WO2008067784A1 - Steuerung eines modularen stromrichters mit verteilten energiespeichern - Google Patents

Steuerung eines modularen stromrichters mit verteilten energiespeichern Download PDF

Info

Publication number
WO2008067784A1
WO2008067784A1 PCT/DE2006/002247 DE2006002247W WO2008067784A1 WO 2008067784 A1 WO2008067784 A1 WO 2008067784A1 DE 2006002247 W DE2006002247 W DE 2006002247W WO 2008067784 A1 WO2008067784 A1 WO 2008067784A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
branch
values
current
phase
Prior art date
Application number
PCT/DE2006/002247
Other languages
English (en)
French (fr)
Inventor
Mike Dommaschk
Jörg DORN
Ingo Euler
Jörg LANG
Quoc-Buu Tu
Klaus WÜRFLINGER
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38537943&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2008067784(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to EP06828678.0A priority Critical patent/EP2100364B1/de
Priority to US12/517,693 priority patent/US7960871B2/en
Priority to PCT/DE2006/002247 priority patent/WO2008067784A1/de
Priority to ES06828678T priority patent/ES2701706T3/es
Priority to DE112006004197T priority patent/DE112006004197A5/de
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to CA2671817A priority patent/CA2671817C/en
Priority to PL06828678T priority patent/PL2100364T3/pl
Priority to DK06828678.0T priority patent/DK2100364T3/en
Priority to CN200680056559XA priority patent/CN101548458B/zh
Priority to JP2009539595A priority patent/JP5197623B2/ja
Publication of WO2008067784A1 publication Critical patent/WO2008067784A1/de

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits

Definitions

  • the present invention relates to a device for converting an electric current having at least one phase module having an AC terminal and at least one DC voltage terminal, wherein between each DC voltage terminal and the AC terminal a phase module branch is formed, and wherein each phase module branch via a series circuit of submodules , each having an energy store and at least one power semiconductor, with measuring sensors for providing actual values and with control means which are connected to the measuring sensors and set up to regulate the device as a function of the actual values and predetermined setpoints.
  • the present invention also relates to a method for converting a current.
  • the power converter has a phase module for each phase of the AC network to be connected to it, each phase module having an AC voltage terminal and two DC voltage terminals. so that a so-called 6-pulse Bridge circuit is provided.
  • the module branches consist of a series circuit of submodules, each consisting of two turn-off power semiconductors, which are connected in parallel opposing freewheeling diodes in each case.
  • the turn-off power semiconductors and freewheeling diodes are connected in series, wherein a capacitor is provided parallel to said series connection.
  • Said components of the submodules are connected to one another such that either the capacitor voltage or the voltage zero drops at the bipolar output of each submodule.
  • the control of the turn-off power semiconductors by means of the so-called pulse width modulation.
  • the control means for controlling the power semiconductors have measuring sensors for detecting currents while obtaining current values.
  • the current values are fed to a central control unit, which has an input interface and an output interface.
  • a modulator ie a software routine, is provided.
  • the modulator has inter alia a selection unit and a pulse width generator.
  • the pulse width generator generates the control signals for the individual submodules.
  • the turn-off power semiconductors are converted by the control signals generated by the pulse width generator from a passage position in which a current flow through the turn-off power semiconductors is possible, in a blocking position in which a current flow through the power semiconductor can be switched off.
  • each submodule has a submodule sensor for detecting a voltage drop across the capacitor.
  • German Patent Application 10 2005 045 090.3 discloses a method for controlling a polyphase power converter with distributed energy stores.
  • the disclosed device also has a multi-level power converter topology with phase modules having an AC terminal symmetrically located in the center of each phase module and two DC terminals.
  • Each phase module is composed of two phase module branches that extend between the AC voltage terminal and one of the DC voltage terminals.
  • Each phase module branch in turn comprises a series circuit of submodules, wherein each submodule consists of turn-off power semiconductors and freewheeling diodes connected in antiparallel.
  • each submodule has a unipolar capacitor.
  • regulating means for controlling the power semiconductors are used regulating means, which are also set up for adjusting branch currents, which flow between the phase modules.
  • branch currents for example, current vibrations can be actively damped and operating points with lower output frequencies can be avoided.
  • a uniform load of all turn-off semiconductor switch as well as a symmetrization of highly unbalanced voltages can be brought about.
  • the object of the invention is to provide a device of the type mentioned, whose control easy to a any number of submodules in each phase module branch can be adapted.
  • control means have a current control unit and a respective phase module branch associated drive units, wherein the current control unit is set up to provide Zweigsoll staple for the Anêteinhei- and switched the drive units between the current control unit and the submodules and configured to generate control signals for said submodules.
  • the invention solves this problem on the basis of the above-mentioned method in that a current control unit is supplied with actual values and set values, the current control units determine the desired nominal values and the desired values by means of controller branch setpoints, which are each assigned to a phase module branch, the branch setpoints one The control unit assigned to said phase module branch is supplied and each control unit generates control signals for the submodules assigned to it as a function of the desired branch values.
  • the device according to the invention has control means which consist of a central flow control unit.
  • Said current control unit is connected to the measuring sensors, which are provided for detecting electrical measured variables, such as current or voltage, the measured values being fed to the control as so-called actual values.
  • Current control unit are also fed to setpoints to which the actual values are to be adjusted. If the setpoint values are, for example, a predefined desired active power, a change of, for example, the DC to achieve the desired active power is also based on a change in the AC side alternating currents of the inverter. In other words, the actual values are coupled to one another to a high degree.
  • the current control unit therefore essentially serves to decouple the controlled variables.
  • control signals for the submodules according to the invention are not generated by a central power control unit. Rather, an independent drive unit is provided for each phase module branch.
  • the current control unit generates at least one branch setpoint for each drive unit.
  • the drive unit determines and generates the control signals for the individual submodules based on each branch setpoint.
  • the device according to the invention therefore has control means that can be easily adapted to a changing number of submodules.
  • the current control unit is oriented only to the number of phase module branches, which is independent of the number of submodules in each phase module branch.
  • An adaptation of the device according to the invention, ie the converter according to the invention, to a changed mains voltage or DC voltage with an increase in the number of submodules in the wake therefore only affects the drive units.
  • Each submodule advantageously has a submodule sensor, which is connected to the drive unit assigned to the submodule and provides a submodule actual value.
  • the submodule actual value is supplied to the connected drive unit, which subsequently forms a submodule sum actual value by adding up the submodule actual values come from submodules, which were switched on by the drive unit or in other words active. Only active submodules of a phase module branch make a contribution to the speaking submodule sum actual value of the phase module branch.
  • the control unit generates such control signals for the individual submodules that the submodule total actual value corresponds as closely as possible to the branch setpoint value provided by the current control unit.
  • the submodule actual value is expediently an energy storage voltage value Uc which corresponds to a voltage drop across the energy store of the respective submodule.
  • the branch setpoint is a branch voltage setpoint, that is to say a setpoint value for the voltage dropping in total at the active or connected submodules of a phase module branch.
  • Each drive unit is advantageously connected to all submodule sensors of the phase module branch assigned to it and configured to provide a branch energy actual value for the current control unit, the branch energy actual value being the sum of the submodule actual values of all submodules, that is to say both the activated active submodules and the deactivated inactive submodules of the respective ones Phase module branch is.
  • the branch energy actual value itself serves to determine the branch setpoint and, in particular, the branch voltage setpoint.
  • the measuring sensors suitably comprise branch current sensors arranged to measure phase module branch currents Izwg flowing in the phase module branches.
  • the phase module branch currents Izwg comprise phase currents that flow on the alternating voltage side of the phase module, for example, between a transformer for connecting an AC voltage network to the device according to the invention and the AC voltage connection of the phase module.
  • the phase module branch currents include DC components and circulating currents. If all phase module branch currents of the device are known, the circulating currents can be calculated. Since the circulating currents are not visible from the outside, their regulation allows an independent symmetrization of the energy stored in the phase module branches. By controlling the phase module branch currents and thus the circular currents all degrees of freedom of the device according to the invention can be effectively used. For example, active damping of the circulating currents significantly reduces the expense associated with passive elements, such as in connection with two-phase reactors.
  • the current control unit is advantageously set up to control the phase module branch currents Izwg.
  • the setpoint values include a reactive current setpoint Iqref, an active current setpoint Ipref and / or a direct current setpoint Id.
  • a reactive current setpoint Iqref an active current setpoint Ipref and / or a direct current setpoint Id.
  • the actual values comprise branch energy actual values which are transmitted from the drive units to the current control unit where each branch energy actual value is again the sum of the submodule actual values of all submodules of a phase module branch, irrespective of whether they are switched on or not.
  • the branch setpoints are formed by a linear combination of voltage intermediate setpoints.
  • the voltage intermediate setpoints are as far as possible decoupled from each other and serve to establish a clear and comprehensive control.
  • the intermediate voltage setpoint values comprise a DC voltage setpoint value Udc, the DC voltage setpoint value Udc being determined as a function of the difference between a predefined reference DC current Idsoll and a DC measured value Id obtained by measurement.
  • a total voltage difference is determined by forming the difference between a predetermined total voltage setpoint ucref and a total energy measured value uc determined by summing the voltages across all energy accumulators of the inverter, and the total voltage difference to a controller yielding a total energy deviation current value wherein the total energy variation current value is summed with a DC desired value Idref to obtain the reference DC current value Idsoll.
  • the controller used here is, for example, a simple proportional controller. However, other regulators may be used within the scope of the invention. According to this advantageous further development, it is ensured in the regulation that the energy stored in the energy store is not increased beyond a predetermined extent can.
  • the voltage intermediate setpoints for each drive unit comprise mains phase voltage setpoints Unetzl, Unetz2, Unetz3.
  • the mains phase voltage nominal values Unetzl, Unetz2, Unetz3 essentially have the effect on the device that a desired phase current II, 12, 13, which flows on the alternating-voltage side of each phase module, is established.
  • the mains phase voltage nominal values Unetzl, Unetz2, Unetz3 are determined from phase current values which are obtained by measuring the ac side phase currents II, 12, 13 of the phase modules as a function of current setpoint values by means of a regulator.
  • the phase currents are measured on the AC side of the device according to the invention. This can be done, for example, in the immediate vicinity of the AC voltage terminals of the phase modules. For this purpose, corresponding current transformer with an AC conductor in interaction brought, wherein the AC conductors are connected to the AC voltage connection. Deviating from this, however, it is also possible to measure the line current InI, In2 and In3 which flows in each phase of the alternating current network which is connected to the AC voltage connections via the AC conductors and a transformer.
  • the mains phase voltage nominal values ünetzl, Ünetz2, Ünetz3 are determined as a function of setpoint values by means of a controller as a function of phase voltage measured values obtained by measuring the alternating-voltage-side phase voltages Ul, U2, U3 of the phase modules.
  • the recovery of the mains phase voltage nominal values Unetzl, Unetz2, Unetz3 can therefore also be based on the measurement of the system voltages.
  • the voltage intermediate setpoints for each phase module branch comprise a branch voltage intermediate value Uzwgpl, Uzwgp2, Uzwgp3, Uzwgnl, Uzwgn2 and Uzwgn3.
  • the intermediate branch voltage setpoints Uzwgpl,..., Uzwgn3 are determined as a function of extended branch current values IpI, Ip2, Ip3, InI, In2, In3 by means of a controller.
  • each extended branch current value IpI, Ip2, Ip3, InI, In2, In3 is determined by taking the sum of a phase module branch current measurement value Izwgpl, ..., Izwgn3, which is obtained by detecting a phase module branch current flowing in the respective phase module branch Circuit current setpoints Ikrl, Ikr2, Ikr3 and calculated from set balancing current setpoints Ibalpl, ..., Ibaln3, wherein the Symmetri mecanicsstromsollowski Ibalpl, ... Ibaln3 in Dependence of the branch energy actual values can be determined.
  • the setpoint values specified in this control step ie the circuit current setpoint values Ikrl, Ikr2, Ikr2 for determining the circulating currents, the proportions of the branch currents. and the balancing current setpoint values Ibalpl,..., Ibaln3 for specifying a
  • Balancing current are summed together with the determined by measurement phase module branch current value Izwg, the sum value of which corresponds to said extended branch current value IpI, ..., In3.
  • the extended branch current value is then suitably supplied to a regulator which generates therefrom intermediate branch voltage values Uzwg.
  • the intermediate branch voltage values comprise an asymmetry target voltage Uasym.
  • the asymmetry target voltage Uasym is obtained by measuring the voltage between a positive DC terminal and ground to obtain a positive DC voltage value Udp and measuring the voltage between a negative DC voltage terminal and ground to obtain a negative DC voltage value Udn, by taking the difference of Amounts of the positive and negative DC voltage value to obtain a DC voltage difference ⁇ ud and by applying the DC voltage difference ⁇ ud to the input of a
  • Controller set to gain the asymmetry target voltage at the output of the controller.
  • the intermediate branch voltage setpoints expediently have balancing voltage setpoints ullplp, Ubalp2, Ubalp3, Ubalnl, Ubaln2, Ubaln3, in which energy storage voltage values Uc which correspond to the voltages dropping across the energy accumulators are detected, the energy storage voltage values values Uc of a phase module branch 6pl, 6p2, 6p3, 6nl, 6n2, 6n3 yielding branch energy actual values Uc] F] pl,
  • the branch energy actual values thus represent a measure of the energy stored in a phase module branch.
  • the person skilled in the art recognizes that in this context it is also possible, instead of adding up the voltages dropping at the energy stores, to sum up the squares of these voltages and thus to form the branch energy actual value. It should also be pointed out that a symmetrization of the device according to the invention can also take place with the balancing current setpoints Ibal described above.
  • extended branch current values IpI,..., In3 are decomposed as input variables of the control into a mains current component and into a circulating current component. This decomposition allows a clear structure of the control steps that are passed through by the flow control unit.
  • each extended branch current value IpI, ..., In3 is regulated independently of the remaining branch current values IpI, ..., In3.
  • each extended branch current value for example, together with appropriate setpoint values, is fed to a single controller.
  • the branch voltage intermediate setpoints Uzwgpl, ..., Uzwgn3 can be tapped.
  • phase voltage values U1, U2, U3 are obtained by measuring the alternating-current side phase current phase values II, 12, 13 and by measuring the alternating-voltage-side phase voltages of the phase module branches from the phase current values II, 12, 13 and the phase voltage values Ul, U2, U3 as a function of setpoint values by means of a regulator
  • auxiliary current values IHaI, IHbe determined, the auxiliary current values I- HaI, IHbe added to the extended branch current values IpI, ..., In3 while gaining auxiliary sums or auxiliary differences added or deducted from this, the auxiliary sums and the auxiliary differences to the input of a controller and at the output of the said controller the branch voltage intermediate setpoints Uzwgpl,..., Uzwgn3 are tapped.
  • the controller is for example a proportional controller.
  • FIG. 1 shows an embodiment of a device according to the invention in a schematic representation
  • FIG. 2 shows a replacement image representation of a submodule of a device according to FIG. 1
  • FIG. 3 shows the structure of the regulating means of a device according to FIG. 1
  • FIG. 4 is a schematic representation of a linear combination of branch voltage intermediate setpoint values for determining the branch voltage setpoint values for the control units
  • FIG. 5 shows a schematic representation of the determination of mains phase voltage nominal values Unetz
  • FIG. 6 shows a schematic representation for clarifying the method step for determining branch voltage intermediate setpoint values Uzwg from extended branch current values
  • FIG. 7 shows a schematic representation for determining the extended branch current values Ip according to FIG. 6,
  • FIG. 8 shows a schematic representation of a possibility of generating circulating current nominal values Ikr.
  • FIG. 9 shows a schematic representation for determining a direct voltage setpoint Udc
  • FIG. 10 shows an overview for clarifying the determination of the balancing voltage Uasym
  • FIG. 11 shows another possibility for generating branch voltage intermediate setpoints Uzwg
  • FIG. 12 shows a further possibility for determining intermediate branch voltage values üzwg and Figure 13 shows another way to determine
  • FIG. 1 shows an embodiment, the device 1 according to the invention, which is composed of three phase modules 2a, 2b and 2c.
  • Each phase module 2a, 2b and 2c is connected to a positive DC voltage line p and to a negative DC voltage line n, so that each phase module 2a, 2b, 2c has two DC voltage connections.
  • an AC voltage connection 3i, 3 2 and 3 3 is provided for each phase module 2 a, 2 b and 2 c.
  • the AC voltage terminals 3i, 3 2 and 3 ß are connected via a transformer 4 with a three-phase alternating voltage network 5.
  • the phase voltages Ul, U2 and U3 fall off, with line currents InI, In2 and In3 flowing.
  • the AC-side phase current of each phase module is denoted by II, 12 and 13.
  • the DC voltage current is I d - phase module branches ⁇ pl, 6p2 and 6p3 extend between each of the AC voltage terminals 3i, 3 2 or 3 3 and the positive DC voltage line p. Between each AC voltage terminal 3i, 3 2 , 33 and the negative DC voltage line n, the phase module branches 6nl, 6n2 and 6n3 are formed.
  • Each phase module branch ⁇ pl, 6p2, 6p3, 6nl, 6n2 and 6n3 consists of a series circuit of submodules not shown in detail in FIG. 1 and an inductance, which is denoted by L Kr in FIG.
  • FIG. 2 shows in more detail the series connection of the submodules 7 and, in particular, the structure of the submodules by means of an electrical equivalent circuit diagram, with only the phase module branch .beta.pl being selected in FIG.
  • the remaining phase module branches are, however, constructed identically.
  • Switchable power semiconductors are, for example, so-called IGBTs, GTOs, IGCTs or the like. These are known to the skilled person as such, so that a detailed representation at this point can be omitted.
  • Each turn-off power semiconductor Tl, T2 is a flywheel diode Dl, D2 connected in anti-parallel.
  • a capacitor 8 is connected as an energy storage. Each capacitor 8 is charged unipolar.
  • Two voltage states can now be generated at the two-pole connection terminals X1 and X2 of each submodule -7. If, for example, a drive signal is generated by a drive unit 9, with which the turn-off power semiconductor T2 is transferred to its open position, in which a current flow through the power semiconductor T2 is possible, the voltage drops to zero at the terminals Xl, X2 of the submodule 7. In this case, the turn-off power semiconductor Tl is in its blocking position in which a current flow through the turn-off power semiconductor Tl is interrupted.
  • the turn-off power semiconductor Tl is in its open position, the turn-off power semiconductor T2, however, transferred to its blocking division, is applied to the terminals Xl, X2 of the submodule 7, the full capacitor voltage Uc.
  • the embodiment of the device according to the invention according to Figures 1 and 2 is also referred to as a so-called multi-level power converter.
  • a multi-level power converter is suitable, for example, for driving electrical machines, such as motors or the like.
  • a multilevel converter is also suitable for use in the field of power distribution and transmission.
  • the device according to the invention serves For example, as a short coupling, which consists of two Gleichwoods- side connected converters, the converters are each connected to an AC voltage network.
  • Such short couplings are used for energy exchange between two power distribution networks, wherein the power distribution networks, for example, have a different frequency, phase position, neutral point treatment or the like.
  • FACTS Flexible AC Transmission Systems
  • control means comprise a current control unit 10 and drive units 9pl, 9p2, 9p3 and 9nl and 9n2 and 9n3.
  • Each of the drive units is assigned to a phase module branch 6pl, 6p2, 6p3, 6nl, 6n2 and 6n3.
  • the drive unit 9pl is connected, for example, to each submodule 7 of the phase module branch ⁇ pl and generates the control signals for the turn-off power semiconductors T1, T2.
  • a figuratively not shown submodule voltage sensor is provided in each submodule 7 .
  • the submodule voltage sensor is used to detect the on the capacitor.
  • each evaluation unit 9p determines a submodule actual value.
  • the submodule actual value is calculated from the sum of the active submodules, at whose output terminals X1 and X2 the capacitor voltage Uc drops. Inactive submodules 7, at whose output terminals X1, X2 the voltage drops to zero, are not considered in the formation of the submodule actual value.
  • the branch energy actual value Uc ⁇ pI is supplied to the flow control unit 10.
  • the flow control unit 10 is connected to various measuring sensors, not shown figuratively.
  • current transformers arranged on the voltage side of the phase modules 2a, 2b, 2c serve to generate and supply phase current measured values II, 12, 13 and current transformers arranged on each phase module for generating and supplying phase module branch measured values Izwg and a current transformer arranged in the DC circuit of the power converter for providing DC voltage measuring transformers of the phase voltages Ul, U2, U3 and DC voltage converters provide positive DC voltage readings of the positive DC voltage Udp and negative DC voltage readings of the negative DC voltage Udn, the positive DC voltage readings Udp, a DC voltage dropping between the positive DC voltage connection p and ground the negative DC voltage readings Udn, a voltage falling between the negative DC voltage connection and ground.
  • the negative DC voltage is negative.
  • the positive DC voltage is positive.
  • the current control unit 10 are further supplied to setpoints.
  • an active current setpoint Ipref and a reactive current setpoint Iqref are supplied to the control unit 10.
  • a DC voltage setpoint Udref is applied to the input of the current control unit 10.
  • a DC desired value Idref can also be used for the further control.
  • the setpoint values Ipref, Iqref and Udref and the said measured values interact with one another using various regulators, a branch voltage setpoint Uplref, Up2ref, Up3ref, Unlref, Un2ref, Un3ref being generated for each drive unit 9pl, 9p2, 9p3, 9nl, 9n2 and 9n3 ,
  • Each control unit 9 generates control signals for the submodules 7 assigned to it, so that the voltage applied to the series connection of the submodules UpI, Up2, Up3, UnI, Un2, Un3 the possible branch voltage setpoint Uplref, Up2ref, Up3ref, Unlref, Un2ref, Un3ref possible equivalent.
  • the voltage applied to the series connection of the submodules UpI, Up2, Up3, UnI, Un2, Un3 the possible branch voltage setpoint Uplref, Up2ref, Up3ref, Unlref, Un2ref, Un3ref possible equivalent.
  • FIG. 4 shows that, for example, the branch voltage setpoint value Uplref is determined by linear combination of a mains phase voltage setpoint value Unetzl, a branch voltage intermediate setpoint value Uzwgpl, a DC voltage setpoint, a balancing voltage setpoint Uasym and a balancing voltage setpoint Udalpl is calculated. This is done independently for each of the phase module branches 6pl, 6p2, 6p3, 6nl, 6n2, 6n3.
  • FIG. 5 illustrates how the mains phase voltage nominal values Unetzl, Unetz2 and Unetz3 are determined from the phase current measured values II, 12 and 13 and from the phase voltage measured values U1, U2, U3. Since the total phase current measurements result in zero, the phase current measurements 11, 12, 13 of the three phases can be projected into a two-phase vector system ⁇ , ⁇ . This is done by means of the conversion unit 11. The same applies to the phase voltage measured values U1, U2, U3.
  • the measured values are fed to a controller 12, which generates the mains phase voltage nominal values Unetzl, Unetz2, Unetz3 as a function of the active current setpoint Ipref and depending on a reactive current setpoint Iqref, again using a conversion unit 11 for converting the two-dimensional mains phase voltage setpoints into three-dimensional mains phase voltage setpoints.
  • FIG. 6 shows how the intermediate branch voltage desired values Uzwgpl, Uzwgp2 and Uzwgp3 or Uzwgnl, Uzwgn2 and Uzwgn3, which are first mentioned in FIG. 4, are formed. This is done on the basis of extended branch current values IpI, Ip2, Ip3, InI, In2, In3, the determination of which is described below.
  • the six extended branch current values IpI, Ip2, Ip3, InI, In2, In3 are again converted into four extended two-dimensional ones by a conversion unit 11 as described above
  • Branch current values et, ß converted Subsequently, a controller 12, which is a simple proportional controller, together with the conversion unit 11 for the conversion into so-called branch voltage intermediate Setpoints üzwgpl, Uzwgp2 and Uzwgp3 or Uzwgnl, Uzwgn2 and Uzwgn3.
  • the determination of the extended branch current values IpI, Ip2, Ip3, InI, In2, In3 is illustrated in FIG.
  • the extended branch current values IpI, Ip2, Ip3, InI, In2, In3 with respect to the phase module branch 6pl are nothing else than the sum of phase module branch current measurements Izwgpl, a circuit current setpoint Ikrl and a symmetrizing current setpoint Iball formed by a current transformer.
  • the circulating current nominal values Ikrl, Ikr2 and Ikr3 can be set dynamically via a control station, not shown in the figure.
  • Each extended branch current value IpI thus includes both measured and setpoint values.
  • the balancing desired values provide a symmetrical distribution of the energy respectively stored in the phase module branches.
  • FIG. 8 shows an advantageous example for generating suitable circulating current nominal values Ikrl, Ikr2, Ikr3.
  • the angular frequency of the mains voltage ⁇ is multiplied by a factor of 2.
  • the cosine or the negative sine of the argument 2 ⁇ is formed and then multiplied by an amplitude Amp.
  • a respective circular current setpoint value Ikrl, Ikr2, Ikr3 is determined from the two variables using a conversion unit 11 for each of the three phase modules.
  • FIG. 9 clarifies the determination of the DC voltage desired value Udc.
  • Udc is determined on the basis of a measured direct current value Id and a reference direct current value Idsoll, wherein the determination of the reference direct current value Idsoll will be described below.
  • the measured direct current value Id and the reference reference current value Idsoll the difference formed.
  • the difference is then fed to a proportional controller or to a proportional / integral PI controller 12, at whose output the DC voltage reference value Udc can be tapped.
  • the lower part of FIG. 9 shows how the reference direct current value Idsoll can be determined. This takes place initially to form a total energy measurement uc, which is equal to the sum of all capacitor voltage values Uc of the device 1 according to the invention.
  • the total energy reading uc therefore represents a measure of the energy stored in the respective converter. Such a measure can be derived in any other way.
  • the total energy measured value uc is compared with a sum voltage setpoint ucref by forming the difference by a subtractor 13. The said difference is then fed to a controller 12, at the output of which a total energy deviation current value can be read, which is fed to a summation image 14.
  • the summation generator 14 forms the sum of the total energy deviation current value and a DC nominal value Idref known to the current regulation unit while obtaining the reference DC current nominal value Idsoll.
  • FIG. 10 illustrates physically the meaning of an asymmetry voltage Uasym.
  • a star point generator 15 is shown in dashed lines on the alternating voltage side of the phase modules of the device 1 according to the invention.
  • a voltage divider 16 can be seen in dashed lines, which has the same resistance on both sides of the potential point N G s.
  • the asymmetry Voltage Uasym is the voltage dropping between the star point N ⁇ U of the neutral point generator 15 and the potential point N G s.
  • This is first determined by measuring the voltage dropping between the positive DC voltage p and ground to obtain a positive DC voltage value Udp and measuring the voltage dropped between the negative pole of the DC voltage and ground to obtain a negative DC voltage value udn. Subsequently, the difference of the amounts of the negative DC voltage value Udn and the positive DC voltage value Udp is formed, resulting in a DC voltage difference ⁇ Ud.
  • the DC difference ⁇ üd is applied to the input of a regulator, wherein the controller is further given a DC voltage difference, so that at the output of the controller, a value is generated, with which the control the difference between
  • the balancing setpoint voltage Uasym can be tapped off and switched to other voltage intermediate setpoint values in accordance with the linear combination illustrated in FIG.
  • the balancing voltage target values Ubalpl, Ubalp2, Ubalp3, Ubalnl, Ubaln2 and Ubaln3 are determined as follows: First, the capacitor voltage values Uc are determined by measuring the voltage dropped across the capacitors of the submodules 7 and obtaining branch energy actual values Uc ⁇ pI, UcJ] p2, UcJ] p3, UcJ] nl, UcJ] n2, UcJ] n3.
  • the branch energy actual value is thus a measure of the energy stored in the phase module.
  • the branch energy actual values are therefore each assigned to a phase module branch 9pl, 9p2, 9p3, 9nl, 9n2 and 9n3.
  • the Two energy values Uc ⁇ pI, Uc ⁇ Tp2, Uc ⁇ p3, Uc] TnI, Uc]>] n2, UcJ] n3 are compared and a value derived from the comparison. This value is then transferred with a setpoint value to a controller, at the output of which the balancing voltage setpoint values Ubalpl, Ubalp2, Ubalp3, Ubalbal,topicaln2 andbulaln3 can be tapped.
  • FIG. 11 shows a further possibility for determining the intermediate branch voltage values Uzwgpl, Üzwgp2 and Üzwgp3 on the basis of the extended branch current values IpI, Ip2, Ip3 and InI, In2 and In3.
  • the extended branch current values IpI, Ip2, Ip3 and InI, In2 and In3 are converted by conversion units 11 from a three-dimensional vector space into a two-dimensional vector space ⁇ , ⁇ . Subsequently, the regulation for a grid share and a
  • Circulating current component carried out independently.
  • mains current components iNal and the mains current component iNbe are formed and supplied to a controller 12 with two setpoints (not shown).
  • the controller 12 forms an ⁇ value uNal or a ⁇ value uNbe at its output for the mains current component.
  • the regulation takes place accordingly.
  • Circular current values ikral and ikrbe are obtained, wherein 12 voltage voltage components ukral and ukrbe can be tapped off at the output of the controller shown in FIG. 11 below.
  • the intermediate branch voltage desired values Uzwgpl to Uzwgn3 can also be determined independently of one another on the basis of the expanded current values IpI, Ip2 and Ip3. This is - As can be seen in FIG. 12, a separate controller 12 is provided for each extended branch current value IpI to In3, the extended branch current values IpI to In3 being determined as explained above.
  • the controller 12 is, for example, a proportional controller.
  • FIG. 13 shows a further method for determining the intermediate branch voltage values Uzwgpl,..., Uzwgn3.
  • the phase current measured values II, 12 and 13 and phase voltage measured values U1, U2 and U3 are transferred from the three-phase space into a two-phase space ex, ⁇ and the respective converted measured values are fed to a vector controller 12.
  • the controller 12, an active current setpoint Ipref and the reactive current setpoint Iqref are also supplied.
  • the vector controller 12 generates at its output auxiliary current values IHaI and IHbe according to the proviso that the difference between the active current setpoint and the effective current measured value determined from the measured values and at the same time the difference between reactive current measured values and the reactive current setpoint becomes minimal.
  • auxiliary current values IHaI, IHbe are then, as indicated in FIG. 13, linearly combined with extended branch current values IpI,..., Ip3.
  • the extended branch current values IpI to In3 comprise setpoint current values with which the controller 12 generates two-dimensional branch voltage values ⁇ , ⁇ and the conversion unit 11 finally generates three-phase intermediate branch voltage values Uzwgpl to Uzwgp3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Rectifiers (AREA)

Abstract

Vorrichtung (1) zum Umrichten eines elektrischen Stromes - mit wenigstens einem Phasenmodul (2a, 2b, 2c), das einen Wechselspannungsanschluss (3/1, 3/2, 3/3) und wenigstens einen Gleichspannungsanschluss ( p, n) aufweist, wobei zwischen jedem Gleichspannungsanschluss und jedem Wechselspannungsanschluss ein Phasenmodul zweig (6p1, 6p2, 6p3, 6n1, 6n2, 6n3) ausgebildet ist, und wobei jeder Phasenmodul zweig über eine Reihenschaltung aus Submodulen (7) verfügt, die jeweils einen Energiespeicher (8) und wenigstens einen Deistungshalbleiter (Tl, T2) aufweisen, - mit Messsensoren zum Bereitstellen von Istwerten und. mit Regelungsmitteln (9, 10), die mit den Messsensoren verbunden sind. Die Regelung kann einfach an eine beliebige Anzahl von Submodulen in jedem Phasenmodulzweig angepasst werden. Die Regelungsmittel (9, 10) weisen eine Stromregeleinheit (10) und jeweils einem Phasenmodulzweig zugeordnete Ansteuereinheiten (9) auf, wobei die S tromregeleinhe.it (1) zum Bereitstellen von Zweigsollwerten für die Ansteuereinheiten (9) eingerichtet ist und die Ansteuer- einheiten zur Erzeugung von Steuersignalen für die Submodule eingerichtet sind.

Description

Steuerung eines modularen Stromrichters mit verteilten Energiespeichern
Die vorliegende Erfindung betrifft eine Vorrichtung zum Um- richten eines elektrischen Stromes mit wenigstens einem Phasenmodul, das einen Wechselspannungsanschluss und wenigstens einen Gleichspannungsanschluss aufweist, wobei zwischen jedem Gleichspannungsanschluss und dem Wechselspannungsanschluss ein Phasenmodulzweig ausgebildet ist, und wobei jeder Phasen- modulzweig über eine Reihenschaltung aus Submodulen verfügt, die jeweils einen Energiespeicher und wenigstens einen Leistungshalbleiter aufweisen, mit Messsensoren zum Bereitstellen von Istwerten und mit Regelungsmitteln, die mit den Messsensoren verbunden und zum Regeln der Vorrichtung in Abhängigkeit der Istwerte und vorgegebener Sollwerte eingerichtet sind.
Die vorliegende Erfindung betrifft ebenfalls ein Verfahren zum Umrichten eines Stromes.
Eine solche Vorrichtung und ein solches Verfahren sind beispielsweise aus dem Beitrag von A. Lesnicar und R. Marquardt „An Innovative Modular Multilevel Converter Topology Suitable for a Wide Power Range", der auf der Powertech 2003 erschien, bereits bekannt. Dort ist ein Stromrichter offenbart, der für einen Anschluss an ein Wechselspannungsnetz vorgesehen ist. Der Stromrichter weist für jede Phase des mit ihm zu verbin- denen Wechselspannungsnetzes ein Phasenmodul auf, wobei jedes Phasenmodul über einen Wechselspannungsanschluss sowie zwei Gleichspannungsanschlüsse verfügt. Zwischen jedem Gleichspannungsanschluss und dem Wechselspannungsanschluss erstrecken sich Phasenmodulzweige, so dass eine so genannte 6-Puls- Brückenschaltung bereitgestellt ist. Die Modulzweige bestehen aus einer Reihenschaltung von Submodulen, die jeweils aus zwei abschaltbaren Leistungshalbleitern bestehen, denen jeweils gegensinnige Freilaufdioden parallel geschaltet sind. Die abschaltbaren Leistungshalbleiter und die Freilaufdioden sind in Reihe geschaltet, wobei parallel zur besagten Reihenschaltung ein Kondensator vorgesehen ist. Die besagten Komponenten der Submodule sind so miteinander verschaltet, dass am zweipoligen Ausgang jedes Submoduls entweder die Kondensator- Spannung oder die Spannung null abfällt.
Die Steuerung der abschaltbaren Leistungshalbleiter erfolgt mittels der so genannten Pulsweitenmodulation. Die Regelungsmittel zur Steuerung der Leistungshalbleiter weisen Messsen- soren zum Erfassen von Strömen unter Gewinnung von Stromwerten auf. Die Stromwerte werden einer zentralen Steuerungseinheit zugeführt, die eine Eingangsschnittstelle und eine Ausgangsschnittstelle aufweist. Zwischen der Eingangsschnittstelle und der Ausgangsschnittstelle ist ein Modulator, also eine Softwareroutine, vorgesehen. Der Modulator weist unter anderem eine Auswähleinheit sowie einen Pulsweitengenerator auf. Der Pulsweitengenerator erzeugt die Steuersignale für die einzelnen Submodule. Die abschaltbaren Leistungshalbleiter werden durch die vom Pulsweitengenerator erzeugten Steu- ersignale von einer Durchgangsstellung, in der ein Stromfluss über die abschaltbaren Leistungshalbleiter ermöglicht ist, in eine Sperrstellung überführt, in der ein Stromfluss über die abschaltbaren Leistungshalbleiter unterbrochen ist. Dabei weist jedes Submodul ein Submodulsensor zum Erfassen einer am Kondensator abfallenden Spannung auf.
Weitere Beiträge zum Steuerverfahren für eine so genannte Multi-Level-Stromrichtertopologie sind von R. Marquardt, A. Lesnicar, J. Hildinger, „Modulares Stromrichterkonzept für Netzkupplungsanwendung bei hohen Spannungen", erschienen auf der ETG-Fachtagung in Bad Nauenheim, Deutschland 2002, von A. Lesnicar, R. Marquardt, „A new modular voltage source inver- ter topology", EPE' 03 Toulouse, Frankreich 2003 und von R. Marquardt, A. Lesnicar „New Concept for High Voltage - Modular Multilevel Converter", PESC 2004 Conference in Aachen, Deutschland, bekannt.
Aus der derzeit noch unveröffentlichten deutschen Patentan- meidung 10 2005 045 090.3 ist ein Verfahren zur Steuerung eines mehrphasigen Stromrichters mit verteilten Energiespeichern offenbart. Die offenbarte Vorrichtung weist ebenfalls eine Multi-Level-Stromrichtertopologie mit Phasenmodulen auf, die über einen symmetrisch in der Mitte jedes Phasenmoduls angeordneten Wechselspannungsanschluss und zwei Gleichspannungsanschlüsse verfügen. Jedes Phasenmodul ist aus zwei Phasenmodulzweigen zusammengesetzt, die sich zwischen dem Wechselspannungsanschluss und einem der Gleichspannungsanschlüsse erstrecken. Jeder Phasenmodulzweig umfasst wiederum eine Rei- henschaltung aus Submodulen, wobei jedes Submodul aus abschaltbaren Leistungshalbleitern und diesen antiparallel geschalteten Freilaufdioden besteht. Ferner verfügt jedes Submodul über einen unipolaren Kondensator. Zur Regelung der Leistungshalbleiter dienen Regelungsmittel, die auch zum Ein- stellen von Zweigströmen eingerichtet sind, welche zwischen den Phasenmodulen fließen. Durch die Steuerung der Zweigströme können beispielsweise Stromschwingungen aktiv gedämpft und Betriebspunkte mit kleineren Ausgangsfrequenzen vermieden werden. Darüber hinaus kann eine gleichmäßige Belastung aller abschaltbaren Halbleiterschalter sowie eine Symmetrierung von stark unsymmetrischen Spannungen herbeigeführt werden.
Aufgabe der Erfindung ist es, eine Vorrichtung der eingangs genannten Art bereitzustellen, deren Regelung einfach an eine beliebige Anzahl von Submodulen in jedem Phasenmodulzweig an- gepasst werden kann.
Die Erfindung löst diese Aufgabe ausgehend von der eingangs genannten Vorrichtung dadurch, dass die Regelungsmittel eine Stromregeleinheit und jeweils einem Phasenmodulzweig zugeordnete Ansteuereinheiten aufweisen, wobei die Stromregeleinheit zum Bereitstellen von Zweigsollwerten für die Ansteuereinhei- ten eingerichtet ist und die Ansteuereinheiten zwischen die Stromregeleinheit und die Submodule geschaltet und zur Erzeugung von Steuersignalen für die besagten Submodule eingerichtet sind.
Die Erfindung löst diese Aufgabe ausgehend von dem eingangs genannten Verfahren dadurch, dass eine Stromregeleinheit mit Istwerten und mit Sollwerten versorgt wird, die Stromregeleinheiten in Abhängigkeit der Istwerte und der Sollwerte mittels Regler Zweigsollwerte bestimmt, die jeweils einem Pha- senmodulzweig zugeordnet sind, die Zweigsollwerte einer dem besagten Phasenmodulzweig zugeordneten Ansteuereinheit zugeführt werden und jede Ansteuereinheit in Abhängigkeit der Zweigsollwerte Steuersignale für die ihr zugeordneten Submodule erzeugt.
Die erfindungsgemäße Vorrichtung weist Regelungsmittel auf, die aus einer zentralen Stromregelungseinheit bestehen. Die besagte Stromregelungseinheit ist mit den Messsensoren verbunden, die zum Erfassen von elektrischen Messgrößen, wie Strom oder Spannung, vorgesehen sind, wobei die Messwerte der Regelung als so genannte Istwerte zugeführt werden. Der
Stromregeleinheit werden darüber hinaus Sollwerte zugeführt, an welche die Istwerte angepasst werden sollen. Handelt es sich bei den Sollwerten beispielsweise um eine vorgegebene Sollwirkleistung, wirkt eine Änderung beispielsweise des Gleichstromes zum Erreichen der Sollwirkleistung sich auch auf eine Änderung der wechselspannungsseitigen Wechselströme des Umrichters aus. Mit anderen Worten sind die Istwerte in einem hohen Maße miteinander gekoppelt. Die Stromregeleinheit dient daher im Wesentlichen zur Entkopplung der Regelgrößen.
Im Gegensatz zu den aus dem Stand der Technik bekannten Steuerungsverfahren werden die Steuersignale für die Submodule erfindungsgemäß nicht von einer zentralen Stromregeleinheit erzeugt. Vielmehr ist für jeden Phasenmodulzweig eine unabhängige Ansteuereinheit vorgesehen. Die Stromregeleinheit erzeugt für jede Ansteuereinheit wenigstens einen Zweigsollwert. Die Ansteuereinheit bestimmt und erzeugt dann die Steuersignale für die einzelnen Submodule auf der Grundlage jedes Zweigsollwertes. Die erfindungsgemäße Vorrichtung weist daher Regelungsmittel auf, die einfach an eine sich verändernde Anzahl von Submodulen angepasst werden kann. Die Stromregeleinheit ist lediglich auf die Anzahl der Phasenmodulzweige hin ausgerichtet, die von der Anzahl der Submodule in jedem Pha- senmodulzweig unabhängig ist. Eine Anpassung der erfindungsgemäßen Vorrichtung, also des erfindungsgemäßen Umrichters, an eine veränderte Netzspannung oder Gleichspannung mit einer Erhöhung der Anzahl der Submodule im Gefolge wirkt sich daher lediglich auf die Ansteuereinheiten aus.
Vorteilhafterweise verfügt jedes Submodul über einen Submo- dulsensor, der mit der dem Submodul zugeordneten Ansteuereinheit verbunden ist und einen Submodul-Istwert bereitstellt.. Der Submodul-Istwert wird der angebundenen Ansteuereinheit zugeführt, die anschließend einen Submodulsummenistwert durch Aufsummieren der Submodul-Istwerte bildet, die von Submodulen stammen, die von der Ansteuereinheit ein- oder mit anderen Worten aktiv geschaltet wurden. Nur aktiv geschaltete Submodule eines Phasenmodulzweiges liefern einen Beitrag zum ent- sprechenden Submodulsummenistwert des Phasenmodulzweiges. Dabei erzeugt die Ansteuereinheit solche Steuerungssignale für die einzelnen Submodule, dass der Submodulsummenistwert dem von der Stromregeleinheit zur Verfügung gestellten Zweigsoll- wert möglichst genau entspricht.
Der Submodulistwert ist zweckmäßigerweise ein Energiespei- cherspannungswert Uc, der einer an dem Energiespeicher des jeweiligen Submoduls abfallenden Spannung entspricht. In die- sem Fall ist der Zweigsollwert ein Zweigspannungssollwert, also ein Sollwert für die an den aktiv oder zugeschalteten Submodulen eines Phasenmodulzweiges in Summe abfallenden Spannung .
Vorteilhafterweise ist jede Ansteuereinheit mit allen Submo- dulsensoren des ihr zugeordneten Phasenmodulzweiges verbunden und zum Bereitstellen eines Zweigenergieistwertes für die Stromregeleinheit eingerichtet, wobei der Zweigenergieistwertes die Summe der Submodulistwerte aller Submodule, also so- wohl der zugeschalteten aktiven Submodule als auch der abgeschalteten inaktiven Submodule des jeweiligen Phasenmodulzweiges ist. Darüber hinaus dient der Zweigenergieistwert selbst zur Bestimmung des Zweigsollwertes und insbesondere des Zweigspannungssollwertes.
Gemäß einer vorteilhaften Weiterentwicklung ist die Stromregeleinheit zum Bereitstellen eines Zweigspannungssollwertes Uplref, Up2ref, Up3ref, ünlref, Ün2ref, Ün3ref für' jede Ansteuereinheit eingerichtet.
Die Messsensoren umfassen zweckmäßigerweise Zweigstromsensoren, die zum Messen von Phasenmodulzweigströmen Izwg eingerichtet sind, die in den Phasenmodulzweigen fließen. Gemäß dieser vorteilhaften Weiterentwicklung ist eine Regelung der Phasenmodulzweigströme möglich. Die Phasenmodulzweigströme Izwg umfassen Phasenströme, die wechselspannungsseitig des Phasenmoduls also beispielsweise zwischen einem Transformator zum Anschluss eines Wechselspannungsnetzes an die erfindungs- gemäße Vorrichtung und dem Wechselspannungsanschluss des Phasenmoduls fließen. Darüber hinaus umfassen die Phasenmodulzweigströme Gleichstromanteile und Kreisströme. Sind alle Phasenmodulzweigströme der Vorrichtung bekannt, lassen sich die Kreisströme berechnen. Da die Kreisströme von außen nicht sichtbar sind, ermöglicht ihre Regelung eine unabhängige Sym- metrierung der in den Phasenmodulzweigen gespeicherten Energie. Durch die Regelung der Phasenmodulzweigströme und somit der Kreisströme können alle Freiheitsgrade der erfindungsgemäßen Vorrichtung effektiv genutzt werden. So reduziert bei- spielsweise eine aktive Bedämpfung der Kreisströme den Aufwand, der im Zusammenhang mit passiven Elementen, wie zum Beispiel im Zusammenhang mit Zweigstromdrosseln getrieben werden muss, beträchtlich.
Daher ist die Stromregeleinheit vorteilhafterweise zum Regeln der Phasenmodulzweigströme Izwg eingerichtet.
Gemäß einer bevorzugten Weiterentwicklung umfassen die Sollwerte einen Blindstromsollwert Iqref, einen Wirkstromsollwert Ipref und/oder einen Gleichstromsollwert Id. Auf diese Weise ist eine besonders einfache Handhabung der erfindungsgemäßen Vorrichtung durch einen Nutzer ermöglicht. Der Benutzer gibt lediglich die zu übertragende Wirk- und Blindleistung in die Regelung ein. Hieraus werden mit Kenntnis der herrschenden Nennspannungen Blindstromsollwerte bestimmt.
Hinsichtlich des erfindungsgemäßen Verfahrens ist es vorteilhaft, dass die Istwerte Zweigenergieistwerte umfassen, die von den Ansteuereinheiten zur Stromregeleinheit übertragen werden, wobei jeder Zweigenergieistwert wieder die Summe der Submodulistwerte von allen Submodulen eines Phasenmodulzwei- ges ist unabhängig davon, ob diese zugeschaltet sind oder nicht .
Vorteilhafterweise werden die Zweigsollwerte durch eine Line- arkombination von Spannungszwischensollwerten gebildet. Die Spannungszwischensollwerte sind weitestgehend voneinander entkoppelt und dienen zum Aufbau einer anschaulichen und ü- bersichtlichen Regelung.
Gemäß einer diesbezüglich zweckmäßigen Weiterentwicklung umfassen die Spannungszwischensollwerte einen Gleichspannungssollwert Udc, wobei der Gleichspannungssollwert Udc in Abhän- gigkeit der Differenz zwischen einem vorgegebenen Referenzgleichstrom Idsoll und einem durch Messung gewonnenen Gleich- strommesswert Id bestimmt wird.
Gemäß einer diesbezüglich zweckmäßigen Weiterentwicklung wird eine Gesamtspannungsdifferenz durch Bilden der Differenz zwischen einem vorgegebenen Summenspannungs-Sollwert ucref und einem durch Aufsummieren der an allen Energiespeichern des Umrichters abfallenden Spannungen ermittelten Gesamtenergie- messwert uc ermittelt wird, und die Gesamtspannungsdifferenz einem Regler unter Gewinnung eines Gesamtenergieabweichungs- stromwertes zugeführt wird, wobei der Gesamtenergieabwei- chungsstromwert mit einem Gleichstrom-Sollwert Idref unter Gewinnung des Referenzgleichstromwertes Idsoll aufsummiert wird. Der hierbei eingesetzte Regler ist beispielsweise ein einfacher Proportionalregler. Jedoch können im Rahmen der Erfindung auch andere Regler verwendet werden. Gemäß dieser vorteilhaften Weiterentwicklung ist bei der Regelung sichergestellt, dass die in den Energiespeicher gespeicherte Energie nicht über ein vorbestimmtes Maß hinaus erhöht werden kann. Eine Zerstörung der erfindungsgemäßen Vorrichtung aufgrund der Speicherung einer zu großen Energie ist somit vermieden. Für den Fachmann ist es offensichtlich, dass bei der Einstellung der Gesamtenergie der erfindungsgemäßen Vorrich- tung, also des Umrichters, anstelle der Aufsummierung der gemessenen Spannungsmesswerte aller Energiespeicher der Vorrichtung auch die Energie unter Gewinnung von Energiemesswerten ermittelt werden kann, die in den Energiespeichern der Submodule gespeichert ist. uc entspräche dann der Summe der Energiewerte aller Energiespeicher der Vorrichtung. Ein Maß für den Energiewert eines Energiespeichers ergibt sich beispielsweise aus der an dem besagten Energiespeicher abfallenden Spannung durch einfaches Quadrieren der besagten Spannung.
Vorteilhafterweise umfassen die Spannungszwischensollwerte für jede Ansteuereinheit Netzphasenspannungssollwerte Unetzl, Unetz2, Unetz3. Die Netzphasenspannungssollwerte Unetzl, U- netz2, Unetz3 wirken sich im Wesentlichen so auf die Vorrich- tung aus, dass sich ein gewünschter Phasenstrom II, 12, 13, der wechselspannungsseitig eines jeden Phasenmoduls fließt, einstellt.
Gemäß einer diesbezüglich zweckmäßigen Weiterentwicklung wer- den die Netzphasenspannungssollwerte Unetzl, Unetz2, Unetz3 aus Phasenstromwerten, die durch Messen der wechselspannungs- seitigen Phasenströme II, 12, 13 der Phasenmodule gewonnen werden, in Abhängigkeit von Stromsollwerten mittels eines Reglers bestimmt. Gemäß dieser zweckmäßigen Weiterentwicklung werden die Phasenströme, auf der Wechselspannungsseite der erfindungsgemäßen Vorrichtung gemessen. Dies kann beispielsweise in unmittelbarer Nähe der Wechselspannungsanschlüsse der Phasenmodule durchgeführt werden. Dazu werden entsprechende Stromwandler mit einem Wechselstromleiter in Wechselwirkung gebracht, wobei die Wechselstromleiter mit dem Wechselspan- nungsanschluss verbunden sind. Abweichend hiervon kann jedoch auch der Netzstrom InI, In2 und In3 gemessen werden, der in jeder Phase des Wechselstromnetzes fließt, das mit den Wech- selspannungsanschlüssen über die Wechselstromleiter und einen Transformator verbunden ist.
Gemäß einer diesbezüglich zweckmäßigen Weiterentwicklung werden die Netzphasenspannungssollwerte ünetzl, Ünetz2, Ünetz3 in Abhängigkeit von Phasenspannungsmesswerten, die durch Messen der wechselspannungsseitigen Phasenspannungen Ul, U2, U3 der Phasenmodule gewonnen werden, in Abhängigkeit von Sollwerten mittels eines Reglers bestimmt. Die Gewinnung der Netzphasenspannungssollwerte Unetzl, Unetz2, Unetz3 kann da- her auch auf der Grundlage von der Messung der Netzspannungen erfolgen.
Vorteilhafterweise umfassen die Spannungszwischensollwerte für jeden Phasenmodulzweig einen Zweigspannungszwischen- soliwert Uzwgpl, Uzwgp2, Uzwgp3, Uzwgnl, Uzwgn2 und Uzwgn3.
Gemäß einer diesbezüglich zweckmäßigen Weiterentwicklung werden die Zweigspannungszwischensollwerte Uzwgpl, ..., Uzwgn3 in Abhängigkeit von erweiterten Zweigstromwerten IpI, Ip2, Ip3, InI, In2, In3 mittels eines Reglers bestimmt.
Vorteilhafterweise wird jeder erweiterte Zweigstromwert IpI, Ip2, Ip3, InI, In2, In3 durch Bilden der Summe aus einem Pha- senmodulzweigstrommesswert Izwgpl, ... , Izwgn3, der durch Er- fassen eines in dem jeweiligen Phasenmodulzweig fließenden Phasenmodulzweigstromes gewonnen wird, aus festgelegten Kreisstromsollwerten Ikrl, Ikr2, Ikr3 und aus festgelegten Symmetrierungsstromsollwerten Ibalpl, ... , Ibaln3 berechnet, wobei die Symmetrierungsstromsollwerte Ibalpl, ... Ibaln3 in Abhängigkeit der Zweigenergieistwerte festgelegt werden. Die bei diesem Regelungsschritt vorgegebenen Sollwerte, also die Kreisstromsollwerte Ikrl, Ikr2, Ikr2 zum Festlegen der Kreisströme, die Anteile der Zweigströme . sind, und die Symmetrie- rungsstromsollwerte Ibalpl, ... , Ibaln3 zum Festlegen eines
Symmetrierungsstromes, werden gemeinsam mit dem durch Messung ermittelten Phasenmodulzweigstrommesswert Izwg aufsummiert, wobei deren Summenwert dem besagten erweiterten Zweigstromwert IpI,..., In3 entspricht. Der erweitere Zweigstromwert wird anschließend zweckmäßigerweise einem Regler zugeführt, der daraus Zweigspannungszwischensollwerte Uzwg erzeugt.
Vorteilhafterweise umfassen die Zweigspannungszwischensoll- werte eine Asymmetriesollspannung Uasym.
Gemäß einer diesbezüglich zweckmäßigen Weiterentwicklung wird die Asymmetriesollspannung Uasym durch Messen der Spannung zwischen einem positiven Gleichstromanschluss und Erde unter Gewinnung eines positiven Gleichspannungswertes Udp und durch Messen der Spannung zwischen einem negativen Gleichspannungs- anschluss und Erde unter Gewinnung eines negativen Gleichspannungswertes Udn, durch Bilden der Differenz der Beträge des positiven und des negativen Gleichspannungswerts unter Gewinnung einer Gleichspannungsdifferenz Δud und durch AnIe- gen der Gleichspannungsdifferenz Δud an den Eingang eines
Reglers unter Gewinnung der Asymmetriesollspannung am Ausgang des Reglers festgelegt.
Zweckmäßigerweise weisen die Zweigspannungszwischen-Sollwerte Balancierungsspannungs-Sollwerte übalpl, Ubalp2, Ubalp3, U- balnl, Ubaln2, Ubaln3 auf, wobei Energiespeicherspannungswer- te Uc, die den an den Energiespeichern abfallenden Spannungen entsprechen, erfasst werden, die Energiespeicherspannungs- werte Uc eines Phasenmodulzweiges 6pl, 6p2, 6p3, 6nl, 6n2, 6n3 unter Gewinnung von Zweigenergieistwerten Uc]F] pl,
Uc]F] p2, Uc]T] p3, Uc]F] nl, Uc]F] n2, Uc]F] n3 aufsummiert werden, die Zweigenergieistwerte Uc]TpI, Uc]F]p2, Uc]Tp3, Uc]TnI, UcJ] n2, UcYn3 miteinander verglichen und ein aus dem Vergleich abgeleiteter Wert an einen Regler übertragen wird und die Balancierungsausgleichsspannungen Ubalpl, Ubalp2, Ubalp3, Ubalnl, Ubaln2, Ubaln3 am Ausgang des Regler abgegriffen werden. Bei der Bildung der Zweigenergieistwerte werden alle Submodule eines Submodulzweiges berücksichtig unabhängig davon, ob diese zugeschaltet sind oder nicht. Die Zweigenergieistwerte stellen somit ein Maß der Energie dar, die in einem Phasenmodulzweig gespeichert ist. Der Fachmann erkennt, dass es in diesem Zusammenhang auch möglich ist, anstelle der an den Energiespeichern abfallenden Spannungen die Quadrate dieser Spannungen aufzusummieren und auf diese Weise den Zweigenergieistwert zu bilden. Ferner sei darauf hingewiesen, dass eine Symmetrierung der erfindungsgemäßen Vorrichtung auch mit dem weiter oben beschriebenen Symmetrierungsstromsollwerten Ibal erfolgen kann.
Vorteilhafterweise werden zur Bestimmung der Zweigspannungs- zwischensollwerte Uzwgpl, ... , Uzwgn3 erweitere Zweigstromwerte IpI,..., In3 als Eingangsgrößen der Regelung in einen Netz- stromanteil und in einen Kreisstromanteil zerlegt. Diese Zerlegung ermöglicht einen übersichtlichen Aufbau der Regelungsschritte, die von der Stromregeleinheit durchlaufen werden.
Vorteilhafterweise wird jeder erweitere Zweigstromwert IpI,..., In3 unabhängig von den restlichen Zweigstromwerten IpI,..., In3 geregelt. Dies bedeutet, dass jeder erweitere Zweigstromwert beispielsweise gemeinsam mit zweckmäßigen Sollwerten jeweils einem einzigen Regler zugeführt wird. Am Ausgang des Reglers können die Zweigspannungs- zwischensollwerte Uzwgpl, ... ,Uzwgn3 abgegriffen werden.
Gemäß einer weiteren vorteilhaften Ausgestaltung der Erfin- düng werden durch Messen der wechselspannungsseitigen Phasen- strörαe Phasenstromwerte II, 12, 13 und durch Messen der wechselspannungsseitigen Phasenspannungen der Phasenmodülzweige Phasenspannungswerte Ul, U2, U3 gewonnen, aus den Phasen- stromwerten II, 12, 13 und den Phasenspannungswerten Ul, U2, U3 in Abhängigkeit von Sollwerten mittels eines Reglers
Hilfsstromwerte IHaI, IHbe bestimmt, die Hilfsstromwerte I- HaI, IHbe zu den erweiterten Zweigstromwerten IpI,..., In3 unter Gewinnung von Hilfssummen oder Hilfsdifferenzen hinzu addiert beziehungsweise von diesen abgezogen, wobei die Hilfs- summen und die Hilfsdifferenzen an den Eingang eines Reglers gelegt werden und wobei am Ausgangs des besagten Reglers die Zweigspannungszwischensollwerte Uzwgpl, ... ,Uzwgn3 abgegriffen werden. Dabei ist der Regler beispielsweise ein Proportionalregler.
Weitere zweckmäßige Ausgestaltungen und Vorteile der Erfindung sind Gegenstand der nachfolgenden Beschreibung von Ausführungsbeispielen der Erfindung unter Bezug auf die Figuren der Zeichnung, wobei gleiche Bezugszeichen auf gleich wirken- de Bauteile verweisen und wobei
Figur 1 ein Ausführungsbeispiel einer erfindungsgemäßen Vorrichtung in einer schematischen Darstellung,
Figur 2 eine Ersatzbilddarstellung eines Submoduls einer Vorrichtung gemäß Figur 1, Figur 3 die Struktur der Regelungsmittel einer Vorrichtung gemäß Figur 1,
Figur 4 eine Linearkombination von Zweigspannungszwi- schensollwerten zur Ermittlung der Zweigspannungssollwerte für die Ansteuereinheiten in schematischer Darstellung,
Figur 5 eine schematische Darstellung der Ermittlung von Netzphasenspannungssollwerten Unetz,
Figur 6 eine schematische Darstellung zur Verdeutlichung des Verfahrensschrittes zur Ermittelung von ZweigspannungsZwischensollwerten Uzwg aus erweiterten Zweigstromwerten,
Figur 7 eine schematische Darstellung zur Bestimmung der erweiterten Zweigstromwerte Ip gemäß Figur 6,
Figur 8 eine schematische Darstellung einer Möglichkeit, Kreisstromsollwerte Ikr zu erzeugen,
Figur 9 eine schematische Darstellung zur Bestimmung eines Gleichsspannungssollwertes Udc,
Figur 10 eine Übersicht zur Verdeutlichung der Bestimmung der SymmetrierungsSpannung Uasym,
Figur 11 eine weitere Möglichkeit zur Erzeugung von ZweigspannungsZwischensollwerten Uzwg,
Figur 12 eine weitere Möglichkeit zur Ermittlung von Zweigspannungszwischensollwerten üzwg und Figur 13 eine weitere Möglichkeit zur Ermittlung von
Zweigspannungszwischensollwerten Uzwg zeigen.
Figur 1 zeigt ein Ausführungsbeispiel, der erfindungsgemäßen Vorrichtung 1, die aus drei Phasenmodulen 2a, 2b und 2c zusammengesetzt ist. Jedes Phasenmodul 2a, 2b und 2c ist mit einer positiven Gleichspannungsleitung p sowie mit einer negativen Gleichspannungsleitung n verbunden, so dass jedes Phasenmodul 2a, 2b, 2c zwei Gleichspannungsanschlüsse aufweist. Ferner ist für jedes Phasenmodul 2a, 2b und 2c jeweils ein Wechselspannungsanschluss 3i, 32 und 33 vorgesehen. Die Wechselspannungsanschlüsse 3i, 32 und 3ß sind über einen Transformator 4 mit einem dreiphasigen Wechselspannungsnetz 5 verbunden. An den Phasen des Wechselspannungsnetzes 5 fallen die Phasenspannungen Ul, Ü2 und U3 ab, wobei Netzströme InI, In2 und In3 fließen. Der wechselspannungsseitige Phasenstrom eines jeden Phasenmoduls wird mit II, 12 und 13 bezeichnet. Der Gleichspannungsstrom ist Id- Zwischen jedem der Wechselspannungsanschlüsse 3i, 32 oder 33 und der positiven Gleichspan- nungsleitung p erstrecken sich Phasenmodulzweige βpl, 6p2 und 6p3. Zwischen jedem Wechselspannungsanschluss 3i, 32, 33 und der negativen Gleichspannungsleitung n sind die Phasenmodulzweige 6nl, 6n2 und 6n3 ausgebildet. Jeder Phasenmodulzweig βpl, 6p2, 6p3, 6nl, 6n2 und 6n3 besteht aus einer Reihen- Schaltung aus in Figur 1 nicht ausführlich dargestellten Sub- modulen und einer Induktivität, die in Figur 1 mit LKr bezeichnet ist.
In Figur 2 ist die Reihenschaltung der Submodule 7 und insbe- sondere der Aufbau der Submodule durch ein elektrisches Ersatzschaltbild genauer dargestellt, wobei in Figur 2 lediglich der Phasenmodulzweig βpl herausgegriffen wurde. Die restlichen Phasenmodulzweige sind jedoch identisch aufgebaut. Es ist erkennbar, dass jedes Submodu! 7 zwei in Reihe ge- schaltete abschaltbare Leistungshalbleiter Tl und T2 aufweist. Abschaltbare Leistungshalbleiter sind beispielsweise so genannte IGBTs, GTOs, IGCTs oder dergleichen. Diese sind dem Fachmann als solche bekannt, so dass eine ausführliche Darstellung an dieser Stelle entfallen kann. Jedem abschaltbaren Leistungshalbleiter Tl, T2 ist eine Freilaufdiode Dl, D2 antiparallel geschaltet. Parallel zur Reihenschaltung der abschaltbaren Leistungshalbleiter Tl, T2 beziehungsweise der Freilaufdioden Dl und D2 ist ein Kondensator 8 als Energie- Speicher geschaltet. Jeder Kondensator 8 ist unipolar aufgeladen. An den zweipoligen Anschlussklemmen Xl und X2 jedes Submoduls -7 können nunmehr zwei Spannungszustände erzeugt werden. Wird von einer Ansteuereinheit 9 beispielsweise ein Ansteuersignal erzeugt, mit dem der abschaltbare Leistungs- halbleiter T2 in seine Durchgangsstellung überführt wird, in der ein Stromfluss über den Leistungshalbleiter T2 ermöglicht ist, fällt an den Klemmen Xl, X2 des Submoduls 7 die Spannung null ab. Dabei befindet sich der abschaltbare Leistungshalbleiter Tl in seiner Sperrstellung, in der ein Stromfluss über den abschaltbaren Leistungshalbleiter Tl unterbrochen ist.
Dies verhindert die Entladung des Kondensators 8. Wird hingegen der abschaltbare Leistungshalbleiter Tl in seine Durchgangsstellung, der abschaltbare Leistungshalbleiter T2 jedoch in seine Sperrsteilung überführt, liegt an den Klemmen Xl, X2 des Submoduls 7 die volle Kondensatorspannung Uc an.
Das Ausführungsbeispiel der erfindungsgemäßen Vorrichtung gemäß Figur 1 und 2 wird auch als so genannter Multi-Level- Stromrichter bezeichnet. Ein solcher Multi-Level-Stromrichter ist beispielsweise zum Antrieb elektrischer Maschinen, wie beispielsweise Motoren oder dergleichen, geeignet. Darüber hinaus eignet sich ein solcher Multilevelstromrichter auch für einen Einsatz im Bereich der Energieverteilung und - Übertragung. So dient die erfindungsgemäße Vorrichtung bei- spielsweise als Kurzkupplung, die aus zwei gleichspannungs- seitig miteinander verbundenen Stromrichtern besteht, wobei die Stromrichter jeweils mit einem Wechselspannungsnetz verbunden sind. Solche Kurzkupplungen werden zum Energieaus- tausch zwischen zwei Energieverteilungsnetzen eingesetzt, wobei die Energieverteilungsnetze beispielsweise eine unterschiedliche Frequenz, Phasenlage, Sternpunktbehandlung oder dergleichen aufweisen. Darüber hinaus kommen Anwendungen im Bereich der Blindleistungskompensation, als so genannte FACTS (Flexible AC Transmission Systems) in Betracht. Auch die
Hochspannungsgleichstromübertragung über lange Strecken hinweg ist mit solchen Multilevelstromrichtern denkbar. Aufgrund der Fülle der unterschiedlichen Anwendungsmöglichkeiten ergeben sich viele unterschiedliche Betriebsspannungen, an welche die jeweilige erfindungsgemäße Vorrichtung anzupassen ist. Aus diesem Grunde kann die Anzahl der Submodule von einigen wenigen bis hin zu mehreren hundert Submodulen 7 variieren. Um für diese unterschiedlich hohe Anzahl von Submodulen 7 auf Regelungsmittel zurück greifen zu können, die einfach an die unterschiedliche Anzahlen von Submodulen 7 anpassbar sind, weist die Erfindung eine gegenüber dem Stand der Technik veränderte Struktur auf.
Die besagte Struktur der Regelungsmittel ist in Figur 3 ver- deutlicht. So umfassen die Regelungsmittel eine Stromregeleinheit 10 sowie Ansteuereinheiten 9pl, 9p2, 9p3 und 9nl und 9n2 und 9n3. Jede der Ansteuereinheiten ist einem Phasenmo- dulzweig 6pl, 6p2, 6p3, 6nl, 6n2 beziehungsweise 6n3 zugeordnet. Die Ansteuereinheit 9pl ist beispielsweise mit jedem Submodul 7 des Phasenmodulzweiges βpl verbunden und erzeugt die Steuersignale für die abschaltbaren Leistungshalbleiter Tl, T2. In jedem Submodul 7 ist ein figürlich nicht dargestellter Submodulspannungssensor vorgesehen. Der Submodul- spannungssensor dient zur Erfassung der an dem Kondensator 8 des Submoduls 7 abfallenden Kondensatorspannung unter Gewinnung eines Kondensatorspannungswertes Oc als Submodulistwert . Der Kondensatorspannungswert Uc wird der jeweiligen Ansteuer- einheit, hier 9pl, zur Verfügung gestellt. Die Ansteuerein- heit 9pl erhält somit die Kondensatorspannungswerte sämtlicher Submodule 7 des ihr zugeordneten Phasenmodulzweiges 6pl und summiert diese zum Erhalt eines Zweigenergieistwertes Uc]TpI, der ebenfalls dem Phasenmodulzweig 6pl zugeordnet ist. Darüber hinaus ermittelt jede Auswerteeinheit 9p einen Submodulistwert. Der Submodulistwert wird aus der Summe der aktiven Submodule berechnet, an deren Ausgangsklemmen Xl und X2 die Kondensatorspannung Uc abfällt. Inaktive Submodule 7, an deren Ausgangsklemmen Xl, X2 die Spannung null abfällt, werden bei der Bildung des Submodulistwertes nicht berück- sichtig. Insbesondere der Zweigenergieistwert Uc^pI wird der Stromregeleinheit 10 zugeführt.
Im Übrigen ist die Stromregeleinheit 10 mit verschiedenen figürlich nicht dargestellten Messsensoren verbunden. So dienen wechselspannungsseitig der Phasenmodule 2a, 2b, 2c angeordnete Stromwandler zum Erzeugen und Zuführen von Phasenstrom- messwerten II, 12, 13 und an jedem Phasenmodul angeordnete Stromwandler zum Erzeugen und Zuführen von Phasenmodulzweig- strommesswerten Izwg sowie ein im Gleichspannungskreis des Stromrichters angeordnete Stromwandler zum Bereitstellen von Gleichstrommesswerten Id. Spannungswandler des Wechselstromnetzes stellen Phasenspannungsmesswerte der Phasenspannungen Ul, U2, U3 und Gleichspannungswandler positive Gleichspannungsmesswerte der positiven Gleichspannung Udp und negative Gleichspannungsmesswerte der negativen Gleichspannung Udn bereit, wobei die positiven Gleichspannungsmesswerte Udp, einer zwischen dem positiven Gleichspannungsanschluss p und Erde abfallenden Gleichspannung und die negativen Gleichspannungs- messwerte Udn, einer zwischen dem negativen Gleichspannungs- anschluss und Erde abfallenden Spannung entsprechen. Die negative Gleichspannung ist negativ. Die positive Gleichspannung ist positiv.
Der Stromregeleinheit 10 werden ferner Sollwerte zugeführt. In dem in Figur 3 gezeigten Ausführungsbeispiel werden der Regelungseinheit 10 ein Wirkstromsollwert Ipref sowie ein Blindstromsollwert Iqref zugeführt. Ferner wird ein Gleich- spannungssollwert Udref an den Eingang der Stromregeleinheit 10 gelegt. Statt des Gleichspannungssollwertes Udref kann auch ein Gleichstromsollwert Idref für die weitere Regelung verwendet werden. Diese beiden Sollwerte sind somit gegeneinander austauschbar.
Die Sollwerte Ipref, Iqref und Udref sowie die besagten Messwerte treten unter Einsatz verschiedener Regler in Wechselwirkung miteinander, wobei für jede Ansteuereinheit 9pl, 9p2, 9p3, 9nl, 9n2 und 9n3 ein Zweigspannungssollwert Uplref, Up2ref, Up3ref, Unlref, Un2ref, Un3ref erzeugt wird. Jede Ansteuereinheit 9 erzeugt Steuersignale für die ihr zugeordneten Submodule 7, so dass die an der Reihenschaltung der Sub- module anfallende Spannung UpI, Up2, Up3, UnI, Un2, Un3 dem jeweiligen Zweigspannungssollwert Uplref, Up2ref, Up3ref, Unlref, Un2ref, Un3ref möglichst entspricht. Die Spannung
UpI, Up2, Up3, UnI, Un2, Un3 wird als Submodulsummenistwert bezeichnet .
Die übrigen Figuren verdeutlichen wie die Stromregeleinheit 10 aus ihren Eingangswerten geeignete Zweigspannungssollwerte Uplref, Up2ref, Up3ref, Unlref, Un2ref, Un3ref bildet. So zeigt Figur 4, dass beispielsweise der Zweigspannungssollwert Uplref durch Linearkombination eines Netzphasenspannungssoll- wertes Unetzl, eines Zweigspannungszwischensollwertes Uzwgpl, eines Gleichspannungssollwertes Öde, eines Symmetrie- rungsspannungssollwertes Uasym und eines Balancierungsspan- nungssollwertes Udalpl berechnet wird. Dies erfolgt für jeden der Phasenmodulzweige 6pl, 6p2, 6p3, 6nl, 6n2, 6n3 unabhängig voneinander.
Figur 5 verdeutlicht, wie die Netzphasenspannungssollwerte Unetzl, Unetz2 und Unetz3 aus den Phasenstrommesswerten II, 12 und 13 und aus den Phasenspannungsmesswerten Ul, U2, U3 bestimmt werden. Da die Phasenstrommesswerte in Summe Null ergeben, können die Phasenstrommesswerte 11, 12, 13 der drei Phasen in ein zweiphasiges Vektorsystem α, ß projiziert werden. Dies erfolgt mittels der Umwandlungseinheit 11. Entsprechendes gilt für die Phasenspannungsmesswerte Ul, U2, U3. An- schließend werden die Messwerte einem Regler 12 zugeführt, der in Abhängigkeit des Wirkstromsollwertes Ipref sowie in Abhängigkeit eines Blindstromsollwertes Iqref die Netzphasenspannungssollwerte Unetzl, Unetz2, Unetz3 erzeugt, wobei wieder eine Umwandlungseinheit 11 zum Überführen der zweidimen- sionalen Netzphasenspannungssollwerte in dreidimensionale Netzphasenspannungsollwerte dient .
Figur 6 zeigt wie die in Figur 4 erstmals benannten Zweig- spannungszwischensollwerte Uzwgpl, Uzwgp2 und Uzwgp3 bezie- hungsweise Uzwgnl, Uzwgn2 und Uzwgn3 gebildet werden. Dies erfolgt ausgehend von erweiterten Zweigstromwerten IpI, Ip2, Ip3, InI, In2, In3, deren Bestimmung nachfolgend beschrieben wird. Die sechs erweiterten Zweigstromwerte IpI, Ip2, Ip3, InI, In2, In3 werden wieder durch eine Umwandlungseinheit 11, wie zuvor beschrieben, in vier erweiterte zweidimensionale
Zweigstromwerte et, ß umgewandelt. Anschließend sorgt jeweils ein Regler 12, bei dem es sich hier um einen einfachen Proportionalregler handelt, gemeinsam mit der Umwandlungseinheit 11 für die Umwandlung in so genannten Zweigspannungszwischen- Sollwerte üzwgpl, Uzwgp2 und Uzwgp3 beziehungsweise Uzwgnl, Uzwgn2 und Uzwgn3.
Die Ermittlung der erweiterten Zweigstromwerte IpI, Ip2, Ip3, InI, In2, In3 ist in Figur 7 verdeutlicht. Die erweiterten Zweigstromwerte IpI, Ip2, Ip3, InI, In2, In3 bezogen auf den Phasenmodulzweig 6pl sind nichts anderes als die Summe aus von einem Stromwandler gebildeten Phasenmodulzweigstrommess- werten Izwgpl, einem Kreisstromsollwert Ikrl und einem Sym- metrierungsstromsollwert Iball. Die Kreisstromsollwerte Ikrl, Ikr2 und Ikr3 können über eine figürlich nicht dargestellte Leitstelle dynamisch vorgegeben werden. Entsprechendes gilt für die Symmetrierungsstromsollwerte Ibalpl, Ibalp2 und I- balp3. Jeder erweiterte Zweigstromwert IpI umfasst somit so- wohl Mess- als auch Sollwerte. Über die Symmetrierungssoll- werte ist eine symmetrische Verteilung der in den Phasenmo- dulzweigen jeweils gespeicherten Energie bereitgestellt.
Figur 8 zeigt ein vorteilhaftes Beispiel zur Erzeugung geeig- neter Kreisstromsollwerte Ikrl, Ikr2, Ikr3. Zunächst wird die Kreisfrequenz der Netzspannung ω mit einem Faktor 2 multipliziert. Anschließend wird der Kosinus beziehungsweise der negative Sinus des Argumentes 2ω gebildet und anschließend mit einer Amplitude Amp multipliziert. Anschließend wird aus den beiden Größen unter Einsatz einer Umwandlungseinheit 11 für jedes der drei Phasenmodule ein jeweiliger Kreisstromsollwert Ikrl, Ikr2, Ikr3 bestimmt.
Figur 9 verdeutlicht die Ermittlung des Gleichspannungssoll- wertes Udc. Udc wird ausgehend von einem gemessenen Gleichstromwert Id und einem Referenzgleichstromwert Idsoll bestimmt, wobei die Ermittlung des Referenzgleichstromwertes Idsoll nachfolgend beschrieben werden wird. Zunächst wird aus dem gemessenen Gleichstromwert Id und dem Referenzgleich- stromwert Idsoll die Differenz gebildet. Die Differenz wird anschließend einem Proportionalregler oder einem proportional/integral also PI-Regler 12 zugeführt, an dessen Ausgang der Gleichspannungssollwert Udc abgegriffen werden kann.
Im unteren Teil der Figur 9 ist dargestellt, wie der Referenzgleichstromwert Idsoll ermittelt werden kann. Dies erfolgt zunächst unter Bildung eines Gesamtenergiemesswertes uc, der gleich der Summe aller Kondensatorspannungswerte Uc der erfindungsgemäßen Vorrichtung 1 ist. Der Gesamtenergie- messwert uc stellt daher ein Maß für die in dem jeweiligen Stromrichter gespeicherten Energie dar. Ein solches Maß lässt sich auf beliebige andere Weise herleiten. Um die besagte E- nergie nicht zu groß werden zu lassen, wird der Gesamtener- giemesswert uc mit einem Summenspannungssollwert ucref verglichen, indem die Differenz durch einen Differenzbildner 13 gebildet wird. Die besagte Differenz wird anschließend einem Regler 12 zugeführt, an dessen Ausgang ein Gesamtenergieab- weichungsstromwert ablesbar ist, der einem Summenbilder 14 zugeführt wird. Der Summenbildner 14 bildet die Summe aus dem Gesamtenergieabweichungsstromwert und einem der Stromregeleinheit bekannten Gleichstromsollwert Idref unter Gewinnung des Referenzgleichstromsollwertes Idsoll. Durch diese Bestimmung des Gleichspannungssollwertes Udc kann daher die Rege- lung das Speichern einer zu hohen Energie in den Kondensatoren 8 des Stromrichters 1 vermeiden.
Figur 10 verdeutlicht physikalisch die Bedeutung einer Asymmetriespannung Uasym. In Figur 10 ist in gestrichelten Linien wechselspannungsseitig der Phasenmodule der erfindungsgemäßen Vorrichtung 1 ein Sternpunktbildner 15 gezeigt. Im Gleichspannungskreis p,n ist ebenso in gestrichelten Linien ein Spannungsteiler 16 erkennbar, der beidseitig des Potenzialpunktes NGs den gleichen Widerstand aufweist. Die Asymmetrie- Spannung Uasym ist die zwischen dem Sternpunkt NΪU des Sternpunktbildners 15 und dem Potenzialpunkt NGs abfallende Spannung. Diese wird zunächst durch Messen der zwischen der positiven Gleichspannung p und Erde abfallenden Spannung unter Gewinnung eines positiven Gleichspannungswertes Udp und durch Messen der zwischen dem negativen Pol der Gleichspannung und Erde abfallenden Spannung unter Gewinnung eines negativen Gleichspannungswertes üdn ermittelt. Anschließend wird die Differenz der Beträge des negativen Gleichspannungswertes Udn und des positiven Gleichspannungswertes Udp gebildet, woraus sich eine Gleichspannungsdifferenz ΔUd ergibt. Die Gleichspannungsdifferenz Δüd wird an den Eingang eines Reglers gelegt, wobei dem Regler ferner eine Gleichspannungssolldifferenz vorgegeben wird, so dass am Ausgang des Reglers ein Wert erzeugt ist, mit dem die Regelung die Differenz zwischen
Gleichspannungsdifferenz und Gleichspannungssolldifferenz minimiert. Am Ausgang des Reglers kann die Symmetrierungs- sollspannung Uasym abgegriffen und gemäß der in Figur 4 verdeutlichten Linearkombination anderen Spannungszwischen- Sollwerten aufgeschaltet werden.
Die Balancierungsspannungssollwerte Ubalpl, Ubalp2, Ubalp3, Ubalnl, Ubaln2 und Ubaln3 werden wie folgt ermittelt: Zunächst werden die Kondensatorspannungswerte Uc durch Messen der an den Kondensatoren der Submodule 7 abfallenden Spannung ermittelt und unter Gewinnung von Zweigenergieistwerten Uc^pI, UcJ] p2, UcJ] p3, UcJ] nl, UcJ] n2, UcJ] n3 aufsummiert.
Hierbei werden alle Submodule des jeweiligen Phasenmodulzwei- ges berücksichtig und zwar unabhängig davon, ob das jeweilige Submodul zugeschaltet ist oder nicht. Der Zweigenergieistwert ist somit ein Maß der in dem Phasenmodul gespeicherten Energie. Die Zweigenergieistwerte sind daher jeweils einem Pha- senmodulzweig 9pl, 9p2, 9p3, 9nl, 9n2 und 9n3 zugeordnet. Die Zweigenergieistwerte Uc^pI, Uc^Tp2, Uc^p3, Uc]TnI, Uc]>]n2, UcJ] n3 werden miteinander verglichen und aus dem Vergleich ein Wert abgeleitet. Dieser Wert wird anschließend mit einem Sollwert an einen Regler übertragen, an dessen Ausgang die Balancierungsspannungssollwerte Ubalpl, Ubalp2, Ubalp3, U- balnl, Übaln2 und Übaln3 abgegriffen werden können.
Figur 11 zeigt eine weitere Möglichkeit zur Ermittlung der Zweigspannungszwischensollwerte Uzwgpl, Üzwgp2 und Üzwgp3 ausgehend von den erweiterten Zweigstromwerten IpI, Ip2, Ip3 und InI, In2 und In3. Zunächst werden die erweiterten Zweigstromwerte IpI, Ip2, Ip3 und InI, In2 und In3 durch Umwandlungseinheiten 11 von einem dreidimensionalen Vektorraum in einen zweidimensionalen Vektorraum α,ß überführt. Anschlie- ßend wird die Regelung für einen Netzstromanteil und einen
Kreisstromanteil unabhängig voneinander durchgeführt. So werden durch geeignete Linearkombinationen Netzstromanteile iNal und der Netzstromanteil iNbe gebildet und einem Regler 12 mit zwei nicht dargestellten Sollwerten zugeführt. Der Regler 12 bildet an seinem Ausgang für den Netzstromanteil ■ einen α-Wert uNal beziehungsweise einen ß-Wert uNbe. Für den Kreisstromanteil erfolgt die Regelung entsprechend. Man erhält Kreisstromwerte ikral und ikrbe, wobei am Ausgang des in Figur 11 unten dargestellten Reglers 12 Netzspannungskreisanteile ukral und ukrbe abgegriffen werden können. Durch geeignete
Linearkombination und Umwandlung in den dreiphasigen Raum erhält man die Zweigspannungszwischensollwerte Uzwgpl bis Uzwgn3.
Abweichend zu dem in Figur 11 vorgeschlagenen Verfahren können die Zweigspannungszwischensollwerte Uzwgpl bis Uzwgn3 ausgehend von den erweiterten Stromwerten IpI, Ip2 und Ip3 auch unabhängig voneinander ermittelt werden. Hierzu ist - wie in Figur 12 verdeutlich ist - für jeden erweiterten Zweigstromwert IpI bis In3 ein separater Regler 12 vorgesehen, wobei die erweiterten Zweigstromwerte IpI bis In3 wie oben ausgeführt ermittelt wurden. Bei dem Regler 12 handelt es sich beispielsweise um einen Proportionalregler.
Figur 13 zeigt ein weiteres Verfahren zur Ermittlung der Zweigspannungszwischensollwerte Uzwgpl, ... ,Uzwgn3. Zunächst werden die Phasenstrommesswerte II, 12 und 13 und Phasenspan- nungsmesswerte Ul, U2 und U3 vom Dreiphasenraum in ein Zweiphasenraum ex, ß überführt und die jeweiligen umgewandelten Messwerte einem Vektorregler 12 zugeführt. Dem Regler 12 werden ferner ein Wirkstromsollwert Ipref sowie der Blindstromsollwert Iqref zugeführt. Der Vektorregler 12 erzeugt an sei- nem Ausgang Hilfsstromwerte IHaI und IHbe nach der Maßgabe, dass die Differenz zwischen dem Wirkstromsollwert und dem aus den Messwerten ermittelten Wirkstrommesswert und gleichzeitig die Differenz aus Blindstrommesswerten und dem Blindstromsollwert minimal wird. Die Hilfsstromwerte IHaI, IHbe werden anschließend, wie in Figur 13 angedeutet, linear mit erweiterten Zweigstromwerten IpI,..., Ip3 kombiniert. Die erweiterten Zweigstromwerte IpI bis In3 umfassen, wie bereits ausgeführt wurde, Sollstromwerte, mit denen der Regler 12 zweidimensionale Zweigspannungswerte α,ß und die Umwandlungseinheit 11 schließlich dreiphasige Zweigspannungszwischensollwerte Uzwgpl bis Uzwgp3 erzeugt.

Claims

Patentansprüche
1. Vorrichtung (1) zum ümrichten eines elektrischen Stromes
- mit wenigstens einem Phasenmodul (2a, 2b, 2c), das einen Wechselspannungsanschluss (3χ,32,33) und wenigstens einen
Gleichspannungsanschluss (p,n) aufweist, wobei zwischen jedem Gleichspannungsanschluss (p,n) und jedem Wechselspannungsanschluss (3i,32,33) ein Phasenmodulzweig
(6pl, 6p2, 6p3, βnl, 6n2, 6n3) ausgebildet ist, und wobei jeder Phasenmodulzweig (βpl, 6p2, 6p3, 6nl, 6n2, 6n3) über eine Reihenschaltung aus Submodulen (7) verfügt, die jeweils einen Energiespeicher (8) und wenigstens einen Leistungshalbleiter
(Tl, T2) aufweisen,
- mit Messsensoren zum Bereitstellen von Istwerten und - mit Regelungsmitteln (9,10), die mit den Messsensoren verbunden und zum Regeln der Vorrichtung (1) in Abhängigkeit der Istwerte und vorgegebener Sollwerte eingerichtet sind, d a d u r c h g e k e n n z e i c h n e t , dass die Regelungsmittel (9,10) eine Stromregeleinheit (10) und jeweils einem Phasenmodulzweig zugeordnete Ansteuereinheiten aufweisen, wobei die Stromregeleinheit (16) zum Bereitstellen von Zweigsollwerten für die Ansteuereinheiten (9) eingerichtet ist und die Ansteuereinheiten zwischen die Submodule (7) und die Stromregeleinheit (16) geschaltet und zur Erzeugung von Steuersignalen für die besagten Submodule eingerichtet sind.
2. Vorrichtung (1) nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , dass jedes Submodul (7) über einen Submodulsensor verfügt, der mit der dem Submodul (7) zugeordneten Ansteuereinheit (9) verbunden ist und einen Submodul-Istwert bereitstellt.
3. Vorrichtung (1) nach Anspruch 2, d a d u r c h g e k e n n z e i c h n e t , dass der Submodul-Istwert ein Energiespeicherspannungswert Uc ist, der einer an dem Energiespeicher (8) des jeweiligen Submoduls (7) abfallenden Spannung entspricht.
4. Vorrichtung (1) nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass jede Ansteuereinheit (8) mit allen Submodulsensoren des ihr zugeordneten Phasenmodulzweiges (6pl, 6p2, 6p3, 6nl, 6n2, 6n3) verbunden ist und zum Bereitstellen eines Summen-Istwertes für die Stromregeleinheit eingerichtet ist, wobei der Summen- Istwert die Summe aller Submodul-Istwerte des jeweiligen Phasenmodulzweiges ( 6pl, 6p2, 6p3, 6nl, 6n2, 6n3) ist.
5. Vorrichtung (1) nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass die Stromregeleinheit (10) zum Bereitstellen eines Zweigspan- nungs-Sollwertes üplref für jede Ansteuereinheit (5) eingerichtet ist.
6. Vorrichtung (1) nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass die Messsensoren Zweigstromsensoren umfassen, die zum Messen von Phasenzweigströmen Izwg eingerichtet sind, die in den Phasenmodulzweigen (6pl, 6p2, 6p3, βnl, 6n2, 6n3) fließen.
7. Vorrichtung (1) nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass die Stromregeleinheit (10) zum Regeln der Phasenzweigströme Izwg eingerichtet ist.
8. Vorrichtung (1) nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass die Sollwerte einen Blindstrom-Sollwert Iqref und einen Wirkstrom-Sollwert Ipref und/oder einen Gleichstrom-Sollwert Id umfassen.
9. Verfahren zum Umrichten eines Stromes mittels eines Umrichters (1), der wenigstens ein Phasenmodul (2a, 2b, 2c) mit wenigstens einem Gleichspannungsanschluss (p,n) und einem Wechselspannungsanschluss (3i,32,33) aufweist, wobei zwischen jedem Gleichspannungsanschluss und dem Wechselspannungsan- Schluss ein Phasenmodulzweig (βpl, 6p2, 6p3, 6nl, 6n2, 6n3) ausgebildet ist, der eine Reihenschaltung aus Submodulen (7) aufweist, die jeweils einen Energiespeicher (8) und wenigstens einen Leistungshalbleiter (Tl, T2) aufweisen, bei dem eine Stromregeleinheit (10) mit Istwerten und mit Sollwerten ver- sorgt wird, die Stromregeleinheit (10) in Abhängigkeit der
Istwerte und der Sollwerte mittels Regler Zweigsollwerte bestimmt, die jeweils einem Phasenmodulzweig
(βpl, 6p2, 6p3, 6nl, 6n2, 6n3) zugeordnet sind, die Zweigsollwerte jeweils einer Ansteuereinheit (9) zugeführt werden, und jede Ansteuereinheit (9) in Abhängigkeit der Modulzweig-Sollwerte Steuersignale für die ihr zugeordneten Submodule (7) erzeugt.
10. Verfahren nach Anspruch 9, d a d u r c h g e k e n n z e i c h n e t , dass die Istwerte Zweigenergieistwerte umfassen, die von den Ansteuereinheiten (9) zur Stromregeleinheit (10) übertragen werden, wobei die Zweigenergieistwerte durch Aufsummieren von in den Submodulen erfassten Submodul-Istwerten gebildet werden.
11. Verfahren nach einem der Ansprüche 9 bis 10, d a d u r c h g e k e n n z e i c h n e t , dass die Zweig-Sollwerte durch eine Linearkombination von Span- nungs-Zwischensollwerten bebildet werden.
12. Verfahren nach Anspruch 11, d a d u r c h g e k e n n z e i c h n e t , dass die Spannungs-Zwischensollwerte einen Gleichspannungs- Sollwert (Udc) umfassen, wobei der Gleichspannungs-Sollwert (üdc) in Abhängigkeit der Differenz zwischen einem vorgegebenen Referenzgleichstromwert Idsoll und einem durch Messung gewonnenen Gleichstromesswert Id bestimmt wird.
13. Verfahren nach Anspruch 12, d a d u r c h g e k e n n z e i c h n e t , dass eine Gesamtspannungsdifferenz durch Bilden der Differenz zwischen einem vorgegebenen Summenspannungs-Sollwert ucref und einem durch Aufsummieren der an allen Energiespeichern des Umrichters abfallenden Spannungen ermittelten Gesamtenergie- messwert uc ermittelt wird, und die Gesamtspannungsdifferenz einem Regler (12) unter Gewinnung eines Gesamtenergieabwei- chungsstromwertes zugeführt wird, wobei der Gesamtenergieab- weichungsstromwert mit einem Gleichstrom-Sollwert Idref unter Gewinnung des Referenzgleichstromwertes Idsoll aufsummiert wird.
14. Verfahren nach einem der Ansprüche 11 bis 13, d a d u r c h g e k e n n z e i c h n e t , dass die Spannungszwischensollwerte für jede Ansteuereinheit (5) einen Netzphasenspannungs-Sollwert Unetzl, Unetz2, Unetz3 umfassen.
15. Verfahren nach Anspruch 14, d a d u r c h g e k e n n z e i c h n e t , dass die Netzphasenspannungs-Sollwerte Unetzl, Unetz2, Unetz3 aus Phasenstromwerten II, 12, 13, die durch Messen der wechsel- spannungsseitigen Phasenströme der Phasenmodule (2a, 2b, 2c) gewonnen werden, in Abhängigkeit von Strom-Sollwerten mittels eines Reglers (12) bestimmt werden.
16. Verfahren nach Anspruch 14 oder 15, d a d u r c h g e k e n n z e i c h n e t , dass die Netzphasenspannungs-Sollwerte ünetzl, Ünetz2, Ünetz3 in Abhängigkeit von Phasenspannungswerten Ul, U2, U3, die durch Messen der wechselspannungsseitigen Phasenspannungen der Phasenmodule (2a, 2b, 2c) gewonnen werden, in Abhängigkeit von Sollwerten mittels eines Reglers (12) bestimmt werden.
17. Verfahren nach einem der Ansprüche 11 bis 16, d a d u r c h g e k e n n z e i c h n e t , dass die Spannungszwischen-Sollwerte für jeden Phasenmodulzweig (6pl, 6p2, 6p3, 6nl, 6n2, 6n3) einen Zweigspannungszwischen- Sollwert Uzwgpl,Uzwgp2,Uzwgp3,Uzwgnl,Uzwgn2, Uzwgn3 umfassen.
18. Verfahren nach Anspruch 17, d a d u r c h g e k e n n z e i c h n e t , dass die Zweigspannungszwischen-Sollwerte
Uzwgpl,Uzwgp2,Uzwgp3, üzwgnl, Uzwgn2,Uzwgn3 in Abhängigkeit von erweiterten Zweigstromwerten IpI, Ip2, Ip3, InI, In2, In3 mittels eines Reglers (12) bestimmt werden.
19. Verfahren nach Anspruch 18, d a d u r c h g e k e n n z e i c h n e t , dass j eder erweiterter Zweigstromwert IpI, Ip2, Ip3, InI, In2 , In3 durch Bilden der Summe aus einem Phasenmodulzweigstrommess- wert Izwgpl, Izwgp2, Izwgp3, Izwgnl, Izwgn2, Izwgn3, der durch Erfassen eines in dem jeweiligen Phasenmodulzweig (6pl, 6p2, 6p3, 6nl, 6n2, 6n3) fließenden Phasenmodulzweigstromes gewonnen wird, aus festgelegten Kreisstrom-Sollwerten Ikrl, Ikr2, Ikr3 und festgelegten aus Symmetrierungsstrom-
Sollwerten Ibalpl, Ibalp2, Ibalp3, Ibalnl, Ibaln2, Ibaln3 berechnet wird, wobei die Symmetrierungsstrom-Sollwerte I- balpl, Ibalp2, Ibalp3, Ibalnl, Ibaln2, Ibaln3 in Abhängigkeit der Zweigenergieistwerte der Phasenmodulzweige (6pl, 6p2, 6p3, βnl, 6n2, 6n3) bestimmt werden. .
20. Verfahren nach einem der Ansprüche 11 bis 19, d a d u r c h g e k e n n z e i c h n e t , dass die Zweigspannungszwischen-Sollwerte eine Asymmetrie- Sollspannung üasym aufweisen.
21. Verfahren nach einem der Ansprüche 20, d a d u r c h g e k e n n z e i c h n e t , dass die Asymmetrie-Sollspannung Uasym
- durch Messen der Spannung zwischen einem positiven Gleich- stromanschluss (p) und Erde unter Gewinnung eines- positiven Gleichspannungswertes Udp und durch Messen der Spannung zwi- sehen einem negativen Gleichspannungsanschlusses (n) und Erde unter Gewinnung eines negativen Gleichspannungswertes Udn,
- durch Bilden der Differenz der Beträge des positiven und des negativen Gleichspannungswertes unter Gewinnung einer Gleichspannungsdifferenz Δud, und - durch Anlegen der Gleichspannungsdifferenz Δud an den Eingang eines Reglers unter Gewinnung der Asymmetrie- Sollspannung Uasym am Ausgang des Reglers festgelegt wird.
22. Verfahren nach einem der Ansprüche 11 bis 21, d a d u r c h g e k e n n z e i c h n e t , dass die Zweigspannungszwischen-Sollwerte Balancierungsspannungs- Sollwerte Ubalpl,Ubalp2,Ubalp3, Ubalnl, Übaln2,übaln3 aufweisen, wobei Energiespeicherspannungswerte Uc, die den an den Energiespeichern (8) abfallenden Spannungen entsprechen, er- fasst werden, die Energiespeicherspannungswerte Uc eines Pha- senmodulzweiges (6pl, 6p2, 6p3, 6nl, 6n2, 6n3) unter Gewinnung von Zweigenergieistwerten UcV
Figure imgf000033_0001
, UcV n2, Uc]T n3 aufsummiert wer- den, die Zweigenergieistwerte
Uc^pI, Uc]£ p2,Uc]£p3, Uc]T nl, Uc]T n2,Uc]£n3 miteinander verglichen und ein aus dem Vergleich abgeleiteter Wert an einen Regler übertragen wird und die Balancierungsausgleichs- Spannungen Ubalpl, Ubalp2, Ubalp3,Ubalnl,Ubaln2,Ubaln3 am Ausgang des Regler abgegriffen wird.
23. Verfahren nach einem der Ansprüche 17 bis 19, d a d u r c h g e k e n n z e i c h n e t , dass zur Bestimmung der Zweispannungszwischensollwerte üzwgpl, ...Uzwgn3 erweiterte Zweigstromwerte IpI, Ip2,Ip3, InI, In2, In3 als Eingangsgrößen der Regelung in einen Netzstromanteil und einen Kreisstromanteil zerlegt werden.
24. Verfahren nach einem der Ansprüche 18, d a d u r c h g e k e n n z e i c h n e t , dass jeder erweiterter Zweigstromwert IpI, Ip2, Ip3, InI, In2, In3 unabhängig von den restlichen Zweigstromwerten IpI, Ip2, Ip3, InI, In2, In3 geregelt wird.
25. Verfahren nach einem der Ansprüche 18 oder 19, d a d u r c h g e k e n n z e i c h n e t , dass durch Messen der wechselspannungsseitigen Phasenströme Pha- senstromwerte 11,12,13 und durch Messen der wechselspannungsseitigen Phasenspannungen der Phasenmodulzweige Phasenspannungswerten ül,U2,ü3 gewonnen werden, aus den Phasenstromwer- ten 11,12,13 und den Phasenspannungswerten U1,U2,U3 in Abhängigkeit von Sollwerten mittels eines Reglers Hilfsstromwerte IHaI, IHbe bestimmt werden, die Hilfsstromwerte IHaI, IHbe zu den erweiterten Zweigstromwerten IpI, Ip2, Ip3, InI, In2, In3 unter Gewinnung von Hilfssummen oder Hilfsdifferenzen hinzuaddiert beziehungsweise von diesen abgezogen werden, wobei die Hilfssummen und/oder Hilfsdifferenzen an den Eingang eines Reglers (12) gelegt werden, wobei am Ausgang des besagten Reglers (12) die Zweigspannungszwischen-Sollwerte Uzwgpl,Uzwgp2,Uzwgp3,Uzwgnl,Uzwgn2,Uzwgn3 abgegriffen werden.
PCT/DE2006/002247 2006-12-08 2006-12-08 Steuerung eines modularen stromrichters mit verteilten energiespeichern WO2008067784A1 (de)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2009539595A JP5197623B2 (ja) 2006-12-08 2006-12-08 エネルギー蓄積器が配分されたモジュール式コンバータ
US12/517,693 US7960871B2 (en) 2006-12-08 2006-12-08 Control of a modular converter with distributed energy storage devices
PCT/DE2006/002247 WO2008067784A1 (de) 2006-12-08 2006-12-08 Steuerung eines modularen stromrichters mit verteilten energiespeichern
ES06828678T ES2701706T3 (es) 2006-12-08 2006-12-08 Controlador de un convertidor de corriente modular con acumuladores de energía eléctrica distribuidos
DE112006004197T DE112006004197A5 (de) 2006-12-08 2006-12-08 Steuerung eines modularen Stromrichters mit verteilten Energiespeichern
EP06828678.0A EP2100364B1 (de) 2006-12-08 2006-12-08 Steuerung eines modularen stromrichters mit verteilten energiespeichern
CA2671817A CA2671817C (en) 2006-12-08 2006-12-08 Control of a modular converter with distributed energy stores
PL06828678T PL2100364T3 (pl) 2006-12-08 2006-12-08 Sterowanie modułowym przetwornikiem prądu z rozdzielonym magazynowaniem energii
DK06828678.0T DK2100364T3 (en) 2006-12-08 2006-12-08 CONTROL OF A MODULAR CONVERTER WITH DISTRIBUTED ENERGY STORES
CN200680056559XA CN101548458B (zh) 2006-12-08 2006-12-08 具有分布式储能器的模块化变流器的控制

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/DE2006/002247 WO2008067784A1 (de) 2006-12-08 2006-12-08 Steuerung eines modularen stromrichters mit verteilten energiespeichern

Publications (1)

Publication Number Publication Date
WO2008067784A1 true WO2008067784A1 (de) 2008-06-12

Family

ID=38537943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2006/002247 WO2008067784A1 (de) 2006-12-08 2006-12-08 Steuerung eines modularen stromrichters mit verteilten energiespeichern

Country Status (10)

Country Link
US (1) US7960871B2 (de)
EP (1) EP2100364B1 (de)
JP (1) JP5197623B2 (de)
CN (1) CN101548458B (de)
CA (1) CA2671817C (de)
DE (1) DE112006004197A5 (de)
DK (1) DK2100364T3 (de)
ES (1) ES2701706T3 (de)
PL (1) PL2100364T3 (de)
WO (1) WO2008067784A1 (de)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009024224A1 (de) * 2009-06-08 2010-04-08 Siemens Aktiengesellschaft Verfahren und Vorrichtung zur Begrenzung einer auftretenden Systemschwingung bei einem Spannungszwischenkreis-Umrichter mit getakteter Einspeisung
DE102009019298A1 (de) 2009-04-27 2010-11-04 Siemens Aktiengesellschaft Verfahren zum Regeln eines Umrichters unter Berücksichtigung von Stell- und Messverzögerungen
WO2010145705A1 (en) * 2009-06-18 2010-12-23 Areva T&D Uk Limited Converter
DE102009034354A1 (de) * 2009-07-17 2011-01-27 Siemens Aktiengesellschaft Sternpunktreaktor
WO2011026927A1 (en) * 2009-09-04 2011-03-10 Abb Technology Ag A method and apparatus for calculating insertion indeces for a modular multilevel converter
WO2011036011A1 (de) 2009-09-25 2011-03-31 Siemens Aktiengesellschaft Verfahren zum regeln eines umrichters und anordnung zur regelung eines umrichters
WO2011036005A1 (de) * 2009-09-25 2011-03-31 Siemens Aktiengesellschaft Verfahren zum betreiben eines modularen multilevel-umrichters und multilevel-umrichter
WO2011065253A1 (ja) * 2009-11-26 2011-06-03 株式会社日立製作所 電力変換装置
WO2011067090A2 (de) 2009-12-01 2011-06-09 Abb Schweiz Ag Verfahren zum betrieb einer umrichterschaltung sowie vorrichtung zur durchführung des verfahrens
WO2011098100A1 (de) * 2010-02-11 2011-08-18 Siemens Aktiengesellschaft Regelung eines modularen umrichters mit verteilten energiespeichern mit hilfe eines beobachters für die ströme und einer schätzeinheit für die zwischenkreisenergie
WO2011098099A1 (de) 2010-02-11 2011-08-18 Siemens Aktiengesellschaft Regelung eines modularen umrichters mit verteilten energiespeichern mit hilfe eines beobachters für die ströme und einer schätzeinheit für die zwischenkreisenergie
EP2360819A1 (de) * 2010-02-11 2011-08-24 ABB Schweiz AG Aktive Dämpfung von Stromharmonischen in einem Mehrstufen-Umrichter
DE102010009265A1 (de) * 2010-02-25 2011-08-25 Kostal Industrie Elektrik GmbH, 58513 Wechselrichter
WO2012055435A1 (en) * 2010-10-27 2012-05-03 Alstom Grid Uk Limited Modular multilevel converter
WO2012038210A3 (de) * 2010-09-20 2012-10-26 Robert Bosch Gmbh Energieversorgungsnetz und verfahren zum laden mindestens einer als energiespeicher für einen gleichspannungszwischenkreis dienenden energiespeicherzelle in einem energieversorgungsnetz
US8400796B2 (en) 2008-01-08 2013-03-19 Abb Technology Ag Power converter with distributed cell control
WO2015117637A1 (en) 2014-02-04 2015-08-13 Green Power Technologies, S.L. System and method for controlling an ac/dc converter
US10622913B2 (en) 2016-06-01 2020-04-14 Abb Schweiz Ag Modular multilevel converter cell with integrated current sensor
EP2368316B1 (de) * 2008-12-19 2020-11-25 General Electric Technology GmbH Stromquellenelement
EP3876410A1 (de) * 2020-03-03 2021-09-08 Siemens Aktiengesellschaft Stromrichter und regelungsverfahren dafür

Families Citing this family (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101548461B (zh) * 2006-12-08 2012-12-12 西门子公司 在电压中间电路变流器中用于控制直流侧的短路的半导体保护元件
US7960871B2 (en) 2006-12-08 2011-06-14 Siemens Aktiengesellschaft Control of a modular converter with distributed energy storage devices
DE112006004198A5 (de) * 2006-12-08 2009-11-12 Siemens Aktiengesellschaft Herstellung eines Wirkleistungsgleichgewichts der Phasenmodule eines Umrichters
DE112007003408A5 (de) * 2007-01-17 2009-12-24 Siemens Aktiengesellschaft Ansteuerung eines Phasenmodulzweiges eines Multilevel-Stromrichters
ATE520193T1 (de) * 2009-04-02 2011-08-15 Abb Schweiz Ag Verfahren zum betrieb einer umrichterschaltung sowie vorrichtung zur durchführung des verfahrens
CA2764504C (en) 2009-06-15 2016-08-23 David Trainer Dc voltage source converter
EP2460264B1 (de) 2009-07-31 2015-05-20 ALSTOM Technology Ltd Konfigurierbare hybridumrichterschaltung
CN102577072B (zh) * 2009-10-06 2015-05-27 Abb研究有限公司 改进型电压源转换器结构
RU2536162C2 (ru) * 2009-10-15 2014-12-20 Абб Швайц Аг Способ работы преобразовательной схемы и устройство для его осуществления
WO2011098117A1 (en) 2010-02-09 2011-08-18 Areva T&D Uk Limited Converter for high voltage dc dc transmission
KR20130006613A (ko) 2010-03-15 2013-01-17 알스톰 테크놀러지 리미티드 다중레벨 컨버터를 갖는 정지형 무효전력 보상장치
US8867242B2 (en) * 2010-04-15 2014-10-21 Alstom Technology Ltd Hybrid 2-level and multilevel HVDC converter
US9598093B2 (en) * 2010-05-18 2017-03-21 Alstom Transport Technologies Signal detection system and method
BR112012031569A2 (pt) 2010-06-18 2016-11-08 Alstom Technology Ltd conversor eletrônico e potência para uso na transmissão de potência em corrente contínua em alta tensão e compensação de potência reativa e método de operação do conversor eletrônico de potência
WO2012007040A1 (en) * 2010-07-15 2012-01-19 Abb Technology Ag Cell based dc/dc converter
CN102013694A (zh) * 2010-07-22 2011-04-13 荣信电力电子股份有限公司 基于mmc的无变压器风力发电并网拓扑结构
CN102013819A (zh) * 2010-07-22 2011-04-13 荣信电力电子股份有限公司 一种无变压器的高压直流输电拓扑结构
CN102025166A (zh) * 2010-07-22 2011-04-20 荣信电力电子股份有限公司 一种无变压器水轮发电机发电并网拓扑结构
CN103141018B (zh) 2010-07-30 2015-12-16 阿尔斯通技术有限公司 包括用于处理dc侧短路的全桥单元的hvdc转换器
JP5721096B2 (ja) * 2010-08-23 2015-05-20 国立大学法人東京工業大学 電力変換器
WO2012025142A1 (en) * 2010-08-24 2012-03-01 Alstom Grid Uk Limited Hvdc converter with neutral-point connected zero-sequence dump resistor
KR101776984B1 (ko) * 2010-09-09 2017-09-08 벤쇼, 인코포레이티드 모듈러 멀티레벨 컨버터 시스템을 제어하는 시스템 및 방법
US9118213B2 (en) 2010-11-24 2015-08-25 Kohler Co. Portal for harvesting energy from distributed electrical power sources
CN102215004B (zh) * 2011-03-16 2014-07-30 中国电力科学研究院 一种基于模块化多电平换流器的阀电流控制方法
US9899917B2 (en) * 2011-04-01 2018-02-20 Siemens Aktiengesellschaft Method for producing an output voltage and assembly for performing the method
WO2012167826A1 (en) 2011-06-08 2012-12-13 Alstom Technology Ltd High voltage dc/dc converter with cascaded resonant tanks
US9099914B2 (en) 2011-06-29 2015-08-04 Siemens Aktiengesellschaft Packaging of power supply using modular electronic modules
WO2013017160A1 (en) 2011-08-01 2013-02-07 Alstom Technology Ltd A dc to dc converter assembly
JP5444304B2 (ja) * 2011-10-25 2014-03-19 ファナック株式会社 無効電流指令作成部を有するモータ駆動装置
EP2777127B1 (de) 2011-11-07 2016-03-09 Alstom Technology Ltd Steuerungsschaltung
WO2013071975A1 (en) 2011-11-17 2013-05-23 Alstom Technology Ltd Hybrid ac/dc converter for hvdc applications
KR101221159B1 (ko) * 2011-12-30 2013-01-10 연세대학교 산학협력단 멀티레벨 컨버터의 제어방법
DE102012202173B4 (de) * 2012-02-14 2013-08-29 Siemens Aktiengesellschaft Verfahren zum Betrieb eines mehrphasigen, modularen Multilevelstromrichters
WO2013126660A2 (en) 2012-02-24 2013-08-29 Board Of Trustees Of Michigan State University Transformer-less unified power flow controller
CA2865447C (en) 2012-03-01 2019-03-12 Alstom Technology Ltd Control circuit
JP5827924B2 (ja) * 2012-05-30 2015-12-02 株式会社日立製作所 電圧型電力変換装置の制御装置及び制御方法
BR112015004285A2 (pt) * 2012-08-28 2017-07-04 Abb Technology Ag controle de um conversor modular em dois estágios
CN104604111B (zh) 2012-08-28 2016-08-17 Abb技术有限公司 转换器设备以及相应的方法
US9325251B2 (en) 2012-08-30 2016-04-26 Siemens Aktiengesellschaft Power delivery systems and methods for offshore applications
US20150288287A1 (en) * 2012-09-21 2015-10-08 Aukland Uniservices Limited Modular multi-level converters
US9431918B2 (en) 2012-09-28 2016-08-30 General Electric Company Grounding scheme for modular embedded multilevel converter
US9559611B2 (en) * 2012-09-28 2017-01-31 General Electric Company Multilevel power converter system and method
CN103066878B (zh) * 2013-01-27 2015-01-21 中国科学院电工研究所 模块化多电平变流器的控制方法
KR101410731B1 (ko) * 2013-02-13 2014-06-24 한국전기연구원 고압직류송전용 모듈형 멀티레벨 컨버터의 순환전류 억제 방법
EP2814166B1 (de) 2013-06-10 2017-11-15 General Electric Technology GmbH Modularer mehrstufiger Wechselrichter
US9479075B2 (en) 2013-07-31 2016-10-25 General Electric Company Multilevel converter system
US9252681B2 (en) * 2013-08-30 2016-02-02 General Electric Company Power converter with a first string having controllable semiconductor switches and a second string having switching modules
EP3968511A1 (de) * 2013-09-04 2022-03-16 General Electric Technology GmbH Stromwandler
US9325273B2 (en) 2013-09-30 2016-04-26 General Electric Company Method and system for driving electric machines
EP2858231B1 (de) * 2013-10-07 2019-09-11 General Electric Technology GmbH Spannungsquellenumrichter
EP2884653B1 (de) * 2013-12-12 2022-10-26 General Electric Technology GmbH Verbesserungen an oder im Zusammenhang mit der Steuerung von Wandlern
US9515568B2 (en) * 2014-03-28 2016-12-06 General Electric Company Power converter with a first string having diodes and a second string having switching units
KR101630510B1 (ko) * 2014-05-13 2016-06-14 엘에스산전 주식회사 모듈형 멀티레벨 컨버터
CN104022665B (zh) * 2014-05-22 2016-06-29 清华大学 一种模块化多电平换流器的桥臂瞬时电流直接控制方法
CN104065287A (zh) * 2014-05-30 2014-09-24 许继电气股份有限公司 一种电压源型对称双极换流器的平衡控制方法
ES2721948T3 (es) * 2014-06-13 2019-08-06 Siemens Ag Convertidor para el suministro de potencia reactiva, y procedimiento para su regulación
EP3062429A1 (de) * 2015-02-27 2016-08-31 General Electric Technology GmbH Spannungsgeführter Umrichter mit Strombegrenzung
CN104967352B (zh) * 2015-07-09 2018-08-28 国家电网公司 一种储能变流器及其均衡控制方法
FR3039940B1 (fr) * 2015-08-03 2017-08-11 Inst Supergrid Capacite virtuelle
GB2545023B (en) * 2015-12-04 2018-06-06 General Electric Technology Gmbh Improvements in or relating to converters
US10243370B2 (en) * 2015-12-07 2019-03-26 General Electric Company System and method for integrating energy storage into modular power converter
US10425015B2 (en) * 2016-05-04 2019-09-24 Siemens Aktiengesellschaft Converter arrangement having a star point reactor
US10734912B2 (en) * 2016-08-24 2020-08-04 Beckhoff Automation Gmbh Stator device for a linear motor, linear drive system, and method for operating a stator device
FR3068842B1 (fr) * 2017-07-07 2022-03-04 Inst Supergrid Convertisseur muni d'un module de gestion de l'energie en partie alternative
DE102018202259A1 (de) * 2018-02-14 2019-08-14 Siemens Aktiengesellschaft Ladestation zum Laden von Elektrofahrzeugen mit verteilter Energiemessung sowie Verfahren
DE102018106306A1 (de) * 2018-03-19 2019-09-19 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Fahrzeug mit einem Energiespeicher
EP3713073A1 (de) * 2019-03-19 2020-09-23 Siemens Aktiengesellschaft Stromrichter und verfahren zu dessen regelung
JP2021185727A (ja) * 2020-05-25 2021-12-09 株式会社日立製作所 電力変換装置の制御装置及び制御方法
EP3920388A1 (de) * 2020-06-01 2021-12-08 General Electric Technology GmbH Verbesserungen an oder im zusammenhang mit spannungsquellenumrichtern
US20230369988A1 (en) 2020-09-18 2023-11-16 Hitachi Mitsubishi Hydro Corporation Modular multilevel power converter and variable speed generator-motor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0077968A1 (de) * 1981-10-23 1983-05-04 Siemens Aktiengesellschaft Kommutierungseinrichtung für einen aus einer Gleichspannungsquelle gespeisten Elektromotor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005045090B4 (de) * 2005-09-21 2007-08-30 Siemens Ag Verfahren zur Steuerung eines mehrphasigen Stromrichters mit verteilten Energiespeichern
US7960871B2 (en) 2006-12-08 2011-06-14 Siemens Aktiengesellschaft Control of a modular converter with distributed energy storage devices

