WO2008068821A1 - オフセット調整機能付きバッファ - Google Patents

オフセット調整機能付きバッファ Download PDF

Info

Publication number
WO2008068821A1
WO2008068821A1 PCT/JP2006/324093 JP2006324093W WO2008068821A1 WO 2008068821 A1 WO2008068821 A1 WO 2008068821A1 JP 2006324093 W JP2006324093 W JP 2006324093W WO 2008068821 A1 WO2008068821 A1 WO 2008068821A1
Authority
WO
WIPO (PCT)
Prior art keywords
offset
buffer
signal line
signal
circuit
Prior art date
Application number
PCT/JP2006/324093
Other languages
English (en)
French (fr)
Inventor
Masaya Kibune
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to PCT/JP2006/324093 priority Critical patent/WO2008068821A1/ja
Publication of WO2008068821A1 publication Critical patent/WO2008068821A1/ja

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45475Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using IC blocks as the active amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45479Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection
    • H03F3/45928Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection using IC blocks as the active amplifying circuit
    • H03F3/45968Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection using IC blocks as the active amplifying circuit by offset reduction
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45479Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection
    • H03F3/45928Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection using IC blocks as the active amplifying circuit
    • H03F3/45968Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection using IC blocks as the active amplifying circuit by offset reduction
    • H03F3/45973Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection using IC blocks as the active amplifying circuit by offset reduction by using a feedback circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45212Indexing scheme relating to differential amplifiers the differential amplifier being designed to have a reduced offset
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45681Indexing scheme relating to differential amplifiers the LC comprising offset compensating means

Definitions

  • the present invention generally relates to signal transmission, and more particularly to a buffer used at a receiving end for signal transmission between LSI chips, between boards, between cases, and the like.
  • a limiting 'amplifier used for an input unit of a receiving circuit. Although it depends on the specifications, the limiting 'amplifier requires a gain of about 40dB.
  • high-speed signals for example, signals of lOGbps
  • the net signal is the offset generated and amplified in each of the multiple buffers. If the signal deteriorates by being superimposed on the signal component, signal transmission becomes impossible in the worst case. Therefore, the offset is detected by the offset detection parameter adjustment circuit, and the offset adjustment circuit is driven by the parameter corresponding to the detected offset, thereby canceling the offset and transmitting only the net signal component.
  • Patent Document 1 Japanese Patent Laid-Open No. 11-97950
  • an object of the present invention is to provide a buffer (amplifier circuit) with an offset adjustment function in which the influence of band limitation on a transmission signal is reduced.
  • the buffer with an offset adjustment function includes a signal line through which a transmission signal propagates, and an offset detection circuit that generates an offset adjustment signal at the output terminal according to the offset of the transmission signal by coupling the input terminal to the signal line.
  • An offset adjustment circuit having a first end coupled to the output end of the offset detection circuit and a second end coupled to the signal line and reducing the offset of the transmission signal in accordance with the offset adjustment signal;
  • An internal impedance of the offset detection circuit provided between at least one of the input end of the offset detection circuit and the signal line and between the second end of the offset adjustment circuit and the signal line;
  • One or a plurality of impedance elements constituting a filter having a predetermined frequency characteristic by being combined with at least one of the internal impedances, and the signal Characterized in that it comprises a buffer circuit for signal amplification at a predetermined gain connected to line.
  • the invention's effect [0008] According to at least one embodiment of the present invention, it is possible to provide a buffer with an offset adjustment function in which the influence of band limitation on a transmission signal is reduced.
  • FIG. 1 is a diagram showing a principle configuration of a buffer with an offset adjustment function according to the present invention.
  • FIG. 2 is a diagram showing a modification of the principle configuration of the buffer with an offset adjustment function according to the present invention shown in FIG.
  • FIG. 3 is a diagram showing another variation of the principle configuration of the buffer with an offset adjustment function according to the present invention shown in FIG. 1.
  • FIG. 4 is a diagram showing still another modified example of the principle configuration of the buffer with an offset adjustment function according to the present invention shown in FIG. 1.
  • FIG. 4 is a diagram showing still another modified example of the principle configuration of the buffer with an offset adjustment function according to the present invention shown in FIG. 1.
  • FIG. 5 is a diagram showing a configuration in which a plurality of buffers with an offset adjustment function according to the present invention are provided and a plurality of buffers with an offset adjustment function are connected in series.
  • FIG. 6 is a diagram showing a configuration of a first exemplary embodiment of a buffer with an offset adjustment function according to the present invention.
  • FIG. 7 is a diagram illustrating an example of a circuit configuration of a differential amplifier.
  • FIG. 8 is a diagram showing a configuration of a second embodiment of a buffer with an offset adjustment function according to the present invention.
  • FIG. 9 is a diagram showing a configuration of a third exemplary embodiment of a buffer with an offset adjustment function according to the present invention.
  • FIG. 10 is a diagram showing a configuration of a fourth exemplary embodiment of a buffer with an offset adjustment function according to the present invention.
  • FIG. 11 is a diagram showing a configuration of a fifth exemplary embodiment of a buffer with an offset adjustment function according to the present invention.
  • FIG. 12 is a diagram showing a configuration of a buffer with an offset adjustment function according to the present invention when a single-ended buffer is used.
  • FIG. 13 is a diagram illustrating an example of a configuration in which an impedance element included in a filter includes not only a resistor but also another impedance element.
  • FIG. 1 is a diagram showing a principle configuration of a buffer with an offset adjustment function according to the present invention.
  • 1 includes a notch 11, an offset detection parameter adjustment circuit 12, an offset adjustment circuit 13, a filter 14, a filter 15, and a signal line 16.
  • the noffer 11 receives an input signal via input terminals in and Zin ('Z' means a bar indicating signal inversion), and amplifies the input signal with a predetermined gain, Supply to output end out and Zout.
  • the input terminal of the offset detection parameter adjustment circuit 12 is coupled to a signal line 16 (signal line between the buffer 11 and the output terminals out and Zout) on which the transmission signal (in this case, the output signal of the buffer 11) propagates.
  • the offset detection 'parameter adjustment circuit 12 generates an offset adjustment signal corresponding to the output offset of the buffer 11 on the signal line 16 at the output end.
  • the offset adjustment circuit 13 has a first end 17 coupled to the output end of the offset detection and parameter adjustment circuit 12, and a second end 18 coupled to the signal line 16.
  • the offset adjustment circuit 13 functions to reduce the offset of the transmission signal on the signal line 16 coupled to the second end 18 in accordance with the offset adjustment signal supplied from the first end 17.
  • the offset adjustment circuit 13 includes a current source 20 and a current source 21.
  • the offset adjustment circuit 13 reduces the offset of the transmission signal on the signal line 16 by adjusting the respective current amounts of the current source 20 and the current source 21 according to the offset adjustment signal.
  • a voltage source can be used instead of the current source. Good.
  • the filter 14 includes one or more impedance elements such as a resistance element, an inductor, and a capacitor.
  • This impedance element is provided between the signal line 16 and the second end 18 of the offset adjustment circuit 13, and is combined with the internal impedance of the offset adjustment circuit 13 appearing at the second end 18, thereby having a predetermined frequency characteristic. Configure the filter.
  • the filter 14 shown in FIG. 1 is not provided. Therefore, the internal impedance of the offset adjustment circuit 13 appearing at the second end 18 of the offset adjustment circuit 13 (for example, the input capacitance of the current source 20 and the current source 21) is directly connected to the signal line 16. Therefore, by the influence of the internal impedance directly transmitted to the signal line 16, the transmission band of the transmission signal on the signal line 16 is limited.
  • the offset adjusting circuit 13 is inserted by inserting the filter 14 between the signal line 16 and the second end 18.
  • the effect of the internal impedance is not transmitted directly to the signal line 16. That is, since the impedance element of the filter 14 is interposed between the signal line 16 and the second end 18, the band limitation due to the internal impedance does not directly affect the signal line 16. Can be relaxed.
  • the internal impedance of the offset adjustment circuit 13 has a certain band characteristic, but when viewed from the signal line 16 by combining the impedance element of the finoleta 14 with this internal impedance.
  • the bandwidth characteristics By changing the bandwidth characteristics, it is possible to realize bandwidth characteristics with less bandwidth limitation.
  • the effect of relaxing the band limitation of the transmission signal obtained in this way is due to the type of internal impedance (whether the main is a force inductance with a main capacity, etc.), the magnitude of the impedance, and the impedance element of the filter 14. Depends on type and size. This will be described as appropriate in the description of the embodiments.
  • the frequency characteristics of the filter configured as described above can be freely designed so that the frequency characteristics are sufficiently lower than the signal components and the frequency characteristics are desired. ,. Therefore, for example, it is possible to detect and adjust only the offset (DC offset and Z or AC offset) of a specific frequency component. Also adjust the parameters of the filter components. If it can be adjusted, the frequency characteristics of the filter can be changed statically or dynamically. As a result, even if the signal frequency changes due to the use of different signal transmission standards, the optimum frequency characteristics of the filter can be provided by a single circuit. Also, it is possible to easily cope with variations in characteristics of elements, changes in characteristics due to changes in temperature and voltage, etc., by adjusting the parameters of the constituent elements of the filter.
  • the configuration, function, and effect of the filter 15 are the same as the configuration, function, and effect of the filter 14. That is, by providing the filter 15, the influence of the internal impedance (input impedance) of the offset detection 'parameter adjustment circuit 12 appearing at the input terminal of the offset detection' parameter adjustment circuit 12 is not directly transmitted to the signal line 16. In other words, the impedance element of the filter 15 is interposed between the signal line 16 and the input terminal of the offset detection parameter adjustment circuit 12, so that the influence of the band limitation due to the internal impedance does not directly reach the signal line 16. The band limitation of the signal can be relaxed.
  • a filter 15 is provided between the offset detection and parameter adjustment circuit 12 and the signal line 16, and a filter 14 is provided between the offset adjustment circuit 13 and the signal line 16. ing.
  • the other filter is still effective in reducing the influence of the internal impedance of the corresponding circuit on the signal line 16. Therefore, a configuration in which only one of the filters 14 and 15 is provided is also a buffer with an offset adjustment function according to the present invention.
  • FIG. 2 is a diagram showing a modified example of the principle configuration of the buffer with an offset adjustment function according to the present invention shown in FIG.
  • the same components as those of FIG. 1 are referred to by the same numerals, and a description thereof will be omitted.
  • a buffer 10A with an offset adjustment function shown in FIG. 2 has the same configuration as the buffer 10 with an offset adjustment function shown in FIG. 1 except that a signal line 16A is provided instead of the signal line 16.
  • the signal line 16A signal line between the notch 11 and the input end in and Zin
  • the offset detection 'the input end and offset of the parameter adjustment circuit 12 The second end 18 of the adjustment circuit 13 is coupled via the filter 15 and the filter 14.
  • one of the filters 14 and 15 may not be provided as in the configuration of FIG. As with the configuration in Fig. 1, the bandwidth of the transmission signal on signal line 16A is limited. Can be relaxed.
  • FIG. 3 is a diagram showing another modification of the principle configuration of the buffer with an offset adjustment function according to the present invention shown in FIG.
  • the same components as those in FIG. 1 are referred to by the same numerals, and a description thereof will be omitted.
  • the buffer 10B with an offset adjustment function shown in FIG. 3 has the same configuration as the buffer 10 with an offset adjustment function shown in FIG. 1, except that the filter 19 is provided in place of the filter 14 and the filter 15. . That is, in the configuration of FIG. 3, the single filter 19 serves as both the function of the filter 14 and the function of the filter 15. Even with such a configuration, the band limitation of the transmission signal on the signal line 16 can be relaxed as in the configuration of FIG.
  • FIG. 4 is a diagram showing still another modified example of the principle configuration of the buffer with an offset adjustment function according to the present invention shown in FIG.
  • the same components as those in FIGS. 2 and 3 are referred to by the same numerals, and a description thereof will be omitted.
  • Buffer 10C with an offset adjustment function shown in FIG. 4 has the same configuration as buffer 10 with an offset adjustment function shown in FIG. 2 except that filter 19 is provided in place of filter 14 and filter 15. . That is, in the configuration of FIG. 4, the single filter 19 serves as the function of the filter 14 and the function of the filter 15. Even with such a configuration, similarly to the configuration of FIG. 2, the band limitation of the transmission signal on the signal line 16A can be relaxed.
  • FIG. 5 shows a configuration in which a plurality of buffers 10 with an offset adjustment function according to the present invention are provided and a plurality of buffers 10 with an offset adjustment function are connected in series.
  • the notch 11 corresponds to the buffer shown in FIG.
  • the offset adjustment circuit and the offset detection 'parameter adjustment circuit 25' are a combination of the offset adjustment circuit 13 and the offset detection 'parameter adjustment circuit 12 shown in FIG.
  • the buffer 10 with an offset adjustment function according to the present invention can also be used as a configuration in which a plurality of stages are connected in cascade.
  • the circuit shown in Fig. 5 constitutes a limiting amplifier used at the input of the receiving circuit.
  • an embodiment of the buffer 10 with an offset adjustment function according to the present invention will be described in detail.
  • FIG. 6 is a diagram showing a configuration of a first example of a buffer with an offset adjustment function according to the present invention.
  • the buffer 30 with an offset adjustment function shown in FIG. 6 has a configuration for canceling the DC offset.
  • the same components as those in FIG. 1 are referred to by the same numbers.
  • the buffer 30 with an offset adjustment function shown in FIG. 6 includes NMOS transistors 31 to 34, resistors 35 and 36, capacitors 37 to 39, NMOS transistors 40 and 41, a differential amplifier 42, and resistors 43 and 44.
  • the resistors 43 and 44 and the NMOS transistors 31 to 34 constitute the buffer 11 in FIG.
  • the capacitor 39 and the differential amplifier 42 constitute the offset detection / parameter adjustment circuit 12 shown in FIG.
  • the NMOS transistors 40 and 41 and the capacitors 37 and 38 constitute the offset adjustment circuit 13 in FIG.
  • the NMOS transistors 40 and 41 correspond to the current sources 20 and 21, respectively.
  • the offset adjustment signal (offset adjustment parameter) from the offset detection parameter adjustment circuit 12 is supplied to the gates of the NMOS transistors 40 and 41.
  • the amount of current flowing through the NMOS transistors 40 and 41 changes according to the voltage of the offset adjustment signal, and the offset of the signal on the signal line 16 is adjusted.
  • Capacitances 37 and 38 are provided to absorb extra AC fluctuations and allow only the DC offset to be adjusted.
  • the capacitance 39 of the offset detection noise adjustment circuit 12 is also an element provided to absorb the excessive AC fluctuation and adjust only the DC offset.
  • the two output signals of the differential amplifier 42 are signals having a voltage difference corresponding to the voltage difference.
  • the two voltage signals having a voltage difference corresponding only to the DC offset are supplied to the gates of the NMOS transistors 40 and 41 as offset adjustment signals.
  • the NMOS transistors 40 and 41 reduce the DC offset that exists between the two signal lines constituting the signal line 16 by flowing a current having a current difference corresponding to the voltage difference between the two offset adjustment signals. To work. By this feedback control, between the two signal lines that make up the signal line 16 DC offset is cancelled.
  • the parasitic capacitances and capacitances 37 and 38 of the NMOS transistors 40 and 41 are the main components of the internal impedance appearing at the second end 18 (see FIG. 1) of the offset adjustment circuit 13.
  • the internal impedance is a capacitive impedance.
  • the signal line 16 can be supplied for the first time by supplying a charge by supplying a current to the capacitive internal impedance due to a change in the signal on the signal line 16.
  • the voltage of the above signal can change.
  • the capacitive internal impedance voltage directly becomes the output signals of the output terminals out and Zout. Therefore, when the amount of current that can be supplied to the capacitive internal impedance via the signal line 16 is limited, the voltage on the signal line 16 can follow the signal change as the frequency of the output signal of the buffer 11 increases. As a result, the amplitude of the signal voltage is reduced.
  • resistors 35 and 36 are provided between the offset adjustment circuit 13 and the signal line 16.
  • the frequency characteristic extends the pass band to a higher frequency range. Are configured. Therefore, a sufficient signal voltage amplitude can be maintained even when the frequency of the output signal of the buffer 11 is increased.
  • FIG. 7 is a diagram showing an example of a circuit configuration of the differential amplifier 42.
  • Differential amplifier 42 in Figure 7 Includes NMOS transistors 51 to 54 and resistors 55 and 56.
  • NMOS transistors 51 to 54 and resistors 55 and 56.
  • there is a difference in the amount of current between the two currents flowing through the NMOS transistors 51 and 52 The difference in the amount of current between these two currents appears as the difference between the two output voltages appearing at the output terminals out and Zout.
  • FIG. 8 is a diagram showing a configuration of a second embodiment of the buffer with an offset adjustment function according to the present invention.
  • the buffer 30A with an offset adjustment function shown in FIG. 8 has a configuration for canceling a DC offset.
  • the same elements as those of FIG. 6 are referred to by the same numerals, and a description thereof will be omitted.
  • the buffer 30A with an offset adjustment function shown in FIG. 8 is coupled to the signal line 16 via resistors 35 and 36 in which the input terminal of the differential amplifier 42 is not directly connected to the signal line 16. This is different from the buffer 30 with an offset adjustment function in FIG.
  • the other configuration is the same as the configuration in FIG.
  • the buffer 30A with an offset adjustment function by inserting resistors 35 and 36 between the signal line 16 and the input terminal of the differential amplifier 42, the input impedance of the differential amplifier 42 (mainly shown in the figure). It is possible to prevent the influence of the capacity of the gates of the NMOS transistors 51 and 52 of 7 from reaching the signal line 16 directly. That is, the effect of the internal impedance of the offset adjustment circuit 13 (the parasitic capacitance of the NMOS transistors 40 and 41 and the capacitance of the capacitances 37 and 38) on the signal line 16 is reduced in the same way as the resistance 35 and 36 reduce. The influence of the input impedance of amplifier 4 2 on signal line 16 is reduced by resistors 35 and 36.
  • FIG. 9 is a diagram showing a configuration of a third exemplary embodiment of a buffer with an offset adjustment function according to the present invention.
  • the buffer 30B with an offset adjustment function shown in FIG. 9 has a configuration for canceling the DC offset.
  • the same elements as those of FIG. 6 are referred to by the same numerals, and a description thereof will be omitted.
  • the buffer 30B with an offset adjustment function shown in FIG. 9 is an offset detection 'parameter adjustment digital circuit realized by a digital circuit instead of the offset detection' parameter adjustment circuit 12 including the differential amplifier 42 and the capacitor 39.
  • the provision of 60 is different from the buffer 30 with offset adjustment function in FIG.
  • the other configuration is the same as that of FIG. [0045]
  • the digital circuit 60 for offset detection and parameter adjustment can be constituted by, for example, AZD conversion, an arithmetic processing circuit, and a DZA modification.
  • AZD conversion the signal voltage on the signal line 16 is sampled and AZD converted.
  • the digital voltage value obtained by AZD conversion is averaged by the arithmetic processing circuit to remove unnecessary noise components.
  • the DZA converter converts the averaged digital voltage value to an analog voltage and outputs it as an offset adjustment signal.
  • the arithmetic processing circuit portion can be configured to execute a desired digital operation as necessary. For example, if the statistical properties of a signal that is not simply averaged and DC offset is detected, such as the capacity 39 in Fig. 6, the computation processing that takes into account the statistical properties is performed after averaging. By applying it to digital signals, it is possible to detect DC offset with high accuracy.
  • FIG. 10 is a diagram showing a configuration of a fourth exemplary embodiment of a buffer with an offset adjustment function according to the present invention.
  • the buffer 30C with an offset adjustment function shown in FIG. 10 has a configuration for canceling an AC offset.
  • FIG. 10 the same elements as those of FIG. 8 are referred to by the same numerals, and a description thereof will be omitted.
  • the buffer 30C with an offset adjustment function shown in FIG. 8 is different from the buffer 30A with an offset adjustment function in FIG. 8 in that capacitors 71 and 72 and a resistor 73 are added.
  • the other configuration is the same as that of FIG.
  • the capacitors 71 and 72 are inserted between the signal line 16 and the resistors 35 and 36, and function to isolate the signal line 16 from the resistors 35 and 36 in a DC manner. That is, even if the DC potential difference between the two signal lines constituting the signal line 16 and each DC potential is any potential difference and potential, the potential difference and potential are absorbed by the charges accumulated in the capacitors 71 and 72. The As a result, the DC potential of the portions of the resistors 35 and 36 is set to an appropriate DC potential set by the resistor 73 through which a constant current such as a clamp voltage force flows, and the two signal lines constituting the signal line 16 are It is not affected by the DC potential difference and each DC potential.
  • the offset detection 'parameter adjustment circuit 12 including the differential amplifier 42 and the capacitor 39 allows the AC offset. Only can be detected.
  • the capacity 39 is set to a capacity large enough to absorb other fluctuation components (for example, signal components) while leaving an AC offset.
  • two voltage signals having a voltage difference corresponding to only the AC offset are supplied to the gates of the NMOS transistors 40 and 41 as offset adjustment signals.
  • the NMOS transistors 40 and 41 reduce the AC offset that exists between the two signal lines constituting the signal line 16 by flowing a current having a current difference corresponding to the voltage difference between the two offset adjustment signals. To work. This feedback control cancels the AC offset between the two signal lines constituting the signal line 16.
  • FIG. 11 is a diagram showing the configuration of the fifth exemplary embodiment of the buffer with an offset adjustment function according to the present invention.
  • the buffer 30D with an offset adjustment function shown in FIG. 11 has a configuration for canceling a DC offset.
  • FIG. 11 the same elements as those of FIG. 6 are referred to by the same numerals, and a description thereof will be omitted.
  • the buffer 30D with an offset adjustment function shown in Fig. 11 is that the resistors 35 and 36 are replaced with variable resistors 35A and 36A, and the capacitors 37 and 38 are replaced with variable capacitors 37A and 38A. Different from buffer 30 with function.
  • the other configuration is the same as that of FIG. If the resistance value and capacitance value of the resistor and capacitor constituting the filter can be adjusted in this way, the frequency characteristics of the filter can be changed statically or dynamically. As a result, even if the signal frequency changes due to the use of different signal transmission standards, the optimum frequency characteristics of the filter can be provided by a single circuit. Also, it is possible to easily cope with variations in characteristics of elements, changes in characteristics due to changes in temperature and voltage, etc., by adjusting the parameters of the constituent elements of the filter.
  • FIG. 12 shows a buffer with an offset adjustment function according to the present invention when a single-ended buffer is used.
  • the buffer 110 with an offset adjustment function shown in FIG. 12 includes a notch 111, an offset detection parameter adjustment circuit 112, an offset adjustment circuit 113, a filter 114, a filter 115, a signal line 116, and a voltage source 125.
  • the buffer 111 receives an input signal via the input terminal in, and supplies an output signal generated by amplifying the input signal with a predetermined gain to the output terminal out.
  • the two inputs of the offset detection parameter adjustment circuit 112 are a signal line 116 (a signal line between the buffer 111 and the output end out) through which a transmission signal (in this case, the output signal of the buffer 111) propagates, and a voltage source 125. Combined with.
  • the offset detection 'parameter adjustment circuit 112 generates an offset adjustment signal at the output terminal corresponding to the voltage difference (offset) between the output of the buffer 111 on the signal line 116 and the voltage generated by the voltage source 125.
  • the first end 117 of the offset adjustment circuit 113 is coupled to the output terminal of the offset detection and parameter adjustment circuit 112, and the second end 118 is coupled to the signal line 116.
  • the offset adjustment circuit 113 functions to reduce the offset of the transmission signal on the signal line 116 coupled to the second end 118 according to the offset adjustment signal supplied from the first end 117! That is, when canceling the DC offset, adjustment is made to be equal to the ideal voltage generated by the DC potential force voltage source 125 on the signal line 116.
  • the reference potential on the signal line 116 is adjusted to a constant potential without fluctuations in potential.
  • the offset adjustment circuit 113 includes a current source 120.
  • the offset adjustment circuit 113 reduces the offset of the transmission signal on the signal line 116 by adjusting the current amount of the current source 120 according to the offset adjustment signal.
  • a voltage source can be used instead of a current source.
  • the filter 114 includes one or a plurality of impedance elements such as a resistance element, an inductor, and a capacitor.
  • This impedance element is provided between the signal line 116 and the second end 118 of the offset adjustment circuit 113, and is combined with the internal impedance of the offset adjustment circuit 113 appearing at the second end 118, thereby providing a filter having a predetermined frequency characteristic.
  • the filter 115 can also reduce the influence of the internal impedance of the offset detection / parameter adjustment circuit 112 on the signal line 116 and relax the band limitation of the transmission signal.
  • a filter 115 is provided between the offset detection parameter adjusting circuit 112 and the signal line 116, and a filter 114 is provided between the offset adjustment circuit 113 and the signal line 116. It has been. However, even if one of these filters is not provided, the other filter is still effective in reducing the influence of the internal impedance of the corresponding circuit on the signal line 116. Therefore, a configuration in which only one of the filters 114 and 115 is provided is also a buffer with an offset adjustment function according to the present invention.
  • the present invention can also be applied to a single-ended buffer, and the description of the configuration using the differential buffer in the above-described embodiments and the like is the configuration using the single-ended buffer as it is. Also applies. That is, in each of the explanations and drawings of each configuration using the differential buffer described above, even if the differential buffer is replaced with a single-ended buffer, the effect of reducing the band limitation by the present invention is achieved. You can get
  • FIG. 13 is a diagram illustrating an example of a configuration in which the impedance element included in the filter includes not only a resistor but also another impedance element.
  • FIG. 13 shows a configuration in the case of a single end for convenience of illustration, but it is natural that a configuration including not only a resistor but also other impedance elements can be applied to a differential signal.
  • the filter 114 shown in FIG. 13 includes a resistor 130 and an inductor 131.
  • Resistor 130 is the internal impedance of offset adjustment circuit 113 and offset detection 'parameter adjustment circuit 112 as described in connection with buffer 30 with offset adjustment function 30 in FIG. 6 and buffer 30A with offset adjustment function in FIG.
  • the inductor 131 has an effect of suppressing a decrease in the impedance on the filter 114 side when viewed from the signal line 116 when the frequency of the signal on the signal line 116 is increased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

 伝送信号への帯域制限の影響を低減したオフセット調整機能付きバッファを提供することを目的とする。オフセット調整機能付きバッファは、伝送信号が伝搬する信号線と、信号線に入力端が結合され伝送信号のオフセットに応じたオフセット調整信号を出力端に生成するオフセット検出回路と、オフセット検出回路の出力端に第1端が結合され且つ信号線に第2端が結合されオフセット調整信号に応じて伝送信号のオフセットを低減するオフセット調整回路と、オフセット検出回路の入力端と信号線との間及びオフセット調整回路の第2端と信号線との間の少なくとも一方に設けられオフセット検出回路の内部インピーダンス及びオフセット調整回路の内部インピーダンスの少なくとも一方と組み合わさることにより所定の周波数特性のフィルタを構成する1つ又は複数のインピーダンス素子と、信号線に接続され所定の利得で信号増幅するバッファ回路を含むことを特徴とする。

Description

明 細 書
オフセット調整機能付きバッファ
技術分野
[0001] 本発明は、一般に信号伝送に関し、詳しくは LSIチップ間、ボード間、筐体間等の 信号伝送にぉ 、て受信端に用いるバッファに関する。
背景技術
[0002] コンピュータを含む種々の情報処理機器にお!、ては、 SRAM、 DRAM,プロセッ サ、スィッチ用 LSI等の構成部品 ·要素の性能向上に伴い、これらの構成部品 '要素 間の信号伝送速度を向上させる必要がある。信号伝送速度を向上できないと、シス テムの性能を向上することができないという事態が発生する。例えば、近年では SRA Mや DRAM等のメモリとプロセッサとの間の速度のギャップが大きくなる傾向にあり、 この速度ギャップがコンピュータの性能向上の妨げになりつつある。またチップ間の 信号伝送だけでなぐチップの大型化に伴 V、チップ内の素子や回路ブロック間の信 号伝送速度も、チップの性能を制限する大きな要因となってきている。更には、周辺 機器とプロセッサ Zチップセット間の信号伝送もシステム全体の性能を制限する要素 になっている。
[0003] 回路ブロック間、チップ間、ある 、は匡体間での信号伝送では、複数のバッファ(増 幅回路)を信号伝送経路に配置する。この際、これら複数のノッファによりオフセット が発生し増幅され、信号が正しく伝播しない問題が生じる。そこでオフセット検出'調 整回路を用いて、オフセットが無くなるようにオフセットの検出 ·調整をする。しかしォ フセット検出'調整回路が有する負荷のために、伝送する信号に帯域制限が生じ、高 速信号伝送の実現が困難となるという問題がある。
[0004] そのようなバッファの例として、受信回路の入力部に用いられるリミィティング 'アンプ がある。仕様にも依るがリミィティング 'アンプにおいて入力信号は小さぐ増幅率は約 40dB程度必要である。高速信号の場合 (例えば lOGbpsの信号の場合)には、 1段 のバッファにより高利得な高速動作を実現するのは難しいので、複数のバッファを直 列縦続に接続する。複数のバッファの各々で発生し増幅されるオフセットが正味の信 号成分に重畳されることにより、信号が劣化すると、最悪の場合には信号伝送が不可 能となる。そこで、オフセット検出'パラメタ調整回路によりオフセットを検出して、検出 したオフセットに応じたパラメタによりオフセット調整回路を駆動することにより、オフセ ットをキャンセルして正味の信号成分のみを伝送する。
[0005] し力しこれらのオフセット調整回路及びオフセット検出 'パラメタ調整回路が有する 負荷により伝送信号が帯域制限されるので、ノ ッファの各段についてオフセットをキ ヤンセルしょうとすると、高速信号伝送が困難となる。負荷による帯域劣化を低減する ためには、例えば最終段の出力オフセットを検出して入力段のバッファにフィードバ ックする等の手法が用いられる。し力しこの場合、キャンセルできるオフセット量が減 少して、場合によっては信号伝送不可能となってしまう。
特許文献 1:特開平 11― 97950号公報
発明の開示
発明が解決しょうとする課題
[0006] 以上を鑑みて本発明は、伝送信号への帯域制限の影響を低減したオフセット調整 機能付きバッファ (増幅回路)を提供することを目的とする。
課題を解決するための手段
[0007] オフセット調整機能付きバッファは、伝送信号が伝搬する信号線と、該信号線に入 力端が結合され該伝送信号のオフセットに応じたオフセット調整信号を出力端に生 成するオフセット検出回路と、該オフセット検出回路の該出力端に第 1端が結合され 且つ該信号線に第 2端が結合され該オフセット調整信号に応じて該伝送信号のオフ セットを低減するオフセット調整回路と、該オフセット検出回路の該入力端と該信号 線との間及び該オフセット調整回路の該第 2端と該信号線との間の少なくとも一方に 設けられ該オフセット検出回路の内部インピーダンス及び該オフセット調整回路の内 部インピーダンスの少なくとも一方と組み合わさることにより所定の周波数特性のフィ ルタを構成する 1つ又は複数のインピーダンス素子と、該信号線に接続され所定の 利得で信号増幅するバッファ回路を含むことを特徴とする。
発明の効果 [0008] 本発明の少なくとも 1つの実施例によれば、伝送信号への帯域制限の影響を低減 したオフセット調整機能付きバッファを提供することができる。
図面の簡単な説明
[0009] [図 1]本発明によるオフセット調整機能付きバッファの原理構成を示す図である。
[図 2]図 1に示す本発明によるオフセット調整機能付きバッファの原理構成の変形例 を示す図である。
[図 3]図 1に示す本発明によるオフセット調整機能付きバッファの原理構成の別の変 形例を示す図である。
[図 4]図 1に示す本発明によるオフセット調整機能付きバッファの原理構成の更に別 の変形例を示す図である。
[図 5]本発明によるオフセット調整機能付きバッファを複数個設け、複数のオフセット 調整機能付きバッファを直列縦続に接続した構成を示す図である。
[図 6]本発明によるオフセット調整機能付きバッファの第 1の実施例の構成を示す図 である。
[図 7]差動増幅器の回路構成の一例を示す図である。
[図 8]本発明によるオフセット調整機能付きバッファの第 2の実施例の構成を示す図 である。
[図 9]本発明によるオフセット調整機能付きバッファの第 3の実施例の構成を示す図 である。
[図 10]本発明によるオフセット調整機能付きバッファの第 4の実施例の構成を示す図 である。
[図 11]本発明によるオフセット調整機能付きバッファの第 5の実施例の構成を示す図 である。
[図 12]シングルエンドのバッファを用いた場合の本発明によるオフセット調整機能付 きバッファの構成を示す図である。
[図 13]フィルタに含まれるインピーダンス素子が抵抗のみではなく他のインピーダンス 素子を含む構成の一例を示す図である。
符号の説明 [0010] 10 オフセット調整機能付きバッファ
11 バッファ
12 オフセット検出'パラメタ調整回路
13 オフセット調整回路
14 フイノレタ
15 フイノレタ
16 信号線
発明を実施するための最良の形態
[0011] 以下に、本発明の原理構成及び実施例を添付の図面を用いて詳細に説明する。
[0012] 図 1は、本発明によるオフセット調整機能付きバッファの原理構成を示す図である。
図 1に示すオフセット調整機能付きノッファ 10は、ノッファ 11、オフセット検出'パラメ タ調整回路 12、オフセット調整回路 13、フィルタ 14、フィルタ 15、及び信号線 16を 含む。
[0013] ノッファ 11は、入力端 in及び Zin ('ゾ〃は信号反転を示すバーを意味する)を介し て入力信号を受け取り、入力信号を所定の利得で増幅して生成した出力信号を、出 力端 out及び Zoutに供給する。オフセット検出'パラメタ調整回路 12の入力端は、 伝送信号 (この場合はバッファ 11の出力信号)が伝搬する信号線 16 (バッファ 11と出 力端 out及び Zoutとの間の信号線)に結合される。オフセット検出'パラメタ調整回 路 12は、信号線 16上のバッファ 11の出力のオフセットに応じたオフセット調整信号 を出力端に生成する。
[0014] オフセット調整回路 13は、その第 1端 17がオフセット検出'パラメタ調整回路 12の 出力端に結合され、その第 2端 18が信号線 16に結合される。オフセット調整回路 13 は、第 1端 17から供給されるオフセット調整信号に応じて第 2端 18に結合されている 信号線 16上の伝送信号のオフセットを低減するように機能する。
[0015] オフセット調整回路 13は、電流源 20及び電流源 21を含む。オフセット調整回路 13 は、電流源 20及び電流源 21のそれぞれの電流量をオフセット調整信号に応じて調 整することにより、信号線 16上の伝送信号のオフセットを低減する。なお伝送信号の オフセットを低減する機能を実現するためには、電流源の代わりに電圧源を用いても よい。
[0016] フィルタ 14は、抵抗素子、インダクタ、コンデンサ等の 1つ又は複数のインピーダン ス素子を含む。このインピーダンス素子は、信号線 16とオフセット調整回路 13の第 2 端 18との間に設けられ、第 2端 18に現れるオフセット調整回路 13の内部インピーダ ンスと組み合わさることにより、所定の周波数特性のフィルタを構成する。
[0017] 従来の典型的な構成のオフセット調整機能付きバッファにおいては、図 1に示すフ ィルタ 14が設けられていない。従って、オフセット調整回路 13の第 2端 18に現れるォ フセット調整回路 13の内部インピーダンス(例えば電流源 20及び電流源 21の入力 容量)が信号線 16に直接につながつていることになる。従ってこの内部インピーダン スの影響が直接に信号線 16に伝わることで、信号線 16上の伝送信号の伝送帯域が 制限されてしまう。
[0018] それに対して、図 1に示す本発明によるオフセット調整機能付きバッファ 10におい ては、フィルタ 14が信号線 16と第 2端 18との間に挿入されることにより、オフセット調 整回路 13の内部インピーダンスの影響が直接に信号線 16に伝わることはない。即ち 、フィルタ 14のインピーダンス素子が信号線 16と第 2端 18との間に介在することによ り、内部インピーダンスによる帯域制限の影響が直接に信号線 16に及ぶことはなぐ 伝送信号の帯域制限を緩和することができる。
[0019] 言葉を変えて言えば、オフセット調整回路 13の内部インピーダンスはある帯域特性 を有するが、この内部インピーダンスに対してフイノレタ 14のインピーダンス素子を糸且 み合わせることで、信号線 16から見た帯域特性を変化させて、帯域制限がより小さい 帯域特性を実現することができる。このようにして得られる伝送信号の帯域制限を緩 和する効果は、内部インピーダンスの種類 (容量が主である力インダクタンスが主で あるか等)及びそのインピーダンスの大きさと、フィルタ 14のインピーダンス素子の種 類及び大きさに依存する。これについては、実施例の説明において適宜説明する。
[0020] 上記のようにして構成されるフィルタの周波数特性にっ 、ては、信号成分より十分 低 、周波数領域にぉ 、てであれば、所望の特性になるように自由に設計してょ 、。 従って、例えば特定周波数成分のみのオフセット(直流オフセット及び Z又は交流ォ フセット)のみの検出及び調整が可能である。またフィルタの構成素子のパラメタを調 整可能としておけば、静的或いは動的に、フィルタの周波数特性を変更することが可 能である。これにより、異なった信号伝送規格等の使用により信号周波数が変化して も、単一の回路により最適なフィルタの周波数特性を提供することができる。また素子 の製造ばらつき、温度や電圧の変化による特性の変化等に対しても、フィルタの構成 素子のパラメタを調整することにより、容易に対応することができる。
[0021] なおフィルタ 15の構成、機能、及び効果についてもフィルタ 14の構成、機能、及び 効果と同様である。即ち、フィルタ 15を設けることにより、オフセット検出 'パラメタ調整 回路 12の入力端に現れるオフセット検出 'パラメタ調整回路 12の内部インピーダンス (入力インピーダンス)の影響が直接に信号線 16に伝わることはない。即ち、フィルタ 15のインピーダンス素子が信号線 16とオフセット検出'パラメタ調整回路 12の入力 端との間に介在することにより、内部インピーダンスによる帯域制限の影響が直接に 信号線 16に及ぶことはなぐ伝送信号の帯域制限を緩和することができる。
[0022] なお図 1の構成では、オフセット検出'パラメタ調整回路 12と信号線 16との間には フィルタ 15が設けられ、オフセット調整回路 13と信号線 16との間にはフィルタ 14が 設けられている。し力し、これらのフィルタの一方が設けられていなくとも、他方のフィ ルタについては、対応する回路の内部インピーダンスの信号線 16に対する影響を低 減する効果があることに変わりはない。従って、フィルタ 14又は 15の何れか一方のみ が設けられる構成も、本願発明によるオフセット調整機能付きバッファである。
[0023] 図 2は、図 1に示す本発明によるオフセット調整機能付きバッファの原理構成の変 形例を示す図である。図 2において、図 1と同一の構成要素は同一の番号で参照し、 その説明は省略する。
[0024] 図 2に示すオフセット調整機能付きバッファ 10Aは、信号線 16Aが信号線 16の代 わりに設けられることを除き、図 1に示すオフセット調整機能付きバッファ 10と同一の 構成である。伝送信号 (この場合はバッファ 11の入力信号)が伝搬する信号線 16A( ノ ッファ 11と入力端 in及び Zinとの間の信号線)に、オフセット検出 'パラメタ調整回 路 12の入力端及びオフセット調整回路 13の第 2端 18とが、フィルタ 15及びフィルタ 14を介して結合される。この場合も、図 1の構成と同様に、フィルタ 14又は 15の一方 は設けなくともよい。また図 1の構成と同様に、信号線 16A上の伝送信号の帯域制限 を緩和することができる。
[0025] 図 3は、図 1に示す本発明によるオフセット調整機能付きバッファの原理構成の別 の変形例を示す図である。図 3において、図 1と同一の構成要素は同一の番号で参 照し、その説明は省略する。
[0026] 図 3に示すオフセット調整機能付きバッファ 10Bは、フィルタ 19がフィルタ 14及びフ ィルタ 15の代わりに設けられることを除き、図 1に示すオフセット調整機能付きバッフ ァ 10と同一の構成である。即ち、図 3の構成では、 1つのフィルタ 19により、フィルタ 1 4の機能とフィルタ 15の機能とを兼ねる構成となっている。このような構成によっても、 図 1の構成の場合と同様に、信号線 16上の伝送信号の帯域制限を緩和することが できる。
[0027] 図 4は、図 1に示す本発明によるオフセット調整機能付きバッファの原理構成の更 に別の変形例を示す図である。図 4において、図 2及び図 3と同一の構成要素は同 一の番号で参照し、その説明は省略する。
[0028] 図 4に示すオフセット調整機能付きバッファ 10Cは、フィルタ 19がフィルタ 14及びフ ィルタ 15の代わりに設けられることを除き、図 2に示すオフセット調整機能付きバッフ ァ 10と同一の構成である。即ち、図 4の構成では、 1つのフィルタ 19により、フィルタ 1 4の機能とフィルタ 15の機能とを兼ねる構成となっている。このような構成によっても、 図 2の構成の場合と同様に、信号線 16A上の伝送信号の帯域制限を緩和することが できる。
[0029] 図 5は、本発明によるオフセット調整機能付きバッファ 10を複数個設け、複数のォ フセット調整機能付きバッファ 10を直列縦続に接続した構成を示す。図 5において、 ノ ッファ 11は図 1に示すバッファに相当する。またオフセット調整回路及びオフセット 検出'パラメタ調整回路 25は、図 1に示すオフセット調整回路 13及びオフセット検出' パラメタ調整回路 12をフィルタ 14及びフィルタ 15とともに、 1つのユニットとして纏め たものである。
[0030] 図 5に示すように、本発明によるオフセット調整機能付きバッファ 10は複数段縦続 接続した構成として使用することもできる。図 5に示す回路は、受信回路の入力部に 用いられるリミィティング 'アンプを構成する。 [0031] 以下に、本発明によるオフセット調整機能付きバッファ 10の実施例について詳細に 説明する。
[0032] 図 6は、本発明によるオフセット調整機能付きバッファの第 1の実施例の構成を示す 図である。図 6に示すオフセット調整機能付きバッファ 30は、 DCオフセットをキャンセ ルするための構成を有する。図 6において、図 1と同一の構成要素は同一の番号で 参照する。
[0033] 図 6に示すオフセット調整機能付きバッファ 30は、 NMOSトランジスタ 31乃至 34、 抵抗 35及び 36、容量 37乃至 39、 NMOSトランジスタ 40及び 41、差動増幅器 42、 及び抵抗 43及び 44を含む。抵抗 43及び 44と NMOSトランジスタ 31乃至 34とが、 図 1のバッファ 11を構成する。また容量 39と差動増幅器 42とが、図 1のオフセット検 出 ·パラメタ調整回路 12を構成する。
[0034] NMOSトランジスタ 40及び 41と容量 37及び 38は、図 1のオフセット調整回路 13を 構成する。ここで NMOSトランジスタ 40及び 41は、それぞれ電流源 20及び 21に相 当する。 NMOSトランジスタ 40及び 41のゲートには、オフセット検出'パラメタ調整回 路 12からのオフセット調整信号 (オフセット調整パラメタ)が供給される。このオフセッ ト調整信号の電圧に応じて NMOSトランジスタ 40及び 41を流れる電流量が変化し、 信号線 16上の信号のオフセットを調整する。容量 37及び 38は、余計な AC変動を吸 収して、 DCオフセットのみを調整可能とするために設けられる。またオフセット検出' ノ メタ調整回路 12の容量 39も、余計な AC変動を吸収して、 DCオフセットのみを 調整するために設けられる素子である。
[0035] 信号線 16を構成する 2本の信号線間に、固定の電圧差である DCオフセットを含む 電圧差があるとする。このとき差動増幅器 42の 2つの出力信号は、この電圧差に応じ た電圧差を有する信号となる。容量 39により信号成分等の余計な AC変動成分を吸 収することで、 DCオフセットのみに応じた電圧差を有する 2つの電圧信号がオフセッ ト調整信号として NMOSトランジスタ 40及び 41のゲートに供給される。 NMOSトラン ジスタ 40及び 41は、 2つのオフセット調整信号の電圧差に応じた電流差の電流を流 すことで、信号線 16を構成する 2本の信号線間に存在する DCオフセットを低減する ように機能する。このフィードバック制御により、信号線 16を構成する 2本の信号線間 に DCオフセットがキャンセルされる。
[0036] NMOSトランジスタ 40及び 41の寄生容量及び容量 37及び 38力 オフセット調整 回路 13の第 2端 18 (図 1参照)に現れる内部インピーダンスの主な成分となる。即ち この場合、内部インピーダンスは容量性のインピーダンスである。この容量性の内部 インピーダンスが信号線 16に直接に接続される構成の場合、信号線 16上の信号の 変化により容量性の内部インピーダンスに電流を流して電荷を供給することにより、 初めて信号線 16上の信号の電圧が変化することができる。電流の供給により容量性 の内部インピーダンスに電荷が蓄積され電圧が現れると、その容量性の内部インピ 一ダンスの電圧がそのまま出力端子 out及び Zoutの出力信号となる。従って、信号 線 16を介して容量性の内部インピーダンスに供給できる電流量が限られている状態 では、バッファ 11の出力信号の周波数が高くなるほど、その信号変化に信号線 16上 の電圧が追従できなくなり、信号電圧の振幅が小さくなつてしまう。
[0037] 図 6に示すオフセット調整機能付きバッファ 30の構成では、抵抗 35及び 36がオフ セット調整回路 13と信号線 16との間に設けられている。この抵抗 35及び 36と上記容 量性の内部インピーダンスとの組み合わせにより、容量性の内部インピーダンスが信 号線 16に直接接続される場合と比較して、より高周波領域まで通過帯域をのばした 周波数特性のフィルタが構成される。従って、バッファ 11の出力信号の周波数が高く なっても、十分な信号電圧振幅を維持することができる。
[0038] 即ち、信号線 16上の信号の変化により容量性の内部インピーダンスに電流を流し て電荷を供給する際に、出力端子 out及び Zoutに現れるのは、その電流が抵抗 35 及び 36を流れることにより抵抗に現れる電圧と容量性の内部インピーダンスに現れる 電圧との和である。抵抗 35及び 36の抵抗値が十分に高いとすると、僅かな電流が流 れるだけで、電流変化に遅れることなく十分な電圧を信号線 16に出現させることがで きる。従って、信号線 16を介して容量性の内部インピーダンスに供給できる電流量が 限られている状態で、バッファ 11の出力信号の周波数が高くなつても、その信号変 化に信号線 16上の電圧が追従することが可能であり、信号電圧の振幅が極端に小 さくなることはない。
[0039] 図 7は、差動増幅器 42の回路構成の一例を示す図である。図 7の差動増幅器 42 は、 NMOSトランジスタ 51乃至 54と、抵抗 55及び 56を含む。入力端 in及び Zinの 2 つの入力信号の電圧差に応じて NMOSトランジスタ 51及び 52を流れる 2つの電流 に電流量の差が生じる。この 2つの電流の電流量の差が、出力端 out及び Zoutに 現れる 2つの出力電圧の差となって現れる。
[0040] 図 8は、本発明によるオフセット調整機能付きバッファの第 2の実施例の構成を示す 図である。図 8に示すオフセット調整機能付きバッファ 30Aは、 DCオフセットをキャン セルするための構成を有する。図 8において、図 6と同一の構成要素は同一の番号 で参照し、その説明は省略する。
[0041] 図 8に示すオフセット調整機能付きバッファ 30Aは、差動増幅器 42の入力端が信 号線 16に直接に接続されるのではなぐ抵抗 35及び 36を介して信号線 16に結合さ れていることが、図 6のオフセット調整機能付きバッファ 30と異なる。それ以外の構成 は、図 6の構成と同様である。
[0042] オフセット調整機能付きバッファ 30Aにおいては、信号線 16と差動増幅器 42の入 力端との間に抵抗 35及び 36を挿入することで、差動増幅器 42の入力インピーダン ス(主に図 7の NMOSトランジスタ 51及び 52のゲートの容量)の影響が信号線 16に 直接に及ばないようにすることができる。即ち、オフセット調整回路 13の内部インピー ダンス(NMOSトランジスタ 40及び 41の寄生容量及び容量 37及び 38の容量)の信 号線 16に対する影響が、抵抗 35及び 36により低減されるのと同様に、差動増幅器 4 2の入力インピーダンスの信号線 16に対する影響力、抵抗 35及び 36により低減され る。
[0043] 図 9は、本発明によるオフセット調整機能付きバッファの第 3の実施例の構成を示す 図である。図 9に示すオフセット調整機能付きバッファ 30Bは、 DCオフセットをキャン セルするための構成を有する。図 9において、図 6と同一の構成要素は同一の番号 で参照し、その説明は省略する。
[0044] 図 9に示すオフセット調整機能付きバッファ 30Bは、差動増幅器 42及び容量 39か らなるオフセット検出'パラメタ調整回路 12の代わりにディジタル回路で実現されたォ フセット検出'パラメタ調整用ディジタル回路 60を設けたことが、図 6のオフセット調整 機能付きバッファ 30と異なる。それ以外の構成は、図 6の構成と同様である。 [0045] オフセット検出'パラメタ調整用ディジタル回路 60は、例えば AZD変翻と、演算 処理回路と、 DZA変^^とにより構成することができる。 AZD変 により、信号 線 16上の信号電圧をサンプルし AZD変換する。 AZD変換により得られたディジタ ル電圧値を演算処理回路により平均化することで、余計なノイズ成分を取り除く。更 に DZA変換器により、平均化後のディジタル電圧値をアナログ電圧に変換して、ォ フセット調整信号として出力する。
[0046] このようにディジタル回路としてオフセット検出.パラメタ調整回路を構成すると、演 算処理回路部分において、必要に応じて所望のディジタル演算を実行するように構 成することができる。例えば、図 6の容量 39のように単純に平均化して DCオフセット を検出するのではなぐ信号の統計的な性質が既知の場合には、その統計的性質を 考慮した演算処理を平均化後のディジタル信号に施すことで、精度よく DCオフセット を検出することができる。
[0047] 図 10は、本発明によるオフセット調整機能付きバッファの第 4の実施例の構成を示 す図である。図 10に示すオフセット調整機能付きバッファ 30Cは、 ACオフセットをキ ヤンセルするための構成を有する。図 10において、図 8と同一の構成要素は同一の 番号で参照し、その説明は省略する。
[0048] 図 8に示すオフセット調整機能付きバッファ 30Cは、容量 71及び 72、及び抵抗 73 が追加されていることが、図 8のオフセット調整機能付きバッファ 30Aと異なる。それ 以外の構成は、図 8の構成と同様である。
