JP2004076955A - Cryogenic temperature damper - Google Patents

Cryogenic temperature damper Download PDF

Info

Publication number
JP2004076955A
JP2004076955A JP2002233568A JP2002233568A JP2004076955A JP 2004076955 A JP2004076955 A JP 2004076955A JP 2002233568 A JP2002233568 A JP 2002233568A JP 2002233568 A JP2002233568 A JP 2002233568A JP 2004076955 A JP2004076955 A JP 2004076955A
Authority
JP
Japan
Prior art keywords
helium gas
cryogenic temperature
temperature damper
helium
damper according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002233568A
Other languages
Japanese (ja)
Other versions
JP4031318B2 (en
Inventor
Hiroshi Asami
浅見 宏
Yoshikage Oda
小田 祺景
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2002233568A priority Critical patent/JP4031318B2/en
Publication of JP2004076955A publication Critical patent/JP2004076955A/en
Application granted granted Critical
Publication of JP4031318B2 publication Critical patent/JP4031318B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/17Re-condensers

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cryogenic refrigerating machine reducing a large temperature amplitude generated from a cooling stage of the cryogenic refrigerating machine to be small, and being easily operated with high safety. <P>SOLUTION: A cryogenic temperature damper 40 is provided with helium gas chambers 42, 43 storing a helium gas, a condenser chamber 44 for liquefying the helium gas, a liquid helium chamber 46 for storing the liquefied helium 47, a helium gas introducing pipe 50 for introducing the necessary amount of helium gas at a normal temperature, and an introduced gas sealing part 52 for sealing the introduced helium gas, is used. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、極低温温度ダンパ(以下、単に温度ダンパとも称する)に係り、特に、ヘリウムガスを冷媒とする極低温冷凍機(以下、単に冷凍機とも称する)に使用するのに好適な、該冷凍機の温度変動を低減することが可能な温度ダンパ、該温度ダンパを含む冷凍機、及び、前記温度ダンパに用いるのに好適なヘリウムガスの封止方法に関する。
【0002】
【従来の技術】
ヘリウムガスを冷媒とした極低温冷凍機において、被冷却体として、例えばジョセフソン素子センサ等を冷却する場合、冷凍機の冷却ステージに素子を固定することは、冷凍機の温度振幅が大きいため、センサの性能を著しく阻害する。
【0003】
即ち、従来のように構成された極低温冷凍機の冷却ステージは、一般に銅で作られているが、20K以下の温度において銅の比熱が小さくなるため、冷凍機の膨張室に高圧のヘリウムガスが入る温度と、低圧に膨張して寒冷が発生して降下した温度とが、熱交換授受され、冷却ステージ外表面に極めて抵抗のない形で温度振幅として現われてくる。
【0004】
この冷凍機の温度振幅を小さくするために、冷却ステージと被冷却体の間に、ナイロン、ポリテトラフルオロエチレン、FRP樹脂等の熱伝導の悪い材料を介装して冷却する方法があるが、熱伝達損失が大きい等の欠点がある。
【0005】
又、前記温度振幅を小さくする他の方法として、特公平3−16592や特許第2773793号に、図1に示す如く、被冷却体8と冷凍機ユニット20の最終段(図1では2段)冷却ステージ28の間に温度ダンパ16を設けることが提案されている。図において、10は圧縮機ユニット、12は高圧側配管、14は低圧側配管、22は1段シリンダ、24は1段冷却ステージ、26は2段シリンダである。
【0006】
【発明が解決しようとする課題】
しかしながら従来は、冷凍機ユニット20の冷媒を、室温部より細管17を介して冷凍機最終段の冷却ステージ28に取付けてある温度ダンパ16内に導入しているため、急な温度上昇があって瞬時にヘリウムが気化した場合の操作性や安全性に問題があった。即ち、冷凍機を停止すると、その温度上昇に伴なって、温度ダンパ16内の液体ヘリウムの温度も上昇して気化する。この際、ヘリウムの気体と液体の気化比は699と非常に大きいため、室温部のバルブ18の操作を誤ると、温度ダンパ16の内部が異常高圧となって、危険な状態になる。又、急激な温度上昇に対してもガスの逃げ場がなく、温度ダンパ16内は異常高圧となって、危険である。
【0007】
本発明は、前記従来の問題点を解決するべくなされたもので、極低温冷凍機の冷却ステージから発生する大きな温度振幅を小さくし、且つ、操作性が簡単で安全性の高い極低温冷凍機を提供することを課題とする。
【0008】
【課題を解決するための手段】
本発明は、ヘリウムガスを冷媒とする極低温冷凍機に使用する極低温温度ダンパであって、ヘリウムガスを収納する手段と、ヘリウムガスを液化させるコンデンサ手段と、液化された液体ヘリウムを収納する蓄冷手段と、必要量のヘリウムガスを常温で導入する手段と、導入されたヘリウムガスを封止するためのヘリウムガス封止手段とを備え、液体ヘリウムの大きな比熱と気化潜熱を用いることにより、前記課題を解決したものである。
【0009】
又、前記コンデンサ手段と蓄冷手段を一体化し、前記コンデンサ手段の下方を蓄冷手段として、構成を簡略化したものである。
【0010】
又、前記コンデンサ手段に、蓄冷手段で蒸発したヘリウムガスをヘリウムガス収納手段に戻すためのヘリウムガス流路を設けて、蓄冷手段で蒸発したヘリウムガスのヘリウムガス収納手段への戻りが円滑に行なわれるようにしたものである。
【0011】
又、前記コンデンサ手段を、冷凍機の冷却ステージの近傍に配置して、該冷凍機の冷却ステージと同等の温度にしたものである。
【0012】
又、前記コンデンサ手段と冷凍機の冷却ステージを、小さい熱抵抗で接続したものである。
【0013】
又、前記コンデンサ手段が、焼結金属球(好ましくは銅球)又は金属短繊維(メタルファイバ)を含むようにしたものである。
【0014】
又、前記ヘリウムガス導入手段を、ヘリウムガス導入後、前記ヘリウムガス封止手段のガス導入管部で封じ切るようにしたものである。
【0015】
又、前記ガス導入管部の内側に、その内径より小径の柔らかい金属線(好ましく半田線)を挿入したものである。
【0016】
又、前記ヘリウムガス収納手段及び蓄冷手段を、ステンレス、アルミニウム、チタン、又は、それらの合金等の銅より熱伝導の悪い材料で作るようにしたものである。
【0017】
又、外部からの侵入熱をカットするためのサーマルアンカを設けたものである。
【0018】
本発明は、又、前記の温度ダンパを含むことを特徴とする極低温冷凍機を提供するものである。
【0019】
又、前記のガス導入管部よりヘリウムガスを導入した後、ガス導入管と前記金属線とを共に圧着させて封止した後、更に、前記ガス導入管の端部を圧着して溶接するようにした、ヘリウムガスの封止方法を提供するものである。
【0020】
【発明の実施の形態】
以下図面を参照して、本発明の実施形態を詳細に説明する。
【0021】
本発明の第1実施形態は、図1に示したと同様の圧縮機ユニット10及び冷凍機ユニット20等を有する2段式4K−GM冷凍機において、図2に示す如く、2段冷却ステージ28と、被冷却体8の間に、本発明に係る温度ダンパ40を挿入したものである。
【0022】
前記温度ダンパ40は、図3に詳細に示す如く、ヘリウムガスを収納する手段である、例えばSUS304L製のヘリウムガス室42と、ヘリウムガスを液化させるコンデンサ手段である、例えば直径0.5mmの焼結銅球が充填された、例えば無酸素銅(C1020)製のコンデンサ室44と、液化された液体ヘリウム47を収納する蓄冷手段である、例えばSUS304L製の液体ヘリウム室46と、必要量のヘリウムガスを常温で導入する手段である、例えば外径3.18mm、肉厚0.8mmの銅管(C1200T−0)製のヘリウムガス導入管50と、導入されたヘリウムガスを封止するためのヘリウムガス封止手段である導入ガス封じ切り部52と、前記液体ヘリウム室46で蒸発したヘリウムガスをヘリウムガス室42に戻すための、例えば外径4mm、肉厚0.5mmのステンレスパイプ製のヘリウムガス流路管48と、被冷却体8を液体ヘリウム室46に取り付けるための、例えば無酸素銅(C1020)製の被冷却体取付フランジ60と、温度ダンパ40を冷凍機の2段冷却ステージ28に取付けるための取付ステー62とを含んで構成されている。図2において、64は、例えばフランジ60に配設された、例えばゲルマニウム温度センサである。
【0023】
前記コンデンサ室44と2段冷却ステージ28は、一番近い位置に配設するか、又は、小さい熱抵抗で接続することにより、コンデンサ室44と冷却ステージ28を同等の温度にして、冷却効率を高めるようにされる。
【0024】
前記温度ダンパ40内には、室温でヘリウムガスボンベから減圧弁により例えば充填圧力を10Mpqに減圧したヘリウムガスを、ヘリウムガス導入管50より充填して封じ切る。導入するガス量は、極低温で液体ヘリウム室46に所定の液量がたまるよう算出する。なお、冷凍機の冷媒は使わない。
【0025】
前記導入ガス封じ切り部52は、図4(縦断面図)及び図5(図4のV−V線に沿う横断面図)に示す如く、例えば内径1.58mmのヘリウムガス導入管50の最先端の所定長さLを除く先端部に、例えば直径1.2mmの半田線54のような柔い金属線を挿入して、ヘリウムガス導入管50の基部をヘリウムガス室42の頂部に銀蝋付けした構成とされている。
【0026】
封じ切りに際しては、ヘリウムガス充慎後、バルブ55を付けた状態でヘリウムガス充慎装置56から切り離し、半田線54が挿入されている部分を、図6(縦断面図)及び、図7(図6のVII−VII線に沿う横断面図)に示す如く叩き潰して圧着する。
【0027】
この状態で、ヘリウムガスが封じ切られている事を確認し、バルブ55を取り外す。更に、ヘリウムガス導入管50の端部52を潰して、溶接(実施例ではハンダ付け)でシールする(溶接の際、封じ切られている半田線の部分54Aの温度が上がらないよう、水に浸したウエス等で十分冷却しておく)。
【0028】
従って、封じ切り部は、ヘリウムガス導入管50と半田線54とが圧着された部分と、先端部の溶接の二重の封じ切りで構成されている。
【0029】
本実施形態における熱伝達サイクルは、図8に示す如く、次のように行われる。
【0030】
(1)被冷却体8からの入熱によって熱せられた液体ヘリウム47は、自然対流によって液体ヘリウム室46内を上部に移動し、液表面で一部が気化し、それによって液温度を一定に保つ。
【0031】
(2)ガス化されたヘリウムは、ヘリウムガス流路管48内を円滑に上昇し、コンデンサ室44上部に移動して、コンデンサ(焼結銅球)により再液化される。
【0032】
(3)再液化された液体ヘリウムは、コンデンサ室44内を下に移動し、液体ヘリウム室46に戻る。
【0033】
(4)冷凍機の冷却ステージ28から伝達される大きな温度振幅は、液体ヘリウムの大きな比熱と気化潜熱によって吸収される。
【0034】
このように、沸騰再液化のサイクルが、温度ダンパ40内で行なわれ、冷却ステージ28から被冷却体8への熱伝達が促進されると同時に、温度振幅が小さくされる。
【0035】
本実施形態においては、コンデンサ室44から独立した液体ヘリウム室46が設けられているので、比較的大量の液体ヘリウムを保持することができる。
【0036】
なお、図9に示す第2実施形態のように、独立した液体ヘリウム室を省略して、コンデンサ室44の下部に液体ヘリウム47を蓄えるようにしてもよい。
【0037】
本実施形態によれば、構成が簡略であり、コストダウンを図れると共に、温度ダンパの高さを小さくできる。
【0038】
なお、第2実施形態では、ヘリウムガス流路管48も省略されていたが、図10に示す第3実施形態のように、ヘリウムガス流路管48を設けてもよい。
【0039】
更に、図11に示す第4実施形態のように、冷凍機ユニット20の1段冷却ステージ24との間にサーマルアンカ68を設けて、上からの侵入熱をカットすることもできる。
【0040】
【実施例】
冷凍機として2段式4K−GM冷凍機を用いて、2段冷却ステージ28に、図3に示した第1実施形態の温度ダンパ40を取付けて冷凍装置を運転したところ、温度ダンパ40も順次冷却され、やがて内部に充填されてあるヘリウムガスが液化し、液体ヘリウム室46に比熱と蒸発潜熱の大きな液体ヘリウム47が約16cc溜り、図12の実線Bに示す如く、2.4K〜4.2K間の温度振幅は5mKであった。これは、図12に破線Aで示した冷凍機単体(温度ダンパ無し)の温度振幅の凡そ1/30に減少している。
【0041】
図9に示す第2実施形態の温度ダンパを用いた実施例の試験結果を図13の実線Cに示す。この場合、充填したヘリウムガス量は約20リットルで、温度振幅は図11の場合に比べて2〜3倍に上昇しているが、従来に比べれば十分に小さくなっている。
【0042】
第2実施形態と同じ構成でヘリウムガス室42の材質をSUS304Lから無酸素銅C1020に変えた比較例の試験結果を図14に示す。この場合、銅の熱伝導が良いため、コンデンサ室44とヘリウムガス室42がほぼ同一温度となり、ヘリウムガスの消費が多く、液体ヘリウム量が減少してしまって、温度振幅が十分に減少できなかった。
【0043】
従って、本発明の温度ダンパは、各室の材料構成も重要である。即ち、ヘリウムガス室42の温度を4.2K近くまで下げてしまうと、ヘリウムガス密度の関係で多量のガスが消費されてしまい、液体ヘリウム室46に溜まる液量が減少して温度振幅が小さくならない。このため、ステンレス等の熱伝導の悪い材料を使って、ヘリウムガスの温度を4.2K以上に高くする必要がある。一方、ヘリウムガス室42の温度があまり高くなると、コンデンサ室42への熱侵入量が増えて冷凍機の性能が低下してしまう。ヘリウムガス室42の材質をSUS304とした第2実施形態におけるヘリウムガス室42中央の外壁温度は約12Kであった。
【0044】
又、液体ヘリウム室46もコンデンサ室44の材質(銅)からの温度振幅及び熱侵入を抑えるため、ステンレス等の熱伝導の悪い材料を使うことが望ましい。
【0045】
なお、熱伝導の悪い材料はステンレスに限定されず、アルミニウム、チタン、又はそれらの合金を用いることも可能である。
【0046】
なお、第4実施形態では、ヘリウムガス室42とコンデンサ室44、コンデンサ室44と液体ヘリウム室46を分離し、熱伝導の悪い材料、例えばステンレス製の配管45で接続しているので、ヘリウムガス室42や液体ヘリウム室46を銅又は銅合金製とすることもできる。
【0047】
前記実施形態においては、いずれも、ヘリウムガス室が1つとされていたが、図15に示す、3段式4K−GM冷凍機に適用した第5実施形態のように、ヘリウムガス室を42、43の2つとして、容積を向上させ、充慎圧力を低下させることもできる。この場合には、ヘリウムガス導入管50は、ヘリウムガス室42、43のいずれか一方に設ければよい。図において、70は3段シリンダ、72は3段ステージである。
【0048】
なお、前記実施形態においては、冷凍機に2段式又は3段式4K−GM冷凍機を用いていたが、冷凍機の種類はこれに限定されない。
【0049】
又、コンデンサも焼結銅球に限定されず、鋼球等の他の金属球、又は、メタルファイバ等の金属短繊維等、表面積が大きくとれて熱伝導率が良く、焼結が可能な他の材料を用いることも可能である。
【0050】
【発明の効果】
本発明によれば、冷凍機の温度を室温以上に上げない限り、温度ダンパ内の圧力も充填圧力以上に上がらないため、安全である。又、バルブ等の付属部品が無いため、構成が簡単である。更に、冷凍機にセットした後のバルブ開閉等の操作が無いため、取り扱いも簡単である。
【0051】
よって、極低温冷凍機の冷却ステージから発生する大きな温度振幅を小さくし、且つ、操作性が簡単で、安全性の高い極低温冷凍機を提供することが可能となる。
【図面の簡単な説明】
【図1】従来の極低温温度ダンパが配設された冷凍機を示す構成図
【図2】本発明に係る温度ダンパの第1実施形態が配設された冷凍機を示す構成図
【図3】温度ダンパの第1実施形態の詳細構成を示す断面図
【図4】第1実施形態におけるヘリウムガス導入管の導入ガス封じ切り部の構成を示す縦断面図
【図5】図4のV−V線に沿う横断面図
【図6】図4の導入ガス封じ切り部の圧着後の状態を示す横断面図
【図7】図6のVII−VII線に沿う横断面図
【図8】第1実施形態の作用を示す断面図
【図9】温度ダンパの第2実施形態の構成を示す断面図
【図10】同じく第3実施形態の構成を示す断面図
【図11】同じく第4実施形態の構成を示す断面図
【図12】第1実施形態の試験結果を示す線図
【図13】第2実施形態の試験結果を示す線図
【図14】比較例の試験結果を示す線図
【図15】温度ダンパの第5実施形態の構成を示す断面図
【符号の説明】
8…被冷却体
10…圧縮機ユニット
20…冷凍機ユニット
28…2段冷却ステージ
40…温度ダンパ
42、43…ヘリウムガス室
44…コンデンサ室
46…液体ヘリウム室
47…液体ヘリウム
48…ヘリウムガス流路管
50…ヘリウムガス導入管
52…導入ガス封じ切り部
54…半田線
68…サーマルアンカ
72…3段冷却ステージ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a cryogenic temperature damper (hereinafter, also simply referred to as a temperature damper), and particularly to a cryogenic refrigerator using helium gas as a refrigerant (hereinafter, also simply referred to as a refrigerator). The present invention relates to a temperature damper capable of reducing temperature fluctuation of a refrigerator, a refrigerator including the temperature damper, and a helium gas sealing method suitable for use in the temperature damper.
[0002]
[Prior art]
In a cryogenic refrigerator using helium gas as a refrigerant, when cooling a body to be cooled, for example, a Josephson element sensor or the like, fixing the element to a cooling stage of the refrigerator has a large temperature amplitude of the refrigerator, Significantly hinders sensor performance.
[0003]
That is, although the cooling stage of a cryogenic refrigerator configured as in the related art is generally made of copper, the specific heat of copper decreases at a temperature of 20 K or less, so that high-pressure helium gas is supplied to the expansion chamber of the refrigerator. And the temperature that expands to a low pressure, generates cold, and falls, undergoes heat exchange, and appears on the outer surface of the cooling stage as a temperature amplitude without any resistance.
[0004]
In order to reduce the temperature amplitude of the refrigerator, there is a method of interposing a material having poor heat conductivity such as nylon, polytetrafluoroethylene, or FRP resin between the cooling stage and the object to be cooled to perform cooling. There are disadvantages such as a large heat transfer loss.
[0005]
As another method for reducing the temperature amplitude, Japanese Patent Publication No. Hei 3-16592 and Japanese Patent No. 2777393 discloses a last stage (two stages in FIG. 1) of the cooled body 8 and the refrigerator unit 20 as shown in FIG. It has been proposed to provide a temperature damper 16 between the cooling stages 28. In the figure, 10 is a compressor unit, 12 is a high pressure side pipe, 14 is a low pressure side pipe, 22 is a one-stage cylinder, 24 is a one-stage cooling stage, and 26 is a two-stage cylinder.
[0006]
[Problems to be solved by the invention]
However, conventionally, since the refrigerant of the refrigerator unit 20 is introduced from the room temperature portion through the thin tube 17 into the temperature damper 16 attached to the cooling stage 28 at the last stage of the refrigerator, there is a sudden rise in temperature. There was a problem in operability and safety when helium vaporized instantaneously. That is, when the refrigerator is stopped, the temperature of the liquid helium in the temperature damper 16 rises and evaporates as the temperature rises. At this time, since the vaporization ratio of the helium gas to the liquid is as large as 699, if the operation of the valve 18 at the room temperature is erroneously performed, the inside of the temperature damper 16 becomes abnormally high pressure and becomes in a dangerous state. Further, even if the temperature rises sharply, there is no place for gas to escape, and the temperature inside the temperature damper 16 becomes abnormally high, which is dangerous.
[0007]
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems, and has a small temperature amplitude generated from a cooling stage of a cryogenic refrigerator, and has a simple operation and high safety. The task is to provide
[0008]
[Means for Solving the Problems]
The present invention is a cryogenic temperature damper for use in a cryogenic refrigerator using helium gas as a refrigerant, which stores helium gas, condenser means for liquefying helium gas, and stores liquefied liquid helium. Cold storage means, a means for introducing a required amount of helium gas at normal temperature, and a helium gas sealing means for sealing the introduced helium gas, by using a large specific heat and vaporization latent heat of liquid helium, This has solved the above-mentioned problem.
[0009]
Further, the condenser means and the cool storage means are integrated, and the structure is simplified by using the cool storage means below the condenser means.
[0010]
Further, the condenser means is provided with a helium gas flow path for returning the helium gas evaporated by the cool storage means to the helium gas storage means, and the helium gas evaporated by the cool storage means is smoothly returned to the helium gas storage means. It is intended to be.
[0011]
Further, the condenser means is arranged in the vicinity of a cooling stage of the refrigerator so as to have a temperature equal to that of the cooling stage of the refrigerator.
[0012]
Further, the condenser means and the cooling stage of the refrigerator are connected with a small thermal resistance.
[0013]
Further, the capacitor means includes a sintered metal ball (preferably a copper ball) or a short metal fiber (metal fiber).
[0014]
Further, the helium gas introducing means is sealed off by a gas introduction pipe of the helium gas sealing means after the helium gas is introduced.
[0015]
In addition, a soft metal wire (preferably a solder wire) having a diameter smaller than the inner diameter is inserted inside the gas introduction pipe portion.
[0016]
Further, the helium gas storage means and the cold storage means are made of a material having lower heat conductivity than copper, such as stainless steel, aluminum, titanium, or an alloy thereof.
[0017]
Further, a thermal anchor is provided for cutting off invasion heat from the outside.
[0018]
The present invention also provides a cryogenic refrigerator characterized by including the above-mentioned temperature damper.
[0019]
Further, after introducing the helium gas from the gas introduction tube portion, the gas introduction tube and the metal wire are pressed and sealed together, and further, the end of the gas introduction tube is pressed and welded. A method for sealing a helium gas is provided.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0021]
The first embodiment of the present invention relates to a two-stage 4K-GM refrigerator having the same compressor unit 10 and refrigerator unit 20 as shown in FIG. 1 and a two-stage cooling stage 28 as shown in FIG. , A temperature damper 40 according to the present invention is inserted between the cooling objects 8.
[0022]
As shown in detail in FIG. 3, the temperature damper 40 is a means for accommodating a helium gas, for example, a helium gas chamber 42 made of SUS304L, and a condenser means for liquefying the helium gas. A condenser chamber 44 made of, for example, oxygen-free copper (C1020) filled with copper balls, a liquid helium chamber 46 made of, for example, SUS304L, which is a cold storage means for storing a liquefied liquid helium 47, and a required amount of helium A means for introducing a gas at normal temperature, for example, a helium gas introduction pipe 50 made of a copper tube (C1200T-0) having an outer diameter of 3.18 mm and a thickness of 0.8 mm, and a means for sealing the introduced helium gas. The helium gas evaporated in the liquid gas helium chamber 46 and the helium gas evaporated in the liquid helium chamber 46 are returned to the helium gas chamber 42. For example, a helium gas flow path tube 48 made of a stainless steel pipe having an outer diameter of 4 mm and a wall thickness of 0.5 mm, and a sheath made of, for example, oxygen-free copper (C1020) for attaching the cooled body 8 to the liquid helium chamber 46. It includes a cooling body mounting flange 60 and a mounting stay 62 for mounting the temperature damper 40 to the two-stage cooling stage 28 of the refrigerator. In FIG. 2, reference numeral 64 denotes, for example, a germanium temperature sensor disposed on the flange 60, for example.
[0023]
The condenser chamber 44 and the two-stage cooling stage 28 are arranged at the closest position or connected with a small thermal resistance, so that the condenser chamber 44 and the cooling stage 28 have the same temperature and the cooling efficiency is improved. To be enhanced.
[0024]
In the temperature damper 40, helium gas whose filling pressure is reduced to, for example, 10 Mpq by a pressure reducing valve from a helium gas cylinder at room temperature is filled from a helium gas introduction pipe 50 and sealed off. The amount of gas to be introduced is calculated so that a predetermined amount of liquid accumulates in the liquid helium chamber 46 at an extremely low temperature. In addition, the refrigerant of the refrigerator is not used.
[0025]
As shown in FIG. 4 (longitudinal sectional view) and FIG. 5 (cross sectional view along the line VV in FIG. 4), the introduced gas sealing cut-off portion 52 is provided at the innermost end of a helium gas introducing pipe 50 having an inner diameter of 1.58 mm, for example. A soft metal wire such as a solder wire 54 having a diameter of, for example, 1.2 mm is inserted into the tip of the helium gas introduction tube 50 except for a predetermined length L of the tip. It is configured to be attached.
[0026]
At the time of sealing off, after filling with helium gas, it is cut off from the helium gas filling device 56 with the valve 55 attached, and the portion where the solder wire 54 is inserted is shown in FIG. 6 (longitudinal sectional view) and FIG. (Cross-sectional view along line VII-VII in FIG. 6).
[0027]
In this state, it is confirmed that the helium gas has been completely sealed, and the valve 55 is removed. Further, the end 52 of the helium gas introduction tube 50 is crushed and sealed by welding (soldering in this embodiment) (during the welding, water is applied so that the temperature of the solder wire portion 54A which has been cut off does not rise. Cool sufficiently with a dipped rag etc.).
[0028]
Therefore, the sealing cut-off portion is composed of a portion where the helium gas introduction tube 50 and the solder wire 54 are crimped, and a double sealing cut of the distal end portion.
[0029]
The heat transfer cycle in the present embodiment is performed as follows, as shown in FIG.
[0030]
(1) The liquid helium 47 heated by the heat input from the cooled object 8 moves upward in the liquid helium chamber 46 by natural convection, and a part of the liquid helium vaporizes on the liquid surface, thereby keeping the liquid temperature constant. keep.
[0031]
(2) The gasified helium smoothly rises in the helium gas flow path pipe 48, moves to the upper part of the condenser chamber 44, and is reliquefied by the condenser (sintered copper ball).
[0032]
(3) The reliquefied liquid helium moves downward in the condenser chamber 44 and returns to the liquid helium chamber 46.
[0033]
(4) The large temperature amplitude transmitted from the cooling stage 28 of the refrigerator is absorbed by the large specific heat of liquid helium and latent heat of vaporization.
[0034]
Thus, the cycle of boiling reliquefaction is performed in the temperature damper 40, and the heat transfer from the cooling stage 28 to the cooled object 8 is promoted, and at the same time, the temperature amplitude is reduced.
[0035]
In the present embodiment, since the liquid helium chamber 46 independent of the condenser chamber 44 is provided, a relatively large amount of liquid helium can be held.
[0036]
Incidentally, as in the second embodiment shown in FIG. 9, the independent liquid helium chamber may be omitted, and the liquid helium 47 may be stored in the lower part of the condenser chamber 44.
[0037]
According to this embodiment, the configuration is simple, the cost can be reduced, and the height of the temperature damper can be reduced.
[0038]
In the second embodiment, the helium gas flow path pipe 48 is also omitted, but a helium gas flow path pipe 48 may be provided as in the third embodiment shown in FIG.
[0039]
Further, as in the fourth embodiment shown in FIG. 11, a thermal anchor 68 may be provided between the refrigerator unit 20 and the first cooling stage 24 to cut off heat from entering from above.
[0040]
【Example】
Using a two-stage 4K-GM refrigerator as a refrigerator, the temperature damper 40 of the first embodiment shown in FIG. 3 was mounted on the two-stage cooling stage 28 and the refrigerator was operated. The helium gas that has been cooled down and liquefied beforehand is liquefied, and about 16 cc of liquid helium 47 having a large specific heat and a large latent heat of evaporation accumulates in the liquid helium chamber 46, as shown by the solid line B in FIG. The temperature amplitude between 2K was 5mK. This is reduced to about 1/30 of the temperature amplitude of the refrigerator alone (without the temperature damper) indicated by the broken line A in FIG.
[0041]
The test result of the example using the temperature damper of the second embodiment shown in FIG. 9 is shown by a solid line C in FIG. In this case, the amount of the filled helium gas is about 20 liters, and the temperature amplitude is increased two to three times as compared with the case of FIG. 11, but is sufficiently smaller than the conventional case.
[0042]
FIG. 14 shows test results of a comparative example in which the material of the helium gas chamber 42 was changed from SUS304L to oxygen-free copper C1020 with the same configuration as the second embodiment. In this case, since the heat conduction of copper is good, the condenser chamber 44 and the helium gas chamber 42 have almost the same temperature, the consumption of helium gas is large, the amount of liquid helium decreases, and the temperature amplitude cannot be reduced sufficiently. Was.
[0043]
Therefore, in the temperature damper of the present invention, the material composition of each chamber is also important. That is, if the temperature of the helium gas chamber 42 is reduced to near 4.2 K, a large amount of gas is consumed due to the helium gas density, the amount of liquid stored in the liquid helium chamber 46 decreases, and the temperature amplitude decreases. No. For this reason, it is necessary to increase the temperature of the helium gas to 4.2 K or more by using a material having poor heat conductivity such as stainless steel. On the other hand, if the temperature of the helium gas chamber 42 becomes too high, the amount of heat that enters the condenser chamber 42 increases, and the performance of the refrigerator decreases. The outer wall temperature at the center of the helium gas chamber 42 in the second embodiment in which the material of the helium gas chamber 42 was SUS304 was about 12K.
[0044]
Also, it is desirable to use a material having poor heat conductivity such as stainless steel for the liquid helium chamber 46 in order to suppress the temperature amplitude and heat invasion from the material (copper) of the condenser chamber 44.
[0045]
Note that the material having poor heat conductivity is not limited to stainless steel, and aluminum, titanium, or an alloy thereof can also be used.
[0046]
In the fourth embodiment, the helium gas chamber 42 and the condenser chamber 44 are separated from each other, and the condenser chamber 44 and the liquid helium chamber 46 are separated from each other and connected by a material having poor heat conductivity, for example, a stainless steel pipe 45. The chamber 42 and the liquid helium chamber 46 may be made of copper or a copper alloy.
[0047]
In the above embodiments, the helium gas chamber is one, but as in the fifth embodiment applied to the three-stage 4K-GM refrigerator shown in FIG. 43, it is also possible to increase the volume and reduce the restraining pressure. In this case, the helium gas introduction pipe 50 may be provided in one of the helium gas chambers 42 and 43. In the figure, 70 is a three-stage cylinder, and 72 is a three-stage.
[0048]
In the above embodiment, a two-stage or three-stage 4K-GM refrigerator is used as the refrigerator, but the type of the refrigerator is not limited to this.
[0049]
Also, the capacitor is not limited to sintered copper spheres. Other metal spheres such as steel balls, or short metal fibers such as metal fibers, etc., have a large surface area and good thermal conductivity, and can be sintered. Can also be used.
[0050]
【The invention's effect】
According to the present invention, unless the temperature of the refrigerator is raised to room temperature or higher, the pressure in the temperature damper does not rise to the charging pressure or higher. Also, since there are no attached parts such as valves, the configuration is simple. Furthermore, since there is no operation such as opening and closing a valve after setting in the refrigerator, handling is easy.
[0051]
Therefore, it is possible to provide a highly safe cryogenic refrigerator in which the large temperature amplitude generated from the cooling stage of the cryogenic refrigerator is small, the operability is simple, and the safety is high.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing a refrigerator provided with a conventional cryogenic temperature damper. FIG. 2 is a configuration diagram showing a refrigerator provided with a first embodiment of a temperature damper according to the present invention. FIG. 4 is a cross-sectional view showing a detailed configuration of a first embodiment of a temperature damper. FIG. 4 is a vertical cross-sectional view showing a configuration of a cut-off portion of an introduced gas of a helium gas introduction pipe in the first embodiment. FIG. 6 is a cross-sectional view taken along the line V. FIG. 6 is a cross-sectional view showing a state after crimping of the cut-off portion of the introduced gas in FIG. 4; FIG. FIG. 9 is a sectional view showing the configuration of a second embodiment of a temperature damper. FIG. 10 is a sectional view showing the configuration of a third embodiment. FIG. 11 is a fourth embodiment of the same. FIG. 12 is a diagram showing test results of the first embodiment. FIG. 13 is a diagram showing test results of the second embodiment. Diagram showing the FIG. 14 is a cross-sectional view showing a configuration of a fifth embodiment of the diagram FIG. 15 temperature damper showing test results of Comparative Example [Description of symbols]
8 Cooled object 10 Compressor unit 20 Refrigerator unit 28 Two-stage cooling stage 40 Temperature dampers 42 and 43 Helium gas chamber 44 Condenser chamber 46 Liquid helium chamber 47 Liquid helium 48 Helium gas flow Route pipe 50 Helium gas introduction pipe 52 Introduced gas sealing section 54 Solder wire 68 Thermal anchor 72 Three-stage cooling stage

Claims (14)

ヘリウムガスを冷媒とする極低温冷凍機に使用する極低温温度ダンパであって、
ヘリウムガスを収納する手段と、
ヘリウムガスを液化させるコンデンサ手段と、
液化された液体ヘリウムを収納する蓄冷手段と、
必要量のヘリウムガスを常温で導入する手段と、
導入されたヘリウムガスを封止するためのヘリウムガス封止手段とを備え、
液体ヘリウムの大きな比熱と気化潜熱を用いたことを特徴とする極低温温度ダンパ。
A cryogenic temperature damper used for a cryogenic refrigerator using helium gas as a refrigerant,
Means for storing helium gas,
Condenser means for liquefying helium gas,
Cold storage means for storing liquefied liquid helium,
Means for introducing the required amount of helium gas at room temperature,
Helium gas sealing means for sealing the introduced helium gas,
A cryogenic temperature damper characterized by using the large specific heat of liquid helium and latent heat of vaporization.
前記コンデンサ手段と蓄冷手段が一体化され、前記コンデンサ手段の下方が蓄冷手段とされていることを特徴とする請求項1に記載の極低温温度ダンパ。2. The cryogenic temperature damper according to claim 1, wherein the condenser means and the cool storage means are integrated, and a lower part of the condenser means serves as a cool storage means. 前記コンデンサ手段に、蓄冷手段で蒸発したヘリウムガスをヘリウムガス収納手段に戻すためのヘリウムガス流路が設けられていることを特徴とする請求項1又は2に記載の極低温温度ダンパ。The cryogenic temperature damper according to claim 1 or 2, wherein the condenser means is provided with a helium gas flow path for returning the helium gas evaporated by the cool storage means to the helium gas storage means. 前記コンデンサ手段を、冷凍機の冷却ステージの近傍に配置して、該冷凍機の冷却ステージと同等の温度にすることを特徴とする請求項1乃至3のいずれかに記載の極低温温度ダンパ。The cryogenic temperature damper according to any one of claims 1 to 3, wherein the condenser means is disposed in the vicinity of a cooling stage of the refrigerator to have a temperature equal to that of the cooling stage of the refrigerator. 前記コンデンサ手段と冷凍機の冷却ステージが、小さい熱抵抗で接続されていることを特徴とする請求項1乃至3のいずれかに記載の極低温温度ダンパ。The cryogenic temperature damper according to any one of claims 1 to 3, wherein the condenser means and a cooling stage of the refrigerator are connected with a small thermal resistance. 前記コンデンサ手段が、焼結金属球又は金属短繊維を含むことを特徴とする請求項1乃至5のいずれかに記載の極低温温度ダンパ。The cryogenic temperature damper according to any one of claims 1 to 5, wherein the capacitor means includes a sintered metal ball or a short metal fiber. 前記ヘリウムガス導入手段が、ヘリウムガス導入後、前記ヘリウムガス封止手段のガス導入管部で封じ切られることを特徴とする請求項1に記載の極低温温度ダンパ。2. The cryogenic temperature damper according to claim 1, wherein the helium gas introduction unit is sealed off by a gas introduction tube of the helium gas sealing unit after the helium gas introduction. 3. 前記ガス導入管部の内側に、その内径より小径の柔らかい金属線が挿入されていることを特徴とする請求項7に記載の極低温温度ダンパ。8. The cryogenic temperature damper according to claim 7, wherein a soft metal wire having a diameter smaller than the inner diameter is inserted inside the gas introduction pipe portion. 前記金属線が半田線であることを特徴とする請求項8に記載の極低温温度ダンパ。The cryogenic temperature damper according to claim 8, wherein the metal wire is a solder wire. 前記ヘリウムガス収納手段及び蓄冷手段が、銅より熱伝導の悪い材料で作られていることを特徴とする請求項1に記載の極低温温度ダンパ。The cryogenic temperature damper according to claim 1, wherein the helium gas storage means and the cold storage means are made of a material having lower heat conductivity than copper. 前記ヘリウムガス収納手段及び蓄冷手段が、ステンレス、アルミニウム、チタン、又は、それらの合金製とされていることを特徴とする請求項10に記載の極低温温度ダンパ。The cryogenic temperature damper according to claim 10, wherein the helium gas storage means and the cold storage means are made of stainless steel, aluminum, titanium, or an alloy thereof. 外部からの侵入熱をカットするためのサーマルアンカが設けられていることを特徴とする請求項1乃至12のいずれかに記載の極低温温度ダンパ。The cryogenic temperature damper according to any one of claims 1 to 12, further comprising a thermal anchor for cutting invasion heat from the outside. 請求項1乃至12のいずれかに記載の極低温温度ダンパを含むことを特徴とする極低温冷凍機。A cryogenic refrigerator comprising the cryogenic temperature damper according to claim 1. 請求項8又は9に記載のガス導入管部よりヘリウムガスを導入した後、
ガス導入管と前記金属線とを共に圧着させて封止した後、
更に、前記ガス導入管の端部を圧着して溶接することを特徴とするヘリウムガスの封止方法。
After introducing helium gas from the gas introduction pipe according to claim 8 or 9,
After sealing the gas introduction tube and the metal wire together by crimping,
Furthermore, a method for sealing helium gas, characterized in that an end of the gas introduction pipe is pressed and welded.
JP2002233568A 2002-08-09 2002-08-09 Cryogenic temperature damper Expired - Fee Related JP4031318B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002233568A JP4031318B2 (en) 2002-08-09 2002-08-09 Cryogenic temperature damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002233568A JP4031318B2 (en) 2002-08-09 2002-08-09 Cryogenic temperature damper