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0077968A1 (de) * 1981-10-23 1983-05-04 Siemens Aktiengesellschaft Kommutierungseinrichtung für einen aus einer Gleichspannungsquelle gespeisten Elektromotor

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LESNICAR A ET AL: "A new modular voltage source inverter topology", 2003, XP002454302, Retrieved from the Internet <URL:http://www.unibw.de/eit62/forsch/SP/M2LC/m2lcveroef> [retrieved on 20071010] *
LESNICAR A ET AL: "An innovative modular multilevel converter topology suitable for a wide power range", INSPEC, 2003, XP002447365 *
See also references of EP2100364A1 *

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8400796B2 (en) 2008-01-08 2013-03-19 Abb Technology Ag Power converter with distributed cell control
EP2368316B1 (de) * 2008-12-19 2020-11-25 General Electric Technology GmbH Stromquellenelement
DE102009019298A1 (de) 2009-04-27 2010-11-04 Siemens Aktiengesellschaft Verfahren zum Regeln eines Umrichters unter Berücksichtigung von Stell- und Messverzögerungen
WO2010133398A1 (de) 2009-04-27 2010-11-25 Siemens Aktiengesellschaft Verfahren zum regeln eines umrichters unter berücksichtigung von stell- und messverzögerungen mit hilfe eines beobachters
DE102009024224A1 (de) * 2009-06-08 2010-04-08 Siemens Aktiengesellschaft Verfahren und Vorrichtung zur Begrenzung einer auftretenden Systemschwingung bei einem Spannungszwischenkreis-Umrichter mit getakteter Einspeisung
WO2010145705A1 (en) * 2009-06-18 2010-12-23 Areva T&D Uk Limited Converter
US8994232B2 (en) 2009-07-17 2015-03-31 Siemens Aktiengesellschaft Star-point reactor
CN102474101A (zh) * 2009-07-17 2012-05-23 西门子公司 具有星形中性点电抗器的用于转换电气参数的装置
DE102009034354A1 (de) * 2009-07-17 2011-01-27 Siemens Aktiengesellschaft Sternpunktreaktor
WO2011026927A1 (en) * 2009-09-04 2011-03-10 Abb Technology Ag A method and apparatus for calculating insertion indeces for a modular multilevel converter
US8374810B2 (en) 2009-09-04 2013-02-12 Abb Technology Ag Method and apparatus for calculating insertion indices for a modular multilevel converter
CN102577073A (zh) * 2009-09-04 2012-07-11 Abb技术有限公司 计算用于模块化多电平转换器的插入指数的方法和装置
WO2011036005A1 (de) * 2009-09-25 2011-03-31 Siemens Aktiengesellschaft Verfahren zum betreiben eines modularen multilevel-umrichters und multilevel-umrichter
DE102009043598A1 (de) 2009-09-25 2011-04-21 Siemens Aktiengesellschaft Verfahren zum Regeln eines Umrichters und Anordnung zur Regelung eines Umrichters
WO2011036011A1 (de) 2009-09-25 2011-03-31 Siemens Aktiengesellschaft Verfahren zum regeln eines umrichters und anordnung zur regelung eines umrichters
WO2011065253A1 (ja) * 2009-11-26 2011-06-03 株式会社日立製作所 電力変換装置
JP2011114920A (ja) * 2009-11-26 2011-06-09 Hitachi Ltd 電力変換装置
CN102630369A (zh) * 2009-11-26 2012-08-08 株式会社日立制作所 电力转换装置
US8830713B2 (en) 2009-12-01 2014-09-09 Abb Schweiz Ag Method and apparatus for operating a converter circuit having plural input and output phase connections and plural two-pole switching cells
CN102668354B (zh) * 2009-12-01 2016-01-13 Abb瑞士有限公司 用于运行变换器电路的方法以及用于实施该方法的装置
WO2011067090A3 (de) * 2009-12-01 2012-03-22 Abb Schweiz Ag Verfahren zum betrieb einer umrichterschaltung sowie vorrichtung zur durchführung des verfahrens
CN102668354A (zh) * 2009-12-01 2012-09-12 Abb瑞士有限公司 用于运行变换器电路的方法以及用于实施该方法的装置
WO2011067090A2 (de) 2009-12-01 2011-06-09 Abb Schweiz Ag Verfahren zum betrieb einer umrichterschaltung sowie vorrichtung zur durchführung des verfahrens
JP2011167063A (ja) * 2010-02-11 2011-08-25 Abb Schweiz Ag コンバータ回路を動作するための方法およびその方法を実行するための装置
EP2360819A1 (de) * 2010-02-11 2011-08-24 ABB Schweiz AG Aktive Dämpfung von Stromharmonischen in einem Mehrstufen-Umrichter
US8760892B2 (en) 2010-02-11 2014-06-24 Abb Schweiz Ag Method and apparatus for operation of a converter circuit having plural phase modules and sub-converter systems for the phase modules
WO2011098099A1 (de) 2010-02-11 2011-08-18 Siemens Aktiengesellschaft Regelung eines modularen umrichters mit verteilten energiespeichern mit hilfe eines beobachters für die ströme und einer schätzeinheit für die zwischenkreisenergie
US8837185B2 (en) 2010-02-11 2014-09-16 Siemens Aktiengesellschaft Control of a modular converter having distributed energy stores with the aid of an observer for the currents and an estimating unit for the intermediate circuit energy
KR101770111B1 (ko) 2010-02-11 2017-08-22 에이비비 슈바이쯔 아게 컨버터 회로의 동작을 위한 방법, 및 그 방법을 수행하기 위한 장치
WO2011098100A1 (de) * 2010-02-11 2011-08-18 Siemens Aktiengesellschaft Regelung eines modularen umrichters mit verteilten energiespeichern mit hilfe eines beobachters für die ströme und einer schätzeinheit für die zwischenkreisenergie
DE102010009265A1 (de) * 2010-02-25 2011-08-25 Kostal Industrie Elektrik GmbH, 58513 Wechselrichter
WO2012038210A3 (de) * 2010-09-20 2012-10-26 Robert Bosch Gmbh Energieversorgungsnetz und verfahren zum laden mindestens einer als energiespeicher für einen gleichspannungszwischenkreis dienenden energiespeicherzelle in einem energieversorgungsnetz
US8848401B2 (en) 2010-10-27 2014-09-30 Alstom Technology Ltd. Modular multilevel power electronic converter having selectively definable circulation path
WO2012055435A1 (en) * 2010-10-27 2012-05-03 Alstom Grid Uk Limited Modular multilevel converter
WO2015117637A1 (en) 2014-02-04 2015-08-13 Green Power Technologies, S.L. System and method for controlling an ac/dc converter
US10622913B2 (en) 2016-06-01 2020-04-14 Abb Schweiz Ag Modular multilevel converter cell with integrated current sensor
EP3876410A1 (de) * 2020-03-03 2021-09-08 Siemens Aktiengesellschaft Stromrichter und regelungsverfahren dafür

Also Published As

Publication number Publication date
PL2100364T3 (pl) 2019-05-31
EP2100364A1 (de) 2009-09-16
US20100067266A1 (en) 2010-03-18
CA2671817C (en) 2016-09-13
ES2701706T3 (es) 2019-02-25
CN101548458B (zh) 2012-08-29
DE112006004197A5 (de) 2009-11-12
US7960871B2 (en) 2011-06-14
JP2010512133A (ja) 2010-04-15
EP2100364B1 (de) 2018-09-12
CA2671817A1 (en) 2008-06-12
DK2100364T3 (en) 2018-12-03
CN101548458A (zh) 2009-09-30
JP5197623B2 (ja) 2013-05-15

Similar Documents

Publication Publication Date Title
EP2100364B1 (de) Steuerung eines modularen stromrichters mit verteilten energiespeichern
EP2100366B1 (de) Herstellung eines wirkleistungsgleichgewichts der phasenmodule eines umrichters
EP2100367B1 (de) Vorrichtung zum umrichten eines elektrischen stromes
EP2707944B1 (de) Hybridumrichter und verfahren zu seiner regelung
DE102012102209A1 (de) Netzgekoppelter Wechselrichter, Wechselrichteranordnung und Betriebsverfahren für eine Wechselrichteranordnung
EP2107672A1 (de) Dreiphasiger Wechselrichter ohne Verbindung zwischen dem Neutralleiter des Netzes und dem Mittelpunkt des Zwischenkreises
DE19642596A1 (de) Verfahren und Vorrichtung zur Kompensation von Blindstromanteilen mittels einer Kompensationseinrichtung mit einem Pulsstromrichter
DE10108766A1 (de) Impulsbreitenmodulationsgesteuerte Stromumwandlungseinheit
WO2015104922A1 (ja) 電力変換装置
DE102007063434A1 (de) Wechselrichtersystem und Steuerverfahren
EP3136581A1 (de) Modularer mehrpunktstromrichter und verfahren zum betreiben desselben
EP2992595A1 (de) Umrichteranordnung mit parallel geschalteten mehrstufen-umrichtern sowie verfahren zu deren steuerung
DE102013214693A1 (de) Anordnung zur Kompensation von Blindleistung und Wirkleistung in einem Hochspannungsnetz
EP1012946A1 (de) Verfahren und vorrichtung zur verbesserung der spannungsqualität eines unterlagerten netzteiles
WO2014001079A1 (de) Stromrichter und betriebsverfahren zum wandeln von spannungen
EP0208088A1 (de) Vorrichtung zur Erzeugung eines symmetrischen dreiphasigen Spannungssystems mit belastbarem Null-Leiter
DE102015222280A1 (de) Modularer Mehrstufenumrichter und Verfahren zum Betreiben eines modularen Mehrstufenumrichters
DE19654830B4 (de) Steuerungssystem für eine Leistungswandlerschaltung
EP3138176B1 (de) Umrichter zur symmetrischen blindleistungskompensation sowie verfahren zu dessen regelung
DE102017131042A1 (de) Umrichter mit mindestens einem wandlermodul mit drei brückenzweigen, verfahren zum betreiben und verwendung eines solchen umrichters
DE3243701C2 (de) Verfahren und Schaltungsanordnung zur dynamischen Blindleistungskompensation und Symmetrierung von unsymmetrischen Netzen und Lasten mit Stromrichtern
EP3639352B1 (de) Stromrichteranordnung mit einer abschaltungsfähigkeit eines fehlerstroms und ein verfahren zur abschaltung eines fehlerstroms bei einer solchen stromrichteranordnung
EP3331118B1 (de) Anlage zum übertragen elektrischer leistung
EP3682539B1 (de) Verfahren zum betrieb eines mehrphasigen mehrstufenstromrichters und ein entsprechender mehrphasiger mehrstufenstromrichter
WO2014086428A1 (de) Mehrstufiger umrichter mit zusatzmodul

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680056559.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06828678

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2006828678

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12517693

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2671817

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2009539595

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1120060041975

Country of ref document: DE

REF Corresponds to

Ref document number: 112006004197

Country of ref document: DE

Date of ref document: 20091112

Kind code of ref document: P