12 and the load lock chamber 14 (see FIG. 4), and after placing, the door 12a is closed and evacuation is performed.
[0026] 図 11にロードロック室(又はチャンバ) 14の透過側面図を示す。ロードロック室 14は 、 EFEM12側に開口 14b及びそれを閉じることができるドア 14aとを備え、その反対 側 (真空搬送モジュール側)に開口 14c及びそれを閉じることができる真空室側ドア 1 4dとを備える。ロードロック室 14内には、基板載置棚 14eが、載置棚昇降機構 14fの 上に配置されている。基板載置棚 14eは複数の段 (棚段)を備えており、各段にそれ ぞれウェハ基板を置くことができる。載置棚昇降機構 14fは、搬送ロボット 41の搬送 面と、基板載置棚 14eの対応段との高さを調整するように、基板載置棚 14e全体を昇 降させる。載置後、両側のドア 14a、 14dが閉じられ、ロードロック室 14内が真空にな る。 FIG. 11 shows a transparent side view of the load lock chamber (or chamber) 14. The load lock chamber 14 includes an opening 14b on the EFEM 12 side and a door 14a that can close the opening 14c, and an opening 14c on the opposite side (vacuum transfer module side) and a vacuum chamber side door 14d that can close the opening 14c. Is provided. In the load lock chamber 14, a substrate mounting shelf 14e is disposed on the mounting shelf lifting mechanism 14f. The substrate mounting shelf 14e has a plurality of stages (shelf stages), and a wafer substrate can be placed on each stage. The mounting shelf elevating mechanism 14f raises and lowers the entire substrate mounting shelf 14e so as to adjust the height between the transfer surface of the transfer robot 41 and the corresponding step of the substrate mounting shelf 14e. After mounting, the doors 14a and 14d on both sides are closed, and the load lock chamber 14 is evacuated.
[0027] 図 1に戻る。ロードロック室 14内の真空度力 第 1の真空搬送モジュール 16の真空 度とほぼ等しくなつたところで、ドア 14dを開けて、第 2の搬送ロボットに相当する真空 搬送ロボット 40により、ロードロック室 14力ら、基板 l idを取り出す。このとき、真空搬 送ロボット 40の搬送面に合わせるように、載置棚昇降機構 14fにより基板載置棚 14e の対応段の位置を調整する。  [0027] Returning to FIG. The degree of vacuum in the load lock chamber 14 When the vacuum level of the first vacuum transfer module 16 is almost equal, the door 14d is opened and the load lock chamber 14 is opened by the vacuum transfer robot 40 corresponding to the second transfer robot. Take the board l id. At this time, the position of the corresponding stage of the substrate mounting shelf 14e is adjusted by the mounting shelf lifting mechanism 14f so as to match the transfer surface of the vacuum transfer robot 40.
[0028] 第 1の真空搬送モジュール 16は、開口部及びそれを閉じることができるゲートバル ブとしての処理室側ドア 22aを介して処理室 22、及び、開口部及びそれを閉じること ができるゲートバルブとしての処理室側ドア 24aを介して処理室 24とそれぞれ連結さ れている。これらのドア 22a、 24aの高さ位置は、真空搬送ロボット 40の搬送面に合 わせた位置に配置される。真空搬送ロボット 40は、載置棚昇降機構 14fから基板 11 を取り出し、ハンドに載置して基板 11を搬送する。搬送は、図中、水平な矢印に沿つ て直線的に右へと移動することにより行われる。処理室 22、 24にアクセスするとき、 真空搬送ロボット 40は、図中左右に延びる線(両端矢じり有)上で、各処理室 22、 24 に対応する位置に停止する。そして、第 1の真空搬送モジュール 16内であって真空 搬送ロボット 40に備えられたモータにより、上下のハンド力 図中垂直な矢印の向き に沿うように一緒に約 90度回転する。そして、図中垂直な矢印の向きに沿って、上又 は下のハンドだけ力 ハンド突出機構により、ドア 22aが開いているときに、基板を処 理室 22内に搬送する。 [0028] The first vacuum transfer module 16 includes a processing chamber 22 and a gate valve capable of closing the opening and the opening through a processing chamber side door 22a as a gate valve capable of closing the opening and the opening. Are connected to the processing chamber 24 via a processing chamber side door 24a. The height positions of the doors 22a and 24a are arranged at positions corresponding to the transfer surface of the vacuum transfer robot 40. The vacuum transfer robot 40 takes out the substrate 11 from the mounting shelf elevating mechanism 14f, and places the substrate 11 on the hand to transfer the substrate 11. Transport is performed by moving straight to the right along the horizontal arrow in the figure. When accessing the processing chambers 22, 24, the vacuum transfer robot 40 stops at a position corresponding to each processing chamber 22, 24 on the line (left and right arrowheads) extending left and right in the figure. Then, by the motor provided in the vacuum transfer robot 40 in the first vacuum transfer module 16, the upper and lower hand forces rotate together by about 90 degrees along the direction of the vertical arrow in the figure. And along the direction of the vertical arrow in the figure, Only the lower hand uses the hand protrusion mechanism to transfer the substrate into the processing chamber 22 when the door 22a is open.
[0029] 第 1の真空搬送モジュール 16は、第 2の真空搬送モジュール 18と、モジュール連 結部(又は連結部) 16aを介して連結される。従って、第 1の真空搬送モジュール 16 及び第 2の真空搬送モジュール 18内は、ほぼ同じ真空度を保っている。同様に、第 3の真空搬送モジュール 20は、モジュール連結部(又は連結部) 18aを介して第 2の 真空搬送モジュール 18と連結される。  [0029] The first vacuum transfer module 16 is connected to the second vacuum transfer module 18 via a module connecting part (or connecting part) 16a. Accordingly, the first vacuum transfer module 16 and the second vacuum transfer module 18 maintain substantially the same degree of vacuum. Similarly, the third vacuum transfer module 20 is connected to the second vacuum transfer module 18 via a module connecting portion (or connecting portion) 18a.
[0030] 真空搬送ロボット 40は、これらのモジュール連結部 16a、 18aを通って、各真空搬 送モジュール 16、 18、 20間を移動する。第 2の真空搬送モジュール 18には、第 1の 真空搬送モジュール 16と同様に、処理室 26、 28と、ドア 26a、 28aを介して連結され る。また、第 3の真空搬送モジュール 20には、第 1の真空搬送モジュール 16と同様に 、処理室 30、 32と、ドア 30a、 32aを介して連結される。また、真空搬送ロボット 40に より、これらの処理室 22、 24、 26、 28、 30、 32にそれぞれ基板 l le、 l lf、 l lg、 11 h、 l li、 I lkを配置し、処理を施させること  [0030] The vacuum transfer robot 40 moves between the vacuum transfer modules 16, 18, 20 through the module connecting portions 16a, 18a. Similar to the first vacuum transfer module 16, the second vacuum transfer module 18 is connected to the processing chambers 26 and 28 via doors 26a and 28a. Similarly to the first vacuum transfer module 16, the third vacuum transfer module 20 is connected to the processing chambers 30 and 32 through doors 30a and 32a. The vacuum transfer robot 40 places the substrates l le, l lf, l lg, 11 h, l li, and I lk in these processing chambers 22, 24, 26, 28, 30, and 32, respectively. Giving
ができる。  Can do.
[0031] このように、合計で 6個の処理室を設けることが可能であり、更に、単に気密性の連 結部により次々と連結できるので、処理室は所望の数だけ備えることができ、必要な 処理の数に応じて柔軟に基板搬送装置の構成を変更することができる。  [0031] In this way, it is possible to provide a total of six processing chambers, and furthermore, since they can be connected one after another simply by an airtight connecting portion, a desired number of processing chambers can be provided, The configuration of the substrate transfer apparatus can be flexibly changed according to the number of necessary processes.
[0032] 図 3は、 1個の真空搬送モジュール 16を組み込んだ搬送装置 10aの斜視図であり、 図 4は、平面図であり、図 5は、正面図である。上述した搬送装置 10と同様に、複数 の FOUP13a、 13b、 13c、 13d力 EFEM12の左側端に備えられ、反対側の右側 端には、ほぼ中央の位置にロードロック室 14が配置され、該ロードロック室 14の更に 右側に、真空搬送モジュール 16からなる真空搬送チャンバが配置される。ロードロッ ク室 14及び真空搬送モジュール 16は、共通架台(プラットフォーム) 50の上面に置 かれ、ゲートバルブ又はドア 14dにより閉じられる開口の上下位置を容易にそろえる ことができる構成となっている。共通架台(又は架台) 50は、アングルを組んで構成さ れる構造を有しているので、フレームの隙間であって、真空搬送モジュール 16の真 下に、ユーティリティ又はユーティリティ収納部 22b、 24bが設置される。これらのユー ティリティは、真空搬送モジュール 16内で、真空搬送ロボット 40が所定の位置に停止 したときに、真空搬送ロボット 40の昇降機構を駆動する。また、真空搬送ロボット 40の 他の機能を発揮させることができる。真空搬送ロボット 40の駆動機構の詳細は、後述 する。 FIG. 3 is a perspective view of a transfer apparatus 10a in which one vacuum transfer module 16 is incorporated, FIG. 4 is a plan view, and FIG. 5 is a front view. Similar to the transfer device 10 described above, a plurality of FOUPs 13a, 13b, 13c, and 13d force are provided at the left end of the EFEM 12, and the load lock chamber 14 is disposed at a substantially central position at the opposite right end, and the load A vacuum transfer chamber including a vacuum transfer module 16 is disposed on the right side of the lock chamber 14. The load lock chamber 14 and the vacuum transfer module 16 are placed on the upper surface of a common platform (platform) 50 and are configured so that the upper and lower positions of the opening closed by the gate valve or the door 14d can be easily aligned. Since the common frame (or frame) 50 has a structure that is configured by assembling angles, a utility or utility storage unit 22b, 24b is installed in the gap of the frame and directly under the vacuum transfer module 16. Is done. These you Tility drives the lifting mechanism of the vacuum transfer robot 40 when the vacuum transfer robot 40 stops at a predetermined position in the vacuum transfer module 16. In addition, other functions of the vacuum transfer robot 40 can be exhibited. Details of the drive mechanism of the vacuum transfer robot 40 will be described later.
[0033] EFEM12は、共通架台 50には載置されず、自身の持つ脚部の上に立ち、ドア 12 aの高さをロードロック室 14の開口 14bと合わせるように調整される。各 FOUP13a、 1 3b、 13c、 13dの下には、ドア開閉機構が設置され、コンタミが生じ難いように同期し てドア開閉が行われる。尚、当然のことながら EFEMを共通架台上に載せることもで きる。  [0033] The EFEM 12 is not placed on the common platform 50, but stands on its own leg, and is adjusted so that the height of the door 12a matches the opening 14b of the load lock chamber 14. Under each FOUP 13a, 13b, 13c, 13d, a door opening / closing mechanism is installed, and the doors are opened and closed synchronously to prevent contamination. Of course, EFEM can be mounted on a common platform.
[0034] 図 6は、図 4の透視平面図に相当し、 EFEM12内の大気搬送ロボット 41と、真空搬 送モジュール 16からなる真空搬送チャンバ内の真空搬送ロボット 40が記載されてい る。また、図 4には図示されていないが、真空搬送チャンバ 16には処理室 22、 24が それぞれ処理室側ドア 22a、 24aを介して連結される。大気搬送ロボット 41は、ほぼ 水平な走行路 43上を走行することにより、各 FOUP13a、 13b、 13c、 13dの前で停 止できるように移動する。停止した大気搬送ロボット 41は、真空搬送ロボット 40と同様 、備えられたモータによる回転により、ウェハ 11を載せるハンド 40aの向きを変えて、 各 FOUP13a、 13b、 13c、 13d内のウエノ、 11を取り出すこと力できる。  FIG. 6 corresponds to the perspective plan view of FIG. 4 and shows the atmospheric transfer robot 41 in the EFEM 12 and the vacuum transfer robot 40 in the vacuum transfer chamber composed of the vacuum transfer module 16. Although not shown in FIG. 4, the processing chambers 22 and 24 are connected to the vacuum transfer chamber 16 via processing chamber side doors 22a and 24a, respectively. The atmospheric transfer robot 41 moves so as to be able to stop in front of each FOUP 13a, 13b, 13c, 13d by traveling on a substantially horizontal traveling path 43. The stopped atmospheric transfer robot 41, like the vacuum transfer robot 40, changes the direction of the hand 40a on which the wafer 11 is placed by the rotation of the motor provided, and takes out the wafer 11 in each FOUP 13a, 13b, 13c, 13d. I can do it.
[0035] 図 7は、真空搬送ロボット 40の機能を説明する図である。真空搬送ロボット 40は、 連結された各真空搬送モジュール 16、 18、 20内に配置され、これらモジュール内を リニアに移動ができる。この移動方向を規定する走行ガイド 40bは、各モジュールの 連結方向に実質的に直線的に延びて 、る。この走行ガイド 40bの上面が走行ガイド 面となり、走行ガイド 40bに跨った移動体 40iが、走行ガイド 40bに沿って移動する。 具体的には、駆動力は、走行ガイド 40bの下側であって真空系外力も付与される。走 行ガイド 40bは、補助走行ガイド 40g (図 6参照)と共に、真空搬送ロボット 40が、水平 に移動できるようにガイドする。特に走行ガイド 40b内には、真空搬送ロボット 40の移 動体 40iを駆動する機構が、真空チャンバ外に備えられている。このような機構は、例 えば、ボールねじであったり、リニアモータであったりすることができる。ボールねじの 場合は、ボールねじで走行ガイド 40b内を移動する強力磁石が、移動体に設置され た磁石若しくは磁石にくっつくことができるマルテンサイト系のステンレス等により、非 接触で駆動する。 FIG. 7 is a diagram for explaining the function of the vacuum transfer robot 40. The vacuum transfer robot 40 is arranged in each connected vacuum transfer module 16, 18, 20 and can move linearly in these modules. The travel guide 40b that defines the moving direction extends substantially linearly in the connecting direction of the modules. The upper surface of the travel guide 40b becomes the travel guide surface, and the moving body 40i straddling the travel guide 40b moves along the travel guide 40b. Specifically, the driving force is below the traveling guide 40b and a vacuum system external force is also applied. The traveling guide 40b guides together with the auxiliary traveling guide 40g (see FIG. 6) so that the vacuum transfer robot 40 can move horizontally. In particular, in the traveling guide 40b, a mechanism for driving the moving body 40i of the vacuum transfer robot 40 is provided outside the vacuum chamber. Such a mechanism can be, for example, a ball screw or a linear motor. In the case of a ball screw, a strong magnet that moves in the travel guide 40b with the ball screw is installed on the moving body. It is driven in a non-contact manner by a martensitic stainless steel that can stick to the magnet.
[0036] 移動体 40iには昇降軸 40cが昇降自在にガイドされており、昇降軸 40c上に昇降テ 一ブル 40dが固定されている。昇降テーブル 40d上に図示しないモータにより回転 テーブル 40eが回転され、この回転テーブル 40eに固定されたハンドガイド 40f及び ハンド 40aがー緒に回転する。ハンドガイド 40fの上部には、上下のハンド 40aをスラ イドする機構が備えられている。この機構は、例えば、タイミングベルトをノ、ンドガイド 40fの上面に沿って張り、図中左右の端部にプーリーを置き、このタイミングベルトに 固定した部材を上下の 、ずれかのハンド 40aに連結させるものであってもよ!/、。この タイミングベルトを左右に 2個並べて張った場合、 Vヽずれかを上若しくは下のハンド 4 Oaに連結させれば、上下のハンド 40aを独立して、図中左右に移動させることができ る。基板 11を受け渡す位置に真空搬送ロボット 40がやって来たときに(例えば、処理 装置 22、 24、 26、 28、 30、 32へ基板 11を受け渡すことができる真空搬送ロボット 4 0の所定の位置)、走行ガイド 40bが配置されている真空搬送モジュール 16、 18、 20 力もなる真空搬送チャンバの外に、配置されている昇降ピン 17aを突き上げることに より昇降軸 40cを上げる。  [0036] An elevating shaft 40c is guided to the movable body 40i so as to be movable up and down, and the elevating table 40d is fixed on the elevating shaft 40c. The rotary table 40e is rotated on the lifting table 40d by a motor (not shown), and the hand guide 40f and the hand 40a fixed to the rotary table 40e rotate together. A mechanism for sliding the upper and lower hands 40a is provided on the upper part of the hand guide 40f. In this mechanism, for example, the timing belt is stretched along the upper surface of the guide 40f, pulleys are placed on the left and right ends in the figure, and the member fixed to the timing belt is connected to the upper or lower hand 40a. It can be a thing! When two timing belts are stretched side by side, the upper and lower hands 40a can be moved independently to the left and right in the figure by connecting the V ヽ shift to the upper or lower hand 4 Oa. . When the vacuum transfer robot 40 arrives at a position where the substrate 11 is transferred (for example, a predetermined position of the vacuum transfer robot 40 that can transfer the substrate 11 to the processing devices 22, 24, 26, 28, 30, 32) ), The lift shaft 40c is raised by pushing up the lift pin 17a disposed outside the vacuum transfer chamber having the force of the vacuum transfer module 16, 18, 20 where the travel guide 40b is disposed.
[0037] 図 8は、複数の真空搬送モジュール 16、 18が連結された真空搬送チャンバにおけ る真空搬送ロボット 40の作用を説明する断面図である。図 9は、図 8の BB断面図で ある。また、図 10は、図 8の AA断面図である。図 7においては、真空搬送ロボット 40 は、その搬入搬出機能を果たす必要のない場所にあるため(図中、昇降ピン 17aと、 昇降軸 40cがずれている)、昇降軸の上昇又は下降は生じない。しかし、図 8におい て、処理室 22の前にある所定の位置に来たため、真空搬送ロボット 40はその機能を 発揮することができる。図 8は、搬送装置 10を正面側から見た真空搬送チャンバの部 分断面図である。架台 50の中に配置されたユーティリティ収納部の昇降ピン 17aは、 真空搬送モジュールの底壁に開けられた開口部に、 Oリングを巻いて押し込まれて いる。これにより、真空搬送モジュール内への大気の流入を防いでいる。このとき好ま しくは、グリース若しくは蒸気圧の低 、オイルを Oリングに付けることが好ま 、。  FIG. 8 is a cross-sectional view illustrating the operation of the vacuum transfer robot 40 in a vacuum transfer chamber in which a plurality of vacuum transfer modules 16 and 18 are connected. FIG. 9 is a BB cross-sectional view of FIG. FIG. 10 is a cross-sectional view taken along the line AA in FIG. In FIG. 7, the vacuum transfer robot 40 is in a place where it is not necessary to perform its loading / unloading function (the lifting pin 17a and the lifting shaft 40c are shifted in the figure), so that the lifting shaft is raised or lowered. Absent. However, in FIG. 8, the vacuum transfer robot 40 can exert its function because it has come to a predetermined position in front of the processing chamber 22. FIG. 8 is a partial cross-sectional view of the vacuum transfer chamber when the transfer apparatus 10 is viewed from the front side. The elevating pins 17a of the utility storage unit arranged in the gantry 50 are pushed by winding an O-ring into an opening opened in the bottom wall of the vacuum transfer module. This prevents inflow of air into the vacuum transfer module. At this time, it is preferable to apply grease or oil with low vapor pressure to the O-ring.
[0038] ユーティリティ収納部には、昇降ピン 17aを押し上げる機構が備えられており、所定 のタイミングで、昇降ピン 17aを押し上げて、昇降軸 40eをさらに押し上げる。これによ り、昇降テーブル 40dの上の機材が全て押し上げられ、基板 11の搬入及び搬出のた めの必要な高さを確保することができる。このように駆動系を真空系外にお 、て 、る ため、真空搬送ロボット 40の機構がシンプルとなり、軽量で移動しやすくなる。真空 搬送ロボット 40が右隣のユーティリティ収納部 24b上に来た場合も同様である。 [0038] The utility storage unit is provided with a mechanism for pushing up the lifting pins 17a. At this timing, the lifting pin 17a is pushed up, and the lifting shaft 40e is pushed up further. As a result, all the equipment on the lifting table 40d is pushed up, and the necessary height for loading and unloading the substrate 11 can be secured. Thus, since the drive system is out of the vacuum system, the mechanism of the vacuum transfer robot 40 is simple, lightweight and easy to move. The same applies when the vacuum transfer robot 40 comes on the utility storage unit 24b on the right.
[0039] 走行ガイド 40bは、第 1の真空搬送モジュール 16内では、連続した断面キャップ状 ( コップ状を逆さまにしたもの)であるが(図 10)、右隣の第 2の真空搬送モジュール 18 内では、別の走行ガイド 40bとジョイント 16bにより結合されている。このとき、上面が ガイド面となり、走行体 40iの移動を容易にするように、ッライチで結合されている。尚 、このように走行ガイドを連結するのではなぐ一体型の長い走行ガイドを導入するこ とができることはいうまでもない。どちらを選択するかは、コスト、容易さ、その他の条 件に鑑みて決定することができる。  [0039] In the first vacuum transfer module 16, the traveling guide 40b has a continuous cross-sectional cap shape (a cup shape inverted) (Fig. 10). Inside, it is connected by another traveling guide 40b and a joint 16b. At this time, the upper surface serves as a guide surface and is joined by a pliers so that the traveling body 40i can be easily moved. Needless to say, it is possible to introduce an integrated long traveling guide that does not connect the traveling guides in this way. Which one to choose can be decided in view of cost, ease and other conditions.
[0040] 図 9に示すように、第 1の真空搬送モジュール 16とロードロック室 14の連結部では、 ドア開閉機構の上に真空室側ドア 14dが、第 1の真空搬送モジュール 16の開口部を 閉じている。図 10は、 AA断面図を示すが、走行ガイド 40b及び補助走行ガイド 40g に乗って走行体 40iが移動する。走行ガイド 40bのキャップ内には、図示されていな いが、走行体 40iの駆動機構を備えられる。  As shown in FIG. 9, at the connecting portion between the first vacuum transfer module 16 and the load lock chamber 14, the vacuum chamber side door 14 d is located above the door opening / closing mechanism, and the opening of the first vacuum transfer module 16. Is closed. FIG. 10 shows an AA cross-sectional view, and the traveling body 40i moves on the traveling guide 40b and the auxiliary traveling guide 40g. Although not shown, a drive mechanism for the traveling body 40i is provided in the cap of the traveling guide 40b.
[0041] 以上述べてきたように、本発明の搬送装置では、増設可能で生産量の増減に柔軟 に対応でき、機動性の高いという絶大な効果が得られる。また、これらの実施例は、 本発明を説明するために用いたものに過ぎず、本発明の内容がこれらに限られるも のではない。例えば、上記実施例では、真空搬送ロボットが 1台のみの場合を説明し てきたが、 2台、 3台、若しくはそれ以上あってもよい。また、移動ルートも、 1つのほぼ 直線状としてきた力 2以上の直線状のルートがあってもよい。さらに、これらのルート が互 ヽに交差することを排除するものではな 、。  [0041] As described above, the transfer device of the present invention can be expanded, can flexibly respond to increase / decrease in production volume, and has the great effect of high mobility. Further, these examples are merely used to explain the present invention, and the contents of the present invention are not limited to these examples. For example, in the above embodiment, the case where there is only one vacuum transfer robot has been described, but there may be two, three, or more. Also, the moving route may have a straight route with a force of 2 or more, which has been made almost straight. Furthermore, it does not exclude that these routes cross each other.
図面の簡単な説明  Brief Description of Drawings
[0042] [図 1]基板搬送プラットフォームの平面構成図である。 FIG. 1 is a plan configuration diagram of a substrate transfer platform.
[図 2]基板搬送プラットフォームのレイアウト図である。  FIG. 2 is a layout diagram of a substrate transfer platform.
[図 3]真空搬送モジュールを 1つ有する基板搬送プラットフォームの斜視図である。 [図 4]同基板搬送プラットフォームの平面図である。 FIG. 3 is a perspective view of a substrate transfer platform having one vacuum transfer module. FIG. 4 is a plan view of the substrate transfer platform.
[図 5]同基板搬送プラットフォームの正面図である。  FIG. 5 is a front view of the substrate transfer platform.
[図 6]同基板搬送プラットフォームの平面部分透視図である。  FIG. 6 is a partially transparent plan view of the substrate transfer platform.
[図 7]真空搬送ロボットの構成模式図 (側面図)である。  FIG. 7 is a schematic configuration diagram (side view) of a vacuum transfer robot.
[図 8]基板搬送プラットフォームの真空搬送チャンバの部分断面図である。  FIG. 8 is a partial cross-sectional view of a vacuum transfer chamber of a substrate transfer platform.
[図 9]図 8の BB断面図である。  FIG. 9 is a BB sectional view of FIG.
[図 10]図 8の AA断面図である。  FIG. 10 is a cross-sectional view taken along the line AA in FIG.
[図 11]ロードロックチャンバの内部透視側面図である。  FIG. 11 is a transparent side view of the interior of the load lock chamber.
符号の説明 Explanation of symbols
10、 10a 搬送装置 10, 10a Transfer device
11 基板 11 Board
12 EFEM 12 EFEM
14 ロード、ロック室 14 Road, lock room
16、 18、 20 真空搬送モジュール 16, 18, 20 Vacuum transfer module
16b ジョイント 16b joint
17a 昇降ピン 17a Lift pin
22、 24、 26、 28、 30、 32 処理室  22, 24, 26, 28, 30, 32 Processing chamber
40 真空搬送ロボット  40 Vacuum transfer robot
40a ノヽンド  40a node
40b 走行ガイド  40b Driving Guide
40c 昇降軸  40c lifting shaft
40g 補助走行ガイド  40g Auxiliary travel guide
401 走行体  401 traveling body
41 大気中搬送ロボット  41 Airborne robot
50 共通架台  50 Common mount

Claims

請求の範囲 The scope of the claims
[1] 連結可能なロードロックチャンバ及び真空搬送チャンバを備える薄板を搬送する搬 送装置であって、  [1] A transport device for transporting a thin plate comprising a load lock chamber and a vacuum transport chamber that can be connected,
前記真空搬送チャンバは、  The vacuum transfer chamber is
少なくとも 1つのモジュールチャンバを備え、 2つ目力 のモジュールチャンバは 連結部でリニアに連結され、  It has at least one module chamber, and the second force module chamber is connected linearly at the connecting part,
前記モジュールチャンバがリニアに連結される連結方向とは異なる方向に、少なく とも 1つの処理室と前記薄板を出入可能に連結され、  The module chamber is connected in a direction different from the connection direction in which the module chambers are linearly connected so that at least one processing chamber and the thin plate can be moved in and out,
リニアに移動可能な搬送ロボットをチャンバ内に備え、該搬送ロボットは前記薄板 を前記ロードロックチャンバから取り出し、所定の処理のために前記処理室へ搬送し 前記モジュールチャンバがリニアに連結される連結方向に沿って、チャンバ内にリ ニァな移動ガイドを、前記搬送ロボットの移動方向を規定するように備え、  A linearly movable transfer robot is provided in the chamber, and the transfer robot takes out the thin plate from the load lock chamber, transfers it to the processing chamber for a predetermined process, and a connection direction in which the module chamber is linearly connected. A linear movement guide is provided in the chamber so as to define the movement direction of the transfer robot,
その上及び Z又は下に、前記真空搬送チャンバ内の前記搬送ロボットの移動位 置に対応して、各種のユーティリティを備え、  Various utilities are provided above and Z or below corresponding to the movement position of the transfer robot in the vacuum transfer chamber,
前記各種ユーティリティにより、前記搬送ロボットが各種の機能を発揮することを特 徴とする搬送装置。  A transfer device characterized in that the transfer robot performs various functions by the various utilities.
[2] 少なくとも前記真空搬送チャンバを載置する架台を備え、  [2] comprising a gantry on which at least the vacuum transfer chamber is placed;
前記架台は、前記各種ユーティリティを収納可能な空間を備えることを特徴とする 請求項 1記載の搬送装置。  The transport apparatus according to claim 1, wherein the gantry includes a space in which the various utilities can be stored.
[3] 前記搬送ロボットは、前記薄板を保持するハンドを備え、 [3] The transfer robot includes a hand for holding the thin plate,
前記搬送ロボットは、前記真空搬送チャンバ内の移動位置に対応する前記各種ュ 一ティリティにより、前記ハンドの昇降を駆動し、前記薄板を前記処理室との間で受 渡しを行うことを特徴とする請求項 1又は 2記載の搬送装置。  The transfer robot drives the raising and lowering of the hand by the various utilities corresponding to the moving position in the vacuum transfer chamber, and transfers the thin plate to and from the processing chamber. The transport apparatus according to claim 1 or 2.
[4] 前記ハンドの昇降は、前記真空搬送チャンバ外であって、前記各種ユーティリティ に備えられる昇降ピンを突上げることによって、真空搬送ロボットの昇降軸を突上げ て行うことを特徴とする請求項 3記載の搬送装置。 [4] The raising and lowering of the hand is performed outside the vacuum transfer chamber by pushing up an elevating shaft of the vacuum transfer robot by pushing up an elevating pin provided in the various utilities. 3. The transfer device according to 3.
[5] 前記ロードロックチャンバは、該チャンバ内に複数段を有する載置棚を備え、前記 薄板の搬入搬出時に該載置棚を昇降させて、複数の薄板の受渡し、及び Z又は、 バッファリングを行 、得るように構成され、前記複数段を有する載置棚の段の数が、 前記処理室及びモジュールチャンバの連結数に応じて決定されることを特徴とする 請求項 1から 41、ずれか記載の搬送装置。 [5] The load lock chamber includes a mounting shelf having a plurality of stages in the chamber, The loading shelf is moved up and down at the time of loading and unloading the thin plate, and a plurality of thin plates are delivered and Z or buffered, and the number of loading shelf stages having the plurality of steps is 42. The transfer apparatus according to claim 1, wherein the transfer apparatus is determined according to the number of connected processing chambers and module chambers.
前記ロードロックチャンバは、前記真空搬送チャンバ側の反対側に、装置前端部モ ジュールを備え、  The load lock chamber includes a device front end module on the opposite side of the vacuum transfer chamber side,
前記装置前端部モジュールの前記ロードロックチャンバ側とは反対側に、開閉可能 な搬出ドアを持つ正面開口式保管箱が載置され、  A front open storage box having an openable / closable exit door is placed on the opposite side of the load lock chamber side of the device front end module,
前記装置前端部モジュールは、該搬出ドアに対向し、同方式で開閉する搬入ドア を備え、前記搬入ドア及び前記搬出ドアは、同期して開閉することを特徴とする請求 項 1から 5 、ずれか記載の搬送装置。  6. The apparatus front end module includes a loading door that faces the loading door and opens and closes in the same manner, and the loading door and the loading door open and close synchronously. Or a transfer device.
PCT/JP2006/324294 2006-12-05 2006-12-05 Conveying equipment WO2008068859A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/324294 WO2008068859A1 (en) 2006-12-05 2006-12-05 Conveying equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/324294 WO2008068859A1 (en) 2006-12-05 2006-12-05 Conveying equipment

Publications (1)

Publication Number Publication Date
WO2008068859A1 true WO2008068859A1 (en) 2008-06-12

Family

ID=39491778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/324294 WO2008068859A1 (en) 2006-12-05 2006-12-05 Conveying equipment

Country Status (1)

Country Link
WO (1) WO2008068859A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60259389A (en) * 1984-06-04 1985-12-21 日産自動車株式会社 Auto-loader
JPS63154462A (en) * 1986-12-19 1988-06-27 富士通株式会社 Conveyor
JPH09223727A (en) * 1995-12-12 1997-08-26 Tokyo Electron Ltd Semiconductor treating apparatus, substrate changing mechanism and changing method thereof
JP2003086658A (en) * 2001-09-11 2003-03-20 Anelva Corp Monitor for substrate carrier
JP2004349503A (en) * 2003-05-22 2004-12-09 Tokyo Electron Ltd System and method for processing object to be processed

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60259389A (en) * 1984-06-04 1985-12-21 日産自動車株式会社 Auto-loader
JPS63154462A (en) * 1986-12-19 1988-06-27 富士通株式会社 Conveyor
JPH09223727A (en) * 1995-12-12 1997-08-26 Tokyo Electron Ltd Semiconductor treating apparatus, substrate changing mechanism and changing method thereof
JP2003086658A (en) * 2001-09-11 2003-03-20 Anelva Corp Monitor for substrate carrier
JP2004349503A (en) * 2003-05-22 2004-12-09 Tokyo Electron Ltd System and method for processing object to be processed

Similar Documents

Publication Publication Date Title
JP4389424B2 (en) To-be-processed object conveyance mechanism and processing system
US6565662B2 (en) Vacuum processing apparatus for semiconductor process
JP4821074B2 (en) Processing system
JP4493955B2 (en) Substrate processing apparatus and transfer case
JPH06211306A (en) Substrate storage device
JP2009105081A (en) Substrate processing apparatus
KR20040103435A (en) Substrate conveying apparatus, substrate conveying method and vacuum treating apparatus
JP2001135704A (en) Substrate treatment apparatus and transfer control method for substrate transfer tray
JPWO2007004551A1 (en) Container transport device and container transport system
JP5926694B2 (en) Substrate relay device, substrate relay method, substrate processing apparatus
JP2007149948A (en) Vacuum treatment device
US6840763B2 (en) Wafer processing apparatus
KR20090124118A (en) Substrate processing system
JPWO2009060539A1 (en) Inline type wafer transfer apparatus and substrate transfer method
JPH05304197A (en) Multi-chamber system
JP2018170347A (en) Wafer transport apparatus and wafer transport method
WO2008068859A1 (en) Conveying equipment
KR100717990B1 (en) A transportation system for processing semiconductor material
US10403529B2 (en) Carrier transport device and carrier transport method
KR100896472B1 (en) Multi-chamber system for manufacturing semiconductor device and method for treating substrate
JPH05326666A (en) Conveyor
KR101700607B1 (en) Substrate treatment system
CN113169107A (en) Load lock chamber
JPH08124916A (en) Multi-chamber vacuum heat treatment system
JPH04271139A (en) Semiconductor manufacturing equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06834049

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06834049

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP