US9459017B2 - Air temperature adjusting system - Google Patents

Air temperature adjusting system Download PDF

Info

Publication number
US9459017B2
US9459017B2 US13/878,472 US201113878472A US9459017B2 US 9459017 B2 US9459017 B2 US 9459017B2 US 201113878472 A US201113878472 A US 201113878472A US 9459017 B2 US9459017 B2 US 9459017B2
Authority
US
United States
Prior art keywords
liquid
gas
temperature adjusting
air
recited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related, expires
Application number
US13/878,472
Other versions
US20130192289A1 (en
Inventor
Wuqiang Liu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GOOD COMPLIMENT Ltd
Original Assignee
GOOD COMPLIMENT Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GOOD COMPLIMENT Ltd filed Critical GOOD COMPLIMENT Ltd
Assigned to GOOD COMPLIMENT LIMITED reassignment GOOD COMPLIMENT LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LIU, WUQIANG
Publication of US20130192289A1 publication Critical patent/US20130192289A1/en
Assigned to LIU, CHAO, GOOD COMPLIMENT LIMITED reassignment LIU, CHAO ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GOOD COMPLIMENT LIMITED
Application granted granted Critical
Publication of US9459017B2 publication Critical patent/US9459017B2/en
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0003Exclusively-fluid systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V33/00Structural combinations of lighting devices with other articles, not otherwise provided for
    • F21V33/0088Ventilating systems
    • F21V33/0092Ventilating systems with heating or cooling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/0035Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using evaporation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0042Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater characterised by the application of thermo-electric units or the Peltier effect