[0049] 容量 71及び 72は、信号線 16と抵抗 35及び 36との間に挿入され、信号線 16を抵 抗 35及び 36から DC的に分離する機能を果たす。即ち、信号線 16を構成する 2本の 信号線の DC電位差及びそれぞれの DC電位がいかなる電位差及び電位であっても 、容量 71及び 72に蓄積される電荷により、それらの電位差及び電位は吸収される。 その結果、抵抗 35及び 36の部分の DC電位は、クランプ電圧力らの定電流を流す抵 抗 73で設定される適当な DC電位に設定され、信号線 16を構成する 2本の信号線の DC電位差及びそれぞれの DC電位に影響されることはない。
[0050] このようにして容量 71及び 72により信号線 16を DC的に分離することで、差動増幅 器 42及び容量 39からなるオフセット検出 'パラメタ調整回路 12により、 ACオフセット のみを検出することができる。この際、容量 39は、 ACオフセットは残すがそれ以外の 不要な変動成分 (例えば信号成分)につ 、ては吸収する程度の大きさの容量とする 。これにより、 ACオフセットのみに応じた電圧差を有する 2つの電圧信号がオフセット 調整信号として NMOSトランジスタ 40及び 41のゲートに供給される。 NMOSトラン ジスタ 40及び 41は、 2つのオフセット調整信号の電圧差に応じた電流差の電流を流 すことで、信号線 16を構成する 2本の信号線間に存在する ACオフセットを低減する ように機能する。このフィードバック制御により、信号線 16を構成する 2本の信号線間 に ACオフセットがキャンセルされる。
[0051] なおオフセット検出 ·パラメタ調整回路 12及びオフセット調整回路 13の内部インピ 一ダンスの信号線 16に対する影響力、抵抗 35及び 36により低減され、信号線 16上 の信号に対する帯域制限効果を低減できることは前述の実施例の場合と同様である
[0052] 図 11は、本発明によるオフセット調整機能付きバッファの第 5の実施例の構成を示 す図である。図 11に示すオフセット調整機能付きバッファ 30Dは、 DCオフセットをキ ヤンセルするための構成を有する。図 11において、図 6と同一の構成要素は同一の 番号で参照し、その説明は省略する。
[0053] 図 11に示すオフセット調整機能付きバッファ 30Dは、抵抗 35及び 36を可変抵抗 3 5A及び 36Aで置換え、容量 37及び 38を可変容量 37A及び 38Aで置換えたことが 、図 6のオフセット調整機能付きバッファ 30と異なる。それ以外の構成は、図 6の構成 と同様である。このようにフィルタを構成する抵抗及び容量の抵抗値及び容量値を調 整可能としておけば、静的或いは動的に、フィルタの周波数特性を変更することが可 能である。これにより、異なった信号伝送規格等の使用により信号周波数が変化して も、単一の回路により最適なフィルタの周波数特性を提供することができる。また素子 の製造ばらつき、温度や電圧の変化による特性の変化等に対しても、フィルタの構成 素子のパラメタを調整することにより、容易に対応することができる。
[0054] 上記説明においては、ノッファ 11が差動増幅型の場合について説明した力 シン ダルエンドのバッファの場合にも、本発明は同様に適用することができる。図 12は、 シングルエンドのバッファを用いた場合の本発明によるオフセット調整機能付きバッフ ァの構成を示す図である。
[0055] 図 12に示すオフセット調整機能付きバッファ 110は、ノ ッファ 111、オフセット検出' パラメタ調整回路 112、オフセット調整回路 113、フィルタ 114、フィルタ 115、信号線 116、及び電圧源 125を含む。
[0056] バッファ 111は、入力端 inを介して入力信号を受け取り、入力信号を所定の利得で 増幅して生成した出力信号を、出力端 outに供給する。オフセット検出'パラメタ調整 回路 112の 2つの入力端は、伝送信号 (この場合はバッファ 111の出力信号)が伝搬 する信号線 116 (バッファ 111と出力端 outとの間の信号線)と電圧源 125とに結合さ れる。オフセット検出'パラメタ調整回路 112は、信号線 116上のバッファ 111の出力 と電圧源 125の生成する電圧との電圧差 (オフセット)に応じたオフセット調整信号を 出力端に生成する。
[0057] オフセット調整回路 113は、その第 1端 117がオフセット検出'パラメタ調整回路 11 2の出力端に結合され、その第 2端 118が信号線 116に結合される。オフセット調整 回路 113は、第 1端 117から供給されるオフセット調整信号に応じて第 2端 118に結 合されて!/、る信号線 116上の伝送信号のオフセットを低減するように機能する。即ち 、 DCオフセットをキャンセルする場合であれば、信号線 116上の DC電位力 電圧源 125が生成する理想電圧と等しくなるように調整する。また ACオフセットをキャンセル する場合であれば、信号線 116上の基準となる電位力 変動のない一定の電位とな るように調整する。
[0058] オフセット調整回路 113は、電流源 120を含む。オフセット調整回路 113は、電流 源 120の電流量をオフセット調整信号に応じて調整することにより、信号線 116上の 伝送信号のオフセットを低減する。なお伝送信号のオフセットを低減する機能を実現 するためには、電流源の代わりに電圧源を用いてもょ 、。
[0059] フィルタ 114は、抵抗素子、インダクタ、コンデンサ等の 1つ又は複数のインピーダ ンス素子を含む。このインピーダンス素子は、信号線 116とオフセット調整回路 113 の第 2端 118との間に設けられ、第 2端 118に現れるオフセット調整回路 113の内部 インピーダンスと組み合わさることにより、所定の周波数特性のフィルタを構成する。
[0060] 図 12に示す本発明によるオフセット調整機能付きバッファ 110においては、フィル タ 114が信号線 116と第 2端 118との間に挿入されることにより、オフセット調整回路 1 13の内部インピーダンスの影響が直接に信号線 116に伝わることはない。即ち、フィ ルタ 114のインピーダンス素子が信号線 116と第 2端 118との間に介在することにより 、内部インピーダンスによる帯域制限の影響が直接に信号線 116に及ぶことはなぐ 伝送信号の帯域制限を緩和することができる。またフィルタ 115につ 、ても同様に、 オフセット検出 ·パラメタ調整回路 112の内部インピーダンスの信号線 116に対する 影響を低減し、伝送信号の帯域制限を緩和することができる。
[0061] なお図 12の構成では、オフセット検出 'パラメタ調整回路 112と信号線 116との間 にはフィルタ 115が設けられ、オフセット調整回路 113と信号線 116との間にはフィル タ 114が設けられている。し力し、これらのフィルタの一方が設けられていなくとも、他 方のフィルタについては、対応する回路の内部インピーダンスの信号線 116に対す る影響を低減する効果があることに変わりはない。従って、フィルタ 114又は 115の何 れか一方のみが設けられる構成も、本願発明によるオフセット調整機能付きバッファ である。
[0062] このように本願発明はシングルエンドのバッファにも適用可能であり、前述の実施例 等において差動型のバッファを用いた構成について説明した内容は、そのままシン ダルエンドのバッファを用いた構成にも当てはまる。即ち、前述の差動型のバッファを 用いた各構成の説明及び図面のそれぞれにお 、て、差動型のバッファをシングルェ ンドのバッファに置換えても、本願発明により帯域制限を緩和するという効果を得るこ とがでさる。
[0063] 図 13は、フィルタに含まれるインピーダンス素子が抵抗のみではなく他のインピー ダンス素子を含む構成の一例を示す図である。図 13は、図示の都合上シングルェン ドの場合の構成を示すが、差動型の信号の場合にも同様に抵抗のみではなく他のィ ンピーダンス素子を含む構成が適用できることは当然である。
[0064] 図 13に示すフィルタ 114は、抵抗 130及びインダクタ 131を含む。抵抗 130は、例 えば図 6のオフセット調整機能付きバッファ 30や図 8のオフセット調整機能付きバッフ ァ 30Aに関連して説明したように、オフセット調整回路 113やオフセット検出'パラメタ 調整回路 112の内部インピーダンスの影響力、直接に信号線 116に及ばな 、ように する効果がある。またインダクタ 131は、信号線 116上の信号の周波数が高くなると、 信号線 116から見たときのフィルタ 114側のインピーダンスが減少することを抑える効 果等がある。
以上、本発明を実施例に基づいて説明したが、本発明は上記実施例に限定される ものではなぐ特許請求の範囲に記載の範囲内で様々な変形が可能である。

Claims

請求の範囲
[1] 伝送信号が伝搬する信号線と、
該信号線に入力端が結合され該伝送信号のオフセットに応じたオフセット調整信号 を出力端に生成するオフセット検出回路と、
該オフセット検出回路の該出力端に第 1端が結合され且つ該信号線に第 2端が結 合され該オフセット調整信号に応じて該伝送信号のオフセットを低減するオフセット 調整回路と、
該オフセット検出回路の該入力端と該信号線との間及び該オフセット調整回路の 該第 2端と該信号線との間の少なくとも一方に設けられ、該オフセット検出回路の内 部インピーダンス及び該オフセット調整回路の内部インピーダンスの少なくとも一方と 組み合わさることにより所定の周波数特性のフィルタを構成する 1つ又は複数のイン ピーダンス素子と、
該信号線に接続され所定の利得で信号増幅するバッファ回路
を含むことを特徴とするオフセット調整機能付きバッファ。
[2] 該信号線は該バッファ回路の出力端に接続されることを特徴とする請求項 1記載の オフセット調整機能付きバッファ。
[3] 該信号線は該バッファ回路の入力端に接続されることを特徴とする請求項 1記載の オフセット調整機能付きバッファ。
[4] 該オフセット検出回路の該入力端と該オフセット調整回路の該第 2端とは互いに接 続され 1つに纏められ、該 1つ又は複数のインピーダンス素子は該 1つに纏められた 入力端及び第 2端と該信号線との間に設けられることを特徴とする請求項 1記載のォ フセット調整機能付きバッファ。
[5] 該 1つ又は複数のインピーダンス素子の少なくとも 1つはインピーダンス値が可変で ある可変素子であることを特徴とする請求項 1記載のオフセット調整機能付きバッファ
[6] 該 1つ又は複数のインピーダンス素子は抵抗素子であることを特徴とする請求項 1 記載のオフセット調整機能付きバッファ。
[7] 該 1つ又は複数のインピーダンス素子は、 抵抗素子と、
該抵抗素子に直列に接続される容量素子
を含むことを特徴とする請求項 1記載のオフセット調整機能付きバッファ。
[8] 該オフセット検出回路の該入力端は容量素子により該信号線力 DC的に分離され ていることを特徴とする請求項 6記載のオフセット調整機能付きバッファ。
[9] 該オフセット検出回路はディジタル回路で構成されることを特徴とする請求項 1記載 のオフセット調整機能付きバッファ。
PCT/JP2006/324093 2006-12-01 2006-12-01 オフセット調整機能付きバッファ WO2008068821A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/324093 WO2008068821A1 (ja) 2006-12-01 2006-12-01 オフセット調整機能付きバッファ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/324093 WO2008068821A1 (ja) 2006-12-01 2006-12-01 オフセット調整機能付きバッファ

Publications (1)

Publication Number Publication Date
WO2008068821A1 true WO2008068821A1 (ja) 2008-06-12

Family

ID=39491742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/324093 WO2008068821A1 (ja) 2006-12-01 2006-12-01 オフセット調整機能付きバッファ

Country Status (1)

Country Link
WO (1) WO2008068821A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013141084A (ja) * 2011-12-28 2013-07-18 Fujitsu Ltd エンファシス回路

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0884160A (ja) * 1994-09-12 1996-03-26 Nec Miyagi Ltd 光受信回路
JPH09148880A (ja) * 1995-09-18 1997-06-06 Toshiba Corp 電子回路、これを用いたフィルタ装置及び無線装置
JP2002271108A (ja) * 2001-03-08 2002-09-20 Fuji Xerox Co Ltd プリント配線基板装置及び電子機器
JP2006279172A (ja) * 2005-03-28 2006-10-12 Sharp Corp オフセット除去回路およびそれを用いた差動増幅器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0884160A (ja) * 1994-09-12 1996-03-26 Nec Miyagi Ltd 光受信回路
JPH09148880A (ja) * 1995-09-18 1997-06-06 Toshiba Corp 電子回路、これを用いたフィルタ装置及び無線装置
JP2002271108A (ja) * 2001-03-08 2002-09-20 Fuji Xerox Co Ltd プリント配線基板装置及び電子機器
JP2006279172A (ja) * 2005-03-28 2006-10-12 Sharp Corp オフセット除去回路およびそれを用いた差動増幅器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013141084A (ja) * 2011-12-28 2013-07-18 Fujitsu Ltd エンファシス回路

Similar Documents

Publication Publication Date Title
US9614564B2 (en) High speed receivers circuits and methods
US7586373B2 (en) Fully differential class AB amplifier and amplifying method using single-ended, two-stage amplifier
US7948322B2 (en) Balun amplifier
US8884655B2 (en) Low-power voltage mode high speed driver
US9263993B2 (en) Low pass filter with common-mode noise reduction
JP2015523040A (ja) 広いコモンモード入力範囲を有する受信器
US9118286B2 (en) DC offset cancellation circuit
US9083369B2 (en) Split-path data acquisition signal chain
KR20110047225A (ko) 밸룬 로딩된-q 를 개선시키는 기술
US6160446A (en) Balanced differential amplifier without common-mode feedback circuit
US7697601B2 (en) Equalizers and offset control
CN107408927B (zh) 适用于噪声抑制的放大器
WO2007049391A1 (ja) 分布型増幅器および集積回路
US6784749B1 (en) Limiting amplifier with active inductor
US8482321B2 (en) Input circuit and semiconductor integrated circuit including the same
US9531372B1 (en) Driver with transformer feedback
US7099395B1 (en) Reducing coupled noise in pseudo-differential signaling systems
US6753726B1 (en) Apparatus and method for an offset-correcting sense amplifier
JP2010233084A (ja) 差動増幅器
US20050200411A1 (en) Differential amplifier without common mode feedback
WO2008068821A1 (ja) オフセット調整機能付きバッファ
US7868688B2 (en) Leakage independent very low bandwith current filter
JPH10150328A (ja) 差動入力電圧をシングル・エンド出力電圧に変換する電子回路
US7239180B1 (en) Programmable pin impedance reduction on multistandard input/outputs
JP2012169820A (ja) プリアンプ回路、及びマイクロフォン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06833863

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06833863

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP