WO2008062845A1 - Procédé de refroidissement / refroidissement à l'air destiné à une structure - Google Patents

Procédé de refroidissement / refroidissement à l'air destiné à une structure Download PDF

Info

Publication number
WO2008062845A1
WO2008062845A1 PCT/JP2007/072588 JP2007072588W WO2008062845A1 WO 2008062845 A1 WO2008062845 A1 WO 2008062845A1 JP 2007072588 W JP2007072588 W JP 2007072588W WO 2008062845 A1 WO2008062845 A1 WO 2008062845A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
air
cooling
water mixture
target surface
Prior art date
Application number
PCT/JP2007/072588
Other languages
English (en)
French (fr)
Inventor
Itsuki Tsunemori
Kazuo Nagahashi
Original Assignee
Kaisui Chemical Industry Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaisui Chemical Industry Co., Ltd. filed Critical Kaisui Chemical Industry Co., Ltd.
Priority to US12/312,658 priority Critical patent/US20100126702A1/en
Priority to JP2008545439A priority patent/JP5223145B2/ja
Publication of WO2008062845A1 publication Critical patent/WO2008062845A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/0035Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using evaporation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F6/12Air-humidification, e.g. cooling by humidification by forming water dispersions in the air
    • F24F6/14Air-humidification, e.g. cooling by humidification by forming water dispersions in the air using nozzles
    • F24F2006/143Air-humidification, e.g. cooling by humidification by forming water dispersions in the air using nozzles using pressurised air for spraying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D5/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, using the cooling effect of natural or forced evaporation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/54Free-cooling systems

Definitions

  • the present invention relates to a highly efficient energy saving / cooling / cooling method using the heat of vaporization of water.
  • the target surface is roughly divided into a method of covering with a hydrophilic coating film or a photocatalyst and a method of adding an additive such as a surfactant to water.
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2004-324043
  • Patent Document 2 JP 2002-201727
  • Patent Document 3 JP-A-6-185131
  • the additive concentration increases due to water vaporization, water must be added.
  • the additive may adhere to watering objects and cause contamination, which is not practical.
  • the inventors also tried to improve the surface activity by flowing water between strong magnetic fields, and the results were only as effective as being within the measurement error range.
  • a method for improving the physical properties of the water itself to be dispersed is studied, focusing on the air-water mixture, the microbubble and nanobubble regions, That is, the present inventors have invented a cooling-cooling method capable of stably achieving the object by using an air / water mixture containing fine bubbles having a bubble diameter of approximately 75 m, preferably 50 m or less.
  • Research on microbubbles and nanobubbles has advanced rapidly in recent years, and it is also known that air-water mixtures exist for several minutes to several days.
  • the air-water mixture described in the present invention refers to a state in which fine bubbles and water coexist relatively stably in a state where the gas is completely dissolved in water and becomes uniform.
  • air-water mixtures have been used for water purification, prevention of diseases such as fish and shellfish, growth promotion, plant growth promotion, washing with bubbles, sludge levitation treatment, decomposition of pollutants, etc.
  • microbubbles that is, microbubbles and nanobubbles have a charge, and the inside of the bubbles is in a high-pressure high energy state, and the vicinity of the microbubbles is charged and electrically charged.
  • a double layer is formed, which affects the surface tension of water and attracts substances that form the target surface by electrostatic attraction, improving the affinity between the target surface and the air / water mixture, It is thought that the interface tension per unit length of the target surface was reduced, resulting in a decrease in contact angle and a significant improvement in wettability.
  • the structure cooling / cooling method according to claim 1 is a method of cooling / cooling a structure using the heat of vaporization of water. It is characterized by spraying a mixture of air and water (5, 31) containing 300 / mL or more on the target surface of the structure.
  • the invention described in claim 2 has a continuous capillary structure having an average pore diameter of 75 m to 3 mm having a surface opening on the target surface in the method for cooling and cooling a structure according to claim 1. It is characterized by having a water retention / water diffusion layer with a thickness of 10 mm or less and intermittently supplying the air / water mixture (5, 31).
  • the invention described in claim 3 is a cooling of the structure according to claim 2
  • the target surface on which the water retention / water diffusion layer having a capillary structure is present is an uneven surface structure having a height difference of lm m to 300 mm.
  • the invention according to claim 4 is the method for cooling / cooling a structure according to any one of claims 1 to 3, wherein the air-water mixture (5, 31) generating part (29 ) Force It is characterized in that it is installed in the middle of the part from the water supply source (2a) to the water spout (7, 30, 49) provided near the target surface.
  • the invention according to claim 5 is the method for cooling / cooling a structure according to any one of claims 1 to 3, wherein the air-water mixture (5, 31) generating part (29 ) Force It is installed at the sprinkling port (7, 30, 49) in the part from the water supply source (2a) to the sprinkling port (7, 30, 49) provided near the target surface. It is what.
  • the invention described in claim 6 is the method for cooling and cooling a structure according to any one of claims 1 to 3, wherein a water storage tank (14) is provided, and the water storage tank (14 ), Which is characterized by using the air / water mixture (5, 31) generated in part.
  • V the target surface refers to a roof surface, a wall surface, a road surface, a ground surface, a slope, a retaining wall surface, and other surfaces.
  • the air-water mixture refers to a mixture of fine bubbles dispersed in water rather than a gas completely dissolved in water.
  • the size of the dispersed bubbles greatly affects.
  • water is sprayed from the air / water mixture generating unit to the target surface by a nozzle or slit, and the air / water mixture is stably vaporized after wetting the target surface.
  • the bubble size in the air-water mixture needs to be approximately 75 in or less, preferably 50 in or less.
  • the diameter of the fine bubbles exceeds 75 inches, it is difficult to obtain a stable air-water mixture because the bubbles that are difficult to shrink and compress will float in the water.
  • the physical properties of the air-water mixture vary greatly depending on the fine bubble concentration (number / mU. According to the inventors' research, the bubble concentration of the air-water mixture used in the present invention is 300%.
  • the force S which has been found to be effective with the number of particles / mL, is preferred to have a higher concentration of fine bubbles.
  • the target surface is a layered material having a capillary structure.
  • Sprinkling is to supply an air-water mixture over the entire target surface immediately and over a wide area.
  • a woven fabric, a nonwoven fabric, an open cell sheet, a porous thin layer, an organic / inorganic granule or fiber having a thickness of approximately 0.2 to 10 mm and an average pore diameter of 75 111 3111111 It was found that this method can be realized by using a composite material in which materials are bonded with a binder. Since the upper limit of the fine bubble diameter is 75 m, if the average pore diameter is not more than 75 in, the capillary continuity is cut by the bubbles, making it difficult to transport the air-water mixture, and the average pore diameter is 3 mm or more. If there is, vertical transfer of about 10mm becomes difficult.
  • the target surface having the capillary structure layer is further provided with unevenness having a height difference.
  • the unevenness has a height difference of at least about 1 mm.
  • the unevenness of the unevenness is too deep, the passage of the wind is obstructed, so that it is about 300 mm. It becomes a limit.
  • These concaves and convexes can be used by pressing with a mold material from the upper surface when processing the target surface itself or applying a capillary structure layer, or by using the unevenness when creating a capillary structure layer by spraying, and a capillary structure with uneven thickness.
  • a method such as pasting a sheet is used. In addition to the roof surface, this method It is also effective for walls, slopes, retaining walls, etc.
  • Flowing down is to supply the air-water mixture by forming a water flow downstream from the upstream by gravity.
  • the water flow concentrates on the concave and convex surfaces such as corrugated tiles and corrugated metal roofs, so that the entire target surface cannot be wetted.
  • the stability of the mixture decreases, and the air-water mixture cannot exist stably in the downstream part, and the effect cannot be expected.
  • the capillary structure sheet Even when the capillary structure sheet is thick and the air-water mixture is supplied from the lower layer or the center of the layer by capillarity, the air-water mixture reaches the surface of the capillary structure within the stable time of the air-water mixture. It is difficult to transport and vaporize. Therefore, the thickness of the capillary structure sheet should not exceed 100mm! /
  • the generation method of the air-water mixture is roughly classified into a bench lily tube method, a pore method, a pressure dissolution 'cavity method, an ultrasonic method, a gas-liquid mixing' shear method, an ultra-high speed swirl method, etc. Any method may be used. Of these, it is practically difficult to obtain a stable air-water mixture economically by finely dispersing bubbles in the bench lily tube method or the pore method.
  • the pressurized dissolution method, the ultrasonic method, and the ultrasonic method are methods for bubbling a gaseous substance dissolved in water, and fine bubble dispersion can be realized.
  • the pressurization and dissolution method has the disadvantage that pressurization energy is required to increase the dissolved amount.
  • fine bubble dispersion can be realized by gas-liquid mixing / shearing method.
  • the gas-liquid two-layer fluid which is referred to as the ultra-high-speed rotation method, is converted into an ultra-high-speed swirl flow to achieve fine bubble dispersion. The power to do S.
  • the air-water mixture produced contains more fine bubbles when suspended in milky white, with an average bubble size of 10 to 15 ⁇ m, thousands Since there is an air-water mixture generator that can obtain fine bubbles of more than 1 piece / mL, it is preferable to use these.
  • the air-water mixture generating unit can be installed in various places from the water supply source to the water spout. That is, (1) when installed on the route from the water supply source to the sprinkler, (2) when installed at the sprinkler, (3) when installing a water tank, when installing in the water tank However, each has its own characteristics and is selected as appropriate depending on the scale of the target surface, the structure, the type of water supply source, the distance between the water tank and the sprinkler, and the overall economic efficiency.
  • the transfer time of the air / water mixture to the water sprinkling port can be shortened.
  • tap water, groundwater, industrial water, etc. are used directly as a water supply source, it is recommended to install an air / water mixture generator as close to the sprinkler as possible!
  • a separate facility hardly requires additional cooling, or even if necessary, only a small additional cooling load is required, and significant energy saving is realized.
  • it has a clear effect compared to normal water hammering, and can be said to be an epoch-making method that can be applied to cooling a wide range of target surfaces regardless of whether it is newly installed or not.
  • it can be widely applied to the difference in the material of the target surface and is not easily affected by dust or deposits.
  • it is a technology that can be used as it is even when the target surface is worn, such as on the road surface, and can be highly effective in saving energy and mitigating the heat island phenomenon.
  • the material of the target surface itself is manufactured, transported, installed, and replaced. There is no need for material construction costs, and it is one of the major effects of dissemination that material costs, cost, and design constraints are not changed or minimized. In addition, there is a practical effect because there is almost no maintenance such as cleaning “repainting” of the target surface member after installation, re-installation, and injection of chemicals. In order to further improve efficiency, little maintenance is required even when a capillary structure layer is provided.
  • FIG. 1 is a schematic view of a pressure vessel type air / water mixture generating apparatus.
  • FIG. 2 is a schematic view of an open-type air / water mixture generating apparatus.
  • FIG. 3 is a schematic view of a water tank-type air / water mixture generating apparatus.
  • FIG. 4 is a schematic view of a partition water tank type air / water mixture generating apparatus.
  • FIG. 5 is a schematic view of a partition cylinder water tank type air / water mixture generating apparatus.
  • FIG. 6 is an overall perspective view of a structure to which the present invention is applied.
  • FIG. 7 is a schematic view of a wet state of water and solid when a water droplet is dropped on the surface of the solid.
  • FIG. 8 Droplet dripping on glass plate ⁇ Outline drawing of droplet mark after drying.
  • FIG. 9 Droplet dripping on a coated steel sheet.
  • FIG. 10 is a schematic view of the experimental building in the evaporative cooling / cooling test.
  • FIG. 1 shows a schematic diagram of a pressure vessel type air / water mixture generator as an example of the air / water mixture generator installed in the path from the water supply source to the water spout.
  • the water pumped from the water supply source 2a by the water pump 10 is sent to the air / water mixture generator 4 through the water supply pipe 2.
  • the air is sent from the intake port 3a to the air / water mixture generator 4 through the air filter 17 and the intake pipe 3 by the air pump 16.
  • water and air are mixed to produce an air / water mixture 5.
  • the generated air / water mixture 5 is sent from a water sprinkling pipe water intake 6a located immediately above the air / water mixture generator 4 through the water sprinkling pipe 6 to a water spout 7 represented by, for example, a nozzle or a slit.
  • the water pressure in the air / water mixture generator 4 can be set sufficiently larger than the water pressure in the water spray pipe suction section 6a, i.e., the vessel 1, and the pressure difference required to generate the air / water mixture 5 can be taken. In this case, this method can be applied.
  • the water pump 10 is on-off controlled according to the set temperature lower limit and upper limit of the target surface by a target surface temperature controller 8 comprising a temperature sensor and a control switch installed on the target surface. That is, when the temperature of the target surface rises to the upper limit set temperature, the water pump 10 operates, and when the temperature of the target surface decreases to the lower limit set temperature, the water pump 10 stops.
  • FIG. 2 shows a schematic diagram of an open-type air / water mixture generating apparatus.
  • Pressurized water pumped from the water supply source 2a is sent into the body 1 through the water supply pipe 2 via the solenoid valve 9.
  • the liquid level in the air / water mixture 5 in the body 1 is mechanically or electrically sensed by the water level gauge 12 and is controlled by opening and closing the solenoid valve 9 according to the lower and upper limits of the water level. That is, when the water level drops to the water level sensor 12a, the electromagnetic valve 9 is opened to supply water, and when the water level rises to the water level sensor 12b, the electromagnetic valve 9 is closed.
  • a circulation pipe water-absorbing part 18 a is provided at the lower part of the container body 1, and the water in the container body 1 is sent by the circulation pump 19 through the circulation pipe 18 to the air / water mixture generator 4.
  • the air is sent from the intake port 3a to the air / water mixture generator 4 through the air filter 17 and the intake pipe 3.
  • water and air are mixed to produce an air / water mixture 5.
  • the generated air / water mixture 5 is directly connected to the air / water mixture generator 4. It is sent from the sprinkling pipe suction part 6a located above through the sprinkling pipe 6 to the sprinkling port 7 by the water feed pump 13.
  • the flow rate of the pressurized water needs to be larger than the flow rate of the water pump 13 so that the air / water mixture 5 in the vessel 1 does not run out. If the flow rate of pressurized water is insufficient, a separate pump may be installed in the water supply source 2a for pressurization. Further, a vent pipe 11 is provided on the upper part of the container body 1 so that the interior of the container body 1 is at normal pressure.
  • the water supply pump 13 and the circulation pump 19 are on-off controlled according to the set temperature lower limit and upper limit of the target surface by the target surface temperature controller 8 including a temperature sensor and a control switch installed on the target surface.
  • the water pump 13 and the circulation pump 19 are operated, and when the temperature of the target surface is lowered to the lower limit set temperature, the water feed pump 13 and the circulation pump 19 are stopped.
  • the container 1 does not have to have a pressure resistance specification.
  • Generation of the air-water mixture can also be carried out at the water spout.
  • There are advantages such as shortening the time, making it easier to maintain the wetting effect of the air / water mixture, (2) eliminating the need for a pump to transport the generated air / water mixture, and reducing costs.
  • the most economical method is selected in relation to the area and structure of the target surface. For example, if the transport distance of the air / water mixture is long on road surfaces, commercial facilities of large factories, retaining walls, slopes, etc., it is desirable to generate the air / water mixture at or near each water spout. ,.
  • a water storage tank is a tank that stores tap water, groundwater, rainwater, and the like.
  • the entire water storage tank can be used as the air / water mixture generator, but when the water tank is large, the air / water mixture generator is always operated in order to keep the gas-phase ratio of the air / water mixture in the entire tank stable. This is not preferable because it requires excessive power consumption. For this reason, it is preferable to install the air / water mixture generating part in a part of the water storage tank, and locate the opening of the pipe leading to the sprinkling port directly above it to send the air / water mixture to the sprinkling port immediately.
  • a plane, curved surface, or cylindrical partition wall is provided in a part of the water storage tank, an air / water mixture generation unit is provided below the partition wall, and a pipe end leading to the water spout is positioned directly above the partition wall.
  • Qi generated in a part of the water tank The water mixture can be circulated in the tank when watering is stopped, etc., and the gas solubility of the whole tank can be increased to generate the air-water mixture at the time of watering more quickly and efficiently.
  • FIG. 3 shows a schematic diagram of a water tank type air / water mixture generating apparatus.
  • the water taken from the purification circulation pipe water intake section 15a is sent to the air / water mixture generator 4 through the purification circulation pipe 15 and the circulation pump 19.
  • the water is mixed with the air supplied from the air inlet 17a through the air filter 17 and the intake pipe 3 in the air / water mixture generator 4 to become the air / water mixture 5 and is provided immediately above the air / water mixture generator 4.
  • From the sprinkler pipe suction section 6a it passes through the sprinkler pipe 6 and is sent to the sprinkler port 7 through the water pump 13.
  • the water pump 13 and the circulation pump 19 are on-off controlled according to the set temperature lower limit and upper limit of the target surface by the target surface temperature controller 8 including a temperature sensor and a control switch installed on the target surface. That is, when the temperature of the target surface rises to the upper limit set temperature, the water pump 13 and the circulation pump 19 operate, and when the temperature of the target surface falls to the lower limit set temperature, the water pump 13 and the circulation pump 19 stop.
  • the circulation pump 19 is timer-controlled by a separate power line.
  • the purification circulation pipe 15 has an action of circulating water in the water storage tank 14 and facilitating diffusion of the air / water mixture 5 that has not been sent to the water spray pipe 6 in the water storage tank 14.
  • the gas solubility in the water storage tank 14 quickly reaches saturation. If the gas solubility in the water tank 14 is saturated in this way, the air / water mixture generator 4 can obtain a higher concentration of the air / water mixture 5, and the amount of dissolved oxygen in the water tank 14 can be reduced. Increase in water level makes it easier for aerobic microorganisms to propagate and activate in the water tank 14 V, and it becomes an environment and promotes the decomposition of organic matter such as fallen leaves and bird cages that are temporarily mixed in. I like it.
  • the water level of the air-water mixture 5 in the water tank 14 is mechanically or electrically sensed by the water level gauge 12, and the solenoid valve 9 is opened and closed temporarily depending on the lower and upper limit settings of the water level.
  • the water in the reservoir 14 does not dry up. That is, when the water level drops to the water level sensor 12a, the solenoid valve 9 is opened to supply tap water, and when the water level rises to the water level sensor 12b, the solenoid valve 9 is closed.
  • FIG. 4 shows a schematic view of a partition water tank type air / water mixture generating apparatus.
  • Part of reservoir 14 has partition 20 An area for generating the air-water mixture was provided.
  • the partition wall 20 may be either water-impermeable or water-permeable, but in the case of water permeability, it is sufficient if the air / water mixture 5 generated does not diffuse easily.
  • Water is supplied to the air / water mixture generator 4 through the purification circulation pipe water supply section 15 a, the purification circulation pipe 15, and the circulation pump 19.
  • Water is mixed with the air supplied from the air inlet 17a through the air filter 17 and the intake pipe 3 in the air / water mixture generator 4 to become the air / water mixture 5, and the water spray pipe located immediately above the air / water mixture generator 4
  • the air-water mixture 5 is transferred from the water absorption part 6a to the water spout 7 through the water pipe 6 and the water pump 13.
  • the water pump 13 and the circulation pump 19 are on-off controlled by the target surface temperature controller 8. That is, when the temperature of the target surface rises to the upper limit set temperature, the water pump 13 and the circulation pump 19 are operated, and when the temperature of the target surface is lowered to the lower limit set temperature, the water feed pump 13 and the circulation pump 19 are stopped.
  • the circulation pump 19 is timer-controlled by a separate power line so that the gas solubility in the water storage tank 14 is saturated.
  • the water level of the air-water mixture 5 in the water tank 14 is mechanically or electrically sensed by the water level gauge 12, and the solenoid valve 9 is opened and closed temporarily depending on the lower and upper limit settings of the water level.
  • the solenoid valve 9 is opened and closed temporarily depending on the lower and upper limit settings of the water level.
  • FIG. 5 shows an example in which a partition wall cylinder 21 such as a cylinder whose bottom is hermetically sealed is provided in order to use the air-water mixture more efficiently.
  • Water is supplied to the air / water mixture generator 4 provided in the lower part of the partition cylinder 21 through the purification circulation pipe water supply section 15a, the purification circulation pipe 15, and the circulation pump 19.
  • the water is mixed with the air supplied from the air inlet 17a through the air filter 17 and the intake pipe 3 in the air / water mixture generator 4 to become the air / water mixture 5, and the water sucked by the water spray pipe located immediately above the air / water mixture generator 4 It is transferred from the part 6a to the water spout 7 through the water pipe 6 and the water pump 13.
  • the water pump 13 and the circulation pump 19 are on-of f controlled by the target surface temperature controller 8. That is, when the temperature of the target surface rises to the upper limit set temperature, the water supply pump 13 and the circulation pump 19 are operated, and when the temperature of the target surface decreases to the lower limit set temperature, the water supply pump 13 and the circulation pump 19 are stopped. On the other hand, it is better if the circulation pump 19 is separately controlled by a power line and the gas solubility in the water storage tank 14 is saturated. In this case, the partition wall cylinder 21 may be non-permeable or permeable, but the generated air-water mixture 5 It only needs to have a water resistance that does not diffuse.
  • the water level of the air-water mixture 5 in the water tank 14 is mechanically or electrically sensed by the water level meter 12, and the solenoid valve 9 is opened and closed according to the water level lower and upper limit settings to temporarily supply water.
  • the water in the storage tank 14 does not dry up. That is, when the water level drops to the water level sensor 12a, the electromagnetic valve 9 is opened to supply tap water, and when the water level rises to the water level sensor 12b, the electromagnetic valve 9 is closed.
  • tap water ground water, industrial water, middle water, water for storage, rain water and other stored water
  • tap water although it depends on the roof temperature, roof gradient, humidity, wind speed, amount of water sprayed, and water droplet diameter, it is necessary to set up a water storage tank to collect water that could not be vaporized. It is desirable to circulate.
  • a water storage tank is essential. In either case, water will be collected from the roof etc. into the reservoir.
  • the excess water is drained into a gutter by an overflow pipe.
  • Figure 7 is a schematic diagram of the wet state of water and solid when a water droplet is dropped on the surface of the solid. That is, the wet state of the object 22 and the water 23 when a small amount of water 23 is dropped on the object 22 as shown in FIG. 7 is expressed by the following Young's equation.
  • ys is the surface tension per unit length of the object 22 (N / m)
  • ⁇ w is the surface tension per unit length of water 23 (N / m)
  • ⁇ sw is the water 23 / object 22
  • the interfacial tension (N / m) per unit length of, ⁇ is the contact angle (°).
  • the shape of water 23 is determined by the balance between these surface tensions and interfacial tensions. The smaller the angle of ⁇ , the smaller the water 23 spreads on the surface of the object 22 and the better the wettability. Therefore, the wettability will be improved by reducing 3 3. For example, when a hydrophilic treatment is performed on the surface of the object 22, the wettability is improved as the TW becomes smaller.
  • FIG. 6 is an overall perspective view of a structure to which the present invention is applied.
  • Structure 24 has a water tank 25 attached to it.
  • the roof 24a of the structure 24 is equipped with a target surface temperature controller 44 that can be controlled on-off at two lower and upper set temperatures.
  • a target surface temperature controller 44 that can be controlled on-off at two lower and upper set temperatures.
  • the valve 38a is opened and the pumping pump 28 is activated. Pump 28 is running out.
  • the watering control valve 38 may be controlled by a timer method. In the middle of the pumping pipe 26, a sand filter 27 and an air / water mixture generator 29 are provided.
  • the air / water mixture 31 generated by the air / water mixture generating unit 29 is sent to the roof 24a of the structure 24, and is sprayed over a wide area in a short time by one or a plurality of water spouts 30 typified by nozzles and slits.
  • a water film of the air / water mixture 31 is formed on the roof 24a of the structure 24.
  • Part of the sprinkled air / water mixture 31 evaporates, taking heat of vaporization from the roof 24a of the structure 24.
  • the water that has not evaporated is collected in the gutter 32, and is collected again in the water storage tank 25 via the initial flow cut mechanism 34, sand settling tank 35, and coarse dust filter 36 installed in the middle of the water collecting pipe 33.
  • tap water, groundwater, middle water, etc. can be used. A large amount of water is required. Most desirable.
  • This example also has a function of storing rainwater when it rains. When the amount of stored water exceeds the capacity of the storage tank due to a large amount of rainfall, the excess rainwater flows out of the system through the overflow pipe 39.
  • water in the reservoir 25 is insufficient due to flooding, it is possible to temporarily use tap water for industrial purposes by opening the faucet 40.
  • the water quality can be maintained by opening the circulation control valve 38b with a timer control and periodically circulating it.
  • the stored water can be used effectively as miscellaneous water for miscellaneous use.
  • the stop valve 41 should be open. A further energy saving effect can be expected by spraying the air / water mixture 31 around the walls 24 and the structure 24 only by the roof 24a.
  • Table 1 shows the substrate and liquid droplets when 5 11 L of various droplets (surfactant compounded water, air-water mixture, tap water) were dropped on the substrates (glass plate, coated galvanized steel plate) of each material.
  • the contact angle (measured by Kyowa Interface Science contact angle meter "trade name: CA-S micro 2 type contact angle meter") is shown.
  • the numbers in Table 1 are the average values measured with 5 repetitions, and the numbers in parentheses indicate the difference between the maximum and minimum values.
  • the glass plate general-purpose standard products made of soda lime glass (compositions are shown in Table 2) and having a thickness of lmm and 100mm square were used.
  • the flat part of the folded metal sheet roof “trade name: Yodroof 88 (registered trademark) (thickness 0.5 mm, blue)” manufactured by Yodogawa Steel Co., Ltd. was used.
  • the surfactant-mixed water was prepared by mixing and stirring a kitchen detergent “trade name: Family Fresh (registered trademark)” manufactured by Kao Corporation at a rate of 0.1 mg / L in tap water.
  • the air / water mixture is created by passing air / tap water with a volume ratio of 1/10 of air / tap water through a bubble bubble micro-bubble generator “trade name: BT-50” at a rate of 10 L / min. did.
  • Table 1 shows that the contact angle of V, even on the misaligned substrate, even though the air-water mixture was significantly smaller than that of tap water and almost equal to that of the surfactant-blended water.
  • Fig. 8 shows a moth, 2 mm of surface active hydration self-mixed water (50a, 50b, 50c, 50d, 50e), air-water mixture (51 a, 51b, 51c, 51d, 51e), and Tap water (52a, 52b, 52c, 52d, 52e) is dropped at a repetition rate of 5, and the droplets are dried at room temperature 28 ° C, relative humidity 70%, no wind
  • Fig. 2 shows an outline diagram of droplet traces remaining on the substrate.
  • the air / water mixture and the surfactant-containing water were prepared in the same manner as in Example 1.
  • the droplet contact surface is wider and uniformly wet with respect to the air / water mixture and the surfactant-blended water as compared with tap water.
  • two surfactant-containing waters 53a, 53b, 53c, 53d, 53e
  • air-water mixtures 54a, 54b, 54c
  • two surfactant-containing waters 53a, 53b, 53c, 53d, 53e
  • air-water mixtures 54a, 54b, 54c
  • the contact surface of the droplets is more wet than tap water. Therefore, it was found that the air / water mixture was excellent in wettability with respect to both organic and inorganic substrates.
  • FIG. 10 is a schematic view of the experimental building in the evaporative cooling / cooling test.
  • the test building shown in Fig. 10 (a wooden one-story building, a 10mm thick plywood wall 45, a 2mm thick plywood ceiling 46, an average 30mm thick cement tile roof 47 and a 50mm thick concrete floor 48)
  • Table 3 shows the maximum indoor temperature (measured at the center of the room 1100 mm higher than the floor) when In the air-water mixture, the most excellent cooling and cooling effects due to vaporization were confirmed.
  • the present invention relates to a method of actively depriving a building of heat using the heat of vaporization of water. It can be used for further cooling or cooling, or for cooling the road surface as a countermeasure for heat island.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Building Environments (AREA)
  • Other Air-Conditioning Systems (AREA)

Description

技術分野
[0001] 本発明は水の気化熱を利用した高効率の省エネルギー ·冷却 ·冷房方法に関する
背景技術
[0002] 近年、化石燃料の利用過多に起因する地球温暖化や都市部のヒートアイランド現 象などの解決が喫緊の課題となっており、一方では、自然共生による住環境の質の 向上も求められている。従来より、これらの問題に取り組むべく様々な新エネルギー · 省エネルギーシステムが提案されてきてレ、る。
[0003] 構築物を直接除熱、すなわち積極的に熱量を奪う有効な方法の一つとして水の気 化熱を利用したいわゆる打ち水が挙げられる。打ち水は旧来より至る所で習慣的に なされており、冷却効果については経験的に高いことが実証されている。しかしなが ら、効率は必ずしも高いとは言えない。すなわち、打ち水を行う際に対象面が一見全 面濡れているように見えても、実際には水の凝集力や水と対象面の間の斥力により 対象面が水膜によって十分に濡れることが無ぐ気化面積が限定され十分な気化熱 を奪うことが難し!/、ためである。
[0004] そこで、近年、対象面の濡れ面積を向上させ水の気化熱による除熱効率を上げる ベくさまざまな方法が提案されてきた。概して、対象面を親水化塗膜や光触媒でおお う方法と、水に界面活性剤などの添加剤を配合する方法に大別される。
特許文献 1 :特開 2004— 324043
特許文献 2 :特開 2002— 201727
特許文献 3:特開平 6— 185131
発明の開示
発明が解決しょうとする課題
[0005] 前者の方法に関しては、光触媒機能を有する二酸化チタンなどの超親水化顔料を 含む塗料の塗布(吹き付け)および焼き付けによる塗膜化、親水性フィルムや親水性 ラミネートフィルムの貼り付け、二酸化チタンなどの物理的若しくは化学的蒸着による 表面処理方法などが挙げられる力 いずれも材料費 ·施工費共に非常に高価である 。また、これらの表面親水化処理方法による既存構築物への適用については建築資 材の取り替え改修若しくは現場塗装 ·張付け'設置等の必要があり、且つ、大がかり な施工となるため施工に伴う構築物の利用制限や既存構築物の色彩や構造の変更 などデザイン上の問題もある。加えて、表面処理層上への有機'無機被覆物の堆積、 表面処理層の摩耗 '浸食および経年劣化による機能発揮阻害については不可避で あり、補修 ·再塗装などによって経済的に更に重い負担が生じるため本方法の普及 は限定的と言わざるを得なレ、。
[0006] 後者の方法に関しては、添加剤を含んだ水が系外に流出した際、環境汚染につな 力 ¾という問題がある。従って、貯水槽を設けて水を系内で循環させるなどの必要が ある。当然、これらの添加剤を配合した貯留水については植物などの生長阻害を生 じたり、人体への悪影響を起こす懸念があるといった理由で他用途への二次利用は 難しい。また、水の飛散なども考慮すると安全性の面で懸念は完全に払拭し切れな い。更に、一時的に大量の雨が流入することや、光 '微生物'その他の要因で添加剤 が分解することによって添加剤濃度は経時的に低下するため、添加剤濃度を測定し ながら定期的に添加剤を補充する必要がある。逆に、水の気化によって添加剤濃度 が上昇した場合には水を追加する必要がある。加えて、添加剤の散水対象物への付 着-汚染なども生じるなど、実用に耐えないものである。発明者らは、強力な磁場の間 に水を流し、界面活性力を向上せしめる試みも行った力 結果は測定の誤差範囲内 に入る程度の効果しか得られなかった
[0007] 発明者らは、これらの問題を解決すベぐ新たな技術思想を永年試行してきた。鋭 意研究の結果、対象面の物理'化学的性質を変えることなぐ且つ、広範な対象に適 用可能な方法で気化熱冷却能力を改善することに成功した。マイクロバブル 'ナノバ ブルについては通常気泡と異なり、様々な機能が見出され、応用されているが、これ まで対象面における濡れ性、界面活性力の改善についての報告は全くない。発明者 らは何ら別途の濡れ性改善剤を加えることなぐまた、対象面の特段の濡れ性改善の ための化学的処理をすることなく濡れ性を向上し、気化面積を増大し、冷却効果を高 め、且つ、飛来物の堆積による気化性能の大幅低下を招くことのない方法として、散 布する水そのものの物性を改良する方法を検討し、気水混合物に着目し、マイクロバ ブル及びナノバブル領域、すなわち、気泡直径が概ね 75 m、望ましくは 50 m以 下の微細気泡を含む気水混合物を用いることで、安定的に目的を達成できる冷却- 冷房方法を発明するに至った。マイクロバブル、ナノバブルの研究は近年急速に進 歩し、数分ないし数日間気水混合物状態が存在することも知られている。なお、本発 明で述べる気水混合物とは気体が水に完全溶解して均一になった状態ではなぐ微 細気泡と水が比較的安定的に共存している状態を指す。元来、気水混合物は水の 浄化、魚貝類などの病害防止'成育促進、植物の成育促進、気泡による洗浄、汚泥 浮上処理、汚染物質の分解等に用いられてきたが、本発明の目的とする冷却'冷房 による省エネルギーやヒートアイランド防止の分野にお!/、て利用する発想にっレ、ては 例がない。本発明の原理的メカニズムは明確ではないが、微細気泡、すなわち、マイ クロバブル、ナノバブルは電荷を有し、且つ、気泡内は高圧'高エネルギー状態とな り、微細気泡の近傍は帯電し、電気二重層を形成しており、水の表面張力に影響を 与えると共に、対象面を成す物質を静電的な引力によって引きつけ、いわゆる対象 面と気水混合物の親和性を向上せしめ、気水混合物と対象面の単位長さあたりの界 面張力を低下せしめ、結果として接触角を低下させ、濡れ性を有意に向上させたも のと考えられる。
課題を解決するための手段
上記目的を達成するため、請求の範囲 1項記載の発明である構築物の冷却 ·冷房 方法は、水の気化熱を利用して構築物を冷却 ·冷房する方法において、直径 75 ^ 111 以下の微細気泡を発生時において 300個/ mL以上含む気水混合物(5, 31)を構 築物の対象面に散布することを特徴とするものである。
また、請求の範囲 2項記載の発明は、請求の範囲 1項記載の構築物の冷却 '冷房 方法において、対象面に、表面開口部を有する平均空孔径 75 m乃至 3mmの連 続毛細管構造を有する厚さ 10mm以下の保水 ·水拡散層を存在せしめ、気水混合 物(5, 31)の供給を間欠的に行うことを特徴とするものである。
さらに、請求の範囲 3項記載の発明は、請求の範囲 2項記載の構築物の冷却 '冷房 方法において、毛細管構造を有する保水 ·水拡散層を存在せしめた対象面が、 lm m乃至 300mmの高低差を有する凹凸のある表面構造であることを特徴とするもので ある。
請求の範囲 4項記載の発明は、請求の範囲 1項乃至請求の範囲 3項のいずれか 1 項に記載の構築物の冷却 ·冷房方法において、気水混合物(5, 31 )の生成部(29) 力 給水源(2a)から対象面近傍に設けられた散水口(7, 30, 49)に至るまでの部分 のうち、その途中に設置されていることを特徴とするものである。
請求の範囲 5項記載の発明は、請求の範囲 1項乃至請求の範囲 3項のいずれか 1 項に記載の構築物の冷却 ·冷房方法において、気水混合物(5, 31 )の生成部(29) 力 給水源(2a)から対象面近傍に設けられた散水口(7, 30, 49)に至るまでの部分 のうち、散水口(7, 30, 49)部分に設置されていることを特徴とするものである。 請求の範囲 6項記載の発明は、請求の範囲 1項乃至請求の範囲 3項のいずれか 1 項に記載の構築物の冷却 ·冷房方法において、貯水槽(14)を設け、この貯水槽(14 )の一部で発生させた気水混合物(5, 31)を用いることを特徴とするものである。
[0009] 本発明にお V、て、対象面とは屋根面、壁面、路面、地面、法面、擁壁面、その他の 面を指す。
[0010] また、気水混合物とは、気体が水中に完全に溶解したものではなぐ水中に微細な 気泡が分散したものを指す。気水混合物の安定、すなわち気水混合物の物性の安 定を図るためには、分散気泡の大きさが大きく影響する。本発明を実用する場合、例 えば、気水混合物生成部からノズルまたはスリット部により対象面に散水し、対象面を 濡らした上でその気水混合物が気化し終えるまでの間、安定的に気水混合物として 存在する必要がある。これらの時間は構築物自体やその表面の温度条件、大気温 度'湿度、風速などによっても異なるが、概ね 5分〜数時間以上が必要である。このた めには、気水混合物中の気泡径は、概ね 75 in以下、望ましくは 50 in以下である ことが必要となることが判明した。微細気泡の直径が 75 inを越えると、気泡の縮小 圧縮が起こりにくぐ気泡が水中を浮上し、安定した気水混合物を得ることが難しい。 また、気水混合物の物性は微細気泡濃度(個/ mUによっても大きく異なる。発明者 らの研究によれば、本発明で用いる気水混合物の気泡濃度に関しては気泡が 300 個/ mLあれば効果を発揮することが判明している力 S、微細気泡の濃度はより高い方 が望ましい。更に、省エネルギー、冷却効果および電力コストから考えると少なくとも 1 000個/ mL以上であることが望ましい。微細気泡は帯電しているため、気泡の濃度 が大きくなつても反発しあい、気泡同士が合体して大きい気泡となって浮上し、系外 に去ることは無い。
[0011] 気水混合物を対象面に搬送する方法としては、対象面上部よりの散水、上流部より 下流部に向けての流下の他、対象面が毛細管構造を有した層状物の場合はその下 層部または層中央からの給水を毛細管により表面まで移送する方法などがある。
[0012] 散水とは、対象面全面 即時、且つ、広範囲に気水混合物を供給することである。
気水混合物の安定存在時間内に気水混合物を気化せしめることができる必要がある 。気水混合物の安定存在時間から見て上面よりノズルまたはスリット構造によって散 水する方法が最も効果的であることがわかった。
[0013] また、デザイン上やコスト上許される場合には、散水ムラを補い、且つ、散水の無駄 を省くために対象面に毛細管構造層を用いることが有効である。この際、気水混合物 の効果が維持できる時間内に、厚み方向および面方向 の毛細管現象による移送 および気化を完了する必要がある。発明者らの研究の結果、厚さが概ね 0. 2〜; 10m m、平均気孔径が75 111 3111111の織布、不織布、連続気泡シート、多孔質薄層、 有機 ·無機の粒状体または繊維材料をバインダで結合した複合材料などを用いること により本方法は実現可能であることがわかった。微細気泡径上限が 75 mであること から、平均空孔径が 75 in以上ないと気泡により毛細管連続性が切断され、気水混 合物の移送が困難となり、また、平均気孔径が 3mm以上であると、 10mm程度の垂 直移送は困難となる。気化面積を増大させるには、毛細管構造層を有した対象面が 更に高低差を有する凹凸を備えると良い。この凹凸は、気化面積を増大させるため には、少なくとも lmm程度の高低差があることが望ましぐまた、あまり凹凸の高低差 が深過ぎると風の通りが阻害されることから 300mm程度迄が限界となる。これらの凹 凸は、対象面自体の加工時や毛細管構造層の塗布時に上面より型材でプレス加工 をしたり、毛細管構造層を吹き付けにより造る際の凹凸の利用、厚みに凹凸を有した 毛細管構造シートを張り付けるなどの方法が用いられる。本方法は屋根面のほか、 壁面、法面、擁壁面などでも有効である。
[0014] 流下とは重力によって上流部より下流部 水流を成して気水混合物を供給すること である。し力もながら、例えば、波状瓦や波状金属屋根のように凹凸のある面には凹 部に水流が集中してしまい、対象面全面を濡らすことができない。仮に対象面が平 坦であったとしても水が上流より下流に達するまでに時間がかかり、且つ、対象面が 太陽光や周囲の構造物の輻射熱、対象物の蓄熱などによって高温となるほど気水混 合物の安定性は低下し、下流部では気水混合物は安定に存在し得ず、効果も期待 できなくなる。 (例えば、 60°Cで勾配 3° の対象面で全面に薄く流下させた場合、 5m を越した部分では既に気水混合物中の気泡は目視では確認できなかった。 )従って 、下流部や凸部を全面濡らすためには多くの水供給が必要となり、水の浪費になると 共に、移送エネルギーの無駄を生じてしまう。従って、対象面が垂直または勾配の大 きレ、場合に流下は用いられる。
[0015] また、毛細管構造シートが厚く毛細管現象で下層部または層中央部より気水混合 物を供給する場合においても、気水混合物の安定存在時間内に気水混合物が毛細 管構造物表面まで移送され気化することは困難を伴う。従って、毛細管構造シートの 厚さにつ!/、ては 100mmを越えな!/、ことが望まし!/、。
[0016] 気水混合物の生成方法は大別してベンチユリ管方式、細孔方式、加圧溶解'キヤビ テーシヨン方式、超音波方式、気液混合'剪断方式、超高速旋回方式などがあるが、 本発明に用いる方法はいずれでも良い。これらの内、ベンチユリ管方式や細孔方式 では微細な気泡分散をさせ、安定な気水混合物を経済的に得ることは現時点では実 用的に難しい。一方、加圧溶解'キヤビテーシヨン方式、超音波方式では水中に溶存 させた気体物質を気泡化する方法であり、微細な気泡分散を実現することができる。 しかしながら、両方法とも溶存気体量しか気泡化できず、超音波方式の場合、波動 衝撃により一旦生成した微細気泡が圧壊されることから濡れ性を向上させるに十分な 気水混合物を生成させることは現状では難しい。また、加圧溶解'キヤビテーシヨン方 式では溶存量を上げるために加圧エネルギーを要するという難点がある。また、気液 混合 ·剪断方式によっても微細な気泡分散を実現することができる。更に、超高速旋 回方式といわれる気液二層流体を超高速旋回流とすることで微細な気泡分散を実現 すること力 Sできる。いずれの方法を用いても、生成された気水混合物に関しては乳白 色に懸濁している方がより多くの微細気泡を含んでおり、中には平均気泡径 10〜; 15 ^ m,数千個/ mL以上の微細気泡を得られる気水混合物生成器があるので、こうい つたものを用いることが好ましレ、。
[0017] 気水混合物生成部は給水源から散水口に至る各所に設置できる。すなわち、(1) 給水源から散水口に至る経路上に設置される場合、(2)散水口部に設ける場合、(3 )貯水槽を置く場合には貯水槽内に設ける場合に大別されるが、それぞれに特徴を 有し、対象面の規模、構造、給水源の種類、貯水槽を置く場合には貯水槽と散水口 間の距離、総合的な経済性などによって適宜選択される。
[0018] 気水混合物生成部を給水源から散水口に至る経路に設置することにより気水混合 物の散水口への移送時間を短縮することができる。また、給水源として水道水、地下 水、工業用水などを直接用いる場合においてはなるべく散水口に近い部分に気水 混合物生成部を設けることがよ!/、。
発明の効果
[0019] 本発明によれば簡易な設備により別途冷房は殆ど必要としないか、必要な場合で も僅かの別途冷房負荷しか要せず、大幅な省エネルギーが実現される。また、通常 の打ち水に比しても明瞭な効果が示されており、且つ、新設'既設を問わず広範な対 象面の冷却に適用できる画期的な方法といえる。更には、対象面の材質の違いにも 広く適用でき、砂塵や付着物の影響も受けにくい。また、例えば路面のように対象面 が摩耗していく場合においてもそのまま利用できる技術であり、省エネルギー、ヒート アイランド現象の緩和などに高い効果を発揮することができる。
[0020] 本発明に関しては、建材の劣化が直接的に気化性能の低下に繋がらないため、経 年的な性能低下も生じにくい。経済的にも負担が少なくなり本発明の普及効果が期 待できる。
[0021] 施工に関しては、構築物に供給水源、水の供給管、気水混合物生成部、散水ノズ ノレ'スリット、必要に応じて貯水槽と揚水ポンプなどを付加するだけでよい。更に、より 効率を上げるためには、毛細管構造層を対象面に存在させることが有効である。
[0022] 本発明を用いることにより、対象面の材料そのものを製造し、搬送し、設置、取り替 える材工費は全く不要であり、材ェコスト、ェ期およびデザイン上の制約'変更も不要 または最小限にとどめられることは普及上大きい効果の一つといえる。また、設置後 の対象面部材の清掃'塗り替え '設置のし直し、薬剤の注入などといったメンテナンス は殆ど必要がないため、実用上の効果もある。効率を一層向上させるため、毛細管 構造層を設ける場合にもメンテナンスは殆ど必要としない。
[0023] 本発明では、添加剤は全く要さないことから薬剤の注入などのメンテナンスは殆ど 必要なぐ環境や植物、人体にとっても好適な水を確保することもできる効果がある。 従って、他用途 の水の利用も可能である。
図面の簡単な説明
[0024] [図 1]圧力容器型気水混合物生成装置の概略図である。
[図 2]オープン型気水混合物生成装置の概略図である。
[図 3]貯水槽型気水混合物生成装置の概略図である。
[図 4]隔壁貯水槽型気水混合物生成装置の概略図である。
[図 5]隔壁筒貯水槽型気水混合物生成装置の概略図である。
[図 6]本発明を適用した構築物の全体斜視図である。
[図 7]固体表面に水滴を滴下した際の水と固体の濡れ状態の概略図である。
[図 8]ガラス板上における液滴滴下 ·乾燥後の液滴痕の輪郭図である。
[図 9]塗装鋼板上における液滴滴下 ·乾燥後の液滴痕の輪郭図である。
[図 10]気化冷却 ·冷房試験における実験棟の概略図である。
符号の説明
[0025] 1 器体
2 給水管
2a 給水源
3 吸気管
3a 吸気口
4 気水混合物生成器
5 気水混合物
6 散水管 a 散水管吸水部 散水口
対象面温度制御器 電磁弁
0 送水ポンプ
1 通気管
2 水位計
2a 水位センサー2b 水位センサー3 送水ポンプ
4 貯水槽
5 浄化用循環管5a 浄化用循環管吸水部6 空気ポンプ
7 空気フィルタ
8 循環管
8a 循環管吸水部9 循環ポンプ
隔壁
1 隔壁筒
2 対象物
構築物
a 屋根
5 貯水槽
揚水管
砂濾しフィルタ 揚水ポンプ 気水混合物生成部
散水口
気水混合物
雨樋
集水管
初流カット機構
沈砂槽
粗ゴミフイノレタ
利水栓
a 散水制御弁
b 循環制御弁
オーバーフロー管
水栓
凍結破損防止弁
浄化用循環管
散水管
対象面温度制御器
天井
屋根
散水口
a-50e 界面活性剤配合水滴下 ·乾燥後の輪郭a-51e 気水混合物滴下'乾燥後の輪郭a-52e 水道水滴下'乾燥後の輪郭
a-53e 界面活性剤配合水滴下 ·乾燥後の輪郭a- 54e 気水混合物滴下'乾燥後の輪郭a-55e 水道水滴下'乾燥後の輪郭 発明を実施するための最良の形態
[0026] 以下、本発明実施の形態について説明する。給水源から散水口に至る経路に設置 する気水混合物生成部の一例として、図 1に圧力容器型気水混合物生成装置の概 略図を示す。給水源 2aから送水ポンプ 10によって圧送された水は給水管 2を通って 気水混合物生成器 4に送られる。一方、空気は空気ポンプ 16によって吸気口 3aより 空気フィルタ 17、吸気管 3を通って気水混合物生成器 4に送られる。気水混合物生 成器 4内にて水と空気が混合されて気水混合物 5が生成される。生成した気水混合 物 5は気水混合物生成器 4の直上に位置する散水管吸水部 6aから散水管 6を通つ て例えばノズルやスリットに代表される散水口 7に送られる。この場合、気水混合物生 成器 4内における水圧は散水管吸水部 6a、すなわち器体 1内の水圧より充分大きく 設定し、気水混合物 5を生成するために必要な圧差を取ることができる場合に本方式 は適用可能である。この際、微細気泡量を増加させるために、吸気管 3に空気フィノレ タ 17を用いて加圧空気を送ることで気水比率の増大と気水混合物 5の送水量を増大 させること力 Sできる。送水ポンプ 10は対象面に設置された温度センサーと制御スイツ チから成る対象面温度制御器 8により、対象面の設定温度下限、上限に応じて on— off制御される。すなわち、上限設定温度まで対象面の温度が上昇すると送水ポンプ 10が作動し、下限設定温度まで対象面の温度が下降すると送水ポンプ 10が停止す
[0027] 別の例として、図 2にオープン型気水混合物生成装置の概略図を示す。給水源 2a から圧送された加圧水は電磁弁 9を経由し給水管 2を通って器体 1内に送られる。器 体 1内の気水混合物 5の液面水位は水位計 12によって機械的または電気的に感知 され、水位の下限、上限の設定に応じて電磁弁 9を開閉させることにより制御される。 すなわち、水位センサー 12aまで水位が下がると電磁弁 9を開いて水を供給し、水位 センサー 12bまで水位が上がると電磁弁 9を閉じる。器体 1の下部には循環管吸水部 18aが設けてあり、器体 1内の水は循環ポンプ 19によって循環管 18を通って気水混 合物生成器 4に送られる。一方、空気は吸気口 3aより空気フィルタ 17、吸気管 3を通 つて気水混合物生成器 4に送られる。気水混合物生成器 4内にて水と空気が混合さ れて気水混合物 5が生成される。生成した気水混合物 5は気水混合物生成器 4の直 上に位置する散水管吸水部 6aから送水ポンプ 13により散水管 6を通って散水口 7へ 送られる。器体 1内の気水混合物 5が尽きないようにするために、加圧水の流量は送 水ポンプ 13の流量より大きい必要がある。加圧水の流量が不足している場合には給 水源 2aに別途ポンプを設けて加圧するとよい。また、器体 1の上部には通気管 11を 設け、器体 1内が常圧となるようにされている。送水ポンプ 13および循環ポンプ 19は 対象面に設置された温度センサーと制御スィッチから成る対象面温度制御器 8により 、対象面の設定温度下限、上限に応じて on— off制御される。すなわち、上限設定 温度まで対象面の温度が上昇すると送水ポンプ 13、循環ポンプ 19が作動し、下限 設定温度まで対象面の温度が下降すると送水ポンプ 13、循環ポンプ 19が停止する 。本方式では少なくとも送水ポンプ 13、循環ポンプ 19の 2つのポンプを要する力 必 要最小出力のポンプを用いることができる。また、器体 1を耐圧仕様にしなくてよいと いう利点もある。
[0028] 気水混合物の生成は散水口で行うこともできる。この場合、複数の散水口それぞれ に気水混合物生成機構を設ける必要があるため、コストが高くなる反面、(1)気水混 合物発生から構築物の対象面での気水混合物の気化までの時間は短くなり、気水 混合物の濡れ効果を持続し易くなる、(2)発生した気水混合物を移送するためのポ ンプの必要がなくなり、コストを下げられる、などの有利性がある。対象面の面積、構 造などとの関係で最も経済的な方法が選択される。例えば、路面や大規模な工場の 商業施設、擁壁面、法面などで気水混合物の移送距離が長い場合においては各散 水口部またはその近傍で気水混合物の生成を行うことが望ましレ、。
[0029] 貯水槽とは水道水、地下水、雨水などを貯留する槽のことである。貯水槽全体を気 水混合物生成部とすることもできるが、貯水槽が大きい場合には常に槽全体の気水 混合物の気相比率を安定的に保っために常時気水混合物生成部を稼動させておく 必要があり、電力消費が過大となるために好ましくない。このため、貯水槽の一部に 気水混合物生成部を設置し、その直上に散水口に至る配管の開口部を位置せしめ て気水混合物を直ちに散水口に送ることが好ましい。より望ましくは、貯水槽の一部 に平面、曲面または円筒状の隔壁を設け、その下部に気水混合物生成部を設け、そ の直上に散水口に至る配管端を位置せしめると良い。貯水槽の一部で生成された気 水混合物は散水停止時などにお 、て槽内を循環せしめて、槽内全体の気体溶解度 を高めておくことで、散水時の気水混合物の生成をより迅速且つ効率的に行うことが できる。
[0030] 貯水槽内に設ける気水混合物生成部の一例として、図 3に貯水槽型気水混合物生 成装置の概略図を示す。浄化用循環管吸水部 15aから取水された水は浄化用循環 管 15を通って循環ポンプ 19を経て気水混合物生成器 4へ送られる。水は気水混合 物生成器 4内で吸気口 3aより空気フィルタ 17、吸気管 3を通じて供給された空気と混 合されて気水混合物 5となり、気水混合物生成器 4の直上に設けられた散水管吸水 部 6aより散水管 6を通り、送水ポンプ 13を経て散水口 7へ送られる。送水ポンプ 13お よび循環ポンプ 19は対象面に設置された温度センサーと制御スィッチから成る対象 面温度制御器 8により、対象面の設定温度下限、上限に応じて on— off制御される。 すなわち、上限設定温度まで対象面の温度が上昇すると送水ポンプ 13、循環ポンプ 19が作動し、下限設定温度まで対象面の温度が下降すると送水ポンプ 13、循環ポ ンプ 19が停止する。一方、循環ポンプ 19は別途電源ラインによりタイマー制御される 。なお、浄化用循環管 15は貯水槽 14内の水を循環させ、散水管 6に送られなかった 気水混合物 5の貯水槽 14内 の拡散を容易にするという作用を有する。これにより、 貯水槽 14内の気体溶解度は速やかに飽和状態に達する。このように貯水槽 14内の 気体溶解度を飽和させておくと、気水混合物生成器 4において、より高濃度の気水 混合物 5を得ることができ、更に、貯水槽 14内の溶存酸素量が高くなることによって 貯水槽 14内に好気性微生物が繁殖 ·活性化しやす V、環境となり、一時的に混入した 落葉や鳥の粪などの有機物の分解が促進されるため、水質維持の観点からも好まし い。また、貯水槽 14内の気水混合物 5の液面水位を水位計 12によって機械的また は電気的に感知し、水位の下限、上限の設定に応じて電磁弁 9を開閉させて一時的 に水道水を補給することにより、貯水槽 14内の水が枯渴しない。すなわち、水位セン サー 12aまで水位が下がると電磁弁 9を開いて水道水を供給し、水位センサー 12bま で水位が上がると電磁弁 9を閉じる。
[0031] 貯水槽内における気水混合物をより効率的に利用するための一例として、図 4に隔 壁貯水槽型気水混合物生成装置の概略図を示す。貯水槽 14の一部に隔壁 20を有 した気水混合物の発生域を設けた。隔壁 20は非透水性、透水性のいずれでも良い が、透水性の場合発生した気水混合物 5が徒に拡散しな V、程度の透水抵抗があれ ば良い。気水混合物生成器 4に浄化用循環管給水部 15a、浄化用循環管 15、循環 ポンプ 19を通じて水を供給する。水は気水混合物生成器 4内で吸気口 3aより空気フ ィルタ 17、吸気管 3を通じて供給された空気と混合されて気水混合物 5となり、気水 混合物生成器 4の直上に位置した散水管吸水部 6aより散水管 6、送水ポンプ 13を経 て散水口 7に気水混合物 5を移送する。送水ポンプ 13および循環ポンプ 19は対象 面温度制御器 8により、 on— off制御される。すなわち、上限設定温度まで対象面の 温度が上昇すると送水ポンプ 13、循環ポンプ 19が作動し、下限設定温度まで対象 面の温度が下降すると送水ポンプ 13、循環ポンプ 19が停止する。一方、循環ポンプ 19は別途電源ラインによりタイマー制御され、貯水槽 14内の気体溶解度を飽和させ ておくとより良い。また、貯水槽 14内の気水混合物 5の液面水位を水位計 12によつ て機械的または電気的に感知し、水位の下限、上限の設定に応じて電磁弁 9を開閉 させて一時的に水道水を補給することにより、貯水槽 14内の水が枯渴しない。すな わち、水位センサー 12aまで水位が下がると電磁弁 9を開いて水道水を供給し、水位 センサー 12bまで水位が上がると電磁弁 9を閉じる。
さらに、より効率的に気水混合物を利用するため底部のみが密閉された円筒形な どの隔壁筒 21を設けた一例を図 5に示す。隔壁筒 21内の下部に設けられた気水混 合物生成器 4に浄化用循環管給水部 15a、浄化用循環管 15、循環ポンプ 19を通じ て水を供給する。水は気水混合物生成器 4内で吸気口 3aより空気フィルタ 17、吸気 管 3を通じて供給された空気と混合されて気水混合物 5となり、気水混合物生成器 4 の直上に位置した散水管吸水部 6aより散水管 6、送水ポンプ 13を経て散水口 7に移 送される。送水ポンプ 13および循環ポンプ 19は対象面温度制御器 8により、 on -of f制御される。すなわち、上限設定温度まで対象面の温度が上昇すると送水ポンプ 1 3、循環ポンプ 19が作動し、下限設定温度まで対象面の温度が下降すると送水ボン プ 13、循環ポンプ 19が停止する。一方、循環ポンプ 19は別途電源ラインによりタイ マー制御され、貯水槽 14内の気体溶解度を飽和させておくとより良い。この場合に おいても隔壁筒 21は非透水性、透水性のいずれでも良いが、発生した気水混合物 5 が徒に拡散しない程度の透水抵抗があればよい。また、貯水槽 14内の気水混合物 5 の液面水位を水位計 12によって機械的または電気的に感知し、水位の下限、上限 の設定に応じて電磁弁 9を開閉させて一時的に水道水を補給することにより、貯水槽 14内の水が枯渴しない。すなわち、水位センサー 12aまで水位が下がると電磁弁 9 を開いて水道水を供給し、水位センサー 12bまで水位が上がると電磁弁 9を閉じる。
[0033] 給水源に関しては、水道水、地下水、工業用水、中水、貯留用水、雨水その他の 貯留水などが利用可能である。水道水を用いる場合に関しては屋根温度や屋根勾 配、湿度、風速、散水量および水滴径にもよるが、気化しきらなかった水の回収 '再 利用などを考えると、貯水槽を設けて水を循環することが望ましい。また、給水源に雨 水を用いる場合、貯水槽は必須となる。いずれの場合においても、屋根などから貯水 槽に集水することになる。また、貯水槽の容量以上に水が流入した場合には、オーバ 一フロー管によって側溝などに余剰水を排水する。
[0034] 濡れ性に関する理論的な説明としては、対象物および水の界面張力'表面張力に よって説明することができる。図 7は固体表面に水滴を滴下した際の水と固体の濡れ 状態の概略図である。すなわち、図 7のような対象物 22に少量の水 23を滴下した際 の対象物 22と水 23の濡れ状態に関しては、以下の Youngの式によって表される。
[0035] 國
y s = γ s w + y w * c o s Θ ( 1 )
[0036] y sは対象物 22の単位長さあたりの表面張力(N/m)、 γ wは水 23の単位長さあ たりの表面張力(N/m)、 γ swは水 23/対象物 22の単位長さあたりの界面張力( N/m) , Θは接触角(° )である。水 23の形状はこれらの表面張力および界面張力 の釣り合いによって決定されている。 Θの角度が小さいほど水 23は対象物 22表面上 に薄く広く拡がり濡れ性が良好であることを意味する。従って、 3 ぉょひ を小 さくすれば濡れ性が向上することになる。例えば、対象物 22表面に親水化処理を施 した場合、 T Wが小さくなつて濡れ性が向上する。一方、水 23に界面活性剤を配合 した際には Ί swと Ί wが小さくなつて濡れ性が向上する。水 23の代わりに気水混合 物を滴下した場合、微細な気泡を取り込むことによって水 23と空気との親和性が良く なるために T wが小さくなるものと考えられる。し力もながら、実施例(図 8、 9)におい て後述するが気水混合物 bは水道水 cに比してガラス板(図 8)および塗装亜鉛鋼板( 図 9)に滴下した際の親和性が良好であったため、 Ί swも小さくなつているものと考え られる。更には、気水混合物の粘度低下効果も加わり、結果的に大きい濡れ効果が 示されると考えられる。
図 6は本発明を適用した構築物の全体斜視図である。構築物 24には貯水槽 25が 併設してある。構築物 24の屋根 24aには下限、上限の 2つの設定温度で on— off制 御することのできる対象面温度制御器 44が取り付けられており、屋根 24aの温度が 上限設定温度まで上昇すると散水制御弁 38aが開いて揚水ポンプ 28が作動し、気 水混合物 31が屋根 24a面に散布され、屋根 24a面の気化熱による冷却が進み、下 限設定温度まで下がると散水制御弁 38aが閉じて揚水ポンプ 28が切れるようになつ ている。散水制御弁 38はタイマー方式で制御しても良い。揚水管 26の途中には砂 濾しフィルタ 27と気水混合物生成部 29が設けられて V、る。気水混合物生成部 29で 生成された気水混合物 31は構築物 24の屋根 24aまで送水され、 1個若しくは複数 個の例えばノズルやスリットに代表される散水口 30により短時間で広範囲に散水され て構築物 24の屋根 24a面に気水混合物 31による水膜を形成する。散水された気水 混合物 31の一部は蒸発し、構築物 24の屋根 24aより気化熱を奪う。一方、蒸発しな 力 た水は雨樋 32で回収され、集水管 33の途中に設置された初流カット機構 34、 沈砂槽 35、粗ゴミフィルタ 36を経由して再び貯水槽 25に回収される。本発明による 冷却 ·冷房に際しては、水道水、地下水、中水などが利用可能である力 大量の水を 必要とするため、水道料金 ·揚水負荷などを考慮すると貯留 ·浄化された雨水の利用 が最も望ましい。本例に関しては降雨の際に雨水を貯留する機能も備えている。多 量の降雨などによって貯水量が貯水槽の容量を超過して流入した場合には、超過分 の雨水はオーバーフロー管 39によって系外に流出される。また、渴水などによって 貯水槽 25の水が不足した場合には水栓 40を開くことによって一時的に水道水ゃェ 業用水などを利用することも可能である。貯水槽 25に貯留した水に関しては循環制 御弁 38bをタイマー制御で開いて定期的に循環することにより水質を保つことができ る。また、利水栓 37を開くことによって雑用中水として貯留水を有効利用することもで きる。冬期においては凍結による配管破損の可能性が考えられるため、凍結破損防 止弁 41を開いておくと良い。屋根 24aのみでなぐ壁面や構築物 24の周辺にも気水 混合物 31を散水することにより、一層の省エネルギー効果が期待できる。
[0038] 以下に、実施例を示すことによって本発明を具体的に説明する。本発明は、以下の 実施例によって何ら限定されるものではない。
[0039] 表 1に各材質の基板 (ガラス板、塗装亜鉛鋼板)に 5 11 Lの各種液滴(界面活性剤 配合水、気水混合物、水道水)を滴下した際の基板と液滴の接触角(株式会社協和 界面科学製接触角計「商品名: CA— Sミクロ 2型接触角計」により測定)を示す。表 1 中の数値は繰り返し数 5で測定した際の平均値、括弧内の数値は最大値と最小値の 差を示す。ガラス板に関してはソーダライムガラス製の汎用規格品(組成を表 2に示 す)で、厚さ lmm、 100mm角のものを用いた。塗装亜鉛鋼板に関しては株式会社 淀川製鋼所製金属折板屋根「商品名:ョドルーフ 88 (登録商標)(厚さ 0. 5mm、青 色)」の平面部を 10cm角に切断したものを用いた。界面活性剤配合水については、 花王株式会社製台所用洗剤「商品名:ファミリーフレッシュ (登録商標)」を水道水に 0 . lmg/Lの割合で配合、攪拌して作成した。気水混合物については、空気/水道 水の体積比が 1/10の空気/水道水を有限会社バブルタンク製微細気泡発生装置 「商品名: BT— 50」に 10L/minで通過させることによって作成した。表 1を見ると、 V、ずれの基板にお V、ても気水混合物の接触角は水道水のそれよりも有意に小さぐ 且つ界面活性剤配合水とほぼ同等であった。
[0040] [表 1]
Figure imgf000019_0001
[0041] [表 2]
Figure imgf000019_0002
図 8にガ、ラス板上に 2〃 の界面活十生斉帽己合水(50a、 50b、 50c、 50d、 50e)、気 水混合物(51 a、 51b、 51c、 51d、 51e)、および水道水(52a、 52b、 52c、 52d、 52 e)を繰り返し数 5で滴下し、液滴を室温 28°C、相対湿度 70%、無風状態にて乾燥後 に基板上に残った液滴痕の輪郭図を示す。気水混合物および界面活性剤配合水は 実施例 1と同様に作成した。気水混合物および界面活性剤配合水に関しては、水道 水に比して液滴接触面が広ぐ且つ均一に濡れていることがわかる。また、図 9にガラ ス板上に実施例 1と同様の調整を行った 2 しの界面活性剤配合水(53a、 53b、 53 c、 53d、 53e)、気水混合物(54a、 54b、 54c、 54d、 54e)、および水道水(55a、 55 b、 55c、 55d、 55e)を繰り返し数 5で滴下し、液滴を室温 28°C、相対湿度 70%、無 風状態にて乾燥後に基板上に残った液滴痕の輪郭図を示す。気水混合物および界 面活性剤配合水に関しては、水道水に比して液滴接触面が広く濡れていることがわ かる。従って、気水混合物は有機'無機のいずれの基材に対しても濡れ性に優れて いることがわかった。
[0043] 図 10は気化冷却'冷房試験における実験棟の概略図である。また、図 10に示す実 験棟 (木造平屋建て、厚さ 10mmの合板製壁 45と厚さ 2mmの合板製天井 46と平均 厚さ 30mmのセメント瓦屋根 47および厚さ 50mmのコンクリート製床 48を有し、単層 ガラス窓部および単層ガラスドア部の壁面に占める割合が 12. 5%)の屋根頂部 6力 所より例えばノズルやスリットに代表される散水口 49 (株式会社カクダイ製スプレーノ ズル「商品名:ミニスプレイ 5796」 )を用いて各種水(実施例 1と同様の調整を行った もの)を散水(lL/m2 'hを 9時から 16時まで散水、室外最高気温 37°C)した際の室 内最高温度 (床面より 1100mm高の室内中央部で測定)を表 3に示す。気水混合物 において最も優れた気化による冷却 ·冷房効果を確認することができた。
[0044] [表 3]
Figure imgf000020_0001
産業上の利用可能性
[0045] 以上説明したように、本発明は水の気化熱を利用して構築物から積極的に熱量を 奪う方法に関するものであり、特に、一般家庭や企業等において建物の内部を外部 より冷却あるいは冷房する場合や、ヒートアイランド対策として路面を冷却する場合な どに利用可能である。

Claims

請求の範囲
[1] 水の気化熱を利用して構築物を冷却 ·冷房する方法において、直径 75 111以下の 微細気泡を発生時において 300個/ mL以上含む気水混合物(5, 31)を構築物の 対象面に散布することを特徴とする構築物の冷却 ·冷房方法。
[2] 前記対象面に、表面開口部を有する平均空孔径 75 m乃至 3mmの連続毛細管 構造を有する厚さ 10mm以下の保水 ·水拡散層を存在せしめ、気水混合物(5, 31) の供給を間欠的に行うことを特徴とする請求の範囲 1項記載の構築物の冷却 ·冷房 方法。
[3] 前記毛細管構造を有する保水 ·水拡散層を存在せしめた対象面が、 1mm乃至 30 Ommの高低差を有する凹凸のある表面構造であることを特徴とする請求の範囲 2項 記載の構築物の冷却 ·冷房方法。
[4] 前記気水混合物(5, 31)の生成部(29)が、給水源(2a)から前記対象面近傍に設 けられた散水口(7, 30, 49)に至るまでの部分のうち、その途中に設置されているこ とを特徴とする請求の範囲 1項乃至請求の範囲 3項のいずれか 1項に記載の構築物 の冷却 ·冷房方法。
[5] 前記気水混合物(5, 31)の生成部(29)が、給水源(2a)から前記対象面近傍に設 けられた散水口(7, 30, 49)に至るまでの部分のうち、前記散水口(7, 30, 49)部 分に設置されていることを特徴とする請求の範囲 1項乃至請求の範囲 3項のいずれ 力、 1項に記載の構築物の冷却'冷房方法。
[6] 貯水槽(14)を設け、この貯水槽(14)の一部で発生させた前記気水混合物(5, 31 )を用いることを特徴とする請求の範囲 1項乃至請求の範囲 3項のいずれ力、 1項に記 載の構築物の冷却 ·冷房方法。
PCT/JP2007/072588 2006-11-22 2007-11-21 Procédé de refroidissement / refroidissement à l'air destiné à une structure WO2008062845A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/312,658 US20100126702A1 (en) 2006-11-22 2007-11-21 Structure cooling method
JP2008545439A JP5223145B2 (ja) 2006-11-22 2007-11-21 構築物の冷却・冷房方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006316177 2006-11-22
JP2006-316177 2006-11-22

Publications (1)

Publication Number Publication Date
WO2008062845A1 true WO2008062845A1 (fr) 2008-05-29

Family

ID=39429775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/072588 WO2008062845A1 (fr) 2006-11-22 2007-11-21 Procédé de refroidissement / refroidissement à l'air destiné à une structure

Country Status (3)

Country Link
US (1) US20100126702A1 (ja)
JP (1) JP5223145B2 (ja)
WO (1) WO2008062845A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010014346A (ja) * 2008-07-03 2010-01-21 Sanyo Electric Co Ltd 散水冷却装置
CN101949566A (zh) * 2010-10-09 2011-01-19 刘武强 一种空气温度调节系统
JP2011033245A (ja) * 2009-07-30 2011-02-17 Sanyo Electric Co Ltd 散水装置
US20170320006A1 (en) * 2014-11-06 2017-11-09 Starklab Device for producing and treating a gas stream through a volume of liquid, and facility and method implementing said device
JP2018524546A (ja) * 2015-07-03 2018-08-30 ブル・エス・アー・エス 建物の空調システム

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9016111B2 (en) * 2011-12-14 2015-04-28 Schlumberger Technology Corporation Methods for determining wettability alteration
FR3014548B1 (fr) * 2013-12-11 2018-11-30 Starklab Dispositf de production d'un flux d'air dont la temperature est controlee par echange thermique avec un liquide et avec mise en contact direct du flux d'air et du liquide
MX2018010901A (es) 2016-03-11 2018-11-09 Moleaer Inc Composiciones que contienen nano-burbujas en un vehiculo liquido.
US11331633B2 (en) 2019-03-14 2022-05-17 Moleaer, Inc Submersible nano-bubble generating device and method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000110270A (ja) * 1998-10-09 2000-04-18 Sumitomo Constr Co Ltd 屋根冷却構造
JP2006046974A (ja) * 2004-07-30 2006-02-16 Espec Corp 冷却装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US679103A (en) * 1901-05-01 1901-07-23 Francis X Blumle Summer-house.
US964464A (en) * 1909-09-10 1910-07-12 William A Crawford-Frost House-cooling and lawn-sprinkling device.
US1831880A (en) * 1929-03-25 1931-11-17 Carlos T Pierce Fire-protective and roof-cooling device
US3563474A (en) * 1968-01-12 1971-02-16 Joseph William Robinson Air filter wash device
US3583490A (en) * 1969-01-24 1971-06-08 Arloa Bunnell Fire protection system
US3576212A (en) * 1969-03-10 1971-04-27 James H Siler Fire-shielding device
US3720988A (en) * 1971-09-20 1973-03-20 Mc Donnell Douglas Corp Method of making a heat pipe
LU66369A1 (ja) * 1972-10-26 1973-01-23
US4372493A (en) * 1980-02-26 1983-02-08 Smith Jimmie L Roof cooling system
US4761965A (en) * 1987-06-24 1988-08-09 Viner Stephen G Evaporative roof cooling system
JP2578559B2 (ja) * 1992-12-16 1997-02-05 鹿島建設株式会社 泡散布屋根冷却システム
US6250091B1 (en) * 1999-11-30 2001-06-26 George A. Jerome Efficient structure cooling system
US8853593B2 (en) * 2008-03-19 2014-10-07 GM Global Technology Operations LLC Heat pipe cooling system for use with a welding torch

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000110270A (ja) * 1998-10-09 2000-04-18 Sumitomo Constr Co Ltd 屋根冷却構造
JP2006046974A (ja) * 2004-07-30 2006-02-16 Espec Corp 冷却装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010014346A (ja) * 2008-07-03 2010-01-21 Sanyo Electric Co Ltd 散水冷却装置
JP2011033245A (ja) * 2009-07-30 2011-02-17 Sanyo Electric Co Ltd 散水装置
CN101949566A (zh) * 2010-10-09 2011-01-19 刘武强 一种空气温度调节系统
WO2012045254A1 (zh) * 2010-10-09 2012-04-12 Liu Wuqiang 一种空气温度调节系统
CN103124878A (zh) * 2010-10-09 2013-05-29 美赞有限公司 一种空气温度调节系统
CN101949566B (zh) * 2010-10-09 2014-12-17 黄捷 一种空气温度调节系统
CN103124878B (zh) * 2010-10-09 2015-10-07 美赞有限公司 一种空气温度调节系统
US9459017B2 (en) 2010-10-09 2016-10-04 Chao Liu Air temperature adjusting system
US20170320006A1 (en) * 2014-11-06 2017-11-09 Starklab Device for producing and treating a gas stream through a volume of liquid, and facility and method implementing said device
US10946326B2 (en) * 2014-11-06 2021-03-16 Starklab Device for producing and treating a gas stream through a volume of liquid, and facility and method implementing said device
US11452965B2 (en) 2014-11-06 2022-09-27 Starklab Device for producing and treating a gas stream through a volume of liquid, and facility and method implementing said device
JP2018524546A (ja) * 2015-07-03 2018-08-30 ブル・エス・アー・エス 建物の空調システム

Also Published As

Publication number Publication date
JPWO2008062845A1 (ja) 2010-03-04
US20100126702A1 (en) 2010-05-27
JP5223145B2 (ja) 2013-06-26

Similar Documents

Publication Publication Date Title
JP5223145B2 (ja) 構築物の冷却・冷房方法
Gilron et al. WAIV—wind aided intensified evaporation for reduction of desalination brine volume
US7166188B2 (en) Evaporation device
US20180200661A1 (en) Solar assisted large scale cleaning system
US11465923B2 (en) Wastewater treatment system and methods
CN110316778A (zh) 一种高效节能脱硫废水浓缩处理装置
KR20150109801A (ko) 융복합 부유형 수질정화 시스템 및 그의 운용방법
CN203090630U (zh) 一种用于脱硫塔的烟气除雾装置
JP5625467B2 (ja) 雨水受水兼蒸発パネル体及び該雨水受水兼蒸発パネル体を用いた雨水処理装置
KR102174311B1 (ko) 나노 무기조성물이 부착된 판재 및 판재시스템
JP3658320B2 (ja) 都市空間の冷却方法および装置
CN111364654B (zh) 一种节能节水多功能水幕墙结构及其施工方法
CN209897998U (zh) 一种基于超疏水膜的曝气板
JP2008144375A (ja) 壁面冷却システムおよび建物冷却システム
RU2422379C1 (ru) Установка для биохимической очистки сточных вод
CN211061287U (zh) 一种聚合物水泥基复合防水涂料试验养护装置
RU2390503C1 (ru) Установка для биохимической очистки сточных вод
WO2018025151A1 (en) Device for concentrating liquids with an airflow
JP2013024457A (ja) 地熱利用熱交換システム
CN206800818U (zh) 一种屋顶花园雨水节水系统
CN102021893A (zh) 四层楼以上生活洗涤污水用于湿润公路街道路面除尘装置
CN206971781U (zh) 现浇混凝土墙体的喷淋养护装置
CN211873459U (zh) 一种节能节水多功能水幕墙结构
CN212053369U (zh) 一种空气净化式水幕墙
CN214075186U (zh) 一种生化系统泡沫池封闭消泡装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07832318

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2008545439

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12312658

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1086/MUMNP/2009

Country of ref document: IN

122 Ep: pct application non-entry in european phase

Ref document number: 07832318

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)