JPS59214280A - Cryostat - Google Patents

Cryostat

Info

Publication number
JPS59214280A
JPS59214280A JP58087412A JP8741283A JPS59214280A JP S59214280 A JPS59214280 A JP S59214280A JP 58087412 A JP58087412 A JP 58087412A JP 8741283 A JP8741283 A JP 8741283A JP S59214280 A JPS59214280 A JP S59214280A
Authority
JP
Japan
Prior art keywords
refrigerator
container
cold
receiver
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58087412A
Other languages
Japanese (ja)
Inventor
Hisanao Ogata
久直 尾形
Takeo Nemoto
武夫 根本
Norimoto Matsuda
松田 紀元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58087412A priority Critical patent/JPS59214280A/en
Publication of JPS59214280A publication Critical patent/JPS59214280A/en
Pending legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE:To mount or demount a refrigerator easily without thermally disturbing a body to be cooled by transmitting cold heat generated from the refrigerator over a cryostat through a thermal contactor and recondensing the vaporized gas of a refrigerant. CONSTITUTION:An expanding machine 8 for a refrigerator has two stepped cold generating means, and cold heat generated at each step is connected to a cold absorbing section in a receiver 24 through a leaf spring 32 from a cylinder 9. The gate of varporized liquid nitrogen 26 is re-liquefied by a condenser 31 corresponding to a first step through a pipe 29, and returned to a vessel 25 through a pipe 30. When the expanding machine 8 gets trouble and is repaired, a valve 28 is opened, and the expanding machine 8 is drawn out of the receiver 24.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は極低温下で動作する機器、特に超電導応用機器
を極低温に維持するタライオスタットに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to equipment that operates at extremely low temperatures, particularly to a taliostat that maintains superconducting applied equipment at extremely low temperatures.

〔従来技術〕[Prior art]

比較的小形の超電導機器を冷却する場合、小形の冷凍機
を使用することが考えられる。第1図に従来の方法の一
例を示す。1が被冷却体である超電導コイル、2が超電
導コイル全冷却する液体ヘリウム、3が超電導コイル1
及び液体ヘリウム2を収納する容器で、真空容器4の中
に断熱支持体5を介して支持されている。6は真壁容器
4の内部に容器3を囲うようにして設置されたしゃへい
体で冷媒によシ液体窒素温度付近に冷ヤされる。
When cooling relatively small superconducting equipment, it is conceivable to use a small refrigerator. FIG. 1 shows an example of a conventional method. 1 is the superconducting coil that is the object to be cooled, 2 is the liquid helium that completely cools the superconducting coil, and 3 is the superconducting coil 1
and liquid helium 2, and is supported within a vacuum container 4 via a heat insulating support 5. Reference numeral 6 denotes a shield installed inside the Makabe container 4 so as to surround the container 3, which is cooled to around the temperature of liquid nitrogen by a refrigerant.

7は冷却の初期に液体ヘリウムまたは気体ヘリウムを出
し入れする管で2本に分けることもある。
7 may be divided into two pipes for introducing and discharging liquid helium or gaseous helium during the initial stage of cooling.

8は、ギホードマクマホン・サイクルあるいはツルベイ
・サイクルと呼ばれる小形冷凍機の膨張機でシリンダ9
の内側に蓄冷器を内蔵するピストン10があって駆動部
11によシ往復動じている。
8 is an expander of a small refrigerator called Gifford-McMahon cycle or Truvey cycle, and cylinder 9
There is a piston 10 with a built-in regenerator therein, which is reciprocated by a drive part 11.

第1図は2段の膨張機を示し、各段の先端部で寒冷を発
生し、この寒冷を取シ出す冷却管12及び13が固定さ
れている。第1の熱交換器14を経て供給される冷媒ヘ
リウムは冷却管12で冷却され、その後、しやへい体6
を冷却して第2の熱交換器15に入り、次いで冷却管1
3でさらに温度が下げられ、第3の熱交換器16全通っ
て膨張弁17で膨張し一部液化する。冷媒は凝縮器18
で吸熱して、第3の熱交換器16、第2の熱交換器15
、第1の熱交換器14のそれぞれ低圧側を通つ、て常温
の圧縮機系19へ戻る。膨張機及び熱交換器と圧縮機系
は連結管20及び21で連結されている。圧縮機系には
、圧縮機本体、冷却器、圧力バッファー、フィルタまた
は精製器が含まれる。
FIG. 1 shows a two-stage expander, in which cold is generated at the tip of each stage, and cooling pipes 12 and 13 are fixed to take out the cold. The refrigerant helium supplied via the first heat exchanger 14 is cooled by the cooling pipe 12, and then cooled by the cooling body 6.
into the second heat exchanger 15, and then into the cooling pipe 1.
3, the temperature is further lowered, the liquid passes through the third heat exchanger 16, expands at the expansion valve 17, and partially liquefies. The refrigerant is in the condenser 18
The third heat exchanger 16 and the second heat exchanger 15
, through the respective low pressure sides of the first heat exchanger 14 and return to the room temperature compressor system 19. The expander, heat exchanger, and compressor system are connected by connecting pipes 20 and 21. The compressor system includes a compressor body, a cooler, a pressure buffer, a filter or a purifier.

装置稼動中は注入弁22を閉じて、超電導コイル1は凝
縮器18内の液体よりわずかに高い温度の液体ヘリウム
で冷却されることとなる。
During operation of the device, the injection valve 22 is closed, and the superconducting coil 1 is cooled with liquid helium whose temperature is slightly higher than that of the liquid in the condenser 18.

故障のことを考えると、可動部分がもっとも故障し易く
、したがって第1図の例では膨張機8の故障の確率が高
い。これを修理するためには、いったんタライオスタッ
ト全体を暖めて常温に戻してから分解しなければならな
い。これでは、超電導コイルを連続的に使用することは
不可能である。
When considering failures, movable parts are most likely to fail, so in the example of FIG. 1, the probability of failure of the expander 8 is high. In order to repair this, the entire Taliostat must be warmed up to room temperature and then disassembled. This makes it impossible to use the superconducting coil continuously.

このように、従来は冷凍機が故障すると機器の使用を−
たん中断せざるを得す、これは、恒常的に使用する装置
にとってはきわめて大きな問題であった。
In this way, in the past, when a refrigerator broke down, the equipment was stopped from being used.
This was a very big problem for devices that were used on a regular basis.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、冷凍機が故障した時部品交換全容易に
し、極低温の継続的維持を可能とすることにある。
An object of the present invention is to facilitate the replacement of parts when a refrigerator breaks down, and to enable continuous maintenance of extremely low temperatures.

〔発明の概要〕[Summary of the invention]

本発明の特徴は、冷凍根分タライオスタット本体と着脱
可能に嵌合し、冷凍機の発生する寒冷熱金板ばね等の熱
接触子を介して、タライオスタットへ伝達し、タライオ
スタット冷媒の気化ガスを再凝縮でせるようにしたこと
にある。
The feature of the present invention is that it is removably fitted to the main body of the frozen root taliostat, and that the cold heat generated by the refrigerator is transmitted to the taliostat via a thermal contact such as a metal plate spring. The reason is that the vaporized refrigerant gas can be recondensed.

〔発明の実施例〕[Embodiments of the invention]

以1丁、本発明の一実施例を第2図によシ説明する。第
2図には第1図に示す熱交換器14,15゜16および
膨張弁17.凝縮器18のループがない。したがって、
液体ヘリウムの蒸発ガスは再凝縮することなく、タライ
オスタット外へ出てゆく。
An embodiment of the present invention will now be described with reference to FIG. FIG. 2 shows the heat exchangers 14, 15, 16 and expansion valve 17 shown in FIG. There is no condenser 18 loop. therefore,
The evaporated gas of liquid helium escapes from the taliostat without recondensing.

冷凍機は、この蒸発速度を極力低減し、長時間の使用f
:可能ならしめるために導入される。23は液体窒素温
度のしゃへい体6と液体ヘリウム温度の容器3の中間に
配置されたじゃへい板で、その一部が冷凍機の膨張機8
を収納する受容器24の−ysに連結されている。また
、シ?へい体6と連結して液体窒素容器25が設置され
、液体窒素26が供給管27よシ供給される。容器25
と受容器26とは管29及び30と凝縮器31によって
連結されている。受容器24とシリンダ9の間は多数の
短冊状板ばね32を介して接触している。
Refrigerators reduce this evaporation rate as much as possible and can be used for long periods of time.
: Introduced to make it possible. 23 is a baffle plate placed between the shield body 6 at liquid nitrogen temperature and the container 3 at liquid helium temperature, a part of which is connected to the expander 8 of the refrigerator.
-ys of the receptor 24 containing the. Also, shi? A liquid nitrogen container 25 is installed connected to the enclosure 6, and liquid nitrogen 26 is supplied through a supply pipe 27. Container 25
and receiver 26 are connected by tubes 29 and 30 and condenser 31. The receiver 24 and the cylinder 9 are in contact via a number of strip-shaped leaf springs 32.

液体ヘリウム2の蒸発ガスは放出管33を経て、しやへ
い板23を冷却後、受容器24を低温側から高温側へ熱
的に接触しながら出てゆき、最終的に常温のガスとなっ
てタライオスタットの外へ出る。
The evaporated gas of the liquid helium 2 passes through the discharge pipe 33, cools the shield plate 23, and then exits the receiver 24 from the low-temperature side to the high-temperature side while thermally contacting it, and finally becomes gas at room temperature. Go outside of Taliostat.

膨張機8は2段の寒冷発生段を有し、各段で発生した寒
冷熱はシリンダ9より、板ばね32を介して受容器24
の寒冷吸収部に接続される。気化した液体窒素26のガ
スは管29を通って第1段(液体窒素温度レベル)に対
応した凝縮器31で再液化して管30を経て容器25に
戻る。このとき、必要なら弁28′f!:閉じて容器2
5を密閉することもできる。第2段の温度は約20にで
じゃへい板23へ熱伝導によって寒冷熱を伝達する。膨
張機8の故障、修理の際は、弁28全開き、膨張機8?
il−受容器24から引き抜くだけでよい。
The expander 8 has two cold generation stages, and the cold heat generated in each stage is transferred from the cylinder 9 to the receptor 24 via the leaf spring 32.
connected to the cold absorption section of The vaporized liquid nitrogen 26 gas passes through a pipe 29, is re-liquefied in a condenser 31 corresponding to the first stage (liquid nitrogen temperature level), and returns to the container 25 via a pipe 30. At this time, if necessary, valve 28'f! : Close container 2
5 can also be sealed. The temperature of the second stage is approximately 20°C, and cold heat is transferred to the baffle plate 23 by heat conduction. In case of failure or repair of the expander 8, open the valve 28 fully and open the expander 8?
It is only necessary to withdraw it from the il-receptor 24.

第3図は、冷凍機としてクロードサイクルを用いた場合
の一実施例であり、第1図の冷凍機周辺のみを示す。こ
の冷凍機も2段の寒冷発生段を有し、上段が液体窒素温
度レベル(100〜70K)、下段が液体ヘリウム温度
レベル(5〜3K)である。圧縮機で高圧になった常温
のヘリウムガスは供給管40全通って、コールドボック
ス41内に入り、第1の熱交換器42を経てその一部は
第1の膨張機43で中間圧力にまで膨張し、外部に仕事
をしてその温度が下がシ、コールドボックス41の側壁
44の中間に設けられた第1の冷却段45を冷却する。
FIG. 3 shows an example in which a Claude cycle is used as the refrigerator, and only the vicinity of the refrigerator in FIG. 1 is shown. This refrigerator also has two cold generation stages, the upper stage being at the liquid nitrogen temperature level (100-70K) and the lower stage being at the liquid helium temperature level (5-3K). The helium gas at normal temperature, which has become high pressure in the compressor, passes through the entire supply pipe 40, enters the cold box 41, passes through the first heat exchanger 42, and part of it is brought to an intermediate pressure in the first expander 43. It expands, performs work on the outside, lowers its temperature, and cools the first cooling stage 45 provided in the middle of the side wall 44 of the cold box 41.

その後第2の熱交換器46の中間から人って熱交換した
あと、第2の膨張機47で戻りガスの圧力(はぼ大気圧
)にまで膨張して温度が下がシ戻シラインに入る。高圧
ガスの一部は第2の熱交換器46.第3の熱交換器48
゜第4の熱交換器49を経て膨張弁5oの後で一部液化
し、第2の冷却段51を冷却する。戻シのガスは第4.
第3.第2.第1の各熱交換器49゜48.46.42
を経て常温の低圧ガスとなって回収管52を経て圧縮機
に戻る。第1の冷却段45と第2の冷却段51id前記
冷凍(幾のガスループの一部53.54とろう付けなど
によシ熱的に接触する一方、熱伝導性の良好な多数の板
ばね55.56とも熱的な接触が保たれている。側壁4
4はタライオスタットの真空容器4に気密に取シ付けら
れた受容器24に嵌合され、板ばね55゜56の部分で
札互に接触し、熱の伝達を行う。第1の冷却段に対応す
る受容器24の部分には凝縮器31がろう付は等で取シ
付けられ、管29と管30により液体窒素の容器25に
連結されている。
After that, heat is exchanged from the middle of the second heat exchanger 46, and then the second expander 47 expands to the pressure of the return gas (almost atmospheric pressure), and the temperature drops and enters the return line. . A portion of the high pressure gas is transferred to the second heat exchanger 46. Third heat exchanger 48
It is partially liquefied after the expansion valve 5o via the fourth heat exchanger 49 and cools the second cooling stage 51. The return gas is the 4th.
Third. Second. Each first heat exchanger 49°48.46.42
The gas becomes a low-pressure gas at room temperature and returns to the compressor via the recovery pipe 52. The first cooling stage 45 and the second cooling stage 51id are in thermal contact with a part of the gas loop 53, 54 by brazing or the like, while a large number of leaf springs 55 with good thermal conductivity Thermal contact is maintained with .56. Side wall 4
4 are fitted into a receiver 24 which is airtightly attached to the vacuum vessel 4 of the Taliostat, and the plates contact each other at the leaf springs 55 and 56 to transfer heat. A condenser 31 is attached by brazing or the like to the portion of the receiver 24 corresponding to the first cooling stage, and is connected to the liquid nitrogen container 25 by tubes 29 and 30.

同じように、第2の冷却段に対応する受容器24の部分
には、凝縮器57が取シ付けられ、管58及び59によ
り液体ヘリウムの容器3と連結されている。このような
構成では、液体ヘリウムの容器3および液体窒素の容器
25を完全に密閉することができる。
Similarly, a condenser 57 is attached to the part of the receiver 24 corresponding to the second cooling stage and is connected by tubes 58 and 59 to the container 3 of liquid helium. With such a configuration, the liquid helium container 3 and the liquid nitrogen container 25 can be completely sealed.

第4図は板ばねによる熱接触部の別の実施例を示すもの
で、側壁44に取シ付けられた板ばね55と接触すべき
受容器24にゆるやかな傾斜をもつ段差60を設けであ
る。こうすると、コールドボックスを挿入する際、所定
の位置に達しない間は板ばね55と受容器24の接触を
弱くするかまたは無摺動とすることができ、挿入が容易
でかつ摩耗が少ない。なお、接点の熱抵抗を減らすため
に、接点の両面に銀やロジウム、インジウムなどの金属
を被覆してもよい。
FIG. 4 shows another embodiment of the thermal contact portion using a leaf spring, in which a step 60 with a gentle slope is provided on the receptor 24 which is to be in contact with the leaf spring 55 attached to the side wall 44. . In this way, when inserting the cold box, the contact between the leaf spring 55 and the receptor 24 can be weakened or non-sliding until the predetermined position is reached, making insertion easy and causing less wear. In addition, in order to reduce the thermal resistance of the contact, both surfaces of the contact may be coated with a metal such as silver, rhodium, or indium.

第5図は、接触部の別の実施例を示すもので、側壁44
の下部に冷却ループの一部53が取シ付けられた銅製の
冷却段61全設け、その底面に板ばね62を熱的に接続
する。一方、受容器24の冷却段61と対面する部分に
銅製の凝縮容器63を設は管64で液体窒素または液体
ヘリウムの容器に連結する。このような構成では、板ば
ね62による熱接触を圧縮力で行うので、接触圧ゲ高め
、熱抵抗全滅らすことができるし、側壁44と受容器2
4との間隙を小さくすることができる。
FIG. 5 shows another embodiment of the contact portion, in which the side wall 44
A cooling stage 61 made of copper to which a part 53 of a cooling loop is attached is entirely provided at the bottom of the cooling stage 61, and a leaf spring 62 is thermally connected to the bottom surface of the cooling stage 61 made of copper. On the other hand, a copper condensing vessel 63 is provided at a portion of the receiver 24 facing the cooling stage 61 and is connected to a liquid nitrogen or liquid helium vessel through a pipe 64. In such a configuration, the thermal contact by the plate spring 62 is performed by compressive force, so that the contact pressure can be increased and the thermal resistance can be completely eliminated.
4 can be made smaller.

第6図および第7図は、板ばね55及び58の他の実施
例である。すなわち、短冊状の板ばねを冷却段45に1
枚ずつ取シ付けるかわりに、円筒状捷たけ平板状の板に
切シ込みを入れ、かつ突起を設けてはね作用を持たせた
一体型の板ばね6゜または61を採用する。このように
すれば、板ばねの取り付けが円周上数ケ所をボルト締め
するか、あるいは固定側を半田付等で接着するだけです
み、作業が簡単になる。また、この種の板ばねに形状記
憶合金を用いて、常温では受容器24と非接触で、冷却
段45あるいは側壁44が温度低下すると板ばねが受容
器24に接触して熱を伝えるようにしてもよい。
6 and 7 show other embodiments of leaf springs 55 and 58. That is, one strip-shaped leaf spring is installed in the cooling stage 45.
Instead of attaching the leaf springs one by one, an integrated leaf spring 6° or 61 is used, which is made by cutting a cylindrical flat plate and providing a protrusion to provide a spring action. In this way, the installation of the leaf spring can be done simply by tightening bolts at several points on the circumference or by gluing the fixed side by soldering or the like, which simplifies the work. In addition, a shape memory alloy is used for this type of leaf spring so that it does not come into contact with the receptor 24 at room temperature, but when the temperature of the cooling stage 45 or the side wall 44 drops, the leaf spring contacts the receptor 24 and transfers heat. It's okay.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によればタライオスタットに
おける冷凍機の着脱が、被冷却体に熱的優乱を与えるこ
となく、容易に行ンことができるという効果があり、装
置としての信頼性向上に寄与する。
As described above, according to the present invention, the refrigerating machine can be easily attached and detached in the taliostat without causing any thermal disturbance to the object to be cooled, which increases the reliability of the device. Contributes to sexual improvement.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の実施例を示す模式的な断面図、第2図は
本発明の一実施例を示す模式的な断面図、第3図は本発
明の別の実施例を示す模式的な断面図、第4図は本発明
の別の実施例の一部分を示す断面図、第5図tよ本発明
の別の実力m例の一部分を示す1析面図である。 第6図及び第7図は、本発明の他の実施例の一部分を示
す断面図である。 l・・・超電導コーfル、2・・・液体ヘリウム、26
・・・液体窒素、6・・・しfへい体、23・・・しヤ
へい板、8・・・膨張機、9・・・シリンダ、24・・
・受容器、31・・・凝縮器、3.2,55.58・・
・板ばね。 代理人 弁理士 高橋明夫 第  11E2] 20 Z Z 図 ¥13 12] ¥’>  4−  [2] 第 5 図
FIG. 1 is a schematic cross-sectional view showing a conventional embodiment, FIG. 2 is a schematic cross-sectional view showing one embodiment of the present invention, and FIG. 3 is a schematic cross-sectional view showing another embodiment of the present invention. FIG. 4 is a sectional view showing a part of another embodiment of the present invention, and FIG. 5 is an analytical view showing a part of another practical example of the invention. 6 and 7 are cross-sectional views showing a portion of another embodiment of the present invention. l...Superconducting coal, 2...Liquid helium, 26
...liquid nitrogen, 6...shield body, 23...shield plate, 8...expander, 9...cylinder, 24...
・Receptor, 31... Condenser, 3.2, 55.58...
・Leaf spring. Agent Patent Attorney Akio Takahashi No. 11E2] 20 Z Z Z Figure ¥13 12] ¥'> 4- [2] Figure 5

Claims (1)

【特許請求の範囲】[Claims] 1、極低温で作動する被冷却体、これと第1の冷却剤を
収納する容器、その周囲を少なくとも部分的に包囲する
第2の冷却剤を収納する容器とこれに連結するじゃへい
体、これらを包みこむ真空容器、膨張機を内蔵した冷凍
機、該冷凍機の寒冷発生部を円周上に露出し、該冷凍機
を包み込んだ少なくとも2ヶ以上の異径の円筒体及び該
円筒体に嵌合し、上記真空容器に気密に取シ付けられた
受答器とを含むタライオスタットにおいて、該受容器の
一部に上記第1または第2の冷却剤の容器に連通した凝
縮器を連結し、該凝縮器の部分と上記円筒体寒冷発生部
との間に板ばね等よりなる熱接触体を介在させたことを
特徴とするタライオスタット。
1. An object to be cooled that operates at a cryogenic temperature, a container for storing the object and a first coolant, a container for storing a second coolant that at least partially surrounds the object, and a barrier body connected to the object; A vacuum container enclosing these, a refrigerator with a built-in expander, at least two cylindrical bodies of different diameters with the cold generating part of the refrigerator exposed on the circumference and enclosing the refrigerator, and the cylindrical body a receiver fitted into the vacuum container and airtightly attached to the vacuum container; a condenser in communication with the first or second coolant container in a part of the receiver; A taliostat characterized in that a thermal contact member made of a leaf spring or the like is interposed between the condenser portion and the cylindrical cold generation portion.
JP58087412A 1983-05-20 1983-05-20 Cryostat Pending JPS59214280A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58087412A JPS59214280A (en) 1983-05-20 1983-05-20 Cryostat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58087412A JPS59214280A (en) 1983-05-20 1983-05-20 Cryostat

Publications (1)

Publication Number Publication Date
JPS59214280A true JPS59214280A (en) 1984-12-04

Family

ID=13914157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58087412A Pending JPS59214280A (en) 1983-05-20 1983-05-20 Cryostat

Country Status (1)

Country Link
JP (1) JPS59214280A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9303548B2 (en) 2013-11-12 2016-04-05 Dayco Ip Holdings, Llc Diesel engine fluid coolant system having a solenoid-powered gate valve
US9574677B2 (en) 2013-05-31 2017-02-21 Dayco Ip Holdings, Llc Solenoid-powered gate valve
US9599246B2 (en) 2015-08-05 2017-03-21 Dayco Ip Holdings, Llc Magnetically actuated shut-off valve
US9666349B2 (en) 2013-12-11 2017-05-30 Dayco Ip Holdings, Llc Magnetically actuated shut-off valve
US9841110B2 (en) 2013-08-30 2017-12-12 Dayco Ip Holdings, Llc Sprung gate valves movable by a solenoid actuator
US9845899B2 (en) 2013-05-31 2017-12-19 Dayco Ip Holdings, Llc Sprung gate valves movable by an actuator
US10221867B2 (en) 2013-12-10 2019-03-05 Dayco Ip Holdings, Llc Flow control for aspirators producing vacuum using the venturi effect

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9574677B2 (en) 2013-05-31 2017-02-21 Dayco Ip Holdings, Llc Solenoid-powered gate valve
US9845899B2 (en) 2013-05-31 2017-12-19 Dayco Ip Holdings, Llc Sprung gate valves movable by an actuator
US10323767B2 (en) 2013-05-31 2019-06-18 Dayco Ip Holdings, Llc Sprung gate valves movable by an actuator
US11067177B2 (en) 2013-05-31 2021-07-20 Dayco Ip Holdings, Llc Sprung gate valves movable by an actuator
US9841110B2 (en) 2013-08-30 2017-12-12 Dayco Ip Holdings, Llc Sprung gate valves movable by a solenoid actuator
US9303548B2 (en) 2013-11-12 2016-04-05 Dayco Ip Holdings, Llc Diesel engine fluid coolant system having a solenoid-powered gate valve
US10221867B2 (en) 2013-12-10 2019-03-05 Dayco Ip Holdings, Llc Flow control for aspirators producing vacuum using the venturi effect
US9666349B2 (en) 2013-12-11 2017-05-30 Dayco Ip Holdings, Llc Magnetically actuated shut-off valve
US9599246B2 (en) 2015-08-05 2017-03-21 Dayco Ip Holdings, Llc Magnetically actuated shut-off valve
US9915370B2 (en) 2015-08-05 2018-03-13 Dayco Ip Holdings, Llc Magnetically actuated shut-off valve

Similar Documents

Publication Publication Date Title
US4432216A (en) Cryogenic cooling apparatus
JP4040626B2 (en) Refrigerator mounting method and apparatus
US3430455A (en) Thermal switch for cryogenic apparatus
US4827736A (en) Cryogenic refrigeration system for cooling a specimen
JPS59214280A (en) Cryostat
JP2773793B2 (en) Cryogenic refrigerator
JP4372028B2 (en) Low temperature holding device and maintenance method thereof
JPS63207958A (en) Freezer
JPS5986276A (en) Cryostat
JP4031319B2 (en) Cryogenic holding device
JPS6023761A (en) Refrigerator and system thereof
JPS63210572A (en) Cryogenic freezer
JPS62299005A (en) Superconducting magnet device
Longsworth et al. Serviceable refrigerator system for small superconducting devices
JPS5951155B2 (en) superconducting device
JPH0619065Y2 (en) Thermometer calibration device
JP2893210B2 (en) Cryostat for high temperature superconducting magnetic shield
JPH01149406A (en) Superconducting device
Matsuda et al. Cryogenic cooling apparatus
JPS62261868A (en) Helium cooling device
JPS6266067A (en) Helium cooling device
CN113724960A (en) Refrigerator mounting structure for cryogenic system
JPH1163699A (en) Pulse pipe refrigerating machine
JP2707624B2 (en) Cryogenic refrigeration equipment
JPH0643646Y2 (en) Refrigerator flow path