WO2008068638A2 - Cpg oligonucleotide analogs containing hydrophobic t analogs with enhanced immunostimulatory activity - Google Patents
Cpg oligonucleotide analogs containing hydrophobic t analogs with enhanced immunostimulatory activity Download PDFInfo
- Publication number
- WO2008068638A2 WO2008068638A2 PCT/IB2007/004389 IB2007004389W WO2008068638A2 WO 2008068638 A2 WO2008068638 A2 WO 2008068638A2 IB 2007004389 W IB2007004389 W IB 2007004389W WO 2008068638 A2 WO2008068638 A2 WO 2008068638A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- oligonucleotide
- cancer
- odn
- class
- seq
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/117—Nucleic acids having immunomodulatory properties, e.g. containing CpG-motifs
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7088—Compounds having three or more nucleosides or nucleotides
- A61K31/7125—Nucleic acids or oligonucleotides having modified internucleoside linkage, i.e. other than 3'-5' phosphodiesters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
- A61P11/06—Antiasthmatics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/14—Antivirals for RNA viruses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/14—Antivirals for RNA viruses
- A61P31/16—Antivirals for RNA viruses for influenza or rhinoviruses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/14—Antivirals for RNA viruses
- A61P31/18—Antivirals for RNA viruses for HIV
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/20—Antivirals for DNA viruses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/20—Antivirals for DNA viruses
- A61P31/22—Antivirals for DNA viruses for herpes viruses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/04—Immunostimulants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/06—Immunosuppressants, e.g. drugs for graft rejection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/08—Antiallergic agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H21/00—Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/17—Immunomodulatory nucleic acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/31—Chemical structure of the backbone
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/31—Chemical structure of the backbone
- C12N2310/315—Phosphorothioates
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/33—Chemical structure of the base
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/33—Chemical structure of the base
- C12N2310/332—Abasic residue
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/33—Chemical structure of the base
- C12N2310/335—Modified T or U
Definitions
- the present invention relates generally to the field of immunology. More specifically the invention relates to therapeutic oligonucleotides with enhanced immunostimulatory capacity.
- Bacterial DNA has immune stimulatory effects to activate B cells and natural killer cells, but vertebrate DNA does not (Tokunaga, T., et al., 1988. Jpn. J. Cancer Res. 79:682-686; Tokunaga, T., et al., 1984, JNCI 72:955-962; Messina, J.P., et al., 1991, J. Immunol. 147:1759-1764; and reviewed in Krieg, 1998, In: Applied Oligonucleotide Technology, CA. Stein and A.M. Krieg, (Eds.), John Wiley and Sons, Inc., New York, NY, pp. 431-448).
- Such CpG ODN have highly stimulatory effects on human and murine leukocytes, inducing B cell proliferation; cytokine and immunoglobulin secretion; natural killer (NK) cell lytic activity and IFN- ⁇ secretion; and activation of dendritic cells (DCs) and other antigen presenting cells to express costimulatory molecules and secrete cytokines, especially the ThI -like cytokines that are important in promoting the development of ThI -like T cell responses.
- DCs dendritic cells
- CpG nucleic acids Several different classes of CpG nucleic acids has recently been described.
- One class is potent for activating B cells but is relatively weak in inducing IFN- ⁇ and NK cell activation; this class has been termed the B class.
- the B class CpG nucleic acids typically are fully stabilized and include an unmethylated CpG dinucleotide within certain preferred base contexts. See, e.g., U.S. Patent Nos. 6,194,388; 6,207,646; 6,214,806; 6,218,371; 6,239,116; and 6,339,068.
- Another class of CpG nucleic acids activates B cells and NK cells and induces IFN- ⁇ ; this class has been termed the C-class.
- the C-class CpG nucleic acids typically are fully stabilized, include a B class-type sequence and a GC-rich palindrome or near-palindrome.
- This class has been described in co-pending U.S. provisional patent application 60/313,273, filed August 17, 2001 and USlO/224,523 filed on August 19, 2002 and related PCT Patent Application PCT/US02/26468 published under International Publication Number WO 03/015711.
- the invention relates to an oligonucleotide which comprises one or more modifications that elicits enhanced immunostimulatory capacity.
- the invention is based on the finding that specific sub-classes of oligonucleotides having at least one lipophilic substituted nucleotide analog are highly effective in mediating immune response. These oligonucleotides are useful therapeutically and prophylactically for inducing an immune response and for treating diseases and disorders such as cancer and viral infections.
- the invention is a composition comprising the sequence: R 1 YZR 2 , wherein Ri and R 2 represent a lipophilic substituted nucleotide analog (L), a nucleotide, and a linkage, wherein at least one of Ri and R 2 is a lipophilic substituted nucleotide analog (L), wherein Y is a pyrimidine nucleotide and wherein Z is a purine, a pyrimidine , or an abasic residue.
- Ri and R 2 represent a lipophilic substituted nucleotide analog (L), a nucleotide, and a linkage, wherein at least one of Ri and R 2 is a lipophilic substituted nucleotide analog (L), wherein Y is a pyrimidine nucleotide and wherein Z is a purine, a pyrimidine , or an abasic residue.
- L comprises a 5- or 6-membered ring nucleobase analog.
- L is a group of formula I.
- A, B, X, D, E, and F are C (carbon) or N (nitrogen) optionally bearing hydrogen or a substituent; n is O or 1 ; the dotted lines indicate optional double bonds; wherein at least one substituent is not chosen from the group consisting of oxo, thio, hydroxy, mercapto, imino, amino, methyl and hydrogen, and that the total of A, B, X, D, E and F atoms is not more than 3 nitrogens (N). In some cases, n is 1, and in other cases n is 0. In some embodiments, all atoms A, B, X, D, E, F are carbon (C).
- one, two or three of the atoms A, B, X, D, E, F are nitrogen (N).
- at least one of the atoms A, B, X, D, E, F is substituted by one of the following: F, Cl, Br, I, alkyl, alkenyl, alkinyl, halogenated alkyl, halogenated alkenyl, cycloalkyl, O-alkyl, O-alkenyl, -NH-alkyl, -N(alkyl) 2 ; -S-alkyl, - SO-alkyl, -SO 2 -alkyl, nitro, cyano, carboxylester, phenyl, thiophenyl, benzyl, oxo, thio, hydroxy, mercapto, and imino, wherein at least one substituent is not oxo, thio, hydroxy, mercapto, imino, amino or
- one of the two atoms A or E is substituted by one of the following: F, Cl, Br, I, C 2 -C 6 - alkyl, alkenyl, alkinyl, halogenated alkyl, halogenated alkenyl, cycloalkyl, O-alkyl, O- alkenyl, -NH-alkyl, -N(alkyl) 2 ; -S-alkyl, -SO-alkyl, -SO 2 -alkyl, nitro, cyano, carboxylester, phenyl, thiophenyl, benzyl, or methyl, provided that if methyl then A, B, X, D, E, and F are all C.
- formula I comprises a substituted pyrimidine, uracil, toluene, imidazole or pyrazole or triazole.
- formula I is selected from the following: 5-chloro-uracil, 5-bromo-uracil, 5-iodo-uracil, 5-ethyl- uracil, 5 -propyl-uracil, 5-propinyl-uracil, (E)-5-(2-bromovinyl)-uracil, and 2.4-difluoro- toluene.
- formula I is fused with a 3- to- 6-mebered aromatic or aliphatic ring system.
- formula I is linked to a 5- to 6-membered sugar moiety, including a pentose or hexose.
- the pentose is a furanose and hexose is a pyranose, which can optionally be substituted by F, amino, alkoxy, alkoxy-ethoxy, amonipropyl, alkenyl, alkinyl, or a O2,C4-alkylene bridge
- the furanose is ribose or deoxyribose.
- Ri and R 2 are both L.
- R 1 is L and R 2 is a nucleotide.
- R 1 is a L and R 2 is a linkage, such that the oligonucleotide comprises a structure 5' RiCG 3'.
- Other embodiments include oligonucleotide wherein Ri is L and R 2 is a linkage, and wherein a R 3 is 5' to RiYZ, such that the oligonucleotide comprises a structure 5' R 3 R]YZ 3'.
- Ri is L and R 2 is a linkage, and wherein a second Ri is 5' to RiYZ spaced by one nucleotide N, such that the oligonucleotide comprises a structure 5' RiNRiYZ 3'.
- the oligonucleotide may include two 5' RiNRiYZ 3' motifs.
- the oligonucleotide includes Y that is one of the following pyrimidines: cytosine, 5-methyl-cytosine, 5-hydroxy-cytosine, 5- hydroxymethyl-cytosine, 5-halogeno-cytosine, 2-thio-cytosine, 4-thio-cytosine, N3- methyl-cytosine, N4-alkyl-cytosine or a 6-substituted cytosine.
- the oligonucleotide includes Z that is a purine nucleotide including: guanine, 7-deaza-guanine, hypoxanthine, 7-deaza-hypoxanthine, 2- amino-purine, 4-thio-purine, 2.6-diamino-purine, 8-oxo-7.8-dihydroguanine, 7-thia-8- oxo-7.8-dihydro guanine, 7-allyl-8-oxo-7.8-dihydroguanine, 7-deaza-8-aza-guanine, 8- aza-guanine, Nl-methyl-guanine or purine.
- Z is a pyrimidine nucleotide, including T.
- R 2 is L and Ri is a nucleotide.
- the oligonucleotide is between 3-100 nucleotides in length; for example, the oligonucleotide is 3-6 nucleotides in length, 3-100 nucleotides in length, or 7-100 nucleotides in length, hi some circumstances, the oligonucleotide is T-rich, such that at least 80% of the nucleotides are T.
- the invention includes embodiments comprising at least one palindromic sequence. For example, in some cases, the oligonucleotide includes two palindromic sequences.
- some embodiments include one to four unmethylated CG dinucleotides.
- the oligonucleotide may include at least one (G)m sequence, wherein m is 4 to 10. In some cases, at least one but up to all CG dinucleotides are unmethylated.
- the oligonucleotide may additionally comprise a non-nucleotidic modification.
- the non-nucleotidic modifications include but are not limited to: C 6 -C 48 -polyethyleneglycol, C 3 -C 2 o-alkane- diol, C 3 -C 18 -alkylamino linker, C 3 -C 18 -alkylthiol linker, cholesterol, bile acid, saturated or unsaturated fatty acid, folate, a hexadecyl-glycerol or dihexadecyl-glycerol group, an octadecyl-glycerol or dioctadecyl-glycerol group, a vitamine E group.
- the oligonucleotide of the invention further comprises a non-nucleotidic brancher moiety or a nucleotidic brancher moiety.
- the oligonucleotide includes a brancher moiety, wherein the oligonucleotides has at least two 5 '-ends.
- some embodiments include at least two nucleotides of the oligonucleotide have a stabilized linkage, including: phosphorothioate, phosphorodithioate, methylphosphonate, methylphosphonothioate boranophosphonate, phosphoramidate, or a dephospho linkage, either as enantiomeric mixture or as enantiomeric pure S- or R-configuration.
- the YZ OfR 1 YZR 2 has a phosphodiester linkage or a phosphorothioate linkage. In some cases, the R 1 Y and or the ZR 2 OfR 1 YZR 2 has a phosphorothioate linkage. In some embodiments, all other nucleotides have a phosphorothioate linkage.
- the oligonucleotide is free of a microcarrier, including a lipid carrier.
- the oligonucleotides may be an A class oligonucleotide, a B class oligonucleotide, a C class oligonucleotide, a P class oligonucleotide or a T class oligonucleotide .
- some embodiments include the sequence 5' TCNiTX 1 X 2 CGX 3 X 4 3' , wherein X 1 is G or A; X 2 is T, G , or A; X 3 is T or C and X 4 is T or C; and N is any nucleotide, and N 1 and N 2 are nucleic acid sequences of about 0-25 N's each.
- the oligonucleotide comprises at least one 3'-3' linkage and or at least one 5'-5' linkage.
- the invention is a composition of the oligonucleotides described herein in combination with an antigen or other therapeutic compound, such as an anti-microbial agent.
- the anti-microbial agent may be, for instance, an anti-viral agent, an anti-parasitic agent, an anti-bacterial agent or an anti-fungal agent.
- composition of a sustained release device including the oligonucleotides described herein is provided according to another aspect of the invention.
- composition may optionally include a pharmaceutical carrier and/or be formulated in a delivery device.
- delivery device is selected from the group consisting of cationic lipids, cell permeating proteins, and sustained release devices.
- sustained release device is a biodegradable polymer or a microparticle.
- a method of stimulating an immune response involves administering an oligonucleotide to a subject in an amount effective to induce an immune response in the subject.
- the oligonucleotide is administered orally, locally, in a sustained release device, mucosally, systemically, parenterally, or intramuscularly.
- the oligonucleotide may be delivered in an amount effective for inducing a mucosal immune response or a systemic immune response.
- the mucosal surface is selected from the group consisting of an oral, nasal, rectal, vaginal, and ocular surface.
- the method includes exposing the subject to an antigen wherein the immune response is an antigen-specific immune response.
- the antigen is selected from the group consisting of a tumor antigen, a viral antigen, a bacterial antigen, a parasitic antigen and a peptide antigen.
- the oligonucleotides are useful for treating cancer in a subject having cancer or in a subject at risk of developing a cancer (e.g., reducing a risk of developing cancer).
- the cancer may be selected from the group consisting of biliary tract cancer, breast cancer, cervical cancer, choriocarcinoma, colon cancer, endometrial cancer, gastric cancer, intraepithelial neoplasms, lymphomas, liver cancer, lung cancer (e.g. small cell and non-small cell), melanoma, neuroblastomas, oral cancer, ovarian cancer, pancreatic cancer, prostate cancer, rectal cancer, sarcomas, thyroid cancer, and renal cancer, as well as other carcinomas and sarcomas.
- the cancer is selected from the group consisting of bone cancer, brain and CNS cancer, connective tissue cancer, esophageal cancer, eye cancer, Hodgkin's lymphoma, larynx cancer, oral cavity cancer, skin cancer, and testicular cancer.
- the oligonucleotides may also be used for increasing the responsiveness of a cancer cell to a cancer therapy (e.g., an anti-cancer therapy), optionally when the CpG immunostimulatory oligonucleotide is administered in conjunction with an anti-cancer therapy.
- a cancer therapy e.g., an anti-cancer therapy
- the anti-cancer therapy may be a chemotherapy, a vaccine (e.g., an in vitro primed dendritic cell vaccine or a cancer antigen vaccine) or an antibody based therapy. This latter therapy may also involve administering an antibody specific for a cell surface antigen of, for example, a cancer cell, wherein the immune response results in antibody dependent cellular cytotoxicity (ADCC).
- ADCC antibody dependent cellular cytotoxicity
- the antibody may be selected from the group consisting of Ributaxin, Herceptin, Quadramet, Panorex, H)EC- Y2B8, BEC2, C225, Oncolym, SMART Ml 95, ATRAGEN, Ovarex, Bexxar, LDP-03, ior t6, MDX-210, MDX-11, MDX-22, OV103, 3622W94, anti-VEGF, Zenapax, MDX- 220, MDX-447, MELIMMUNE-2, MELIMMUNE-I, CEACIDE, Pretarget, NovoMAb- G2, TNT, Gliomab-H, GNI-250, EMD-72000, LymphoCide, CMA 676, Monopharm-C, 4B5, ior egf.r3, ior c5, BABS, anti-FLK-2, MDX-260, ANA Ab, SMART IDlO Ab, SMART ABL 364 Ab and ImmuRAIT-CEA.
- a subject having cancer or at risk of having a cancer is administered an oligonucleotide and an anti-cancer therapy.
- the anti-cancer therapy is selected from the group consisting of a chemotherapeutic agent, an immunotherapeutic agent and a cancer vaccine.
- the invention in other aspects relates to methods for preventing disease in a subject.
- the method involves administering to the subject an oligonucleotide on a regular basis to promote immune system responsiveness to prevent disease in the subject.
- diseases or conditions sought to be prevented using the prophylactic methods of the invention include microbial infections (e.g., sexually transmitted diseases) and anaphylactic shock from food allergies.
- the invention is a method for inducing an innate immune response by administering to the subject an oligonucleotide in an amount effective for activating an innate immune response.
- a method for treating a viral or retroviral infection involves administering to a subject having or at risk of having a viral or retroviral infection, an effective amount for treating the viral or retroviral infection of any of the compositions of the invention.
- the virus is caused by a hepatitis virus e.g., hepatitis B, hepatitis C, HIV, herpes virus, or papillomavirus.
- a method for treating a bacterial infection is provided according to another aspect of the invention.
- the method involves administering to a subject having or at risk of having a bacterial infection, an effective amount for treating the bacterial infection of any of the compositions of the invention, hi one embodiment the bacterial infection is due to an intracellular bacteria.
- the invention is a method for treating a parasite infection by administering to a subject having or at risk of having a parasite infection, an effective amount for treating the parasite infection of any of the compositions of the invention, hi one embodiment the parasite infection is due to an intracellular parasite, hi another embodiment the parasite infection is due to a non-helminthic parasite.
- the subject is a human and in other embodiments the subject is a non-human vertebrate selected from the group consisting of a dog, cat, horse, cow, pig, turkey, goat, fish, monkey, chicken, rat, mouse, and sheep.
- the invention relates to a method for treating autoimmune disease by administering to a subject having or at risk of having an autoimmune disease an effective amount for treating or preventing the autoimmune disease of any of the compositions of the invention.
- the invention in some aspects is a method for treating airway remodeling, asthma or allergy comprising: administering to a subject any of the compositions of the invention, in an effective amount to treat airway remodeling asthma or allergy in the subject, hi one embodiment the subject has asthma, chronic obstructive pulmonary disease, or is a smoker. In other embodiments the subject is free of symptoms of asthma.
- Use of an oligonucleotide of the invention for stimulating an immune response is also provided as an aspect of the invention.
- a method for manufacturing a medicament of an oligonucleotide of the invention for stimulating an immune response is also provided.
- Each of the limitations of the invention can encompass various embodiments of the invention. It is, therefore, anticipated that each of the limitations of the invention involving any one element or combinations of elements can be included in each aspect of the invention.
- This invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways. Also, the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting.
- the use of "including,” “comprising,” or “having,” “containing”, “involving”, and variations thereof herein, is meant to encompass the items listed thereafter and equivalents thereof as well as additional items.
- Figure 1 is two drawings illustrating the structure of the modified bases of the invention.
- Figure Ia shows a section of a CpG hexamer motif (GTCGTT).
- Figure Ib shows the incorporated hydrophobic shape analogs of 2'-deoxythymidine: 2,4- Difluorotoluene (FF), 5-bromouridine (BU) and 5-iodouridine (JU).
- FF 2,4- Difluorotoluene
- BU 5-bromouridine
- JU 5-iodouridine
- Figure 2 is a graph showing results of a luciferase assay with B-class oligonucleotides (ODN) modified with thymine shape analog 2,4-difluorotoluene (FF).
- ODN B-class oligonucleotides
- FF thymine shape analog 2,4-difluorotoluene
- SEQ ID NO:3-9 The activity of FF-modified ODN (SEQ ID NO:3-9) was compared to that of the unmodified B-class parent sequence (SEQ ID NO:1), fully PS parent sequence (SEQ ID NO:2), and a third unmodified B-class ODN (SEQ ID NO:37).
- hTLR9-LUC-293 cells were stimulated with indicated amounts of ODN and NF- ⁇ B stimulation was determined by measuring luciferase activity 16h later.
- the x-axis is log ODN concentration in ⁇ M and the y-axis is the relative stimulation index.
- Figure 3 is a graph demonstrating the results of a luciferase assay with modified B-class ODN.
- Thymidine was substituted with 5-bromo-2'-deoxyuridine (BU) (SEQ ED NO:10-12) and 5-iodo-2'-deoxyuridine (JU) (SEQ ID NO:13-15).
- BU 5-bromo-2'-deoxyuridine
- JU 5-iodo-2'-deoxyuridine
- Their activity was compared to that of the unmodified B-class parent sequence (SEQ ED NO:1), fully PS parent sequence (SEQ ED NO:2), and a third unmodified B-class ODN (SEQ ED NO:37).
- hTLR9-LUC-293 cells were stimulated with indicated amounts of ODN and NF-/cB stimulation was determined by measuring Luciferase activity 16h later.
- the x-axis is log ODN concentration in ⁇ M and the y-axis is the relative stimulation
- Figure 4 is a graph demonstrating the results of a luciferase assay with modified B-class ODN.
- 2'-deoxythymidine (T) was substituted with 2'-deoxyuridine (U) (SEQ ED NO:16-18).
- the activity of the U-modified ODN was compared to that of the unmodified B-class parent sequence (SEQ ED NO:1), fully PS parent sequence (SEQ ED N0:2), and a third unmodified B-class ODN (SEQ ED NO:37).
- hTLR9-LUC-293 cells were stimulated with indicated amounts of ODN and NF- ⁇ B stimulation was determined by measuring Luciferase activity 16h later.
- the x-axis is log ODN concentration in ⁇ M and the y-axis is the relative stimulation index.
- Figure 5 is two graphs demonstrating the results of a luciferase assay and a
- Figure 6 is a graph demonstrating the results of a luciferase assay with EU- modified ODN.
- the activity of EU-modified ODN SEQ ED NO:29, 30, and 42 was compared to that of the parent sequence (SEQ ED NO:1) and another unmodified B-class ODN (SEQ ED NO:37).
- the x-axis is ODN concentration in ⁇ M and the y-axis is the relative stimulation index.
- Figure 7 is a graph demonstrating the results of a luciferase assay with modified B class ODN.
- the activity of JU-modified SEQ ID NO: 19-24 was compared to that of parent sequence SEQ ED NO:37.
- the x-axis is ODN concentration in ⁇ M and the y-axis is the relative stimulation index.
- Figure 8 is two graphs demonstrating the results of a luciferase assay and a PBMC assay with modified A class ODN.
- the activity of JU-modified SEQ ID NO:35- 37 was compared to that of the unmodified parent sequence (SEQ ID NO:43) and to unmodified B-class ODN SEQ ID NO:1.
- Figure 8a shows TLR9 activity and Figure 8b shows IFN-alpha production. Shown is the mean +/- SEM of three donors.
- the x-axes are log ODN concentration (Figure 8a) or ODN concentration (Figure 8b) in ⁇ M and the y-axes are the relative stimulation index index (Figure 8a) or IFN-alpha concentration in pg/ml ( Figure 8b).
- Figure 9 is a graph demonstrating the results of a luciferase assay with modified C class ODN.
- the activity of JU-modified C-class ODN SEQ ID NO:27-28 and 44-45 was compared to that of the unmodified parent sequence SEQ ED NO:45 and to an unmodified B-class ODN (SEQ ID NO:37).
- the x-axis is ODN concentration in ⁇ M and the y-axis is the relative stimulation index.
- Figure 10 is a graph demonstrating the results of a luciferase assay with modified P class ODN.
- the activity of JU-modified SEQ ED NO:31-33 was compared to that of the unmodified parent sequence (SEQ ID NO:52).
- the x-axis is log ODN concentration in ⁇ M and the y-axis is the relative stimulation index.
- Figure 11 is a graph demonstrating the results of a luciferase assay with modified T class ODN.
- the activity of JU-modified SEQ ID NO:47-50 and U-modified SEQ JD NO:51 was compared to that of unmodified parent sequence SEQ ED NO:25.
- the x-axis is log ODN concentration in ⁇ M and the y-axis is the relative stimulation index.
- Figure 12 is a graph demonstrating the results of a luciferase assay with short ODN.
- the activity of JU-modified short ODN SEQ ED NO:39-40 was compared to that of the unmodified parent sequence SEQ ED NO:38 and to the B-class ODN SEQ ED NO:37.
- ODN were formulated with and without DOTAP.
- the x-axis is log ODN concentration in ⁇ M and the y-axis is the relative stimulation index.
- Figure 13 is four graphs showing the results of an ELISA assay measuring cytokine concentration in in splenocyte culture supernatants where BALB/c mouse splenocytes were cultured with different ODNs. Culture supernatants were harvested at 6 hr (for TNF-alpha) or 24 hr (for IL-6, IL- 10 and IL- 12). The activities of a JU- modified B-class ODN (SEQ ED NO: 13), an unmodified B-class ODN (SEQ ED NO:37), and a non-CpG negative control ODN (SEQ ED NO:26) were compared.
- SEQ ED NO: 13 JU- modified B-class ODN
- SEQ ED NO:37 unmodified B-class ODN
- SEQ ED NO:26 non-CpG negative control ODN
- Figures 13a-d show TNF-alpha, IL-6, IL-IO, and IL- 12 concentration, respectively.
- the x-axes are ODN concentration in ⁇ g/ml and the y-axes are cytokine concentration in pg/ml.
- Figure 14 is a graph showing the results of FACS analysis of B cell proliferation.
- CFSE stained BALB/c mouse splenocytes (4xlO 5 /well) were incubated with 0.001, 0.01, 0.1, 0.3, 1, 3 or 10 ⁇ g/ml of ODN.
- ODN ODN-specific cytoplasmic plasmic plasmic plasmic plasmic plasmic plasmic plasmic plasmic .
- SEQ ID NO: 13 JU-modified B-class ODN
- SEQ ID NO:37 unmodified B-class ODN
- SEQ ID NO:26 non-CpG negative control ODN
- Figure 15 is two graphs showing in vivo cytokine production as measured by ELISA.
- BALB/c mice (5 per group) were injected SC with 10, 50 or lOO ⁇ g of ODN.
- Control group received lOO ⁇ l of PBS alone.
- Animals were bled by cardiac puncture at 1 hour (for TNF-alpha) or 3 hour (for IP-IO) post injection and plasma assayed for TNF- alpha and IP- 10 by ELISA.
- the activities of a JU-modified B-class ODN (SEQ ID NO: 13) and an unmodified B-class ODN (SEQ ID NO:37) were compared.
- Figure 15a shows TNF-alpha concentration
- Figure 15b shows IP-IO concentration.
- the x-axes are ODN dose in ⁇ g and the y-axes are cytokine concentration in pg/ml.
- Figure 16 is a graph showing TLR9-mediated NF- ⁇ B activation by a B-class ODN with a universal base (6-nitrobenzimidazol) (SEQ ID NO: 178) in place of thymidine in the parent sequence (SEQ ID NO: 1).
- hTLR9-LUC-293 cells were incubated with indicated amounts of nucleic acids and NF- ⁇ B activation was determined 16h later by measuring luciferase activity.
- the x-axis is log of ODN concentration in ⁇ M and the y-axis is IFN- ⁇ concentration in pg/ml.
- Figure 17 is a graph showing TLR9-mediated NF-/cB activation by B-class ODN with 5-(2-bromovinyl)-uridine (SEQ ID NO: 153 and 154) in place of thymine in the parent sequence (SEQ ID NO: 1).
- hTLR9-LUC-293 cells were incubated with indicated amounts of nucleic acids and NF- ⁇ B activation was determined 16h later by measuring luciferase activity.
- the x-axis is log of ODN concentration in ⁇ M and the y-axis is IFN- a concentration in pg/ml.
- Figure 18 is a graph showing TLR9-mediated NF- ⁇ B activation by B-class ODN with a sugar modification (2'-O-methylguanosine) in addition to a lipophilic substituted nucleotide analog (SEQ ID NO:111-113).
- the activity of these ODN was compared to that of the parent sequence (SEQ ID NO:1) and the same sequence with a lipophilic substituted nucleotide analog only (SEQ ID NO: 13).
- hTLR9-LUC-293 cells were incubated with indicated amounts of nucleic acids and NF- ⁇ B activation was determined 16h later by measuring luciferase activity.
- the x-axis is log of ODN concentration in ⁇ M and the y-axis is IFN- ⁇ concentration in pg/ml.
- Figure 19 is a graph showing TLR9-mediated NF- ⁇ B activation by branched B- class ODN with multiple 5' accessible ends.
- the activity of the branched ODN (SEQ ID NO:96, 97, 101, and 102) was compared to that of SEQ ID NO:1.
- hTLR9-LUC-293 cells were incubated with indicated amounts of nucleic acids and NF- ⁇ B activation was determined 16h later by measuring luciferase activity.
- the x-axis is log of ODN concentration in ⁇ M and the y-axis is EFN- ⁇ concentration in pg/ml.
- Figure 20 is a graph showing TLR9-mediated NF- ⁇ B activation by a short unmodified B-class ODN (SEQ ID NO:38) and an ODN of the same sequence with a lipophilic substituted nucleotide analog and a lipophilic 3' tag (SEQ ID NO: 126). Both were formulated with and without DOTAP.
- hTLR9-LUC-293 cells were incubated with indicated amounts of nucleic acids and NF- ⁇ B activation was determined 16h later by measuring luciferase activity.
- the x-axis is log of ODN concentration in ⁇ M and the y- axis is IFN-O! concentration in pg/ml.
- Figure 21 is a graph showing TLR9-mediated NF- ⁇ B activation by two B-class
- hTLR9-LUC-293 cells were incubated with indicated amounts of nucleic acids and NF- ⁇ B activation was determined 16h later by measuring luciferase activity.
- the x-axis is log of ODN concentration in ⁇ M and the y-axis is IFN- a concentration in pg/ml.
- Figure 22 is a graph showing hTLR9-mediated NF- ⁇ B activation by B-class ODN with a second nucleotide analog in addition to a lipophilic substituted nucleotide analog (SEQ ID NO:138, 7-deaza-dG; SEQ ID NO:139, inosine; SEQ ID NO:140, 5- methyl-dC).
- SEQ ID NO:138 7-deaza-dG
- SEQ ID NO:139 inosine
- SEQ ID NO:140 5- methyl-dC
- the activity of these ODN was compared to that of the parent sequence (SEQ ID NO:1) and the same sequence with a lipophilic substituted nucleotide analog only (SEQ ED NO: 13).
- hTLR9-LUC-293 cells were incubated with indicated amounts of nucleic acids and NF- ⁇ B activation was determined 16h later by measuring luciferase activity.
- the x-axis is log of ODN concentration in ⁇ M
- Figure 23 is a graph showing hTLR9-mediated NF- ⁇ B activation by T-class ODN with a lipophilic substituted nucleotide analog (SEQ ID NO: 132-134). The activity of these was compared to that of an immunostimulatory C-class ODN (SEQ ED NO: 198).
- hTLR9-LUC-293 cells were incubated with indicated amounts of nucleic acids and NF- KB activation was determined 16h later by measuring luciferase activity.
- the x-axis is log of ODN concentration in ⁇ M and the y-axis is IFN- ⁇ concentration in pg/ml.
- Figure 24 is two graphs showing hTLR9-mediated NF- ⁇ B activation by P-class ODN with a lipophilic substituted nucleotide analog (SEQ ID NO:58-63).
- Figure 24a shows the activity of SEQ ID NO:58-61 compared to that of a B-class positive control (SEQ ID NO:55) and an unmodified P-class ODN (SEQ ID NO:56).
- Figure 24b shows the activity of SEQ DD NO:62-63 compared to that of the same positive and negative controls.
- hTLR9-LUC-293 cells were incubated with indicated amounts of nucleic acids and NF- ⁇ B activation was determined 16h later by measuring luciferase activity.
- the x- axis is log of ODN concentration in ⁇ M and the y-axis is the relative stimulation index.
- Figure 25 is a graph showing hTLR9-mediated NF- ⁇ B activation by P-class ODN with a lipophilic substituted nucleotide analog (SEQ ID NO:64, 66-67). The activity of these is compared to that of a B-class positive control (SEQ ED NO:55), a C-class ODN (SEQ ID NO:68) and an unmodified P-class ODN (SEQ ID NO:57).
- hTLR9-LUC-293 cells were incubated with indicated amounts of nucleic acids and NF-/cB activation was determined 16h later by measuring luciferase activity.
- the x-axis is log of ODN concentration in ⁇ M and the y-axis is the relative stimulation index.
- Figure 26 is two graphs showing induction of EFN- ⁇ by P-class ODN with a lipophilic substituted nucleotide analog (SEQ ID NO:58-63).
- Figure 26a shows the activity of SEQ ID NO:58-61 compared to that of a B-class positive control (SEQ ID NO:55) and an unmodified P-class ODN (SEQ ED NO:56).
- Figure 26b shows the activity of SEQ ID NO:62-63 compared to that of the same positive and negative controls.
- Human PBMC were incubated with the indicated ODN for 48 hours. IFN- ⁇ was then determined in the cell culture supernatants by ELISA.
- the x-axes are ODN concentration in ⁇ M and the y-axes are EFN- ⁇ concentration in pg/ml.
- Figure 27 is a graph showing induction of IFN- ⁇ by P-class ODN with a lipophilic substituted nucleotide analog (SEQ ID NO:64, 66-67). The activity of these is compared to that of a B-class positive control (SEQ ID NO:55), a C-class ODN (SEQ ID NO:68) and an unmodified P-class ODN (SEQ ID NO:57). Human PBMC were incubated with the indicated ODN for 48 hours. IFN- ⁇ was then determined in the cell culture supernatants by ELISA.
- the x-axes are ODN concentration in ⁇ M and the y-axes are IFN- ⁇ concentration in pg/ml.
- Figure 28 is two graphs showing IL-6 induction by P-class ODN with a lipophilic substituted nucleotide analog (SEQ ID NO:58, 60-62, Figure 28a) (SEQ ID NO:64 and 67, Figure 28b).
- the activity was compared to that of an unmodified B-class ODN (SEQ ID NO:55), and unmodified C-class ODN (SEQ ID NO:54), a negative control ODN (SEQ ID NO:53), and an unmodified P-class ODN (SEQ E) NO:56).
- PBMC from three donors were incubated with the ODN for 24 hours and the supernatants were analyzed by luminex. Shown is the mean +/- SEM.
- the x-axes are ODN concentration in ⁇ M and the y-axes are IL-6 concentration in pg/ml.
- Figure 29 is two graphs showing B-cell proliferation after treatment with P-class class ODN with a lipophilic substituted nucleotide analog (SEQ ID NO:58, 60-62, Figure 29a) (SEQ ID NO:64 and 67, Figure 29b).
- the activity was compared to that of an unmodified B-class ODN (SEQ ED NO:55), an unmodified C-class ODN (SEQ ID NO:54), a negative control ODN (SEQ ID NO:53), an unmodified P-class ODN (SEQ ID NO:56), LPS, R-848, SEB, and a poly[I]:[C] ODN.
- CFSE-labeled PBMC from three donors were incubated with the ODN for 5 days and then stained with a CD 19 antibody. The percentage of B cells with reduced CFSE staining was determined.
- the x-axes are ODN concentration in ⁇ M and the y-axes are % of B cells with reduced staining after division.
- Figure 30 is a graph showing induction of murine IFN- ⁇ by P-class ODN with a lipophilic substituted nucleotide analog (SEQ ID NO:58, 60-62, 64, and 67). The activity of these is compared to that of a B-class positive control (SEQ ID NO:55) and a negative control (SEQ ID NO:26).
- BALB/c mice (5 per group) were injected SC with differing doses of ODN. Animals were bled at 3 hr post injection and plasma tested for IFN-alpha by ELISA.
- the x axis is ODN dose in ⁇ g and the y-axis is IFN- ⁇ concentration in pg/ml.
- Figure 31 is two graphs showing the effect of ODN on tumor volume in the mouse SAlN tumor model.
- the invention is based in part on CpG oligonucleotides that show enhanced immunostimulatory capacity.
- CpG oligonucleotides are known to stimulate the immune system, for example through interaction with toll-like receptor 9 (TLR9). Stimulation of TLR9 has many effects including stimulation of a ThI biased immune response, NK cell activation and B cell activation.
- the invention is related in some aspects to the identification of immunostimulatory oligonucleotides with altered structure that affects their interaction with TLR9. It was discovered by the inventors that oligonucleotides with lipophilic substituted nucleotide analogs outside the CpG motif have enhanced ability to stimulate interferon- ⁇ (IFN- ⁇ ) production and induce TLR9 activation. This effect has been observed in all classes of immunostimulatory oligonucleotides tested. These modified oligonucleotides with enhanced stimulatory capacity have been termed E class oligonucleotides.
- the E class modified oligonucleotides of the instant invention have in some instances enhanced capacity for inducing an immune response.
- An induction of an immune response refers to any increase in number or activity of an immune cell, or an increase in expression or absolute levels of an immune factor, such as a cytokine.
- Immune cells include, but are not limited to, NK cells, CD4+ T lymphocytes, CD8+ T lymphocytes, B cells, dendritic cells, macrophage and other antigen-presenting cells.
- Cytokines include, but are not limited to, interleukins, TNF- ⁇ , IFN- ⁇ , ⁇ and ⁇ , Flt-ligand, and co-stimulatory molecules.
- TLR9 Toll-like receptor 9
- the inventors set out to investigate the impact of the lipophilic residues in region surrounding the CpG motif.
- several different types of lipophilic substituted nucleotide analogs such as 2,4-difluorotoluene, 5-bromouracil and 5- iodouracil were incorporated into a CpG oligonucleotide on either the 5' or 3' side of the CpG motif.
- incorporation of these lipophilic substituted nucleotide analogs led to an unusually strong increase in hTLR9 activity as well as IFN- ⁇ induction in human PBMCs.
- the oligonucleotide has the sequence R 1 YZR 2 .
- the oligonucleotide may be include one or more such motifs.
- R 1 and R 2 are independently any one of lipophilic substituted nucleotide analog (L), a nucleotide, or a linkage. It is preferred, however, that at least one of Rj and R 2 is a lipophilic substituted nucleotide analog (L).
- R 1 and R 2 are both L. As shown in the examples section below oligonucleotides having an L both 5' and 3' to the CpG motif were particularly stimulatory. However sometimes only one R is an L. For instance R 1 may be L and R 2 is a nucleotide or vice versa. Alternatively Rj may be a L and R 2 may be a linkage, such that the oligonucleotide comprises a structure 5' R 1 CG 3'.
- the oligonucleotide has the sequence R]NiYZN 2 R 2 wherein N 1 and N 2 are nucleotides of 0-3 nucleotides in length.
- Other possible variations include structures such as 5' R 1 N 1 R 1 YZ N 2 3', 5' R 3 R 1 YZ 3 and R 1 ZN 2 R 2 .
- Y is a pyrimidine nucleotide.
- Z is a purine, a pyrimidine, or an abasic residue. In some embodiments Z is preferably a purine.
- L is a lipophilic substituted nucleotide analog which may be, for instance, a 5- or 6-membered ring nucleobase analog.
- a 5- or 6-membered ring nucleobase analog is shown in the following group of formula I.
- A, B, X, D, E, and F are independently any one of C (carbon) or N (nitrogen) optionally bearing hydrogen or a substituent such as for instance, but not limited to, F, Cl, Br, I, alkyl, alkenyl, alkinyl, halogenated alkyl, halogenated alkenyl, cycloalkyl, O- alkyl, O-alkenyl, -NH-alkyl, -N(alkyl) 2 ; -S-alkyl, -SO-alkyl, -SO 2 -alkyl, nitro, cyano, carboxylester, phenyl, thiophenyl, benzyl, oxo, thio, hydroxy, mercapto, and imino.
- substituent such as for instance, but not limited to, F, Cl, Br, I, alkyl, alkenyl, alkinyl, halogenated alkyl, halogenated alkenyl
- At least one substituent is not oxo, thio, hydroxy, mercapto, imino, amino or methyl.
- n is O or l.
- the dotted lines indicate optional double bonds.
- at least one substituent is not chosen from the group consisting of oxo, thio, hydroxy, mercapto, imino, amino, methyl and hydrogen.
- the total of A, B, X, D, E and F atoms is not more than 3 nitrogens (N). In some embodiments all atoms A, B, X, D, E, F are carbon (C). Alternatively, at least one, two, or three of the atoms A, B, X, D, E, F is nitrogen (N).
- the compound of formula may be, for example, any of the following lipophilic substituted nucleotide analogs: a substituted pyrimidine, a substituted uracil, a substituted toluene, a substituted imidazole or pyrazole, a substituted triazole, 5-chloro- uracil, 5-bromo-uracil, 5-iodo-uracil, 5-ethyl-uracil, 5-propyl-uracil, 5-propinyl-uracil, (E)-5-(2-bromovinyl)-uracil, or 2.4-difluoro-toluene.
- the lipophilic substituted nucleotide analog may be separate or it may be fused with another compound. For instance is may be fused to a 3- to-6-mebered aromatic or aliphatic ring system. It may also be linked to a 5- to 6-membered sugar moiety such as for instance a pentose or hexose.
- a pentose is a furanose such as a ribose or deoxyribose
- an example of a hexose is a pyranose.
- the pentose or hexose can optionally be substituted by F, amino, alkoxy, alkoxy-ethoxy, amonipropyl, alkenyl, alkinyl, or a O2,C4-alkylene bridge.
- the oligonucleotide may also include a non-nucleotidic modification such as a C 6 -C 48 -polyethyleneglycol, C 3 -C 2 o-alkane-diol, C 3 -C 18 -alkylamino linker, C 3 -C 18 - alkylthiol linker, cholesterol, bile acid, saturated or unsaturated fatty acid, folate, hexadecyl-glycerol, dihexadecyl-glycerol group, an octadecyl-glycerol or dioctadecyl- glycerol group or a vitamine E group.
- a non-nucleotidic modification such as a C 6 -C 48 -polyethyleneglycol, C 3 -C 2 o-alkane-diol, C 3 -C 18 -alkylamino linker, C 3 -C 18
- the lipophilic substituted nucleotide analogs can be incorporated into any immunostimulatory oligonucleotide.
- the immunostimulatory oligonucleotides include immunostimulatory motifs which are "CpG dinucleotides".
- a CpG dinucleotide can be methylated or unmethylated.
- An immunostimulatory nucleic acid containing at least one unmethylated CpG dinucleotide is a nucleic acid molecule which contains an unmethylated cytosine-guanine dinucleotide sequence (i.e., an unmethylated 5' cytidine followed by 3' guanosine and linked by a phosphate bond) and which activates the immune system; such an immunostimulatory nucleic acid is a CpG nucleic acid.
- CpG nucleic acids have been described in a number of issued patents, published patent applications, and other publications, including U.S. Patent Nos.
- An immunostimulatory nucleic acid containing at least one methylated CpG dinucleotide is a nucleic acid which contains a methylated cytosine-guanine dinucleotide sequence (i.e., a methylated 5' cytidine followed by a 3' guanosine and linked by a phosphate bond) and which activates the immune system.
- the immunostimulatory oligonucleotides are free of CpG dinucleotides.
- non-CpG oligonucleotides which are free of CpG dinucleotides
- they have non-CpG immunostimulatory motifs.
- these are T-rich ODN, such as ODN having at least 80% T.
- the E class ODNs of the invention may include motifs and properties of other CpG ODN classes such as A class, B call, C class, T class and P class as long as they include lipophilic substituted nucleotide analogs 5' and/or 3' of a YGZ motif.
- a class CpG immunostimulatory nucleic acids have been described in U.S. Non-Provisional Patent Application Serial No.: 09/672,126 and published PCT application PCT/USOO/26527 (WO 01/22990), both filed on September 27, 2000. These nucleic acids are characterized by the ability to induce high levels of interferon-alpha while having minimal effects on B cell activation.
- the A class CpG immunostimulatory nucleic acid do not necessarily contain a hexamer palindrome GACGTC, AGCGCT, or AACGTT described by Yamamoto and colleagues. Yamamoto S et al. J Immunol 148:4072-6 (1992).
- the B class CpG nucleic acids typically are fully stabilized and include an unmethylated CpG dinucleotide within certain preferred base contexts. See, e.g., U.S. Patent Nos. 6,194,388; 6,207,646; 6,214,806; 6,218,371 ; 6,239,116; and 6,339,068.
- Another class is potent for inducing IFN- ⁇ and NK cell activation but is relatively weak at stimulating B cells; this class has been termed the "A class".
- the A class CpG nucleic acids typically have stabilized poly-G sequences at 5' and 3' ends and a palindromic phosphodiester CpG dinucleotide-containing sequence of at least 6 nucleotides. See, for example, published patent application PCT/USOO/26527
- CpG nucleic acids activates B cells and NK cells and induces EFN- ⁇ ; this class has been termed the C-class.
- the "C class” immunostimulatory nucleic acids contain at least two distinct motifs have unique and desirable stimulatory effects on cells of the immune system. Some of these ODN have both a traditional "stimulatory" CpG sequence and a "GC-rich” or "B-cell neutralizing” motif.
- the C class of combination motif immune stimulatory nucleic acids may have either stabilized, e.g., phosphorothioate, chimeric, or phosphodiester backbones, and in some preferred embodiments, they have semi-soft backbones. This class has been described in U.S. patent application US 10/224,523 filed on August 19, 2002, the entire contents of which is incorporated herein by reference.
- the "P class" immunostimulatory oligonucleotides have several domains, including a 5'TLR activation domain, 2 duplex forming regions and an optional spacer and 3' tail. This class of oligonucleotides has the ability in some instances to induce much higher levels of IFN-Q! secretion than the C-Class.
- the P-Class oligonucleotides have the ability to spontaneously self-assemble into concatamers either in vitro and/or in vivo.
- P-Class oligonucleotides with the ability to more highly crosslink TLR9 inside certain immune cells, inducing a distinct pattern of immune activation compared to the previously described classes of CpG oligonucleotides.
- Cross-linking of TLR9 receptors may induce activation of stronger EFN- ⁇ secretion through the type I IFNR feedback loop in plasmacytoid dendritic cells.
- P class oligonucleotides are described at least in US Application Serial Number 11/706,561.
- T class oligonucleotides induce secretion of lower levels of IFN-alpha when not modified as in the ODNs of the invention and IFN-related cytokines and chemokines than B class or C class oligonucleotides, while retaining the ability to induce levels of IL-IO similar to B class oligonucleotides.
- T class oligonucleotides are described at least in US Patent Application Serial No. 11/099,683, the entire contents of which are hereby incorporated by reference. hi one embodiment the immunostimulatory ODN of the invention is advantageously combined with a cationic lipid.
- the cationic lipid is DOTAP (N-[I -(2,3-dioleoyloxy)propy- l]-N,N,N-trimethylammonium methyl-sulfate).
- DOTAP N-[I -(2,3-dioleoyloxy)propy- l]-N,N,N-trimethylammonium methyl-sulfate.
- Other agents with similar properties including trafficking to the endosomal compartment can be used in place of or in addition to DOTAP.
- Other lipid formulations include, for example, as EFFECTENETM (a non-liposomal lipid with a special DNA condensing enhancer) and SUPERFECTTM (a novel acting dendrimeric technology).
- Liposomes are commercially available from Gibco BRL, for example, as LIPOFECTFNTM and LIPOFECT ACETM, which are formed of cationic lipids such as N-[I -(2, 3 dioleyloxy)- propyl]-N, N, N-trimethylammonium chloride (DOTMA) and dimethyl dioctadecylammonium bromide (DDAB).
- LIPOFECTFNTM and LIPOFECT ACETM are formed of cationic lipids such as N-[I -(2, 3 dioleyloxy)- propyl]-N, N, N-trimethylammonium chloride (DOTMA) and dimethyl dioctadecylammonium bromide (DDAB).
- DOTMA N-[I -(2, 3 dioleyloxy)- propyl]-N, N, N-trimethylammonium chloride
- DDAB dimethyl dioctadecylammonium bromide
- the immunostimulatory ODN are not formulated in cationic liposomes. Due to the lipophilic nature of the modified analogs within the ODN even short ODN such as 3 nucleotides in length may not require formulation to efficiently function in vivo.
- the immunostimulatory ODN of the invention are in the form of covalently closed, dumbbell-shaped molecules with both primary and secondary structure, hi one embodiment such cyclic oligoribonucleotides include two single- stranded loops connected by an intervening double-stranded segment, hi one embodiment at least one single-stranded loop includes an immunostimulatory DNA motif of the invention.
- Other covalently closed, dumbbell-shaped molecules of the invention include chimeric DNA:RNA molecules in which, for example, the double- stranded segment is at least partially DNA (e.g., either homodimeric dsDNA or heterodimeric DNA:RNA) and at least one single-stranded loop includes an immunostimulatory DNA motif of the invention.
- the double stranded segment of the chimeric molecule is DNA.
- the immunostimulatory ODN is isolated.
- An isolated molecule is a molecule that is substantially pure and is free of other substances with which it is ordinarily found in nature or in in vivo systems to an extent practical and appropriate for its intended use.
- the immunostimulatory ODN are sufficiently pure and are sufficiently free from other biological constituents of cells so as to be useful in, for example, producing pharmaceutical preparations.
- an isolated immunostimulatory ODN of the invention may be admixed with a pharmaceutically acceptable carrier in a pharmaceutical preparation, the immunostimulatory ODN may comprise only a small percentage by weight of the preparation.
- the immunostimulatory ODN is nonetheless substantially pure in that it has been substantially separated from the substances with which it may be associated in living systems.
- the immunostimulatory nucleic acid molecules may have a chimeric backbone.
- a chimeric backbone refers to a partially stabilized backbone, wherein at least one internucleotide linkage is phosphodiester or phosphodiester-like, and wherein at least one other internucleotide linkage is a stabilized internucleotide linkage, wherein the at least one phosphodiester or phosphodiester-like linkage and the at least one stabilized linkage are different.
- boranophosphonate linkages have been reported to be stabilized relative to phosphodiester linkages, for purposes of the chimeric nature of the backbone, boranophosphonate linkages can be classified either as phosphodiester-like or as stabilized, depending on the context.
- a chimeric backbone according to the instant invention could in one embodiment include at least one phosphodiester (phosphodiester or phosphodiester-like) linkage and at least one boranophosphonate (stabilized) linkage.
- a chimeric backbone according to the instant invention could include boranophosphonate (phosphodiester or phosphodiester-like) and phosphorothioate (stabilized) linkages.
- a “stabilized internucleotide linkage” shall mean an internucleotide linkage that is relatively resistant to in vivo degradation (e.g., via an exo- or endo-nuclease), compared to a phosphodiester internucleotide linkage.
- Preferred stabilized internucleotide linkages include, without limitation, phosphorothioate, phosphorodithioate, methylphosphonate, and methylphosphorothioate.
- Other stabilized intemucleotide linkages include, without limitation: peptide, alkyl, dephospho, and others as described above.
- Modified backbones such as phosphorothioates may be synthesized using automated techniques employing either phosphoramidate or H-phosphonate chemistries.
- Aryl- and alkyl-phosphonates can be made, e.g., as described in U.S. Patent No. 4,469,863; and alkylphosphotriesters (in which the charged oxygen moiety is alkylated as described in U.S. Patent No. 5,023,243 and European Patent No. 092,574) can be prepared by automated solid phase synthesis using commercially available reagents. Methods for making other DNA backbone modifications and substitutions have been described. Uhlmann E et al.
- the intermediate phosphorous-III is oxidized by treatment with a solution of iodine in water/pyridine.
- the ODN are analyzed by HPLC on a Gen-Pak Fax column (Millipore-Waters) using a NaCl-gradient (e.g.
- the ODN can be purified by HPLC or by FPLC on a Source High Performance column (Amersham Pharmacia). HPLC-homogeneous fractions are combined and desalted via a Cl 8 column or by ultrafiltration. The ODN was analyzed by MALDI-TOF mass spectrometry to confirm the calculated mass.
- the nucleic acids of the invention can also include other modifications.
- Nonionic DNA analogs such as alkyl- and aryl-phosphates (in which the charged phosphonate oxygen is replaced by an alkyl or aryl group), phosphodiester and alkylphosphotriesters, in which the charged oxygen moiety is alkylated.
- Nucleic acids which contain diol, such as tetraethyleneglycol or hexaethyleneglycol, at either or both termini have also been shown to be substantially resistant to nuclease degradation.
- the oligonucleotides may be soft or semi-soft oligonucleotides.
- a soft oligonucleotide is an immunostimulatory oligonucleotide having a partially stabilized backbone, in which phosphodiester or phosphodiester-like internucleotide linkages occur only within and immediately adjacent to at least one internal pyrimidine -purine dinucleotide (YZ).
- YZ is YG, a pyrimidine- guanosine (YG) dinucleotide.
- the at least one internal YZ dinucleotide itself has a phosphodiester or phosphodiester-like internucleotide linkage.
- a phosphodiester or phosphodiester-like internucleotide linkage occurring immediately adjacent to the at least one internal YZ dinucleotide can be 5', 3', or both 5' and 3 1 to the at least one internal YZ dinucleotide.
- phosphodiester or phosphodiester-like internucleotide linkages involve "internal dinucleotides".
- An internal dinucleotide in general shall mean any pair of adjacent nucleotides connected by an internucleotide linkage, in which neither nucleotide in the pair of nucleotides is a terminal nucleotide, i.e., neither nucleotide in the pair of nucleotides is a nucleotide defining the 5' or 3' end of the oligonucleotide.
- a linear oligonucleotide that is n nucleotides long has a total of n-1 dinucleotides and only n-3 internal dinucleotides.
- Each internucleotide linkage in an internal dinucleotide is an internal internucleotide linkage.
- a linear oligonucleotide that is n nucleotides long has a total of n-1 internucleotide linkages and only n-3 internal internucleotide linkages.
- the strategically placed phosphodiester or phosphodiester-like internucleotide linkages therefore, refer to phosphodiester or phosphodiester-like internucleotide linkages positioned between any pair of nucleotides in the nucleic acid sequence.
- the phosphodiester or phosphodiester-like intemucleotide linkages are not positioned between either pair of nucleotides closest to the 5' or 3' end.
- a phosphodiester or phosphodiester-like intemucleotide linkage occurring immediately adjacent to the at least one internal YZ dinucleotide is itself an internal intemucleotide linkage.
- the YZ dinucleotide has a phosphodiester or phosphodiester-like intemucleotide linkage, and in addition (a) N] and Y are linked by a phosphodiester or phosphodiester-like intemucleotide linkage when Ni is an internal nucleotide, (b) Z and N 2 are linked by a phosphodiester or phosphodiester-like intemucleotide linkage when N 2 is an internal nucleotide, or (c) Ni and Y are linked by a phosphodiester or phosphodiester-like intemucleotide linkage when Ni is an internal
- At least one YZ OfRiYZR 2 may have a phosphodiester linkage.
- the YZ OfRjYZR 2 may have a phosphorothioate linkage.
- the RjY and or ZR 2 OfRiYZR 2 have a phosphorothioate linkage.
- Soft oligonucleotides according to the instant invention are believed to be relatively susceptible to nuclease cleavage compared to completely stabilized oligonucleotides. Without meaning to be bound to a particular theory or mechanism, it is believed that soft oligonucleotides of the invention are cleavable to fragments with reduced or no immunostimulatory activity relative to full-length soft oligonucleotides.
- incorporasation of at least one nuclease-sensitive intemucleotide linkage, particularly near the middle of the oligonucleotide, is believed to provide an "off switch" which alters the pharmacokinetics of the oligonucleotide so as to reduce the duration of maximal immunostimulatory activity of the oligonucleotide.
- This can be of particular value in tissues and in clinical applications in which it is desirable to avoid injury related to chronic local inflammation or immunostimulation, e.g., the kidney.
- a semi-soft oligonucleotide is an immunostimulatory oligonucleotide having a partially stabilized backbone, in which phosphodiester or phosphodiester-like intemucleotide linkages occur only within at least one internal pyrimidine-purine (YZ) dinucleotide.
- Semi-soft oligonucleotides generally possess increased immunostimulatory potency relative to corresponding fully stabilized immunostimulatory oligonucleotides.
- semi-soft oligonucleotides may be used, in some instances, at lower effective concentations and have lower effective doses than conventional fully stabilized immunostimulatory oligonucleotides in order to achieve a desired biological effect.
- inclusion of even one internal phosphodiester or phosphodiester-like YZ internucleotide linkage is believed to be advantageous over no internal phosphodiester or phosphodiester-like YZ internucleotide linkage.
- the position along the length of the nucleic acid can also affect potency.
- the soft and semi-soft oligonucleotides will generally include, in addition to the phosphodiester or phosphodiester-like internucleotide linkages at preferred internal positions, 5' and 3' ends that are resistant to degradation.
- Such degradation-resistant ends can involve any suitable modification that results in an increased resistance against exonuclease digestion over corresponding unmodified ends.
- the 5' and 3' ends can be stabilized by the inclusion there of at least one phosphate modification of the backbone.
- the at least one phosphate modification of the backbone at each end is independently a phosphorothioate, phosphorodithioate, methylphosphonate, or methylphosphorothioate internucleotide linkage.
- the degradation-resistant end includes one or more nucleotide units connected by peptide or amide linkages at the 3' end.
- a phosphodiester internucleotide linkage is the type of linkage characteristic of nucleic acids found in nature.
- the phosphodiester internucleotide linkage includes a phosphorus atom flanked by two bridging oxygen atoms and bound also by two additional oxygen atoms, one charged and the other uncharged.
- Phosphodiester internucleotide linkage is particularly preferred when it is important to reduce the tissue half-life of the oligonucleotide.
- a phosphodiester-like internucleotide linkage is a phosphorus-containing bridging group that is chemically and/or diastereomerically similar to phosphodiester.
- Measures of similarity to phosphodiester include susceptibility to nuclease digestion and ability to activate RNAse H.
- phosphodiester, but not phosphorothioate, oligonucleotides are susceptible to nuclease digestion, while both phosphodiester and phosphorothioate oligonucleotides activate RNAse H.
- the phosphodiester-like internucleotide linkage is boranophosphate (or equivalently, boranophosphonate) linkage.
- the phosphodiester-like internucleotide linkage is diasteromerically pure Rp phosphorothioate. It is believed that diasteromerically pure Rp phosphorothioate is more susceptible to nuclease digestion and is better at activating RNAse H than mixed or diastereomerically pure Sp phosphorothioate. Stereoisomers of CpG oligonucleotides are the subject of co-pending U.S. patent application 09/361,575 filed July 27, 1999, and published PCT application PCT/US99/17100 (WO 00/06588). It is to be noted that for purposes of the instant invention, the term "phosphodiester-like internucleotide linkage" specifically excludes phosphorodithioate and methylphosphonate internucleotide linkages.
- the soft and semi-soft oligonucleotides of the invention may have phosphodiester like linkages between C and G.
- a phosphodiester- like linkage is a phosphorothioate linkage in an Rp conformation.
- Oligonucleotide p- chirality can have apparently opposite effects on the immune activity of a CpG oligonucleotide, depending upon the time point at which activity is measured. At an early time point of 40 minutes, the R p but not the Sp stereoisomer of phosphorothioate CpG oligonucleotide induces JNK phosphorylation in mouse spleen cells.
- the Sp but not the R p stereoisomer is active in stimulating spleen cell proliferation.
- This difference in the kinetics and bioactivity of the R p and Sp stereoisomers does not result from any difference in cell uptake, but rather most likely is due to two opposing biologic roles of the p-chirality.
- the enhanced activity of the Rp stereoisomer compared to the Sp for stimulating immune cells at early time points indicates that the Rp may be more effective at interacting with the CpG receptor, TLR9, or inducing the downstream signaling pathways.
- the faster degradation of the Rp PS-oligonucleotides compared to the Sp results in a much shorter duration of signaling, so that the Sp PS-oligonucleotides appear to be more biologically active when tested at later time points.
- a surprisingly strong effect is achieved by the p-chirality at the CpG dinucleotide itself.
- the congener in which the single CpG dinucleotide was linked in Rp was slightly more active, while the congener containing an Sp linkage was nearly inactive for inducing spleen cell proliferation.
- nucleic acid and oligonucleotide also encompass nucleic acids or oligonucleotides with substitutions or modifications, such as in the bases and/or sugars.
- they include nucleic acids having backbone sugars that are covalently attached to low molecular weight organic groups other than a hydroxyl group at the 2' position and other than a phosphate group or hydroxy group at the 5' position.
- modified nucleic acids may include a 2'-O-alkylated ribose group.
- modified nucleic acids may include sugars such as arabinose or 2'-fluoroarabinose instead of ribose.
- the nucleic acids may be heterogeneous in backbone composition thereby containing any possible combination of polymer units linked together such as peptide- nucleic acids (which have an amino acid backbone with nucleic acid bases).
- Nucleic acids also include substituted purines and pyrimidines such as C-5 propyne pyrimidine and 7-deaza-7-substituted purine modified bases.
- Purines and pyrimidines include but are not limited to adenine, cytosine, guanine, thymine, 5-methylcytosine, 5-hydroxycytosine, 5-fluorocytosine, 2-aminopurine, 2-amino-6-chloropurine, 2,6-diaminopurine, hypoxanthine, and other naturally and non-naturally occurring nucleobases, substituted and unsubstituted aromatic moieties. Other such modifications are well known to those of skill in the art.
- the immunostimulatory oligonucleotides of the instant invention can encompass various chemical modifications and substitutions, in comparison to natural RNA and DNA, involving a phosphodiester internucleotide bridge, a ⁇ -D-ribose unit and/or a natural nucleotide base (adenine, guanine, cytosine, thymine, uracil).
- Examples of chemical modifications are known to the skilled person and are described, for example, in Uhlmann E et al. (1990) Chem Rev 90:543; "Protocols for Oligonucleotides and Analogs" Synthesis and Properties & Synthesis and Analytical Techniques, S.
- An oligonucleotide according to the invention may have one or more modifications, wherein each modification is located at a particular phosphodiester internucleotide bridge and/or at a particular ⁇ -D-ribose unit and/or at a particular natural nucleotide base position in comparison to an oligonucleotide of the same sequence which is composed of natural DNA or RNA.
- the invention relates to an oligonucleotide which may comprise one or more modifications and wherein each modification is independently selected from: a) the replacement of a phosphodiester internucleotide bridge located at the 3' and/or the 5' end of a nucleotide by a modified internucleotide bridge, b) the replacement of phosphodiester bridge located at the 3' and/or the 5' end of a nucleotide by a dephospho bridge, c) the replacement of a sugar phosphate unit from the sugar phosphate backbone by another unit, d) the replacement of a ⁇ -D-ribose unit by a modified sugar unit, and e) the replacement of a natural nucleotide base by a modified nucleotide base.
- a phosphodiester internucleotide bridge located at the 3' and/or the 5' end of a nucleotide can be replaced by a modified internucleotide bridge, wherein the modified internucleotide bridge is for example selected from phosphorothioate, phosphorodithioate, NR'R 2 -phosphoramidate, boranophosphate, ⁇ -hydroxybenzyl phosphonate, phosphate-(d-C 21 )-O-alkyl ester, phosphate-[(C 6 -Ci 2 )aryl-(C 1 -C 21 )-O- alkyl]ester, (C 1 -C 8 )alkylphosphonate and/or (C 6 -Ci 2 )arylphosphonate bridges, (C 7 -Ci 2 )- ⁇ -hydroxymethyl-aryl (e.g., disclosed in WO 95/01363), wherein (C 6 -C 12 )aryl, (C 6
- (d-C4)-alkyl and/or methoxyethyl, or R 1 and R 2 form, together with the nitrogen atom carrying them, a 5-6-membered heterocyclic ring which can additionally contain a further heteroatom from the group O, S and N.
- dephospho bridges are described, for example, in Uhlmann E and Peyman A in "Methods in Molecular Biology", Vol. 20, “Protocols for Oligonucleotides and Analogs", S. Agrawal, Ed., Humana Press, Totowa 1993, Chapter 16, pp. 355 ff), wherein a dephospho bridge is for example selected from the dephospho bridges formacetal, 3'-thioformacetal, methylhydroxylamine, oxime, methylenedimethyl- hydrazo, dimethylenesulfone and/or silyl groups.
- a sugar phosphate unit i.e., a ⁇ -D-ribose and phosphodiester internucleotide bridge together forming a sugar phosphate unit
- the sugar phosphate backbone i.e., a sugar phosphate backbone is composed of sugar phosphate units
- the other unit is for example suitable to build up a "morpholino- derivative" oligomer (as described, for example, in Stirchak EP et al.
- Nucleic Acids Res 17:6129-41 that is, e.g., the replacement by a morpholino-derivative unit; or to build up a polyamide nucleic acid ("PNA"; as described for example, in Nielsen PE et al. (1994) Bioconjug Chem 5:3-7), that is, e.g., the replacement by a PNA backbone unit, e.g., by 2-aminoethylglycine.
- PNA polyamide nucleic acid
- a ⁇ -ribose unit or a ⁇ -D-2'-deoxyribose unit can be replaced by a modified sugar unit, wherein the modified sugar unit is for example selected from ⁇ -D-ribose, ⁇ -D-2'- deoxyribose, L-2'-deoxyribose, 2'-F-2'-deoxyribose, 2'-F-arabinose, 2'-O-(Ci-C 6 )alkyl- ribose, preferably 2'-O-(C 1 -C 6 )alkyl-ribose is 2'-O-methylribose, 2'-O-(C 2 -C 6 )alkenyl- ribose, 2'-[O-(C 1 -C 6 )alkyl-O-(Ci-C 6 )alkyl]-ribose, 2'-NH 2 -2'-deoxyribose, ⁇ -D-xylo-
- the sugar is 2'-O-methylribose, particularly for one or both nucleotides linked by a phosphodiester or phosphodiester-like internucleotide linkage.
- Nucleic acids also include substituted purines and pyrimidines such as C-5 propyne pyrimidine and 7-deaza-7-substituted purine modified bases.
- Purines and pyrimidines include but are not limited to adenine, cytosine, guanine, and thymine, and other naturally and non-naturally occurring nucleobases, substituted and unsubstituted aromatic moieties.
- a modified base is any base which is chemically distinct from the naturally occurring bases typically found in DNA and RNA such as T, C, G, A, and U, but which share basic chemical structures with these naturally occurring bases.
- the modified nucleotide base may be, for example, selected from hypoxanthine, uracil, dihydrouracil, pseudouracil, 2-thiouracil, 4-thiouracil, 5-aminouracil, 5-(CrC 6 )-alkyluracil, 5-(C 2 -C 6 )- alkenyluracil, 5-(C 2 -Ce)-alkynyluracil, 5-(hydroxymethyl)uracil, 5-chlorouracil, 5-fluorouracil, 5-bromouracil, 5-hydroxycytosine, 5-(d-C 6 )-alkylcytosine, 5-(C 2 -C 6 )- alkenylcytosine, 5-(C 2 -C 6 )-alkynylcytosine, 5-ch
- diaminopurine e.g., 2,6-diaminopurine, inosine, 5-methylcytosine, 2-aminopurine, 2-amino-6-chloropurine, hypoxanthine or other modifications of a natural nucleotide bases.
- diaminopurine e.g., 2,6-diaminopurine, inosine, 5-methylcytosine, 2-aminopurine, 2-amino-6-chloropurine,
- a set of modified bases is defined.
- the letter Y is used to refer to pyrimidine and in some embodiments a nucleotide containing a cytosine or a modified cytosine.
- a modified cytosine as used herein is a naturally occurring or non-naturally occurring pyrimidine base analog of cytosine which can replace this base without impairing the immunostimulatory activity of the oligonucleotide.
- Modified cytosines include but are not limited to 5-substituted cytosines (e.g.
- N,N' -propylene cytosine or phenoxazine N,N' -propylene cytosine or phenoxazine
- uracil and its derivatives e.g. 5-fluoro-uracil, 5-bromo-uracil, 5-bromovinyl-uracil, 4-thio-uracil, 5- hydroxy-uracil, 5-propynyl-uracil.
- Some of the preferred cytosines include 5-methyl- cytosine, 5-fluoro-cytosine, 5-hydroxy-cytosine, 5-hydroxymethyl-cytosine, and N4- ethyl-cytosine.
- the cytosine base is substituted by a universal base (e.g. 3-nitropyrrole, P-base), an aromatic ring system (e.g. fluorobenzene or difluorobenzene) or a hydrogen atom (dSpacer).
- the letter Z is used to refer to a purine, pyrimidine, or abasic and in some embodiments a guanine or a modified guanine base.
- a modified guanine as used herein is a naturally occurring or non-naturally occurring purine base analog of guanine which can replace this base without impairing the immunostimulatory activity of the oligonucleotide.
- Modified guanines include but are not limited to 7-deazaguanine, 7-deaza-7-substituted guanine (such as 7-deaza-7-(C2-C6)alkynylguanine), 7-deaza-8-substituted guanine, hypoxanthine, N2-substituted guanines (e.g. N2-methyl- guanine), 5-amino-3-methyl-3H,6H-thiazolo[4,5-d]pyrimidine-2,7-dione, 2,6-diaminopurine, 2-aminopurine, purine, indole, adenine, substituted adenines (e.g.
- the guanine base is substituted by a universal base (e.g. 4-methyl-indole, 5-nitro-indole, and K-base), an aromatic ring system (e.g. benzimidazole or dichloro- benzimidazole, 1- methyl-lH-[l,2,4]triazole-3-carboxylic acid amide) or a hydrogen atom (dSpacer).
- a universal base e.g. 4-methyl-indole, 5-nitro-indole, and K-base
- an aromatic ring system e.g. benzimidazole or dichloro- benzimidazole, 1- methyl-lH-[l,2,4]triazole-3-carboxylic acid amide
- dSpacer a hydrogen atom
- the oligonucleotides may have one or more accessible 5' ends. It is possible to create modified oligonucleotides having two such 5' ends. This may be achieved, for instance by attaching two oligonucleotides through a 3 '-3' linkage to generate an oligonucleotide having one or two accessible 5' ends.
- the 3'3'-linkage may be a phosphodiester, phosphorothioate or any other modified internucleotide bridge. Methods for accomplishing such linkages are known in the art.
- 3 '3 '-linked nucleic acids where the linkage between the 3 '-terminal nucleotides is not a phosphodiester, phosphorothioate or other modified bridge, can be prepared using an additional spacer, such as tri- or tetra-ethylenglycol phosphate moiety (Durand, M. et al, Triple-helix formation by an oligonucleotide containing one (dA)12 and two (dT)12 sequences bridged by two hexaethylene glycol chains, Biochemistry (1992), 31(38), 9197-204, US Patent No. 5658738, and US Patent No. 5668265).
- an additional spacer such as tri- or tetra-ethylenglycol phosphate moiety (Durand, M. et al, Triple-helix formation by an oligonucleotide containing one (dA)12 and two (dT)12 sequences bridged by two hexaethylene glycol
- the non-nucleotidic linker may be derived from ethanediol, propanediol, or from an abasic deoxyribose (dSpacer) unit (Fontanel, Marie Laurence et al., Sterical recognition by T4 polynucleotide kinase of non-nucleosidic moieties 5'-attached to oligonucleotides; Nucleic Acids Research (1994), 22(11), 2022-7) using standard phosphoramidite chemistry.
- the non-nucleotidic linkers can be incorporated once or multiple times, or combined with each other allowing for any desirable distance between the 3'-ends of the two ODNs to be linked.
- the oligonucleotides are partially resistant to degradation (e.g., are stabilized).
- a "stabilized oligonucleotide molecule” shall mean an oligonucleotide that is relatively resistant to in vivo degradation (e.g. via an exo- or endo-nuclease). Nucleic acid stabilization can be accomplished via backbone modifications. Oligonucleotides having phosphorothioate linkages provide maximal activity and protect the oligonucleotide from degradation by intracellular exo- and endo-nucleases.
- modified oligonucleotides include phosphodiester modified nucleic acids, combinations of phosphodiester and phosphorothioate nucleic acid, methylphosphonate, methylphosphorothioate, phosphorodithioate, p-ethoxy, and combinations thereof.
- Modified backbones such as phosphorothioates may be synthesized using automated techniques employing either phosphoramidate or H-phosphonate chemistries.
- Aryl-and alkyl-phosphonates can be made, e.g., as described in U.S. Patent No. 4,469,863; and alkylphosphotriesters (in which the charged oxygen moiety is alkylated as described in U.S. Patent No. 5,023,243 and European Patent No.
- oligonucleotides can be prepared by automated solid phase synthesis using commercially available reagents. Methods for making other DNA backbone modifications and substitutions have been described (e.g., Uhlmann, E. and Peyman, A., Chem. Rev. 90:544, 1990; Goodchild, J., Bioconjugate Chem. 1:165, 1990).
- Other stabilized oligonucleotides include: nonionic DNA analogs, such as alkyl- and aryl-phosphates (in which the charged phosphonate oxygen is replaced by an alkyl or aryl group), phosphodiester and alkylphosphotriesters, in which the charged oxygen moiety is alkylated. Nucleic acids which contain diol, such as tetraethyleneglycol or hexaethyleneglycol, at either or both termini have also been shown to be substantially resistant to nuclease degradation.
- the oligonucleotide comprises one or more palindromic sequences.
- palindromic sequence shall refer to an inverted repeat, i.e., a sequence such as ABCDEE'D'C'B'A' in which A and A', B and B', etc., are bases capable of forming the usual Watson-Crick base pairs.
- the palindrome is GC-rich.
- a GC-rich palindrome is a palindrome having a base composition of at least two-thirds G's and Cs.
- the GC-rich domain is preferably 3' to the "B cell stimulatory domain".
- the palindrome thus contains at least 8 G's and Cs.
- the palindrome also contains at least 8 G's and Cs.
- at least ten bases of the palindrome are G's and Cs.
- the GC-rich palindrome is made up exclusively of G's and Cs.
- the oligonucleotide contains more than one palindromic sequence.
- DNA is a polymer of deoxyribonucleotides joined through 3 -5 ' phosphodiester linkages. Units of the polymer of the invention can also be joined through 3 -5 ' phosphodiester linkages. However, the invention also encompasses polymers having unusual internucleotide linkages, including specifically 5 '-5', 3 '-3', 2 -2', 2 -3', and 2 '-5' internucleotide linkages. In one embodiment such unusual linkages are excluded from the immunostimulatory DNA motif, even though one or more of such linkages may occur elsewhere within the polymer. For polymers having free ends, inclusion of one 3 - 3 ' internucleotide linkage can result in a polymer having two free 5 ' ends. Conversely, for polymers having free ends, inclusion of one 5 '-5 ' internucleotide linkage can result in a polymer having two free 3 ' ends.
- An immunostimulatory composition of this invention can contain two or more immunostimulatory DNA motifs which can be linked through a branching unit.
- the internucleotide linkages can be 3 -5 ', 5 -5 ', 3 '-3 ', 2 '-2 ', 2 '-3 ', or 2 '-5 ' linkages.
- the nomenclature 2 '-5 ' is chosen according to the carbon atom of deoxyribose.
- Nu 1 , Nu 2 , and Nu 3 can be linked through 3 '-5 ', 5 '-5 ', 3 '-3 ', 2 '-2 ', 2 '-3 ', or 2 '-5 ' -linkages.
- Branching of DNA oligomers can also involve the use of non-nucleotidic linkers and abasic spacers.
- Nu 1 , Nu 2 , and Nu 3 represent identical or different immunostimulatory DNA motifs.
- the modified oligoribonucleotide analog may contain a doubler or trebler unit
- a doubler unit in one embodiment can be based on 1 ,3-bis- [5-(4,4'-dimethoxytrityloxy)pentylamido]propyl-2-[(2-cyanoethyl)-(N,N-diisopropyl)]- phosphoramidite.
- a trebler unit in one embodiment can be based on incorporation of Tris-2,2,2-[3-(4,4'-dimethoxytrityloxy)propyloxymethyl]ethyl-[(2-cyanoethyl)-(N,N- diisopropyl)]-phosphoramidite. Branching of the modified oligoribonucleotide analogs by multiple doubler, trebler, or other multiplier units leads to dendrimers which are a further embodiment of this invention.
- Branched modified oligoribonucleotide analogs may lead to crosslinking of receptors particularly for combinations of immunostimulatory RNA and DNA such as TLR3, TLR7, TLR8, and TLR9 with distinct immune effects compared to non-branched forms of the analogs.
- the synthesis of branched or otherwise multimeric analogs may stabilize DNA against degradation and may enable weak or partially effective DNA sequences to exert a therapeutically useful level of immune activity.
- the modified oligodeoxyribonucleotide analogs may also contain linker units resulting from peptide modifying reagents or oligonucleotide modifying reagents (Glen Research).
- the modified oligodeoxyribonucleotide analogs may contain one or more natural or unnatural amino acid residues which are connected to the polymer by peptide (amide) linkages.
- the 3 '-5', 5 '-5', 3 '-3', 2 '-2', 2 '-3', and 2'-5' internucleotide linkages can be direct or indirect.
- Direct linkages in this context refers to a phosphate or modified phosphate linkage as disclosed herein, without an intervening linker moiety.
- An intervening linker moiety is an organic moiety distinct from a phosphate or modified phosphate linkage as disclosed herein, which can include, for example, polyethylene glycol, triethylene glycol, hexaethylene glycol, dSpacer (i.e., an abasic deoxynucleotide), doubler unit, or trebler unit.
- the linkages are preferably composed of C, H, N,0 , S, B, P, and Halogen, containing 3 to 300 atoms.
- An example with 3 atoms is an acetal linkage (0DNl-3'-0- CH 2 -O-3'-ODN2) connecting e.g. the 3'-hydroxy group of one nucleotide to the 3'- hydroxy group of a second oligonucleotide.
- An example with about 300 atoms is PEG- 40 (tetraconta polyethyleneglycol).
- Preferred linkages are phosphodiester, phosphorothioate, methylphosphonate, phosphoramidate, boranophosphonate, amide, ether, thioether, acetal , thioacetal, urea, thiourea, sulfonamide, Schiff Base and disulfide linkages. It is also possible to use the Solulink BioConjugation System i.e., (www.trilinkbiotech.com).
- the oligonucleotide is composed of two or more sequence parts, these parts can be identical or different.
- the sequences can be identical 5'-ODNl-3'3'-ODNl-5' or different 5'-ODNl-3'3'-ODN2-5'.
- the chemical modification of the various oligonucleotide parts as well as the linker connecting them may be different. Since the uptake of short oligonucleotides appears to be less efficient than that of long oligonucleotides, linking of two or more short sequences results in improved immune stimulation.
- the length of the short oligonucleotides is preferably 2-20 nucleotides, more preferably 3-16 nucleotides, but most preferably 5-10 nucleotides.
- Preferred are linked oligonucleotides which have two or more unlinked 5 '-ends.
- oligonucleotide partial sequences may also be linked by non-nucleotidic linkers.
- a "non-nucleotidic linker” as used herein refers to any linker element that is not a nucleotide or polymer thereof (i.e., a polynucleotide), wherein a nucleotide includes a purine or pyrimidine nucleobase and a sugar phosphate, in particular abasic linkers (dSpacers), trietyhlene glycol units or hexaethylene glycol units.
- linkers are alkylamino linkers, such as C3, C6, C12 aminolinkers, and also alkylthiol linkers, such as C3 or C6 thiol linkers.
- the oligonucleotides can also be linked by aromatic residues which may be further substituted by alkyl or substituted alkyl groups.
- the immunostimulatory oligonucleotides are in some embodiments in the range of 3 to 100 bases in length. In some embodiments the oligonucleotides are 7-100 bases in length. Typically, nucleic acids of any size greater than 6 nucleotides (even many kb long) are capable of inducing an immune response according to the invention if sufficient immunostimulatory motifs are present. However, the improved immunostimulatory capacity of the modified oligonucleotides of the invention provides for immunostimulatory molecules of much shorter length, hi some embodiments the immunostimulatory oligonucleotides are 3-6 bases in length.
- the CpG immunostimulatory oligonucleotides are useful in some aspects of the invention as a vaccine for the treatment of a subject at risk of developing allergy or asthma, an infection with an infectious organism or a cancer in which a specific cancer antigen has been identified.
- the CpG immunostimulatory oligonucleotides can also be given without the antigen or allergen for protection against infection, allergy or cancer, and in this case repeated doses may allow longer term protection.
- a subject at risk as used herein is a subject who has any risk of exposure to an infection causing pathogen or a cancer or an allergen or a risk of developing cancer.
- a subject at risk may be a subject who is planning to travel to an area where a particular type of infectious agent is found or it may be a subject who through lifestyle or medical procedures is exposed to bodily fluids which may contain infectious organisms or directly to the organism or even any subject living in an area where an infectious organism or an allergen has been identified.
- Subjects at risk of developing infection also include general populations to which a medical agency recommends vaccination with a particular infectious organism antigen. If the antigen is an allergen and the subject develops allergic responses to that particular antigen and the subject may be exposed to the antigen, i.e., during pollen season, then that subject is at risk of exposure to the antigen.
- a subject at risk of developing allergy or asthma includes those subjects that have been identified as having an allergy or asthma but that don't have the active disease during the CpG immunostimulatory oligonucleotide treatment as well as subjects that are considered to be at risk of developing these diseases because of genetic or environmental factors.
- a subject at risk of developing a cancer is one who has a high probability of developing cancer. These subjects include, for instance, subjects having a genetic abnormality, the presence of which has been demonstrated to have a correlative relation , to a higher likelihood of developing a cancer and subjects exposed to cancer causing agents such as tobacco, asbestos, or other chemical toxins, or a subject who has previously been treated for cancer and is in apparent remission.
- the subject When a subject at risk of developing a cancer is treated with an antigen specific for the type of cancer to which the subject is at risk of developing and a CpG immunostimulatory oligonucleotide, the subject may be able to kill the cancer cells as they develop. If a tumor begins to form in the subject, the subject will develop a specific immune response against the tumor antigen.
- the invention also encompasses the use of the CpG immunostimulatory oligonucleotides for the treatment of a subject having an infection, an allergy, asthma, or a cancer.
- a subject having an infection is a subject that has been exposed to an infectious pathogen and has acute or chronic detectable levels of the pathogen in the body.
- the CpG immunostimulatory oligonucleotides can be used with or without an antigen to mount an antigen specific systemic or mucosal immune response that is capable of reducing the level of or eradicating the infectious pathogen.
- An infectious disease as used herein, is a disease arising from the presence of a foreign microorganism in the body. It is particularly important to develop effective vaccine strategies and treatments to protect the body's mucosal surfaces, which are the primary site of pathogenic entry.
- a subject having an allergy is a subject that has or is at risk of developing an allergic reaction in response to an allergen.
- An allergy refers to acquired hypersensitivity to a substance (allergen). Allergic conditions include but are not limited to eczema, allergic rhinitis or coryza, hay fever, conjunctivitis, bronchial asthma, urticaria (hives) and food allergies, and other atopic conditions. Allergies are generally caused by IgE antibody generation against harmless allergens.
- ThI The cytokines that are induced by systemic or mucosal administration of CpG immunostimulatory oligonucleotides are predominantly of a class called ThI (examples are IL- 12, IP-IO, IFN- ⁇ and EFN- ⁇ ) and these induce both humoral and cellular immune responses.
- Th2 immune response The other major type of immune response, which is associated with the production of IL-4 and IL-5 cytokines, is termed a Th2 immune response.
- Th2 immune response In general, it appears that allergic diseases are mediated by Th2 type immune responses.
- an effective dose for inducing an immune response of a CpG immunostimulatory oligonucleotide can be administered to a subject to treat or prevent asthma and allergy.
- the CpG immunostimulatory oligonucleotides have significant therapeutic utility in the treatment of allergic and non-allergic conditions such as asthma.
- Th2 cytokines especially IL-4 and IL-5 are elevated in the airways of asthmatic subjects. These cytokines promote important aspects of the asthmatic inflammatory response, including IgE isotope switching, eosinophil chemotaxis and activation and mast cell growth.
- ThI cytokines especially IFN- ⁇ and IL-12, can suppress the formation of Th2 clones and production of Th2 cytokines.
- Asthma refers to a disorder of the respiratory system characterized by inflammation, narrowing of the airways and increased reactivity of the airways to inhaled agents. Asthma is frequently, although not exclusively associated with atopic or allergic symptoms.
- a subject having a cancer is a subject that has detectable cancerous cells.
- the cancer may be a malignant or non-malignant cancer.
- Cancers or tumors include but are not limited to biliary tract cancer; brain cancer; breast cancer; cervical cancer; choriocarcinoma; colon cancer; endometrial cancer; esophageal cancer; gastric cancer; intraepithelial neoplasms; lymphomas; liver cancer; lung cancer (e.g. small cell and non-small cell); melanoma; neuroblastomas; oral cancer; ovarian cancer; pancreas cancer; prostate cancer; rectal cancer; sarcomas; skin cancer; testicular cancer; thyroid cancer; and renal cancer, as well as other carcinomas and sarcomas.
- the cancer is hairy cell leukemia, chronic myelogenous leukemia, cutaneous T-cell leukemia, multiple myeloma, follicular lymphoma, malignant melanoma, squamous cell carcinoma, renal cell carcinoma, prostate carcinoma, bladder cell carcinoma, or colon carcinoma.
- a subject shall mean a human or vertebrate animal including but not limited to a dog, cat, horse, cow, pig, sheep, goat, turkey, chicken, primate, e.g., monkey, and fish (aquaculture species), e.g. salmon.
- the invention can also be used to treat cancer and tumors, infections, and allergy/asthma in non human subjects. Cancer is one of the leading causes of death in companion animals (i.e., cats and dogs).
- the term treat, treated, or treating when used with respect to an disorder such as an infectious disease, cancer, allergy, or asthma refers to a prophylactic treatment which increases the resistance of a subject to development of the disease (e.g., to infection with a pathogen) or, in other words, decreases the likelihood that the subject will develop the disease (e.g., become infected with the pathogen) as well as a treatment after the subject has developed the disease in order to fight the disease (e.g., reduce or eliminate the infection) or prevent the disease from becoming worse.
- the subject may be exposed to the antigen.
- the term exposed to refers to either the active step of contacting the subject with an antigen or the passive exposure of the subject to the antigen in vivo.
- Methods for the active exposure of a subject to an antigen are well-known in the art.
- an antigen is administered directly to the subject by any means such as intravenous, intramuscular, oral, transdermal, mucosal, intranasal, intratracheal, or subcutaneous administration.
- the antigen can be administered systemically or locally. Methods for administering the antigen and the CpG immunostimulatory oligonucleotide are described in more detail below.
- a subject is passively exposed to an antigen if an antigen becomes available for exposure to the immune cells in the body.
- a subject may be passively exposed to an antigen, for instance, by entry of a foreign pathogen into the body or by the development of a tumor cell expressing a foreign antigen on its surface.
- the methods in which a subject is passively exposed to an antigen can be particularly dependent on timing of administration of the CpG immunostimulatory oligonucleotide.
- the subject may be administered the CpG immunostimulatory oligonucleotide on a regular basis when that risk is greatest, i.e., during allergy season or after exposure to a cancer causing agent.
- the CpG immunostimulatory oligonucleotide may be administered to travelers before they travel to foreign lands where they are at risk of exposure to infectious agents.
- the CpG immunostimulatory oligonucleotide may be administered to soldiers or civilians at risk of exposure to biowarfare to induce a systemic or mucosal immune response to the antigen when and if the subject is exposed to it.
- An antigen as used herein is a molecule capable of provoking an immune response.
- Antigens include but are not limited to cells, cell extracts, proteins, polypeptides, peptides, polysaccharides, polysaccharide conjugates, peptide and non- peptide mimics of polysaccharides and other molecules, small molecules, lipids, glycolipids, carbohydrates, viruses and viral extracts and muticellular organisms such as parasites and allergens.
- the term antigen broadly includes any type of molecule which is recognized by a host immune system as being foreign.
- Antigens include but are not limited to cancer antigens, microbial antigens, and allergens.
- a cancer antigen as used herein is a compound, such as a peptide or protein, associated with a tumor or cancer cell surface and which is capable of provoking an immune response when expressed on the surface of an antigen presenting cell in the context of an MHC molecule.
- Cancer antigens can be prepared from cancer cells either by preparing crude extracts of cancer cells, for example, as described in Cohen, et al., 1994, Cancer Research, 54:1055, by partially purifying the antigens, by recombinant technology, or by de novo synthesis of known antigens.
- Cancer antigens include but are not limited to antigens that are recombinantly expressed, an immunogenic portion of, or a whole tumor or cancer. Such antigens can be isolated or prepared recombinantly or by any other means known in the art.
- a microbial antigen as used herein is an antigen of a microorganism and includes but is not limited to virus, bacteria, parasites, and fungi.
- antigens include the intact microorganism as well as natural isolates and fragments or derivatives thereof and also synthetic compounds which are identical to or similar to natural microorganism antigens and induce an immune response specific for that microorganism.
- a compound is similar to a natural microorganism antigen if it induces an immune response (humoral and/or cellular) to a natural microorganism antigen.
- Such antigens are used routinely in the art and are well known to those of ordinary skill in the art.
- Viruses are small infectious agents which generally contain a nucleic acid core and a protein coat, but are not independently living organisms. Viruses can also take the form of infectious nucleic acids lacking a protein. A virus cannot survive in the absence of a living cell within which it can replicate. Viruses enter specific living cells either by endocytosis or direct injection of DNA (phage) and multiply, causing disease. The multiplied virus can then be released and infect additional cells. Some viruses are DNA- containing viruses and others are RNA-containing viruses. DNA viruses include Pox, Herpes, Adeno, Papova, Parvo, and Hepadna.
- RNA viruses include Picorna, Calici, AstrOjToga, Flavi, Corona, Paramyxo, Orthomyxo, Bunya, Arena, Rhabdo, FiIo, Borna, Reo, and Retro.
- the invention also intends to treat diseases in which prions are implicated in disease progression such as for example bovine spongiform encephalopathy (i.e., mad cow disease, BSE) or scrapie infection in animals, or Creutzfeldt-Jakob disease in humans.
- bovine spongiform encephalopathy i.e., mad cow disease, BSE
- scrapie infection in animals or Creutzfeldt-Jakob disease in humans.
- Viruses include, but are not limited to, enteroviruses (including, but not limited to, viruses that the family picornaviridae, such as polio virus, Coxsackie virus, echo virus), rotaviruses, adenovirus, and hepatitis virus, such as hepatitis A, B, C D and E.
- enteroviruses including, but not limited to, viruses that the family picornaviridae, such as polio virus, Coxsackie virus, echo virus
- rotaviruses such as polio virus, Coxsackie virus, echo virus
- rotaviruses such as polio virus, Coxsackie virus, echo virus
- rotaviruses such as polio virus, Coxsackie virus, echo virus
- rotaviruses such as polio virus, Coxsackie virus, echo virus
- rotaviruses such as polio virus, Coxsackie virus, echo virus
- Retroviridae e.g., human immunodeficiency viruses, such as HIV-I (also referred to as HTLV-III, LAV or HTLV-III/LAV, or HIV-III; and other isolates, such as HIV-LP; Picornaviridae (e.g., polio viruses, hepatitis A virus; enteroviruses, human Coxsackie viruses, rhinoviruses, echoviruses); Calciviridae (e.g., strains that cause gastroenteritis); Togaviridae (e.g., equine encephalitis viruses, rubella viruses); Flaviviridae (e.g., dengue viruses, encephalitis viruses, yellow fever viruses); Coronaviridae (e.g., coronaviruses); Rhabdoviridae (e.g., vesicular stomatitis viruses, rabies viruses); Filoviridae (e.g., human immunodeficiency viruses,
- HIV Human immunodeficiency virus
- HTLV III human T-cell lympho tropic virus III
- Viral hepatitis is an inflammation of the liver which may produce swelling, tenderness, and sometimes permanent damage to the liver. If the inflammation of the liver continues at least six months or longer, it is refered to as chronic hepatitis.
- viruses known to cause viral hepatitis include hepatitis A, B, C D and E.
- Hepatitis A is genreally communicated through food or drinking water contaminated with human feces.
- Hepatitis B generally is spread thorugh bodily fluids such as blood. For instance, it may be spread from mother to child at birth, through sexual contact, contaminated blood transfusions and needles.
- Hepatitis C is quite common and like Hepatitis B is often spread through blood transfusions and contaminated needles.
- Hepatitis D is found most often in IV drug users who are carriers of the hepatitis B virus with which it co-associates.
- Hepatitis E is similar to viral hepatitis A and is generally assoicated with
- Both gram negative and gram positive bacteria serve as antigens in vertebrate animals.
- Such gram positive bacteria include, but are not limited to, Pasteurella species, Staphylococci species, and Streptococcus species.
- Gram negative bacteria include, but are not limited to, Escherichia coli, Pseudomonas species, and Salmonella species.
- infectious bacteria include but are not limited to, Helicobacter pylons, Borelia burgdorferi, Legionella pneumophilia, Mycobacteria sps (e.g. M. tuberculosis, M. avium, M. intracellular, M. kansaii, M.
- fungi examples include Cryptococcus neoformans, Histoplasma capsulatum, Coccidioides immitis, Blastomyces dermatitidis, Chlamydia trachomatis, Candida albicans.
- Plasmodium spp. such as Plasmodium falciparum, Plasmodium malariae, Plasmodium ovale, and Plasmodium vivax and Toxoplasma gondii.
- Blood-borne and/or tissues parasites include Plasmodium spp., Babesia microti, Babesia divergens, Leishmania tropica, Leishmania spp., Leishmania braziliensis, Leishmania donovani, Trypanosoma gambiense and Trypanosoma rhodesiense (African sleeping sickness), Trypanosoma cruzi (Chagas' disease), and Toxoplasma gondii.
- An allergen refers to a substance (antigen) that can induce an allergic or asthmatic response in a susceptible subject.
- the list of allergens is enormous and can include pollens, insect venoms, animal dander dust, fungal spores and drugs (e.g. penicillin).
- Examples of natural, animal and plant allergens include but are not limited to proteins specific to the following genuses: Canine (Canis familiaris); Dermatophagoides (e.g.
- Parietaria officinalis or Parietaria judaica Blattella (e.g. Blattella germanica); Apis (e.g. Apis multi ⁇ orum); Cupressus (e.g. Cupressus sempervirens, Cupressus arizonica and Cupressus macrocarpa); Juniperus (e.g. Juniperus sabinoides, Juniperus virginiana, Juniperus communis and Juniperus ashei); Thuya (e.g. Thuya orientalis);
- Chamaecyparis e.g. Chamaecyparis obtusa
- Periplaneta e.g. Periplaneta americana
- Agropyron e.g. Agropyron repens
- Secale e.g. Secale cereale
- Triticum e.g. Triticum aestivum
- Dactylis e.g. Dactylis glomerata
- Festuca e.g. Festuca elatior
- Poa e.g. Poa pratensis or Poa compressa
- Avena e.g. Avena sativa
- Holcus e.g. Holcus lanatus
- Anthoxanthum e.g. Anthoxanthum odoratum
- Arrhenatherum e.g.
- Arrhenatherum elatius Agrostis (e.g. Agrostis alba); Phleum (e.g. Phleum pratense); Phalaris (e.g. Phalaris arundinacea); Paspalum (e.g. Paspalum notatum); Sorghum (e.g. Sorghum halepensis); and Bromus (e.g. Bromus inermis).
- Agrostis e.g. Agrostis alba
- Phleum e.g. Phleum pratense
- Phalaris e.g. Phalaris arundinacea
- Paspalum e.g. Paspalum notatum
- Sorghum e.g. Sorghum halepensis
- Bromus e.g. Bromus inermis
- substantially purified refers to a polypeptide which is substantially free of other proteins, lipids, carbohydrates or other materials with which it is naturally associated.
- One skilled in the art can purify viral or bacterial polypeptides using standard techniques for protein purification.
- the substantially pure polypeptide will often yield a single major band on a non-reducing polyacrylamide gel. hi the case of partially glycosylated polypeptides or those that have several start codons, there may be several bands on a non-reducing polyacrylamide gel, but these will form a distinctive pattern for that polypeptide.
- the purity of the viral or bacterial polypeptide can also be determined by amino-terminal amino acid sequence analysis.
- the oligonucleotides of the invention may be administered to a subject with an anti-microbial agent.
- An anti-microbial agent refers to a naturally- occurring or synthetic compound which is capable of killing or inhibiting infectious microorganisms.
- the type of anti-microbial agent useful according to the invention will depend upon the type of microorganism with which the subject is infected or at risk of becoming infected.
- Anti-microbial agents include but are not limited to anti-bacterial agents, anti-viral agents, anti-fungal agents and anti-parasitic agents.
- anti-bacterial agents kill or inhibit bacteria, and include antibiotics as well as other synthetic or natural compounds having similar functions.
- Antibiotics are low molecular weight molecules which are produced as secondary metabolites by cells, such as microorganisms. In general, antibiotics interfere with one or more bacterial functions or structures which are specific for the microorganism and which are not present in host cells.
- Anti-viral agents can be isolated from natural sources or synthesized and are useful for killing or inhibiting viruses.
- Anti-fungal agents are used to treat superficial fungal infections as well as opportunistic and primary systemic fungal infections. Anti-parasite agents kill or inhibit parasites.
- anti-parasitic agents also referred to as parasiticides useful for human administration
- examples of anti-parasitic agents include but are not limited to albendazole, amphotericin B, benznidazole, bithionol, chloroquine HCl, chloroquine phosphate, clindamycin, dehydroemetine, diethylcarbamazine, diloxanide furoate, eflornithine, furazolidaone, glucocorticoids, halofantrine, iodoquinol, ivermectin, mebendazole, mefloquine, meglumine antimoniate, melarsoprol, metrifonate, metronidazole, niclosamide, nifurtimox, oxamniquine, paromomycin, pentamidine isethionate, piperazine, praziquantel, primaquine phosphate, proguanil,
- Antibacterial agents kill or inhibit the growth or function of bacteria.
- a large class of antibacterial agents is antibiotics.
- Antibiotics which are effective for killing or inhibiting a wide range of bacteria, are referred to as broad spectrum antibiotics.
- Other types of antibiotics are predominantly effective against the bacteria of the class gram- positive or gram-negative. These types of antibiotics are referred to as narrow spectrum antibiotics.
- Other antibiotics which are effective against a single organism or disease and not against other types of bacteria are referred to as limited spectrum antibiotics.
- Antibacterial agents are sometimes classified based on their primary mode of action. In general, antibacterial agents are cell wall synthesis inhibitors, cell membrane inhibitors, protein synthesis inhibitors, nucleic acid synthesis or functional inhibitors, and competitive inhibitors.
- Antiviral agents are compounds which prevent infection of cells by viruses or replication of the virus within the cell. There are many fewer antiviral drugs than antibacterial drugs because the process of viral replication is so closely related to DNA replication within the host cell, that non-specific antiviral agents would often be toxic to the host. There are several stages within the process of viral infection which can be blocked or inhibited by antiviral agents. These stages include, attachment of the virus to the host cell (immunoglobulin or binding peptides), uncoating of the virus (e.g. amantadine), synthesis or translation of viral mRNA (e.g. interferon), replication of viral RNA or DNA (e.g. nucleotide analogs), maturation of new virus proteins (e.g. protease inhibitors), and budding and release of the virus.
- attachment of the virus to the host cell immunoglobulin or binding peptides
- uncoating of the virus e.g. amantadine
- synthesis or translation of viral mRNA e.
- Nucleotide analogs are synthetic compounds which are similar to nucleotides, but which have an incomplete or abnormal deoxyribose or ribose group. Once the nucleotide analogs are in the cell, they are phosphorylated, producing the triphosphate formed which competes with normal nucleotides for incorporation into the viral DNA or RNA. Once the triphosphate form of the nucleotide analog is incorporated into the growing nucleic acid chain, it causes irreversible association with the viral polymerase and thus chain termination.
- Nucleotide analogs include, but are not limited to, acyclovir (used for the treatment of herpes simplex virus and varicella-zoster virus), gancyclovir (useful for the treatment of cytomegalovirus), idoxuridine, ribavirin (useful for the treatment of respiratory syncitial virus), dideoxyinosine, dideoxycytidine, zidovudine (azidothymidine), imiquimod, and resimiquimod.
- acyclovir used for the treatment of herpes simplex virus and varicella-zoster virus
- gancyclovir used for the treatment of cytomegalovirus
- idoxuridine used for the treatment of cytomegalovirus
- ribavirin used for the treatment of respiratory syncitial virus
- dideoxyinosine dideoxycytidine
- zidovudine zidovudine
- imiquimod imiquimod
- resimiquimod re
- the interferons are cytokines which are secreted by virus-infected cells as well as immune cells.
- the interferons function by binding to specific receptors on cells adjacent to the infected cells, causing the change in the cell which protects it from infection by the virus, ⁇ and ⁇ -interferon also induce the expression of Class I and Class II MHC molecules on the surface of infected cells, resulting in increased antigen presentation for host immune cell recognition, ⁇ and ⁇ -interferons are available as recombinant forms and have been used for the treatment of chronic hepatitis B and C infection. At the dosages which are effective for anti-viral therapy, interferons have severe side effects such as fever, malaise and weight loss.
- Anti-viral agents useful in the invention include but are not limited to immunoglobulins, amantadine, interferons, nucleotide analogs, and protease inhibitors.
- Specific examples of anti-virals include but are not limited to Acemannan; Acyclovir; Acyclovir Sodium; Adefovir; Alovudine; Alvircept Sudotox; Amantadine Hydrochloride; Aranotin; Arildone; Atevirdine Mesylate; Avridine; Cidofovir; Cipamfylline; Cytarabine Hydrochloride; Delavirdine Mesylate; Desciclovir; Didanosine; Disoxaril; Edoxudine; Enviradene; Enviroxime; Famciclovir; Famotine Hydrochloride; Fiacitabine; Fialuridine; Fosarilate; Foscarnet Sodium; Fosfonet Sodium; Ganciclovir; Ganciclovir
- Anti-fungal agents are sometimes classified by their mechanism of action. Some antifungal agents function as cell wall inhibitors by inhibiting glucose synthase. These include, but are not limited to, basiungin/ECB. Other anti-fungal agents function by destabilizing membrane integrity. These include, but are not limited to, immidazoles, such as clotrimazole, sertaconzole, fluconazole, itraconazole, ketoconazole, miconazole, and voriconacole, as well as FK 463, amphotericin B, BAY 38-9502, MK 991, pradimicin, UK 292, butenafine, and terbinafine. Other anti-fungal agents function by breaking down chitin (e.g. chitinase) or immunosuppression (501 cream).
- immidazoles such as clotrimazole, sertaconzole, fluconazole, itraconazole, ketoconazole, miconazole, and voricona
- CpG immunostimulatory oligonucleotides can be combined with other therapeutic agents such as adjuvants to enhance immune responses.
- the CpG immunostimulatory oligonucleotide and other therapeutic agent may be administered simultaneously or sequentially.
- the other therapeutic agents When the other therapeutic agents are administered simultaneously they can be administered in the same or separate formulations, but are administered at the same time.
- the other therapeutic agents are administered sequentially with one another and with CpG immunostimulatory oligonucleotide, when the administration of the other therapeutic agents and the CpG immunostimulatory oligonucleotide is temporally separated. The separation in time between the administration of these compounds may be a matter of minutes or it may be longer.
- Other therapeutic agents include but are not limited to adjuvants, cytokines, antibodies, antigens, etc.
- compositions of the invention may also be administered with non-nucleic acid adjuvants.
- a non-nucleic acid adjuvant is any molecule or compound except for the CpG immunostimulatory oligonucleotides described herein which can stimulate the humoral and/or cellular immune response.
- Non-nucleic acid adjuvants include, for instance, adjuvants that create a depo effect, immune stimulating adjuvants, and adjuvants that create a depo effect and stimulate the immune system.
- the CpG immunostimulatory oligonucleotides are also useful as mucosal adjuvants. It has previously been discovered that both systemic and mucosal immunity are induced by mucosal delivery of CpG nucleic acids. Thus, the oligonucleotides may be administered in combination with other mucosal adjuvants.
- Immune responses can also be induced or augmented by the co-administration or co-linear expression of cytokines (Bueler & Mulligan, 1996; Chow et al, 1997; Geissler et ⁇ /., 1997; Iwasaki et al, 1997; Kim et al, 1997) or B-7 co-stimulatory molecules (Iwasaki et al, 1997; Tsuji et al, 1997) with the CpG immunostimulatory oligonucleotides.
- cytokines Buseler & Mulligan, 1996; Chow et al, 1997; Geissler et ⁇ /., 1997; Iwasaki et al, 1997; Kim et al, 1997) or B-7 co-stimulatory molecules (Iwasaki et al, 1997; Tsuji et al, 1997) with the CpG immunostimulatory oligonucleotides.
- cytokine is used as a generic name for a diverse group of soluble proteins and peptides which act as humoral regulators at nano- to picomolar concentrations and which, either under normal or pathological conditions, modulate the functional activities of individual cells and tissues. These proteins also mediate interactions between cells directly and regulate processes taking place in the extracellular environment.
- cytokines include, but are not limited to IL-I, IL-2, IL-4, IL- 5, IL-6, IL-7, IL-10, IL-12, IL-15, IL-18, granulocyte-macrophage colony stimulating factor (GM-CSF), granulocyte colony stimulating factor (G-CSF), interferon- ⁇ ( ⁇ -IFN), IFN- ⁇ , tumor necrosis factor (TNF), TGF- ⁇ , FLT-3 ligand, and CD40 ligand.
- GM-CSF granulocyte-macrophage colony stimulating factor
- G-CSF granulocyte colony stimulating factor
- ⁇ -IFN interferon- ⁇
- IFN- ⁇ IFN- ⁇
- TGF tumor necrosis factor
- FLT-3 ligand FLT-3 ligand
- CD40 ligand examples include, but are not limited to IL-I, IL-2, IL-4, IL- 5, IL-6, IL-7, IL-10,
- the oligonucleotides are also useful for redirecting an immune response from a Th2 immune response to a ThI immune response. This results in the production of a relatively balanced Thl/Th2 environment. Redirection of an immune response from a Th2 to a ThI immune response can be assessed by measuring the levels of cytokines produced in response to the nucleic acid ⁇ e.g., by inducing monocytic cells and other cells to produce ThI cytokines, including IL- 12, IFN- ⁇ and GM-CSF). The redirection or rebalance of the immune response from a Th2 to a ThI response is particularly useful for the treatment or prevention of asthma.
- an effective amount for treating asthma can be that amount; useful for redirecting a Th2 type of immune response that is associated with asthma to a ThI type of response or a balanced Thl/Th2 environment.
- Th2 cytokines, especially EL-4 and IL-5 are elevated in the airways of asthmatic subjects.
- the CpG immunostimulatory oligonucleotides of the invention cause an increase in ThI cytokines which helps to rebalance the immune system, preventing or reducing the adverse effects associated with a predominately Th2 immune response.
- the oligonucleotides of the invention may also be useful for treating airway remodeling.
- Airway remodeling results from smooth muscle cell proliferation and/or submucosal thickening in the airways, and ultimately causes narrowing of the airways leading to restricted airflow.
- the oligonucleotides of the invention may prevent further remodeling and possibly even reduce tissue build up resulting from the remodeling process.
- the oligonucleotides are also useful for improving survival, differentiation, activation and maturation of dendritic cells.
- the CpG immunostimulatory oligonucleotides have the unique capability to promote cell survival, differentiation, activation and maturation of dendritic cells.
- CpG immunostimulatory oligonucleotides also increase natural killer cell lytic activity and antibody dependent cellular cytotoxicity (ADCC).
- ADCC can be performed using a CpG immunostimulatory oligonucleotide in combination with an antibody specific for a cellular target, such as a cancer cell.
- an antibody specific for a cellular target such as a cancer cell.
- the antibodies useful in the ADCC procedure include antibodies which interact with a cell in the body. Many such antibodies specific for cellular targets have been described in the art and many are commercially available.
- the CpG immunostimulatory oligonucleotides may also be administered in conjunction with an anti-cancer therapy.
- Anti-cancer therapies include cancer medicaments, radiation and surgical procedures.
- a "cancer medicament” refers to a agent which is administered to a subject for the purpose of treating a cancer.
- treating cancer includes preventing the development of a cancer, reducing the symptoms of cancer, and/or inhibiting the growth of an established cancer.
- the cancer medicament is administered to a subject at risk of developing a cancer for the purpose of reducing the risk of developing the cancer.
- chemotherapeutic agents chemotherapeutic agents
- immunotherapeutic agents cancer vaccines
- hormone therapy and biological response modifiers.
- the methods of the invention are intended to embrace the use of more than one cancer medicament along with the CpG immunostimulatory oligonucleotides.
- the CpG immunostimulatory oligonucleotides may be administered with both a chemotherapeutic agent and an immunotherapeutic agent.
- the cancer medicament may embrace an immunotherapeutic agent and a cancer vaccine, or a chemotherapeutic agent and a cancer vaccine, or a chemotherapeutic agent, an immunotherapeutic agent and a cancer vaccine all administered to one subject for the purpose of treating a subject having a cancer or at risk of developing a cancer.
- the chemotherapeutic agent may be selected from the group consisting of methotrexate, vincristine, adriamycin, cisplatin, non-sugar containing chloroethylnitrosoureas, 5-fluorouracil, mitomycin C, bleomycin, doxorubicin, dacarbazine, taxol, fragyline, Meglamine GLA, valrubicin, carmustaine and poliferposan, MMI270, BAY 12-9566, RAS famesyl transferase inhibitor, famesyl transferase inhibitor, MMP, MTA/LY231514, LY264618/Lometexol, Glamolec, CI-994, TNP-470, Hycamtin/Topotecan, PKC412, Valspodar/PSC833, Novantrone/Mitroxantrone, Metaret/Suramin, Batimastat, E7070, BCH-4556, CS-682,
- YM 116 Iodine seeds, CDK4 and CDK2 inhibitors, PARP inhibitors, D4809/Dexifosamide, Ifes/Mesnex/Ifosamide, Vumon/Teniposide, Paraplatin/Carboplatin, Plantinol/cisplatin, Vepeside/Etoposide, ZD 9331, Taxotere/Docetaxel, prodrug of guanine arabinoside, Taxane Analog, nitrosoureas, alkylating agents such as melphelan and cyclophosphamide, Aminoglutethimide,
- the immunotherapeutic agent may be selected from the group consisting of Ributaxin, Herceptin, Quadramet, Panorex, IDEC- Y2B8, BEC2, C225, Oncolym, SMART M195, ATRAGEN, Ovarex, Bexxar, LDP-03, ior t6, MDX-210, MDX-11, MDX-22, OVl 03, 3622W94, anti-VEGF, Zenapax, MDX-220, MDX-447,
- the cancer vaccine may be selected from the group consisting of EGF, Anti- idiotypic cancer vaccines, Gp75 antigen, GMK melanoma vaccine, MGV ganglioside conjugate vaccine, Her2/neu, Ovarex, M-Vax, O-Vax, L-Vax, STn-KHL theratope, BLP25 (MUC-I), liposomal idiotypic vaccine, Melacine, peptide antigen vaccines, toxin/antigen vaccines, MVA-based vaccine, PACIS, BCG vacine, TA-HPV, TA-CIN, DISC-virus and ImmuCyst/TheraCys, but it is not so limited.
- CpG immunostimulatory oligonucleotides in conjunction with immunotherapeutic agents such as monoclonal antibodies is able to increase long-term survival through a number of mechanisms including significant enhancement of ADCC (as discussed above), activation of natural killer (NK) cells and an increase in IFN ⁇ levels.
- the nucleic acids when used in combination with monoclonal antibodies serve to reduce the dose of the antibody required to achieve a biological result.
- antigens are encoded, although not necessarily expressed, by normal cells. These antigens can be characterized as those which are normally silent (i.e., not expressed) in normal cells, those that are expressed only at certain stages of differentiation and those that are temporally expressed such as embryonic and fetal antigens.
- Other cancer antigens are encoded by mutant cellular genes, such as oncogenes (e.g., activated ras oncogene), suppressor genes (e.g., mutant p53), fusion proteins resulting from internal deletions or chromosomal translocations. Still other cancer antigens can be encoded by viral genes such as those carried on RNA and DNA tumor viruses.
- the CpG immunostimulatory oligonucleotides are also useful for treating and preventing autoimmune disease.
- Autoimmune disease is a class of diseases in which an subject's own antibodies react with host tissue or in which immune effector T cells are autoreactive to endogenous self peptides and cause destruction of tissue.
- an immune response is mounted against a subject's own antigens, referred to as self antigens.
- Autoimmune diseases include but are not limited to rheumatoid arthritis, Crohn's disease, multiple sclerosis, systemic lupus erythematosus (SLE), autoimmune encephalomyelitis, myasthenia gravis (MG), Hashimoto's thyroiditis, Goodpasture's syndrome, pemphigus (e.g., pemphigus vulgaris), Grave's disease, autoimmune hemolytic anemia, autoimmune thrombocytopenic purpura, scleroderma with anti- collagen antibodies, mixed connective tissue disease, polymyositis, pernicious anemia, idiopathic Addison's disease, autoimmune-associated infertility, glomerulonephritis (e.g., crescentic glomerulonephritis, proliferative glomerulonephritis), bullous pemphigoid, Sjogren's syndrome, insulin resistance, and autoimmune diabetes mellitus.
- SLE systemic
- a "self-antigen” as used herein refers to an antigen of a normal host tissue. Normal host tissue does not include cancer cells. Thus an immune response mounted against a self-antigen, in the context of an autoimmune disease, is an undesirable immune response and contributes to destruction and damage of normal tissue, whereas an immune response mounted against a cancer antigen is a desirable immune response and contributes to the destruction of the tumor or cancer. Thus, in some aspects of the invention aimed at treating autoimmune disorders it is not recommended that the CpG immunostimulatory nucleic acids be administered with self antigens, particularly those that are the targets of the autoimmune disorder.
- the CpG immunostimulatory nucleic acids may be delivered with low doses of self-antigens.
- a number of animal studies have demonstrated that mucosal administration of low doses of antigen can result in a state of immune hyporesponsiveness or "tolerance.”
- the active mechanism appears to be a cytokine- mediated immune deviation away from a ThI towards a predominantly Th2 and Th3 (i.e., TGF- ⁇ dominated) response.
- the active suppression with low dose antigen delivery can also suppress an unrelated immune response (bystander suppression) which is of considerable interest in the therapy of autoimmune diseases, for example, rheumatoid arthritis and SLE.
- ThI- counter-regulatory, suppressor cytokines in the local environment where proinflammatory and ThI cytokines are released in either an antigen-specific or antigen- nonspecific manner.
- “Tolerance” as used herein is used to refer to this phenomenon. Indeed, oral tolerance has been effective in the treatment of a number of autoimmune diseases in animals including: experimental autoimmune encephalomyelitis (EAE), experimental autoimmune myasthenia gravis, collagen-induced arthritis (CIA), and insulin-dependent diabetes mellitus. In these models, the prevention and suppression of autoimmune disease is associated with a shift in antigen-specific humoral and cellular responses from a ThI to Th2/Th3 response.
- the invention also includes a method for inducing antigen non-specific innate immune activation and broad spectrum resistance to infectious challenge using the CpG immunostimulatory oligonucleotides.
- antigen non-specific innate immune activation refers to the activation of immune cells other than B cells and for instance can include the activation of NK cells, T cells or other immune cells that can respond in an antigen independent fashion or some combination of these cells.
- a broad spectrum resistance to infectious challenge is induced because the immune cells are in active form and are primed to respond to any invading compound or microorganism. The cells do not have to be specifically primed against a particular antigen. This is particularly useful in biowarfare, and the other circumstances described above such as travelers.
- the CpG immunostimulatory oligonucleotides may be directly administered to the subject or may be administered in conjunction with a nucleic acid delivery complex.
- a nucleic acid delivery complex shall mean a nucleic acid molecule associated with (e.g. ionically or covalently bound to; or encapsulated within) a targeting means (e.g. a molecule that results in higher affinity binding to target cell.
- a targeting means e.g. a molecule that results in higher affinity binding to target cell.
- nucleic acid delivery complexes include nucleic acids associated with a sterol (e.g. cholesterol), a lipid (e.g. a cationic lipid, virosome or liposome), or a target cell specific binding agent (e.g. a ligand recognized by target cell specific receptor).
- Preferred complexes may be sufficiently stable in vivo to prevent significant uncoupling prior to internalization by the target cell.
- the complex can be cleavable under appropriate conditions within the cell so that the oligonucleotide is released in a functional form.
- Delivery vehicles or delivery devices for delivering antigen and oligonucleotides to surfaces have been described.
- the CpG immunostimulatory oligonucleotide and/or the antigen and/or other therapeutics may be administered alone (e.g., in saline or buffer) or using any delivery vehicles known in the art.
- the following delivery vehicles have been described: Cochleates; Emulsomes, ISCOMs; Liposomes; Live bacterial vectors (e.g., Salmonella, Escherichia coli, Bacillus calmatte-guerin, Shigella, Lactobacillus); Live viral vectors (e.g., Vaccinia, adenovirus, Herpes Simplex); Microspheres; Nucleic acid vaccines; Polymers; Polymer rings; Proteosomes; Sodium Fluoride; Transgenic plants; Virosomes; Virus-like particles.
- Live bacterial vectors e.g., Salmonella, Escherichia coli, Bacillus calmatte-guerin, Shigella, Lactobacillus
- Live viral vectors e.g., Vaccinia, adenovirus, Herpes Simplex
- Microspheres Nucleic acid vaccines
- Polymers Polymers
- Polymer rings Proteosomes
- Sodium Fluoride Transgenic plants
- an effective amount of a CpG immunostimulatory oligonucleotide refers to the amount necessary or sufficient to realize a desired biologic effect.
- an effective amount of a CpG immunostimulatory oligonucleotide administered with an antigen for inducing mucosal immunity is that amount necessary to cause the development of IgA in response to an antigen upon exposure to the antigen, whereas that amount required for inducing systemic immunity is that amount necessary to cause the development of IgG in response to an antigen upon exposure to the antigen.
- an effective prophylactic or therapeutic treatment regimen can be planned which does not cause substantial toxicity and yet is entirely effective to treat the particular subject.
- the effective amount for any particular application can vary depending on such factors as the disease or condition being treated, the particular CpG immunostimulatory oligonucleotide being administered the size of the subject, or the severity of the disease or condition.
- One of ordinary skill in the art can empirically determine the effective amount of a particular CpG immunostimulatory oligonucleotide and/or antigen and/or other therapeutic agent without necessitating undue experimentation.
- Subject doses of the compounds described herein for mucosal or local delivery typically range from about 0.1 ⁇ g to 10 mg per administration, which depending on the application could be given daily, weekly, or monthly and any other amount of time therebetween. More typically mucosal or local doses range from about 10 ⁇ g to 5 mg per administration, and most typically from about 100 ⁇ g to 1 mg, with 2 - 4 administrations being spaced days or weeks apart. More typically, immune stimulant doses range from 1 ⁇ g to 10 mg per administration, and most typically lO ⁇ g to 1 mg, with daily or weekly administrations.
- Subject doses of the compounds described herein for parenteral delivery for the purpose of inducing an antigen-specific immune response are typically 5 to 10,000 times higher than the effective mucosal dose for vaccine adjuvant or immune stimulant applications, and more typically 10 to 1,000 times higher, and most typically 20 to 100 times higher.
- Doses of the compounds described herein for parenteral delivery for the purpose of inducing an innate immune response or for increasing ADCC or for inducing an antigen specific immune response when the CpG immunostimulatory oligonucleotides are administered in combination with other therapeutic agents or in specialized delivery vehicles typically range from about 0.1 ⁇ g to 10 mg per administration, which depending on the application could be given daily, weekly, or monthly and any other amount of time therebetween. More typically parenteral doses for these purposes range from about 10 ⁇ g to 5 mg per administration, and most typically from about 100 ⁇ g to 1 mg, with 2 - 4 administrations being spaced days or weeks apart. In some embodiments, however, parenteral doses for these purposes may be used in a range of 5 to 10,000 times higher than the typical doses described above.
- the therapeutically effective amount can be initially determined from animal models.
- a therapeutically effective dose can also be determined from human data for CpG oligonucleotides which have been tested in humans (human clinical trials have been initiated) and for compounds which are known to exhibit similar pharmacological activities, such as other adjuvants, e.g., LT and other antigens for vaccination purposes. Higher doses may be required for parenteral administration.
- the applied dose can be adjusted based on the relative bioavailability and potency of the administered compound. Adjusting the dose to achieve maximal efficacy based on the methods described above and other methods as are well-known in the art is well within the capabilities of the ordinarily skilled artisan.
- compositions of the invention are administered in pharmaceutically acceptable solutions, which may routinely contain pharmaceutically acceptable concentrations of salt, buffering agents, preservatives, compatible carriers, adjuvants, and optionally other therapeutic ingredients.
- an effective amount of the CpG immunostimulatory oligonucleotide can be administered to a subject by any mode that delivers the oligonucleotide to the desired surface, e.g., mucosal, systemic.
- Administering the pharmaceutical composition of the present invention may be accomplished by any means known to the skilled artisan.
- Preferred routes of administration include but are not limited to oral, parenteral, intramuscular, intranasal, sublingual, intratracheal, inhalation, ocular, vaginal, and rectal.
- the compounds i.e., CpG immunostimulatory oligonucleotides, antigens and other therapeutic agents
- the compounds can be formulated readily by combining the active compound(s) with pharmaceutically acceptable carriers well known in the art.
- Such carriers enable the compounds of the invention to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions and the like, for oral ingestion by a subject to be treated.
- Pharmaceutical preparations for oral use can be obtained as solid excipient, optionally grinding a resulting mixture, and processing the mixture of granules, after adding suitable auxiliaries, if desired, to obtain tablets or dragee cores.
- Suitable excipients are, in particular, fillers such as sugars, including lactose, sucrose, mannitol, or sorbitol; cellulose preparations such as, for example, maize starch, wheat starch, rice starch, potato starch, gelatin, gum tragacanth, methyl cellulose, hydroxypropylmethyl-cellulose, sodium carboxymethylcellulose, and/or polyvinylpyrrolidone (PVP).
- disintegrating agents may be added, such as the cross-linked polyvinyl pyrrolidone, agar, or alginic acid or a salt thereof such as sodium alginate.
- the oral formulations may also be formulated in saline or buffers, i.e.
- EDTA for neutralizing internal acid conditions or may be administered without any carriers.
- oral dosage forms of the above component or components may be chemically modified so that oral delivery of the derivative is efficacious.
- the chemical modification contemplated is the attachment of at least one moiety to the component molecule itself, where said moiety permits (a) inhibition of proteolysis; and (b) uptake into the blood stream from the stomach or intestine.
- moieties include: polyethylene glycol, copolymers of ethylene glycol and propylene glycol, carboxymethyl cellulose, dextran, polyvinyl alcohol, polyvinyl pyrrolidone and polyproline. Abuchowski and Davis, 1981, “Soluble Polymer-Enzyme Adducts" In: Enzymes as Drugs, Hocenberg and Roberts, eds., Wiley-Interscience, New York, NY, pp. 367-383; Newmark, et al., 1982, J. Appl. Biochem. 4:185-189.
- Other polymers that could be used are poly- 1,3- dioxolane and poly-l,3,6-tioxocane.
- Preferred for pharmaceutical usage, as indicated above, are polyethylene glycol moieties.
- the location of release may be the stomach, the small intestine (the duodenum, the jejunum, or the ileum), or the large intestine.
- the stomach the small intestine (the duodenum, the jejunum, or the ileum), or the large intestine.
- One skilled in the art has available formulations which will not dissolve in the stomach, yet will release the material in the duodenum or elsewhere in the intestine.
- the release will avoid the deleterious effects of the stomach environment, either by protection of the oligonucleotide (or derivative) or by release of the biologically active material beyond the stomach environment, such as in the intestine.
- a coating impermeable to at least pH 5.0 is essential.
- cellulose acetate trimellitate hydroxypropylmethylcellulose phthalate
- HPMCP 50 hydroxypropylmethylcellulose phthalate
- HPMCP 55 polyvinyl acetate phthalate
- PVAP polyvinyl acetate phthalate
- Eudragit L30D Aquateric, cellulose acetate phthalate (CAP), Eudragit L, Eudragit S, and Shellac.
- CAP cellulose acetate phthalate
- Shellac Shellac
- a coating or mixture of coatings can also be used on tablets, which are not intended for protection against the stomach. This can include sugar coatings, or coatings which make the tablet easier to swallow.
- Capsules may consist of a hard shell (such as gelatin) for delivery of dry therapeutic i.e. powder; for liquid forms, a soft gelatin shell may be used.
- the shell material of cachets could be thick starch or other edible paper. For pills, lozenges, molded tablets or tablet triturates, moist massing techniques can be used.
- the therapeutic can be included in the formulation as fine multi-particulates in the form of granules or pellets of particle size about 1 mm.
- the formulation of the material for capsule administration could also be as a powder, lightly compressed plugs or even as tablets.
- the therapeutic could be prepared by compression.
- the oligonucleotide may be formulated (such as by liposome or microsphere encapsulation) and then further contained within an edible product, such as a refrigerated beverage containing colorants and flavoring agents.
- an edible product such as a refrigerated beverage containing colorants and flavoring agents.
- One may dilute or increase the volume of the therapeutic with an inert material.
- diluents could include carbohydrates, especially mannitol, a-lactose, anhydrous lactose, cellulose, sucrose, modified dextrans and starch. Certain inorganic salts may be also be used as fillers including calcium triphosphate, magnesium carbonate and sodium chloride. Some commercially available diluents are Fast-Flo, Emdex, STA-Rx 1500, Emcompress and Avicell.
- Disintegrants may be included in the formulation of the therapeutic into a solid dosage form.
- Materials used as disintegrates include but are not limited to starch, including the commercial disintegrant based on starch, Explotab. Sodium starch glycolate, Amberlite, sodium carboxymethylcellulose, ultramylopectin, sodium alginate, gelatin, orange peel, acid carboxymethyl cellulose, natural sponge and bentonite may all be used.
- Another form of the disintegrants are the insoluble cationic exchange resins.
- Powdered gums may be used as disintegrants and as binders and these can include powdered gums such as agar, Karaya or tragacanth. Alginic acid and its sodium salt are also useful as disintegrants.
- Binders may be used to hold the therapeutic agent together to form a hard tablet and include materials from natural products such as acacia, tragacanth, starch and gelatin. Others include methyl cellulose (MC), ethyl cellulose (EC) and carboxymethyl cellulose (CMC). Polyvinyl pyrrolidone (PVP) and hydroxypropylmethyl cellulose (HPMC) could both be used in alcoholic solutions to granulate the therapeutic.
- MC methyl cellulose
- EC ethyl cellulose
- CMC carboxymethyl cellulose
- PVP polyvinyl pyrrolidone
- HPMC hydroxypropylmethyl cellulose
- Lubricants may be used as a layer between the therapeutic and the die wall, and these can include but are not limited to; stearic acid including its magnesium and calcium salts, polytetrafluoroethylene (PTFE), liquid paraffin, vegetable oils and waxes. Soluble lubricants may also be used such as sodium lauryl sulfate, magnesium lauryl sulfate, polyethylene glycol of various molecular weights, Carbowax 4000 and 6000.
- the glidants may include starch, talc, pyrogenic silica and hydrated silicoaluminate.
- surfactant might be added as a wetting agent.
- Surfactants may include anionic detergents such as sodium lauryl sulfate, dioctyl sodium sulfosuccinate and dioctyl sodium sulfonate.
- anionic detergents such as sodium lauryl sulfate, dioctyl sodium sulfosuccinate and dioctyl sodium sulfonate.
- Cationic detergents might be used and could include benzalkonium chloride or benzethomium chloride.
- the list of potential non-ionic detergents that could be included in the formulation as surfactants are lauromacrogol 400, polyoxyl 40 stearate, polyoxyethylene hydrogenated castor oil 10, 50 and 60, glycerol monostearate, polysorbate 40, 60, 65 and 80, sucrose fatty acid ester, methyl cellulose and carboxymethyl cellulose.
- These surfactants could be present in the formulation of the oligonucleotide or derivative either alone or as a mixture in different ratios.
- Pharmaceutical preparations which can be used orally include push- fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a plasticizer, such as glycerol or sorbitol.
- the push-fit capsules can contain the active ingredients in admixture with filler such as lactose, binders such as starches, and/or lubricants such as talc or magnesium stearate and, optionally, stabilizers.
- the active compounds may be dissolved or suspended in suitable liquids, such as fatty oils, liquid paraffin, or liquid polyethylene glycols.
- suitable liquids such as fatty oils, liquid paraffin, or liquid polyethylene glycols.
- stabilizers may be added.
- Microspheres formulated for oral administration may also be used. Such microspheres have been well defined in the art. All formulations for oral administration should be in dosages suitable for such administration.
- the compositions may take the form of tablets or lozenges formulated in conventional manner.
- the compounds for use according to the present invention may be conveniently delivered in the form of an aerosol spray presentation from pressurized packs or a nebulizer, with the use of a suitable propellant, e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas.
- a suitable propellant e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas.
- a suitable propellant e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas.
- a suitable propellant e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide
- oligonucleotide or derivatives thereof.
- the oligonucleotide (or derivative) is delivered to the lungs of a mammal while inhaling and traverses across the lung epithelial lining to the blood stream.
- inhaled molecules include Adjei et al., 1990, Pharmaceutical Research, 7:565-569; Adjei et al., 1990, International Journal of Pharmaceutics, 63:135-144 (leuprolide acetate); Braquet et al., 1989, Journal of Cardiovascular Pharmacology,
- Contemplated for use in the practice of this invention are a wide range of mechanical devices designed for pulmonary delivery of therapeutic products, including but not limited to nebulizers, metered dose inhalers, and powder inhalers, all of which are familiar to those skilled in the art.
- Ultravent nebulizer manufactured by Mallinckrodt, Inc., St. Louis, Missouri
- Acorn II nebulizer manufactured by Marquest Medical Products, Englewood, Colorado
- the Ventolin metered dose inhaler manufactured by Glaxo Inc., Research Triangle Park, North Carolina
- the Spinhaler powder inhaler manufactured by Fisons Corp., Bedford, Massachusetts.
- oligonucleotide or derivative
- each formulation is specific to the type of device employed and may involve the use of an appropriate propellant material, in addition to the usual diluents, adjuvants and/or carriers useful in therapy.
- the use of liposomes, microcapsules or microspheres, inclusion complexes, or other types of carriers is contemplated.
- Chemically modified oligonucleotide may also be prepared in different formulations depending on the type of chemical modification or the type of device employed.
- Formulations suitable for use with a nebulizer will typically comprise oligonucleotide (or derivative) dissolved in water at a concentration of about 0.1 to 25 mg of biologically active oligonucleotide per mL of solution.
- the formulation may also include a buffer and a simple sugar (e.g., for oligonucleotide stabilization and regulation of osmotic pressure).
- the nebulizer formulation may also contain a surfactant, to reduce or prevent surface induced aggregation of the oligonucleotide caused by atomization of the solution in forming the aerosol.
- Formulations for use with a metered-dose inhaler device will generally comprise a finely divided powder containing the oligonucleotide (or derivative) suspended in a propellant with the aid of a surfactant.
- the propellant may be any conventional material employed for this purpose, such as a chlorofluorocarbon, a hydrochlorofluorocarbon, a hydrofluorocarbon, or a hydrocarbon, including trichlorofluoromethane, dichlorodifluoromethane, dichlorotetrafluoroethanol, and 1,1,1,2-tetrafluoroethane, or combinations thereof.
- Suitable surfactants include sorbitan trioleate and soya lecithin. Oleic acid may also be useful as a surfactant.
- Formulations for dispensing from a powder inhaler device will comprise a finely divided dry powder containing oligonucleotide (or derivative) and may also include a bulking agent, such as lactose, sorbitol, sucrose, or mannitol in amounts which facilitate dispersal of the powder from the device, e.g., 50 to 90% by weight of the formulation.
- oligonucleotide (or derivative) should most advantageously be prepared in particulate form with an average particle size of less than 10 mm (or microns), most preferably 0.5 to 5 mm, for most effective delivery to the distal lung.
- Nasal delivery of a pharmaceutical composition of the present invention is also contemplated.
- Nasal delivery allows the passage of a pharmaceutical composition of the present invention to the blood stream directly after administering the therapeutic product to the nose, without the necessity for deposition of the product in the lung.
- Formulations for nasal delivery include those with dextran or cyclodextran.
- a useful device is a small, hard bottle to which a metered dose sprayer is attached.
- the metered dose is delivered by drawing the pharmaceutical composition of the present invention solution into a chamber of defined volume, which chamber has an aperture dimensioned to aerosolize and aerosol formulation by forming a spray when a liquid in the chamber is compressed.
- the chamber is compressed to administer the pharmaceutical composition of the present invention.
- the chamber is a piston arrangement.
- Such devices are commercially available.
- a plastic squeeze bottle with an aperture or opening dimensioned to aerosolize an aerosol formulation by forming a spray when squeezed is used.
- the opening is usually found in the top of the bottle, and the top is generally tapered to partially fit in the nasal passages for efficient administration of the aerosol formulation.
- the nasal inhaler will provide a metered amount of the aerosol formulation, for administration of a measured dose of the drug.
- the compounds when it is desirable to deliver them systemically, may be formulated for parenteral administration by injection, e.g., by bolus injection or continuous infusion.
- Formulations for injection may be presented in unit dosage form, e.g., in ampoules or in multi-dose containers, with an added preservative.
- the compositions may take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing and/or dispersing agents.
- Pharmaceutical formulations for parenteral administration include aqueous solutions of the active compounds in water-soluble form. Additionally, suspensions of the active compounds may be prepared as appropriate oily injection suspensions.
- Suitable lipophilic solvents or vehicles include fatty oils such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate or triglycerides, or liposomes.
- Aqueous injection suspensions may contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran.
- the suspension may also contain suitable stabilizers or agents which increase the solubility of the compounds to allow for the preparation of highly concentrated solutions.
- the active compounds may be in powder form for constitution with a suitable vehicle, e.g., sterile pyrogen-free water, before use.
- a suitable vehicle e.g., sterile pyrogen-free water
- the compounds may also be formulated in rectal or vaginal compositions such as suppositories or retention enemas, e.g., containing conventional suppository bases such as cocoa butter or other glycerides.
- the compounds may also be formulated as a depot preparation.
- Such long acting formulations may be formulated with suitable polymeric or hydrophobic materials (for example as an emulsion in an acceptable oil) or ion exchange resins, or as sparingly soluble derivatives, for example, as a sparingly soluble salt.
- the pharmaceutical compositions also may comprise suitable solid or gel phase carriers or excipients.
- suitable solid or gel phase carriers or excipients include but are not limited to calcium carbonate, calcium phosphate, various sugars, starches, cellulose derivatives, gelatin, and polymers such as polyethylene glycols.
- suitable liquid or solid pharmaceutical preparation forms are, for example, aqueous or saline solutions for inhalation, microencapsulated, encochleated, coated onto microscopic gold particles, contained in liposomes, nebulized, aerosols, pellets for implantation into the skin, or dried onto a sharp object to be scratched into the skin.
- the pharmaceutical compositions also include granules, powders, tablets, coated tablets, (micro)capsules, suppositories, syrups, emulsions, suspensions, creams, drops or preparations with protracted release of active compounds, in whose preparation excipients and additives and/or auxiliaries such as disintegrants, binders, coating agents, swelling agents, lubricants, flavorings, sweeteners or solubilizers are customarily used as described above.
- the pharmaceutical compositions are suitable for use in a variety of drug delivery systems. For a brief review of methods for drug delivery, see Langer, Science 249:1527-1533, 1990, which is incorporated herein by reference.
- the CpG immunostimulatory oligonucleotides and optionally other therapeutics and/or antigens may be administered per se (neat) or in the form of a pharmaceutically acceptable salt.
- the salts should be pharmaceutically acceptable, but non-pharmaceutically acceptable salts may conveniently be used to prepare pharmaceutically acceptable salts thereof.
- Such salts include, but are not limited to, those prepared from the following acids: hydrochloric, hydrobromic, sulphuric, nitric, phosphoric, maleic, acetic, salicylic, p-toluene sulphonic, tartaric, citric, methane sulphonic, formic, malonic, succinic, naphthalene-2-sulphonic, and benzene sulphonic.
- such salts can be prepared as alkaline metal or alkaline earth salts, such as sodium, potassium or calcium salts of the carboxylic acid group.
- Suitable buffering agents include: acetic acid and a salt (1-2% w/v); citric acid and a salt (1-3% w/v); boric acid and a salt (0.5-2.5% w/v); and phosphoric acid and a salt (0.8-2% w/v).
- Suitable preservatives include benzalkonium chloride (0.003-0.03% w/v); chlorobutanol (0.3-0.9% w/v); parabens (0.01-0.25% w/v) and thimerosal (0.004- 0.02% w/v).
- compositions of the invention contain an effective amount of a CpG immunostimulatory oligonucleotide and optionally antigens and/or other therapeutic agents optionally included in a pharmaceutically-acceptable carrier.
- pharmaceutically-acceptable carrier means one or more compatible solid or liquid filler, diluents or encapsulating substances which are suitable for administration to a human or other vertebrate animal.
- carrier denotes an organic or inorganic ingredient, natural or synthetic, with which the active ingredient is combined to facilitate the application.
- the components of the pharmaceutical compositions also are capable of being commingled with the compounds of the present invention, and with each other, in a manner such that there is no interaction which would substantially impair the desired pharmaceutical efficiency.
- ODN Oligodeoxynucleotides
- ODN ODN were suspended in sterile, endotoxin-free Tris-EDTA (Sigma, Deisenhofen, Germany), and stored and handled under aseptic conditions to prevent both microbial and endotoxin contamination. All dilutions were carried out using endotoxin-free Tris-EDTA.
- HEK293 cells were transfected by electroporation with vectors expressing the respective human TLR and a 6xNF- ⁇ B-luciferase reporter plasmid.
- Stable transfectants (3x10 4 cells/well) were incubated indicated amounts of ODN for 16h at 37°C in a humidified incubator. Each data point was done in triplicate. Cells were lysed and assayed for luciferase gene activity (using the BriteLite kit from Perkin-Elmer, Zaventem, Belgium). Stimulation indices were calculated in reference to reporter gene activity of medium without addition of ODN.
- Peripheral blood buffy coat preparations from healthy human donors were obtained from the Blood Bank of the University of D ⁇ sseldorf (Germany) and PBMC were purified by centrifugation over Ficoll-Hypaque (Sigma). Cells were cultured in a humidified incubator at 37°C in RPMI 1640 medium supplemented with 5% (v/v) heat inactivated human AB serum (BioWhittaker) or 10% (v/v) heat inactivated FCS, 2mM L-glutamine, 100U/ml penicillin and lOO ⁇ g/ml streptomycin (all from Sigma).
- PBMC peripheral blood mononuclear cells
- Amounts of cytokines in the SN were assessed using an in-house ELISA for IFN- a developed using commercially available antibody (PBL, New Brunswick, NJ, USA) or on the Luminex multiplex system (Luminex Corporation, 12212 Technology Boulevard, Austin, Texas 78727-6115).
- mice Female BALB/c mice (6-8 weeks of age) were purchased from Charles River Canada (Quebec, Canada) and housed in micro-isolators in the Animal Care Facility at Coley Pharmaceutical Group Canada. All studies were conducted in accordance with the Animal Care Committee of Coley Canada under the guidance of the Canadian Council on Animal Care. All animals were naive to CpG ODNs.
- Spleens were then homogenized and splenocytes were re-suspended in RPMI 1640 (Life Technologies, Grand Island, NY) tissue culture medium supplemented with 2% normal mouse serum (Cedarlane Laboratories, Ontario, Canada), penicillin-streptomycin solution (final concentration of 1000 U/ml and 1 mg/ml respectively; Sigma Chemical Company), and 5 x 10-5 M b- mercaptoethanol (Sigma Chemical Company).
- Example 1 Investigation of structure activity relationship at the CpG motif It is known that oligonucleotides containing unmethylated CpG motifs are able to stimulate immune responses through the Toll-like receptor 9 (TLR9) pathway. In order to identify oligonucleotides with the greatest ability to stimulate the TLR9 pathway, comprehensive structure activity relationship (SAR) study at the CpG motif was performed.
- SAR structure activity relationship
- Example 2 the effect of hydrophobic thymine base shape analogs near the CpG motif
- hydrophobic thymine base shape analogs such as 2,4-difluorotoluene (FF) (SEQ ID NO:3-9), 5-bromo-2'-deoxyuridine (BU) and 5-iodo-2'-deoxyuridine (JU) were incorporated outside of the CpG motif (see Table 1 and Figures 2-3).
- FF 2,4-difluorotoluene
- BU 5-bromo-2'-deoxyuridine
- JU 5-iodo-2'-deoxyuridine
- Table 1 Examples of modified oligonucleotides with hydrophobic thymine base sha e analo s near the CpG motif
- Example 3 Activation of TLR9 with lipophilic base shape substitutions Since different types of lipophilic substitution of the base 5' to the CpG motif caused significant increases in stimulation of hTLR9, other base analogs, such as 5-chloro- uracil, 5-trifluoromethyl-uracil, phenyl, aryl and substituted aryl residues were investigated for their ability to stimulate hTLR9 (Table 3).
- B-class ODN SEQ ED NO: 1 was modified with 5-Chloro-2'-deoxyuridine (CU), 5-Bromo-2'- deoxyuridine (BU), 5-Iodo-2'-deoxyuridine (JU) and 5-Ethyl-2'-deoxyuridine (EU).
- CU 5-Chloro-2'-deoxyuridine
- BU 5-Bromo-2'- deoxyuridine
- JU 5-Iodo-2'-deoxyuridine
- EU 5-Ethyl-2'-deoxyuridine
- hTLR9-NFkB-293 cells were incubated with the indicated ODN ( Figure 5a) for 16 hours. Cells were then lysed and luciferase activity was determined.
- SEQ ID NOs 42 and 30 showed a significant increase in TLR9 activation over unmodified SEQ ID NO:1 and unmodified B class ODN SEQ ID NO:37 ( Figure 6).
- Example 4 Lipophilic substitution on oligonucleotides of A, B, C, P, and T classes
- modified P class oligonucleotides 5-iodo-2'-deoxyuridine-modified P class derivatives of SEQ ID NO:46 were tested for their ability to activate TLR9 in a luciferase assay.
- modified ODN SEQ ID NO: 31-33 showed an increased stimulation of TLR9 over unmodified ODN.
- modified T class oligonucleotides 5-iodo-2'-deoxyuridine-modified T class derivatives of unmodified T class ODN SEQ ID NO:52 were tested for their ability to activate TLR9.
- modified ODN SEQ ID NOs 47-50 showed an increased stimulation of TLR9 over unmodified T class ODN in a luciferase assay.
- the undine derivative SEQ ID N0:51 showed reduced stimulation of TLR9.
- ODN with lipophilic T analogs were tested in isolated mouse splenocytes.
- BALB/c mouse splenocytes were isolated and incubated with modified B class (SEQ ID NO: 13), unmodified B class (SEQ ID NO:37), and a non-CpG ODN (SEQ ID NO:26) (Table 5).
- Culture supernatants were collected at 6 hour (TNF-alpha) or 24 hours (IL-6, IL-IO, IL- 12) and cytokine concentration was measured by ELISA.
- incubation with modified SEQ ID NO: 13 resulted in dramatically increased levels of all cytokines tested.
- ODN were then tested their ability to induce B cell proliferation in splenocytes.
- CFSE-stained BALB/c mouse splenocytes (4xlO 5 /well) were incubated with 0.001, 0.01, 0.1, 0.3, 1, 3 or 10 ⁇ g/ml of the indicated ODN ( Figure 14).
- cells were stained for cell surface marker CD 19 and B-cell proliferation was determined by FACS followed by analysis by ModFit Software.
- incubation with modified SEQ ID NO: 13 resulted in a marked increase in B-cell proliferation. The increase was most pronounced even at lower ODN concentration.
- mice were injected subcutaneously (SC) with 10, 50 or lOO ⁇ g of SEQ ID NO: 13 or lOO ⁇ g of SEQ ID NO:37 in a total volume of lOO ⁇ l SC.
- Control group received lOO ⁇ l of PBS alone.
- Animals were bled by cardiac puncture at 1 hour post injection (TNF-alpha) or 3 hours post injection (IP-10). Plasma samples were assayed ELISA for TNF-alpha
- ODN with lipophilic base analogs were tested for their ability to induce TLR9- mediated NF- ⁇ B activity in a luciferase assay (see materials and methods).
- Figures 16- 23 show the activity of ODN with additional modifications (see table 6).
- the activity of 2'-O- methylguanosine/JU ODN SEQ ID NO: 111 - 113 was compared to that of parent SEQ ID NO:1 and JU only modified SEQ ID NO: 13. As shown in Figure 18, all JU-modified ODN were more active than the parent ODN.
- ODN with the 2'0-methylguanosine modification 3' of the CG dinucleotide (SEQ ID NO:112-113) were slightly more active than the ODN with the 2'0-methylguanosine modification 5 ' of the CG dinucleotide (SEQ ID NO: 111) or the ODN modified with JU alone (SEQ ID NO: 13).
- P-class ODN with lipophilic base analogs were tested for the ability to activate the NF-kB pathway through TLR9 as measured by luciferase assay.
- the activity of P- class ODN with a lipophilic substituted nucleotide analog was compared to that of a B-class positive control (SEQ ID NO:55) and an unmodified P- class ODN (SEQ TD NO:56).
- SEQ ID NO:58-61 was compared to that of a B-class positive control (SEQ ID NO:55) and an unmodified P- class ODN (SEQ TD NO:56).
- SEQ ID NO:55 B-class positive control
- SEQ TD NO:56 unmodified P- class ODN
- Figure 24a shows JU-modified P- class ODN
- 24b shows EU-modified P-class ODN.
- modified P-class ODN SEQ ID NO:64 (EU-modified), 66- 67 (JU-modified
- SEQ ID NO:55 B-class positive control
- C-class ODN SEQ ID NO:68
- unmodified P-class ODN SEQ ID NO:57
- all modified ODN showed a higher degree of TLR9 stimulation than the unmodified P class ODN.
- SEQ ID NO:66 with the phosphodiester bond in the CG dinucleotide, showed reduced activity compared to the fully phosphorothioate SEQ ID NO:67.
- modified P-class ODN were tested for their ability to induce expression of IFN-alpha.
- the activity of P-class ODN with a lipophilic substituted nucleotide analog (SEQ ID NO:58-61) was compared to that of a B-class positive control (SEQ ID NO:55) and an unmodified P-class ODN (SEQ ID NO:56) as measured by an ELISA assay.
- SEQ ID NO:58-61 a lipophilic substituted nucleotide analog
- SEQ ID NO:56 unmodified P-class ODN
- Figure 26a shows JU-modified P-class ODN
- 26b shows EU- modified P-class ODN.
- modified P-class ODN (EU-modified), 66-67 ( JU-modified) was compared to that of a B-class positive control (SEQ ID NO:55), a C-class ODN (SEQ ID NO:68) and an unmodified P-class ODN (SEQ ID NO:57) for the ability to induce IFN- ' alpha as measured by an ELISA assay.
- SEQ ID NO:55 B-class positive control
- C-class ODN SEQ ID NO:68
- unmodified P-class ODN SEQ ID NO:57
- the modified P-class ODN showed enhanced ability to induce IFN-alpha.
- SEQ ID NO:66 showed reduced activity compared to SEQ ID NO:67.
- modified P-class ODN were tested for the ability to induce IL-6 in human PBMC.
- PBMC from three donors were incubated with ODN at concentrations as indicated for 24h, followed by luminex 25-plex analysis of the supernatants for IL-6.
- the activity of modified P-class ODN (SEQ ID NO:58, 60-62, Figure 28a) (SEQ ID NO:64 and 67, Figure 28b) was compared to that of an unmodified B-class ODN (SEQ ID NO:55), and unmodified C-class ODN (SEQ ID NO:54), a negative control ODN (SEQ ID NO:53), and an unmodified P-class ODN (SEQ ID NO:56).
- the JU-modified ODN (SEQ ID NO:58, 60-61 and 67) showed a slightly higher activation of IL-6 than did the EU-modified ODN (SEQ ID NO:62 and 64). All modified ODN showed increased activity compared to unmodified ODN.
- modified P-class class ODN SEQ ID NO:58, 60-62, Figure 29a
- SEQ ID NO:64 and 67, Figure 29b an unmodified B-class ODN
- SEQ ID NO:55 an unmodified B-class ODN
- SEQ ED NO:54 an unmodified C-class ODN
- SEQ ID NO:53 an unmodified P-class ODN
- LPS LPS
- R- 848, SEB LPS
- R- 848, SEB LPS
- R- 848, SEB LPS
- CFSE-labeled PBMC from three donors were incubated with the ODN for 5 days and then stained with a CD 19 antibody. The percentage of B cells with reduced CFSE staining was determined. Treatment with the B-class ODN resulted in the highest percentage of B cells after division. Treatment with the JU-modified ODN resulted in a higher percentage of B cells than the EU-modified ODN.
- modified P-class ODN In order to determine the effect of the modified P-class ODN in vivo, BALB/c mice (5 per group) were injected SC with differing doses of ODN. Animals were bled at 3 hr post injection and plasma tested for IFN-alpha by ELISA. The activity of modified P-class ODN (SEQ ID NO:58, 60-62, 64, and 67) was compared to that of a B-class negative control (SEQ ID NO:55) and a negative control (SEQ ID NO:26). As shown in Figure 30, treatment with the JU-modified ODN SEQ NO: 58, 60, and 61 resulted in slightly higher IFN-alpha induction than the EU-modified ODN SEQ ID NO:64. The B- class ODN SEQ ID NO:55 did not induce much murine IFN-alpha, as expected.
- mice Female A/J mice (10 per group) were injected SC with 5 xlO 5 Sal/N tumor cells on day O. Mice were treated with 35 ⁇ g ( Figure 31a) orlOO ⁇ g ( Figure 31b) P-class ODN with a lipophilic substituted nucleotide analog (SEQ ID NO:60, 64, and 67), an unmodified C-class ODN, an unmodified B-class ODN (SEQ ID NO:55), or PBS alone. ODN were given SC once weekly starting on day 8 post tumor induction. Animals were monitored for survival and tumor volume.
- a lipophilic substituted nucleotide analog SEQ ID NO:60, 64, and 67
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- Medicinal Chemistry (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Biochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Virology (AREA)
- Biomedical Technology (AREA)
- Immunology (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- General Engineering & Computer Science (AREA)
- Oncology (AREA)
- Communicable Diseases (AREA)
- Pulmonology (AREA)
- Microbiology (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Tropical Medicine & Parasitology (AREA)
- AIDS & HIV (AREA)
- Transplantation (AREA)
- Epidemiology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Saccharide Compounds (AREA)
Abstract
Description
Claims
Priority Applications (21)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200780035967.1A CN101517082B (en) | 2006-09-27 | 2007-09-25 | Cpg oligonucleotide analogs containing hydrophobic t analogs with enhanced immunostimulatory activity |
NZ575437A NZ575437A (en) | 2006-09-27 | 2007-09-25 | Cpg oligonucleotide analogs containing hydrophobic t analogs with enhanced immunostimulatory activity |
KR1020097008419A KR101251707B1 (en) | 2006-09-27 | 2007-09-25 | CpG oligonucleotide analogs containing hydrophobic T analogs with enhanced immunostimulatory activity |
MX2009003398A MX2009003398A (en) | 2006-09-27 | 2007-09-25 | Cpg oligonucleotide analogs containing hydrophobic t analogs with enhanced immunostimulatory activity. |
RU2009109098/10A RU2477315C2 (en) | 2006-09-27 | 2007-09-27 | Cpg-oligonucleotide analogues, containing hydrophobic t-analogues with amplified immunostimulatory activity |
EP07870434.3A EP2078080B1 (en) | 2006-09-27 | 2007-09-27 | Cpg oligonucleotide analogs containing hydrophobic t analogs with enhanced immunostimulatory activity |
SI200731675T SI2078080T1 (en) | 2006-09-27 | 2007-09-27 | Cpg oligonucleotide analogs containing hydrophobic t analogs with enhanced immunostimulatory activity |
JP2009529800A JP5455629B2 (en) | 2006-09-27 | 2007-09-27 | CpG oligonucleotide analogue containing a hydrophobic T analogue with enhanced immunostimulatory activity |
AU2007330410A AU2007330410B2 (en) | 2006-09-27 | 2007-09-27 | CPG oligonucleotide analogs containing hydrophobic T analogs with enhanced immunostimulatory activity |
CA2664219A CA2664219C (en) | 2006-09-27 | 2007-09-27 | Cpg oligonucleotide analogs containing hydrophobic t analogs with enhanced immunostimulatory activity |
DK07870434.3T DK2078080T3 (en) | 2006-09-27 | 2007-09-27 | CPG oligonucleotide analogues containing hydrophobic T analogues with enhanced immune stimulatory activity |
PL07870434T PL2078080T3 (en) | 2006-09-27 | 2007-09-27 | Cpg oligonucleotide analogs containing hydrophobic t analogs with enhanced immunostimulatory activity |
KR1020127033605A KR20130014620A (en) | 2006-09-27 | 2007-09-27 | Cpg oligonucleotide analogs containing hydrophobic t analogs with enhanced immunostimulatory activity |
US12/442,295 US8580268B2 (en) | 2006-09-27 | 2007-09-27 | CpG oligonucleotide analogs containing hydrophobic T analogs with enhanced immunostimulatory activity |
ES07870434.3T ES2544958T3 (en) | 2006-09-27 | 2007-09-27 | CpG oligonucleotide analogs containing hydrophobic T analogs with enhanced immunostimulatory activity |
BRPI0717510A BRPI0717510B8 (en) | 2006-09-27 | 2007-09-27 | cpg oligonucleotide analogues containing hydrophobic t analogues with enhanced immunostimulatory activity and pharmaceutical composition comprising them |
IL197549A IL197549A (en) | 2006-09-27 | 2009-03-12 | Cpg oligonucleotide analogs containing hydrophobic t analogs with enhanced immunostimulatory activity |
NO20091218A NO342465B1 (en) | 2006-09-27 | 2009-03-23 | CPG oligonucleotide analogs containing hydrophobic T analogues with enhanced immune stimulatory activity |
HK09109331.0A HK1133440A1 (en) | 2006-09-27 | 2009-10-08 | Cpg oligonucleotide analogs containing hydrophobic t analogs with enhanced immunostimulatory activity t cpg |
US14/046,044 US9382545B2 (en) | 2006-09-27 | 2013-10-04 | CpG oligonucleotide analogs containing hydrophobic T analogs with enhanced immunostimulatory activity |
US15/165,963 US10260071B2 (en) | 2006-09-27 | 2016-05-26 | CpG oligonucleotide analogs containing hydrophobic T analogs with enhanced immunostimulatory activity |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US84781106P | 2006-09-27 | 2006-09-27 | |
US60/847,811 | 2006-09-27 |
Related Child Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/442,295 A-371-Of-International US8580268B2 (en) | 2006-09-27 | 2007-09-27 | CpG oligonucleotide analogs containing hydrophobic T analogs with enhanced immunostimulatory activity |
US14/046,044 Division US9382545B2 (en) | 2006-09-27 | 2013-10-04 | CpG oligonucleotide analogs containing hydrophobic T analogs with enhanced immunostimulatory activity |
US14/046,044 Continuation US9382545B2 (en) | 2006-09-27 | 2013-10-04 | CpG oligonucleotide analogs containing hydrophobic T analogs with enhanced immunostimulatory activity |
Publications (3)
Publication Number | Publication Date |
---|---|
WO2008068638A2 true WO2008068638A2 (en) | 2008-06-12 |
WO2008068638A3 WO2008068638A3 (en) | 2008-11-13 |
WO2008068638A8 WO2008068638A8 (en) | 2011-12-22 |
Family
ID=39492695
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2007/004389 WO2008068638A2 (en) | 2006-09-27 | 2007-09-27 | Cpg oligonucleotide analogs containing hydrophobic t analogs with enhanced immunostimulatory activity |
Country Status (22)
Country | Link |
---|---|
US (3) | US8580268B2 (en) |
EP (2) | EP2960332A1 (en) |
JP (2) | JP5455629B2 (en) |
KR (2) | KR101251707B1 (en) |
CN (1) | CN101517082B (en) |
AU (1) | AU2007330410B2 (en) |
BR (1) | BRPI0717510B8 (en) |
CA (1) | CA2664219C (en) |
DK (1) | DK2078080T3 (en) |
ES (1) | ES2544958T3 (en) |
HK (1) | HK1133440A1 (en) |
HU (1) | HUE027064T2 (en) |
IL (1) | IL197549A (en) |
MX (1) | MX2009003398A (en) |
NO (1) | NO342465B1 (en) |
NZ (1) | NZ575437A (en) |
PL (1) | PL2078080T3 (en) |
PT (1) | PT2078080E (en) |
RU (1) | RU2477315C2 (en) |
SI (1) | SI2078080T1 (en) |
WO (1) | WO2008068638A2 (en) |
ZA (1) | ZA200901735B (en) |
Cited By (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009022215A1 (en) * | 2007-08-13 | 2009-02-19 | Pfizer Inc. | Combination motif immune stimulatory oligonucleotides with improved activity |
US7723500B2 (en) | 1994-07-15 | 2010-05-25 | University Of Iowa Research Foundation | Immunostimulatory nucleic acid molecules |
US7749975B2 (en) * | 2001-10-24 | 2010-07-06 | Idera Pharmaceuticals, Inc. | Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5′ ends |
US7795235B2 (en) | 2004-10-20 | 2010-09-14 | Coley Pharmaceutical Gmbh | Semi-soft c-class immunostimulatory oligonucleotides |
US7807803B2 (en) | 2002-07-03 | 2010-10-05 | Coley Pharmaceutical Group, Inc. | Nucleic acid compositions for stimulating immune responses |
US7851454B2 (en) * | 2003-02-07 | 2010-12-14 | Idera Pharmaceutials, Inc. | Short immunomodulatory oligonucleotides |
US7935675B1 (en) | 1994-07-15 | 2011-05-03 | University Of Iowa Research Foundation | Immunostimulatory nucleic acid molecules |
US7998492B2 (en) | 2002-10-29 | 2011-08-16 | Coley Pharmaceutical Group, Inc. | Methods and products related to treatment and prevention of hepatitis C virus infection |
US8008266B2 (en) | 1994-07-15 | 2011-08-30 | University Of Iowa Foundation | Methods of treating cancer using immunostimulatory oligonucleotides |
WO2011148356A1 (en) | 2010-05-28 | 2011-12-01 | Coley Pharmaceutical Group, Inc. | Vaccines comprising cholesterol and cpg as sole adjuvant - carrier molecules |
US8114419B2 (en) | 2002-07-03 | 2012-02-14 | Coley Pharmaceutical Group, Inc. | Nucleic acid compositions for stimulating immune responses |
US8114848B2 (en) | 1994-07-15 | 2012-02-14 | The United States Of America As Represented By The Department Of Health And Human Services | Immunomodulatory oligonucleotides |
US8153141B2 (en) | 2002-04-04 | 2012-04-10 | Coley Pharmaceutical Gmbh | Immunostimulatory G, U-containing oligoribonucleotides |
US8188254B2 (en) | 2003-10-30 | 2012-05-29 | Coley Pharmaceutical Gmbh | C-class oligonucleotide analogs with enhanced immunostimulatory potency |
US8202688B2 (en) | 1997-03-10 | 2012-06-19 | University Of Iowa Research Foundation | Use of nucleic acids containing unmethylated CpG dinucleotide as an adjuvant |
US20120231039A1 (en) * | 2001-06-21 | 2012-09-13 | Fearon Karen L | Chimeric immunomodulatory compounds and methods of using the same-iv |
US8283328B2 (en) | 2002-08-19 | 2012-10-09 | Coley Pharmaceutical Group, Inc. | Immunostimulatory nucleic acids |
US8574599B1 (en) | 1998-05-22 | 2013-11-05 | Ottawa Hospital Research Institute | Methods and products for inducing mucosal immunity |
US8580268B2 (en) | 2006-09-27 | 2013-11-12 | Coley Pharmaceutical Gmbh | CpG oligonucleotide analogs containing hydrophobic T analogs with enhanced immunostimulatory activity |
US8834900B2 (en) | 2001-08-17 | 2014-09-16 | University Of Iowa Research Foundation | Combination motif immune stimulatory oligonucleotides with improved activity |
WO2014186291A1 (en) | 2013-05-14 | 2014-11-20 | Zoetis Llc | Novel vaccine compositions comprising immunostimulatory oligonucleotides |
WO2015080959A1 (en) | 2013-11-26 | 2015-06-04 | Zoetis Llc | Compositions for induction of immune response |
US9186399B2 (en) | 2007-10-09 | 2015-11-17 | AdiutTide Pharmaceuticals GmbH | Immune stimulatory oligonucleotide analogs containing modified sugar moieties |
WO2016115456A1 (en) | 2015-01-16 | 2016-07-21 | Zoetis Services Llc | Foot-and-mouth disease vaccine |
US9605019B2 (en) | 2011-07-19 | 2017-03-28 | Wave Life Sciences Ltd. | Methods for the synthesis of functionalized nucleic acids |
US9617547B2 (en) | 2012-07-13 | 2017-04-11 | Shin Nippon Biomedical Laboratories, Ltd. | Chiral nucleic acid adjuvant |
US9695211B2 (en) | 2008-12-02 | 2017-07-04 | Wave Life Sciences Japan, Inc. | Method for the synthesis of phosphorus atom modified nucleic acids |
US9744183B2 (en) | 2009-07-06 | 2017-08-29 | Wave Life Sciences Ltd. | Nucleic acid prodrugs and methods of use thereof |
WO2017210244A1 (en) | 2016-06-02 | 2017-12-07 | Zoetis Services Llc | Vaccine against infectious bronchitis |
US9982257B2 (en) | 2012-07-13 | 2018-05-29 | Wave Life Sciences Ltd. | Chiral control |
WO2018162428A1 (en) | 2017-03-06 | 2018-09-13 | Cambridge Enterprise Limited | Pentavalent streptococcus suis vaccine composition |
US10077443B2 (en) | 2012-11-15 | 2018-09-18 | Roche Innovation Center Copenhagen A/S | Oligonucleotide conjugates |
US10144933B2 (en) | 2014-01-15 | 2018-12-04 | Shin Nippon Biomedical Laboratories, Ltd. | Chiral nucleic acid adjuvant having immunity induction activity, and immunity induction activator |
US10149905B2 (en) | 2014-01-15 | 2018-12-11 | Shin Nippon Biomedical Laboratories, Ltd. | Chiral nucleic acid adjuvant having antitumor effect and antitumor agent |
US10160969B2 (en) | 2014-01-16 | 2018-12-25 | Wave Life Sciences Ltd. | Chiral design |
US10167309B2 (en) | 2012-07-13 | 2019-01-01 | Wave Life Sciences Ltd. | Asymmetric auxiliary group |
US10322173B2 (en) | 2014-01-15 | 2019-06-18 | Shin Nippon Biomedical Laboratories, Ltd. | Chiral nucleic acid adjuvant having anti-allergic activity, and anti-allergic agent |
WO2019126110A1 (en) | 2017-12-20 | 2019-06-27 | Zoetis Services Llc | Vaccines against hendra and nipah virus infection |
WO2019145562A1 (en) | 2018-01-29 | 2019-08-01 | Stichting Katholieke Universiteit | New potent sialyltransferase inhibitors |
US10428019B2 (en) | 2010-09-24 | 2019-10-01 | Wave Life Sciences Ltd. | Chiral auxiliaries |
RU2795701C2 (en) * | 2017-12-15 | 2023-05-11 | Байер Энимал Хелс Гмбх | Immunostimulating oligonucleotides |
US11932857B2 (en) | 2017-12-15 | 2024-03-19 | Elanco Animal Health Gmbh | Immunostimulatory oligonucleotides |
WO2024077025A1 (en) | 2022-10-04 | 2024-04-11 | Zoetis Services Llc | Poultry vaccines and methods of protecting poultry |
Families Citing this family (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1176966B1 (en) * | 1999-04-12 | 2013-04-03 | THE GOVERNMENT OF THE UNITED STATES OF AMERICA, as represented by THE SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICES | Oligodeoxynucleotide and its use to induce an immune response |
US20030129251A1 (en) * | 2000-03-10 | 2003-07-10 | Gary Van Nest | Biodegradable immunomodulatory formulations and methods for use thereof |
HUE033832T2 (en) | 2002-11-15 | 2018-01-29 | Idenix Pharmaceuticals Llc | 2'-methyl nucleosides in combination with interferon and flaviviridae mutation |
CA2502015A1 (en) | 2002-12-11 | 2004-06-24 | Coley Pharmaceutical Group, Inc. | 5' cpg nucleic acids and methods of use |
US8158768B2 (en) * | 2002-12-23 | 2012-04-17 | Dynavax Technologies Corporation | Immunostimulatory sequence oligonucleotides and methods of using the same |
US7615539B2 (en) * | 2003-09-25 | 2009-11-10 | Coley Pharmaceutical Group, Inc. | Nucleic acid-lipophilic conjugates |
US8541569B2 (en) * | 2008-09-06 | 2013-09-24 | Chemgenes Corporation | Phosphoramidites for synthetic RNA in the reverse direction, efficient RNA synthesis and convenient introduction of 3'-end ligands, chromophores and modifications of synthetic RNA |
KR100998365B1 (en) * | 2009-06-29 | 2010-12-06 | 압타바이오 주식회사 | Novel guanosine rich modified oligonucleotides and antiproliferative activity thereof |
JP2014514295A (en) | 2011-03-31 | 2014-06-19 | アイディニックス ファーマシューティカルズ インコーポレイテッド | Compounds and pharmaceutical compositions for the treatment of viral infections |
EP2755983B1 (en) * | 2011-09-12 | 2017-03-15 | Idenix Pharmaceuticals LLC. | Substituted carbonyloxymethylphosphoramidate compounds and pharmaceutical compositions for the treatment of viral infections |
EA031301B1 (en) | 2012-05-22 | 2018-12-28 | Иденикс Фармасьютикалз Ллс | D-amino acid chemical compounds for treating liver diseases |
US9296778B2 (en) | 2012-05-22 | 2016-03-29 | Idenix Pharmaceuticals, Inc. | 3′,5′-cyclic phosphate prodrugs for HCV infection |
US9109001B2 (en) | 2012-05-22 | 2015-08-18 | Idenix Pharmaceuticals, Inc. | 3′,5′-cyclic phosphoramidate prodrugs for HCV infection |
WO2014052638A1 (en) | 2012-09-27 | 2014-04-03 | Idenix Pharmaceuticals, Inc. | Esters and malonates of sate prodrugs |
MX353422B (en) | 2012-10-08 | 2018-01-12 | Idenix Pharmaceuticals Llc | 2'-chloro nucleoside analogs for hcv infection. |
US9309275B2 (en) | 2013-03-04 | 2016-04-12 | Idenix Pharmaceuticals Llc | 3′-deoxy nucleosides for the treatment of HCV |
US20140271547A1 (en) | 2013-03-13 | 2014-09-18 | Idenix Pharmaceuticals, Inc. | Amino acid phosphoramidate pronucleotides of 2'-cyano, azido and amino nucleosides for the treatment of hcv |
WO2014197578A1 (en) | 2013-06-05 | 2014-12-11 | Idenix Pharmaceuticals, Inc. | 1',4'-thio nucleosides for the treatment of hcv |
WO2015017713A1 (en) | 2013-08-01 | 2015-02-05 | Idenix Pharmaceuticals, Inc. | D-amino acid phosphoramidate pronucleotides of halogeno pyrimidine compounds for liver disease |
JP6586083B2 (en) * | 2013-09-19 | 2019-10-02 | ゾエティス・サービシーズ・エルエルシー | Oily adjuvant |
CN105936906B (en) * | 2013-11-08 | 2019-06-21 | 上海交通大学 | Oligodeoxynucleotide molecule for the sequence units containing CpG being modified and application thereof |
US10202411B2 (en) | 2014-04-16 | 2019-02-12 | Idenix Pharmaceuticals Llc | 3′-substituted methyl or alkynyl nucleosides nucleotides for the treatment of HCV |
PL3240801T3 (en) | 2014-12-31 | 2021-06-14 | Checkmate Pharmaceuticals, Inc. | Combination tumor immunotherapy |
US10456459B2 (en) | 2015-07-20 | 2019-10-29 | Zoetis Services Llc | Liposomal adjuvant compositions |
JP7039800B2 (en) * | 2016-03-09 | 2022-03-23 | 学校法人東京理科大学 | Nucleic acid oligomer for RNA hybrid formation |
EP3463386A4 (en) * | 2016-06-03 | 2020-03-04 | Wave Life Sciences Ltd. | Oligonucleotides, compositions and methods thereof |
SG11201909516VA (en) | 2017-04-14 | 2019-11-28 | Tollnine Inc | Immunomodulating polynucleotides, antibody conjugates thereof, and methods of their use |
CN107090009B (en) * | 2017-04-14 | 2019-10-25 | 佛山科学技术学院 | A kind of disaccharides nucleoside compound and preparation method thereof |
JP7511478B2 (en) | 2018-04-09 | 2024-07-05 | チェックメイト ファーマシューティカルズ | Packaging of oligonucleotides into virus-like particles |
TW202206098A (en) | 2020-08-11 | 2022-02-16 | 美商碩騰服務公司 | Anti-coronavirus vaccines |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001083503A2 (en) * | 2000-05-01 | 2001-11-08 | Hybridon, Inc. | MODULATION OF OLIGONUCLEOTIDE CpG-MEDIATED IMMUNE STIMULATION BY POSITIONAL MODIFICATION OF NUCLEOSIDES |
WO2005030259A2 (en) * | 2003-09-25 | 2005-04-07 | Coley Pharmaceutical Group, Inc. | Nucleic acid-lipophilic conjugates |
Family Cites Families (164)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4469863A (en) | 1980-11-12 | 1984-09-04 | Ts O Paul O P | Nonionic nucleic acid alkyl and aryl phosphonates and processes for manufacture and use thereof |
AU568067B2 (en) | 1981-10-23 | 1987-12-17 | Molecular Biosystems, Inc. | Oligonucleotide therapeutic agent and methods of making same |
US5023243A (en) | 1981-10-23 | 1991-06-11 | Molecular Biosystems, Inc. | Oligonucleotide therapeutic agent and method of making same |
CA1339596C (en) | 1987-08-07 | 1997-12-23 | New England Medical Center Hospitals, Inc. | Viral expression inhibitors |
US4958013A (en) | 1989-06-06 | 1990-09-18 | Northwestern University | Cholesteryl modified oligonucleotides |
US5399676A (en) | 1989-10-23 | 1995-03-21 | Gilead Sciences | Oligonucleotides with inverted polarity |
US5177198A (en) | 1989-11-30 | 1993-01-05 | University Of N.C. At Chapel Hill | Process for preparing oligoribonucleoside and oligodeoxyribonucleoside boranophosphates |
DE69126530T2 (en) | 1990-07-27 | 1998-02-05 | Isis Pharmaceutical, Inc., Carlsbad, Calif. | NUCLEASE RESISTANT, PYRIMIDINE MODIFIED OLIGONUCLEOTIDES THAT DETECT AND MODULE GENE EXPRESSION |
EP0468520A3 (en) | 1990-07-27 | 1992-07-01 | Mitsui Toatsu Chemicals, Inc. | Immunostimulatory remedies containing palindromic dna sequences |
CA2082951C (en) | 1991-03-15 | 1999-12-21 | Robert M. Platz | Pulmonary administration of granulocyte colony stimulating factor |
AU678769B2 (en) | 1992-07-27 | 1997-06-12 | Hybridon, Inc. | Oligonucleotide alkylphosphonothioates |
DE4321946A1 (en) | 1993-07-01 | 1995-01-12 | Hoechst Ag | Methylphosphonic acid esters, process for their preparation and their use |
US6605708B1 (en) | 1993-07-28 | 2003-08-12 | Hybridon, Inc. | Building blocks with carbamate internucleoside linkages and oligonucleotides derived therefrom |
US5859231A (en) | 1993-09-03 | 1999-01-12 | Duke University | Synthesis of oligonucleotides with boranophosphonate linkages |
DE4338704A1 (en) | 1993-11-12 | 1995-05-18 | Hoechst Ag | Stabilized oligonucleotides and their use |
US5646126A (en) | 1994-02-28 | 1997-07-08 | Epoch Pharmaceuticals | Sterol modified oligonucleotide duplexes having anticancer activity |
US5596091A (en) | 1994-03-18 | 1997-01-21 | The Regents Of The University Of California | Antisense oligonucleotides comprising 5-aminoalkyl pyrimidine nucleotides |
WO1995026204A1 (en) | 1994-03-25 | 1995-10-05 | Isis Pharmaceuticals, Inc. | Immune stimulation by phosphorothioate oligonucleotide analogs |
US6727230B1 (en) | 1994-03-25 | 2004-04-27 | Coley Pharmaceutical Group, Inc. | Immune stimulation by phosphorothioate oligonucleotide analogs |
US5451569A (en) | 1994-04-19 | 1995-09-19 | Hong Kong University Of Science And Technology R & D Corporation Limited | Pulmonary drug delivery system |
US5658738A (en) | 1994-05-31 | 1997-08-19 | Becton Dickinson And Company | Bi-directional oligonucleotides that bind thrombin |
US5696248A (en) | 1994-06-15 | 1997-12-09 | Hoechst Aktiengesellschaft | 3'-modified oligonucleotide derivatives |
US6429199B1 (en) | 1994-07-15 | 2002-08-06 | University Of Iowa Research Foundation | Immunostimulatory nucleic acid molecules for activating dendritic cells |
US20030026782A1 (en) * | 1995-02-07 | 2003-02-06 | Arthur M. Krieg | Immunomodulatory oligonucleotides |
US7935675B1 (en) | 1994-07-15 | 2011-05-03 | University Of Iowa Research Foundation | Immunostimulatory nucleic acid molecules |
US6207646B1 (en) | 1994-07-15 | 2001-03-27 | University Of Iowa Research Foundation | Immunostimulatory nucleic acid molecules |
DK0772619T4 (en) * | 1994-07-15 | 2011-02-21 | Univ Iowa Res Found | Immunomodulatory oligonucleotides |
US6239116B1 (en) | 1994-07-15 | 2001-05-29 | University Of Iowa Research Foundation | Immunostimulatory nucleic acid molecules |
US20030050263A1 (en) | 1994-07-15 | 2003-03-13 | The University Of Iowa Research Foundation | Methods and products for treating HIV infection |
DE19502912A1 (en) | 1995-01-31 | 1996-08-01 | Hoechst Ag | G-Cap Stabilized Oligonucleotides |
US5968909A (en) | 1995-08-04 | 1999-10-19 | Hybridon, Inc. | Method of modulating gene expression with reduced immunostimulatory response |
US6160109A (en) | 1995-10-20 | 2000-12-12 | Isis Pharmaceuticals, Inc. | Preparation of phosphorothioate and boranophosphate oligomers |
US6030955A (en) | 1996-03-21 | 2000-02-29 | The Trustees Of Columbia University In The City Of New York And Imclone Systems, Inc. | Methods of affecting intracellular phosphorylation of tyrosine using phosphorothioate oligonucleotides, and antiangiogenic and antiproliferative uses thereof |
US5856462A (en) | 1996-09-10 | 1999-01-05 | Hybridon Incorporated | Oligonucleotides having modified CpG dinucleosides |
ATE292980T1 (en) | 1996-10-11 | 2005-04-15 | Univ California | IMMUNO-STIMULATING OLIGONUCLEOTIDE CONJUGATES |
EP0855184A1 (en) | 1997-01-23 | 1998-07-29 | Grayson B. Dr. Lipford | Pharmaceutical composition comprising a polynucleotide and an antigen especially for vaccination |
US6214806B1 (en) | 1997-02-28 | 2001-04-10 | University Of Iowa Research Foundation | Use of nucleic acids containing unmethylated CPC dinucleotide in the treatment of LPS-associated disorders |
US6406705B1 (en) | 1997-03-10 | 2002-06-18 | University Of Iowa Research Foundation | Use of nucleic acids containing unmethylated CpG dinucleotide as an adjuvant |
US6426334B1 (en) | 1997-04-30 | 2002-07-30 | Hybridon, Inc. | Oligonucleotide mediated specific cytokine induction and reduction of tumor growth in a mammal |
EP0983289A4 (en) | 1997-05-19 | 2001-04-25 | Merck & Co Inc | Oligonucleotide adjuvant |
US6339068B1 (en) | 1997-05-20 | 2002-01-15 | University Of Iowa Research Foundation | Vectors and methods for immunization or therapeutic protocols |
US6589940B1 (en) | 1997-06-06 | 2003-07-08 | Dynavax Technologies Corporation | Immunostimulatory oligonucleotides, compositions thereof and methods of use thereof |
US20040006034A1 (en) | 1998-06-05 | 2004-01-08 | Eyal Raz | Immunostimulatory oligonucleotides, compositions thereof and methods of use thereof |
WO1999001154A1 (en) | 1997-07-03 | 1999-01-14 | University Of Iowa Research Foundation | Method for inhibiting immunostimulatory dna associated responses |
CA2323929C (en) * | 1998-04-03 | 2004-03-09 | University Of Iowa Research Foundation | Methods and products for stimulating the immune system using immunotherapeutic oligonucleotides and cytokines |
WO1999056755A1 (en) | 1998-05-06 | 1999-11-11 | University Of Iowa Research Foundation | Methods for the prevention and treatment of parasitic infections and related diseases using cpg oligonucleotides |
NZ508650A (en) | 1998-05-14 | 2003-05-30 | Coley Pharm Gmbh | Regulating hematopoiesis using unmethylated C and G CpG-oligonucleotides with a phosphorothioate modification |
PT1077722E (en) | 1998-05-22 | 2006-12-29 | Coley Pharm Group Inc | Methods and products for inducing mucosal immunity |
US6562798B1 (en) | 1998-06-05 | 2003-05-13 | Dynavax Technologies Corp. | Immunostimulatory oligonucleotides with modified bases and methods of use thereof |
US20040247662A1 (en) | 1998-06-25 | 2004-12-09 | Dow Steven W. | Systemic immune activation method using nucleic acid-lipid complexes |
CA2333854A1 (en) | 1998-07-27 | 2000-02-10 | University Of Iowa Research Foundation | Stereoisomers of cpg oligonucleotides and related methods |
CA2341338A1 (en) | 1998-09-03 | 2000-03-16 | Coley Pharmaceutical Gmbh | G-motif oligonucleotides and uses thereof |
FR2783170B1 (en) | 1998-09-11 | 2004-07-16 | Pasteur Merieux Serums Vacc | IMMUNOSTIMULATING EMULSION |
US6207819B1 (en) | 1999-02-12 | 2001-03-27 | Isis Pharmaceuticals, Inc. | Compounds, processes and intermediates for synthesis of mixed backbone oligomeric compounds |
WO2000054803A2 (en) | 1999-03-16 | 2000-09-21 | Panacea Pharmaceuticals, Llc | Immunostimulatory nucleic acids and antigens |
EP1176966B1 (en) | 1999-04-12 | 2013-04-03 | THE GOVERNMENT OF THE UNITED STATES OF AMERICA, as represented by THE SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICES | Oligodeoxynucleotide and its use to induce an immune response |
US6977245B2 (en) | 1999-04-12 | 2005-12-20 | The United States Of America As Represented By The Department Of Health And Human Services | Oligodeoxynucleotide and its use to induce an immune response |
US6558670B1 (en) | 1999-04-19 | 2003-05-06 | Smithkline Beechman Biologicals S.A. | Vaccine adjuvants |
EP1177439B1 (en) | 1999-04-29 | 2004-09-08 | Coley Pharmaceutical GmbH | Screening for immunostimulatory dna functional modifiers |
OA11937A (en) | 1999-05-06 | 2006-04-12 | Immune Response Corp Inc | HIV immunogenic compositions and methods. |
AU6051800A (en) | 1999-06-16 | 2001-01-02 | University Of Iowa Research Foundation, The | Antagonism of immunostimulatory cpg-oligonucleotides by 4-aminoquinolines and other weak bases |
US6514948B1 (en) | 1999-07-02 | 2003-02-04 | The Regents Of The University Of California | Method for enhancing an immune response |
US6476000B1 (en) | 1999-08-13 | 2002-11-05 | Hybridon, Inc. | Modulation of oligonucleotide CpG-mediated immune stimulation by positional modification of nucleosides |
OA12028A (en) | 1999-09-25 | 2006-04-28 | Univ Iowa Res Found | Immunostimulatory nucleic acids. |
US6949520B1 (en) | 1999-09-27 | 2005-09-27 | Coley Pharmaceutical Group, Inc. | Methods related to immunostimulatory nucleic acid-induced interferon |
ES2265980T5 (en) | 1999-09-27 | 2010-12-28 | Coley Pharmaceutical Group, Inc. | METHODS RELATED TO INTERFERON INDUITED BY IMMUNE STIMULATING NUCLEIC ACIDS. |
US7223398B1 (en) | 1999-11-15 | 2007-05-29 | Dynavax Technologies Corporation | Immunomodulatory compositions containing an immunostimulatory sequence linked to antigen and methods of use thereof |
WO2001045750A1 (en) | 1999-12-21 | 2001-06-28 | The Regents Of The University Of California | Method for preventing an anaphylactic reaction |
US20010044416A1 (en) | 2000-01-20 | 2001-11-22 | Mccluskie Michael J. | Immunostimulatory nucleic acids for inducing a Th2 immune response |
US6815429B2 (en) | 2000-01-26 | 2004-11-09 | Hybridon, Inc. | Modulation of oligonucleotide CpG-mediated immune stimulation by positional modification of nucleosides |
US7585847B2 (en) | 2000-02-03 | 2009-09-08 | Coley Pharmaceutical Group, Inc. | Immunostimulatory nucleic acids for the treatment of asthma and allergy |
US20020156033A1 (en) | 2000-03-03 | 2002-10-24 | Bratzler Robert L. | Immunostimulatory nucleic acids and cancer medicament combination therapy for the treatment of cancer |
US20040131628A1 (en) | 2000-03-08 | 2004-07-08 | Bratzler Robert L. | Nucleic acids for the treatment of disorders associated with microorganisms |
US7129222B2 (en) * | 2000-03-10 | 2006-10-31 | Dynavax Technologies Corporation | Immunomodulatory formulations and methods for use thereof |
AU2001259706A1 (en) | 2000-05-09 | 2001-11-20 | Reliable Biopharmaceutical, Inc. | Polymeric compounds useful as prodrugs |
WO2001093902A2 (en) | 2000-06-07 | 2001-12-13 | Biosynexus Incorporated | Immunostimulatory rna/dna hybrid molecules |
ATE440618T1 (en) | 2000-06-22 | 2009-09-15 | Univ Iowa Res Found | COMBINATION OF CPG AND ANTIBODIES AGAINST CD19, CD20,CD22 OR CD40 FOR THE PREVENTION OR TREATMENT OF CANCER. |
US20020165178A1 (en) | 2000-06-28 | 2002-11-07 | Christian Schetter | Immunostimulatory nucleic acids for the treatment of anemia, thrombocytopenia, and neutropenia |
US20020198165A1 (en) | 2000-08-01 | 2002-12-26 | Bratzler Robert L. | Nucleic acids for the prevention and treatment of gastric ulcers |
US20020091097A1 (en) | 2000-09-07 | 2002-07-11 | Bratzler Robert L. | Nucleic acids for the prevention and treatment of sexually transmitted diseases |
DK1366077T3 (en) | 2000-09-15 | 2011-09-12 | Coley Pharm Gmbh | Method for screening in large quantities of CpG-based immunoagonists / antagonists |
AU9475001A (en) | 2000-09-26 | 2002-04-08 | Hybridon Inc | Modulation of immunostimulatory activity of immunostimulatory oligonucleotide analogs by positional chemical changes |
FR2814958B1 (en) | 2000-10-06 | 2003-03-07 | Aventis Pasteur | VACCINE COMPOSITION |
GB0025577D0 (en) | 2000-10-18 | 2000-12-06 | Smithkline Beecham Biolog | Vaccine |
ATE398175T1 (en) | 2000-12-08 | 2008-07-15 | Coley Pharmaceuticals Gmbh | CPG-TYPE NUCLEIC ACIDS AND METHODS OF USE THEREOF |
WO2002053141A2 (en) | 2000-12-14 | 2002-07-11 | Coley Pharmaceutical Group, Inc. | Inhibition of angiogenesis by nucleic acids |
US20030050268A1 (en) | 2001-03-29 | 2003-03-13 | Krieg Arthur M. | Immunostimulatory nucleic acid for treatment of non-allergic inflammatory diseases |
US7105495B2 (en) | 2001-04-30 | 2006-09-12 | Idera Pharmaceuticals, Inc. | Modulation of oligonucleotide CpG-mediated immune stimulation by positional modification of nucleosides |
US7176296B2 (en) | 2001-04-30 | 2007-02-13 | Idera Pharmaceuticals, Inc. | Modulation of oligonucleotide CpG-mediated immune stimulation by positional modification of nucleosides |
US20030129605A1 (en) | 2001-05-04 | 2003-07-10 | Dong Yu | Immunostimulatory activity of CpG oligonucleotides containing non-ionic methylphosophonate linkages |
JP4598389B2 (en) | 2001-06-21 | 2010-12-15 | ダイナバックス テクノロジーズ コーポレイション | Chimeric immunomodulatory compounds and methods of use thereof |
US20040132677A1 (en) | 2001-06-21 | 2004-07-08 | Fearon Karen L. | Chimeric immunomodulatory compounds and methods of using the same-IV |
WO2003012061A2 (en) | 2001-08-01 | 2003-02-13 | Coley Pharmaceutical Gmbh | Methods and compositions relating to plasmacytoid dendritic cells |
CA2456328C (en) | 2001-08-07 | 2015-05-26 | Dynavax Technologies Corporation | Complexes of a short cpg-containing oligonucleotide bound to the surface of a solid phase microcarrier and methods for use thereof |
JP4383534B2 (en) * | 2001-08-17 | 2009-12-16 | コーリー ファーマシューティカル ゲーエムベーハー | Combinatorial motif immunostimulatory oligonucleotides with improved activity |
CN1633598A (en) | 2001-10-05 | 2005-06-29 | 科勒制药股份公司 | Toll-like receptor 3 signaling agonists and antagonists |
EP1478371A4 (en) | 2001-10-12 | 2007-11-07 | Univ Iowa Res Found | Methods and products for enhancing immune responses using imidazoquinoline compounds |
WO2003035836A2 (en) | 2001-10-24 | 2003-05-01 | Hybridon Inc. | Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5' ends |
US7276489B2 (en) | 2002-10-24 | 2007-10-02 | Idera Pharmaceuticals, Inc. | Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5′ ends |
WO2003066649A1 (en) | 2002-02-04 | 2003-08-14 | Biomira Inc. | Immunostimulatory, covalently lipidated oligonucleotides |
NZ573064A (en) * | 2002-04-04 | 2011-02-25 | Coley Pharm Gmbh | Immunostimulatory G,U-containing oligoribonucleotides |
CN101160399A (en) | 2002-04-22 | 2008-04-09 | 拜奥尼茨生命科学公司 | Oligonucleotide compositions and their use for the modulation of immune responses |
AU2003229434A1 (en) | 2002-05-10 | 2003-11-11 | Inex Pharmaceuticals Corporation | Cancer vaccines and methods of using the same |
CA2388049A1 (en) | 2002-05-30 | 2003-11-30 | Immunotech S.A. | Immunostimulatory oligonucleotides and uses thereof |
WO2003103586A2 (en) | 2002-06-05 | 2003-12-18 | Coley Pharmaceutical Group, Inc. | Method for treating autoimmune or inflammatory diseases with combinations of inhibitory oligonucleotides and small molecule antagonists of immunostimulatory cpg nucleic acids |
US7605138B2 (en) | 2002-07-03 | 2009-10-20 | Coley Pharmaceutical Group, Inc. | Nucleic acid compositions for stimulating immune responses |
US7576066B2 (en) | 2002-07-03 | 2009-08-18 | Coley Pharmaceutical Group, Inc. | Nucleic acid compositions for stimulating immune responses |
CN1678188B (en) * | 2002-07-03 | 2012-10-10 | 科勒制药集团有限公司 | Nucleic acid compositions for stimulating immune responses |
US7807803B2 (en) | 2002-07-03 | 2010-10-05 | Coley Pharmaceutical Group, Inc. | Nucleic acid compositions for stimulating immune responses |
US20040053880A1 (en) * | 2002-07-03 | 2004-03-18 | Coley Pharmaceutical Group, Inc. | Nucleic acid compositions for stimulating immune responses |
US7569553B2 (en) | 2002-07-03 | 2009-08-04 | Coley Pharmaceutical Group, Inc. | Nucleic acid compositions for stimulating immune responses |
WO2004007743A2 (en) | 2002-07-17 | 2004-01-22 | Coley Pharmaceutical Gmbh | Use of cpg nucleic acids in prion-disease |
AR040996A1 (en) * | 2002-08-19 | 2005-04-27 | Coley Pharm Group Inc | IMMUNE STIMULATING NUCLEIC ACIDS |
ZA200500963B (en) * | 2002-08-19 | 2006-10-25 | Coley Pharm Group Inc | Immunostimulatory nucleic acids |
AU2003278845A1 (en) | 2002-09-19 | 2004-04-08 | Coley Pharmaceutical Gmbh | Toll-like receptor 9 (tlr9) from various mammalian species |
ZA200503511B (en) | 2002-10-29 | 2006-10-25 | Coley Pharmaceutical Group Ltd | Use of CPG oligonucleotides in the treatment of hepatitis C virus infection |
CA2502015A1 (en) | 2002-12-11 | 2004-06-24 | Coley Pharmaceutical Group, Inc. | 5' cpg nucleic acids and methods of use |
WO2004058159A2 (en) | 2002-12-23 | 2004-07-15 | Dynavax Technologies Corporation | Branched immunomodulatory compounds and methods of using the same |
CA2512484A1 (en) | 2003-01-16 | 2004-05-08 | Hybridon, Inc. | Modulation of immunostimulatory properties of oligonucleotide-based compounds by utilizing modified immunostimulatory dinucleotides |
WO2004087203A2 (en) | 2003-04-02 | 2004-10-14 | Coley Pharmaceutical Group, Ltd. | Immunostimulatory nucleic acid oil-in-water formulations for topical application |
WO2005016235A2 (en) | 2003-04-14 | 2005-02-24 | The Regents Of The University Of California | Combined use of impdh inhibitors with toll-like receptor agonists |
WO2004094671A2 (en) | 2003-04-22 | 2004-11-04 | Coley Pharmaceutical Gmbh | Methods and products for identification and assessment of tlr ligands |
CA2526212C (en) | 2003-05-16 | 2013-08-27 | Hybridon, Inc. | Synergistic treatment of cancer using immunomers in conjunction with chemotherapeutic agents |
JP4874801B2 (en) | 2003-06-11 | 2012-02-15 | イデラ ファーマシューティカルズ インコーポレイテッド | Stabilized immunomodulatory oligonucleotide |
JP2007524615A (en) | 2003-06-20 | 2007-08-30 | コーリー ファーマシューティカル ゲーエムベーハー | Low molecular weight Toll-like receptor (TLR) antagonist |
TWI358301B (en) | 2003-07-11 | 2012-02-21 | Intercell Ag | Hcv vaccines |
US20050013812A1 (en) | 2003-07-14 | 2005-01-20 | Dow Steven W. | Vaccines using pattern recognition receptor-ligand:lipid complexes |
AU2004259204B2 (en) | 2003-07-15 | 2010-08-19 | Idera Pharmaceuticals, Inc. | Synergistic stimulation of the immune system using immunostimulatory oligonucleotides and/or immunomer compounds in conjunction with cytokines and/or chemotherapeutic agents or radiation therapy |
US20070110714A1 (en) | 2003-09-08 | 2007-05-17 | Norio Hayashi | Medicinal composition for treatment of chronic hepatitis c |
US20050215501A1 (en) | 2003-10-24 | 2005-09-29 | Coley Pharmaceutical Group, Inc. | Methods and products for enhancing epitope spreading |
GEP20094767B (en) | 2003-10-30 | 2009-09-10 | Coley Pharm Group Inc | C-class oligonucleotide analogs with enhanced immunostimulatory potency |
US20050239733A1 (en) | 2003-10-31 | 2005-10-27 | Coley Pharmaceutical Gmbh | Sequence requirements for inhibitory oligonucleotides |
US20050100983A1 (en) | 2003-11-06 | 2005-05-12 | Coley Pharmaceutical Gmbh | Cell-free methods for identifying compounds that affect toll-like receptor 9 (TLR9) signaling |
US7713535B2 (en) | 2003-12-08 | 2010-05-11 | Idera Pharmaceuticals, Inc. | Modulation of immunostimulatory properties by small oligonucleotide-based compounds |
CA2555390C (en) | 2004-02-19 | 2014-08-05 | Coley Pharmaceutical Group, Inc. | Immunostimulatory viral rna oligonucleotides |
AU2005222909B2 (en) | 2004-03-12 | 2010-03-11 | Idera Pharmaceuticals, Inc. | Enhanced activity of HIV vaccine using a second generation immunomodulatory oligonucleotide |
JP2007531746A (en) | 2004-04-02 | 2007-11-08 | コーリー ファーマシューティカル グループ,インコーポレイテッド | Immunostimulatory nucleic acid for inducing an IL-10 response |
EP1753453A2 (en) | 2004-06-08 | 2007-02-21 | Coley Pharmaceutical GmbH | Abasic oligonucleotide as carrier platform for antigen and immunostimulatory agonist and antagonist |
HUE036894T2 (en) | 2004-06-15 | 2018-08-28 | Idera Pharmaceuticals Inc | Immunostimulatory oligonucleotide multimers |
NZ553244A (en) | 2004-07-18 | 2009-10-30 | Csl Ltd | Immuno stimulating complex and oligonucleotide formulations for inducing enhanced interferon-gamma responses |
JP2008506683A (en) | 2004-07-18 | 2008-03-06 | コーリー ファーマシューティカル グループ, リミテッド | Methods and compositions for inducing innate immune responses |
MY159370A (en) | 2004-10-20 | 2016-12-30 | Coley Pharm Group Inc | Semi-soft-class immunostimulatory oligonucleotides |
AU2006216493A1 (en) | 2005-02-24 | 2006-08-31 | Coley Pharmaceutical Gmbh | Immunostimulatory oligonucleotides |
MX2007012488A (en) | 2005-04-08 | 2008-03-11 | Coley Pharm Group Inc | Methods for treating infectious disease exacerbated asthma. |
WO2006116458A2 (en) | 2005-04-26 | 2006-11-02 | Coley Pharmaceutical Gmbh | Modified oligoribonucleotide analogs with enhances immunostimulatory activity |
AU2006269555A1 (en) | 2005-07-07 | 2007-01-18 | Coley Pharmaceutical Group, Inc. | Anti-CTLA-4 antibody and CpG-motif-containing synthetic oligodeoxynucleotide combination therapy for cancer treatment |
BRPI0616069A2 (en) | 2005-09-16 | 2011-06-07 | Coley Pharm Gmbh | modulation of immunomodulatory properties of small interfering ribonucleic acid (sirna) by nucleotide modification |
EP1945766A2 (en) | 2005-09-16 | 2008-07-23 | Coley Pharmaceutical GmbH | Immunostimulatory single-stranded ribonucleic acid with phosphodiester backbone |
CA2626547A1 (en) | 2005-10-21 | 2007-05-03 | Medical College Of Georgia Research Institute, Inc. | The induction of indoleamine 2,3-dioxygenase in dendritic cells by tlr ligands and uses thereof |
US20070093439A1 (en) | 2005-10-25 | 2007-04-26 | Idera Pharmaceuticals, Inc. | Short immunomodulatory oligonucleotides |
US7470674B2 (en) | 2005-11-07 | 2008-12-30 | Idera Pharmaceuticals, Inc. | Immunostimulatory properties of oligonucleotide-based compounds comprising modified immunostimulatory dinucleotides |
PT1957647E (en) | 2005-11-25 | 2015-06-01 | Zoetis Belgium S A | Immunostimulatory oligoribonucleotides |
JP2009521218A (en) | 2005-12-20 | 2009-06-04 | イデラ ファーマシューティカルズ インコーポレイテッド | Immunostimulatory action of palindromic immune modulatory oligonucleotides (IMO (TM)) containing palindromic segments of different lengths |
PT2405002E (en) | 2006-02-15 | 2015-01-05 | Adiutide Pharmaceuticals Gmbh | Compositions and methods for oligonucleotide formulations |
DE102006007433A1 (en) | 2006-02-17 | 2007-08-23 | Curevac Gmbh | Immunostimulant adjuvant useful in vaccines against cancer or infectious diseases comprises a lipid-modified nucleic acid |
US8027888B2 (en) | 2006-08-31 | 2011-09-27 | Experian Interactive Innovation Center, Llc | Online credit card prescreen systems and methods |
WO2008033432A2 (en) | 2006-09-12 | 2008-03-20 | Coley Pharmaceutical Group, Inc. | Immune modulation by chemically modified ribonucleosides and oligoribonucleotides |
US20100189772A1 (en) | 2006-09-27 | 2010-07-29 | Coley Pharmaceutical Group, Inc | Compositions of TLR ligands and antivirals |
KR101251707B1 (en) * | 2006-09-27 | 2013-04-11 | 콜리 파마슈티칼 게엠베하 | CpG oligonucleotide analogs containing hydrophobic T analogs with enhanced immunostimulatory activity |
JP2010507386A (en) | 2006-10-26 | 2010-03-11 | コーリー ファーマシューティカル ゲーエムベーハー | Oligoribonucleotides and uses thereof |
US20090142362A1 (en) | 2006-11-06 | 2009-06-04 | Avant Immunotherapeutics, Inc. | Peptide-based vaccine compositions to endogenous cholesteryl ester transfer protein (CETP) |
US20100285041A1 (en) | 2007-05-17 | 2010-11-11 | Eugen Uhlmann | Class A Oligonucleotides with Immunostimulatory Potency |
KR20100068422A (en) | 2007-10-09 | 2010-06-23 | 콜리 파마슈티칼 게엠베하 | Immune stimulatory oligonucleotide analogs containing modified sugar moieties |
US9968305B1 (en) | 2014-10-02 | 2018-05-15 | James S Brown | System and method of generating music from electrical activity data |
-
2007
- 2007-09-25 KR KR1020097008419A patent/KR101251707B1/en active IP Right Grant
- 2007-09-25 CN CN200780035967.1A patent/CN101517082B/en active Active
- 2007-09-25 MX MX2009003398A patent/MX2009003398A/en active IP Right Grant
- 2007-09-25 NZ NZ575437A patent/NZ575437A/en unknown
- 2007-09-25 PT PT78704343T patent/PT2078080E/en unknown
- 2007-09-27 US US12/442,295 patent/US8580268B2/en active Active
- 2007-09-27 SI SI200731675T patent/SI2078080T1/en unknown
- 2007-09-27 JP JP2009529800A patent/JP5455629B2/en active Active
- 2007-09-27 RU RU2009109098/10A patent/RU2477315C2/en active
- 2007-09-27 BR BRPI0717510A patent/BRPI0717510B8/en active IP Right Grant
- 2007-09-27 KR KR1020127033605A patent/KR20130014620A/en not_active Application Discontinuation
- 2007-09-27 WO PCT/IB2007/004389 patent/WO2008068638A2/en active Application Filing
- 2007-09-27 DK DK07870434.3T patent/DK2078080T3/en active
- 2007-09-27 EP EP15172158.6A patent/EP2960332A1/en not_active Withdrawn
- 2007-09-27 EP EP07870434.3A patent/EP2078080B1/en active Active
- 2007-09-27 AU AU2007330410A patent/AU2007330410B2/en active Active
- 2007-09-27 CA CA2664219A patent/CA2664219C/en active Active
- 2007-09-27 ES ES07870434.3T patent/ES2544958T3/en active Active
- 2007-09-27 PL PL07870434T patent/PL2078080T3/en unknown
- 2007-09-27 HU HUE07870434A patent/HUE027064T2/en unknown
-
2009
- 2009-03-11 ZA ZA200901735A patent/ZA200901735B/en unknown
- 2009-03-12 IL IL197549A patent/IL197549A/en active IP Right Grant
- 2009-03-23 NO NO20091218A patent/NO342465B1/en unknown
- 2009-10-08 HK HK09109331.0A patent/HK1133440A1/en unknown
-
2013
- 2013-08-05 JP JP2013162176A patent/JP6006183B2/en active Active
- 2013-10-04 US US14/046,044 patent/US9382545B2/en active Active
-
2016
- 2016-05-26 US US15/165,963 patent/US10260071B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001083503A2 (en) * | 2000-05-01 | 2001-11-08 | Hybridon, Inc. | MODULATION OF OLIGONUCLEOTIDE CpG-MEDIATED IMMUNE STIMULATION BY POSITIONAL MODIFICATION OF NUCLEOSIDES |
WO2005030259A2 (en) * | 2003-09-25 | 2005-04-07 | Coley Pharmaceutical Group, Inc. | Nucleic acid-lipophilic conjugates |
Non-Patent Citations (4)
Title |
---|
AGRAWAL SUDHIR ET AL: "Medicinal chemistry and therapeutic potential of CpG DNA" TRENDS IN MOLECULAR MEDICINE, ELSEVIER CURRENT TRENDS, vol. 8, no. 3, 1 March 2002 (2002-03-01), pages 114-121, XP009073678 ISSN: 1471-4914 * |
EUGEN ULHMANN ET AL: "Recent advances in the development of immunostimulatory oligonucleotides" CURRENT OPINION IN DRUG DISCOVERY AND DEVELOPMENT, CURRENT DRUGS, LONDON, GB, vol. 6, no. 2, 1 January 2003 (2003-01-01), pages 204-217, XP009103505 ISSN: 1367-6733 * |
R. P. IYER, ET AL.: "Modified Oligonucleotides - Synthesis, Properties and Applications" CURRENT OPINION IN MOLECULAR THERAPEUTICS, vol. 1, no. 3, 1999, pages 344-358, XP009103623 * |
TSAO ET AL: "Optically detected magnetic resonance study of the interaction of an arsenic(III) derivative of cacodylic acid with EcoRI methyltransferase Optically detected magnetic resonance study of the interaction of an arsenic(III) derivative of cacodylic acid with EcoRI methyltransferase" BIOCHEMISTRY, AMERICAN CHEMICAL SOCIETY. EASTON, PA, US, vol. 30, no. 18, 1 January 1991 (1991-01-01), pages 4565-4572, XP002357069 ISSN: 0006-2960 * |
Cited By (73)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8008266B2 (en) | 1994-07-15 | 2011-08-30 | University Of Iowa Foundation | Methods of treating cancer using immunostimulatory oligonucleotides |
US7723500B2 (en) | 1994-07-15 | 2010-05-25 | University Of Iowa Research Foundation | Immunostimulatory nucleic acid molecules |
US8258106B2 (en) | 1994-07-15 | 2012-09-04 | University Of Iowa Research Foundation | Immunostimulatory nucleic acid molecules |
US8129351B2 (en) | 1994-07-15 | 2012-03-06 | The University Of Iowa Research Foundation | Immunostimulatory nucleic acid molecules |
US8114848B2 (en) | 1994-07-15 | 2012-02-14 | The United States Of America As Represented By The Department Of Health And Human Services | Immunomodulatory oligonucleotides |
US8058249B2 (en) | 1994-07-15 | 2011-11-15 | University Of Iowa Research Foundation | Immunostimulatory nucleic acid molecules |
US7888327B2 (en) | 1994-07-15 | 2011-02-15 | University Of Iowa Research Foundation | Methods of using immunostimulatory nucleic acid molecules to treat allergic conditions |
US7935675B1 (en) | 1994-07-15 | 2011-05-03 | University Of Iowa Research Foundation | Immunostimulatory nucleic acid molecules |
US8202688B2 (en) | 1997-03-10 | 2012-06-19 | University Of Iowa Research Foundation | Use of nucleic acids containing unmethylated CpG dinucleotide as an adjuvant |
US8574599B1 (en) | 1998-05-22 | 2013-11-05 | Ottawa Hospital Research Institute | Methods and products for inducing mucosal immunity |
US8597665B2 (en) * | 2001-06-21 | 2013-12-03 | Dynavax Technologies Corporation | Chimeric immunomodulatory compounds and methods of using the same-IV |
US20120231039A1 (en) * | 2001-06-21 | 2012-09-13 | Fearon Karen L | Chimeric immunomodulatory compounds and methods of using the same-iv |
US9028845B2 (en) * | 2001-06-21 | 2015-05-12 | Dynavax Technologies Corporation | Chimeric immunomodulatory compounds and methods of using the same-IV |
US20140127255A1 (en) * | 2001-06-21 | 2014-05-08 | Dynavax Technologies Corporation | Chimeric immunomodulatory compounds and methods of using the same-iv |
US8834900B2 (en) | 2001-08-17 | 2014-09-16 | University Of Iowa Research Foundation | Combination motif immune stimulatory oligonucleotides with improved activity |
US7749975B2 (en) * | 2001-10-24 | 2010-07-06 | Idera Pharmaceuticals, Inc. | Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5′ ends |
US7812000B2 (en) * | 2001-10-24 | 2010-10-12 | Idera Pharmaceuticals, Inc. | Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5′ ends |
US8658607B2 (en) | 2002-04-04 | 2014-02-25 | Zoetis Belgium | Immunostimulatory G, U-containing oligoribonucleotides |
US8153141B2 (en) | 2002-04-04 | 2012-04-10 | Coley Pharmaceutical Gmbh | Immunostimulatory G, U-containing oligoribonucleotides |
US9428536B2 (en) | 2002-04-04 | 2016-08-30 | Zoetis Belgium Sa | Immunostimulatory G, U-containing oligoribonucleotides |
US7807803B2 (en) | 2002-07-03 | 2010-10-05 | Coley Pharmaceutical Group, Inc. | Nucleic acid compositions for stimulating immune responses |
US8114419B2 (en) | 2002-07-03 | 2012-02-14 | Coley Pharmaceutical Group, Inc. | Nucleic acid compositions for stimulating immune responses |
US8283328B2 (en) | 2002-08-19 | 2012-10-09 | Coley Pharmaceutical Group, Inc. | Immunostimulatory nucleic acids |
US8304396B2 (en) | 2002-08-19 | 2012-11-06 | Coley Pharmaceutical Group, Inc. | Immunostimulatory nucleic acids |
US7998492B2 (en) | 2002-10-29 | 2011-08-16 | Coley Pharmaceutical Group, Inc. | Methods and products related to treatment and prevention of hepatitis C virus infection |
US7851454B2 (en) * | 2003-02-07 | 2010-12-14 | Idera Pharmaceutials, Inc. | Short immunomodulatory oligonucleotides |
US8188254B2 (en) | 2003-10-30 | 2012-05-29 | Coley Pharmaceutical Gmbh | C-class oligonucleotide analogs with enhanced immunostimulatory potency |
US7795235B2 (en) | 2004-10-20 | 2010-09-14 | Coley Pharmaceutical Gmbh | Semi-soft c-class immunostimulatory oligonucleotides |
US8580268B2 (en) | 2006-09-27 | 2013-11-12 | Coley Pharmaceutical Gmbh | CpG oligonucleotide analogs containing hydrophobic T analogs with enhanced immunostimulatory activity |
JP2010536335A (en) * | 2007-08-13 | 2010-12-02 | ファイザー・インク | Combinatorial motif immunostimulatory oligonucleotides with improved activity |
US8198251B2 (en) | 2007-08-13 | 2012-06-12 | Coley Pharmaceutical Gmbh | Combination motif immune stimulatory oligonucleotides with improved activity |
WO2009022215A1 (en) * | 2007-08-13 | 2009-02-19 | Pfizer Inc. | Combination motif immune stimulatory oligonucleotides with improved activity |
US9186399B2 (en) | 2007-10-09 | 2015-11-17 | AdiutTide Pharmaceuticals GmbH | Immune stimulatory oligonucleotide analogs containing modified sugar moieties |
US9695211B2 (en) | 2008-12-02 | 2017-07-04 | Wave Life Sciences Japan, Inc. | Method for the synthesis of phosphorus atom modified nucleic acids |
US10329318B2 (en) | 2008-12-02 | 2019-06-25 | Wave Life Sciences Ltd. | Method for the synthesis of phosphorus atom modified nucleic acids |
US10307434B2 (en) | 2009-07-06 | 2019-06-04 | Wave Life Sciences Ltd. | Nucleic acid prodrugs and methods of use thereof |
US9744183B2 (en) | 2009-07-06 | 2017-08-29 | Wave Life Sciences Ltd. | Nucleic acid prodrugs and methods of use thereof |
WO2011148356A1 (en) | 2010-05-28 | 2011-12-01 | Coley Pharmaceutical Group, Inc. | Vaccines comprising cholesterol and cpg as sole adjuvant - carrier molecules |
US10428019B2 (en) | 2010-09-24 | 2019-10-01 | Wave Life Sciences Ltd. | Chiral auxiliaries |
US9605019B2 (en) | 2011-07-19 | 2017-03-28 | Wave Life Sciences Ltd. | Methods for the synthesis of functionalized nucleic acids |
US10280192B2 (en) | 2011-07-19 | 2019-05-07 | Wave Life Sciences Ltd. | Methods for the synthesis of functionalized nucleic acids |
US10167309B2 (en) | 2012-07-13 | 2019-01-01 | Wave Life Sciences Ltd. | Asymmetric auxiliary group |
US9617547B2 (en) | 2012-07-13 | 2017-04-11 | Shin Nippon Biomedical Laboratories, Ltd. | Chiral nucleic acid adjuvant |
US10590413B2 (en) | 2012-07-13 | 2020-03-17 | Wave Life Sciences Ltd. | Chiral control |
US9982257B2 (en) | 2012-07-13 | 2018-05-29 | Wave Life Sciences Ltd. | Chiral control |
US11155816B2 (en) | 2012-11-15 | 2021-10-26 | Roche Innovation Center Copenhagen A/S | Oligonucleotide conjugates |
US10077443B2 (en) | 2012-11-15 | 2018-09-18 | Roche Innovation Center Copenhagen A/S | Oligonucleotide conjugates |
RU2627447C2 (en) * | 2013-05-14 | 2017-08-08 | ЗОИТИС СЕРВИСЕЗ ЭлЭлСи | New vaccine compositions comprising immunostimulatory oligonucleotides |
EP3542819A1 (en) | 2013-05-14 | 2019-09-25 | Zoetis Services LLC | Novel vaccine compositions comprising immunostimulatory oligonucleotides |
AU2014265649B2 (en) * | 2013-05-14 | 2017-10-19 | Zoetis Services Llc | Novel vaccine compositions comprising immunostimulatory oligonucleotides |
WO2014186291A1 (en) | 2013-05-14 | 2014-11-20 | Zoetis Llc | Novel vaccine compositions comprising immunostimulatory oligonucleotides |
EP4241853A2 (en) | 2013-11-26 | 2023-09-13 | Zoetis Services LLC | Compositions for induction of immune response |
WO2015080959A1 (en) | 2013-11-26 | 2015-06-04 | Zoetis Llc | Compositions for induction of immune response |
US10144933B2 (en) | 2014-01-15 | 2018-12-04 | Shin Nippon Biomedical Laboratories, Ltd. | Chiral nucleic acid adjuvant having immunity induction activity, and immunity induction activator |
US10149905B2 (en) | 2014-01-15 | 2018-12-11 | Shin Nippon Biomedical Laboratories, Ltd. | Chiral nucleic acid adjuvant having antitumor effect and antitumor agent |
US10322173B2 (en) | 2014-01-15 | 2019-06-18 | Shin Nippon Biomedical Laboratories, Ltd. | Chiral nucleic acid adjuvant having anti-allergic activity, and anti-allergic agent |
US10160969B2 (en) | 2014-01-16 | 2018-12-25 | Wave Life Sciences Ltd. | Chiral design |
KR20220044395A (en) * | 2015-01-16 | 2022-04-07 | 조에티스 서비시즈 엘엘씨 | Foot-and-mouth disease vaccine |
EP3244920B1 (en) * | 2015-01-16 | 2023-06-07 | Zoetis Services LLC | Foot-and-mouth disease vaccine |
EP4248992A2 (en) | 2015-01-16 | 2023-09-27 | Zoetis Services LLC | Foot-and-mouth disease vaccine |
KR20200068759A (en) * | 2015-01-16 | 2020-06-15 | 조에티스 서비시즈 엘엘씨 | Foot-and-mouth disease vaccine |
WO2016115456A1 (en) | 2015-01-16 | 2016-07-21 | Zoetis Services Llc | Foot-and-mouth disease vaccine |
KR102382773B1 (en) * | 2015-01-16 | 2022-04-04 | 조에티스 서비시즈 엘엘씨 | Foot-and-mouth disease vaccine |
KR102508719B1 (en) * | 2015-01-16 | 2023-03-09 | 조에티스 서비시즈 엘엘씨 | Foot-and-mouth disease vaccine |
WO2017210244A1 (en) | 2016-06-02 | 2017-12-07 | Zoetis Services Llc | Vaccine against infectious bronchitis |
WO2018162428A1 (en) | 2017-03-06 | 2018-09-13 | Cambridge Enterprise Limited | Pentavalent streptococcus suis vaccine composition |
RU2795701C2 (en) * | 2017-12-15 | 2023-05-11 | Байер Энимал Хелс Гмбх | Immunostimulating oligonucleotides |
US11932857B2 (en) | 2017-12-15 | 2024-03-19 | Elanco Animal Health Gmbh | Immunostimulatory oligonucleotides |
US20210008195A1 (en) * | 2017-12-20 | 2021-01-14 | Zoetis Services Llc | Vaccines against hendra and nipah virus infection |
WO2019126110A1 (en) | 2017-12-20 | 2019-06-27 | Zoetis Services Llc | Vaccines against hendra and nipah virus infection |
WO2019145562A1 (en) | 2018-01-29 | 2019-08-01 | Stichting Katholieke Universiteit | New potent sialyltransferase inhibitors |
US11639364B2 (en) | 2018-01-29 | 2023-05-02 | Stichting Radboud Universiteit | Potent sialyltransferase inhibitors |
WO2024077025A1 (en) | 2022-10-04 | 2024-04-11 | Zoetis Services Llc | Poultry vaccines and methods of protecting poultry |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10260071B2 (en) | CpG oligonucleotide analogs containing hydrophobic T analogs with enhanced immunostimulatory activity | |
DK1538904T3 (en) | IMMUNSTIMULATING NUCLEIC ACIDS | |
US20080009455A9 (en) | Immunostimulatory oligonucleotides | |
CA2700812C (en) | Immune stimulatory oligonucleotide analogs containing modified sugar moieties | |
EP2170353B1 (en) | Phosphate-modified oligonucleotide analogs with immunostimulatory activity | |
ZA200500963B (en) | Immunostimulatory nucleic acids |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200780035967.1 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 575437 Country of ref document: NZ |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007330410 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007870434 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2664219 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 2009529800 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2044/DELNP/2009 Country of ref document: IN Ref document number: MX/A/2009/003398 Country of ref document: MX |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2007330410 Country of ref document: AU Date of ref document: 20070925 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020097008419 Country of ref document: KR |
|
ENP | Entry into the national phase |
Ref document number: 2009109098 Country of ref document: RU Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12442295 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020127033605 Country of ref document: KR |
|
ENP | Entry into the national phase |
Ref document number: PI0717510 Country of ref document: BR Kind code of ref document: A2 Effective date: 20090327 |