WO2008066127A1 - Refrigerating machine - Google Patents

Refrigerating machine Download PDF

Info

Publication number
WO2008066127A1
WO2008066127A1 PCT/JP2007/073089 JP2007073089W WO2008066127A1 WO 2008066127 A1 WO2008066127 A1 WO 2008066127A1 JP 2007073089 W JP2007073089 W JP 2007073089W WO 2008066127 A1 WO2008066127 A1 WO 2008066127A1
Authority
WO
WIPO (PCT)
Prior art keywords
condensing unit
temperature
cooled
heat transfer
cooling
Prior art date
Application number
PCT/JP2007/073089
Other languages
French (fr)
Japanese (ja)
Inventor
Junpei Yuyama
Shuichi Yamasaki
Mitsuki Terashima
Taku Komuro
Original Assignee
Ulvac, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac, Inc. filed Critical Ulvac, Inc.
Priority to US12/516,449 priority Critical patent/US20100031693A1/en
Priority to CN2007800433909A priority patent/CN101542219B/en
Priority to EP07849920.9A priority patent/EP2090850B1/en
Priority to KR1020097010913A priority patent/KR101121232B1/en
Priority to JP2008547035A priority patent/JPWO2008066127A1/en
Publication of WO2008066127A1 publication Critical patent/WO2008066127A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • F25D19/006Thermal coupling structure or interface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/17Re-condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2400/00General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
    • F25D2400/02Refrigerators including a heater

Definitions

  • the present invention relates to a refrigerator.
  • GM refrigerators are used for measuring sample physical properties in a cryogenic environment near 4K, measuring various physical quantities using sensors that utilize the cryogenic environment, and the like.
  • This refrigerator cools non-cooled materials to extremely low temperatures by repeatedly compressing and expanding (refrigeration cycle) a refrigerant gas such as He gas.
  • a temperature amplitude is generated on the placement surface of the object to be cooled. In order to cool the object to be cooled stably, it is desired to reduce this temperature amplitude.
  • Patent Document 1 discloses a regenerator that houses helium gas or helium gas and liquid helium, a compressed helium gas supply unit, and the cold accumulator provided in a cooling unit to which an object to be cooled is attached.
  • An ultra-low temperature refrigerator including a helium gas introducing / exhausting means for connecting a gas is disclosed!
  • Patent Document 2 discloses a cryogenic temperature provided with a helium gas introduction pipe for introducing a necessary amount of helium gas at room temperature, a capacitor chamber for liquefying helium gas, and a liquid helium chamber for storing liquefied liquid helium.
  • a temperature damper is disclosed.
  • Patent Document 1 Japanese Patent No. 2773793
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-76955
  • the cryogenic temperature damper of Patent Document 2 has a complicated structure, and since the heat transfer path from the coolant is long and non-axisymmetric, cooling may be uneven and unstable.
  • the present invention has been made in order to solve the above-described problems, and includes a placement surface for an object to be cooled.
  • the purpose of the present invention is to provide a refrigerator that can reduce the temperature amplitude of the product and that can cool the object to be cooled uniformly and stably.
  • the refrigerator of the present invention includes a cooling stage for cooling an object to be cooled; a He condensing unit on which the object to be cooled is mounted; a reservoir filled with He gas that communicates with the He condensing unit; And a heat transfer buffer made of a material having a lower thermal conductivity than that of the He condensing unit, which is disposed between the cooling stage and the He condensing unit.
  • the pulsating power of heat flow caused by the refrigeration cycle of the refrigerator is absorbed by the evaporation and condensation (phase transition) of He in the He condensation section.
  • the heat transfer buffer acts as a heat flow restricting mechanism, transmission of temperature amplitude in the cooling stage is suppressed. As a result, the temperature amplitude on the placement surface of the object to be cooled can be reduced.
  • the cooling stage, the heat transfer buffer material, the He condensing portion, and the object to be cooled are continuously arranged coaxially, the object to be cooled can be uniformly and stably cooled.
  • the He condensing part may be made of a material having a thermal conductivity of 200 W / (m * K) or more at a temperature in the vicinity of 4K.
  • the force S can efficiently cool the object to be cooled P with the liquid He condensed in the He condensing unit.
  • the heat transfer buffer may be made of a material having a thermal conductivity of less than 100 W / (m.K) at a temperature in the vicinity of 4K.
  • the volume of the He condensing part may be not less than lOcc and not more than lOOcc.
  • the He condensing part can be made compact.
  • the volume of the reservoir may be not less than 5 times and not more than 100 times the volume of the He condensing part.
  • the server while ensuring the storage capacity of He gas necessary for cooling the object to be cooled, the server can be made compact.
  • the pressure of the He gas filled in the reservoir is 0. IMPa or more at room temperature.
  • Fins may be erected on the inner surface of the He condensation section.
  • a porous structure may be attached to the inner surface of the He condensation unit.
  • Concavities and convexities may be formed on a contact surface between the heat-transfer buffer material and the cooling stage or the He condensation unit.
  • the contact area between the heat transfer buffer material and the cooling stage or the He condensing portion is reduced, so that transmission of temperature amplitude in the cooling stage is suppressed.
  • the temperature amplitude on the placement surface of the object to be cooled can be reduced.
  • a temperature sensor and a heater mounted on the He condensing unit; and a control unit that drives the heater based on a measurement result of the temperature sensor may be further provided.
  • the heater when the temperature of the He condensing unit falls below a predetermined value, the heater can be driven to return the temperature of the He condensing unit to the predetermined value. Therefore, the temperature amplitude on the mounting surface of the object to be cooled can be reduced.
  • the provision of the heat transfer buffer prevents the temperature amplitude from being transmitted in the cooling stage, and as a result, it is possible to reduce the temperature amplitude on the placement surface of the object to be cooled.
  • the cooling stage, the heat transfer buffer, the He condensing part, and the object to be cooled are continuously arranged coaxially, the object to be cooled can be uniformly and stably cooled.
  • FIG. 1 is a schematic configuration diagram of a refrigerator according to a first embodiment of the present invention.
  • FIG. 2 is a graph showing the relationship between the temperature of the second cooling stage and the temperature amplitude.
  • FIG. 3 is a graph showing the relationship between the volume ratio of liquid He and the temperature amplitude in the He condensation section. It is.
  • FIG. 4 is a graph showing the relationship between the temperature of the second cooling stage and the refrigerating capacity.
  • FIG. 5 is a graph showing the relationship between the cooling time and the temperature of the second cooling stage.
  • FIG. 6 is a schematic configuration diagram in the vicinity of a He condensing part of a refrigerator according to a second embodiment of the present invention.
  • FIG. 7 is a schematic configuration diagram in the vicinity of a He condensing part of a refrigerator according to a third embodiment of the present invention.
  • FIG. 8 is a schematic configuration diagram in the vicinity of a He condensing unit of a refrigerator according to a fourth embodiment of the present invention.
  • FIG. 9 is a schematic configuration diagram in the vicinity of a He condensing unit of a refrigerator according to a fifth embodiment of the present invention.
  • FIG. 1 is a schematic configuration diagram of a refrigerator according to the first embodiment of the present invention.
  • the refrigerator 1 according to the present embodiment includes a second cooling stage 14 that cools the object 40 to be cooled, a He condensing unit 20 on which the object 40 to be cooled is mounted, and a He gas 50 that communicates with the He condensing unit 20.
  • a heat transfer buffer 16 made of a material having a lower thermal conductivity than that of the He condensation section 20 disposed between the second cooling stage 14 and the He condensation section 20, It is equipped with.
  • the refrigerator 1 mainly includes a compressor 4, a main body 2, and a cooling unit 15.
  • the compressor 4 compresses low-pressure He gas supplied from the low-pressure pipe 8 into high-pressure He gas, and supplies it to the high-pressure pipe 6.
  • the main body 2 continuously switches the connection between the high pressure pipe 6 and the low pressure pipe 8 and the He gas flow path in the cooling section 15 described below by the power of a motor or the like.
  • a cooling unit 15 is provided continuously to the main body unit 2.
  • the cooling unit 15 is disposed inside the vacuum chamber 10 maintained in a vacuum environment, and generates cold by the expansion of He gas flowing through the inside.
  • the cooling unit 15 is provided with a first cooling unit 11, a first cooling stage 12, a second cooling unit 13 and a second cooling stage 14 in this order.
  • the first cooling part 11 and the second cooling part 13 are formed in a columnar shape, and the first cooling stage 12 and the second cooling stage 14 are formed in a disk shape and are arranged coaxially.
  • a He gas flow path (not shown) is formed inside the cooling unit 15.
  • the high-pressure He gas supplied to the He gas flow path undergoes endothermic expansion at the second cooling stage 14 and changes to low-pressure He gas.
  • a heat transfer buffer 16 is provided between the lower surface of the second cooling stage 14 and the He condensing unit 20 described later.
  • the heat transfer buffer 16 is formed in a plate shape having a diameter of about several tens of mm and a thickness of about 2 mm, for example.
  • the heat transfer buffer 16 is made of a stainless material or the like whose thermal conductivity at a temperature in the vicinity of 4K is lower than that of the He condensing unit 20 described later.
  • the heat transfer buffer 16 is made of a material having a thermal conductivity of less than 100 W / (mK) at a temperature in the vicinity of 4 K, the temperature amplitude of the second cooling stage 14 is transmitted to the He condensation unit 20. The power S can be suppressed.
  • a He condensing unit 20 on which the object to be cooled 40 is placed is provided on the lower surface of the heat transfer buffer 16.
  • the He condensing unit 20 is made of a material such as Cu, Ag, or A1 whose thermal conductivity at a temperature in the vicinity of 4K is higher than that of the heat transfer buffer 16 described above.
  • the He condensing part 20 is formed of oxygen-free copper.
  • the He condensing unit 20 is made of a material having a thermal conductivity of 200 W / (mK) or higher at a temperature in the vicinity of 4K, the liquid 40 condensed in the He condensing unit 20 efficiently cools the object 40 to be cooled. can do.
  • the He condensing unit 20 is formed in a cylindrical shape with both ends sealed, and can store liquid He therein. If the volume of the He condensing part 20 is not less than lOcc and not more than lOOcc, the He condensing part 20 can be made compact while ensuring the storage capacity of the liquid He necessary for cooling the object 40 to be cooled. In this embodiment, the volume of the He condensing part 20 is set to 40 cc.
  • a table 41 is disposed on the lower surface of the He condensing unit 20.
  • the lower surface of the table 41 is a cooling position where the 1S object 40 is placed.
  • the table 41 is made of a material having the same physical properties as the He condensing unit 20.
  • an In foil or the like is applied between the He condensing unit 20 and the table 41, and between the table 41 and the object to be cooled 40, and the He condensing unit 20 and the table 41 are fastened. Yes.
  • the object to be cooled 40 without providing the table 41 may be applied to the He condensing unit 20 in good thermal contact.
  • the second cooling stage 14, the heat transfer buffer 16, the He condensing unit 20, and the object to be cooled 40 of the cooling unit 15 described above constitute a heat transfer channel from the object to be cooled.
  • the cooling loss can be reduced, and the object to be cooled 40 can be efficiently cooled to the target temperature in a short time.
  • the heat transfer flow path can be axisymmetric, and the entire object to be cooled 40 can be cooled uniformly and stably.
  • a narrow tube 32 extends from the He condensing unit 20 and is always connected to a reservoir 30 disposed outside the vacuum chamber 10.
  • the volume of the reservoir 30 is preferably 5 to 100 times the volume of the He condensing unit 20.
  • the volume of the reservoir 30 is set to 3250 cc.
  • the interior of the reservoir 30 is filled with He gas.
  • the pressure of the He gas 0. IMPa or more 1. Desirably OMPa or less.
  • the reservoir 30 is filled with He gas 50 having a pressure of 0.4 MPa at room temperature.
  • a heat anchor 34 for exchanging heat with the first cooling stage 12 is formed in the middle portion of the narrow tube 32! /.
  • the operation of the refrigerator 1 according to this embodiment will be described.
  • the high-pressure He gas supplied from the compressor 4 to the cooling unit 15 undergoes endothermic expansion in the second cooling stage 14 and changes to low-pressure He gas.
  • the main body 2 continuously switches the connection between the high pressure pipe 6 and the low pressure pipe 8 and the He gas flow path of the cooling section 15. Thereby, compression and expansion (refrigeration cycle) of He gas are repeated, and the temperature of the second cooling stage 14 becomes extremely low.
  • a He condensing unit 20 is provided below the second cooling stage 14. Second cooling stage
  • the He gas inside the He condensing unit 20 is condensed and liquefied to generate liquid He 52.
  • the liquid He is generated so that the volume ratio with respect to the He condensing unit 20 is 30% or less (for example, about 20%).
  • the heat transfer buffer 16 made of a material is provided between the second cooling stage 14 and the He condensing unit 20 and has a lower thermal conductivity than that of the He condensing unit 20. ! / Since the heat transfer buffer 16 acts as a heat flow restricting mechanism, it is possible to suppress the temperature amplitude force e transmitted to the condensing unit 20 in the second cooling stage 14. Therefore, the temperature amplitude on the mounting surface of the object to be cooled can be reduced.
  • FIG. 2 is a graph showing the relationship between the temperature of the second cooling stage and the temperature amplitude.
  • the temperature amplitude was measured for three types of device configurations. Specifically, (1) the temperature amplitude (diamond plot) of the He condensing unit 20 when the second cooling stage 14, the heat transfer buffer 16 and the He condensing unit 20 are provided as in the present embodiment, and (2 ) Second cooling without heat transfer buffer 16 The temperature amplitude (triangular plot) of the He condensation unit 20 when the stage 14 and the He condensation unit 20 are provided, and (3) the second cooling stage 14 when the heat transfer buffer 16 and the He condensation unit 20 are not provided. Temperature amplitude (round plot) was measured.
  • the horizontal axis indicates the temperature at the cooling position (temperature amplitude measurement position) where the object is placed.
  • the volume of the reservoir 30 was set to 3 250 cc, the filling pressure of the He gas into the reservoir 30 was set to 0.4 MPa, and the volume ratio of the liquid He inside the He condensing unit 20 was set to 20%.
  • the magnitude of the temperature amplitude of each device configuration was in the order of (3)> (2)> (1).
  • the higher the temperature at the cooling position the greater the difference in temperature amplitude between each device configuration.
  • the temperature amplitude of the He condensing unit 20 was suppressed to ⁇ 9mK. From the above measurement results, (3) Compared to the device configuration with only the second cooling stage 14, (2) The device configuration with the addition of the He condensing unit 20 significantly reduces the temperature amplitude, and (1) Heat transfer It was confirmed that the temperature amplitude was further reduced in the system configuration with the buffer material 16 and the He condensing unit 20 added compared to (2).
  • FIG. 3 is a graph showing the relationship between the volume ratio of liquid He and the temperature amplitude in the He condensation section.
  • the volume of Rizzano 30 was set to 3250cc, the maximum filling pressure of He gas into the reservoir 30 was set to 0 ⁇ 48 MPa, and the temperature at the cooling position was set to 4.2K.
  • the magnitude of the temperature amplitude was (2)> (1).
  • the temperature amplitude increased when there was no liquid He, but the temperature amplitude decreased when liquid He existed even a little.
  • the temperature amplitude of the He condensation unit 20 was suppressed to ⁇ 9 mK in all cases. From the above, it was confirmed that even a small amount of liquid He has the effect of greatly reducing the temperature amplitude.
  • the inventor of the present application investigated a difference in refrigerating capacity depending on the presence or absence of the heat transfer buffer 16.
  • Fig. 4 is a graph showing the relationship between the temperature at the cooling position and the refrigeration capacity at the cooling position.
  • the volume ratio of liquid He inside the He condensing unit 20 was set to 20%.
  • FIG. 5 is a graph showing the relationship between the cooling time and the temperature at the cooling position.
  • the refrigerator according to the present embodiment is configured such that the He condensing unit 20 on which the object to be cooled 40 is placed is placed between the He cooling unit 20 and the second cooling stage 14.
  • the heat transfer buffer 16 made of a material having a lower thermal conductivity than the condensing unit 20 is provided. According to this configuration, the pulsation power of heat flow caused by the refrigeration cycle of the refrigerator 1 is absorbed by the evaporation and condensation (phase transition) of He in the He condensing unit 20.
  • the heat transfer buffer 16 acts as a heat flow restricting mechanism, the transmission of the temperature amplitude in the second cooling stage 14 is suppressed, and as a result, the temperature amplitude on the mounting surface of the object 40 to be cooled is reduced. be able to.
  • the heat transfer buffer 16, the He condensing section 20, and the object to be cooled 40 are continuously arranged coaxially, the heat transfer flow path from the object to be cooled is axisymmetric and has a short distance. Become. Therefore, uniform and stable cooling of the object to be cooled 40 becomes possible.
  • the reservoir 30 filled with the He gas 50 can be downsized. Further, the filling pressure of the He gas 50 to the reservoir 30 at room temperature can be lowered. As a result, even if the refrigerator 1 is stopped and the liquid He52 in the He condensing unit 20 is vaporized, the reservoir 30 and the He condensing unit can be prevented from becoming high pressure. [0039] (Second Embodiment)
  • FIG. 6 is a schematic configuration diagram in the vicinity of the He condensing unit of the refrigerator according to the present embodiment.
  • fins 222 and 224 force S are erected on the inner surfaces 221 and 223 of the He condensing unit 220. Note that detailed description of portions having the same configuration as in the first embodiment is omitted.
  • a He condensing unit 220 is disposed between the second cooling stage 14 and the object 40 to be cooled.
  • the He condensing unit 220 is a cylindrical hollow container made of a material such as Cu, Ag, or A1, and the inside thereof is filled with He gas 50.
  • the He condensing unit 220 is cooled by the second cooling stage 14, the He gas is condensed and the liquid He52 is generated.
  • the object to be cooled 40 is cooled by the liquid He52.
  • each of the fins 222 and 224 is preferably made of a material having high thermal conductivity, like the He condensing unit 220.
  • the fins 222 and 224 may be formed integrally with the He condensing unit 220, or may be formed separately and fixed to the He condensing unit 220.
  • the first fin 222 is formed from the bottom surface 221 of the He condensing unit 220 toward the ceiling surface 223. This makes it possible to increase the contact area between the inner surface of the He condensing unit 220 and the liquid He52. Therefore, the force S can efficiently cool the object 40 to be cooled placed on the He condensing unit 220.
  • the second fin 224 is formed from the ceiling surface 223 to the bottom surface 221 of the He condensing unit 220. As a result, the contact area between the inner surface of the He condensing unit 220 and the He gas 50 can be increased. Therefore, it is measured by the power that efficiently cools and condenses the He gas 50 inside the He condensing unit 220.
  • FIG. 7 is a schematic configuration diagram in the vicinity of the He condensing unit of the refrigerator according to the present embodiment.
  • a porous structure 322 is attached to the inner surface of the He condensing unit 320. Note that the detailed description of the same parts as in the first embodiment will be given. I will omit the description.
  • a porous structure 322 is attached to the inner surface of the He condensation section 320.
  • the porous structure 322 is made of a mesh, a foam metal, a sintered metal, or the like.
  • the porous structure 322 may be filled in the entire inner side of the He condensing part 320 or may be filled only in a part.
  • the porous structure 322 is attached to the inner surface of the He condensing portion 320 with an adhesive or the like so as to keep a good thermal contact with the inner surface of the He condensing portion 320.
  • the porous structure 322 By providing the porous structure 322, it becomes possible to increase the contact area between the inner surface of the He condensation section 320 and the liquid He52. Therefore, the object to be cooled 40 placed on the He condensing unit 320 can be efficiently cooled. Further, by providing the porous structure 322, the contact area between the inner surface of the He condensing section 320 and the He gas 50 can be increased. Therefore, the He gas 50 inside the He condensing section 320 can be efficiently cooled and condensed.
  • FIG. 8 is a schematic configuration diagram in the vicinity of the He condensing unit of the refrigerator according to the present embodiment.
  • unevenness 18 is formed on the contact surface of the heat transfer buffer 16 with the second cooling stage 14. Note that detailed description of portions having the same configuration as in the first embodiment is omitted.
  • the heat transfer buffer 16 has a low thermal conductivity! /, And is made of a stainless material or the like! Concavities and convexities 18 are formed on the contact surface with the second cooling stage 14.
  • the irregularities 18 may be formed regularly or irregularly (randomly).
  • the unevenness 18 may be formed in a pyramid shape so as to be in point contact with the second cooling stage 14, or the unevenness 18 may be formed in a frustum shape so as to be in surface contact with the second cooling stage 14.
  • the projections and recesses 18 may be formed in a triangular shape so as to be in line contact with the second cooling stage 14, and the projections and depressions 18 may be formed in a trapezoidal shape in cross section so as to be in surface contact with the second cooling stage 14.
  • the contact area between the heat transfer buffer material 16 and the second cooling stage 14 is reduced. .
  • the heat transfer buffer 16 and the second cooling stage 14 are in full contact with each other. Since the heat flow throttling function is strengthened, it is possible to suppress the temperature amplitude in the second cooling stage 14 from being transmitted to the He condensation unit 420. Therefore, it is possible to reduce the temperature amplitude on the surface on which the object to be cooled is placed.
  • the unevenness 18 is formed on the contact surface of the heat transfer buffer 16 with the second cooling stage 14.
  • the unevenness is formed on the contact surface of the second cooling stage 14 with the heat transfer buffer 16. May be.
  • unevenness may be formed on the contact surface of the heat transfer buffer material 16 with the He condensing portion 420, or unevenness may be formed on the contact surface of the He condensing portion 420 with the heat transfer buffer material 16. That is, it is only necessary that irregularities be formed on the contact surface between the second cooling stage 14 or the He condensing section 420 and the heat transfer buffer material 16. In any case, it is possible to suppress the temperature amplitude in the second cooling stage 14 from being transmitted to the He condensing unit 420. Accordingly, it is possible to reduce the temperature amplitude on the surface on which the object to be cooled is placed.
  • FIG. 9 is a schematic configuration diagram in the vicinity of the He condensing unit of the refrigerator according to the present embodiment.
  • the refrigerator according to the present embodiment includes a temperature sensor 64 and a heater 66 attached to the He condensing unit 520, and a control unit 62 that drives the heater 66 based on the measurement result of the temperature sensor 64. . Note that detailed description of portions having the same configuration as in the first embodiment is omitted.
  • the temperature sensor 64 is mounted in the vicinity of the placement surface of the object 40 to be cooled in the He condensing unit 520.
  • the He condensing unit 520 is provided with a heater 66 equipped with a heating wire or the like. These temperature sensor 64 and heater 66 are connected to the control unit 62.
  • the control unit 62 drives the heater 66 based on the measurement result of the temperature sensor 64. That is, the output signal of the temperature sensor 64 is converted into the drive current of the heater 66, and the feedback current is passed through the heater 66, so that the temperature pulsation caused by the heat generation is controlled to be minimized.
  • the set temperature of the mounting surface of the object to be cooled 40 is compared with the measured temperature of the temperature sensor 64.
  • the He condensing unit 520 is heated by driving the heater.
  • the temperature of the mounting surface of the object to be cooled 40 is raised to the set temperature. It becomes possible to return at a time. Therefore, the temperature amplitude on the placement surface of the object to be cooled 40 can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

A refrigerating machine is provided with a cooling stage for cooling a cooling object; a He condensation section whereupon the cooling object is placed; a reservoir which communicates with the He condensation section and is filled with He gas; and a heat transfer buffer member which is arranged between the cooling stage and the He condensation section and is composed of a material having a thermal conductivity lower than that of the He condensation section.

Description

明 細 書  Specification
冷凍機  refrigerator
技術分野  Technical field
[0001] 本発明は、冷凍機に関する。 [0001] The present invention relates to a refrigerator.
背景技術  Background art
[0002] 4K近傍の極低温環境における試料物性の測定や、極低温環境を利用するセンサ 等を用いた種々物理量の測定等のため、 GM冷凍機が利用されている。この冷凍機 は、 Heガス等の冷媒ガスの圧縮および膨張 (冷凍サイクル)を繰り返すことにより、非 冷却物を極低温まで冷却するものである。ところ力 上述した冷凍サイクルに起因す る熱流の脈動のため、被冷却物の載置面に温度振幅が発生する。被冷却物を安定 的に冷却するため、この温度振幅の低減が望まれている。  [0002] GM refrigerators are used for measuring sample physical properties in a cryogenic environment near 4K, measuring various physical quantities using sensors that utilize the cryogenic environment, and the like. This refrigerator cools non-cooled materials to extremely low temperatures by repeatedly compressing and expanding (refrigeration cycle) a refrigerant gas such as He gas. However, due to the pulsation of the heat flow caused by the above-described refrigeration cycle, a temperature amplitude is generated on the placement surface of the object to be cooled. In order to cool the object to be cooled stably, it is desired to reduce this temperature amplitude.
[0003] 特許文献 1には、被冷却物を取り付ける冷却部に設けられた、内部にヘリウムガス またはヘリウムガス及び液体ヘリウムを収納する蓄冷手段と、圧縮されたヘリウムガス の供給手段及び前記蓄冷手段を接続するヘリウムガス導入排出手段とを含む極低 温冷凍機が開示されて!/、る。  [0003] Patent Document 1 discloses a regenerator that houses helium gas or helium gas and liquid helium, a compressed helium gas supply unit, and the cold accumulator provided in a cooling unit to which an object to be cooled is attached. An ultra-low temperature refrigerator including a helium gas introducing / exhausting means for connecting a gas is disclosed!
特許文献 2には、必要量のヘリウムガスを常温で導入するヘリウムガス導入管と、へ リウムガスを液化させるコンデンサ室と、液化された液体ヘリウムを収納する液体ヘリ ゥム室とを備えた極低温温度ダンバが開示されている。  Patent Document 2 discloses a cryogenic temperature provided with a helium gas introduction pipe for introducing a necessary amount of helium gas at room temperature, a capacitor chamber for liquefying helium gas, and a liquid helium chamber for storing liquefied liquid helium. A temperature damper is disclosed.
特許文献 1:特許第 2773793号公報  Patent Document 1: Japanese Patent No. 2773793
特許文献 2:特開 2004— 76955号公報  Patent Document 2: Japanese Patent Application Laid-Open No. 2004-76955
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] しかしながら、特許文献 1の極低温冷凍機における前記温度振幅は 30mK程度で あるため、さらなる温度振幅の低減が望まれている。 However, since the temperature amplitude in the cryogenic refrigerator of Patent Document 1 is about 30 mK, further reduction of the temperature amplitude is desired.
一方、特許文献 2の極低温温度ダンバは構造が複雑であり、また冷却物からの伝 熱流路が長く非軸対称であるため、冷却が不均一で不安定になるおそれがある。  On the other hand, the cryogenic temperature damper of Patent Document 2 has a complicated structure, and since the heat transfer path from the coolant is long and non-axisymmetric, cooling may be uneven and unstable.
[0005] 本発明は、上記課題を解決するためになされたものであって、被冷却物の載置面 における温度振幅の低減が可能であり、また被冷却物の均一で安定した冷却が可能 な、冷凍機の提供を目的とする。 [0005] The present invention has been made in order to solve the above-described problems, and includes a placement surface for an object to be cooled. The purpose of the present invention is to provide a refrigerator that can reduce the temperature amplitude of the product and that can cool the object to be cooled uniformly and stably.
課題を解決するための手段  Means for solving the problem
[0006] 上記課題を解決するために、この発明は以下の手段を採用している。すなわち、本 発明の冷凍機は、被冷却物を冷却する冷却ステージと;前記被冷却物が載置される He凝縮部と;前記 He凝縮部に連通する、 Heガスが充填されたリザーバと;前記冷却 ステージと前記 He凝縮部との間に配置された、前記 He凝縮部より熱伝導率が低!/、 材料からなる伝熱緩衝材と;を備える。  [0006] In order to solve the above problems, the present invention employs the following means. That is, the refrigerator of the present invention includes a cooling stage for cooling an object to be cooled; a He condensing unit on which the object to be cooled is mounted; a reservoir filled with He gas that communicates with the He condensing unit; And a heat transfer buffer made of a material having a lower thermal conductivity than that of the He condensing unit, which is disposed between the cooling stage and the He condensing unit.
この構成によれば、冷凍機の冷凍サイクルに起因する熱流の脈動力 He凝縮部に おける Heの蒸発および凝縮 (相転移)によって吸収される。その際、伝熱緩衝材が 熱流の絞り機構として作用するので、冷却ステージにおける温度振幅の伝達が抑制 される。その結果、被冷却物の載置面における温度振幅を低減することができる。ま た冷却ステージ、伝熱緩衝材、 He凝縮部および被冷却物が同軸状に連続配置され るので、被冷却物の均一で安定した冷却が可能になる。  According to this configuration, the pulsating power of heat flow caused by the refrigeration cycle of the refrigerator is absorbed by the evaporation and condensation (phase transition) of He in the He condensation section. At this time, since the heat transfer buffer acts as a heat flow restricting mechanism, transmission of temperature amplitude in the cooling stage is suppressed. As a result, the temperature amplitude on the placement surface of the object to be cooled can be reduced. In addition, since the cooling stage, the heat transfer buffer material, the He condensing portion, and the object to be cooled are continuously arranged coaxially, the object to be cooled can be uniformly and stably cooled.
[0007] 前記 He凝縮部は、 4K近傍の温度における熱伝導率が 200W/ (m*K)以上の材 料からなってもよい。  [0007] The He condensing part may be made of a material having a thermal conductivity of 200 W / (m * K) or more at a temperature in the vicinity of 4K.
この構成によれば、 He凝縮部内で凝縮した液体 Heにより、被冷却物を効率よく冷 去 Pすること力 Sでさる。  According to this configuration, the force S can efficiently cool the object to be cooled P with the liquid He condensed in the He condensing unit.
[0008] 前記伝熱緩衝材は、 4K近傍の温度における熱伝導率が 100W/ (m.K)未満の 材料からなってもよい。  [0008] The heat transfer buffer may be made of a material having a thermal conductivity of less than 100 W / (m.K) at a temperature in the vicinity of 4K.
この構成によれば、冷却ステージにおける温度振幅の伝達を確実に防止すること ができる。  According to this configuration, transmission of temperature amplitude in the cooling stage can be reliably prevented.
[0009] 前記 He凝縮部の容積は、 lOcc以上 lOOcc以下であってもよい。  [0009] The volume of the He condensing part may be not less than lOcc and not more than lOOcc.
この構成によれば、被冷却物の冷却に必要な液体 Heの収納容積を確保しつつ、 According to this configuration, while ensuring the storage volume of the liquid He necessary for cooling the object to be cooled,
He凝縮部をコンパクト化することができる。 The He condensing part can be made compact.
[0010] 前記リザーバの容積は、前記 He凝縮部の容積の 5倍以上 100倍以下であってもよ い。 [0010] The volume of the reservoir may be not less than 5 times and not more than 100 times the volume of the He condensing part.
この構成によれば、被冷却物の冷却に必要な Heガスの収納容積を確保しつつ、リ ザーバをコンパクト化することができる。 According to this configuration, while ensuring the storage capacity of He gas necessary for cooling the object to be cooled, The server can be made compact.
[0011] 前記リザーバに充填された前記 Heガスの圧力は、室温において 0. IMPa以上 1. [0011] The pressure of the He gas filled in the reservoir is 0. IMPa or more at room temperature.
OMPa以下であってもよ!/ヽ。  Even below OMPa! / ヽ.
この構成によれば、仮に冷凍機が停止して He凝縮部の液体 Heが蒸発しても、リザ ーバ及び He凝縮部が高圧力となることを防止することができる。  According to this configuration, even if the refrigerator is stopped and the liquid He in the He condensing part evaporates, it is possible to prevent the reservoir and the He condensing part from becoming high pressure.
[0012] 前記 He凝縮部の内面に、フィンが立設されてもよい。 [0012] Fins may be erected on the inner surface of the He condensation section.
また、前記 He凝縮部の内面に、多孔質構造体が装着されてもよい。  In addition, a porous structure may be attached to the inner surface of the He condensation unit.
これらの構成によれば、 He凝縮部の内面と液体 Heとの接触面積が大きくなるため 、 He凝縮部に載置される被冷却物を効率よく冷却することができる。  According to these configurations, since the contact area between the inner surface of the He condensing unit and the liquid He is increased, the object to be cooled placed on the He condensing unit can be efficiently cooled.
[0013] 前記伝熱緩衝材と、前記冷却ステージまたは前記 He凝縮部との接触面に、凹凸 が形成されてもよい。 [0013] Concavities and convexities may be formed on a contact surface between the heat-transfer buffer material and the cooling stage or the He condensation unit.
この構成によれば、伝熱緩衝材と冷却ステージまたは He凝縮部との接触面積が小 さくなるので、冷却ステージにおける温度振幅の伝達が抑制される。その結果、被冷 却物の載置面における温度振幅を低減することができる。  According to this configuration, the contact area between the heat transfer buffer material and the cooling stage or the He condensing portion is reduced, so that transmission of temperature amplitude in the cooling stage is suppressed. As a result, the temperature amplitude on the placement surface of the object to be cooled can be reduced.
[0014] 前記 He凝縮部に装着された温度センサおよびヒータと;前記温度センサの測定結 果に基づレ、て前記ヒータを駆動する制御部と;をさらに備えてもよ!/、。 [0014] A temperature sensor and a heater mounted on the He condensing unit; and a control unit that drives the heater based on a measurement result of the temperature sensor may be further provided.
この構成によれば、 He凝縮部の温度が所定値を下回った場合に、ヒータを駆動し て He凝縮部の温度を所定値に復帰させることができる。したがって、被冷却物の載 置面における温度振幅を低減することができる。  According to this configuration, when the temperature of the He condensing unit falls below a predetermined value, the heater can be driven to return the temperature of the He condensing unit to the predetermined value. Therefore, the temperature amplitude on the mounting surface of the object to be cooled can be reduced.
発明の効果  The invention's effect
[0015] 本発明によれば、伝熱緩衝材を設けたことにより、冷却ステージにおける温度振幅 の伝達が防止され、その結果、被冷却物の載置面における温度振幅を低減すること 力 Sできる。また冷却ステージ、伝熱緩衝材、 He凝縮部および被冷却物が同軸状に連 続配置されるので、被冷却物の均一で安定した冷却が可能になる。  [0015] According to the present invention, the provision of the heat transfer buffer prevents the temperature amplitude from being transmitted in the cooling stage, and as a result, it is possible to reduce the temperature amplitude on the placement surface of the object to be cooled. . In addition, since the cooling stage, the heat transfer buffer, the He condensing part, and the object to be cooled are continuously arranged coaxially, the object to be cooled can be uniformly and stably cooled.
図面の簡単な説明  Brief Description of Drawings
[0016] [図 1]図 1は、本発明の第 1実施形態に係る冷凍機の概略構成図である。  FIG. 1 is a schematic configuration diagram of a refrigerator according to a first embodiment of the present invention.
[図 2]図 2は、第 2冷却ステージの温度と温度振幅との関係を示すグラフである。  FIG. 2 is a graph showing the relationship between the temperature of the second cooling stage and the temperature amplitude.
[図 3]図 3は、 He凝縮部における液体 Heの容積比と温度振幅との関係を示すグラフ である。 FIG. 3 is a graph showing the relationship between the volume ratio of liquid He and the temperature amplitude in the He condensation section. It is.
[図 4]図 4は、第 2冷却ステージの温度と冷凍能力との関係を示すグラフである。  FIG. 4 is a graph showing the relationship between the temperature of the second cooling stage and the refrigerating capacity.
[図 5]図 5は、冷却時間と第 2冷却ステージの温度との関係を示すグラフである。  FIG. 5 is a graph showing the relationship between the cooling time and the temperature of the second cooling stage.
[図 6]図 6は、本発明の第 2実施形態に係る冷凍機の He凝縮部近傍における概略構 成図である。  FIG. 6 is a schematic configuration diagram in the vicinity of a He condensing part of a refrigerator according to a second embodiment of the present invention.
[図 7]図 7は、本発明の第 3実施形態に係る冷凍機の He凝縮部近傍における概略構 成図である。  FIG. 7 is a schematic configuration diagram in the vicinity of a He condensing part of a refrigerator according to a third embodiment of the present invention.
[図 8]図 8は、本発明の第 4実施形態に係る冷凍機の He凝縮部近傍における概略構 成図である。  FIG. 8 is a schematic configuration diagram in the vicinity of a He condensing unit of a refrigerator according to a fourth embodiment of the present invention.
[図 9]図 9は、本発明の第 5実施形態に係る冷凍機の He凝縮部近傍における概略構 成図である。  FIG. 9 is a schematic configuration diagram in the vicinity of a He condensing unit of a refrigerator according to a fifth embodiment of the present invention.
符号の説明  Explanation of symbols
[0017] 1 冷凍機 [0017] 1 Refrigerator
14 第 2冷却ステージ (冷却ステージ)  14 Second cooling stage (cooling stage)
16 伝熱緩衝材  16 Heat transfer buffer
18 凹凸  18 Concavity and convexity
20 He凝縮部  20 He condensation section
30 リザーバ  30 reservoir
40 被冷却物  40 Object to be cooled
50 Heガス  50 He gas
62 制御部  62 Control unit
64 温度センサ  64 temperature sensor
66 ヒータ  66 Heater
222 第 1フィン(フィン)  222 1st fin
224 第 2フィン(フィン)  224 2nd fin
322 多孔質構造体  322 Porous structure
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0018] 以下、本発明の実施形態につき、図面を参照して説明する。 (第 1実施形態) Hereinafter, embodiments of the present invention will be described with reference to the drawings. (First embodiment)
図 1は、本発明の第 1実施形態に係る冷凍機の概略構成図である。本実施形態に 係る冷凍機 1は、被冷却物 40を冷却する第 2冷却ステージ 14と、被冷却物 40が載 置される He凝縮部 20と、 He凝縮部 20に連通する、 Heガス 50が充填されたリザー ノ 30と、第 2冷却ステージ 14と He凝縮部 20との間に配置された、 He凝縮部 20より 熱伝導率が低!/、材料からなる伝熱緩衝材 16と、を備えたものである。  FIG. 1 is a schematic configuration diagram of a refrigerator according to the first embodiment of the present invention. The refrigerator 1 according to the present embodiment includes a second cooling stage 14 that cools the object 40 to be cooled, a He condensing unit 20 on which the object 40 to be cooled is mounted, and a He gas 50 that communicates with the He condensing unit 20. And a heat transfer buffer 16 made of a material having a lower thermal conductivity than that of the He condensation section 20 disposed between the second cooling stage 14 and the He condensation section 20, It is equipped with.
[0019] 冷凍機 1は、主に圧縮機 4、本体部 2および冷却部 15を備えている。圧縮機 4は、 低圧配管 8から供給される低圧 Heガスを圧縮して高圧 Heガスとし、高圧配管 6に供 給するものである。本体部 2は、高圧配管 6および低圧配管 8と次述する冷却部 15内 の Heガス流路との接続を、モータ等の動力により連続的に切り替えるものである。  The refrigerator 1 mainly includes a compressor 4, a main body 2, and a cooling unit 15. The compressor 4 compresses low-pressure He gas supplied from the low-pressure pipe 8 into high-pressure He gas, and supplies it to the high-pressure pipe 6. The main body 2 continuously switches the connection between the high pressure pipe 6 and the low pressure pipe 8 and the He gas flow path in the cooling section 15 described below by the power of a motor or the like.
[0020] 本体部 2に連続して、冷却部 15が設けられている。冷却部 15は、真空環境に保持 された真空槽 10の内部に配置され、内部を流通する Heガスの膨張により寒冷を発 生させるものである。冷却部 15には、第 1冷却部 11、第 1冷却ステージ 12、第 2冷却 部 13および第 2冷却ステージ 14が順に設けられている。第 1冷却部 11および第 2冷 却部 13は円柱状に形成され、第 1冷却ステージ 12および第 2冷却ステージ 14は円 盤状に形成されて、同軸状に配置されている。冷却部 15の内部には、 Heガス流路( 不図示)が形成されている。この Heガス流路に供給された高圧 Heガスは、第 2冷却 ステージ 14において吸熱膨張し、低圧 Heガスに変化する。  A cooling unit 15 is provided continuously to the main body unit 2. The cooling unit 15 is disposed inside the vacuum chamber 10 maintained in a vacuum environment, and generates cold by the expansion of He gas flowing through the inside. The cooling unit 15 is provided with a first cooling unit 11, a first cooling stage 12, a second cooling unit 13 and a second cooling stage 14 in this order. The first cooling part 11 and the second cooling part 13 are formed in a columnar shape, and the first cooling stage 12 and the second cooling stage 14 are formed in a disk shape and are arranged coaxially. A He gas flow path (not shown) is formed inside the cooling unit 15. The high-pressure He gas supplied to the He gas flow path undergoes endothermic expansion at the second cooling stage 14 and changes to low-pressure He gas.
[0021] 第 2冷却ステージ 14の下面であって後述する He凝縮部 20との間には、伝熱緩衝 材 16が設けられている。伝熱緩衝材 16は、例えば直径数十 mm程度、厚さ 2mm程 度の板状に形成されている。伝熱緩衝材 16は、 4K近傍の温度における熱伝導率が 後述する He凝縮部 20より低い、ステンレス材料等で構成されている。特に、 4K近傍 の温度における熱伝導率が 100W/ (m · K)未満の材料で伝熱緩衝材 16を構成す れば、第 2冷却ステージ 14の温度振幅が He凝縮部 20に伝達されるのを抑制するこ と力 Sできる。  A heat transfer buffer 16 is provided between the lower surface of the second cooling stage 14 and the He condensing unit 20 described later. The heat transfer buffer 16 is formed in a plate shape having a diameter of about several tens of mm and a thickness of about 2 mm, for example. The heat transfer buffer 16 is made of a stainless material or the like whose thermal conductivity at a temperature in the vicinity of 4K is lower than that of the He condensing unit 20 described later. In particular, if the heat transfer buffer 16 is made of a material having a thermal conductivity of less than 100 W / (mK) at a temperature in the vicinity of 4 K, the temperature amplitude of the second cooling stage 14 is transmitted to the He condensation unit 20. The power S can be suppressed.
なお、伝熱緩衝材 16の両面に熱接触性を高めるため In箔等があてがわれて、第 2 冷却ステージ 14、伝熱緩衝材 16および He凝縮部 20が締結されて!/、る。  In addition, In foil or the like is applied to both surfaces of the heat transfer buffer 16 to increase the thermal contact property, and the second cooling stage 14, the heat transfer buffer 16 and the He condensing unit 20 are fastened.
[0022] 伝熱緩衝材 16の下面に、被冷却物 40が載置される He凝縮部 20が設けられてい る。 He凝縮部 20は、 4K近傍の温度における熱伝導率が前述した伝熱緩衝材 16よ り高い、 Cuや Ag、 A1等の材料で構成されている。本実施形態では、無酸素銅により He凝縮部 20が形成されている。特に、 4K近傍の温度における熱伝導率が 200W / (m-K)以上の材料で He凝縮部 20を構成すれば、 He凝縮部 20内で凝縮した液 体 Heにより、被冷却物 40を効率よく冷却することができる。 [0022] On the lower surface of the heat transfer buffer 16, a He condensing unit 20 on which the object to be cooled 40 is placed is provided. The The He condensing unit 20 is made of a material such as Cu, Ag, or A1 whose thermal conductivity at a temperature in the vicinity of 4K is higher than that of the heat transfer buffer 16 described above. In this embodiment, the He condensing part 20 is formed of oxygen-free copper. In particular, if the He condensing unit 20 is made of a material having a thermal conductivity of 200 W / (mK) or higher at a temperature in the vicinity of 4K, the liquid 40 condensed in the He condensing unit 20 efficiently cools the object 40 to be cooled. can do.
[0023] He凝縮部 20は、両端を密閉した円筒状に形成され、内部に液体 Heを貯留しうる ようになつている。この He凝縮部 20の容積を lOcc以上 lOOcc以下とすれば、被冷 却物 40の冷却に必要な液体 Heの収納容積を確保しつつ、 He凝縮部 20をコンパク ト化することができる。本実施形態では、 He凝縮部 20の容積が 40ccに設定されてい [0023] The He condensing unit 20 is formed in a cylindrical shape with both ends sealed, and can store liquid He therein. If the volume of the He condensing part 20 is not less than lOcc and not more than lOOcc, the He condensing part 20 can be made compact while ensuring the storage capacity of the liquid He necessary for cooling the object 40 to be cooled. In this embodiment, the volume of the He condensing part 20 is set to 40 cc.
He凝縮部 20の下面には、テーブル 41が配置されている。このテーブル 41の下面 1S 被冷却物 40の載置場所である冷却位置となっている。テーブル 41は、 He凝縮 部 20と同様の物性を有する材料で構成されている。本実施形態では、 He凝縮部 20 とテーブル 41との間、およびテーブル 41と被冷却物 40との間に In箔等があてがわ れて、 He凝縮部 20とテーブル 41とが締結されている。なおテーブル 41を設けること なぐ被冷却物 40を He凝縮部 20に熱接触よくあてがってもよい。 A table 41 is disposed on the lower surface of the He condensing unit 20. The lower surface of the table 41 is a cooling position where the 1S object 40 is placed. The table 41 is made of a material having the same physical properties as the He condensing unit 20. In the present embodiment, an In foil or the like is applied between the He condensing unit 20 and the table 41, and between the table 41 and the object to be cooled 40, and the He condensing unit 20 and the table 41 are fastened. Yes. Note that the object to be cooled 40 without providing the table 41 may be applied to the He condensing unit 20 in good thermal contact.
[0024] 上述した冷却部 15の第 2冷却ステージ 14、伝熱緩衝材 16、 He凝縮部 20および 被冷却物 40は、被冷却物からの伝熱流路を構成している。本実施形態では、これら を同軸状に連続して配置することにより、伝熱流路の距離を短くすることが可能にな る。これにより、冷却損失を低減することが可能になり、被冷却物 40を目的の温度ま で短時間で効率的に冷却することができる。また伝熱流路を軸対称形状とすることが 可能になり、被冷却物 40の全体を均一かつ安定して冷却することができる。  [0024] The second cooling stage 14, the heat transfer buffer 16, the He condensing unit 20, and the object to be cooled 40 of the cooling unit 15 described above constitute a heat transfer channel from the object to be cooled. In the present embodiment, it is possible to shorten the distance of the heat transfer flow path by arranging these continuously in a coaxial manner. As a result, the cooling loss can be reduced, and the object to be cooled 40 can be efficiently cooled to the target temperature in a short time. In addition, the heat transfer flow path can be axisymmetric, and the entire object to be cooled 40 can be cooled uniformly and stably.
[0025] He凝縮部 20から細管 32が延設され、真空槽 10の外部に配置されたリザーバ 30 に常時接続されている。リザーバ 30の容積は、 He凝縮部 20の容積の 5倍以上 100 倍以下とすることが望ましい。本実施形態では、リザーバ 30の容積が 3250ccに設定 されている。これにより、被冷却物 40の冷却に必要な Heガスの収納容積を確保しつ つ、リザーバ 30をコンパクト化することができる。  A narrow tube 32 extends from the He condensing unit 20 and is always connected to a reservoir 30 disposed outside the vacuum chamber 10. The volume of the reservoir 30 is preferably 5 to 100 times the volume of the He condensing unit 20. In this embodiment, the volume of the reservoir 30 is set to 3250 cc. As a result, the reservoir 30 can be made compact while ensuring the storage capacity of the He gas necessary for cooling the object 40 to be cooled.
[0026] リザーバ 30の内部には Heガスが充填されている。その Heガスの圧力は、室温に おいて 0. IMPa以上 1. OMPa以下とすることが望ましい。本実施形態では、室温に おける圧力が 0· 4MPaの Heガス 50をリザーバ 30に充填している。これにより、仮に 冷凍機 1が停止し He凝縮部 20の液体 He52が蒸発しても、リザーバ 30が高圧力と なることはない。なお細管 32の中間部には、第 1冷却ステージ 12と熱交換を行うため の熱アンカー 34が形成されて!/、る。 [0026] The interior of the reservoir 30 is filled with He gas. The pressure of the He gas 0. IMPa or more 1. Desirably OMPa or less. In this embodiment, the reservoir 30 is filled with He gas 50 having a pressure of 0.4 MPa at room temperature. Thus, even if the refrigerator 1 is stopped and the liquid He52 in the He condensing unit 20 evaporates, the reservoir 30 does not become a high pressure. A heat anchor 34 for exchanging heat with the first cooling stage 12 is formed in the middle portion of the narrow tube 32! /.
[0027] 次に、本実施形態に係る冷凍機 1の作用について説明する。上述したように、圧縮 機 4から冷却部 15に供給された高圧 Heガスは、第 2冷却ステージ 14において吸熱 膨張し、低圧 Heガスに変化する。本体部 2は、高圧配管 6および低圧配管 8と冷却 部 15の Heガス流路との接続を連続的に切り替える。これにより、 Heガスの圧縮およ び膨張 (冷凍サイクル)が繰り返されて、第 2冷却ステージ 14の温度は極低温となる。  Next, the operation of the refrigerator 1 according to this embodiment will be described. As described above, the high-pressure He gas supplied from the compressor 4 to the cooling unit 15 undergoes endothermic expansion in the second cooling stage 14 and changes to low-pressure He gas. The main body 2 continuously switches the connection between the high pressure pipe 6 and the low pressure pipe 8 and the He gas flow path of the cooling section 15. Thereby, compression and expansion (refrigeration cycle) of He gas are repeated, and the temperature of the second cooling stage 14 becomes extremely low.
[0028] 第 2冷却ステージ 14の下方に、 He凝縮部 20が設けられている。第 2冷却ステージ  [0028] A He condensing unit 20 is provided below the second cooling stage 14. Second cooling stage
14により He凝縮部 20が冷却されると、 He凝縮部 20の内部の Heガスが凝縮して液 化し、液体 He 52が生成される。本実施形態では、 He凝縮部 20に対する容積比が 3 0%以下 (例えば 20%程度)となるように液体 Heを生成している。  When the He condensing unit 20 is cooled by 14, the He gas inside the He condensing unit 20 is condensed and liquefied to generate liquid He 52. In the present embodiment, the liquid He is generated so that the volume ratio with respect to the He condensing unit 20 is 30% or less (for example, about 20%).
[0029] ところで、上述した冷凍サイクルに起因する熱流の脈動のため、第 2冷却ステージ 1 4には温度振幅が発生する。しかしながら、本実施形態では、冷凍サイクルに起因す る熱流の脈動が、 Heの蒸発および凝縮 (相転移)によって吸収される。そのため、第 2冷却ステージ 14と同等の温度振幅が He凝縮部 20に発生することはなぐ He凝縮 部 20の温度振幅は小さくなる。  By the way, due to the pulsation of the heat flow caused by the above-described refrigeration cycle, a temperature amplitude is generated in the second cooling stage 14. However, in this embodiment, the pulsation of the heat flow caused by the refrigeration cycle is absorbed by the evaporation and condensation (phase transition) of He. Therefore, a temperature amplitude equivalent to that of the second cooling stage 14 is not generated in the He condensing unit 20, and the temperature amplitude of the He condensing unit 20 becomes small.
[0030] しかも本実施形態では、第 2冷却ステージ 14と He凝縮部 20との間に、 He凝縮部 2 0より熱伝導率が低!/、材料からなる伝熱緩衝材 16が設けられて!/、る。この伝熱緩衝 材 16が熱流の絞り機構として作用するので、第 2冷却ステージ 14における温度振幅 力 e凝縮部 20に伝達されるのを抑制することができる。したがって、被冷却物の載 置面における温度振幅を低減することができる。  Moreover, in the present embodiment, the heat transfer buffer 16 made of a material is provided between the second cooling stage 14 and the He condensing unit 20 and has a lower thermal conductivity than that of the He condensing unit 20. ! / Since the heat transfer buffer 16 acts as a heat flow restricting mechanism, it is possible to suppress the temperature amplitude force e transmitted to the condensing unit 20 in the second cooling stage 14. Therefore, the temperature amplitude on the mounting surface of the object to be cooled can be reduced.
[0031] 図 2は、第 2冷却ステージの温度と温度振幅との関係を示すグラフである。ここでは 、 3種類の装置構成について温度振幅を測定した。具体的には、(1)本実施形態と 同様に第 2冷却ステージ 14、伝熱緩衝材 16および He凝縮部 20を設けた場合の He 凝縮部 20の温度振幅 (菱形プロット)と、(2)伝熱緩衝材 16を設けることなく第 2冷却 ステージ 14および He凝縮部 20を設けた場合の He凝縮部 20の温度振幅(三角形プ ロット)と、(3)伝熱緩衝材 16および He凝縮部 20を設けない場合の第 2冷却ステー ジ 14の温度振幅(丸形プロット)とを測定した。横軸には、被冷却物の載置場所であ る冷却位置(温度振幅の測定位置)の温度をとつて!/、る。なおリザーバ 30の容積を 3 250cc、リザーバ 30への Heガスの充填圧を 0· 4MPa、 He凝縮部 20の内部におけ る液体 Heの容積比を 20%に設定した。 FIG. 2 is a graph showing the relationship between the temperature of the second cooling stage and the temperature amplitude. Here, the temperature amplitude was measured for three types of device configurations. Specifically, (1) the temperature amplitude (diamond plot) of the He condensing unit 20 when the second cooling stage 14, the heat transfer buffer 16 and the He condensing unit 20 are provided as in the present embodiment, and (2 ) Second cooling without heat transfer buffer 16 The temperature amplitude (triangular plot) of the He condensation unit 20 when the stage 14 and the He condensation unit 20 are provided, and (3) the second cooling stage 14 when the heat transfer buffer 16 and the He condensation unit 20 are not provided. Temperature amplitude (round plot) was measured. The horizontal axis indicates the temperature at the cooling position (temperature amplitude measurement position) where the object is placed. The volume of the reservoir 30 was set to 3 250 cc, the filling pressure of the He gas into the reservoir 30 was set to 0.4 MPa, and the volume ratio of the liquid He inside the He condensing unit 20 was set to 20%.
[0032] その結果、各装置構成の温度振幅の大きさは(3) > (2) > (1)の順であった。なお 冷却位置の温度が高いほど、各装置構成間の温度振幅の差が大きくなつた。また(1 )の装置構成において、冷却位置の温度が 4. 2Kの場合には、 He凝縮部 20の温度 振幅が ± 9mKに抑えられた。上記の測定結果より、(3)第 2冷却ステージ 14のみの 装置構成に比べて、 (2) He凝縮部 20を追加した装置構成では温度振幅が格段に 低下することと、(1)伝熱緩衝材 16および He凝縮部 20を追加した装置構成では(2 )に比べ温度振幅がさらに低下することとが確認された。  As a result, the magnitude of the temperature amplitude of each device configuration was in the order of (3)> (2)> (1). Note that the higher the temperature at the cooling position, the greater the difference in temperature amplitude between each device configuration. In the configuration of (1), when the temperature at the cooling position was 4.2K, the temperature amplitude of the He condensing unit 20 was suppressed to ± 9mK. From the above measurement results, (3) Compared to the device configuration with only the second cooling stage 14, (2) The device configuration with the addition of the He condensing unit 20 significantly reduces the temperature amplitude, and (1) Heat transfer It was confirmed that the temperature amplitude was further reduced in the system configuration with the buffer material 16 and the He condensing unit 20 added compared to (2).
[0033] 図 3は、 He凝縮部における液体 Heの容積比と温度振幅との関係を示すグラフであ る。ここでは、(1)本実施形態と同様に伝熱緩衝材を設けた場合の温度振幅 (菱形プ ロット)と、(2)伝熱緩衝材を設けない場合の温度振幅(三角形プロット)とを測定した 。なおリザーノ 30の容積を 3250cc、リザーバ 30への Heガスの最大充填圧を 0· 48 MPa、冷却位置の温度を 4. 2Kに設定した。  FIG. 3 is a graph showing the relationship between the volume ratio of liquid He and the temperature amplitude in the He condensation section. Here, (1) the temperature amplitude when the heat transfer buffer material is provided (diamond plot) as in the present embodiment, and (2) the temperature amplitude when the heat transfer buffer material is not provided (triangle plot). It was measured . The volume of Rizzano 30 was set to 3250cc, the maximum filling pressure of He gas into the reservoir 30 was set to 0 · 48 MPa, and the temperature at the cooling position was set to 4.2K.
[0034] その結果、液体 Heの容積比にかかわらず、温度振幅の大きさは(2) > (1)であつ た。また、液体 Heがない場合の温度振幅は大きくなつたが、液体 Heが少しでも存在 する場合には温度振幅は小さくなつた。さらに、(1)において液体 Heの容積割合力 %〜30%の場合には、いずれも He凝縮部 20の温度振幅が ± 9mKに抑えられた。 上記より、少量の液体 Heであっても温度振幅を大幅に低減できる効果があることが 確認された。  As a result, regardless of the volume ratio of liquid He, the magnitude of the temperature amplitude was (2)> (1). In addition, the temperature amplitude increased when there was no liquid He, but the temperature amplitude decreased when liquid He existed even a little. Further, in (1), in the case of the volume fractional force% to 30% of the liquid He, the temperature amplitude of the He condensation unit 20 was suppressed to ± 9 mK in all cases. From the above, it was confirmed that even a small amount of liquid He has the effect of greatly reducing the temperature amplitude.
[0035] ところで、本実施形態では、 He凝縮部 20より熱伝導率が低!/、伝熱緩衝材 16を設 けたので、冷凍機の冷凍能力が低下すると考えられる。そこで本願の発明者は、伝 熱緩衝材 16の有無による冷凍能力の差異を調査した。  By the way, in this embodiment, since the heat conductivity is lower than that of the He condensing unit 20 and the heat transfer buffer material 16 is provided, it is considered that the refrigerating capacity of the refrigerator decreases. Therefore, the inventor of the present application investigated a difference in refrigerating capacity depending on the presence or absence of the heat transfer buffer 16.
図 4は、冷却位置の温度と冷却位置における冷凍能力との関係を示すグラフである 。ここでは、(1)本実施形態と同様に伝熱緩衝材 16を設けた場合の冷凍能力(菱形 プロット)と、(2)伝熱緩衝材を設けない場合の冷凍能力(四角形プロット)とを測定し た。なお He凝縮部 20の内部における液体 Heの容積比を 20%に設定した。 Fig. 4 is a graph showing the relationship between the temperature at the cooling position and the refrigeration capacity at the cooling position. . Here, (1) the refrigerating capacity (diamond plot) when the heat transfer buffer 16 is provided as in the present embodiment, and (2) the refrigerating capacity (square plot) when the heat transfer buffer is not provided. It was measured. The volume ratio of liquid He inside the He condensing unit 20 was set to 20%.
その結果、冷却位置の温度にかかわらず、伝熱緩衝材 16がある場合の冷凍能力 の低下率は 25%程度であった。したがって、冷凍能力の損失は数十%に抑えられる ことが確認された。  As a result, regardless of the temperature at the cooling position, the rate of decrease in refrigeration capacity with the heat transfer buffer 16 was about 25%. Therefore, it was confirmed that the loss of refrigeration capacity can be suppressed to several tens of percent.
[0036] また本実施形態では、 He凝縮部 20より熱伝導率が低!/、伝熱緩衝材 16を設けたの で、冷却時間が増加すると考えられる。そこで本願の発明者は、伝熱緩衝材 16の有 無による冷却時間の差異を調査した。  [0036] In this embodiment, since the heat conductivity is lower than that of the He condensing unit 20 and the heat transfer buffer 16 is provided, it is considered that the cooling time increases. Therefore, the inventor of the present application investigated the difference in cooling time depending on the presence or absence of the heat transfer buffer 16.
図 5は、冷却時間と冷却位置の温度との関係を示すグラフである。ここでは、(1)本 実施形態と同様に伝熱緩衝材を設けた場合の冷却位置の温度(実線)と、(2)伝熱 緩衝材を設けなレ、場合の冷却位置の温度(四角形プロット)とを測定した。その結果 、伝熱緩衝材 16の有無による冷却時間の差異はほとんどないことが確認された。  FIG. 5 is a graph showing the relationship between the cooling time and the temperature at the cooling position. Here, (1) the temperature at the cooling position when the heat transfer buffer material is provided (solid line) as in this embodiment, and (2) the temperature at the cooling position when the heat transfer buffer material is not provided (square) Plot). As a result, it was confirmed that there was almost no difference in cooling time depending on the presence or absence of the heat transfer buffer 16.
[0037] 以上に詳述したように、本実施形態に係る冷凍機(図 1参照)は、被冷却物 40が載 置される He凝縮部 20と第 2冷却ステージ 14との間に、 He凝縮部 20より熱伝導率が 低い材料からなる伝熱緩衝材 16を備える構成とした。この構成によれば、冷凍機 1の 冷凍サイクルに起因する熱流の脈動力 He凝縮部 20における Heの蒸発および凝 縮 (相転移)によって吸収される。その際、伝熱緩衝材 16が熱流の絞り機構として作 用するので、第 2冷却ステージ 14における温度振幅の伝達が抑制され、その結果、 被冷却物 40の載置面における温度振幅を低減することができる。また第 2冷却ステ ージ 14、伝熱緩衝材 16、 He凝縮部 20および被冷却物 40が同軸状に連続配置さ れるので、被冷却物からの伝熱流路が軸対称形状で短距離になる。したがって、被 冷却物 40の均一で安定した冷却が可能になる。  [0037] As described in detail above, the refrigerator according to the present embodiment (see FIG. 1) is configured such that the He condensing unit 20 on which the object to be cooled 40 is placed is placed between the He cooling unit 20 and the second cooling stage 14. The heat transfer buffer 16 made of a material having a lower thermal conductivity than the condensing unit 20 is provided. According to this configuration, the pulsation power of heat flow caused by the refrigeration cycle of the refrigerator 1 is absorbed by the evaporation and condensation (phase transition) of He in the He condensing unit 20. At that time, since the heat transfer buffer 16 acts as a heat flow restricting mechanism, the transmission of the temperature amplitude in the second cooling stage 14 is suppressed, and as a result, the temperature amplitude on the mounting surface of the object 40 to be cooled is reduced. be able to. In addition, since the second cooling stage 14, the heat transfer buffer 16, the He condensing section 20, and the object to be cooled 40 are continuously arranged coaxially, the heat transfer flow path from the object to be cooled is axisymmetric and has a short distance. Become. Therefore, uniform and stable cooling of the object to be cooled 40 becomes possible.
[0038] また本実施形態では、 He凝縮部 20における液体 He52の容積比を 30%以下に抑 えること力 Sできる。したがって、 Heガス 50が充填されるリザーバ 30を小型化すること が可能になる。またリザーバ 30に対する室温時の Heガス 50の充填圧力を低くするこ とが可能になる。その結果、仮に冷凍機 1が停止し He凝縮部 20の液体 He52が気 化しても、リザーバ 30及び He凝縮部が高圧力となることを防止することができる。 [0039] (第 2実施形態) [0038] Further, in the present embodiment, it is possible to suppress the volume ratio of the liquid He52 in the He condensing unit 20 to 30% or less. Therefore, the reservoir 30 filled with the He gas 50 can be downsized. Further, the filling pressure of the He gas 50 to the reservoir 30 at room temperature can be lowered. As a result, even if the refrigerator 1 is stopped and the liquid He52 in the He condensing unit 20 is vaporized, the reservoir 30 and the He condensing unit can be prevented from becoming high pressure. [0039] (Second Embodiment)
次に、本発明の第 2実施形態に係る冷凍機について説明する。  Next, a refrigerator according to the second embodiment of the present invention will be described.
図 6は、本実施形態に係る冷凍機の He凝縮部近傍における概略構成図である。本 実施形態に係る冷凍機は、 He凝縮部 220の内面 221 , 223に、フィン 222, 224力 S 立設されたものである。なお第 1実施形態と同様の構成となる部分については、その 詳細な説明を省略する。  FIG. 6 is a schematic configuration diagram in the vicinity of the He condensing unit of the refrigerator according to the present embodiment. In the refrigerator according to the present embodiment, fins 222 and 224 force S are erected on the inner surfaces 221 and 223 of the He condensing unit 220. Note that detailed description of portions having the same configuration as in the first embodiment is omitted.
[0040] 第 2冷却ステージ 14と被冷却物 40との間に、 He凝縮部 220が配置されている。 A He condensing unit 220 is disposed between the second cooling stage 14 and the object 40 to be cooled.
He凝縮部 220は、 Cuや Ag、 A1等の材料からなる円筒状の中空容器であり、その 内部に Heガス 50が充填されている。第 2冷却ステージ 14により He凝縮部 220が冷 却されると、 Heガスが凝縮して液体 He52が生成される。この液体 He52により、被冷 却物 40が冷却される。  The He condensing unit 220 is a cylindrical hollow container made of a material such as Cu, Ag, or A1, and the inside thereof is filled with He gas 50. When the He condensing unit 220 is cooled by the second cooling stage 14, the He gas is condensed and the liquid He52 is generated. The object to be cooled 40 is cooled by the liquid He52.
[0041] He凝縮部 220の内面には複数のフィン 222, 224力 S立設されている。各フィン 222 , 224は、 He凝縮部 220と同様に、熱伝導率の高い材料で構成することが望ましい 。各フィン 222, 224は、 He凝縮部 220と一体成形してもよいし、別体に成形して He 凝縮部 220に固着してもよい。  [0041] On the inner surface of the He condensing unit 220, a plurality of fins 222, 224 forces S are installed. Each of the fins 222 and 224 is preferably made of a material having high thermal conductivity, like the He condensing unit 220. The fins 222 and 224 may be formed integrally with the He condensing unit 220, or may be formed separately and fixed to the He condensing unit 220.
[0042] 第 1フィン 222は、 He凝縮部 220の底面 221から天井面 223に向かって形成され ている。これにより、 He凝縮部 220の内面と液体 He52との接触面積を大きくすること が可能になる。したがって、 He凝縮部 220に載置される被冷却物 40を効率よく冷却 すること力 Sでさる。  The first fin 222 is formed from the bottom surface 221 of the He condensing unit 220 toward the ceiling surface 223. This makes it possible to increase the contact area between the inner surface of the He condensing unit 220 and the liquid He52. Therefore, the force S can efficiently cool the object 40 to be cooled placed on the He condensing unit 220.
第 2フィン 224は、 He凝縮部 220の天井面 223から底面 221に向かって形成され ている。これにより、 He凝縮部 220の内面と Heガス 50との接触面積を大きくすること が可能になる。したがって、 He凝縮部 220の内部の Heガス 50を効率よく冷却して凝 縮すること力でさる。  The second fin 224 is formed from the ceiling surface 223 to the bottom surface 221 of the He condensing unit 220. As a result, the contact area between the inner surface of the He condensing unit 220 and the He gas 50 can be increased. Therefore, it is measured by the power that efficiently cools and condenses the He gas 50 inside the He condensing unit 220.
[0043] (第 3実施形態) [0043] (Third embodiment)
次に、本発明の第 3実施形態に係る冷凍機について説明する。  Next, a refrigerator according to a third embodiment of the present invention will be described.
図 7は、本実施形態に係る冷凍機の He凝縮部近傍における概略構成図である。本 実施形態に係る冷凍機は、 He凝縮部 320の内面に多孔質構造体 322が装着され たものである。なお第 1実施形態と同様の構成となる部分については、その詳細な説 明を省略する。 FIG. 7 is a schematic configuration diagram in the vicinity of the He condensing unit of the refrigerator according to the present embodiment. In the refrigerator according to the present embodiment, a porous structure 322 is attached to the inner surface of the He condensing unit 320. Note that the detailed description of the same parts as in the first embodiment will be given. I will omit the description.
[0044] He凝縮部 320の内面に多孔質構造体 322が装着されている。多孔質構造体 322 は、メッシュや発泡性金属、焼結金属などで構成されている。多孔質構造体 322は、 He凝縮部 320の内側全体に充填されていてもよぐ一部のみに充填されていてもよ い。  [0044] A porous structure 322 is attached to the inner surface of the He condensation section 320. The porous structure 322 is made of a mesh, a foam metal, a sintered metal, or the like. The porous structure 322 may be filled in the entire inner side of the He condensing part 320 or may be filled only in a part.
多孔質構造体 322は、 He凝縮部 320の内面と熱的に良好な接触を保つように、接 着剤等により He凝縮部 320の内面に装着されている。  The porous structure 322 is attached to the inner surface of the He condensing portion 320 with an adhesive or the like so as to keep a good thermal contact with the inner surface of the He condensing portion 320.
[0045] 多孔質構造体 322を設けることにより、 He凝縮部 320の内面と液体 He52との接触 面積を大きくすることが可能になる。したがって、 He凝縮部 320に載置される被冷却 物 40を効率よく冷却することができる。また多孔質構造体 322を設けることにより、 H e凝縮部 320の内面と Heガス 50との接触面積を大きくすることが可能になる。したが つて、 He凝縮部 320の内部の Heガス 50を効率よく冷却して凝縮することができる。  [0045] By providing the porous structure 322, it becomes possible to increase the contact area between the inner surface of the He condensation section 320 and the liquid He52. Therefore, the object to be cooled 40 placed on the He condensing unit 320 can be efficiently cooled. Further, by providing the porous structure 322, the contact area between the inner surface of the He condensing section 320 and the He gas 50 can be increased. Therefore, the He gas 50 inside the He condensing section 320 can be efficiently cooled and condensed.
[0046] (第 4実施形態)  [0046] (Fourth embodiment)
次に、本発明の第 4実施形態に係る冷凍機について説明する。  Next, a refrigerator according to a fourth embodiment of the present invention will be described.
図 8は、本実施形態に係る冷凍機の He凝縮部近傍における概略構成図である。本 実施形態に係る冷凍機は、伝熱緩衝材 16における第 2冷却ステージ 14との接触面 に、凹凸 18が形成されたものである。なお第 1実施形態と同様の構成となる部分につ いては、その詳細な説明を省略する。  FIG. 8 is a schematic configuration diagram in the vicinity of the He condensing unit of the refrigerator according to the present embodiment. In the refrigerator according to the present embodiment, unevenness 18 is formed on the contact surface of the heat transfer buffer 16 with the second cooling stage 14. Note that detailed description of portions having the same configuration as in the first embodiment is omitted.
[0047] 伝熱緩衝材 16は、熱伝導率が低!/、ステンレス材料等で構成されて!/、る。その第 2 冷却ステージ 14との接触面に、凹凸 18が形成されている。凹凸 18は、規則的に形 成されていても、不規則(ランダム)に形成されていてもよい。また、第 2冷却ステージ 14と点接触するように凹凸 18を錘状に形成してもよぐ第 2冷却ステージ 14と面接触 するように凹凸 18を錘台状に形成してもよい。また第 2冷却ステージ 14と線接触する ように凹凸 18を断面三角形の突条としてもよぐ第 2冷却ステージ 14と帯状に面接触 するように凹凸 18を断面台形の突条としてもよい。  [0047] The heat transfer buffer 16 has a low thermal conductivity! /, And is made of a stainless material or the like! Concavities and convexities 18 are formed on the contact surface with the second cooling stage 14. The irregularities 18 may be formed regularly or irregularly (randomly). The unevenness 18 may be formed in a pyramid shape so as to be in point contact with the second cooling stage 14, or the unevenness 18 may be formed in a frustum shape so as to be in surface contact with the second cooling stage 14. Further, the projections and recesses 18 may be formed in a triangular shape so as to be in line contact with the second cooling stage 14, and the projections and depressions 18 may be formed in a trapezoidal shape in cross section so as to be in surface contact with the second cooling stage 14.
[0048] 本実施形態では、伝熱緩衝材 16における第 2冷却ステージ 14との接触面に凹凸 1 8を形成したので、伝熱緩衝材 16と第 2冷却ステージ 14との接触面積が小さくなる。 これにより、伝熱緩衝材 16と第 2冷却ステージ 14とが全面接触している場合と比べて 、熱流の絞り機能が強化されるので、第 2冷却ステージ 14における温度振幅が He凝 縮部 420に伝達されるのを抑制することが可能になる。したがって、被冷却物の載置 面における温度振幅を低減することができる。 In the present embodiment, since the unevenness 18 is formed on the contact surface of the heat transfer buffer material 16 with the second cooling stage 14, the contact area between the heat transfer buffer material 16 and the second cooling stage 14 is reduced. . As a result, compared to the case where the heat transfer buffer 16 and the second cooling stage 14 are in full contact with each other. Since the heat flow throttling function is strengthened, it is possible to suppress the temperature amplitude in the second cooling stage 14 from being transmitted to the He condensation unit 420. Therefore, it is possible to reduce the temperature amplitude on the surface on which the object to be cooled is placed.
[0049] 本実施形態では伝熱緩衝材 16の第 2冷却ステージ 14との接触面に凹凸 18を形成 したが、第 2冷却ステージ 14の伝熱緩衝材 16との接触面に凹凸を形成してもよい。 また、伝熱緩衝材 16の He凝縮部 420との接触面に凹凸を形成してもよぐ He凝縮 部 420の伝熱緩衝材 16との接触面に凹凸を形成してもよい。すなわち、第 2冷却ス テージ 14または He凝縮部 420と、伝熱緩衝材 16との接触面に、凹凸が形成されて いればよい。いずれの場合でも、第 2冷却ステージ 14における温度振幅が He凝縮 部 420に伝達されるのを抑制することが可能になる。したがって、被冷却物の載置面 における温度振幅を低減することができる。  In this embodiment, the unevenness 18 is formed on the contact surface of the heat transfer buffer 16 with the second cooling stage 14. However, the unevenness is formed on the contact surface of the second cooling stage 14 with the heat transfer buffer 16. May be. In addition, unevenness may be formed on the contact surface of the heat transfer buffer material 16 with the He condensing portion 420, or unevenness may be formed on the contact surface of the He condensing portion 420 with the heat transfer buffer material 16. That is, it is only necessary that irregularities be formed on the contact surface between the second cooling stage 14 or the He condensing section 420 and the heat transfer buffer material 16. In any case, it is possible to suppress the temperature amplitude in the second cooling stage 14 from being transmitted to the He condensing unit 420. Accordingly, it is possible to reduce the temperature amplitude on the surface on which the object to be cooled is placed.
[0050] (第 5実施形態)  [0050] (Fifth embodiment)
次に、本発明の第 5実施形態に係る冷凍機について説明する。  Next, a refrigerator according to a fifth embodiment of the present invention will be described.
図 9は、本実施形態に係る冷凍機の He凝縮部近傍における概略構成図である。本 実施形態に係る冷凍機は、 He凝縮部 520に装着された温度センサ 64およびヒータ 66と、温度センサ 64の測定結果に基づいてヒータ 66を駆動する制御部 62と、を備 えたものである。なお第 1実施形態と同様の構成となる部分については、その詳細な 説明を省略する。  FIG. 9 is a schematic configuration diagram in the vicinity of the He condensing unit of the refrigerator according to the present embodiment. The refrigerator according to the present embodiment includes a temperature sensor 64 and a heater 66 attached to the He condensing unit 520, and a control unit 62 that drives the heater 66 based on the measurement result of the temperature sensor 64. . Note that detailed description of portions having the same configuration as in the first embodiment is omitted.
[0051] 本実施形態では、 He凝縮部 520における被冷却物 40の載置面の近傍に、温度セ ンサ 64が装着されている。また He凝縮部 520には、電熱線等を備えたヒータ 66が装 着されている。これら温度センサ 64およびヒータ 66は、制御部 62に接続されている。 制御部 62は、温度センサ 64の測定結果に基づいてヒータ 66を駆動するようになって いる。すなわち、温度センサ 64の出力信号をヒータ 66の駆動電流に変換し、また、ヒ ータ 66に帰還電流を流すことにより、その発熱に起因する温度の脈動が最小となる ように制御を行う。  In the present embodiment, the temperature sensor 64 is mounted in the vicinity of the placement surface of the object 40 to be cooled in the He condensing unit 520. The He condensing unit 520 is provided with a heater 66 equipped with a heating wire or the like. These temperature sensor 64 and heater 66 are connected to the control unit 62. The control unit 62 drives the heater 66 based on the measurement result of the temperature sensor 64. That is, the output signal of the temperature sensor 64 is converted into the drive current of the heater 66, and the feedback current is passed through the heater 66, so that the temperature pulsation caused by the heat generation is controlled to be minimized.
具体的には、まず被冷却物 40の載置面の設定温度と、温度センサ 64の測定温度 とを比較する。測定温度が設定温度を下回った場合には、ヒータを駆動して He凝縮 部 520を加熱する。これにより、被冷却物 40の載置面の温度を上昇させて、設定温 度に復帰させることが可能になる。したがって、被冷却物 40の載置面における温度 振幅を低減することができる。 Specifically, first, the set temperature of the mounting surface of the object to be cooled 40 is compared with the measured temperature of the temperature sensor 64. When the measured temperature falls below the set temperature, the He condensing unit 520 is heated by driving the heater. As a result, the temperature of the mounting surface of the object to be cooled 40 is raised to the set temperature. It becomes possible to return at a time. Therefore, the temperature amplitude on the placement surface of the object to be cooled 40 can be reduced.
[0052] なお、本発明の技術範囲は、上述した実施形態に限定されるものではなぐ本発明 の趣旨を逸脱しない範囲において、上述した実施形態に種々の変更を加えたものを 含む。すなわち、実施形態で挙げた具体的な材料や構成などはほんの一例に過ぎ ず、適宜変更が可能である。 [0052] The technical scope of the present invention is not limited to the above-described embodiments, but includes those in which various modifications are made to the above-described embodiments without departing from the spirit of the present invention. That is, the specific materials and configurations described in the embodiments are merely examples, and can be changed as appropriate.
産業上の利用可能性  Industrial applicability
[0053] 被冷却物の載置面における温度振幅の低減が可能であり、また被冷却物の均一で 安定した冷却が可能な、冷凍機を提供することができる。 [0053] It is possible to provide a refrigerator that can reduce the temperature amplitude on the surface on which the object to be cooled is placed and can cool the object to be cooled uniformly and stably.

Claims

請求の範囲 The scope of the claims
[1] 被冷却物を冷却する冷却ステージと; [1] a cooling stage for cooling an object to be cooled;
前記被冷却物が載置される He凝縮部と;  A He condensing unit on which the object to be cooled is placed;
前記 He凝縮部に連通する、 Heガスが充填されたリザーバと;  A reservoir filled with He gas that communicates with the He condensation section;
前記冷却ステージと前記 He凝縮部との間に配置された、前記 He凝縮部より熱伝 導率が低!/ヽ材料からなる伝熱緩衝材と;  A heat transfer buffer material, which is disposed between the cooling stage and the He condensing unit, and has a lower thermal conductivity than the He condensing unit!
を備えたことを特徴とする冷凍機。  A freezer comprising the above.
[2] 前記 He凝縮部は、 4K近傍の温度における熱伝導率が 200W/ (m.K)以上の材 料からなることを特徴とする請求項 1に記載の冷凍機。 [2] The refrigerator according to claim 1, wherein the He condensing part is made of a material having a thermal conductivity of 200 W / (m.K) or more at a temperature in the vicinity of 4K.
[3] 前記伝熱緩衝材は、 4K近傍の温度における熱伝導率が 100W/ (m-K)未満の 材料からなることを特徴とする請求項 1に記載の冷凍機。 [3] The refrigerator according to claim 1, wherein the heat transfer buffer material is made of a material having a thermal conductivity of less than 100 W / (m-K) at a temperature in the vicinity of 4K.
[4] 前記 He凝縮部の容積は、 lOcc以上 lOOcc以下であることを特徴とする請求項 1に 記載の冷凍機。 [4] The refrigerator according to claim 1, wherein the volume of the He condensing part is not less than lOcc and not more than lOOcc.
[5] 前記リザーバの容積は、前記 He凝縮部の容積の 5倍以上 100倍以下であることを 特徴とする請求項 1に記載の冷凍機。  [5] The refrigerator according to claim 1, wherein the volume of the reservoir is not less than 5 times and not more than 100 times the volume of the He condensation unit.
[6] 前記リザーバに充填された前記 Heガスの圧力は、室温において 0. IMPa以上 1. [6] The pressure of the He gas filled in the reservoir is 0. IMPa or more at room temperature 1.
OMPa以下であることを特徴とする請求項 1に記載の冷凍機。  The refrigerator according to claim 1, wherein the refrigerator is OMPa or less.
[7] 前記 He凝縮部の内面に、フィンが立設されていることを特徴とする請求項 1に記載 の冷凍機。 7. The refrigerator according to claim 1, wherein fins are erected on the inner surface of the He condensation section.
[8] 前記 He凝縮部の内面に、多孔質構造体が装着されていることを特徴とする請求項 1に記載の冷凍機。  8. The refrigerator according to claim 1, wherein a porous structure is attached to the inner surface of the He condensation section.
[9] 前記伝熱緩衝材と、前記冷却ステージまたは前記 He凝縮部との接触面に、凹凸 が形成されて!/、ることを特徴とする請求項 1に記載の冷凍機。  [9] The refrigerator according to claim 1, wherein unevenness is formed on a contact surface between the heat transfer buffer material and the cooling stage or the He condensing unit.
[10] 前記 He凝縮部に装着された温度センサおよびヒータと; [10] a temperature sensor and a heater attached to the He condensation section;
前記温度センサの測定結果に基づレ、て前記ヒータを駆動する制御部と; をさらに備えたことを特徴とする請求項 1に記載の冷凍機。  The refrigerator according to claim 1, further comprising: a control unit that drives the heater based on a measurement result of the temperature sensor.
PCT/JP2007/073089 2006-11-30 2007-11-29 Refrigerating machine WO2008066127A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US12/516,449 US20100031693A1 (en) 2006-11-30 2007-11-29 Refridgerating machine
CN2007800433909A CN101542219B (en) 2006-11-30 2007-11-29 Refrigerating machine
EP07849920.9A EP2090850B1 (en) 2006-11-30 2007-11-29 Refrigerating machine
KR1020097010913A KR101121232B1 (en) 2006-11-30 2007-11-29 Refrigerating machine
JP2008547035A JPWO2008066127A1 (en) 2006-11-30 2007-11-29 refrigerator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-323772 2006-11-30
JP2006323772 2006-11-30

Publications (1)

Publication Number Publication Date
WO2008066127A1 true WO2008066127A1 (en) 2008-06-05

Family

ID=39467914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/073089 WO2008066127A1 (en) 2006-11-30 2007-11-29 Refrigerating machine

Country Status (7)

Country Link
US (1) US20100031693A1 (en)
EP (1) EP2090850B1 (en)
JP (1) JPWO2008066127A1 (en)
KR (1) KR101121232B1 (en)
CN (1) CN101542219B (en)
TW (1) TWI395916B (en)
WO (1) WO2008066127A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5972639B2 (en) * 2012-03-30 2016-08-17 出光興産株式会社 Lubricating oil composition for refrigerator
JP5972640B2 (en) * 2012-03-30 2016-08-17 出光興産株式会社 Lubricating oil composition for refrigerator
GB2502629B (en) * 2012-06-01 2015-03-11 Siemens Plc A closed cryogen cooling system and method for cooling a superconducting magnet
KR101555303B1 (en) * 2013-05-14 2015-09-25 두산중공업 주식회사 Recondenser, method of controlling temperature of recondensing fin for recondenser, cooling apparatus having recondenser, and cooling method using cooling apparatus
US9553328B2 (en) 2013-08-26 2017-01-24 e-Zn Inc. Electrochemical system for storing electricity in metals
EP3069159B1 (en) * 2013-11-13 2022-09-07 Koninklijke Philips N.V. Superconducting magnet system including thermally efficient ride-through system and method of cooling superconducting magnet system
CN104458475B (en) * 2014-12-05 2017-03-15 北京卫星制造厂 A kind of spacecraft thermal control unit product carries pressure cold shock testing method
US10297888B2 (en) 2015-05-07 2019-05-21 e-Zn Inc. Method and system for storing electricity in metals
US10145602B2 (en) * 2015-09-02 2018-12-04 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Active gas-gap heat switch with fast thermal response
CN106679217B (en) * 2016-12-16 2020-08-28 复旦大学 Mechanical vibration isolation liquid helium recondensation low-temperature refrigeration system
JP2021134951A (en) * 2020-02-25 2021-09-13 住友重機械工業株式会社 Cryogenic freezer and cryogenic system
US11394068B2 (en) 2020-11-25 2022-07-19 e-Zn Inc. Electrolyte leakage management in an electrochemical cell

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6195585A (en) * 1984-10-17 1986-05-14 Hitachi Ltd Cryostat with refrigerator
JPH0914777A (en) * 1995-06-29 1997-01-17 Idoutai Tsushin Sentan Gijutsu Kenkyusho:Kk Expansion unit for refrigerator
JPH09287836A (en) * 1996-02-21 1997-11-04 Daikin Ind Ltd Cryogenic refrigerating machine
JPH10132763A (en) * 1996-11-05 1998-05-22 Mac Sci:Kk Method for automatically adjusting position of sample in x-ray diffraction apparatus
JP2773793B2 (en) 1993-11-22 1998-07-09 住友重機械工業株式会社 Cryogenic refrigerator
JP2000274966A (en) * 1999-03-24 2000-10-06 Sumitomo Electric Ind Ltd Heat exchange unit
JP2002270421A (en) * 2001-03-14 2002-09-20 Aisin Seiki Co Ltd Magnetic field device
JP2004076955A (en) 2002-08-09 2004-03-11 Sumitomo Heavy Ind Ltd Cryogenic temperature damper

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3188830A (en) * 1964-08-03 1965-06-15 Hughes Aircraft Co Thermal oscillation filter
US4479367A (en) * 1981-12-28 1984-10-30 Santa Barbara Research Center Thermal filter
US4694175A (en) * 1985-12-12 1987-09-15 Santa Barbara Research Center Thermal damper for infrared detector
JP3265139B2 (en) * 1994-10-28 2002-03-11 株式会社東芝 Cryogenic equipment
US5606870A (en) * 1995-02-10 1997-03-04 Redstone Engineering Low-temperature refrigeration system with precise temperature control
US5782095A (en) * 1997-09-18 1998-07-21 General Electric Company Cryogen recondensing superconducting magnet
DE10297837B4 (en) * 2002-12-16 2019-05-09 Sumitomo Heavy Industries, Ltd. Method for fixing a refrigerating machine and fastening device therefor
JP4494027B2 (en) * 2004-01-26 2010-06-30 株式会社神戸製鋼所 Cryogenic equipment
DE102004053972B3 (en) * 2004-11-09 2006-07-20 Bruker Biospin Gmbh NMR spectrometer with common refrigerator for cooling NMR probe head and cryostat
GB0428406D0 (en) * 2004-12-24 2005-02-02 Oxford Instr Superconductivity Cryostat assembly
US20080209919A1 (en) * 2007-03-01 2008-09-04 Philips Medical Systems Mr, Inc. System including a heat exchanger with different cryogenic fluids therein and method of using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6195585A (en) * 1984-10-17 1986-05-14 Hitachi Ltd Cryostat with refrigerator
JP2773793B2 (en) 1993-11-22 1998-07-09 住友重機械工業株式会社 Cryogenic refrigerator
JPH0914777A (en) * 1995-06-29 1997-01-17 Idoutai Tsushin Sentan Gijutsu Kenkyusho:Kk Expansion unit for refrigerator
JPH09287836A (en) * 1996-02-21 1997-11-04 Daikin Ind Ltd Cryogenic refrigerating machine
JPH10132763A (en) * 1996-11-05 1998-05-22 Mac Sci:Kk Method for automatically adjusting position of sample in x-ray diffraction apparatus
JP2000274966A (en) * 1999-03-24 2000-10-06 Sumitomo Electric Ind Ltd Heat exchange unit
JP2002270421A (en) * 2001-03-14 2002-09-20 Aisin Seiki Co Ltd Magnetic field device
JP2004076955A (en) 2002-08-09 2004-03-11 Sumitomo Heavy Ind Ltd Cryogenic temperature damper

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2090850A4

Also Published As

Publication number Publication date
KR101121232B1 (en) 2012-03-22
KR20090085641A (en) 2009-08-07
EP2090850A1 (en) 2009-08-19
CN101542219A (en) 2009-09-23
EP2090850B1 (en) 2016-10-05
TW200839162A (en) 2008-10-01
CN101542219B (en) 2012-06-20
JPWO2008066127A1 (en) 2010-03-11
EP2090850A4 (en) 2011-11-23
US20100031693A1 (en) 2010-02-11
TWI395916B (en) 2013-05-11

Similar Documents

Publication Publication Date Title
WO2008066127A1 (en) Refrigerating machine
JP3347870B2 (en) Superconducting magnet and regenerative refrigerator for the magnet
GB2504187A (en) Cryogenic cooling apparatus with a thermally linked two-stage refrigerator which operates in a pressure modulated regime that is sensed and controlled.
US7012347B2 (en) Superconducting rotor with cooling system
Bonnet et al. Development and test of a cryogenic pulsating heat pipe and a pre-cooling system
JP2005326138A (en) Cooling device and vending machine with it
WO2004085935A1 (en) Pulse tube refrigerating machine
JP5770303B2 (en) Cooling apparatus and method
EP2085720B1 (en) Cryogenic container with built-in refrigerator
JP2009103412A (en) Regeneration type refrigerator
WO2002016836A1 (en) Stirling cooling device, cooling chamber, and refrigerator
JP2001091173A (en) Heat conveying apparatus
JP2006234356A (en) Low temperature retaining device and its maintenance method
JP3310872B2 (en) Magnetic refrigerator
JP2020056533A (en) Cryogenic temperature cooling device
JP2004069268A (en) Pulse tube freezer
de Waele Millikelvin Cooling by Expansion of ³He in 4He
JPH07294035A (en) Superconducting magnet apparatus
Duband Double stage helium sorption coolers
Gawali et al. Performance prediction and experimental investigations on integral pulse tube cryocooler for 15 W at 70 K using indigenously developed linear compressor
von Schneidemesser et al. Generation of liquid helium temperatures using a lead regenerator in a GM precooled pulse tube stage
JP2007198627A (en) Stirling cooling storage
CN116538745A (en) Low-temperature refrigerator based on stepped piston pulse tube refrigerator
JP2005283023A (en) Stirling cooler
JP2004324931A (en) Heat sink for refrigerator

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780043390.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07849920

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008547035

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020097010913

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2007849920

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007849920

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12516449

Country of ref document: US