JPS6028211A - Superconductive magnet - Google Patents

Superconductive magnet

Info

Publication number
JPS6028211A
JPS6028211A JP58136604A JP13660483A JPS6028211A JP S6028211 A JPS6028211 A JP S6028211A JP 58136604 A JP58136604 A JP 58136604A JP 13660483 A JP13660483 A JP 13660483A JP S6028211 A JPS6028211 A JP S6028211A
Authority
JP
Japan
Prior art keywords
superconducting magnet
helium
power lead
inner tank
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58136604A
Other languages
Japanese (ja)
Other versions
JPH0582045B2 (en
Inventor
Kinya Matsutani
松谷 欣也
Katsutoki Sasaki
佐々木 克時
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58136604A priority Critical patent/JPS6028211A/en
Priority to US06/632,461 priority patent/US4543794A/en
Priority to GB08418769A priority patent/GB2145506B/en
Priority to KR8404441A priority patent/KR890003871B1/en
Priority to DE19843427601 priority patent/DE3427601A1/en
Publication of JPS6028211A publication Critical patent/JPS6028211A/en
Publication of JPH0582045B2 publication Critical patent/JPH0582045B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor
    • H01F6/065Feed-through bushings, terminals and joints

Abstract

PURPOSE:To control an exciting current by combining small freezers and a small superconductive magnet and reduce the size of the apparatus by a method wherein the superconductive magnet is housed in an internal tank filled with liquid helium and the 1st and the 2nd small freezers are directly attached to a heat retaining container in which the internal tank is contained. CONSTITUTION:A superconductive magnet 1 is housed in an internal tank 3 filled with liquid helium 2 and the 1st and the 2nd small freezers 20, 30 are directly attached to an external tank 5 of a heat retaining container 4. A freezing stage 24 of the freezer 20 is connected to a radiation shielding plate 6 and a helium recondensor 25 is provided immediately above the helium 2. The 1st and the 2nd freezing stages 34, 35 of the freezer 30 are inserted into the container 4 and a power lead 10, which supplies an exciting current to the superconductive magnet 1 is connected to the stage 35. The lead 10 is directly cooled by the stages 34, 35 and the shielding plate 6 is directly cooled with heat transmission by the stage 24 to control the exciting of current the magnet 1.

Description

【発明の詳細な説明】 し発明の技術分野] 本発明は小型冷凍機と超伝導磁石を組合せて成る超電導
磁石装置に関Jる。
[Detailed Description of the Invention] Technical Field of the Invention The present invention relates to a superconducting magnet device comprising a combination of a small refrigerator and a superconducting magnet.

[発明の技術的背景とその問題点コ 第1図は、従来の超電導磁石装置の構成を示すものであ
る。図において、超電導磁石1は冷却媒体例えば極低温
の(例えば4.2K)液体ヘリウム2で満された内4i
 3に収納されCいる。この超電導磁石1を超電導状態
に保1.5シ【いる保冷容器4は内槽3と外槽5からな
り、内槽3と外槽5との間には輻射シールド板6が設り
られ、さらにこの輻射シールド板6には液体窒素7が流
れるシールド管8が設(プられてシールド効果を高めて
いる。
[Technical background of the invention and its problems] FIG. 1 shows the configuration of a conventional superconducting magnet device. In the figure, a superconducting magnet 1 is filled with a cooling medium such as extremely low temperature (for example 4.2K) liquid helium 2.
It is stored in 3 and C. A cold storage container 4 that keeps the superconducting magnet 1 in a superconducting state for 1.5 hours consists of an inner tank 3 and an outer tank 5, and a radiation shield plate 6 is provided between the inner tank 3 and the outer tank 5. Furthermore, a shield tube 8 through which liquid nitrogen 7 flows is provided in the radiation shield plate 6 to enhance the shielding effect.

また、超電導状態に保持された上記超電導磁石1はパワ
ーリード10を介して、外部に設置された超電導磁石用
電源9と接続され、これにより、励磁電流を供給して所
要の磁場が被磁場印加機器16に印加される。この際、
パワーリード10.低温配管11、液体ヘリウム移送管
12、外15、輻射シールド板6、内槽3を介して、熱
伝導、輻射により極低温のく例えば4L 2K>液体ヘ
リウム2に外部(例えば300K>より熱が侵入する。
In addition, the superconducting magnet 1 maintained in a superconducting state is connected to an externally installed superconducting magnet power source 9 via a power lead 10, thereby supplying an exciting current and applying a required magnetic field to the magnetic field. is applied to equipment 16. On this occasion,
Power lead 10. Via the low temperature pipe 11, the liquid helium transfer pipe 12, the outside 15, the radiation shield plate 6, and the inner tank 3, heat is transferred from the outside (for example, 300K) to the extremely low temperature (for example, 4L 2K) and the liquid helium 2 by heat conduction and radiation. invade.

そして、この侵入熱により液体ヘリウム2は蒸発しガス
ヘリウム13が発生する。このガスヘリウム13は、パ
ワーリード10が通っている外筒14の内部を流れ、パ
ワーリード10を冷却(ガス冷却)して低温配管11に
入る。パワーリード10よりの熱侵入量は、このガス冷
却により低減される。ガスヘリウム13はヘリウム液化
機15に入り、極低温(例えば4.:2K)の液体ヘリ
ウム2に変換される。この液体ヘリウム2は、液体ヘリ
ウム移送管12を介して内槽3に入る。このJzうに、
侵入熱により蒸発したヘリウムはパワーリード10を冷
U] L、た後に、ヘリウム液化機15にJzり液化さ
れ内槽3へと戻る循環をくり返しながら超電導磁石1を
超電導状態に保持している。
Then, the liquid helium 2 evaporates due to this penetrating heat, and gas helium 13 is generated. This gas helium 13 flows inside the outer tube 14 through which the power lead 10 passes, cools the power lead 10 (gas cooling), and enters the low-temperature pipe 11. The amount of heat entering from the power lead 10 is reduced by this gas cooling. Gaseous helium 13 enters a helium liquefier 15 and is converted into liquid helium 2 at an extremely low temperature (for example, 4.2K). This liquid helium 2 enters the inner tank 3 via the liquid helium transfer pipe 12. This JZ sea urchin,
The helium evaporated by the intruding heat cools the power lead 10, is then liquefied in the helium liquefier 15, and returns to the inner tank 3, where the superconducting magnet 1 is kept in a superconducting state while repeating the circulation.

ところで、このように構成された超電導磁石装置は大型
の超電導磁石には適するが、例えば単結晶引上装置等に
使用づる比較的小型の超電導磁石(例えば励磁電流30
0〜500A程度、極低温に於けるヘリウム蒸発m1〜
24/h程度)には適さない。これは、従来型のヘリウ
ム液化機15は大型超電導磁石用に開発されており、小
さな冷凍能力(例えばヘリウム蒸発量1〜2 t7h程
度)に適したものがないためである。従って通常のヘリ
ウム液化機15゛を小型超電導磁石に適用すると、超電
導磁石1部に対してヘリウム液化機15部の大きさある
いは占有面積が過大となり、さらに価格面から見ても超
電導磁石1に比べてヘリウム液化機15価格が過大とな
り、超電導磁石装置は非常に高価なものとなってしまう
。一方、この小型超電導磁石容量に見合う従来型の小型
冷凍機を用いて、超電導磁石装置をコンパクト、低価格
にする場合は、従来型の小型冷凍機の冷凍能力は、保冷
容器4、内槽3、シールド6.8、外槽5を介しての輻
射熱分を供給し、さらにパワーリード10の蒸発ガス冷
却mをも供給する程はない。
By the way, the superconducting magnet device configured in this way is suitable for large-sized superconducting magnets, but it is suitable for relatively small-sized superconducting magnets (for example, with an excitation current of 30
Helium evaporation m1 at extremely low temperatures, about 0 to 500 A
24/h) is not suitable. This is because the conventional helium liquefier 15 has been developed for use with large superconducting magnets, and there is no one suitable for small refrigerating capacity (for example, helium evaporation amount of about 1 to 2 t7 hours). Therefore, if a normal helium liquefaction machine 15゛ is applied to a small superconducting magnet, the size or occupied area of the helium liquefaction machine 15 will be excessive compared to 1 part of the superconducting magnet, and from a cost perspective, it will be compared to the superconducting magnet 1. Therefore, the price of the helium liquefier 15 becomes excessive, and the superconducting magnet device becomes extremely expensive. On the other hand, if you want to make the superconducting magnet device compact and low-cost by using a conventional small refrigerator that matches the capacity of this small superconducting magnet, the freezing capacity of the conventional small refrigerator is 4 cold containers, 3 inner tanks, , the shield 6.8, and the outer tank 5 to supply radiant heat, and furthermore, it is not enough to supply evaporative gas cooling m of the power lead 10.

そこで、通常は超電導磁石に永久電流スイッチを取付け
、パワーリードを着脱式とし、超電導磁石が励磁された
後は、パワーリードをはずし、パワーリード部よりの熱
侵入をし一15断して永久電流モードにて運転を行なっ
ている。このようにすれば、外部よりの熱侵入は輻射熱
および各種低温配管からの熱伝導のみとなり、従来型の
小型冷凍機の冷凍能ツノのみでも十分に超電導磁石を超
電導状態に保っておくことが可能である。
Therefore, normally a persistent current switch is attached to the superconducting magnet, and the power lead is detachable. After the superconducting magnet is excited, the power lead is removed, and the persistent current is cut off by removing the heat from the power lead. I am driving in mode. In this way, the only heat intrusion from the outside will be radiant heat and heat conduction from various low-temperature pipes, making it possible to keep the superconducting magnet in a superconducting state with just the freezing function horn of a conventional small refrigerator. It is.

しかしながら、この方式では一度永久電流モードになる
と励磁電流は常に一定となり、電流値を変化させること
が出来ない。例えば、単結晶引上装置に使用する小型超
電導磁石装置を考えると、単結晶引上中に磁場強度を変
化あるいは制御することにより、単結晶中の不純物温度
を制御するという要シーがある。そのため、磁場強度ず
なわら励磁電流値を制御する必要がある。この様に、一
般に超電導磁石装置を用いる機器においては、その印加
磁場強度すなわち励磁電流地−を可変あるいは制御する
という要請が多い。
However, in this method, once the persistent current mode is entered, the excitation current is always constant and the current value cannot be changed. For example, when considering a small superconducting magnet device used in a single crystal pulling device, it is necessary to control the temperature of impurities in the single crystal by changing or controlling the magnetic field strength during single crystal pulling. Therefore, it is necessary to control the excitation current value as well as the magnetic field strength. In general, in devices using superconducting magnet devices, there are many demands to vary or control the intensity of the applied magnetic field, that is, the excitation current.

[発明の目的] 本発明は上記のような事情を考虞して成されたもので、
その目的は小型冷凍機と小型超電導磁石を組合せて励磁
電流値を制611す“ることが可能なコンバク1−で低
価格の超電導磁石装置を提供することにある。
[Object of the invention] The present invention was made in consideration of the above circumstances, and
The purpose is to provide a low-cost superconducting magnet device that is capable of controlling the excitation current value by combining a small refrigerator and a small superconducting magnet.

[発明の概要] 上記目的を達成するために本発明では、冷却媒体が満た
された内槽と外槽からなる保冷容器と、この保冷容器の
内槽内に収容された超電導磁石と、この超電8磁石に超
電導磁石用電源より励磁電流を供給するパワーリードと
、前記保冷容器の内槽と外槽との間に設けられたシール
ド体と、前記保冷容器に直接取付けられ前記パワーリー
ドを複数段階の冷却ステージからの熱伝導により直接冷
IJIす゛る第1の小型冷凍機と、m記保冷容器内槽内
の蒸発した冷媒媒体を当該層内に設けられた再凝縮器に
より液化し前記シールド体を冷却ステージからの熱伝導
により直接冷却する第2の小型冷凍機とを具備して成る
ことを特徴とづる。
[Summary of the Invention] In order to achieve the above object, the present invention includes a cold storage container consisting of an inner tank and an outer tank filled with a cooling medium, a superconducting magnet housed in the inner tank of the cold storage container, and A power lead that supplies excitation current to the superconducting magnet from a power source for the superconducting magnet, a shield body provided between the inner tank and the outer tank of the cold storage container, and a plurality of power leads that are directly attached to the cold storage container. A first small refrigerator that performs direct cooling by heat conduction from the cooling stage, and a refrigerant medium that has evaporated in the inner tank of the cold storage container is liquefied by a recondenser provided in the layer, and the shield body is and a second small refrigerator that directly cools the refrigerator by heat conduction from the cooling stage.

[発明の実施例] 以下、本発明を第2図に示す一実施例について説明する
。第2図は、本発明による超電導磁石装置の構成例を示
すもので、第1図と同一部分には同一符号を付して示す
。図において、超電導磁石1は液体ヘリウム2が満たさ
れた内槽3に収納されている。第1および第2の小型冷
凍(幾20および30は、保冷容器4に直接取付けられ
ている。
[Embodiment of the Invention] Hereinafter, an embodiment of the present invention shown in FIG. 2 will be described. FIG. 2 shows an example of the configuration of a superconducting magnet device according to the present invention, and the same parts as in FIG. 1 are denoted by the same reference numerals. In the figure, a superconducting magnet 1 is housed in an inner tank 3 filled with liquid helium 2. The first and second small refrigerators (20 and 30) are directly attached to the cold container 4.

この第1の小型冷凍IN 20は、当該冷凍機内を循環
している冷凍媒体(例えばヘリウム)21を圧縮する圧
縮機ユニット22と、これにより圧縮され冷凍媒体21
を断熱膨張させて冷凍する膨張態23と、この膨張機2
3により冷却された冷凍媒体21により輻射シールド温
度例えば80Kまで冷却された第1の冷凍ステージ24
と、冷凍媒体21によりヘリウム液化温度例えば4.2
Kまで冷却されたヘリウム再凝縮器25とから成ってい
る。ここで第1の冷凍ステージ24は、保冷容器4の外
槽5と内槽3との間に設【ノられた輻射シールド板6に
直接接続され、またヘリウム再凝縮器25は内槽3内の
液体ヘリウム2の液面真上の位置に設けられている。
This first small refrigerator IN 20 includes a compressor unit 22 that compresses a refrigerating medium (for example, helium) 21 circulating in the refrigerator, and a compressor unit 22 that compresses a refrigerating medium 21 that is compressed by the refrigerating medium 21.
an expansion state 23 that adiabatically expands and freezes the expansion machine 2;
The first refrigeration stage 24 is cooled to a radiation shield temperature of, for example, 80K by the refrigeration medium 21 cooled by 3.
and the helium liquefaction temperature by the freezing medium 21, for example 4.2
and a helium recondenser 25 cooled to K. Here, the first freezing stage 24 is directly connected to a radiation shield plate 6 installed between the outer tank 5 and the inner tank 3 of the cold storage container 4, and the helium recondenser 25 is connected inside the inner tank 3. It is provided at a position directly above the liquid level of the liquid helium 2.

また第2の小型冷凍機30は、当該冷凍機内を循環して
いる冷凍媒体31を圧縮づ°る圧縮ユニツ[−32と、
これより出た圧縮冷凍媒体31を膨張させて冷却する膨
張機33と、この膨張機33により冷却された冷凍媒体
31にJζり例えば80Kまで冷却された第2の冷凍ス
テージ34と、冷凍媒体31により例えば20Kまで冷
却された第3の冷凍ステージ35とから成っている。
The second small refrigerator 30 also includes a compression unit [-32] that compresses the refrigerating medium 31 circulating within the refrigerator.
An expander 33 expands and cools the compressed refrigeration medium 31 discharged from this, a second refrigeration stage 34 cooled to 80K, for example, by the refrigeration medium 31 cooled by the expansion machine 33; and a third freezing stage 35 cooled to, for example, 20K.

一方、超電導磁石1に励磁電流を供給するパワーリード
10は、液体ヘリウム2にり内槽3および輻射シールド
6を貫通し、所要の導体長さおよび導体断面積を取った
後に第3の冷凍ステージ35に接続され、さらに所要の
導体長さおよび導体断面積を取った後に第2の冷凍ステ
ージ34に接続され、最後に所要の導体長さおよび導体
断面積を取った後に、外槽5を貫通して超電導磁石用電
源9に接続される。
On the other hand, the power lead 10 that supplies excitation current to the superconducting magnet 1 is filled with liquid helium 2, penetrates the inner tank 3 and the radiation shield 6, and after taking the required conductor length and conductor cross-sectional area, is transferred to the third freezing stage. 35, and after taking the required conductor length and conductor cross-sectional area, it is connected to the second freezing stage 34, and finally after taking the required conductor length and conductor cross-sectional area, it penetrates the outer tank 5. The superconducting magnet power supply 9 is then connected to the superconducting magnet power supply 9.

ここで、パワーリード10と各冷凍ステージ34.35
との接続箇所は、電気的に絶縁されている。また、内槽
3を貫通するヘリウム再凝縮器25およびパワーリード
10の貫通部分は機密構造とし、内槽3内の液体ヘリウ
ム2の蒸発ガスが外部へ漏れない構造になっている。さ
らに、パワーリード10の導体断面積は外槽4〜第2の
冷凍ステージ34間、第2の冷凍ステージ34〜第3の
冷凍ステージ35間、第3の冷凍ステージ35〜超電導
磁石1間にて順次この順番にその導体面積を小さくして
いる。
Here, the power lead 10 and each freezing stage 34.35
The connection points are electrically insulated. Furthermore, the penetrating portions of the helium recondenser 25 and the power lead 10 that penetrate the inner tank 3 are constructed to be airtight so that the vaporized gas of the liquid helium 2 in the inner tank 3 does not leak to the outside. Furthermore, the conductor cross-sectional area of the power lead 10 is determined between the outer tank 4 and the second freezing stage 34, between the second freezing stage 34 and the third freezing stage 35, and between the third freezing stage 35 and the superconducting magnet 1. The conductor area is successively reduced in this order.

次に、上記のように構成した超電導磁石装置の作用につ
いて説明する。まず、被磁場印加機器16(例えば単結
晶引上装置)に磁場を印加するために、パワーリード1
0を介して超電導磁石用電源9により超伝導磁石1を励
磁すると、パワーリード10の電気抵抗によるジュール
熱、液体ヘリウム温度(例えば4.2に)と大気温度(
例えば300に)との温度差によるパワーリード10を
介しての熱伝導による侵入熱、および外槽5、輻射シー
ルド板6、内槽3を通しての輻射による侵入熱により液
体ヘリウム2は蒸発を始める。パワーリード10から発
生するジュール熱および熱伝導による侵入熱は、第2の
冷凍機30の第2および第3の冷凍ステージ34および
35により除去される。
Next, the operation of the superconducting magnet device configured as described above will be explained. First, in order to apply a magnetic field to the magnetic field applying device 16 (for example, a single crystal pulling device), the power lead 1
When the superconducting magnet 1 is excited by the superconducting magnet power supply 9 via the power lead 10, Joule heat due to the electrical resistance of the power lead 10, liquid helium temperature (for example, 4.2), and atmospheric temperature (
For example, the liquid helium 2 begins to evaporate due to heat intrusion due to thermal conduction through the power lead 10 due to the temperature difference between the helium 2 and the helium 300, and heat intrusion due to radiation through the outer tank 5, the radiation shield plate 6, and the inner tank 3. Joule heat generated from the power lead 10 and intrusion heat due to thermal conduction are removed by the second and third freezing stages 34 and 35 of the second refrigerator 30.

一般にパワーリードよりの侵入熱は、パワーリード断面
積を大にすればジュール熱は小さくなるが、熱伝導によ
る侵入熱は大きくなる。逆に、パワーリード断面積を小
にすればジュール熱は大きくなり、熱伝導による侵入熱
は小さくなる。そこで、熱侵入を最小にするパワーリー
ドの最適断面積が存在する。この最適断面積は、励磁電
流値、第2.第3の冷凍ステージ34.35の温度・冷
凍能力およびパワーリードの導体長さによって決まる。
Generally speaking, Joule heat will be reduced by increasing the cross-sectional area of the power lead, but the heat entering by heat conduction will increase. Conversely, if the cross-sectional area of the power lead is made smaller, the Joule heat will increase and the amount of heat introduced by thermal conduction will decrease. Therefore, there is an optimal cross-sectional area of the power lead that minimizes heat intrusion. This optimum cross-sectional area is determined by the excitation current value, the second . It is determined by the temperature and refrigeration capacity of the third refrigeration stage 34, 35 and the conductor length of the power lead.

従って、第2の小型冷凍fil 30の第2、第3の冷
凍ステージ34.35の冷凍能ノコに見合うように、液
体ヘリウム3(例えば4.2に)〜第3の冷凍ステージ
35(例えば20に)間、第3の冷凍ステージ35〜第
2の冷凍ステージ34(例えば80に)間および第3の
冷凍ステージ35〜外槽5(例えば300に)間のパワ
ーリード10の導体長さおよび断面積を適切に選ぶこと
により、液体ヘリウム2へのパワーリード10よりの侵
入熱を最小とすることが出来る。
Therefore, liquid helium 3 (for example 4.2) to third freezing stage 35 (for example 20 ), between the third freezing stage 35 and the second freezing stage 34 (for example, at 80), and between the third freezing stage 35 and the outer tank 5 (for example, at 300), the conductor length and disconnection of the power lead 10. By appropriately selecting the area, the heat entering the liquid helium 2 from the power lead 10 can be minimized.

この最適条件は、例えば一般に良く知られた次式によっ
てめることが出来る。つまり、においで、 のとき、熱侵入量は最小値Q min となる。ここで、 Q:熱侵入M I:電流地 λ:熱伝導率 α:定数(ρ=αT1ρ:パワーリード抵抗率、T:温
度) に:熱伝導率 τ:τ−■・fα/に TC:低温部温度 a:パワーリード断面積 t:パワーリード長さ このようにして、パワーリード10よりの熱侵入を小さ
く出来、さらにパワーリード10をガス冷却しないで済
むため蒸発ヘリウム量が大幅に低減する。このため、輻
射熱あるいは各種低温配管からの熱伝導による侵入熱に
よって蒸発した密閉内槽3内のヘリウムガスは、すべて
従来形の小型冷凍機の冷凍能力のみで再液化することが
出来る。
This optimal condition can be determined, for example, by the generally well-known equation below. That is, when the odor is, the amount of heat penetration becomes the minimum value Q min . Here, Q: Heat penetration M I: Current ground λ: Thermal conductivity α: Constant (ρ = αT1ρ: Power lead resistivity, T: Temperature) To: Thermal conductivity τ: τ-■・fα/TC: Low temperature part temperature a: Power lead cross-sectional area t: Power lead length In this way, the amount of heat entering from the power lead 10 can be reduced, and furthermore, since the power lead 10 does not need to be cooled with gas, the amount of evaporated helium can be significantly reduced. . Therefore, all the helium gas in the sealed inner tank 3 that has been evaporated by radiant heat or intrusion heat due to heat conduction from various low-temperature pipes can be reliquefied only by the freezing capacity of the conventional small refrigerator.

すなわち、蒸発した液体ヘリウム2は内相3内に設置さ
れたヘリウム再凝縮機25によって潜熱をうばわれ、再
凝縮し、液滴となって密閉構造の内槽3内の液体ヘリウ
ム2として戻される。また輻り=Jシールド板6は、第
1の小型冷凍機2oの第1の冷凍ステージ24(例えば
8oに)に直接接続されており、この第1の冷凍ステー
ジ24がらの熱伝導により直接冷却される。これにより
、コンパクトで構成の簡単なシールドが得られる。
That is, the evaporated liquid helium 2 has its latent heat removed by the helium recondenser 25 installed in the inner tank 3, is recondensed, and is returned as liquid helium 2 in the inner tank 3 having a sealed structure in the form of droplets. . Furthermore, the convergence=J shield plate 6 is directly connected to the first freezing stage 24 (for example, to 8o) of the first small refrigerator 2o, and is directly cooled by heat conduction from the first freezing stage 24. be done. This results in a compact and easily constructed shield.

上述したように、本超電導磁石装置とすれば次のような
効果が得られるものである。
As described above, the present superconducting magnet device provides the following effects.

(a ) パワーリード10を直接に従来形の小型冷凍
機により冷却し、保冷容器4の内槽3を密閉形とするこ
とが出来るので、通常のガス冷却方式に伴なう蒸発ヘリ
ウムの増大を回避することが出来、ヘリウム蒸発mが低
減されるので従来形の小型冷凍機により、内槽3内の蒸
発ヘリウムを侵入熱による蒸発分だけ再凝縮することが
出来る。
(a) Since the power lead 10 can be directly cooled by a conventional small refrigerator and the inner tank 3 of the cold storage container 4 can be made airtight, the increase in evaporated helium that accompanies the usual gas cooling method can be avoided. Since the helium evaporation m is reduced, the evaporated helium in the inner tank 3 can be recondensed by the amount evaporated due to the intrusion heat using a conventional small refrigerator.

(b) パワーリード10を直接冷11 しているので
、超伝導磁石装首運転中でも超伝導状態を破壊づること
なく、任意にその磁場強度すなわち励磁電流値を変化さ
せることができる。これにより、例えば単結晶引上装置
用の超伝導磁石装置に本装置を適用した場合には、Il
場強度制御により単結晶中の不純物濃度を制御すること
が可能となる。
(b) Since the power lead 10 is directly cooled 11 , the magnetic field strength, that is, the excitation current value, can be arbitrarily changed without destroying the superconducting state even during superconducting magnet necking operation. As a result, when this device is applied to a superconducting magnet device for a single crystal pulling device, for example, Il
It becomes possible to control the impurity concentration in the single crystal by controlling the field strength.

(C) 小型冷凍機20の冷凍ステージ24により直接
に輻射シールド6を熱伝導により冷却しているので、装
置がコンパクトとなる。
(C) Since the radiation shield 6 is directly cooled by heat conduction by the freezing stage 24 of the small refrigerator 20, the apparatus becomes compact.

(d ) 小型超電導磁石1の大きさ容量に適合する従
来形の小型冷凍機20.30を直接に保冷容器4に取付
ける構造としているので、コンパクトで低価格の装置と
することが出来る。
(d) Since the structure is such that the conventional small refrigerator 20, 30 that matches the size and capacity of the small superconducting magnet 1 is directly attached to the cold storage container 4, the device can be made compact and inexpensive.

次に、本発明の他の実施例について説明する。Next, other embodiments of the present invention will be described.

第3図は、本発明による超伝導磁石装置の他の構成例を
示すもので、第2図と同一部分には同一符号を付してそ
の説明を省略する。本実施例は、パワーリード10を冷
却する第2の小型冷凍機30の第2の冷凍ステージ34
の温度を、第1の小型冷凍機20の第1の冷凍ステージ
24の温度と同一にし、輻射シールド板6を各冷凍ステ
ージ34および24に直接取りイ(](プる構成とした
ものである。かかる構成とすることにより、輻射シール
ドの冷凍能力が高まりシールド効果が改善されると共に
、液体ヘリウム2〜第2の冷凍ステージ34間のパワー
リード10が輻射シールドにより当該温度(例えば80
に)にてシールドされ、パワ−リード10からの熱侵入
量がより一層低減される。
FIG. 3 shows another example of the structure of the superconducting magnet device according to the present invention, and the same parts as in FIG. 2 are given the same reference numerals and the explanation thereof will be omitted. In this embodiment, the second freezing stage 34 of the second small refrigerator 30 cools the power lead 10.
The temperature is the same as that of the first freezing stage 24 of the first small refrigerator 20, and the radiation shield plate 6 is directly attached to each freezing stage 34 and 24. With this configuration, the cooling capacity of the radiation shield is increased and the shielding effect is improved, and the power lead 10 between the liquid helium 2 and the second freezing stage 34 is heated to the temperature (for example, 80°C) by the radiation shield.
), and the amount of heat intrusion from the power lead 10 is further reduced.

第4図も、本発明による超伝導磁石装置の(111成例
を示すもので、第2図と同一部分には同一符号を付して
その説明を省略する。本実施例は、保冷容器4に順次低
温となる(例えば80に、20に。
FIG. 4 also shows a (111) example of the superconducting magnet device according to the present invention, and the same parts as in FIG. (For example, to 80, then to 20.)

4.2に)3つの冷凍ステージ104,105゜106
を有する小型冷凍機100によりパワーリード10の冷
却おJ:び内装3内の蒸発ヘリウムの再凝縮を同時に行
なう構成としたものであり、かかる構成により一層コン
バク1〜な超伝導磁石装置を得ることができる。
4.2) Three freezing stages 104, 105° 106
The structure is such that the power reed 10 is cooled and the evaporated helium in the interior 3 is recondensed at the same time by a small refrigerator 100 having a small refrigerator 100.With this structure, an even more compact superconducting magnet device can be obtained. I can do it.

[発明の効果] 以上説明したように本発明によれば、小型冷凍機と小型
超伝導磁石を組合せて冷磁電流値を制御づることか可能
なコンバク1〜で低価格の超電導磁石装置が提供できる
[Effects of the Invention] As explained above, according to the present invention, a low-cost superconducting magnet device is provided in which the cold magnetic current value can be controlled by combining a small refrigerator and a small superconducting magnet. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の超電導磁石装置を示す構成図、第2図は
本発明の一実施例を示す構成図、第3図および第4図は
本発明の他の実施例を示す構成図である。 1・・・超電導磁石、2・・・液体ヘリウム、3・・・
内槽、4・・・保冷容器、5・・・外槽、6・・・輻射
シールド板、7・・・液体窒素、8・・・シールド管、
9・・・超電導磁石用電源、10・・・パワーリード、
11・・・低温配管、12・・・液体ヘリウム移送管、
13・・・ガスヘリウム、14・・・外筒、15・・・
ヘリウム液化は、16・・・被磁場印加機器、20.3
0,100・・・小型冷凍機、21.31,101・・
・冷凍媒体、22,32,102・・・圧縮機ユニット
、23.33.103・・・膨張機、24,34,35
,104,105,106・・・冷凍ステージ、25・
・・ヘリウム再凝縮器。 出願人代理人 弁理士 鈴江武彦
FIG. 1 is a block diagram showing a conventional superconducting magnet device, FIG. 2 is a block diagram showing one embodiment of the present invention, and FIGS. 3 and 4 are block diagrams showing other embodiments of the present invention. . 1...Superconducting magnet, 2...Liquid helium, 3...
Inner tank, 4... Cold storage container, 5... Outer tank, 6... Radiation shield plate, 7... Liquid nitrogen, 8... Shield tube,
9... Power supply for superconducting magnet, 10... Power lead,
11... Low temperature pipe, 12... Liquid helium transfer pipe,
13...Gas helium, 14...Outer cylinder, 15...
For helium liquefaction, 16...Magnetic field application equipment, 20.3
0,100...Small refrigerator, 21.31,101...
- Refrigerating medium, 22, 32, 102... Compressor unit, 23.33.103... Expander, 24, 34, 35
, 104, 105, 106... freezing stage, 25.
...Helium recondenser. Applicant's agent Patent attorney Takehiko Suzue

Claims (1)

【特許請求の範囲】[Claims] (1) 冷却媒体が満たされた内槽と外槽からなる保冷
容器と、この保冷容器の内槽内に収容された超電導磁石
と、この超電導磁石に超電導磁石用電源より励磁電流を
供給するパワーリードと、前記保冷容器の内槽と外槽と
の間に設けられたシールド体と、前記保冷容器に直接取
付けられ前記パワーリードを複数段階の冷却ステージか
らの熱伝導により直接冷却する第1の小形冷凍機と、前
記保冷容器内槽内の蒸発した冷媒媒体を当該槽内に設け
られた再凝縮器により液化し前記シールド体を冷却ステ
ージからの熱伝導により直接冷却する第2の小形冷凍機
とを具備して成ることを特徴とする超電導磁石装置。 (aパワーリードは各冷凍ステージ間にてその導体断面
積および導体長さを侵入熱量が最小になるように設定し
たことを特徴とする特許請求の範囲第(1)項記載の超
電導磁石装置。
(1) A cold container consisting of an inner tank and an outer tank filled with a cooling medium, a superconducting magnet housed in the inner tank of the cold container, and the power to supply exciting current to the superconducting magnet from a power supply for the superconducting magnet. A shield body provided between the lead, an inner tank and an outer tank of the cold storage container, and a first shield body that is directly attached to the cold storage container and that directly cools the power lead by heat conduction from a plurality of cooling stages. a small refrigerator; and a second small refrigerator that liquefies the evaporated refrigerant medium in the inner tank of the cold storage container by a recondenser provided in the tank and directly cools the shield body by heat conduction from the cooling stage. A superconducting magnet device comprising: (a) The superconducting magnet device according to claim (1), wherein the conductor cross-sectional area and conductor length of the power lead are set so that the amount of heat intrusion is minimized between each freezing stage.
JP58136604A 1983-07-26 1983-07-26 Superconductive magnet Granted JPS6028211A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP58136604A JPS6028211A (en) 1983-07-26 1983-07-26 Superconductive magnet
US06/632,461 US4543794A (en) 1983-07-26 1984-07-19 Superconducting magnet device
GB08418769A GB2145506B (en) 1983-07-26 1984-07-24 Superconducting magnet device
KR8404441A KR890003871B1 (en) 1983-07-26 1984-07-26 Super conducting magnet device
DE19843427601 DE3427601A1 (en) 1983-07-26 1984-07-26 SUPRALOWING MAGNETIC DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58136604A JPS6028211A (en) 1983-07-26 1983-07-26 Superconductive magnet

Publications (2)

Publication Number Publication Date
JPS6028211A true JPS6028211A (en) 1985-02-13
JPH0582045B2 JPH0582045B2 (en) 1993-11-17

Family

ID=15179177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58136604A Granted JPS6028211A (en) 1983-07-26 1983-07-26 Superconductive magnet

Country Status (1)

Country Link
JP (1) JPS6028211A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5379600A (en) * 1992-03-27 1995-01-10 Mitsubishi Denki Kabushiki Kaisha Superconducting magnet and method for assembling the same
JP2011249441A (en) * 2010-05-25 2011-12-08 Mitsubishi Electric Corp Conduction cooling superconducting magnet device
WO2013099703A1 (en) * 2011-12-28 2013-07-04 ジャパンスーパーコンダクタテクノロジー株式会社 In-field heat treatment device
JP2013143478A (en) * 2012-01-11 2013-07-22 Kobe Steel Ltd Superconducting magnet device and current lead used in the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5861608A (en) * 1981-10-07 1983-04-12 Mitsubishi Electric Corp Superconducting device
JPS5880474A (en) * 1981-11-06 1983-05-14 株式会社日立製作所 Cryogenic cooling device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5861608A (en) * 1981-10-07 1983-04-12 Mitsubishi Electric Corp Superconducting device
JPS5880474A (en) * 1981-11-06 1983-05-14 株式会社日立製作所 Cryogenic cooling device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5379600A (en) * 1992-03-27 1995-01-10 Mitsubishi Denki Kabushiki Kaisha Superconducting magnet and method for assembling the same
JP2011249441A (en) * 2010-05-25 2011-12-08 Mitsubishi Electric Corp Conduction cooling superconducting magnet device
WO2013099703A1 (en) * 2011-12-28 2013-07-04 ジャパンスーパーコンダクタテクノロジー株式会社 In-field heat treatment device
JP2013138058A (en) * 2011-12-28 2013-07-11 Japan Superconductor Technology Inc In-magnetic field heat treatment apparatus
JP2013143478A (en) * 2012-01-11 2013-07-22 Kobe Steel Ltd Superconducting magnet device and current lead used in the same

Also Published As

Publication number Publication date
JPH0582045B2 (en) 1993-11-17

Similar Documents

Publication Publication Date Title
US5842348A (en) Self-contained cooling apparatus for achieving cyrogenic temperatures
JP5196781B2 (en) Closed loop precooling method and apparatus for equipment cooled to cryogenic temperature
US7474099B2 (en) NMR apparatus with commonly cooled probe head and cryogenic container and method for the operation thereof
JPH11288809A (en) Superconducting magnet
JP4417247B2 (en) MRI system with superconducting magnet and refrigeration unit
JPH10282200A (en) Cooler for superconducting magnet system
JP4040626B2 (en) Refrigerator mounting method and apparatus
US10203068B2 (en) Method and device for precooling a cryostat
CN110617650B (en) Cryogenic cooling system
US3878691A (en) Method and apparatus for the cooling of an object
US4680936A (en) Cryogenic magnet systems
JP2006324325A (en) Super-conducting magnet apparatus
JP2008538856A (en) Cryostat assembly
JPS6028211A (en) Superconductive magnet
JPH11248326A (en) Chiller
JP3180856B2 (en) Superconducting critical current measuring device
JP2952552B2 (en) Current leads for superconducting equipment
JPH04106373A (en) Cryogenic device
US5615557A (en) Apparatus for self-sufficiently cooling high temperature superconducting components
JP2001004237A (en) Cryogenic cooling system and cryogenic cooling method
JP3147630B2 (en) Superconducting coil device
Dall'Oglio et al. Improved 3He/4He refrigerator
JPH0645812Y2 (en) Cryogenic refrigerator
JP2004076956A (en) Cryogenic vessel
JPH0633855B2 (en) Liquid helium storage equipment