WO2008059736A1 - Brushless motor - Google Patents

Brushless motor Download PDF

Info

Publication number
WO2008059736A1
WO2008059736A1 PCT/JP2007/071609 JP2007071609W WO2008059736A1 WO 2008059736 A1 WO2008059736 A1 WO 2008059736A1 JP 2007071609 W JP2007071609 W JP 2007071609W WO 2008059736 A1 WO2008059736 A1 WO 2008059736A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
resolver
resolver rotor
magnet
brushless motor
Prior art date
Application number
PCT/JP2007/071609
Other languages
French (fr)
Japanese (ja)
Inventor
Tatsuya Sato
Eiichi Machida
Yoshihiro Nishimura
Atsushi Okamoto
Hirotatsu Ikeno
Yoshihisa Haruishi
Original Assignee
Mitsuba Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuba Corporation filed Critical Mitsuba Corporation
Priority to JP2008544110A priority Critical patent/JP5059021B2/en
Publication of WO2008059736A1 publication Critical patent/WO2008059736A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0421Electric motor acting on or near steering gear
    • B62D5/0424Electric motor acting on or near steering gear the axes of motor and final driven element of steering gear, e.g. rack, being parallel
    • B62D5/0427Electric motor acting on or near steering gear the axes of motor and final driven element of steering gear, e.g. rack, being parallel the axes being coaxial
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/278Surface mounted magnets; Inset magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/06Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices
    • H02K29/12Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices using detecting coils using the machine windings as detecting coil

Definitions

  • the present invention relates to a brushless motor used in an electric power steering apparatus and the like, and more particularly to a structure of a magnet holder that holds a rotor magnet.
  • FIG. 7 is an explanatory diagram showing a schematic configuration of a rack shaft type EPS motor.
  • the magnet 101 is attached to a rotor core 103 that is press-fitted and fixed to the shaft 102.
  • a magnet holder 104 is fixed to the rotor core 103.
  • the magnet 101 is held and fixed to the outer peripheral surface of the rotor core 103 by the magnet holder 104.
  • the resolver rotor 105 is usually fixed to the shaft 102.
  • Spacers 106 and 107 are disposed on both sides of the resolver rotor 105 in the axial direction to prevent the resolver rotor 105 from coming off in the axial direction.
  • Each spacer 106, 107 is fixed to the shaft 102.
  • the resolver rotor 105 is prevented from coming off in the axial direction by the spacers 10 6 and 107.
  • Positioning of the resolver rotor in the rotational direction is performed by providing positioning indexes P on the shaft 102, the spacer 106, and the resolver rotor 105, and combining them. That is, first, the spacer 106 is press-fitted into the shaft 102 while matching the indices P with each other. Next, the spacer 106 and the index P of the resolver rotor 105 are aligned, and the resolver rotor 105 is bonded and fixed to the shaft 102. Further, a spacer 107 is press-fitted into the shaft 102, and the resolver rotor 105 is sandwiched between the spacers 106 and 107 to prevent axial removal.
  • the positioning index P provided on the shaft 102 indicates the reference position of the rotor. Therefore, with this index P as a reference, the rotor core 103 is fixed to the shaft 102 and the magnet holder 104 is fixed to the rotor core 103. Further, the positioning index P of the resolver rotor 105 also indicates the reference position as a single resolver. Therefore, by attaching the magnet holder 104 to the resolver rotor 105 so as to match the index P, the magnet 101 held and fixed to the magnet holder 104 and the resolver rotor 105 are positioned and fixed in a predetermined angular positional relationship. As a result, the magnetic circuit of the motor unit and the resolver are synchronized, and the rotor rotational position using the resonance lever can be detected.
  • Patent Document 1 Japanese Patent Laid-Open No. 2006-87277
  • Patent Document 2 JP-A-2005-20887 Disclosure of the invention
  • An object of the present invention is to improve the positional accuracy between a motor portion and a resolver while reducing the number of parts around the resolver rotor in a brushless motor using a resolver.
  • the brushless motor of the present invention includes a stator core, a stator including a coil wound around the stator core, a rotor shaft that is rotatably arranged with respect to the stator, and a rotor core fixed to the rotor shaft.
  • a resolver including: a rotor provided with a magnet attached to an outer periphery of the rotor core; a resolver rotor attached to the rotor shaft; and a resolver stator disposed outside the resolver rotor; and attached to the rotor And a magnet holder having a magnet holding part for holding and fixing the magnet on the outer periphery of the rotor core, and a resolver rotor connecting part connected to the resolver rotor.
  • a magnet holding part for holding and fixing a magnet to a brushless motor having a stator, a rotor and a resolver, and a resolver port connected to the resolver rotor
  • the magnet and the resolver rotor can be mechanically connected in a predetermined angular positional relationship. For this reason, the positioning accuracy between the magnet and the resolver rotor is improved as compared with the method in which the index is visually adjusted. In addition, since no visual work is required, the assembly workability is improved and the man-hours can be reduced accordingly.
  • a resolver coupling portion that couples the resolver rotor connection portion and the resolver rotor may be provided between the resolver rotor connection portion and the resolver rotor.
  • the resolver coupling portion is provided with a resolver rotor connecting piece formed in the resolver rotor connecting portion and extending in the axial direction, and a fitting portion formed in the resolver rotor and into which the resolver rotor connecting piece is fitted. Also good.
  • the resolver port connecting piece and the magnet are set in a predetermined angular positional relationship, and the fitting portion and the convex portion formed on the outer periphery of the resolver rotor are set in a predetermined angular positional relationship. Also good.
  • a flange portion that abuts the resolver rotor on the rotor shaft and restricts the movement of the resolver rotor in the axial direction may be provided. This prevents the resolver rotor force S flange from coming off and eliminates the need for spacers on the rotor shaft, thereby reducing the number of parts and assembly steps.
  • the resolver rotor connecting portion and the magnet holding portion may be provided so as to be separable.
  • the change can be made only by changing the resolver rotor connecting portion without changing the magnet holding portion.
  • a holder joint portion for joining the resolver rotor connection portion and the magnet holding portion may be provided between the resolver rotor connection portion and the magnet holding portion.
  • the holder joint may be provided with a fitting piece formed in the resolver rotor connecting portion and extending in the axial direction, and a fitting portion formed in the magnet holding and fitted with the fitting piece.
  • the magnet holding portion that holds and fixes the magnet and the resolver rotor are in contact with each other. Since the magnet holder is provided with the connected resolver rotor connection part, the magnet and resolver rotor can be mechanically connected in a predetermined angular positional relationship, and the magnet and resolver rotor can be accurately connected. Can be positioned. In addition, since no visual work is required, the assembly workability is improved, and the man-hours can be reduced correspondingly, and the manufacturing cost can be reduced.
  • the resolver rotor is prevented from coming off by the flange portion, and there is no need to arrange a spacer on the rotor shaft.
  • the number of parts and assembly man-hours can be reduced.
  • the manufacturing cost of the rotor shaft can be reduced.
  • FIG. 1 is a cross-sectional view showing a configuration of a brushless motor that is Embodiment 1 of the present invention.
  • FIG. 2 is a perspective view of a magnet holder.
  • FIG. 3 (a) is a cross-sectional view of the magnetic honoreda along the AA spring in (b), and (b) is a right side view of the magnetic honoreda.
  • FIG. 4 (a) is a side view of the resolver rotor, and (b) is a sectional view thereof.
  • FIG. 5 shows a configuration of a magnet holding portion of a brushless motor that is Embodiment 2 of the present invention, in which (a) is a sectional view thereof and (b) is a side view.
  • FIG. 6 shows a configuration of a magnet holding part of a brushless motor that is Embodiment 2 of the present invention, where (a) is a front view thereof, (b) is a left side view, and (c) is a right side view. is there.
  • FIG. 7 is an explanatory diagram showing a schematic configuration of a rack shaft type EPS motor.
  • FIG. 1 is a cross-sectional view showing a configuration of a brushless motor that is Embodiment 1 of the present invention.
  • the motor 1 shown in FIG. 1 is used as a power source for rack-assisting EPS and has a configuration in which the rack shaft 2 passes through the motor 1.
  • the rotation of the motor 1 is transmitted to the rack shaft 2 via the ball screw mechanism 3 and becomes a steering assist force.
  • the motor 1 has an inner rotor type device configuration in which a stator 11 is disposed outside and a rotor 21 is disposed inside.
  • a resolver 33 is used to detect the rotational position of the rotor 21.
  • Stator 11 includes a housing 12 and a stator core fixed to the inner peripheral side of housing 12
  • the housing 12 is made of iron or the like.
  • An aluminum die-cast housing 41 is attached to the left end of the housing 12 in the figure.
  • the stator core 13 has a structure in which many steel plates are laminated. A plurality of (in this case, nine) teeth are projected from the inner peripheral side of the stator core 13. A coil 14 is wound around a slot (9 slots) formed between the teeth via an insulator 15 made of synthetic resin.
  • Insulators 15 are attached to both ends of the stator core 13.
  • a terminal unit 16 is attached to the left end of the left side (insulator 15a) of the insulator 15 in FIG.
  • the terminal unit 16 has a large number of coil feeding terminals 17 protruding in the radial direction.
  • Each coil feeding terminal 17 is connected to a terminal portion of the coil 14 (a winding start portion or a winding end portion of the coil 14)! Terminal Unit
  • the external connection terminal 18 that is electrically connected to the coil power supply terminal 17 is further provided on the connector 16.
  • a lead wire 19 is connected to the external connection terminal 18.
  • Each coil 14 is appropriately supplied with electric power via a terminal unit 16 from a lead wire 19 connected to an external power source.
  • the rotor 21 is arranged inside the stator 11.
  • the rotor 21 has a configuration in which a cylindrical rotor shaft 22, a rotor core 23, a magnet 24, and a magnet cover 25 are arranged coaxially.
  • a rack shaft 2 is passed through the rotor shaft 22.
  • a cylindrical rotor core 23 is externally mounted on the outer periphery of the rotor shaft 22.
  • a magnet 24 having a 6-pole configuration is held and fixed on the outer periphery of the rotor core 23 by a magnet holder 51 made of synthetic resin.
  • 2 is a perspective view of the magnet holder 51
  • FIG. 3 (a) is a cross-sectional view of the magnet holder 51 along the line AA in FIG. 3 (b)
  • FIG. 2 (b) is a right side view of the magnet holder 51.
  • the magnet holder 51 includes a magnet holding part 52, a rotor shaft fixing part 53, and a resolver rotor connection part 54.
  • the magnet holding part 52 is provided with a base part 55 that is fixed to the rotor shaft 22 together with the rotor shaft fixing part 53, and a holder arm 56 that is formed to project from the base part 55 in the axial direction.
  • the holder arm 56 has a cantilever structure extending in the axial direction from one end side of the base portion 55.
  • the holder arm 56 has a substantially T-shaped cross section. Between the adjacent holder arms 56, the magnet 24 is press-fitted from the axial direction to the free end side of the holder arm 56 (left end side in FIG. 3).
  • the magnet 24 is held and fixed between the outer peripheral surface of the rotor core 23 and the holder arm 56. After the magnet 24 is attached, the magnet cover 25 is externally attached to the outside of the magnet honoreda 51. As a result, the magnet 24 is pressed from the radial direction, and the movement of the magnet 24 in the axial direction is restricted (prevention from coming off).
  • the rotor shaft fixing portion 53 is formed in a cylindrical shape, and is formed integrally with the base portion 55.
  • the inner diameter of the rotor shaft fixing portion 53 is formed slightly smaller than the outer diameter of the rotor shaft 22.
  • the magnet holder 51 is press-fitted and fixed to the outer periphery of the rotor shaft 22 by the rotor shaft fixing portion 53.
  • a resolver rotor connecting piece 57 connected to the resolver rotor 35 of the resolver 33 is provided at the end of the rotor shaft fixing portion 53 (the right end side in FIG. 1 and the upper end side in FIG. 2). Yes.
  • the resolver rotor connecting pieces 57 are formed so as to protrude from the end of the rotor shaft fixing portion 53 in the axial direction, and are formed in three equal portions in the circumferential direction.
  • the resolver rotor connecting piece 57 has a predetermined angular positional relationship with the magnet 24 held and fixed to the magnet holding portion 52.
  • the resolver rotor connecting piece 57 includes a base piece portion 58 projecting from the end surface 53a of the rotor shaft fixing portion 53, and a fitting claw 59 projecting further in the axial direction from the base piece portion 58. Yes.
  • the fitting claw 59 has a smaller circumferential dimension than the base piece 58. Further, a tapered portion 61 is formed at the distal end portion of the fitting claw 59.
  • a housing 31 made of aluminum die casting is attached to the right end side of the housing 12 in the figure.
  • the housing 31 accommodates a bearing 32 that supports the right end side of the rotor 21 and a resolver 33 that detects the rotation of the rotor 21.
  • the resolver 33 includes a resolver stator 34 fixed to the housing 31 side and a resolver rotor 35 fixed to the rotor 21 side.
  • a coil 36 is wound around the resolver stator 34, and an excitation coil and a detection coil are provided.
  • a resolver rotor 35 fixed to the rotor shaft 22 is disposed inside the resolver stator 34.
  • 4A is a side view of the resolver rotor 35
  • FIG. 4B is a cross-sectional view thereof.
  • the resonance lever rotor 35 has a structure in which metal plates are laminated, and convex portions 62 are formed in three directions.
  • the resolver rotor 35 also rotates in the resolver stator 34.
  • the excitation coil of the resolver stator 34 is given a high frequency signal, and the phase of the signal output from the detection coil changes due to the proximity of the convex portion 62.
  • the rotation position of the rotor 21 is detected by comparing this detection signal with the reference signal. Then, based on the rotational position of the rotor 21, the current to the coil 14 is appropriately switched, and the rotor 21 is rotationally driven.
  • the resolver rotor is attached by visual inspection, and a spacer is arranged before and after that to prevent it from falling out. There was also a problem in work efficiency.
  • the resolver coupling portion 63 that couples the magnet holder 51 and the resolver rotor 35 is provided between the magnet holder 51 and the resolver rotor 35 so that the resolver rotor 35 can be positioned with high accuracy.
  • the rotor shaft 22 has a flange portion 64, which does not use a spacer. In addition, the resolver rotor 35 can be prevented from coming off.
  • the resolver rotor 35 is formed with a shaft through hole 65 through which the rotor shaft 22 is passed.
  • a fitting groove (fitting portion) 66 is notched in the shaft through hole 65 along the axial direction.
  • the fitting grooves 66 correspond to the resolver rotor connecting piece 57 and are arranged in three equal places in the circumferential direction.
  • the resolver rotor connecting piece 57 and the fitting groove 66 form a resolver coupling portion 63.
  • the fitting groove 66 is formed so as to have a predetermined angular positional relationship with the convex portion 62 of the resolver rotor 35.
  • the dimension in the circumferential direction of the fitting groove 66 is slightly smaller than the dimension in the circumferential direction of the fitting claw 59, and the fitting claw 59 is attached so as to be lightly press-fitted into the fitting groove 66.
  • a flange portion 64 is formed near the right end of the rotor shaft 22.
  • the flange portion 64 is formed with a larger diameter than other portions of the rotor shaft 22.
  • the resolver rotor 35 is attached to the rotor shaft 22.
  • the resolver rotor 35 is attached in such a manner that the rotor shaft 22 is inserted into the shaft through hole 65 and the resolver rotor 35 is press-fitted into the rotor shaft 22.
  • the resolver rotor 35 is press-fitted to a position where it abuts on the flange portion 64.
  • the magnet holder 51 is press-fitted and fixed to the rotor shaft 22.
  • the fitting claw 59 of the resolver rotor connecting piece 57 is lightly press-fitted into the fitting groove 66 of the resolver rotor 35.
  • the fitting claw 59 has a predetermined angular positional relationship with respect to the magnet 24 held and fixed to the magnet holder 51. Further, the fitting groove 66 has a predetermined angular position relationship with the convex portion 62 of the resolver rotor 35. Therefore, by attaching the fitting claw 59 to the fitting groove 66, the magnet 24 and the resolver rotor 35 are connected in a predetermined angular positional relationship. That is, the positional relationship between the magnet 24 and the resolver rotor 35 is mechanically set by the fitting claw 59 and the fitting groove 66. For this reason, in the motor 1, the positioning accuracy can be dramatically improved as compared with the method in which the index is visually adjusted. No visual work required Therefore, the assembly workability is also improved, and the man-hours can be reduced accordingly.
  • the adjustment angle force S of the resolver stator 34 at the time of final position adjustment of the resolver 33 is reduced, and the resolver 33 Adjustment work becomes easy.
  • the long hole provided for adjusting the resolver can be made small, and the dimensions of the long hole forming bracket and the like can be reduced. Since the bracket for forming the long hole is in a position where it can easily interfere with other parts in the motor, it is preferable that this portion be as small as possible. Therefore, if the circumferential dimension of the long hole is reduced and the bracket is made smaller, a corresponding space will be created, improving the layout in the motor and reducing the overall size of the motor. It becomes possible.
  • the resolver rotor 35 is attached on the rotor shaft 22 so as to be sandwiched between the flange portion 64 and the base piece portion 58 of the resolver rotor connecting piece 57. Therefore, the motor 1 can prevent the resolver rotor 35 from coming off in the axial direction without using a special spacer. For this reason, the number of parts can be reduced as compared with the conventional brushless motor, and the spacer assembly work is not required, so that the productivity can be improved and the cost can be reduced. Furthermore, since the dimensional accuracy of the portion where the spacer of the rotor shaft 22 is fixed is relaxed, the cost can be reduced accordingly.
  • the weight and inertia of the spacer can be reduced, the motor can be reduced in weight, and the control response can be improved. For this reason, the product value as an EPS motor is also improved.
  • the removal of the stopper by the spacer makes it possible to assemble the resolver rotor 35, magnet holder 51, rotor core 23, etc. from the same direction with respect to the rotor shaft 22, which also improves workability. It is done. Since the outer dimension accuracy of the flange portion 64 may be relatively rough, the cost reduction due to the dimensional accuracy relaxation of the spacer fixing portion is greater than the cost increase associated with the formation of the flange portion 64.
  • a housing 41 is attached to the left end side of the housing 12.
  • a ball screw mechanism 3 is incorporated in the housing 41.
  • the ball screw mechanism 3 includes a nut part 42, a screw part 43 formed on the outer periphery of the rack shaft 2, and a large number of balls 44 interposed between the nut part 42 and the screw part 43. ing.
  • the rack shaft 2 is supported so as to reciprocate in the left-right direction by the nut portion 42 in a state where rotation around the shaft is restricted. It moves in the left-right direction with the rotation of.
  • the nut portion 42 is fixed to the left end portion of the rotor shaft 22, and is rotatably held by an angular bearing 45 fixed to the housing 41.
  • the angular bearing 45 is in a state where the axial movement is restricted between the bearing fixing rings 46a and 46b screwed into the opening of the housing 41 and the step 47 formed inside the housing 41. It is fixed.
  • the axial movement between the nut portion 42 and the angular bearing 45 is caused by a bearing fixing ring 48 screwed into the left end of the nut portion 42 and a step portion 49 formed on the outer periphery of the nut portion 42. Be regulated.
  • the steering handle is first operated to rotate the steering shaft, and the rack shaft 2 is moved in a direction corresponding to the rotation to perform a steering operation.
  • a steering torque sensor (not shown) is activated by this operation, electric power is supplied from the knotter to the coil 14 via the lead wire according to the detected torque.
  • the motor 1 operates and the rotor shaft 22 rotates.
  • the nut portion 42 coupled therewith rotates, and the axial assisting force is transmitted to the rack shaft 2 by the action of the ball screw mechanism 3. Thereby, the movement of the rack shaft 2 is promoted, and the steering force is assisted.
  • the brushless motor 71 of the second embodiment (hereinafter abbreviated as “motor 71”) has the same basic configuration as the motor 1 of the first embodiment, but the magnet holder 72 has a divided structure, which improves design flexibility. It is illustrated.
  • the same members and portions as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • EPS brushless motors are required to be highly flexible and compatible with a wide variety of vehicle body lineups.
  • brushless motors are still more expensive than brushed motors, and how to manufacture motors with a wide variety of specifications, including methods for processing single parts, has become a major issue.
  • the motor energization timing needs to be changed as appropriate according to various specifications.
  • the specifications of the body left and right of the handle, etc.
  • various specifications are often supported by changing the energization timing.
  • Such a change in the energization timing can be arbitrarily made by design depending on the configuration of the stator side and the rotor side, and the following change method is known.
  • the resolver stator is integrated with the connector that connects the sensor wires, so the structure of the resolver stator must be changed in order not to change the sensor connector pull-out position.
  • the stator core is integrated with the external connection terminal (power connector) via the terminal unit. Therefore, in order not to change the drawing position of the external connection terminal, the structure of the terminal unit is not changed. Need to change. In other words, when the energization timing is changed on the stator side, the resolver stator and terminal unit must be changed significantly.
  • the angular positional relationship between the magnet 24 and the resolver rotor 35 can be easily changed by changing the position of the resolver rotor connecting piece 57 formed in the magnet holder 51 in the circumferential direction. can do. Therefore, when the change on the stator side is compared with the change on the rotor side, the specification on the rotor side can be changed more easily.
  • the magnet holder 72 is divided into two in the axial direction, and the magnet holder is shared, thereby realizing a reduction in mold cost.
  • the magnet holder 72 is composed of two parts, that is, a magnet holding part 73 and a resolver rotor connecting part 74, and both are integrally joined by a holder joining part 75.
  • FIG. 5 shows the configuration of the magnet holding portion 73
  • FIG. 6 shows the configuration of the resolver rotor connecting portion 74.
  • the magnet holding portion 73 has a configuration in which the lower half of the magnet holder 51 of FIG. 2 is made independent, and a base portion 76 and a holder arm 77 are formed.
  • the holder arm 77 extends from the base portion 76 in the axial direction.
  • the holder arm 77 has a substantially T-shaped cross section. Between the adjacent holder arms 77, the magnet 24 is pressed into the axial force. As a result, the magnet 24 is held and fixed between the outer peripheral surface of the rotor core 23 and the holder arm 77.
  • the base portion 76 is formed in a ring shape.
  • the base portion 76 is formed with a shaft through hole 78 through which the rotor shaft 22 is passed.
  • a fitting groove 79 is formed around the shaft through hole 78 along the axial direction. The fitting groove 79 is equally divided into three force points in the circumferential direction.
  • a resolver rotor connecting piece 57 is provided on the right end side of the resolver rotor connecting portion 74 in FIG. 6 (a).
  • the resolver rotor connecting pieces 57 are projected from the end of the resolver rotor connecting portion 74 in the axial direction, and are formed in three equal portions in the circumferential direction.
  • the resolver rotor connecting piece 57 includes a base piece portion 58 and a fitting claw 59 and is lightly press-fitted into the fitting groove 66 of the resolver rotor 35.
  • a fitting piece 81 used for connection to the magnet holding portion 73 is also provided on the left end side of the resolver rotor connecting portion 74 so as to project.
  • the fitting pieces 81 are arranged in three equal positions in the circumferential direction corresponding to the fitting grooves 79 of the magnet holding portion 73.
  • a holder joint 75 is formed by the fitting groove 79 and the fitting piece 81.
  • the circumferential dimension of the fitting piece 81 is slightly larger than the circumferential dimension of the fitting groove 79.
  • the resolver rotor connecting portion 74 is attached to the magnet holding portion 73 in such a manner that the fitting piece 81 is lightly press-fitted into the fitting groove 79.
  • the energization timing can be changed only by adjusting the angle of the position of the resolver rotor connecting piece 57 in the resolver rotor connecting portion 74 in the circumferential direction. It can be performed. Therefore, it is possible to respond to a wide variety of specifications only by changing the resolver rotor connection part 74, and there is no need for a large and complicated new mold when changing specifications, and it is possible to flexibly respond to many vehicle body lineups with cheaper parts.
  • the power S can be.
  • the resolver rotor connecting portion 74 for newly producing a mold can be formed with a simple mold divided into upper and lower parts because of a simple shape without an undercut portion. Therefore, according to the motor of the present invention, it is possible to provide a product excellent in cost performance with reduced mold costs.
  • the resolver rotor connecting portion 74 can be manufactured by cutting without producing a mold, it is possible to shorten the lead time for producing a prototype when considering a small production such as a prototype. It becomes possible.
  • the magnet holder with a short magnetic circuit length can be used to hold the magnet of a long motor sufficiently, it can be shortened. It is sufficient to make only the magnet holder. Therefore, the part specifications can be reduced correspondingly, and the cost can be further reduced.
  • the above-described embodiment shows a configuration in which the resolver rotor connecting piece 57 and the fitting groove 66 form the resolver coupling portion 63, and the fitting groove 79 and the fitting piece 81 form the holder joint portion 75.
  • the unevenness is arranged on either side of the force S, the joint 63, and the joint 75. It can be changed as appropriate.
  • a pin may be planted on the resolver rotor 35 side, and a notch hole, a groove, or the like into which the pin can be fitted may be provided in the magnet honorada 51.
  • the concave-convex relationship at the holder joint 75 may be set in reverse.
  • the configuration in which both the spacers on both sides of the resolver rotor are eliminated is shown.
  • FIG. 1 of the resolver rotor 35 in which the flange portion 64 is not provided only the spacer on the right side is provided. It may be arranged.
  • the magnet holders 51 and 71 may be configured to fix the magnet holders 51 and 71 to the rotor core 23 with the force S configured to be fixed to the rotor shaft 22.
  • the force S shown in the example in which the stator according to the present invention is used in a brushless motor used as an EPS drive source the stator is not limited to the EPS brushless motor, It can be widely applied to brushless motors for other purposes.
  • the present invention is widely applicable to general brushless motors.
  • the present invention can be applied to other types of EPS motors such as the force S shown for the brushless motor used in the rack assist type EPS and the column assist type.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Brushless Motors (AREA)
  • Power Steering Mechanism (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

A brushless motor (1) is provided with a magnet holding section (52) for holding/fixing a magnet, and a magnet holder (51) having a resolver rotor connecting section (54) connected to a resolver rotor (35). The resolver rotor connecting section (54) and the resolver rotor (35) are coupled with each other by a resolver coupling section (63). The resolver coupling section (63) is composed of a resolver rotor connecting piece (57), which is formed at the resolver rotor connecting section (54), and a fitting groove (66), which is formed on the resolver rotor (35). In a fitting groove (66), a fitting claw (59) of the resolver rotor connecting piece (57) is fitted with pressure and fixed, and the resolver rotor (35) and the magnet holder (51) are connected in a prescribed angular position relation. A rotor shaft (22) is provided with a flange section (64) for preventing removal of the resolver rotor (35).

Description

明 細 書  Specification
ブラシレスモータ 技術分野  Brushless motor technology
[0001] 本発明は、電動パワーステアリング装置等に使用されるブラシレスモータに関し、特 に、ロータマグネットを保持するマグネットホルダの構造に関する。  TECHNICAL FIELD [0001] The present invention relates to a brushless motor used in an electric power steering apparatus and the like, and more particularly to a structure of a magnet holder that holds a rotor magnet.
背景技術  Background art
[0002] 自動車等の操舵力補助のため、近年多くの車両にいわゆるパワーステアリング装 置が装備されている。このようなパワーステアリング装置としては、近年、エンジン負 荷軽減や重量低減等の観点から、電気式の動力操舵装置(いわゆる電動パワーステ ァリング装置)を搭載した車両が増大してレ、る。この電動パワーステアリング装置(以 下、 EPSと略記する)では、狭いボンネット空間内などに装置を配置する関係から、そ の駆動源であるモータにも小型化、高性能化が要求されている。従来、このようなモ ータとしては、ブラシ付の DCモータが多く用いられてきた力 S、昨今では、制御技術の 向上も相俟って、小型高性能化の点で優れたブラシレスモータの採用が増大してい  In order to assist the steering force of automobiles and the like, many vehicles have been equipped with so-called power steering devices in recent years. As such power steering devices, in recent years, vehicles equipped with electric power steering devices (so-called electric power steering devices) are increasing from the viewpoint of reducing engine load and weight. In this electric power steering device (hereinafter abbreviated as EPS), the motor, which is the driving source, is required to be smaller and have higher performance due to the arrangement of the device in a narrow bonnet space. Conventionally, as such a motor, a brushed DC motor has been used in many cases, and nowadays, with the improvement of control technology, a brushless motor that is superior in terms of miniaturization and high performance has been developed. Adoption is increasing
[0003] 一方、ブラシレスモータでは、ロータを回転駆動させるには、ロータの回転位置を検 出し、検出したロータ回転位置に基づいて、ステータ側のコイル (ステータコイル)を 順次励磁する必要がある。ロータの回転位置検出には、従来より、エンコーダやホー ル IC等を用いた検出装置が使用されている。近年、ブラシレスモータの高性能化.低 騒音化の要請から、回転位置検出にも分解能の高いセンサが求められ、非接触回 転センサのひとつであるレゾルバの使用も増加している。レゾルバは、高温や振動環 境下に強ぐ構造がシンプルで故障にくいことから、車載用のモータ、特に、 EPSへ の使用が増大している。 On the other hand, in a brushless motor, in order to rotationally drive the rotor, it is necessary to detect the rotational position of the rotor and sequentially excite the stator side coil (stator coil) based on the detected rotor rotational position. For detecting the rotational position of the rotor, detection devices using encoders, hole ICs, etc. have been used. In recent years, due to the demand for higher performance and lower noise in brushless motors, sensors with high resolution are also required for rotational position detection, and the use of resolvers, one of non-contact rotational sensors, is increasing. Resolvers have a simple structure that is resistant to high temperatures and vibration environments and are less likely to break down. Therefore, the use of resolvers in in-vehicle motors, especially EPS, is increasing.
[0004] このレゾルバに使用に際しては、高い精度でのロータ回転位置の検出が求められ ており、レゾルバ精度向上のためには、モータ部とレゾルバの磁気回路が同期するこ とが重要となる。そして、両者の磁気回路が同期するには、モータ部分とレゾルバと の間の位置精度が重要である。このため、モータ—レゾルバ間の位置精度を決める レゾルバロータとモータ部分のロータマグネットとの間の位置関係には、高い精度が 求められる。特に、コスト低減の観点から、ロータにセグメントマグネットを使用したタイ プのモータでは、まず、ロータコアに対するマグネットの位置決めを行う必要があり、 マグネットの固定を兼ねたマグネットホルダが使用されている。 [0004] When this resolver is used, it is required to detect the rotor rotational position with high accuracy. In order to improve the resolver accuracy, it is important that the motor circuit and the magnetic circuit of the resolver are synchronized. And in order for both magnetic circuits to synchronize, the positional accuracy between a motor part and a resolver is important. Therefore, the position accuracy between the motor and resolver is determined. High accuracy is required for the positional relationship between the resolver rotor and the rotor magnet of the motor portion. In particular, from the viewpoint of cost reduction, in the type of motor using a segment magnet for the rotor, it is necessary to first position the magnet with respect to the rotor core, and a magnet holder that also serves to fix the magnet is used.
[0005] 図 7は、ラック軸タイプの EPS用モータの概略構成を示す説明図である。図 7に示 すように、マグネット 101は、シャフト 102に圧入固定されたロータコア 103に取り付けら れる。ロータコア 103には、マグネットホルダ 104が固定されている。マグネット 101は、 マグネットホルダ 104によって、ロータコア 103の外周面に保持 '固定される。一方、レ ゾルバロータ 105は、通常、シャフト 102に固定されている。レゾルバロータ 105の軸方 向の両側には、軸方向の抜け止めのため、スぺーサ 106, 107が配置されている。各ス ぺーサ 106, 107は、シャフト 102に固定されている。レゾルバロータ 105は、スぺーサ 10 6, 107によって軸方向に抜け止めされる。  FIG. 7 is an explanatory diagram showing a schematic configuration of a rack shaft type EPS motor. As shown in FIG. 7, the magnet 101 is attached to a rotor core 103 that is press-fitted and fixed to the shaft 102. A magnet holder 104 is fixed to the rotor core 103. The magnet 101 is held and fixed to the outer peripheral surface of the rotor core 103 by the magnet holder 104. On the other hand, the resolver rotor 105 is usually fixed to the shaft 102. Spacers 106 and 107 are disposed on both sides of the resolver rotor 105 in the axial direction to prevent the resolver rotor 105 from coming off in the axial direction. Each spacer 106, 107 is fixed to the shaft 102. The resolver rotor 105 is prevented from coming off in the axial direction by the spacers 10 6 and 107.
[0006] また、レゾルバロータの回転方向の位置決めは、シャフト 102,スぺーサ 106,レゾル ノ ロータ 105のそれぞれに位置決め指標 Pを設け、それらを合わせることによって行 われる。すなわち、まず、互いの指標 Pを合せつつ、シャフト 102にスぺーサ 106を圧 入する。次に、スぺーサ 106とレゾルバロータ 105の指標 Pを合わせ、レゾルバロータ 1 05をシャフト 102に接着固定する。さらに、シャフト 102にスぺーサ 107を圧入し、レゾル バロータ 105をスぺーサ 106, 107にて挟み込み、軸方向の抜け止めを行う。  [0006] Positioning of the resolver rotor in the rotational direction is performed by providing positioning indexes P on the shaft 102, the spacer 106, and the resolver rotor 105, and combining them. That is, first, the spacer 106 is press-fitted into the shaft 102 while matching the indices P with each other. Next, the spacer 106 and the index P of the resolver rotor 105 are aligned, and the resolver rotor 105 is bonded and fixed to the shaft 102. Further, a spacer 107 is press-fitted into the shaft 102, and the resolver rotor 105 is sandwiched between the spacers 106 and 107 to prevent axial removal.
[0007] この場合、シャフト 102に設けられた位置決め指標 Pは、ロータの基準位置を示して いる。そこで、この指標 Pを基準として、ロータコア 103はシャフト 102に、マグネットホル ダ 104はロータコア 103にそれぞれ固定される。また、レゾルバロータ 105の位置決め 指標 Pも、レゾルバ単体としての基準位置を示している。従って、指標 Pを合わせる形 でマグネットホルダ 104ゃレゾルバロータ 105を取り付けることにより、マグネットホルダ 104に保持.固定されたマグネット 101とレゾルバロータ 105が、所定の角度位置関係 にて位置決め固定される。これにより、モータ部とレゾルバの磁気回路が同期し、レゾ ノレバを用いたロータ回転位置の検出が可能となる。  In this case, the positioning index P provided on the shaft 102 indicates the reference position of the rotor. Therefore, with this index P as a reference, the rotor core 103 is fixed to the shaft 102 and the magnet holder 104 is fixed to the rotor core 103. Further, the positioning index P of the resolver rotor 105 also indicates the reference position as a single resolver. Therefore, by attaching the magnet holder 104 to the resolver rotor 105 so as to match the index P, the magnet 101 held and fixed to the magnet holder 104 and the resolver rotor 105 are positioned and fixed in a predetermined angular positional relationship. As a result, the magnetic circuit of the motor unit and the resolver are synchronized, and the rotor rotational position using the resonance lever can be detected.
特許文献 1:特開 2006-87277号公報  Patent Document 1: Japanese Patent Laid-Open No. 2006-87277
特許文献 2:特開 2005-20887号公報 発明の開示 Patent Document 2: JP-A-2005-20887 Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] しかしながら、前述のようなモータ構成の場合、レゾルバロータの取り付けに当たり、 スぺーサが 2個必要となる。このため、部品点数が多くなり、コストアップの要因となる という問題があった。また、モータ部分とレゾルバとの間の位置精度を高めるには、各 部品ごとに高い寸法精度が求められる。特に、部品点数が多い構成の場合、組み付 け工程も増大し、その都度高い組付精度が要求されるため、コスト的にも不利となると いう問題があった。 [0008] However, in the case of the motor configuration as described above, two spacers are required for mounting the resolver rotor. For this reason, there is a problem that the number of parts increases, resulting in an increase in cost. In addition, high dimensional accuracy is required for each component in order to increase the positional accuracy between the motor part and the resolver. In particular, in the case of a configuration with a large number of parts, the assembling process is increased, and a high assembling accuracy is required each time, and there is a problem that it is disadvantageous in terms of cost.
[0009] さらに、各部品の組み付けに際し、位置決め指標を基準として、 目視にて作業を行 うため、組み付け精度が低くなるという問題があった。加えて、 目視による手作業のた め、量産性向上の妨げともなるという問題もあった。特に、部品点数が多い構成の場 合、組み付け誤差が積み上がるため、モータ部分とレゾルバとの間の位置精度向上 が難しぐ作業工数も増大する。このため、ロータ位置検出精度向上や製造コスト削 減の足かせとなるという問題あり、その改善が求められていた。  [0009] Furthermore, when assembling each part, there is a problem that the assembling accuracy is lowered because the work is performed visually with reference to the positioning index. In addition, there was a problem that it was a hindrance to the improvement of mass productivity because of the manual work by visual inspection. In particular, in the case of a configuration with a large number of parts, assembly errors accumulate, and the work man-hours that make it difficult to improve the positional accuracy between the motor part and the resolver also increase. For this reason, there is a problem in that it increases the rotor position detection accuracy and reduces manufacturing costs, and there has been a need for improvement.
[0010] 本発明の目的は、レゾルバを用いたブラシレスモータにおいて、レゾルバロータ周り の部品点数を削減しつつ、モータ部分とレゾルバとの間の位置精度の向上を図るこ とにある。  An object of the present invention is to improve the positional accuracy between a motor portion and a resolver while reducing the number of parts around the resolver rotor in a brushless motor using a resolver.
課題を解決するための手段  Means for solving the problem
[0011] 本発明のブラシレスモータは、ステータコアと、前記ステータコアに巻装されたコィ ルとを備えるステータと、前記ステータに対し回転自在に配置され、ロータシャフトと、 前記ロータシャフトに固定されたロータコアと、前記ロータコアの外周に取り付けられ たマグネットとを備えるロータと、前記ロータシャフトに取り付けられたレゾルバロータと 、前記レゾルバロータの外側に配置されたレゾルバステータとを備えるレゾルバと、前 記ロータに取り付けられ、前記マグネットを前記ロータコアの外周に保持 ·固定するマ グネット保持部と、前記レゾルバロータと接続されるレゾルバロータ接続部とを備える マグネットホルダとを有することを特徴とする。  [0011] The brushless motor of the present invention includes a stator core, a stator including a coil wound around the stator core, a rotor shaft that is rotatably arranged with respect to the stator, and a rotor core fixed to the rotor shaft. A resolver including: a rotor provided with a magnet attached to an outer periphery of the rotor core; a resolver rotor attached to the rotor shaft; and a resolver stator disposed outside the resolver rotor; and attached to the rotor And a magnet holder having a magnet holding part for holding and fixing the magnet on the outer periphery of the rotor core, and a resolver rotor connecting part connected to the resolver rotor.
[0012] 本発明にあっては、ステータ、ロータ及びレゾルバを備えたブラシレスモータに、マ グネットを保持 ·固定するマグネット保持部と、レゾルバロータと接続されるレゾルバ口 ータ接続部とを備えるマグネットホルダを設けることにより、マグネットとレゾルバロータ を所定の角度位置関係にて機械的に接続できる。このため、 目視にて指標を合わせ る方式に比して、マグネット—レゾルバロータ間の位置決め精度が向上する。また、 目視作業が不要なため、組付作業性も向上し、その分、工数の削減も図られる。 [0012] In the present invention, a magnet holding part for holding and fixing a magnet to a brushless motor having a stator, a rotor and a resolver, and a resolver port connected to the resolver rotor By providing a magnet holder provided with a data connector, the magnet and the resolver rotor can be mechanically connected in a predetermined angular positional relationship. For this reason, the positioning accuracy between the magnet and the resolver rotor is improved as compared with the method in which the index is visually adjusted. In addition, since no visual work is required, the assembly workability is improved and the man-hours can be reduced accordingly.
[0013] 前記ブラシレスモータにおいて、前記レゾルバロータ接続部と前記レゾルバロータと の間に、前記レゾルバロータ接続部と前記レゾルバロータを結合するレゾルバ結合 部を設けても良い。この場合、前記レゾルバ結合部に、前記レゾルバロータ接続部に 形成され軸方向に延びるレゾルバロータ接続片と、前記レゾルバロータに形成され前 記レゾルバロータ接続片が嵌合する嵌合部とを設けても良い。また、前記レゾルバ口 ータ接続片と前記マグネットとを所定の角度位置関係に設定すると共に、前記嵌合 部とレゾルバロータの外周に形成された凸部とを所定の角度位置関係に設定しても 良い。 [0013] In the brushless motor, a resolver coupling portion that couples the resolver rotor connection portion and the resolver rotor may be provided between the resolver rotor connection portion and the resolver rotor. In this case, the resolver coupling portion is provided with a resolver rotor connecting piece formed in the resolver rotor connecting portion and extending in the axial direction, and a fitting portion formed in the resolver rotor and into which the resolver rotor connecting piece is fitted. Also good. Further, the resolver port connecting piece and the magnet are set in a predetermined angular positional relationship, and the fitting portion and the convex portion formed on the outer periphery of the resolver rotor are set in a predetermined angular positional relationship. Also good.
[0014] 加えて、前記ロータシャフトに、前記レゾルバロータが当接し、前記レゾルバロータ の軸方向への移動を規制するフランジ部を設けても良い。これにより、レゾルバロータ 力 Sフランジ部によって抜け止めされ、ロータシャフトにスぺーサを配する必要がなくな り、その分、部品点数や組付工数が削減される。  [0014] In addition, a flange portion that abuts the resolver rotor on the rotor shaft and restricts the movement of the resolver rotor in the axial direction may be provided. This prevents the resolver rotor force S flange from coming off and eliminates the need for spacers on the rotor shaft, thereby reducing the number of parts and assembly steps.
[0015] 一方、前記レゾルバロータ接続部と前記マグネット保持部を分離可能に設けても良 い。これにより、通電タイミングの変更等の仕様変更に際し、マグネット保持部を変更 することなぐレゾルバロータ接続部の変更のみで対応できる。このため、大型で複雑 な新規金型が不要となり、より安価な部品にて多くの車体ラインナップに柔軟に対応 可能となる。この場合、前記レゾルバロータ接続部と前記マグネット保持部との間に、 前記レゾルバロータ接続部と前記マグネット保持部を接合するホルダ接合部を設け ても良い。また、前記ホルダ接合部に、前記レゾルバロータ接続部に形成され軸方向 に延びる嵌合片と、前記マグネット保持に形成され前記嵌合片が嵌合する嵌合部と を設けても良い。  On the other hand, the resolver rotor connecting portion and the magnet holding portion may be provided so as to be separable. As a result, when the specification is changed, such as changing the energization timing, the change can be made only by changing the resolver rotor connecting portion without changing the magnet holding portion. This eliminates the need for large and complex new molds, and allows flexible support for many vehicle body lineups with less expensive parts. In this case, a holder joint portion for joining the resolver rotor connection portion and the magnet holding portion may be provided between the resolver rotor connection portion and the magnet holding portion. The holder joint may be provided with a fitting piece formed in the resolver rotor connecting portion and extending in the axial direction, and a fitting portion formed in the magnet holding and fitted with the fitting piece.
発明の効果  The invention's effect
[0016] 本発明のブラシレスモータによれば、ステータ、ロータ及びレゾルバを備えたブラシ レスモータにて、マグネットを保持 ·固定するマグネット保持部と、レゾルバロータと接 続されるレゾルバロータ接続部とを備えるマグネットホルダを設けたので、マグネットと レゾルバロータを、所定の角度位置関係にて機械的に接続することができ、マグネッ トとレゾルバロータの間を高精度に位置決めすることができる。また、 目視作業が不要 なため、組付作業性も向上し、その分、工数の削減を図ることも可能となり、製造コス トを低減させることが可能となる。 [0016] According to the brushless motor of the present invention, in the brushless motor including the stator, the rotor, and the resolver, the magnet holding portion that holds and fixes the magnet and the resolver rotor are in contact with each other. Since the magnet holder is provided with the connected resolver rotor connection part, the magnet and resolver rotor can be mechanically connected in a predetermined angular positional relationship, and the magnet and resolver rotor can be accurately connected. Can be positioned. In addition, since no visual work is required, the assembly workability is improved, and the man-hours can be reduced correspondingly, and the manufacturing cost can be reduced.
[0017] また、ロータシャフトに、レゾルバロータの軸方向への移動を規制するフランジ部を 設けることにより、レゾルバロータがフランジ部によって抜け止めされ、ロータシャフト にスぺーサを配する必要がなくなり、その分、部品点数や組付工数を削減することが 可能となる。また、ロータシャフトのスぺーサを固定していた部位の寸法精度も緩和さ れるため、ロータシャフトの製造コストも削減できる。  [0017] Further, by providing the rotor shaft with a flange portion that restricts the movement of the resolver rotor in the axial direction, the resolver rotor is prevented from coming off by the flange portion, and there is no need to arrange a spacer on the rotor shaft. As a result, the number of parts and assembly man-hours can be reduced. In addition, since the dimensional accuracy of the portion where the spacer of the rotor shaft is fixed is relaxed, the manufacturing cost of the rotor shaft can be reduced.
[0018] さらに、レゾルバロータ接続部とマグネット保持部を分離可能に設けることにより、通 電タイミングの変更等の仕様変更に際し、マグネット保持部を変更することなぐレゾ ノレバロータ接続部の変更のみで対応することが可能となる。このため、金型を新規に 製造する場合も、マグネット保持部用のものだけで足り、大型で複雑な新規金型を製 作する必要がなぐより安価な部品にて多くの車体ラインナップに柔軟に対応すること が可能となる。  [0018] Furthermore, by providing the resolver rotor connecting portion and the magnet holding portion in a separable manner, it is possible to change the specification, such as changing the conduction timing, only by changing the resonance lever rotor connecting portion without changing the magnet holding portion. It becomes possible. For this reason, even when manufacturing a new mold, it is sufficient to use only the magnet holding part, and it is possible to flexibly add to a large body lineup with cheaper parts that do not require the production of a large and complex new mold. It is possible to respond.
図面の簡単な説明  Brief Description of Drawings
[0019] [図 1]本発明の実施例 1であるブラシレスモータの構成を示す断面図である。  FIG. 1 is a cross-sectional view showing a configuration of a brushless motor that is Embodiment 1 of the present invention.
[図 2]マグネットホルダの斜視図である。  FIG. 2 is a perspective view of a magnet holder.
[図 3] (a)は(b)の A— A泉に沿ったマグネットホノレダの断面図、(b)はマグネットホノレ ダの右側面図である。  [Fig. 3] (a) is a cross-sectional view of the magnetic honoreda along the AA spring in (b), and (b) is a right side view of the magnetic honoreda.
[図 4] (a)はレゾルバロータの側面図、(b)はその断面図である。  [FIG. 4] (a) is a side view of the resolver rotor, and (b) is a sectional view thereof.
[図 5]本発明の実施例 2であるブラシレスモータのマグネット保持部の構成を示してお り、(a)はその断面図、(b)は側面図である。  FIG. 5 shows a configuration of a magnet holding portion of a brushless motor that is Embodiment 2 of the present invention, in which (a) is a sectional view thereof and (b) is a side view.
[図 6]本発明の実施例 2であるブラシレスモータのマグネット保持部の構成を示してお り、(a)はその正面図、(b)は左側面図、(c)は右側面図である。  FIG. 6 shows a configuration of a magnet holding part of a brushless motor that is Embodiment 2 of the present invention, where (a) is a front view thereof, (b) is a left side view, and (c) is a right side view. is there.
[図 7]ラック軸タイプの EPS用モータの概略構成を示す説明図である。  FIG. 7 is an explanatory diagram showing a schematic configuration of a rack shaft type EPS motor.
符号の説明 ブラシレスモータ 2 ラック車由 Explanation of symbols Brushless motor 2 rack car
ボールねじ機構 11 ステータ  Ball screw mechanism 11 Stator
13 ステータコア  13 Stator core
15 インシュレータ 15 Insulator
a インシユレータ 16 ターミナノレュニ a Insulator 16 Terminano Reuni
コイル給電端子 18 外部接続端子  Coil feed terminal 18 External connection terminal
リード線 21 ロータ  Lead wire 21 Rotor
ロー 23 ロータコア  Low 23 rotor core
25 マグネットカバー  25 Magnet cover
32 ベアリング  32 bearings
34 レゾルバステータ  34 Resolver stator
ータ 36 コイル  36 coils
42 ナツ卜部  42 Natsu Isobe
スクリュー部 44 ボーノレ  Screw part 44 Bonore
アンギュラーベアリング 46a,46b ベアリング固定用リング 段部 48 ベアリング固定用リング 段部 51 マグネットホノレダ  Angular bearing 46a, 46b Bearing fixing ring Step 48 Bearing fixing ring Step 51 Magnet Honoreda
マグネット保持部 53 ロータシャフト固定部a 面 54 レゾルバロータ接続部  Magnet holder 53 Rotor shaft fixing part a surface 54 Resolver rotor connection part
ベース部 56 ホノレダアーム  Base 56 Honoreda Arm
レゾルバロータ接続片 58 基片部  Resolver rotor connection piece 58 Base piece
嵌合爪 61 テーパ部  Mating claw 61 taper
凸部 63 レゾルバ結合部  Convex part 63 Resolver coupling part
65 シャフト揷通孔  65 Shaft through hole
嵌合溝 (嵌合部)  Fitting groove (fitting part)
73 マグネット保持部 73 Magnet holder
Figure imgf000008_0001
75 ホルダ接合部
Figure imgf000008_0001
75 Holder joint
:ース部 77 ホノレダアーム 78 シャフト揷通孔 79 嵌合溝 : Source 77 Honoreda Arm 78 Shaft through hole 79 Mating groove
81 嵌合片 101 マグネット  81 Mating piece 101 Magnet
102 シャフト 103 ロータコア  102 Shaft 103 Rotor core
104 マグネットホルダ 105 レゾルバロータ  104 Magnet holder 105 Resolver rotor
106 スぺーサ 107 スぺーサ  106 Spacer 107 Spacer
P 位置決め指標  P Positioning index
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0021] 以下、本発明の実施例を図面に基づいて詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
実施例 1  Example 1
[0022] 以下、本発明の実施例を図面に基づいて詳細に説明する。図 1は、本発明の実施 例 1であるブラシレスモータの構成を示す断面図である。図 1のモータ 1は、ラックァシ スト式の EPSの動力源として使用され、モータ 1の内部をラック軸 2が貫通する構成と なっている。モータ 1の回転は、ボールねじ機構 3を介してラック軸 2に伝達され、操 舵補助力となる。モータ 1は、外側にステータ 11、内側にロータ 21を配したインナー ロータ型の装置構成となっている。ロータ 21の回転位置の検出には、レゾルバ 33が 使用されている。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a cross-sectional view showing a configuration of a brushless motor that is Embodiment 1 of the present invention. The motor 1 shown in FIG. 1 is used as a power source for rack-assisting EPS and has a configuration in which the rack shaft 2 passes through the motor 1. The rotation of the motor 1 is transmitted to the rack shaft 2 via the ball screw mechanism 3 and becomes a steering assist force. The motor 1 has an inner rotor type device configuration in which a stator 11 is disposed outside and a rotor 21 is disposed inside. A resolver 33 is used to detect the rotational position of the rotor 21.
[0023] ステータ 11は、ハウジング 12と、ハウジング 12の内周側に固定されたステータコア  Stator 11 includes a housing 12 and a stator core fixed to the inner peripheral side of housing 12
13及びステータコア 13に巻装されたコイル 14とを備えた構成となっている。ハウジン グ 12は鉄等にて形成されている。ハウジング 12の図中左端側には、アルミダイカスト 製のハウジング 41が取り付けられている。ステータコア 13は鋼板を多数積層した構 成となっている。ステータコア 13の内周側には、複数個(ここでは 9個)のティースが 突設されている。ティース間に形成されたスロット(同 9個)には、合成樹脂製のインシ ユレータ 15を介してコイル 14が巻装されている。  13 and a coil 14 wound around the stator core 13. The housing 12 is made of iron or the like. An aluminum die-cast housing 41 is attached to the left end of the housing 12 in the figure. The stator core 13 has a structure in which many steel plates are laminated. A plurality of (in this case, nine) teeth are projected from the inner peripheral side of the stator core 13. A coil 14 is wound around a slot (9 slots) formed between the teeth via an insulator 15 made of synthetic resin.
[0024] ステータコア 13の両端には、インシュレータ 15が取り付けられている。インシュレー タ 15のうち、図 1において左側のもの(インシュレータ 15a)の左端部には、ターミナル ユニット 16が取り付けられている。ターミナルユニット 16には、径方向に向かってコィ ル給電端子 17が多数突設されている。各コイル給電端子 17には、コイル 14の端末 部(コイル 14の巻き始め部分や巻き終わり部分)が接続されて!/、る。ターミナルュニッ ト 16にはさらに、コイル給電端子 17と電気的に接続された外部接続端子 18が設けら れている。外部接続端子 18には、リード線 19が接続されている。各コイル 14には、 外部電源と接続されたリード線 19から、ターミナルユニット 16を介して適宜電力が供 る。 Insulators 15 are attached to both ends of the stator core 13. A terminal unit 16 is attached to the left end of the left side (insulator 15a) of the insulator 15 in FIG. The terminal unit 16 has a large number of coil feeding terminals 17 protruding in the radial direction. Each coil feeding terminal 17 is connected to a terminal portion of the coil 14 (a winding start portion or a winding end portion of the coil 14)! Terminal Unit The external connection terminal 18 that is electrically connected to the coil power supply terminal 17 is further provided on the connector 16. A lead wire 19 is connected to the external connection terminal 18. Each coil 14 is appropriately supplied with electric power via a terminal unit 16 from a lead wire 19 connected to an external power source.
[0025] ロータ 21はステータ 11の内側に配置されている。ロータ 21は、円筒状のロータシャ フト 22と、ロータコア 23、マグネット 24及びマグネットカバー 25を同軸状に配した構 成となっている。ロータシャフト 22の内側には、ラック軸 2が揷通される。ロータシャフト 22の外周には、円筒形状のロータコア 23が外装されている。ロータコア 23の外周に は、合成樹脂製のマグネットホルダ 51によって、 6極構成のマグネット 24が保持 '固 定されている。図 2はマグネットホルダ 51の斜視図、図 3 (a)は(b)の A— A線に沿つ たマグネットホルダ 51の断面図、(b)はマグネットホルダ 51の右側面図である。  The rotor 21 is arranged inside the stator 11. The rotor 21 has a configuration in which a cylindrical rotor shaft 22, a rotor core 23, a magnet 24, and a magnet cover 25 are arranged coaxially. A rack shaft 2 is passed through the rotor shaft 22. A cylindrical rotor core 23 is externally mounted on the outer periphery of the rotor shaft 22. A magnet 24 having a 6-pole configuration is held and fixed on the outer periphery of the rotor core 23 by a magnet holder 51 made of synthetic resin. 2 is a perspective view of the magnet holder 51, FIG. 3 (a) is a cross-sectional view of the magnet holder 51 along the line AA in FIG. 3 (b), and FIG. 2 (b) is a right side view of the magnet holder 51.
[0026] 図 2〜4に示すように、マグネットホルダ 51は、マグネット保持部 52と、ロータシャフト 固定部 53、及び、レゾルバロータ接続部 54とを備えた構成となっている。マグネット 保持部 52には、ロータシャフト固定部 53と共にロータシャフト 22に固定されるベース 部 55と、ベース部 55から軸方向に突出形成されたホルダアーム 56が設けられてい る。ホルダアーム 56は、ベース部 55の一端側から軸方向に延びる片持ち梁構造とな つている。また、ホルダアーム 56の断面は略 T字形になっている。隣接するホルダァ ーム 56の間には、ホルダアーム 56の自由端側(図 3において左端側)に、軸方向か らマグネット 24が圧入される。これにより、マグネット 24は、ロータコア 23の外周面とホ ルダアーム 56との間に保持 '固定される。マグネット 24を装着した後、マグネットホノレ ダ 51の外側にはマグネットカバー 25が外装される。これにより、マグネット 24を径方 向から押さえると共に、マグネット 24の軸方向への移動を規制する(抜け止め)。  As shown in FIGS. 2 to 4, the magnet holder 51 includes a magnet holding part 52, a rotor shaft fixing part 53, and a resolver rotor connection part 54. The magnet holding part 52 is provided with a base part 55 that is fixed to the rotor shaft 22 together with the rotor shaft fixing part 53, and a holder arm 56 that is formed to project from the base part 55 in the axial direction. The holder arm 56 has a cantilever structure extending in the axial direction from one end side of the base portion 55. The holder arm 56 has a substantially T-shaped cross section. Between the adjacent holder arms 56, the magnet 24 is press-fitted from the axial direction to the free end side of the holder arm 56 (left end side in FIG. 3). As a result, the magnet 24 is held and fixed between the outer peripheral surface of the rotor core 23 and the holder arm 56. After the magnet 24 is attached, the magnet cover 25 is externally attached to the outside of the magnet honoreda 51. As a result, the magnet 24 is pressed from the radial direction, and the movement of the magnet 24 in the axial direction is restricted (prevention from coming off).
[0027] ロータシャフト固定部 53は円筒形状に形成されており、ベース部 55と一体に成形さ れている。ロータシャフト固定部 53の内径は、ロータシャフト 22の外径よりも若干小さ く形成されている。マグネットホルダ 51は、このロータシャフト固定部 53によって、口 ータシャフト 22の外周に圧入固定される。  The rotor shaft fixing portion 53 is formed in a cylindrical shape, and is formed integrally with the base portion 55. The inner diameter of the rotor shaft fixing portion 53 is formed slightly smaller than the outer diameter of the rotor shaft 22. The magnet holder 51 is press-fitted and fixed to the outer periphery of the rotor shaft 22 by the rotor shaft fixing portion 53.
[0028] ロータシャフト固定部 53の端部(図 1において右端側、図 2において上端側)には、 レゾルバ 33のレゾルバロータ 35と接続されるレゾルバロータ接続片 57が設けられて いる。レゾルバロータ接続片 57は、ロータシャフト固定部 53の端部から軸方向に向 かって突出形成されており、周方向に等分に 3個形成されている。レゾルバロータ接 続片 57は、マグネット保持部 52に保持 ·固定されたマグネット 24との間に、所定の角 度位置関係を有している。レゾルバロータ接続片 57は、ロータシャフト固定部 53の端 面 53aに突設された基片部 58と、基片部 58からさらに軸方向に突設された嵌合爪 5 9とから構成されている。嵌合爪 59は、基片部 58よりも周方向の寸法が小さくなつて いる。また、嵌合爪 59の先端部にはテーパ部 61が形成されている。 A resolver rotor connecting piece 57 connected to the resolver rotor 35 of the resolver 33 is provided at the end of the rotor shaft fixing portion 53 (the right end side in FIG. 1 and the upper end side in FIG. 2). Yes. The resolver rotor connecting pieces 57 are formed so as to protrude from the end of the rotor shaft fixing portion 53 in the axial direction, and are formed in three equal portions in the circumferential direction. The resolver rotor connecting piece 57 has a predetermined angular positional relationship with the magnet 24 held and fixed to the magnet holding portion 52. The resolver rotor connecting piece 57 includes a base piece portion 58 projecting from the end surface 53a of the rotor shaft fixing portion 53, and a fitting claw 59 projecting further in the axial direction from the base piece portion 58. Yes. The fitting claw 59 has a smaller circumferential dimension than the base piece 58. Further, a tapered portion 61 is formed at the distal end portion of the fitting claw 59.
[0029] ハウジング 12の図中右端側には、アルミダイカスト製のハウジング 31が取り付けら れている。ハウジング 31内には、ロータ 21の右端側を支持するベアリング 32と、ロー タ 21の回転を検知するレゾルバ 33が収容されている。レゾルバ 33は、ハウジング 31 側に固定されたレゾルバステータ 34と、ロータ 21側に固定されたレゾルバロータ 35と 力、ら構成されている。レゾルバステータ 34にはコイル 36が巻装されており、励磁コィ ルと検出コイルが設けられてレ、る。  [0029] A housing 31 made of aluminum die casting is attached to the right end side of the housing 12 in the figure. The housing 31 accommodates a bearing 32 that supports the right end side of the rotor 21 and a resolver 33 that detects the rotation of the rotor 21. The resolver 33 includes a resolver stator 34 fixed to the housing 31 side and a resolver rotor 35 fixed to the rotor 21 side. A coil 36 is wound around the resolver stator 34, and an excitation coil and a detection coil are provided.
[0030] レゾルバステータ 34の内側には、ロータシャフト 22に固定されたレゾルバロータ 35 が配置される。図 4 (a)はレゾルバロータ 35の側面図、(b)はその断面図である。レゾ ノレバロータ 35は、図 4 (b)に示すように、金属板を積層した構成となっており、三方向 に凸部 62が形成されている。ロータシャフト 22が回転すると、レゾルバロータ 35もま たレゾルバステータ 34内にて回転する。レゾルバステータ 34の励磁コイルには高周 波信号が付与されており、凸部 62の近接離反により検出コイルから出力される信号 の位相が変化する。この検出信号と基準信号とを比較することにより、ロータ 21の回 転位置が検出される。そして、ロータ 21の回転位置に基づき、コイル 14への電流が 適宜切り替えられ、ロータ 21が回転駆動される。  A resolver rotor 35 fixed to the rotor shaft 22 is disposed inside the resolver stator 34. 4A is a side view of the resolver rotor 35, and FIG. 4B is a cross-sectional view thereof. As shown in FIG. 4 (b), the resonance lever rotor 35 has a structure in which metal plates are laminated, and convex portions 62 are formed in three directions. When the rotor shaft 22 rotates, the resolver rotor 35 also rotates in the resolver stator 34. The excitation coil of the resolver stator 34 is given a high frequency signal, and the phase of the signal output from the detection coil changes due to the proximity of the convex portion 62. The rotation position of the rotor 21 is detected by comparing this detection signal with the reference signal. Then, based on the rotational position of the rotor 21, the current to the coil 14 is appropriately switched, and the rotor 21 is rotationally driven.
[0031] ここで、従来のブラシレスモータにおいては、前述のように、レゾルバロータを目視 作業にて取り付けると共に、その前後にスぺーサを配して抜け止めを行っているため 、精度的にも作業効率的にも問題があった。これに対し、本発明によるモータ 1では、 マグネットホルダ 51とレゾルバロータ 35との間に、両者を結合するレゾルバ結合部 6 3が設けられており、レゾルバロータ 35を高精度に位置決めできるようになつている。 また、ロータシャフト 22にはフランジ部 64が形成されており、スぺーサを用いることな く、レゾルバロータ 35の抜け止めができるようになつている。 [0031] Here, in the conventional brushless motor, as described above, the resolver rotor is attached by visual inspection, and a spacer is arranged before and after that to prevent it from falling out. There was also a problem in work efficiency. On the other hand, in the motor 1 according to the present invention, the resolver coupling portion 63 that couples the magnet holder 51 and the resolver rotor 35 is provided between the magnet holder 51 and the resolver rotor 35 so that the resolver rotor 35 can be positioned with high accuracy. ing. Also, the rotor shaft 22 has a flange portion 64, which does not use a spacer. In addition, the resolver rotor 35 can be prevented from coming off.
[0032] 図 4 (a)に示すように、レゾルバロータ 35には、ロータシャフト 22が揷通されるシャフ ト揷通孔 65が形成されている。このシャフト揷通孔 65には、嵌合溝 (嵌合部) 66が軸 方向に沿って切欠形成されている。嵌合溝 66は、レゾルバロータ接続片 57に対応し て、周方向に 3力所等分に配置されている。レゾルバロータ接続片 57とこの嵌合溝 6 6により、レゾルバ結合部 63が形成される。また、嵌合溝 66は、レゾルバロータ 35の 凸部 62と所定の角度位置関係となるように形成されている。嵌合溝 66の周方向の寸 法は、嵌合爪 59の周方向の寸法よりも若干小さくなつており、嵌合爪 59は嵌合溝 66 内に軽圧入される形で取り付けられる。  As shown in FIG. 4 (a), the resolver rotor 35 is formed with a shaft through hole 65 through which the rotor shaft 22 is passed. A fitting groove (fitting portion) 66 is notched in the shaft through hole 65 along the axial direction. The fitting grooves 66 correspond to the resolver rotor connecting piece 57 and are arranged in three equal places in the circumferential direction. The resolver rotor connecting piece 57 and the fitting groove 66 form a resolver coupling portion 63. Further, the fitting groove 66 is formed so as to have a predetermined angular positional relationship with the convex portion 62 of the resolver rotor 35. The dimension in the circumferential direction of the fitting groove 66 is slightly smaller than the dimension in the circumferential direction of the fitting claw 59, and the fitting claw 59 is attached so as to be lightly press-fitted into the fitting groove 66.
[0033] 一方、ロータシャフト 22の右端寄りには、図 1に示すように、フランジ部 64が形成さ れている。フランジ部 64は、ロータシャフト 22の他の部位よりも大径に形成されている 。レゾルバロータ 35をロータシャフト 22に取り付けると、レゾルバロータ 35の一端側が フランジ部 64に当接するようになつている。これにより、レゾルバロータ 35の軸方向へ の移動が規制され、ロータシャフト 22上にてレゾルバロータ 35が軸方向に抜け止め される。  On the other hand, as shown in FIG. 1, a flange portion 64 is formed near the right end of the rotor shaft 22. The flange portion 64 is formed with a larger diameter than other portions of the rotor shaft 22. When the resolver rotor 35 is attached to the rotor shaft 22, one end side of the resolver rotor 35 comes into contact with the flange portion 64. Thereby, the movement of the resolver rotor 35 in the axial direction is restricted, and the resolver rotor 35 is prevented from coming off on the rotor shaft 22 in the axial direction.
[0034] このような構成からなるモータ 1では、まず、ロータシャフト 22にレゾルバロータ 35が 取り付けられる。レゾルバロータ 35は、シャフト揷通孔 65にロータシャフト 22を揷入し 、レゾルバロータ 35をロータシャフト 22に圧入する形で取り付けられる。レゾルバロー タ 35は、フランジ部 64に当接する位置まで圧入される。その後、ロータシャフト 22に 、マグネットホルダ 51が圧入固定される。この際、レゾルバロータ 35の嵌合溝 66には 、レゾルバロータ接続片 57の嵌合爪 59が軽圧入される。  In the motor 1 having such a configuration, first, the resolver rotor 35 is attached to the rotor shaft 22. The resolver rotor 35 is attached in such a manner that the rotor shaft 22 is inserted into the shaft through hole 65 and the resolver rotor 35 is press-fitted into the rotor shaft 22. The resolver rotor 35 is press-fitted to a position where it abuts on the flange portion 64. Thereafter, the magnet holder 51 is press-fitted and fixed to the rotor shaft 22. At this time, the fitting claw 59 of the resolver rotor connecting piece 57 is lightly press-fitted into the fitting groove 66 of the resolver rotor 35.
[0035] 嵌合爪 59は、マグネットホルダ 51に保持 ·固定されたマグネット 24に対し、所定の 角度位置関係を有している。また、嵌合溝 66は、レゾルバロータ 35の凸部 62と所定 の角度位置関係を有している。従って、嵌合爪 59を嵌合溝 66に取り付けることにより 、マグネット 24とレゾルバロータ 35は、所定の角度位置関係にて接続される。すなわ ち、マグネット 24とレゾルバロータ 35は、嵌合爪 59と嵌合溝 66により、その位置関係 が機械的に設定される。このため、当該モータ 1では、 目視にて指標を合わせる方式 に比して、位置決め精度を飛躍的に向上させることができる。また、 目視作業が不要 なため、組付作業性も向上し、その分、工数の削減を図ることも可能となる。 The fitting claw 59 has a predetermined angular positional relationship with respect to the magnet 24 held and fixed to the magnet holder 51. Further, the fitting groove 66 has a predetermined angular position relationship with the convex portion 62 of the resolver rotor 35. Therefore, by attaching the fitting claw 59 to the fitting groove 66, the magnet 24 and the resolver rotor 35 are connected in a predetermined angular positional relationship. That is, the positional relationship between the magnet 24 and the resolver rotor 35 is mechanically set by the fitting claw 59 and the fitting groove 66. For this reason, in the motor 1, the positioning accuracy can be dramatically improved as compared with the method in which the index is visually adjusted. No visual work required Therefore, the assembly workability is also improved, and the man-hours can be reduced accordingly.
[0036] さらに、マグネット 24とレゾルバロータ 35の周方向の位置決めが高精度になされて いるため、レゾルバ 33の最終的な位置調整の際のレゾルバステータ 34の調整角度 力 S小さくなり、レゾルバ 33の調整作業が容易となる。また、レゾルバ調整用に設ける 長孔も小さくすることができ、長孔形成用のブラケット等の寸法も削減できる。長孔形 成用のブラケットは、モータ内において他の部品 '部位と干渉し易い位置にあるため 、この部分はできるだけ小さい方が好ましい。従って、長孔の周方向寸法が削減され ブラケットが小さくなれば、その分、周方向にスペースが生じ、モータ内のレイアウト性 が向上すると共に、全体的に見てモータの小型化を図ることが可能となる。  [0036] Further, since the circumferential positioning of the magnet 24 and the resolver rotor 35 is performed with high precision, the adjustment angle force S of the resolver stator 34 at the time of final position adjustment of the resolver 33 is reduced, and the resolver 33 Adjustment work becomes easy. Further, the long hole provided for adjusting the resolver can be made small, and the dimensions of the long hole forming bracket and the like can be reduced. Since the bracket for forming the long hole is in a position where it can easily interfere with other parts in the motor, it is preferable that this portion be as small as possible. Therefore, if the circumferential dimension of the long hole is reduced and the bracket is made smaller, a corresponding space will be created, improving the layout in the motor and reducing the overall size of the motor. It becomes possible.
[0037] また、レゾルバロータ 35は、フランジ部 64とレゾルバロータ接続片 57の基片部 58と の間に挟まれる形で、ロータシャフト 22上に取り付けられる。従って、当該モータ 1で は、特別なスぺーサを用いることなぐレゾルバロータ 35を軸方向に抜け止めすること が可能となる。このため、従来のブラシレスモータに比して、部品点数を削減できると 共に、スぺーサ組付作業も不要となるため、生産性も向上し、コスト低減を図ることが 可能となる。さらに、ロータシャフト 22のスぺーサを固定していた部位の寸法精度も緩 和されるため、その分のコストも削減できる。  The resolver rotor 35 is attached on the rotor shaft 22 so as to be sandwiched between the flange portion 64 and the base piece portion 58 of the resolver rotor connecting piece 57. Therefore, the motor 1 can prevent the resolver rotor 35 from coming off in the axial direction without using a special spacer. For this reason, the number of parts can be reduced as compared with the conventional brushless motor, and the spacer assembly work is not required, so that the productivity can be improved and the cost can be reduced. Furthermore, since the dimensional accuracy of the portion where the spacer of the rotor shaft 22 is fixed is relaxed, the cost can be reduced accordingly.
[0038] 加えて、スぺーサ分の重量やイナ一シャも低減でき、モータの軽量化が図られると 共に、制御応答性も向上する。このため、 EPS用モータとしての商品価値も向上する 。また、スぺーサによる抜け止めを廃したことにより、ロータシャフト 22に対し、レゾル バロータ 35やマグネットホルダ 51、ロータコア 23などを同一方向から組み付けること ができ、この点においても作業性の向上が図られる。なお、フランジ部 64の外形寸法 精度は比較的ラフで良いため、フランジ部 64形成に伴うコスト増よりも、スぺーサ固 定部の寸法精度緩和によるコスト減の方が大きい。  [0038] In addition, the weight and inertia of the spacer can be reduced, the motor can be reduced in weight, and the control response can be improved. For this reason, the product value as an EPS motor is also improved. In addition, the removal of the stopper by the spacer makes it possible to assemble the resolver rotor 35, magnet holder 51, rotor core 23, etc. from the same direction with respect to the rotor shaft 22, which also improves workability. It is done. Since the outer dimension accuracy of the flange portion 64 may be relatively rough, the cost reduction due to the dimensional accuracy relaxation of the spacer fixing portion is greater than the cost increase associated with the formation of the flange portion 64.
[0039] ハウジング 12の左端側には、ハウジング 41が取り付けられている。ハウジング 41内 には、ボールねじ機構 3が組み込まれている。ボールねじ機構 3は、ナット部 42と、ラ ック軸 2の外周に形成されたスクリュー部 43と、ナット部 42とスクリュー部 43との間に 介装された多数のボール 44とから構成されている。ラック軸 2は、軸回りの回転が規 制された状態で、ナット部 42によって、左右方向に往復動自在支持され、ナット部 42 の回転に伴って左右方向に移動する。 A housing 41 is attached to the left end side of the housing 12. A ball screw mechanism 3 is incorporated in the housing 41. The ball screw mechanism 3 includes a nut part 42, a screw part 43 formed on the outer periphery of the rack shaft 2, and a large number of balls 44 interposed between the nut part 42 and the screw part 43. ing. The rack shaft 2 is supported so as to reciprocate in the left-right direction by the nut portion 42 in a state where rotation around the shaft is restricted. It moves in the left-right direction with the rotation of.
[0040] ナット部 42は、ロータシャフト 22の左端部に固定されており、ハウジング 41に固定 されたアンギュラーベアリング 45によって回転自在に保持されている。アンギュラー ベアリング 45は、ハウジング 41の開口部にねじ込まれたベアリング固定用リング 46a, 46bと、ハウジング 41の内部に形成された段部 47との間で、軸方向の動きが規制さ れた状態で固定されている。また、ナット部 42とアンギュラーベアリング 45との間の軸 方向の動きは、ナット部 42の左端にねじ込まれたベアリング固定用リング 48と、ナット 部 42の外周に形成された段部 49とによって規制される。  [0040] The nut portion 42 is fixed to the left end portion of the rotor shaft 22, and is rotatably held by an angular bearing 45 fixed to the housing 41. The angular bearing 45 is in a state where the axial movement is restricted between the bearing fixing rings 46a and 46b screwed into the opening of the housing 41 and the step 47 formed inside the housing 41. It is fixed. The axial movement between the nut portion 42 and the angular bearing 45 is caused by a bearing fixing ring 48 screwed into the left end of the nut portion 42 and a step portion 49 formed on the outer periphery of the nut portion 42. Be regulated.
[0041] このようなモータ 1を備えた EPSでは、まず操向ハンドルが操作されてステアリング 軸が回転し、この回転に応じた方向にラック軸 2が移動して転舵操作がなされる。この 操作により、図示しないステアリングトルクセンサが作動すると、検出トルクに応じて、 ノ ッテリからリード線を介してコイル 14に電力が供給される。コイル 14に電力が供給 されるとモータ 1が作動し、ロータシャフト 22が回転する。ロータシャフト 22が回転す ると、これと結合されたナット部 42が回転し、ボールねじ機構 3の作用により、ラック軸 2に対し軸方向の操舵補助力が伝達される。これにより、ラック軸 2の移動が促進され 、操舵力が補助される。  [0041] In an EPS equipped with such a motor 1, the steering handle is first operated to rotate the steering shaft, and the rack shaft 2 is moved in a direction corresponding to the rotation to perform a steering operation. When a steering torque sensor (not shown) is activated by this operation, electric power is supplied from the knotter to the coil 14 via the lead wire according to the detected torque. When electric power is supplied to the coil 14, the motor 1 operates and the rotor shaft 22 rotates. When the rotor shaft 22 rotates, the nut portion 42 coupled therewith rotates, and the axial assisting force is transmitted to the rack shaft 2 by the action of the ball screw mechanism 3. Thereby, the movement of the rack shaft 2 is promoted, and the steering force is assisted.
実施例 2  Example 2
[0042] 次に、本発明の実施例 2であるブラシレスモータについて説明する。実施例 2のブ ラシレスモータ 71 (以下、モータ 71と略記する)は、基本構成は実施例 1のモータ 1と 同様であるが、マグネットホルダ 72が分割構造となっており、設計自由度の向上が図 られている。なお、実施例 2では、実施例 1と同様の部材、部分については同一の符 号を付し、その説明は省略する。  Next, a brushless motor that is Embodiment 2 of the present invention will be described. The brushless motor 71 of the second embodiment (hereinafter abbreviated as “motor 71”) has the same basic configuration as the motor 1 of the first embodiment, but the magnet holder 72 has a divided structure, which improves design flexibility. It is illustrated. In the second embodiment, the same members and portions as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
[0043] ここで、 EPS用のブラシレスモータでは、多種多様な車体ラインナップに対応できる 柔軟性の高い製品が求められている。しかしながら、ブラシレスモータは、ブラシ付モ ータに比べて未だ高価であり、単品部品の加工方法を含め、多種多様な仕様のモー タを如何に安価に製造するかが大きな課題となっている。例えば、モータの通電タイ ミングに関しても、種々の仕様に応じてその設定を適宜変更する必要がある。特に E PS用モータに関しては、車体の仕様 (ノヽンドルの左右等)が、多様化してしまうので、 極力、部品の共用化を図るため、通電タイミングの変更によって各種の仕様に対応 することが多い。 [0043] Here, EPS brushless motors are required to be highly flexible and compatible with a wide variety of vehicle body lineups. However, brushless motors are still more expensive than brushed motors, and how to manufacture motors with a wide variety of specifications, including methods for processing single parts, has become a major issue. For example, the motor energization timing needs to be changed as appropriate according to various specifications. Especially for EPS motors, the specifications of the body (left and right of the handle, etc.) will be diversified. In order to share parts as much as possible, various specifications are often supported by changing the energization timing.
[0044] このような通電タイミングの変更は、設計上、ステータ側ゃロータ側の構成によって 任意に行うことが可能であり、次のような変更方法が知られている。まず、ステータ側 にて通電タイミングを変更する方法としては、レゾルバステータとステータコアの周方 向の角度位置関係を変更する方法がある。この場合、位置関係の変更には、レゾル バステータの角度位置を変更するやり方と、ステータコアの角度位置を変更するやり 方がある。前者の場合、レゾルバステータは、センサ線を接続するコネクタと一体化さ れているため、センサコネクタの引き出し位置を変更しないためには、レゾルバステー タの構造を変更する必要がある。  Such a change in the energization timing can be arbitrarily made by design depending on the configuration of the stator side and the rotor side, and the following change method is known. First, as a method of changing the energization timing on the stator side, there is a method of changing the angular positional relationship in the circumferential direction between the resolver stator and the stator core. In this case, there are two ways to change the positional relationship: changing the angular position of the resolver stator and changing the angular position of the stator core. In the former case, the resolver stator is integrated with the connector that connects the sensor wires, so the structure of the resolver stator must be changed in order not to change the sensor connector pull-out position.
[0045] 一方、後者の場合、ステータコアは、ターミナルユニットを介して外部接続端子 (パ ヮーコネクタ)と一体になつているため、外部接続端子の引き出し位置を変更しない ためには、ターミナルユニットの構造を変更する必要がある。すなわち、ステータ側に て通電タイミングを変更する場合は、レゾルバステータやターミナルユニットについて 大掛かりな変更を余儀なくされる。 [0045] On the other hand, in the latter case, the stator core is integrated with the external connection terminal (power connector) via the terminal unit. Therefore, in order not to change the drawing position of the external connection terminal, the structure of the terminal unit is not changed. Need to change. In other words, when the energization timing is changed on the stator side, the resolver stator and terminal unit must be changed significantly.
[0046] 次に、ロータ側にて通電タイミングを変更する方法としては、ロータマグネットとレゾ ルバロータの周方向の角度位置関係を変更する方法がある。この場合、実施例 1の モータ 1では、マグネットホルダ 51に形成されたレゾルバロータ接続片 57の位置を、 周方向に変更することにより、マグネット 24とレゾルバロータ 35の角度位置関係を容 易に変更することができる。従って、ステータ側の変更とロータ側の変更とを比較する と、ロータ側の変更の方が、より容易に仕様を変更することができる。 Next, as a method of changing the energization timing on the rotor side, there is a method of changing the angular positional relationship in the circumferential direction between the rotor magnet and the resolver rotor. In this case, in the motor 1 of the first embodiment, the angular positional relationship between the magnet 24 and the resolver rotor 35 can be easily changed by changing the position of the resolver rotor connecting piece 57 formed in the magnet holder 51 in the circumferential direction. can do. Therefore, when the change on the stator side is compared with the change on the rotor side, the specification on the rotor side can be changed more easily.
[0047] ところ力 ロータ側の設定を変更するには、レゾルバロータ接続片 57の位置を変更 する必要があり、設定変更に際し、専用のマグネットホルダ 51を個別に設計する必要 がある。このため、マグネットホルダ 51に関しては、仕様に応じて、その都度、新規な 金型を作製しなければならない。し力、しながら、マグネットホルダ 51の金型は比較的 大きぐしかも、マグネット 24を保持 ·固定する部分の形状が複雑なため金型構造も 複雑となる。従って、金型製作に要する費用が嵩み、マグネットホルダが廉価な部品 にならず、通電タイミングの変更に伴って相当のコスト増は避けられな!/ヽとレ、う問題が あった。 However, in order to change the setting on the force rotor side, it is necessary to change the position of the resolver rotor connecting piece 57, and to change the setting, it is necessary to individually design the dedicated magnet holder 51. Therefore, for the magnet holder 51, a new mold must be produced each time according to the specifications. However, the mold of the magnet holder 51 is relatively large, and the shape of the part for holding and fixing the magnet 24 is complicated, so that the mold structure is also complicated. Therefore, the cost required to manufacture the mold increases, the magnet holder is not an inexpensive part, and a considerable increase in cost is unavoidable due to the change in the energization timing! there were.
[0048] そこで、本発明の実施例 2であるブラシレスモータ 71では、マグネットホルダ 72を軸 方向に 2分割し、マグネット保持部を共用化して金型費用の削減を実現している。す なわち、当該ブラシレスモータ 71では、マグネットホルダ 72は、マグネット保持部 73と 、レゾルバロータ接続部 74の 2部品から構成されており、両者はホルダ接合部 75に て一体に接合されている。図 5はマグネット保持部 73、図 6はレゾルバロータ接続部 7 4の構成をそれぞれ示している。図 5に示すように、マグネット保持部 73は、図 2のマ グネットホルダ 51における下半分を独立させた構成となっており、ベース部 76とホル ダアーム 77が形成されている。  [0048] Therefore, in the brushless motor 71 according to the second embodiment of the present invention, the magnet holder 72 is divided into two in the axial direction, and the magnet holder is shared, thereby realizing a reduction in mold cost. In other words, in the brushless motor 71, the magnet holder 72 is composed of two parts, that is, a magnet holding part 73 and a resolver rotor connecting part 74, and both are integrally joined by a holder joining part 75. FIG. 5 shows the configuration of the magnet holding portion 73, and FIG. 6 shows the configuration of the resolver rotor connecting portion 74. As shown in FIG. 5, the magnet holding portion 73 has a configuration in which the lower half of the magnet holder 51 of FIG. 2 is made independent, and a base portion 76 and a holder arm 77 are formed.
[0049] ホルダアーム 77は、マグネットホルダ 51と同様に、ベース部 76から軸方向に延設さ れている。また、ホルダアーム 77の断面は、略 T字形になっている。隣接するホルダ アーム 77の間には、軸方向力もマグネット 24が圧入される。これにより、マグネット 24 は、ロータコア 23の外周面とホルダアーム 77との間に保持.固定される。ベース部 76 は、リング状に形成されている。ベース部 76には、ロータシャフト 22が揷通されるシャ フト揷通孔 78が形成されている。シャフト揷通孔 78の周囲には、嵌合溝 79が軸方向 に沿って形成されている。嵌合溝 79は、周方向に 3力所等分に配置されている。  As with the magnet holder 51, the holder arm 77 extends from the base portion 76 in the axial direction. The holder arm 77 has a substantially T-shaped cross section. Between the adjacent holder arms 77, the magnet 24 is pressed into the axial force. As a result, the magnet 24 is held and fixed between the outer peripheral surface of the rotor core 23 and the holder arm 77. The base portion 76 is formed in a ring shape. The base portion 76 is formed with a shaft through hole 78 through which the rotor shaft 22 is passed. A fitting groove 79 is formed around the shaft through hole 78 along the axial direction. The fitting groove 79 is equally divided into three force points in the circumferential direction.
[0050] 一方、レゾルバロータ接続部 74の図 6(a)において右端側には、レゾルバロータ接 続片 57が設けられている。レゾルバロータ接続片 57は、レゾルバロータ接続部 74の 端部から軸方向に向かって突設されており、周方向に等分に 3個形成されている。前 述同様、レゾルバロータ接続片 57は、基片部 58と嵌合爪 59とから構成されており、 レゾルバロータ 35の嵌合溝 66に軽圧入される。また、レゾルバロータ接続部 74の左 端側にも、マグネット保持部 73との接続に使用される嵌合片 81が突設されている。 嵌合片 81は、マグネット保持部 73の嵌合溝 79に対応して、周方向に 3力所等分に 配置されている。嵌合溝 79とこの嵌合片 81によって、ホルダ接合部 75が形成される 。嵌合片 81の周方向の寸法は、嵌合溝 79の周方向の寸法よりも若干大きくなつてい る。レゾルバロータ接続部 74は、嵌合片 81を嵌合溝 79内に軽圧入する形でマグネ ット保持部 73に取り付けられる。  On the other hand, a resolver rotor connecting piece 57 is provided on the right end side of the resolver rotor connecting portion 74 in FIG. 6 (a). The resolver rotor connecting pieces 57 are projected from the end of the resolver rotor connecting portion 74 in the axial direction, and are formed in three equal portions in the circumferential direction. As described above, the resolver rotor connecting piece 57 includes a base piece portion 58 and a fitting claw 59 and is lightly press-fitted into the fitting groove 66 of the resolver rotor 35. Further, a fitting piece 81 used for connection to the magnet holding portion 73 is also provided on the left end side of the resolver rotor connecting portion 74 so as to project. The fitting pieces 81 are arranged in three equal positions in the circumferential direction corresponding to the fitting grooves 79 of the magnet holding portion 73. A holder joint 75 is formed by the fitting groove 79 and the fitting piece 81. The circumferential dimension of the fitting piece 81 is slightly larger than the circumferential dimension of the fitting groove 79. The resolver rotor connecting portion 74 is attached to the magnet holding portion 73 in such a manner that the fitting piece 81 is lightly press-fitted into the fitting groove 79.
[0051] このようなマグネットホルダ 72では、嵌合片 81の周方向の位置を変更すると、マグ ネット 24とレゾルバロータ接続片 57の周方向の位置関係が変化する。すなわち、嵌 合片 81の位置設定により、マグネット 24とレゾルバロータ 35の角度位置関係を適宜 変更すること力できる。この場合、図 2のようなマグネットホルダ 51では、前述のように 、マグネットホルダ 51全体を設計変更する必要があり、そのため、大型で複雑な金型 を新規に作成する必要があった。これに対し、実施例 2のモータ 71では、マグネット 2 4とレゾルバロータ 35の角度位置関係を変更するには、レゾルバロータ接続部 74の 設計変更のみで足り、複雑な形状のマグネット保持部 73はそのまま共用することが できる。 [0051] In such a magnet holder 72, when the circumferential position of the fitting piece 81 is changed, the magnet The circumferential positional relationship between the net 24 and the resolver rotor connecting piece 57 changes. That is, it is possible to appropriately change the angular positional relationship between the magnet 24 and the resolver rotor 35 by setting the position of the fitting piece 81. In this case, in the magnet holder 51 as shown in FIG. 2, as described above, it is necessary to change the design of the entire magnet holder 51. Therefore, it is necessary to newly create a large and complicated mold. On the other hand, in the motor 71 of the second embodiment, in order to change the angular positional relationship between the magnet 24 and the resolver rotor 35, it is only necessary to change the design of the resolver rotor connecting portion 74. It can be shared as it is.
[0052] すなわち、当該モータ 71では、マグネット保持部 73の形状は変更せずに、レゾル ノ ロータ接続部 74におけるレゾルバロータ接続片 57の位置を周方向に角度調整す るだけで通電タイミングの変更を行うことができる。従って、多種多様な仕様に対し、 レゾルバロータ接続部 74の変更のみで対応でき、仕様変更に際して大型で複雑な 新規金型が不要となり、より安価な部品にて多くの車体ラインナップに柔軟に対応す ること力 S可能となる。また、新規に金型を製作するレゾルバロータ接続部 74に関して も、アンダーカット部のない単純な形状のため、上下 2分割の単純な金型で成形可能 である。従って、本発明のモータによれば、金型費を抑えたコストパフォーマンスに優 れる商品を提供することが可能となる。  That is, in the motor 71, without changing the shape of the magnet holding portion 73, the energization timing can be changed only by adjusting the angle of the position of the resolver rotor connecting piece 57 in the resolver rotor connecting portion 74 in the circumferential direction. It can be performed. Therefore, it is possible to respond to a wide variety of specifications only by changing the resolver rotor connection part 74, and there is no need for a large and complicated new mold when changing specifications, and it is possible to flexibly respond to many vehicle body lineups with cheaper parts. The power S can be. In addition, the resolver rotor connecting portion 74 for newly producing a mold can be formed with a simple mold divided into upper and lower parts because of a simple shape without an undercut portion. Therefore, according to the motor of the present invention, it is possible to provide a product excellent in cost performance with reduced mold costs.
[0053] さらに、レゾルバロータ接続部 74は、金型を作製せずに切削加工にて製作可能で あるため、試作等の少量生産を考えた場合、試作品作製のリードタイムを短縮するこ とも可能となる。なお、ブラシレスモータでは、磁気回路長の違う仕様も存在するが、 ラインナップ上、磁気回路長が短い仕様のマグネットホルダにより、長い仕様のモー タのマグネット保持が十分可能であれば、短レ、仕様のマグネットホルダだけを作製す れば足りる。従って、その分、部品仕様を少なくでき、更なるコスト低減が可能となる。  [0053] Furthermore, since the resolver rotor connecting portion 74 can be manufactured by cutting without producing a mold, it is possible to shorten the lead time for producing a prototype when considering a small production such as a prototype. It becomes possible. Note that there are specifications for brushless motors with different magnetic circuit lengths. However, if the magnet holder with a short magnetic circuit length can be used to hold the magnet of a long motor sufficiently, it can be shortened. It is sufficient to make only the magnet holder. Therefore, the part specifications can be reduced correspondingly, and the cost can be further reduced.
[0054] 本発明は前記実施例に限定されるものではなぐその要旨を逸脱しない範囲で種 々変更可能であることは言うまでもなレ、。  [0054] It goes without saying that the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the invention.
例えば、前述の実施例では、レゾルバロータ接続片 57と嵌合溝 66によってレゾル バ結合部 63を、また、嵌合溝 79と嵌合片 81によってホルダ接合部 75をそれぞれ形 成した構成を示した力 S、結合部 63,接合部 75において何れの側に凹凸を配置する かは適宜変更することが可能である。例えば、レゾルバ結合部 63において、レゾルバ ロータ 35側にピンを植設し、このピンが嵌合可能な切欠ゃ孔、 '溝等をマグネットホノレ ダ 51に設けても良い。また、ホルダ接合部 75における凹凸関係を逆に設定しても良 い。 For example, the above-described embodiment shows a configuration in which the resolver rotor connecting piece 57 and the fitting groove 66 form the resolver coupling portion 63, and the fitting groove 79 and the fitting piece 81 form the holder joint portion 75. The unevenness is arranged on either side of the force S, the joint 63, and the joint 75. It can be changed as appropriate. For example, in the resolver coupling portion 63, a pin may be planted on the resolver rotor 35 side, and a notch hole, a groove, or the like into which the pin can be fitted may be provided in the magnet honorada 51. Further, the concave-convex relationship at the holder joint 75 may be set in reverse.
[0055] さらに、前述の実施例では、レゾルバロータ両側のスぺーサを 2個とも廃した構成を 示したが、フランジ部 64を設けることなぐレゾルバロータ 35の図 1において右側のみ スぺーサを配置するようにしても良い。加えて、マグネットホルダ 51,71は、ロータシャ フト 22に固定される構成とした力 S、マグネットホルダ 51,71をロータコア 23に固定する 構成としても良い。  [0055] Further, in the above-described embodiment, the configuration in which both the spacers on both sides of the resolver rotor are eliminated is shown. However, in FIG. 1 of the resolver rotor 35 in which the flange portion 64 is not provided, only the spacer on the right side is provided. It may be arranged. In addition, the magnet holders 51 and 71 may be configured to fix the magnet holders 51 and 71 to the rotor core 23 with the force S configured to be fixed to the rotor shaft 22.
[0056] 一方、前述の実施例では、本発明によるステータを EPSの駆動源として用いられる ブラシレスモータに使用した例を示した力 S、当該ステータは、 EPS用ブラシレスモー タには限定されず、他の用途のブラシレスモータにも広く適用可能である。また、 EP Sや各種車載電動品用のモータのみならず、本発明は、広くブラシレスモータ一般に も適用可能である。さらに、前述の実施例では、ラックアシスト式の EPSに使用される ブラシレスモータを示した力 S、コラムアシスト式等、他の方式の EPS用モータにも本発 明は適用可能である。  On the other hand, in the above-described embodiment, the force S shown in the example in which the stator according to the present invention is used in a brushless motor used as an EPS drive source, the stator is not limited to the EPS brushless motor, It can be widely applied to brushless motors for other purposes. In addition to EPS and motors for various on-vehicle electric products, the present invention is widely applicable to general brushless motors. Further, in the above-described embodiment, the present invention can be applied to other types of EPS motors such as the force S shown for the brushless motor used in the rack assist type EPS and the column assist type.

Claims

請求の範囲 The scope of the claims
[1] ステータコアと、前記ステータコアに巻装されたコイルとを備えるステータと、  [1] A stator comprising a stator core and a coil wound around the stator core;
前記ステータに対し回転自在に配置され、ロータシャフトと、前記ロータシャフトに固 定されたロータコアと、前記ロータコアの外周に取り付けられたマグネットとを備える口 ータと、  A rotor that is rotatably arranged with respect to the stator and includes a rotor shaft, a rotor core fixed to the rotor shaft, and a magnet attached to an outer periphery of the rotor core;
前記ロータシャフトに取り付けられたレゾルバロータと、前記レゾルバロータの外側 に配置されたレゾルバステータとを備えるレゾルバと、  A resolver comprising: a resolver rotor attached to the rotor shaft; and a resolver stator disposed outside the resolver rotor;
前記ロータに取り付けられ、前記マグネットを前記ロータコアの外周に保持 ·固定す るマグネット保持部と、前記レゾルバロータと接続されるレゾルバロータ接続部とを備 えるマグネットホルダと、を有することを特徴とするブラシレスモータ。  And a magnet holder provided with a magnet holding part that is attached to the rotor and holds and fixes the magnet on an outer periphery of the rotor core, and a resolver rotor connection part connected to the resolver rotor. Brushless motor.
[2] 請求項 1記載のブラシレスモータにおいて、前記レゾルバロータ接続部と前記レゾ ルバロータとの間に、前記レゾルバロータ接続部と前記レゾルバロータを結合するレ ゾルバ結合部を設けたことを特徴とするブラシレスモータ。  [2] The brushless motor according to claim 1, wherein a resolver coupling portion that couples the resolver rotor connection portion and the resolver rotor is provided between the resolver rotor connection portion and the resolver rotor. Brushless motor.
[3] 請求項 2記載のブラシレスモータにおいて、前記レゾルバ結合部は、前記レゾルバ ロータ接続部に形成され軸方向に延びるレゾルバロータ接続片と、前記レゾルバ口 ータに形成され前記レゾルバロータ接続片が嵌合する嵌合部とを有することを特徴と  [3] The brushless motor according to claim 2, wherein the resolver coupling portion includes a resolver rotor connection piece formed in the resolver rotor connection portion and extending in an axial direction, and a resolver rotor connection piece formed in the resolver port. And having a fitting portion to be fitted.
[4] 請求項 3記載のブラシレスモータにおいて、前記レゾルバロータ接続片は、前記マ グネットに対し所定の角度位置関係を有し、前記嵌合部はレゾルバロータの外周に 形成された凸部と所定の角度位置関係を有することを特徴とするブラシレスモータ。 [4] The brushless motor according to claim 3, wherein the resolver rotor connecting piece has a predetermined angular positional relationship with respect to the magnet, and the fitting portion has a predetermined portion and a convex portion formed on an outer periphery of the resolver rotor. A brushless motor having an angular positional relationship of
[5] 請求項 1記載のブラシレスモータにおいて、前記ロータシャフトは、前記レゾルバ口 一タが当接し、前記レゾルバロータの軸方向への移動を規制するフランジ部を有する ことを特徴とするブラシレスモータ。 5. The brushless motor according to claim 1, wherein the rotor shaft has a flange portion that contacts the resolver port and restricts movement of the resolver rotor in the axial direction.
[6] 請求項 1記載のブラシレスモータにおいて、前記レゾルバロータ接続部と前記マグ ネット保持部が分離可能であることを特徴とするブラシレスモータ。 6. The brushless motor according to claim 1, wherein the resolver rotor connecting portion and the magnet holding portion are separable.
[7] 請求項 6記載のブラシレスモータにおいて、前記レゾルバロータ接続部と前記マグ ネット保持部との間に、前記レゾルバロータ接続部と前記マグネット保持部を接合す るホルダ接合部を設けたことを特徴とするブラシレスモータ。 [8] 請求項 7記載のブラシレスモータにおいて、前記ホルダ接合部は、前記レゾルバ口 ータ接続部に形成され軸方向に延びる嵌合片と、前記マグネット保持に形成され前 記嵌合片が嵌合する嵌合部とを有することを特徴とするブラシレスモータ。 [7] The brushless motor according to claim 6, wherein a holder joint portion for joining the resolver rotor connection portion and the magnet holding portion is provided between the resolver rotor connection portion and the magnet holding portion. Features a brushless motor. [8] The brushless motor according to claim 7, wherein the holder joint portion includes a fitting piece formed in the resolver port connecting portion and extending in an axial direction, and a fitting piece formed in the magnet holding. A brushless motor characterized by having a mating portion.
PCT/JP2007/071609 2006-11-15 2007-11-07 Brushless motor WO2008059736A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008544110A JP5059021B2 (en) 2006-11-15 2007-11-07 Brushless motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006308746 2006-11-15
JP2006-308746 2006-11-15

Publications (1)

Publication Number Publication Date
WO2008059736A1 true WO2008059736A1 (en) 2008-05-22

Family

ID=39401545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/071609 WO2008059736A1 (en) 2006-11-15 2007-11-07 Brushless motor

Country Status (2)

Country Link
JP (1) JP5059021B2 (en)
WO (1) WO2008059736A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013135506A (en) * 2011-12-26 2013-07-08 Nippon Densan Corp Motor
WO2015052962A1 (en) * 2013-10-11 2015-04-16 株式会社日立産機システム Rotating electrical machine
JP2016154428A (en) * 2015-02-21 2016-08-25 株式会社ミツバ Brushless motor
US11837935B2 (en) 2021-02-02 2023-12-05 Black & Decker, Inc. Canned brushless motor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005020887A (en) * 2003-06-26 2005-01-20 Mitsuba Corp Magnet fixing structure and magnet fixing method of rotating electric machine
JP2005168264A (en) * 2003-12-05 2005-06-23 Asmo Co Ltd Brushless motor
JP2006158014A (en) * 2004-11-26 2006-06-15 Toyoda Mach Works Ltd Rotating machine and resolver

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002369451A (en) * 2001-06-06 2002-12-20 Aisin Aw Co Ltd Motor with pole position sensor
JP2004304945A (en) * 2003-03-31 2004-10-28 Mitsuba Corp Brushless motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005020887A (en) * 2003-06-26 2005-01-20 Mitsuba Corp Magnet fixing structure and magnet fixing method of rotating electric machine
JP2005168264A (en) * 2003-12-05 2005-06-23 Asmo Co Ltd Brushless motor
JP2006158014A (en) * 2004-11-26 2006-06-15 Toyoda Mach Works Ltd Rotating machine and resolver

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013135506A (en) * 2011-12-26 2013-07-08 Nippon Densan Corp Motor
CN103620915A (en) * 2011-12-26 2014-03-05 日本电产株式会社 Motor
US9496761B2 (en) 2011-12-26 2016-11-15 Nidec Corporation Inner rotor magnet holder
US10468926B2 (en) 2011-12-26 2019-11-05 Nidec Corporation Motor
WO2015052962A1 (en) * 2013-10-11 2015-04-16 株式会社日立産機システム Rotating electrical machine
JP2015077032A (en) * 2013-10-11 2015-04-20 株式会社日立産機システム Rotary electric machine
JP2016154428A (en) * 2015-02-21 2016-08-25 株式会社ミツバ Brushless motor
US11837935B2 (en) 2021-02-02 2023-12-05 Black & Decker, Inc. Canned brushless motor
US11855521B2 (en) 2021-02-02 2023-12-26 Black & Decker, Inc. Brushless DC motor for a body-grip power tool
US11870316B2 (en) 2021-02-02 2024-01-09 Black & Decker, Inc. Brushless motor including a nested bearing bridge
US11876424B2 (en) 2021-02-02 2024-01-16 Black & Decker Inc. Compact brushless motor including in-line terminals
US11955863B2 (en) 2021-02-02 2024-04-09 Black & Decker Inc. Circuit board assembly for compact brushless motor

Also Published As

Publication number Publication date
JP5059021B2 (en) 2012-10-24
JPWO2008059736A1 (en) 2010-03-04

Similar Documents

Publication Publication Date Title
JP5603045B2 (en) Motor device for electric power steering device
JP4688910B2 (en) Electric power steering motor
JP6558866B2 (en) Motor equipment
JP4061130B2 (en) Brushless motor
WO2013065577A1 (en) Brushless motor
WO2007080888A1 (en) Rotating machine
US20070131475A1 (en) Electric power steering device and method of producing the same
WO2007080887A1 (en) Rotating machine
JP5563513B2 (en) Electric power steering device
JP2014187760A (en) Motor device
JP3985815B2 (en) Electric actuator
US20080297010A1 (en) Brushless motor
WO2008059736A1 (en) Brushless motor
JP2020048268A (en) Electric motor and manufacturing method of the same
WO2020054095A1 (en) Electric motor and method for manufacturing electric motor
JP5112321B2 (en) Brushless motor
JP4772139B2 (en) Motor device for electric power steering device
JP5150244B2 (en) Resolver positioning mechanism and electric power steering device
JP2009112139A (en) Brushless motor
JP2008228367A (en) Brushless motor
JP5064401B2 (en) Brushless motor
JP2008182852A (en) Resolver stator fixing structure and brushless motor
JP2007006570A (en) Brushless motor and method of adjusting sensor position of brushless motor
JP2006352979A (en) Rotating electric machine
JP2008125306A (en) Stator structure of resolver and brushless motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07831340

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008544110

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07831340

Country of ref document: EP

Kind code of ref document: A1