Definitions

  • the present invention relates to an air temperature adjusting system in a technical field of thermal energy and aerodynamics, and more particularly to a system capable of absorbing air into liquid and then changing a temperature of the air by adjusting the temperature of the liquid.
  • 25° C. is the temperature most suitable for human survival.
  • the temperature in summer is usually higher than 25° C., which makes it difficult for the human body to rapidly dissipate heat, and thus the man may feel hot; while the temperature in winter is usually lower than 25° C., which makes the human body dissipate heat overly fast, and thus the man may feel cold.
  • the temperature in winter is usually lower than 25° C., which makes the human body dissipate heat overly fast, and thus the man may feel cold.
  • the air conditioner works under the following principle.
  • the gaseous refrigerant is compressed by the compressor into the liquid refrigerant of high temperature and high pressure; and then the liquid refrigerant of high temperature and high pressure is sent into the condenser, i.e., the outdoor unit, for heat dissipation and becomes the liquid refrigerant of normal temperature and high pressure.
  • the outdoor unit blows hot winds.
  • the liquid refrigerant of normal temperature and high pressure enters the evaporator, i.e., the indoor unit, through the capillary; and because the space suddenly enlarges and the pressure suddenly reduces after the refrigerant arrives at the evaporator through the capillary, the liquid refrigerant evaporates to become the gaseous refrigerant of low temperature, so as to absorb a large amount of heat to cool the evaporator. Since the fan of the indoor unit blows indoor air through the evaporator, the indoor unit blows cold winds; the steam in the air meets the cold evaporator and then condenses into water drops which flow out along the water pipe; and then the gaseous refrigerant returns to the compressor to continue being compressed as a circulation.
  • the air conditioner It is required to shut the doors and the windows indoors when the air conditioner is used to adjust the air. Because the air circulates in a closed environment all the time, the indoor environment can become very dry after a long time and have a poor air quality because of no air exchange for a long time, mainly showed as an increased concentration of carbon dioxide, an increased content of oxidation products of sulfides and nitrides in the air and bacteria, and a reduced content of oxygen. This is why users may feel uncomfortable when the users stay in a room with a working air conditioner for a long time. It is essential to mention that usually the air conditioner has a high power and consumes much electricity, which is unfavorable for environmental protection.
  • the air conditioner fan works under the following principle.
  • the water circulating pump continually draws water out of the water tank and evenly sprays the water onto the evaporating and filtering layer through the water distributing system; then the outdoor hot air enters the evaporating and cooling medium to fully exchange heat with the water inside the evaporating and cooling medium, i.e., Cell DEK; then the water evaporates and absorbs heat to decrease the temperature and also the cold water turns the hot air into the cool and clean air which is blown out by the low-noise draught fan with added pressure, so the users can feel cool winds.
  • the air conditioner fan has better cooling effects than the pure electric fan.
  • the air conditioner fan Since the air conditioner fan is still a type of fan in essence, the air conditioner fan actually fails to transfer the heat in the air from the indoor to the outdoor. Thus, in order to bring the users a feeling of cool, it is required to produce winds at a really fast speed. Just because of the large wind influx and wind outflux and the fast wind speed, the air conditioner fan causes much noise during work. In the meantime, because of the fast speed of the wind influx and wind outflux, it is really difficult for the air conditioner fan to filter the steam inside the air through drying, so as to cause high humidity of the blown-out air, which further contributes to the growth of the indoor bacteria and causes discomfort of the users.
  • the pumping motor and the blowing motor of the air conditioner fan work simultaneously, which wastes electricity and brings extra noise.
  • the present invention provides an air temperature adjusting system having low noise, low energy-consumption and functions of filtering air and purifying air.
  • gas-liquid comprises air and liquid.
  • the present invention adopts following technical solutions.
  • An air temperature adjusting system comprises a gas-liquid mixing device, a temperature adjusting device, a gas-liquid separating device and a gas-liquid circulating device for driving the gas-liquid to move among the gas-liquid mixing device, the temperature adjusting device and the gas-liquid separating device.
  • the gas-liquid mixing device is for absorbing air into liquid to mix the air with the liquid and bringing a mixture of the air and the liquid into the gas-liquid separating device after a temperature of the mixture is adjusted by the temperature adjusting device; and the gas-liquid separating device is for separating the air with the liquid, wherein the separated air runs out via the gas-liquid separating device.
  • the gas-liquid mixing device comprises at least one T-shaped pipe, wherein a main pipe of each T-shaped pipe is interconnected; a branch pipe of each T-shaped pipe has an opening intercommunicated to the air; and a water level of each T-shaped pipe is higher than a water level of the gas-liquid separating device.
  • the gas-liquid separating device comprises a liquid storing box having a hole, wherein the hole is intercommunicated to the air and higher than a water level of the liquid storing box.
  • the liquid is embodied as water; and then the liquid circulating device comprises a submersible pump and a plurality of pipes respectively connected to respective two ends of the submersible pump, the gas-liquid mixing device, the temperature adjusting device and the gas-liquid separating device, wherein the temperature adjusting device is connected between the gas-liquid mixing device and the gas-liquid separating device via the pipes, and the submersible pump is provided between two members selected from a group consisting of the gas-liquid mixing device, the temperature adjusting device and the gas-liquid separating device.
  • a water level of a liquid inlet of the gas-liquid mixing device is higher than a water level of a liquid outlet of the gas-liquid mixing device.
  • the submersible pump is provided inside the liquid storing box of the gas-liquid separating device.
  • the submersible pump works in an intermittently pumping manner.
  • the liquid is embodied as magnetic fluid; and then the liquid circulating device comprises an electromagnetic pump and a plurality of pipes respectively connected to respective two ends of the gas-liquid mixing device, the temperature adjusting device or the gas-liquid separating device, wherein the temperature adjusting device is connected between the gas-liquid mixing device and the gas-liquid separating device via the pipes, and the electromagnetic pump is sleeved onto the pipes.
  • the temperature adjusting device comprises an electronic cooling device and/or an electronic heating device.
  • the air temperature adjusting system further comprises an ultraviolet disinfecting device.
  • the ultraviolet disinfecting device is provided inside the liquid.
  • the air temperature adjusting system further comprises a filtering device for filtering off the liquid.
  • the filtering device is provided at a gas outlet of the gas-liquid separating device.
  • the present invention has following advantageous technical effects.
  • the liquid of the air temperature adjusting system of the present invention absorbs the air into the water like a piston, which not only efficiently makes use of power of circulating the water but also produces very low noise during a process of absorbing the water, so as to avoid noise of motors.
  • the air temperature adjusting system of the present invention obtains the air having the temperature changed at a quick speed because the liquid has a heat exchange rate larger than the air, so as to effectively save energy.
  • the air temperature adjusting system is capable of not only adjusting the temperature of the air but also disinfecting the air, so as to effectively avoid a problem that the air quality may worsen within a closed environment.
  • the air temperature adjusting system of the present invention avoids using environment-harmful air refrigerant, such as Freon, and becomes better environment-friendly.
  • FIG. 1 is a structural sketch view of an air temperature adjusting system according to a first preferred embodiment of the present invention.
  • FIG. 2 is a structural sketch view of the air temperature adjusting system according to a second preferred embodiment of the present invention.
  • the present invention provides an air temperature adjusting system having low noise, low energy-consumption and functions of air filtering and air purifying.
  • an air temperature adjusting system comprises a gas-liquid mixing device 11 , a temperature adjusting device 12 , a gas-liquid separating device 13 and a gas-liquid circulating device 14 for driving gas-liquid to move among the gas-liquid mixing device 11 , the temperature adjusting device 12 and the gas-liquid separating device 13 .
  • the gas-liquid mixing device 11 comprises a plurality of T-shaped pipes 111 .
  • a main pipe 1111 of each T-shaped pipe is interconnected.
  • a branch pipe 1112 of each T-shaped pipe has an opening intercommunicated to air.
  • the branch pipe 1112 of each T-shaped pipe is vertical to a ground.
  • a water level of the opening of the branch pipe of the T-shaped pipe is higher than a highest water level of the main pipe 1111 of the T-shaped pipe, in such a manner that the liquid inside the T-shaped pipe is prevented from overflowing the branch pipe.
  • a water level of a water inlet 112 of the gas-liquid mixing device is higher than a water level of a water outlet 113 of the gas-liquid mixing device.
  • the gas-liquid circulating device 14 comprises a water pump 141 and a plurality of water pipes 142 respectively connected to respective two ends of the water pump 141 , the gas-liquid mixing device 11 , the temperature adjusting device 12 or the gas-liquid separating device 13 .
  • the water inlet 112 of the gas-liquid mixing device is connected to an outlet of the water pump 141 via the water pipes 142 .
  • a liquid storing box 131 of the gas-liquid separating device 13 is provided with the water pump 141 therein.
  • the liquid storing box 131 has a hole 1311 which is also a gas outlet intercommunicated with the air.
  • the water storing box 131 contains water therein.
  • the water pump 141 is a submersible pump provided under a water level of the liquid storing box 131 .
  • a highest water level inside the liquid storing box 131 is lower than the hole 1311 , in such a manner that the water inside the liquid storing box 131 is prevented from overflowing the hole 1311 .
  • the water inside the liquid storing box is pumped by the water pump into the gas-liquid mixing device, passing through the water inlet 112 of the gas-liquid mixing device to enter the main pipes 1111 of the plurality of T-shaped pipes in sequence.
  • An inlet 121 of the temperature adjusting device 12 is connected to the water outlet 113 of the gas-liquid mixing device via the water pipes 142 .
  • the temperature adjusting device 12 comprises a semi-conductor cooling device 122 and a temperature adjusting room 123 .
  • the temperature adjusting room 123 has water therein.
  • a cold end of the semi-conductor cooling device 122 is in contact with the temperature adjusting room 123 .
  • a hot end of the semi-conductor cooling device 122 is connected with a fan, unshown in the FIG. 1 , and an air pipe connected to the fan, unshown in the FIG. 1 . Heat of the semi-conductor cooling device is transferred to the outdoor along the air pipe via the fan.
  • An outlet 124 of the temperature adjusting device 12 and an inlet 132 of the gas-liquid separating device 13 are connected via the water pipes 142 ; and specifically, an outlet of the temperature adjusting room 123 and an inlet of the liquid storing box 131 of the gas-liquid separating device are connected via the water pipes 142 .
  • the water pump 141 works in an intermittently pumping manner.
  • a water level of an outlet of the T-shaped pipe 111 is higher than a water level of an inlet of the temperature adjusting room 123 .
  • a water level of the outlet of the temperature adjusting room 123 is higher than a water level of the inlet of the liquid storing box 131 , in such a manner that the water inside the T-shaped pipes 111 is able to flow away when the water pump 141 stops pumping and thus the air inside the branch pipes of the T-shaped pipes is able to enter the main pipes.
  • the water pump starts to pump again. The water is pumped into the main pipes of the T-shaped pipes, so the water entraining the air enters the water pipes to further flow into the temperature adjusting device 12 .
  • the water inside the liquid storing box 131 is pumped by the water pump 141 into the T-shaped pipes having no water or little water.
  • the water column pumped therein like a piston, presses the air inside the T-shaped pipe into the outlet at a terminal end of the T-shaped pipe.
  • a mixture of the water and the air is pressed into the temperature adjusting room of the temperature adjusting device; the air and the water of the mixture turn cold together via heat exchange and thereafter enter the liquid storing box of the gas-liquid separating device.
  • the liquid storing box has the hole, so internal pressure of the liquid storing box equals external pressure thereof, which allows the air to be separated from the water and run out of the liquid storing box via the hole.
  • the water pump pumps water continuously, the air inside the branch pipes of the T-shaped pipes can be prevented from entering the main pipes, which avoids entraining the air into the temperature adjusting room of the temperature adjusting device; and thus it is required to modify a program of a controlling circuit board connected to the water pump.
  • the water pump is controlled by the controlling circuit board to pump water intermittently.
  • the air temperature adjusting system further comprises an ultraviolet disinfecting device 15 .
  • the ultraviolet disinfecting device 15 is provided inside the water; and specifically, the ultraviolet disinfecting device 15 is provided inside the liquid storing box 131 for exterminating bacteria in the air.
  • the gas outlet of the liquid storing box 131 is further provided with a filtering device 16 .
  • the filtering device 16 is capable of filtering off the liquid inside the air at the gas outlet, so as to prevent the air produced by the air temperature adjusting system from containing too much liquid and thus avoid affecting air quality.
  • the pipes of the temperature adjusting room are U-shaped, as showed in FIG. 1 .
  • the branch pipe of each T-shaped pipe is unsealed.
  • the water pump draws the water inside the liquid storing box into the T-shaped pipes, it is possible that a part of the water flowing in rapidly enters the branch pipe.
  • the branch pipe of each T-shaped pipe In order to prevent the water inside the branch pipe of each T-shaped pipe from overflowing, it is necessary for the branch pipe of each T-shaped pipe to be long enough to avoid overflowing.
  • the air temperature adjusting system according to a second preferred embodiment of the present invention further comprises a closed water tank 17 which is connected to the gas-liquid mixing device 11 via the water pipes.
  • the water tank 17 has a higher water level than the gas-liquid mixing device 11 .
  • a water outlet 171 of the water tank 17 is connected to the water inlet of the gas-liquid mixing device 11 via S-shaped pipes, in such a manner that the water inside the water tank 17 smoothly flows into the main pipes of the T-shaped pipes via force of gravity, which not only prevents the water from flowing over quickly to run out of the branch pipes of the T-shaped pipes but also entrains relatively more air via the smoothly flowing to improve efficiency.
  • the water outlet 171 of the water tank 17 is provided in a lower part of the water tank 17 .
  • a water inlet 172 of the water tank 17 is provided in an upper part of the water tank 17 .
  • An intermittent switch 173 for controlling the water to intermittently flow into the gas-liquid mixing device 11 is provided at the water outlet 171 , wherein the water pump is allowed to pump water continuously, which avoids a problem that the intermittently pumping shortens a service life of the water pump.
  • the liquid also can be magnetic fluid and then the liquid circulating device comprises an electromagnetic pump and a plurality of pipes respectively connected to respective two ends of the gas-liquid mixing device, the temperature adjusting device or the gas-liquid separating device; the temperature adjusting device is connected between the gas-liquid mixing device and the gas-liquid separating device via the pipes; and the electromagnetic pump is sleeved onto the pipes. Therefore, this invention includes all modifications encompassed within the spirit and scope of the following claims.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Physical Water Treatments (AREA)
  • Central Air Conditioning (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

An air temperature adjusting system includes a gas-liquid mixing device, a temperature adjusting device, a gas-liquid separating device and a gas-liquid circulating device for driving gas-liquid to move among the gas-liquid mixing device, the temperature adjusting device and the gas-liquid separating device. The gas-liquid mixing device is for absorbing air into liquid to mix the air with the liquid and bringing a mixture of the air and the liquid into the gas-liquid separating device after a temperature of the mixture is adjusted by the temperature adjusting device; and the gas-liquid separating device is for separating the air with the liquid. The gas-liquid mixing device includes at least one T-shaped pipe, wherein a main pipe of each T-shaped pipe is interconnected; a branch pipe of each T-shaped pipe has an opening intercommunicated to the air.

Description

CROSS REFERENCE OF RELATED APPLICATION
This is a U.S. National Stage under 35 U.S.C 371 of the International Application PCT/CN2011/078497, filed Aug. 16, 2011, which claims priority under 35 U.S.C. 119(a-d) to CN 201010503235.4, filed Oct. 9, 2010.
BACKGROUND OF THE PRESENT INVENTION
1. Field of Invention
The present invention relates to an air temperature adjusting system in a technical field of thermal energy and aerodynamics, and more particularly to a system capable of absorbing air into liquid and then changing a temperature of the air by adjusting the temperature of the liquid.
2. Description of Related Arts
25° C. is the temperature most suitable for human survival. However, the temperature in summer is usually higher than 25° C., which makes it difficult for the human body to rapidly dissipate heat, and thus the man may feel hot; while the temperature in winter is usually lower than 25° C., which makes the human body dissipate heat overly fast, and thus the man may feel cold. In order to create a comfortable environment for living, it is necessary to adjust the temperature to maintain the air temperature around 25° C.
Conventionally, the most common air temperature regulator is the air conditioner. The air conditioner works under the following principle. The gaseous refrigerant is compressed by the compressor into the liquid refrigerant of high temperature and high pressure; and then the liquid refrigerant of high temperature and high pressure is sent into the condenser, i.e., the outdoor unit, for heat dissipation and becomes the liquid refrigerant of normal temperature and high pressure. As a result, the outdoor unit blows hot winds. Then the liquid refrigerant of normal temperature and high pressure enters the evaporator, i.e., the indoor unit, through the capillary; and because the space suddenly enlarges and the pressure suddenly reduces after the refrigerant arrives at the evaporator through the capillary, the liquid refrigerant evaporates to become the gaseous refrigerant of low temperature, so as to absorb a large amount of heat to cool the evaporator. Since the fan of the indoor unit blows indoor air through the evaporator, the indoor unit blows cold winds; the steam in the air meets the cold evaporator and then condenses into water drops which flow out along the water pipe; and then the gaseous refrigerant returns to the compressor to continue being compressed as a circulation.
It is required to shut the doors and the windows indoors when the air conditioner is used to adjust the air. Because the air circulates in a closed environment all the time, the indoor environment can become very dry after a long time and have a poor air quality because of no air exchange for a long time, mainly showed as an increased concentration of carbon dioxide, an increased content of oxidation products of sulfides and nitrides in the air and bacteria, and a reduced content of oxygen. This is why users may feel uncomfortable when the users stay in a room with a working air conditioner for a long time. It is essential to mention that usually the air conditioner has a high power and consumes much electricity, which is unfavorable for environmental protection.
In recent years, an environment-friendly air adjusting device, known as the air conditioner fan, appears. The air conditioner fan works under the following principle. The water circulating pump continually draws water out of the water tank and evenly sprays the water onto the evaporating and filtering layer through the water distributing system; then the outdoor hot air enters the evaporating and cooling medium to fully exchange heat with the water inside the evaporating and cooling medium, i.e., Cell DEK; then the water evaporates and absorbs heat to decrease the temperature and also the cold water turns the hot air into the cool and clean air which is blown out by the low-noise draught fan with added pressure, so the users can feel cool winds. As a result, the air conditioner fan has better cooling effects than the pure electric fan.
Since the air conditioner fan is still a type of fan in essence, the air conditioner fan actually fails to transfer the heat in the air from the indoor to the outdoor. Thus, in order to bring the users a feeling of cool, it is required to produce winds at a really fast speed. Just because of the large wind influx and wind outflux and the fast wind speed, the air conditioner fan causes much noise during work. In the meantime, because of the fast speed of the wind influx and wind outflux, it is really difficult for the air conditioner fan to filter the steam inside the air through drying, so as to cause high humidity of the blown-out air, which further contributes to the growth of the indoor bacteria and causes discomfort of the users.
Furthermore, the pumping motor and the blowing motor of the air conditioner fan work simultaneously, which wastes electricity and brings extra noise.
SUMMARY OF THE PRESENT INVENTION
In order to solve the above technical problems, the present invention provides an air temperature adjusting system having low noise, low energy-consumption and functions of filtering air and purifying air.
According to the present invention, gas-liquid comprises air and liquid.
The present invention adopts following technical solutions.
An air temperature adjusting system comprises a gas-liquid mixing device, a temperature adjusting device, a gas-liquid separating device and a gas-liquid circulating device for driving the gas-liquid to move among the gas-liquid mixing device, the temperature adjusting device and the gas-liquid separating device. The gas-liquid mixing device is for absorbing air into liquid to mix the air with the liquid and bringing a mixture of the air and the liquid into the gas-liquid separating device after a temperature of the mixture is adjusted by the temperature adjusting device; and the gas-liquid separating device is for separating the air with the liquid, wherein the separated air runs out via the gas-liquid separating device. The gas-liquid mixing device comprises at least one T-shaped pipe, wherein a main pipe of each T-shaped pipe is interconnected; a branch pipe of each T-shaped pipe has an opening intercommunicated to the air; and a water level of each T-shaped pipe is higher than a water level of the gas-liquid separating device.
The gas-liquid separating device comprises a liquid storing box having a hole, wherein the hole is intercommunicated to the air and higher than a water level of the liquid storing box.
According to a preferred embodiment of the present invention, the liquid is embodied as water; and then the liquid circulating device comprises a submersible pump and a plurality of pipes respectively connected to respective two ends of the submersible pump, the gas-liquid mixing device, the temperature adjusting device and the gas-liquid separating device, wherein the temperature adjusting device is connected between the gas-liquid mixing device and the gas-liquid separating device via the pipes, and the submersible pump is provided between two members selected from a group consisting of the gas-liquid mixing device, the temperature adjusting device and the gas-liquid separating device.
A water level of a liquid inlet of the gas-liquid mixing device is higher than a water level of a liquid outlet of the gas-liquid mixing device.
The submersible pump is provided inside the liquid storing box of the gas-liquid separating device.
The submersible pump works in an intermittently pumping manner.
According to a preferred embodiment of the present invention, alternatively, the liquid is embodied as magnetic fluid; and then the liquid circulating device comprises an electromagnetic pump and a plurality of pipes respectively connected to respective two ends of the gas-liquid mixing device, the temperature adjusting device or the gas-liquid separating device, wherein the temperature adjusting device is connected between the gas-liquid mixing device and the gas-liquid separating device via the pipes, and the electromagnetic pump is sleeved onto the pipes.
The temperature adjusting device comprises an electronic cooling device and/or an electronic heating device.
The air temperature adjusting system further comprises an ultraviolet disinfecting device. The ultraviolet disinfecting device is provided inside the liquid.
The air temperature adjusting system further comprises a filtering device for filtering off the liquid. The filtering device is provided at a gas outlet of the gas-liquid separating device.
The present invention has following advantageous technical effects.
By providing the plurality of the T-shaped pipes and via the intermittently pumping manner, the liquid of the air temperature adjusting system of the present invention absorbs the air into the water like a piston, which not only efficiently makes use of power of circulating the water but also produces very low noise during a process of absorbing the water, so as to avoid noise of motors.
By mixing the liquid with the air, adjusting the temperature of the mixture and then separating the gas-liquid mixture after adjusting the temperature, the air temperature adjusting system of the present invention obtains the air having the temperature changed at a quick speed because the liquid has a heat exchange rate larger than the air, so as to effectively save energy.
By mixing the liquid with the air and providing the ultraviolet disinfecting device in the liquid, the air temperature adjusting system is capable of not only adjusting the temperature of the air but also disinfecting the air, so as to effectively avoid a problem that the air quality may worsen within a closed environment.
By providing the electronic cooling device, the air temperature adjusting system of the present invention avoids using environment-harmful air refrigerant, such as Freon, and becomes better environment-friendly.
These and other objectives, features, and advantages of the present invention will become apparent from the following detailed description, the accompanying drawings, and the appended claims.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a structural sketch view of an air temperature adjusting system according to a first preferred embodiment of the present invention.
FIG. 2 is a structural sketch view of the air temperature adjusting system according to a second preferred embodiment of the present invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
The present invention provides an air temperature adjusting system having low noise, low energy-consumption and functions of air filtering and air purifying.
Combined with the preferred embodiments and the drawings, the present invention is further illustrated as follows.
First Preferred Embodiment
Referring to FIG. 1 of the drawings, according to a first preferred embodiment of the present invention, an air temperature adjusting system comprises a gas-liquid mixing device 11, a temperature adjusting device 12, a gas-liquid separating device 13 and a gas-liquid circulating device 14 for driving gas-liquid to move among the gas-liquid mixing device 11, the temperature adjusting device 12 and the gas-liquid separating device 13. The gas-liquid mixing device 11 comprises a plurality of T-shaped pipes 111. A main pipe 1111 of each T-shaped pipe is interconnected. A branch pipe 1112 of each T-shaped pipe has an opening intercommunicated to air. The branch pipe 1112 of each T-shaped pipe is vertical to a ground. A water level of the opening of the branch pipe of the T-shaped pipe is higher than a highest water level of the main pipe 1111 of the T-shaped pipe, in such a manner that the liquid inside the T-shaped pipe is prevented from overflowing the branch pipe. A water level of a water inlet 112 of the gas-liquid mixing device is higher than a water level of a water outlet 113 of the gas-liquid mixing device.
The gas-liquid circulating device 14 comprises a water pump 141 and a plurality of water pipes 142 respectively connected to respective two ends of the water pump 141, the gas-liquid mixing device 11, the temperature adjusting device 12 or the gas-liquid separating device 13.
The water inlet 112 of the gas-liquid mixing device is connected to an outlet of the water pump 141 via the water pipes 142. A liquid storing box 131 of the gas-liquid separating device 13 is provided with the water pump 141 therein. The liquid storing box 131 has a hole 1311 which is also a gas outlet intercommunicated with the air. The water storing box 131 contains water therein. The water pump 141 is a submersible pump provided under a water level of the liquid storing box 131. A highest water level inside the liquid storing box 131 is lower than the hole 1311, in such a manner that the water inside the liquid storing box 131 is prevented from overflowing the hole 1311. The water inside the liquid storing box is pumped by the water pump into the gas-liquid mixing device, passing through the water inlet 112 of the gas-liquid mixing device to enter the main pipes 1111 of the plurality of T-shaped pipes in sequence.
An inlet 121 of the temperature adjusting device 12 is connected to the water outlet 113 of the gas-liquid mixing device via the water pipes 142. The temperature adjusting device 12 comprises a semi-conductor cooling device 122 and a temperature adjusting room 123. The temperature adjusting room 123 has water therein. A cold end of the semi-conductor cooling device 122 is in contact with the temperature adjusting room 123. A hot end of the semi-conductor cooling device 122 is connected with a fan, unshown in the FIG. 1, and an air pipe connected to the fan, unshown in the FIG. 1. Heat of the semi-conductor cooling device is transferred to the outdoor along the air pipe via the fan.
An outlet 124 of the temperature adjusting device 12 and an inlet 132 of the gas-liquid separating device 13 are connected via the water pipes 142; and specifically, an outlet of the temperature adjusting room 123 and an inlet of the liquid storing box 131 of the gas-liquid separating device are connected via the water pipes 142.
The water pump 141 works in an intermittently pumping manner. A water level of an outlet of the T-shaped pipe 111 is higher than a water level of an inlet of the temperature adjusting room 123. A water level of the outlet of the temperature adjusting room 123 is higher than a water level of the inlet of the liquid storing box 131, in such a manner that the water inside the T-shaped pipes 111 is able to flow away when the water pump 141 stops pumping and thus the air inside the branch pipes of the T-shaped pipes is able to enter the main pipes. When the main pipes of the T-shaped pipes have the air entered, the water pump starts to pump again. The water is pumped into the main pipes of the T-shaped pipes, so the water entraining the air enters the water pipes to further flow into the temperature adjusting device 12.
The water inside the liquid storing box 131 is pumped by the water pump 141 into the T-shaped pipes having no water or little water. The water column pumped therein, like a piston, presses the air inside the T-shaped pipe into the outlet at a terminal end of the T-shaped pipe. As a result, a mixture of the water and the air is pressed into the temperature adjusting room of the temperature adjusting device; the air and the water of the mixture turn cold together via heat exchange and thereafter enter the liquid storing box of the gas-liquid separating device. The liquid storing box has the hole, so internal pressure of the liquid storing box equals external pressure thereof, which allows the air to be separated from the water and run out of the liquid storing box via the hole. If the water pump pumps water continuously, the air inside the branch pipes of the T-shaped pipes can be prevented from entering the main pipes, which avoids entraining the air into the temperature adjusting room of the temperature adjusting device; and thus it is required to modify a program of a controlling circuit board connected to the water pump. The water pump is controlled by the controlling circuit board to pump water intermittently.
The air temperature adjusting system further comprises an ultraviolet disinfecting device 15. The ultraviolet disinfecting device 15 is provided inside the water; and specifically, the ultraviolet disinfecting device 15 is provided inside the liquid storing box 131 for exterminating bacteria in the air.
The gas outlet of the liquid storing box 131 is further provided with a filtering device 16. The filtering device 16 is capable of filtering off the liquid inside the air at the gas outlet, so as to prevent the air produced by the air temperature adjusting system from containing too much liquid and thus avoid affecting air quality.
Meanwhile, in order to avoid draining the temperature adjusting room of the temperature adjusting device because the water pump stops pumping, it is necessary to provide the temperature adjusting room with U-shaped pipes. In order to increase a heat exchange rate, the pipes of the temperature adjusting room are U-shaped, as showed in FIG. 1.
The branch pipe of each T-shaped pipe is unsealed. When the water pump draws the water inside the liquid storing box into the T-shaped pipes, it is possible that a part of the water flowing in rapidly enters the branch pipe. In order to prevent the water inside the branch pipe of each T-shaped pipe from overflowing, it is necessary for the branch pipe of each T-shaped pipe to be long enough to avoid overflowing.
Second Preferred Embodiment
As showed in FIG. 2, based on the first preferred embodiment, the air temperature adjusting system according to a second preferred embodiment of the present invention further comprises a closed water tank 17 which is connected to the gas-liquid mixing device 11 via the water pipes. The water tank 17 has a higher water level than the gas-liquid mixing device 11. A water outlet 171 of the water tank 17 is connected to the water inlet of the gas-liquid mixing device 11 via S-shaped pipes, in such a manner that the water inside the water tank 17 smoothly flows into the main pipes of the T-shaped pipes via force of gravity, which not only prevents the water from flowing over quickly to run out of the branch pipes of the T-shaped pipes but also entrains relatively more air via the smoothly flowing to improve efficiency.
The water outlet 171 of the water tank 17 is provided in a lower part of the water tank 17. A water inlet 172 of the water tank 17 is provided in an upper part of the water tank 17. An intermittent switch 173 for controlling the water to intermittently flow into the gas-liquid mixing device 11 is provided at the water outlet 171, wherein the water pump is allowed to pump water continuously, which avoids a problem that the intermittently pumping shortens a service life of the water pump.
One skilled in the art will understand that the embodiment of the present invention as shown in the drawings and described above is exemplary only and not intended to be limiting. According to the principles and thoughts of the present invention, combined with the preferred embodiments, it is easy for the one skilled in the art to make other improvements and modifications about the technical solutions of the present invention. For example, the liquid also can be magnetic fluid and then the liquid circulating device comprises an electromagnetic pump and a plurality of pipes respectively connected to respective two ends of the gas-liquid mixing device, the temperature adjusting device or the gas-liquid separating device; the temperature adjusting device is connected between the gas-liquid mixing device and the gas-liquid separating device via the pipes; and the electromagnetic pump is sleeved onto the pipes. Therefore, this invention includes all modifications encompassed within the spirit and scope of the following claims.

Claims (20)

What is claimed is:
1. An air temperature adjusting system, comprising a gas-liquid mixing device, a temperature adjusting device, a gas-liquid separating device and a gas-liquid circulating device for driving gas-liquid to move among said gas-liquid mixing device, said temperature adjusting device and said gas-liquid separating device, wherein said gas-liquid mixing device is for absorbing air into liquid to mix said air with said liquid and bringing a mixture of said air and said liquid into said gas-liquid separating device after a temperature of said mixture of said air and said liquid is adjusted by said temperature adjusting device; said gas-liquid separating device is for separating said air with said liquid, wherein said separated air runs out via said gas-liquid separating device; and said gas-liquid mixing device comprises at least one T-shaped pipe, wherein a main pipe of each T-shaped pipe is interconnected; a branch pipe of each T-shaped pipe has an opening intercommunicated with said air; and each T-shaped pipe has a liquid level higher than a liquid level of said gas-liquid separating device.
2. The air temperature adjusting system, as recited in claim 1, wherein said gas-liquid separating device comprises a liquid storing box having a hole, wherein said hole is intercommunicated with said air and higher than said liquid level of said liquid storing box.
3. The air temperature adjusting system, as recited in claim 2, wherein said liquid is water; said gas-liquid circulating device comprises a submersible pump and a plurality of water pipes respectively connected to respective two ends of said submersible pump, said gas-liquid mixing device, said temperature adjusting device and said gas-liquid separating device; said temperature adjusting device is connected between said gas-liquid mixing device and said gas-liquid separating device via said water pipes; and said submersible pump is provided between two members selected from a group consisting of said gas-liquid mixing device, said temperature adjusting device and said gas-liquid separating device.
4. The air temperature adjusting system, as recited in claim 3, wherein a water inlet of said gas-liquid mixing device has a higher water level than a water outlet of said gas-liquid mixing device.
5. The air temperature adjusting system, as recited in claim 4, wherein said submersible pump is provided inside said liquid storing box of said gas-liquid separating device.
6. The air temperature adjusting system, as recited in claim 3, wherein said submersible pump works in an intermittently pumping manner.
7. The air temperature adjusting system, as recited in claim 6, wherein said temperature adjusting device comprises an electronic cooling device and/or an electronic heating device.
8. The air temperature adjusting system, as recited in claim 3, further comprising an ultraviolet disinfecting device which is provided in said liquid.
9. The air temperature adjusting system, as recited in claim 3, further comprising a filtering device for filtering off said liquid which is provided at a gas outlet of said gas-liquid separating device.
10. The air temperature adjusting system, as recited in claim 2, wherein said liquid is magnetic fluid; said gas-liquid circulating device comprises an electromagnetic pump and a plurality of pipes respectively connected to respective two ends of said gas-liquid mixing device, said temperature adjusting device or said gas-liquid separating device; said temperature adjusting device is connected between said gas-liquid mixing device and said gas-liquid separating device via said pipes; and said electromagnetic pump is sleeved onto said pipes.
11. The air temperature adjusting system, as recited in claim 10, wherein said temperature adjusting device comprises an electronic cooling device and/or an electronic heating device.
12. The air temperature adjusting system, as recited in claim 1, wherein said liquid is water; said gas-liquid circulating device comprises a submersible pump and a plurality of water pipes respectively connected to respective two ends of said submersible pump, said gas-liquid mixing device, said temperature adjusting device and said gas-liquid separating device; said temperature adjusting device is connected between said gas-liquid mixing device and said gas-liquid separating device via said water pipes; and said submersible pump is provided between two members selected from a group consisting of said gas-liquid mixing device, said temperature adjusting device and said gas-liquid separating device.
13. The air temperature adjusting system, as recited in claim 12, wherein a water inlet of said gas-liquid mixing device has a higher water level than a water outlet of said gas-liquid mixing device.
14. The air temperature adjusting system, as recited in claim 13, wherein said submersible pump is provided inside a liquid storing box of said gas-liquid separating device.
15. The air temperature adjusting system, as recited in claim 12, wherein said submersible pump works in an intermittently pumping manner.
16. The air temperature adjusting system, as recited in claim 15, wherein said temperature adjusting device comprises an electronic cooling device and/or an electronic heating device.
17. The air temperature adjusting system, as recited in claim 12, further comprising an ultraviolet disinfecting device which is provided in said liquid.
18. The air temperature adjusting system, as recited in claim 12, further comprising a filtering device for filtering off said liquid which is provided at a gas outlet of said gas-liquid separating device.
19. The air temperature adjusting system, as recited in claim 1, wherein said liquid is magnetic fluid; said gas-liquid circulating device comprises an electromagnetic pump and a plurality of pipes respectively connected to respective two ends of said gas-liquid mixing device, said temperature adjusting device or said gas-liquid separating device; said temperature adjusting device is connected between said gas-liquid mixing device and said gas-liquid separating device via said pipes; and said electromagnetic pump is sleeved onto said pipes.
20. The air temperature adjusting system, as recited in claim 19, wherein said temperature adjusting device comprises an electronic cooling device and/or an electronic heating device.
US13/878,472 2010-10-09 2011-08-16 Air temperature adjusting system Expired - Fee Related US9459017B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201010503235 2010-10-09
CN201010503235.4A CN101949566B (en) 2010-10-09 2010-10-09 Air temperature regulating system
CN201010503235.4 2010-10-09
PCT/CN2011/078497 WO2012045254A1 (en) 2010-10-09 2011-08-16 Air temperature regulating system

Publications (2)

Publication Number Publication Date
US20130192289A1 US20130192289A1 (en) 2013-08-01
US9459017B2 true US9459017B2 (en) 2016-10-04

Family

ID=43453150

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/878,472 Expired - Fee Related US9459017B2 (en) 2010-10-09 2011-08-16 Air temperature adjusting system

Country Status (3)

Country Link
US (1) US9459017B2 (en)
CN (2) CN101949566B (en)
WO (1) WO2012045254A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11226662B2 (en) * 2017-03-29 2022-01-18 Nec Corporation Management device, management method, and non-transitory program recording medium

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101949566B (en) * 2010-10-09 2014-12-17 黄捷 Air temperature regulating system
CN102967014B (en) * 2012-11-02 2016-05-11 伟盈技术研发(无锡)有限公司 Environment-friendly type constant temperature and humidity water exchange VMC
CN104896628A (en) * 2014-03-04 2015-09-09 湖南省神童电器有限公司 Environmental-protecting and energy-saving ventilating multipurpose electronic air conditioner
CN103994357B (en) * 2014-06-06 2016-06-08 兰卫国 PCB exposure machine ultraviolet LED area light source
CN104061648B (en) * 2014-07-15 2016-05-11 林刚 Double-level evaporation-type conditioner
CN107796070A (en) * 2016-08-31 2018-03-13 杨坤 A kind of method and device of evaporation water
CN112628987B (en) * 2020-12-21 2022-04-19 青岛海尔空调器有限总公司 Purification control method of air conditioner and air conditioner

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2750754A (en) * 1951-02-12 1956-06-19 Schmidt Theodor Emil Apparatus for refrigeration by means of aqueous solutions
US4098854A (en) * 1976-01-23 1978-07-04 Gea Luftkuhlergesellschaft Happel Gmbh & Co. Kg Combined wet and dry liquid cooling system and method
US4415508A (en) * 1977-10-26 1983-11-15 Nippon Shokubai Kagaku Kogyo Co., Ltd. Apparatus for mixing gases
US5084217A (en) * 1989-11-28 1992-01-28 Dodds Diego E F Apparatus and method for controlling the discharge or continuous bleed-off of the cooling water of evaporative coolers
CN1081757A (en) 1992-07-31 1994-02-09 李华聪 A kind of open-type compression refrigerating apparatus
JP2000110270A (en) 1998-10-09 2000-04-18 Sumitomo Constr Co Ltd Roof cooling structure
US6205799B1 (en) * 1999-09-13 2001-03-27 Hewlett-Packard Company Spray cooling system
CN2545519Y (en) 2002-04-02 2003-04-16 郭常林 Underground water central air conditioner
US6990816B1 (en) * 2004-12-22 2006-01-31 Advanced Cooling Technologies, Inc. Hybrid capillary cooling apparatus
US7377492B2 (en) * 2004-08-11 2008-05-27 A Better Power, Llc Hydraulic liquid pumping system
WO2008062845A1 (en) 2006-11-22 2008-05-29 Kaisui Chemical Industry Co., Ltd. Method for cooling/air cooling for structure
CN101949566A (en) 2010-10-09 2011-01-19 刘武强 Air temperature regulating system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08303806A (en) * 1995-03-08 1996-11-22 Gibooni Baruch Supply method of cold air and cold blast device
JP2005074311A (en) * 2003-08-29 2005-03-24 Ricoh Elemex Corp Air cleaner, and air cleaning method
CN101229466A (en) * 2007-11-07 2008-07-30 刘毅 Air purification method using wind and water mixing mechanism
CN201192617Y (en) * 2008-02-04 2009-02-11 南京理工大学 High-efficiency trapping apparatus of micronano dust
CN201476178U (en) * 2009-08-28 2010-05-19 张宇 Split-type air conditioner

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2750754A (en) * 1951-02-12 1956-06-19 Schmidt Theodor Emil Apparatus for refrigeration by means of aqueous solutions
US4098854A (en) * 1976-01-23 1978-07-04 Gea Luftkuhlergesellschaft Happel Gmbh & Co. Kg Combined wet and dry liquid cooling system and method
US4415508A (en) * 1977-10-26 1983-11-15 Nippon Shokubai Kagaku Kogyo Co., Ltd. Apparatus for mixing gases
US5084217A (en) * 1989-11-28 1992-01-28 Dodds Diego E F Apparatus and method for controlling the discharge or continuous bleed-off of the cooling water of evaporative coolers
CN1081757A (en) 1992-07-31 1994-02-09 李华聪 A kind of open-type compression refrigerating apparatus
JP2000110270A (en) 1998-10-09 2000-04-18 Sumitomo Constr Co Ltd Roof cooling structure
US6205799B1 (en) * 1999-09-13 2001-03-27 Hewlett-Packard Company Spray cooling system
CN2545519Y (en) 2002-04-02 2003-04-16 郭常林 Underground water central air conditioner
US7377492B2 (en) * 2004-08-11 2008-05-27 A Better Power, Llc Hydraulic liquid pumping system
US6990816B1 (en) * 2004-12-22 2006-01-31 Advanced Cooling Technologies, Inc. Hybrid capillary cooling apparatus
WO2008062845A1 (en) 2006-11-22 2008-05-29 Kaisui Chemical Industry Co., Ltd. Method for cooling/air cooling for structure
CN101949566A (en) 2010-10-09 2011-01-19 刘武强 Air temperature regulating system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11226662B2 (en) * 2017-03-29 2022-01-18 Nec Corporation Management device, management method, and non-transitory program recording medium

Also Published As

Publication number Publication date
CN103124878B (en) 2015-10-07
CN103124878A (en) 2013-05-29
WO2012045254A1 (en) 2012-04-12
CN101949566A (en) 2011-01-19
CN101949566B (en) 2014-12-17
US20130192289A1 (en) 2013-08-01

Similar Documents

Publication Publication Date Title
US9459017B2 (en) Air temperature adjusting system
KR102099693B1 (en) Methods and systems for mini-split liquid desiccant air conditioning
JP3114448U (en) Total heat recovery air conditioning unit
CN103542467B (en) Air conditioning condensate water utilizing device
US7685835B2 (en) Air conditioning system
CN105627473B (en) A kind of humiture independence control air conditioner system of solar heat driving
CN102022794A (en) Radiation suspended ceiling cooling system capable of independently processing heat and humidity
CN104676782B (en) A kind of solution humidifying air processor of multistage distributary
CN1333206C (en) Heat pump driven energy storage type solution dehumidifying air-conditioning system
CN112197461A (en) Multifunctional dehumidification heat pump for swimming pool
CN102563770A (en) Fresh air handling unit with integrated functions of dehumidification and evaporative cooling and air treatment method of fresh air handling unit
CN106369722B (en) Dual-mode solution humidity-adjusting fresh air conditioning unit and air humidity adjusting and controlling method
CN106440115A (en) Transcritical carbon dioxide circulation and solution dehumidification air temperature and humidity regulation system
CN105916361A (en) Low-consumption spray-type heat pipe cooling complete equipment suitable for communication cabinet
CN211146705U (en) Air conditioning system
CN207268498U (en) Indoor apparatus of air conditioner and air conditioner
JP2008045803A (en) Energy-saving air conditioning system
CN211011626U (en) Heat pump type stepless temperature-adjustable dehumidifying unit
CN211233112U (en) Air conditioning system
CN109425037B (en) Outdoor integrated air conditioner
CN206207620U (en) Embrane method solution wind formula refrigeration plant
CN206207608U (en) Heat exchanger and heat pump with humidity adjusting function
KR200324735Y1 (en) Evaporative air conditioner without outdoor unit using cooling pad and thermoelectric element
CN110686345A (en) Efficient building refrigerating machine room and control method thereof
CN2814209Y (en) Thermal pump driving energy accumulating solution dehumidifying air conditioner system

Legal Events

Date Code Title Description
AS Assignment

Owner name: GOOD COMPLIMENT LIMITED, CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LIU, WUQIANG;REEL/FRAME:030178/0391

Effective date: 20130312

AS Assignment

Owner name: LIU, CHAO, CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GOOD COMPLIMENT LIMITED;REEL/FRAME:039491/0958

Effective date: 20160818

Owner name: GOOD COMPLIMENT LIMITED, CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GOOD COMPLIMENT LIMITED;REEL/FRAME:039491/0958

Effective date: 20160818

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20201004