Publications (2)

Publication Number Publication Date
JP2004076955A true JP2004076955A (en) 2004-03-11
JP4031318B2 JP4031318B2 (en) 2008-01-09

Family

ID=32018669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002233568A Expired - Fee Related JP4031318B2 (en) 2002-08-09 2002-08-09 Cryogenic temperature damper

Country Status (1)

Country Link
JP (1) JP4031318B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008066127A1 (en) 2006-11-30 2008-06-05 Ulvac, Inc. Refrigerating machine
JP2008224062A (en) * 2007-03-08 2008-09-25 Toshiba Corp Cold storage type refrigerator, condenser, and cold storage type refrigerating method
WO2011089768A1 (en) * 2010-01-22 2011-07-28 国立大学法人 埼玉大学 Cold-storage-type cryocooler and cooling method using same
JP2012042152A (en) * 2010-08-20 2012-03-01 Thermal Block:Kk Combined cryogenic refrigerator
WO2013061178A1 (en) * 2011-10-28 2013-05-02 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method of regulating the temperature of an element cooled by a cryorefrigerator with periodic operation, associated implementation device and cryogenic installation comprising this device
JP2014020767A (en) * 2012-07-23 2014-02-03 Kochi Univ Pot for refrigeration machine
CN110392809A (en) * 2017-03-13 2019-10-29 住友重机械工业株式会社 The revolution valve cell of pulse tube refrigerating machine and pulse tube refrigerating machine

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008066127A1 (en) 2006-11-30 2008-06-05 Ulvac, Inc. Refrigerating machine
EP2090850A1 (en) * 2006-11-30 2009-08-19 Ulvac, Inc. Refrigerating machine
US20100031693A1 (en) * 2006-11-30 2010-02-11 Ulvac, Inc. Refridgerating machine
EP2090850A4 (en) * 2006-11-30 2011-11-23 Ulvac Inc Refrigerating machine
JP2008224062A (en) * 2007-03-08 2008-09-25 Toshiba Corp Cold storage type refrigerator, condenser, and cold storage type refrigerating method
WO2011089768A1 (en) * 2010-01-22 2011-07-28 国立大学法人 埼玉大学 Cold-storage-type cryocooler and cooling method using same
JP2012042152A (en) * 2010-08-20 2012-03-01 Thermal Block:Kk Combined cryogenic refrigerator
WO2013061178A1 (en) * 2011-10-28 2013-05-02 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method of regulating the temperature of an element cooled by a cryorefrigerator with periodic operation, associated implementation device and cryogenic installation comprising this device
FR2982014A1 (en) * 2011-10-28 2013-05-03 Commissariat Energie Atomique METHOD FOR CONTROLLING THE TEMPERATURE OF A COOLED ELEMENT BY A PERIODICALLY OPERATING CRYOREFRIGERATOR, ASSOCIATED IMPLEMENTATION DEVICE AND CRYOGENIC INSTALLATION COMPRISING THE DEVICE
US9383124B2 (en) 2011-10-28 2016-07-05 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method of regulating the temperature of an element cooled by a cryorefrigerator with periodic operation
JP2014020767A (en) * 2012-07-23 2014-02-03 Kochi Univ Pot for refrigeration machine
CN110392809A (en) * 2017-03-13 2019-10-29 住友重机械工业株式会社 The revolution valve cell of pulse tube refrigerating machine and pulse tube refrigerating machine
CN110392809B (en) * 2017-03-13 2021-01-08 住友重机械工业株式会社 Pulse tube refrigerator and rotary valve unit for pulse tube refrigerator

Also Published As

Publication number Publication date
JP4031318B2 (en) 2008-01-09

Similar Documents

Publication Publication Date Title
JP4040626B2 (en) Refrigerator mounting method and apparatus
JP4873210B2 (en) Low temperature fuel storage container
US20020002830A1 (en) Circulating cryostat
JP2007194258A (en) Superconductive magnet apparatus
JP5469782B1 (en) Superconducting magnet cooling method and superconducting magnet
KR101121232B1 (en) Refrigerating machine
JP6527353B2 (en) Superconductor cooling system
US6804968B2 (en) Cryostat configuration with improved properties
Torre et al. Miniature liquid‐3He refrigerator
JP2007526625A (en) Cryogenic cooling method and apparatus for high temperature superconductor devices
JP2004076955A (en) Cryogenic temperature damper
IL129271A (en) Thermal link for a cryogenic machine
JP2001510551A (en) Current supply for cooling electrical equipment
JP2008538856A (en) Cryostat assembly
CN104034076B (en) Ultra-low temperature cold radiator cooler
JP4031319B2 (en) Cryogenic holding device
JP2773793B2 (en) Cryogenic refrigerator
US20030097856A1 (en) Regulator with receiver for refrigerators and heatpumps
JPH04106373A (en) Cryogenic device
JP5341436B2 (en) Refrigerator heat exchanger and method for cooling liquefied gas using the heat exchanger
US5615557A (en) Apparatus for self-sufficiently cooling high temperature superconducting components
JP3029341B2 (en) Cryogenic refrigerator
JP3043009B1 (en) Liquid helium recovery / recondensing replenishment device
JPS6028211A (en) Superconductive magnet
JPS6018909B2 (en) Extremely low temperature automatic adjustment system

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20041013

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060726

A131 Notification of reasons for refusal

Effective date: 20060801

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20060920

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070921

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071016

A61 First payment of annual fees (during grant procedure)

Effective date: 20071018

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees