JPS6018909B2 - Extremely low temperature automatic adjustment system - Google Patents

Extremely low temperature automatic adjustment system

Info

Publication number
JPS6018909B2
JPS6018909B2 JP3016279A JP3016279A JPS6018909B2 JP S6018909 B2 JPS6018909 B2 JP S6018909B2 JP 3016279 A JP3016279 A JP 3016279A JP 3016279 A JP3016279 A JP 3016279A JP S6018909 B2 JPS6018909 B2 JP S6018909B2
Authority
JP
Japan
Prior art keywords
temperature
tank
low
condenser
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3016279A
Other languages
Japanese (ja)
Other versions
JPS55121367A (en
Inventor
巽雄 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP3016279A priority Critical patent/JPS6018909B2/en
Publication of JPS55121367A publication Critical patent/JPS55121367A/en
Publication of JPS6018909B2 publication Critical patent/JPS6018909B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Description

【発明の詳細な説明】 本発明は液体ヘリウム、水素、窒素、LNG等の低温液
化ガス(以下寒剤と称す)を用いた冷凍、液化等を効果
的に行なう極低温度自動調整システムに関するものであ
る。
[Detailed Description of the Invention] The present invention relates to an extremely low temperature automatic adjustment system that effectively performs freezing, liquefaction, etc. using low-temperature liquefied gas (hereinafter referred to as cryogen) such as liquid helium, hydrogen, nitrogen, and LNG. be.

従来の冷凍機、例えばヘリウム冷凍・液化機では、高圧
力(10〜2の気圧)のジェール・トムソン弁の冷却流
体入口圧力を調整していたが、高圧力を調整して所定の
一定の冷凍温度を得るのは困難であり、また自動装置を
設けることは高価で大きく、重いという欠点があった。
In conventional refrigeration machines, such as helium refrigeration and liquefaction machines, the cooling fluid inlet pressure of the high-pressure (10 to 2 atmospheres) Jehl-Thompson valve is adjusted. Temperatures were difficult to obtain, and automated equipment was expensive, bulky, and heavy.

亦、冷却装置の低温容器内の葵剤の温度分布は一様でな
く、一般に液相の部分は気相の部分に比較して温度は低
く一様であるが、気相部分では温度は高く不安定である
。この現象は低温容器が大きくなればなるほど著しく、
温度検出のための装置を高価で大きくしていた要因でも
あった。本発明は、前記の欠点を解消するために、原理
的には低温度になるに従ってガスが凝縮、液化する現象
を利用して作動力を得て、その力により冷却流体の流路
面積を冷却流体の低圧側で変化させて、所要の冷凍温度
空間の平均温度を自動的に検出し、且つ制御する極低温
度自動調整システムを提供するものである。
In addition, the temperature distribution of the hollyhock agent in the low-temperature container of the cooling device is not uniform; in general, the liquid phase part has a lower and more uniform temperature than the gas phase part, but the temperature in the gas phase part is higher. It is unstable. This phenomenon becomes more pronounced as the cryogenic container becomes larger.
This was also a factor that made temperature detection equipment expensive and large. In order to solve the above-mentioned drawbacks, the present invention utilizes the phenomenon in which gas condenses and liquefies as the temperature decreases in principle to obtain operating force, and uses this force to cool the flow path area of the cooling fluid. The present invention provides an automatic extremely low temperature adjustment system that automatically detects and controls the average temperature of a required refrigeration temperature space by changing the low pressure side of the fluid.

以下本発明の一実施例並びに他の変形実施例を添付図面
に基づいて説明する。
One embodiment and other modified embodiments of the present invention will be described below with reference to the accompanying drawings.

先ず、第1図と第2図に基づいて本発明の一実施例の構
成から説明すると、ジヱール・トムソン弁1は図示して
ない冷凍機からの高圧回路日と連結し、断熱構造の低温
容器10内に設けられた凝縮器2と連結している。凝縮
器2の先端には、温度自動調整弁3が装着され、温度自
動調整弁3を構成するタンク35から戻り回路31が分
岐し、熱韓射防止用熱交換器6に蓮通し、低温内容器1
1の外側を通り低圧回路Lに連結し、図示してない冷
凍機へ戻っている。この場合必要がなければ熱鰭射防止
用熱交換器6を省略し、直接低圧回路Lに連結してもよ
い。低温内容器11は低温容器10の内部に断熱支持材
(図示せず)等で支持され、内部には液体ヘリウム等の
寒剤が貯液され、液面81を境として下部は液相に上部
は気相に分離し、液相部分には超電導磁石7が設けられ
ている。低温内容器11の内部には、所要の冷凍温度空
間11aが設けられ、該冷凍温度空間11a内には、凝
縮器2と溶接等で接合している孔明板9aが、気液相内
に格子状に配列され、気液相の温度分布を均一にするた
めの気液熱交換器9が形成される。凝縮器2の末端部近
傍には絞り部22が形成され、更にその先端にタンク3
5が連結している。タンク35の一端はテーパ状に形成
され、同じくテーパ状に形成された開閉制御手段(例え
ばプラグ)32が密接するようになっている。プラグ3
2の一端は可操体たるべロー(或いはダイアフラム等で
もよい。)33の一端と溶接され、一方べロー33の他
端はタンク35の球形部分に溶接され、ベロ−33の内
部は流体通路21と完全に密封分離している。更にべロ
ー33の内部には圧縮バネ34が設けられ、その一方端
はプラグ32の座面と接し、他方端はタンク35の球形
座面に接し、プラグ32に、ベロー33の力に抗して予
荷重を掛け、タンク35のテーパ部とプラグ32のテー
パ部との接触を密着させるように作用している。タンク
35の円筒部は気液熱交換器9を形成する孔賜板9aが
溶接等で接合され、タンク36の温度を平均気相温度に
保持している。タンク35の円筒部からは戻りの低圧回
路L又は頚射熱防止用交換器6へ寒剤を循環させる分岐
管31が設けられ、更にタンク35の球形部先端からは
紬管4が分岐して常温部に設置された温度計5に連結し
ている。ガスが封入されたタンク35は、例えば直径1
0側、長さ60職でその外周35aに厚さ0.5肌、直
径3仇岬の多数の小穴36のあげられたフィン37が5
肋間隔で付けるれている。このフィン付きタンク35が
周囲の温度と一様になりその時封入されているガスもそ
の温度になる。べロー33、紬管4及び温度計5で構成
される回路に密封される圧力は、所要冷凍温度でどの位
の圧力になるかを決めてから封入する。次に、本発明の
他の変形実施例を第3図に基づいて説明する。
First, the configuration of one embodiment of the present invention will be explained based on FIGS. 1 and 2. A Joel-Thomson valve 1 is connected to a high-pressure circuit from a refrigerator (not shown), and is connected to a low-temperature container with an insulated structure. The condenser 2 is connected to the condenser 2 provided inside the condenser 10. An automatic temperature adjustment valve 3 is installed at the tip of the condenser 2, and a return circuit 31 branches from a tank 35 constituting the automatic temperature adjustment valve 3, passes through a heat exchanger 6 for preventing heat radiation, and stores low-temperature contents. Vessel 1
It passes through the outside of 1, connects to the low pressure circuit L, and returns to the refrigerator (not shown). In this case, if unnecessary, the heat exchanger 6 for preventing thermal fin radiation may be omitted and connected directly to the low pressure circuit L. The low-temperature inner container 11 is supported inside the low-temperature container 10 by a heat insulating support material (not shown), etc., and a cryogen such as liquid helium is stored inside. It is separated into a gas phase, and a superconducting magnet 7 is provided in the liquid phase. A required freezing temperature space 11a is provided inside the low-temperature inner container 11, and within the freezing temperature space 11a, a perforated plate 9a connected to the condenser 2 by welding or the like forms a lattice in the gas-liquid phase. A gas-liquid heat exchanger 9 is formed in order to make the temperature distribution of the gas-liquid phase uniform. A constriction part 22 is formed near the end of the condenser 2, and a tank 3 is further formed at the end of the constriction part 22.
5 are connected. One end of the tank 35 is formed into a tapered shape, so that an opening/closing control means (for example, a plug) 32, which is also formed in a tapered shape, comes into close contact with the tank 35. plug 3
One end of the bellows 2 is welded to one end of a movable bellows (or a diaphragm, etc.) 33, while the other end of the bellows 33 is welded to a spherical portion of the tank 35, and the inside of the bellows 33 is a fluid passage. 21 and is completely sealed and separated. Furthermore, a compression spring 34 is provided inside the bellows 33, one end of which is in contact with the seat surface of the plug 32, and the other end is in contact with the spherical seat surface of the tank 35. This acts to apply a preload to bring the tapered portion of the tank 35 and the tapered portion of the plug 32 into close contact. A perforated plate 9a forming a gas-liquid heat exchanger 9 is joined to the cylindrical portion of the tank 35 by welding or the like, and the temperature of the tank 36 is maintained at the average gas phase temperature. A branch pipe 31 is provided from the cylindrical part of the tank 35 to circulate the refrigerant to the return low-pressure circuit L or the radiation heat prevention exchanger 6, and a pongee pipe 4 is further branched from the tip of the spherical part of the tank 35 to supply the air at room temperature. It is connected to a thermometer 5 installed in the section. The tank 35 filled with gas has a diameter of 1, for example.
On the 0 side, a fin 37 with a length of 60 mm and a number of small holes 36 with a thickness of 0.5 mm and a diameter of 3 mm on its outer periphery 35a is 5 mm.
It is attached between the ribs. The temperature of this finned tank 35 becomes the same as that of the surroundings, and the gas enclosed therein also reaches that temperature. The pressure to be sealed in the circuit composed of the bellows 33, the pongee tube 4, and the thermometer 5 is determined after determining the pressure at the required freezing temperature. Next, another modified embodiment of the present invention will be described based on FIG.

本発明の一実施例と異なるところは、第2図に示したテ
ーパ形状のプラグ32の代りに、角ネジ形状をした開閉
制御手段(例えばプラグ)32′を設け、ネジ部長この
長短により低温流体の流路面積を変える機構とした点で
、その他の構成は、前述した本発明の一実施例で説明し
た通りである。図示してない冷凍機と連続している高圧
回路日より予め冷却された高圧低温流体が、ジェール・
トムソン弁1に達した後、等ェンタルピー膨張をして液
化する。
The difference from the embodiment of the present invention is that instead of the tapered plug 32 shown in FIG. 2, a rectangular screw-shaped opening/closing control means (for example, a plug) 32' is provided. Except for the mechanism for changing the flow path area, the other configurations are as described in the above-described embodiment of the present invention. A high-pressure low-temperature fluid that has been pre-cooled from a high-pressure circuit connected to a refrigerator (not shown) is
After reaching the Thomson valve 1, it undergoes isenthalpic expansion and liquefies.

この時高圧低温流体は、低圧となり、温度は更に下り、
凝縮器2内を通過する間に、凝縮器2に接合している気
液熱交換器9の効果によって昇温した寒剤と熱交換し、
寒剤は冷却され、凝縮器2内の低温流体は昇縞して絞り
部22に達する。絞り部22では気相状態の低温流体は
再び冷却され、熱侵入による寒剤の蒸発又は圧力上昇を
防ぐことができる。このようにして寒剤と熱交換しなが
らほぼ一気圧にまで減圧された低温流体はタンク35に
達する。タンク35の温度はその周囲に付けられたフィ
ン37の効果により葵剤の平均気相温度に保持され、そ
の温度に応じてべロー33の内部は減圧状態となり、圧
縮バネ34の力に抗してプラグ32を左方向に動かし、
タンク35とプラグ32の各テーパ部間隙を大きくして
、低温流体の流れを流体通路21から分岐管31へと増
大させる。平均気相温度に応じたべロー33の内部圧力
は、予め圧力と温度の鮫正がなされ、常温部に紬管4で
連結され温度計の指針を作動させ温度を直読することが
できるようになっている。温度が高い時には、ベロー3
3内の圧力が高く、圧縮バネ34と協同してプラグ32
を右方向に押し、低温流体の流れを止めるように作用す
る。即ち、この構成による温度自動調整弁3は、温度に
応じて低温流体の流路中を自動的に制御し、流量を調整
することができる。第3図に示す本発明の他の実施例で
は、プラグ32′を作動させる機構は同一であるが、低
温流体の流路長さを変えることによって流量を調整する
機構である。
At this time, the high-pressure low-temperature fluid becomes low pressure, and the temperature further decreases.
While passing through the condenser 2, it exchanges heat with the refrigerant whose temperature has risen due to the effect of the gas-liquid heat exchanger 9 connected to the condenser 2,
The refrigerant is cooled, and the low-temperature fluid in the condenser 2 rises and reaches the constriction section 22. In the constriction section 22, the low temperature fluid in the gas phase is cooled again, and evaporation of the cryogen or pressure increase due to heat intrusion can be prevented. The low-temperature fluid thus reduced in pressure to approximately one atmosphere while exchanging heat with the cryogen reaches the tank 35. The temperature of the tank 35 is maintained at the average vapor phase temperature of the hollyhock agent by the effect of the fins 37 attached around it, and the inside of the bellows 33 becomes a reduced pressure state according to the temperature, resisting the force of the compression spring 34. and move the plug 32 to the left.
The gap between the tapered portions of the tank 35 and the plug 32 is increased to increase the flow of low temperature fluid from the fluid passage 21 to the branch pipe 31. The internal pressure of the bellows 33, which corresponds to the average gas phase temperature, has been adjusted in advance for pressure and temperature, and is connected to the room temperature section with a pongee tube 4, so that the temperature can be directly read by operating the pointer of the thermometer. ing. When the temperature is high, bellow 3
3, the pressure in plug 32 is high, and in cooperation with compression spring 34, plug 32
Push to the right and act to stop the flow of cryogenic fluid. That is, the automatic temperature adjustment valve 3 having this configuration can automatically control the flow path of the low-temperature fluid according to the temperature and adjust the flow rate. In another embodiment of the invention, shown in FIG. 3, the mechanism for actuating plug 32' is the same, but the mechanism adjusts the flow rate by varying the cryogenic fluid flow path length.

べロー33内に密封されているガス体の圧力は温度が下
るに従って減圧され、圧縮バネ34の力に抗して角ネジ
形状のプラグ32′を左方向に移動させる。移動後の角
ネジ部の溝の入口から分岐管31の入口までの距離は短
かくなり、その分だけ低温流体は流れ易くなり、流量は
増加する。即ち、温度に応じて低温流体の流量を調整す
ることができる。以上の如く本発明によれば、先ず高圧
側の制御を低圧側で行なわせることにより、制御精度を
上げることなく流量制御を行なえるようにしたことで、
高圧側で流量を制御するには弁開度を徴量に調整する必
要があるが、低圧側での流量制御は体積が増加している
ので高圧ほどの徴量調整は必要としない。
The pressure of the gas sealed inside the bellows 33 is reduced as the temperature decreases, and the rectangular screw-shaped plug 32' is moved to the left against the force of the compression spring 34. After the movement, the distance from the entrance of the groove of the square threaded part to the entrance of the branch pipe 31 becomes shorter, and the low temperature fluid becomes easier to flow by that much, and the flow rate increases. That is, the flow rate of the low temperature fluid can be adjusted depending on the temperature. As described above, according to the present invention, by first performing control on the high pressure side on the low pressure side, flow rate control can be performed without increasing control accuracy.
To control the flow rate on the high-pressure side, it is necessary to adjust the valve opening to a specific amount, but since the volume is increasing, flow control on the low-pressure side does not require the same amount of adjustment as the high-pressure side.

次にタンクの周囲に設けられたフィンの効果によって冷
凍温度空間の平均温度を常に保持し得る構造をもってい
るので、低温容器の大ささに関係なく温度検出が確実に
できる。更に徴量流量調整を必要としない点から流路面
積、又は流路長さを変えることで所要の冷凍温度を維持
できる。このことは、実施例に示すように、数点の部分
で構成できる利点があると同時に、自動的に流量調整が
できるという効果をもっている。
Next, since it has a structure that can always maintain the average temperature of the refrigerated temperature space by the effect of the fins provided around the tank, temperature detection can be performed reliably regardless of the size of the cryogenic container. Furthermore, the required refrigerating temperature can be maintained by changing the flow path area or the flow path length since no adjustment of the collected flow rate is required. As shown in the embodiment, this has the advantage that it can be constructed from several parts, and at the same time has the effect that the flow rate can be adjusted automatically.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る低温容器の礎成図、第
2図は第1図の要部を拡大して示した極低温度自動調整
システムの断面図、そして第3図は本発明の他の実施例
を示す極低温度自動調整システムの断面図である。 11a・・・・・・冷凍温度空間、32,32′・・・
・・・開閉制御手段、33・・・・・・可榛体(ベロー
、ダイアフラム等)、35……タンク。 第1図 第2図 第3図
FIG. 1 is a basic diagram of a cryogenic container according to an embodiment of the present invention, FIG. 2 is a sectional view of an automatic extremely low temperature adjustment system showing an enlarged main part of FIG. 1, and FIG. FIG. 7 is a sectional view of an automatic cryogenic temperature adjustment system showing another embodiment of the present invention. 11a... Refrigeration temperature space, 32, 32'...
... Opening/closing control means, 33... Flexible body (bellows, diaphragm, etc.), 35... Tank. Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1 内部に冷凍温度空間が画成される低温容器、前記冷
凍温度空間内に配設され、一方部がジユールトムソン弁
を備えた高圧回路を介して冷凍機と連結された凝縮器、
前記冷凍温度空間内に配設され、一方部および他方部が
、夫々、前記凝縮器の他方部および戻り回路の分岐管と
連結されたフイン付タンク、ならぴに前記タンク内に配
設され、比較的高圧のガスおよびスプリングを封入した
可撓体と連動して、前記凝縮器から前記タンク内へ流入
する冷却液体の流路面積を変える開閉制御手段を有し、
前記冷凍温度空間を所要冷凍温度に維持するように構成
した極低温自動調整システム。
1. A low-temperature container in which a freezing temperature space is defined; a condenser disposed within the freezing temperature space and connected to a refrigerator at one end via a high-pressure circuit equipped with a Joel-Thomson valve;
a finned tank disposed in the refrigeration temperature space, one part and the other part connected to the other part of the condenser and a branch pipe of the return circuit, respectively; It has an opening/closing control means that changes the flow path area of the cooling liquid flowing from the condenser into the tank in conjunction with a flexible body containing relatively high-pressure gas and a spring,
A cryogenic automatic adjustment system configured to maintain the freezing temperature space at a required freezing temperature.
JP3016279A 1979-03-15 1979-03-15 Extremely low temperature automatic adjustment system Expired JPS6018909B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3016279A JPS6018909B2 (en) 1979-03-15 1979-03-15 Extremely low temperature automatic adjustment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3016279A JPS6018909B2 (en) 1979-03-15 1979-03-15 Extremely low temperature automatic adjustment system

Publications (2)

Publication Number Publication Date
JPS55121367A JPS55121367A (en) 1980-09-18
JPS6018909B2 true JPS6018909B2 (en) 1985-05-13

Family

ID=12296052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3016279A Expired JPS6018909B2 (en) 1979-03-15 1979-03-15 Extremely low temperature automatic adjustment system

Country Status (1)

Country Link
JP (1) JPS6018909B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5932758A (en) * 1982-08-16 1984-02-22 株式会社日立製作所 Cryostat with helium refrigerator

Also Published As

Publication number Publication date
JPS55121367A (en) 1980-09-18

Similar Documents

Publication Publication Date Title
US4766741A (en) Cryogenic recondenser with remote cold box
US3430455A (en) Thermal switch for cryogenic apparatus
US3457730A (en) Throttling valve employing the joule-thomson effect
US4827736A (en) Cryogenic refrigeration system for cooling a specimen
US3728868A (en) Cryogenic refrigeration system
JPS6051624B2 (en) Cooling system
US4177650A (en) Cryogenic cooling apparatus
US3590597A (en) Cooling apparatus employing the joule-thomson effect
US6532748B1 (en) Cryogenic refrigerator
JP4595121B2 (en) Cryogenic refrigerator using mechanical refrigerator and Joule Thomson expansion
US4756167A (en) Helium cooling apparatus
JPS6018909B2 (en) Extremely low temperature automatic adjustment system
JP2014173755A (en) Cryogenic temperature cooling apparatus and liquid level adjustment mechanism
US3978682A (en) Refrigeration method and apparatus by converting 4 He to A superfluid
US5913889A (en) Fast response Joule-Thomson cryostat
JP2004076955A (en) Cryogenic temperature damper
US3782129A (en) Proportionate flow cryostat
US3630047A (en) Cryogenic cooling apparatus
JPS59214280A (en) Cryostat
JP4031319B2 (en) Cryogenic holding device
JP2000329414A (en) Hybrid refrigerating machine
US1930296A (en) Refrigerating machine
JPH035825Y2 (en)
JPH05332655A (en) Mounting device for cryogenic refrigerator
JPH0694193A (en) Storage tank for liquified gas of mixed components