WO2008053956A1 - Ceramic substrate, electronic device and method for producing ceramic substrate - Google Patents

Ceramic substrate, electronic device and method for producing ceramic substrate Download PDF

Info

Publication number
WO2008053956A1
WO2008053956A1 PCT/JP2007/071299 JP2007071299W WO2008053956A1 WO 2008053956 A1 WO2008053956 A1 WO 2008053956A1 JP 2007071299 W JP2007071299 W JP 2007071299W WO 2008053956 A1 WO2008053956 A1 WO 2008053956A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic
substrate
surface portion
groove
conductive paste
Prior art date
Application number
PCT/JP2007/071299
Other languages
French (fr)
Japanese (ja)
Inventor
Takaki Murata
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Publication of WO2008053956A1 publication Critical patent/WO2008053956A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/111Pads for surface mounting, e.g. lay-out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4803Insulating or insulated parts, e.g. mountings, containers, diamond heatsinks
    • H01L21/4807Ceramic parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/15Ceramic or glass substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49822Multilayer substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/111Pads for surface mounting, e.g. lay-out
    • H05K1/112Pads for surface mounting, e.g. lay-out directly combined with via connections
    • H05K1/113Via provided in pad; Pad over filled via
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15312Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a pin array, e.g. PGA
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09009Substrate related
    • H05K2201/09036Recesses or grooves in insulating substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/20Details of printed circuits not provided for in H05K2201/01 - H05K2201/10
    • H05K2201/2072Anchoring, i.e. one structure gripping into another
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/107Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by filling grooves in the support with conductive material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4626Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials
    • H05K3/4629Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials laminating inorganic sheets comprising printed circuits, e.g. green ceramic sheets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • Ceramic substrate Electronic device, and method for manufacturing ceramic substrate
  • the present invention relates to a ceramic substrate, an electronic device, and a method for manufacturing a ceramic substrate, and more specifically, a ceramic substrate excellent in bonding reliability of an external electrode to a substrate body, and an electronic device and a ceramic substrate manufactured using the ceramic substrate. Regarding the method.
  • a wiring board having a copper metallized pad for connecting to a lead terminal on the surface of an insulating substrate made of a glass ceramic sintered body the periphery of the copper metallized pad 51 as shown in FIG.
  • the part 51a is embedded in the insulating substrate 52, and the plating film formed by attaching the exposed part 51b of the copper metallized pad 51 is used as the electrode 53, and the lead terminal 54 is soldered to the lead terminal 54.
  • a wiring board having a structure in which 54 is connected to an electrode 53 by solder 55 has been proposed! (See Patent Document 1).
  • the peripheral portion 51a of the copper metallized pad 51 is embedded in the insulating substrate 52, and an electrode that easily becomes the starting point of a crack when subjected to an impact such as dropping or bending. Suppressing the occurrence of breakage from the end face of 53 and improving the joint strength is said to be performed with force S.
  • a green sheet 62 made of a glass ceramic composition is laminated on the peripheral portion 51a of the copper metallized pad 51 (FIG. 10 (b)) or a paste containing the glass ceramic composition is laminated.
  • the peripheral portion 51a of the copper metallized pad 51 is embedded in the insulating substrate 52, and the surface area of the insulating substrate in which the planar area of the electrode 53 is smaller than the planar area of the copper metallized pad 51.
  • the effective area where electrodes can be used is narrowed, and as electronic devices become smaller! /, The demand is growing, and high-density mounting cannot be fully supported! / There is a problem.
  • Patent Document 1 JP-A-9 293956
  • the present invention solves the above-mentioned problems, is excellent in the reliability of bonding the external electrode to the substrate body, and can secure a large effective area of the external electrode, and is compatible with high-density mounting.
  • An object of the present invention is to provide a ceramic substrate having excellent properties, an electronic device using the same, and a ceramic multilayer substrate capable of efficiently manufacturing the ceramic substrate.
  • the ceramic substrate of the present invention (Claim 1) is:
  • the external electrode is:
  • An anchor portion extending from a peripheral portion of the surface portion in a direction perpendicular to a main surface of the substrate body and engaged with the substrate body in a state of being embedded in the substrate body;
  • the ceramic substrate of claim 2 is the anchor according to the configuration of the invention of claim 1.
  • the portion is formed on the entire periphery of the peripheral portion of the surface portion.
  • the substrate body in the configuration of the invention of claim 1 or 2, includes a plurality of laminated ceramic layers, and an internal wiring pattern disposed therein. It is characterized by being!
  • the ceramic substrate of claim 4 is characterized in that, in the configuration of the invention of claim 3, the anchor member force is formed so as to penetrate at least one of the ceramic layers.
  • An electronic device is characterized in that an electronic component is mounted on the ceramic substrate according to any one of the first to fourth aspects so as to be connected to the external electrode.
  • a substrate main body, a surface portion disposed on the main surface of the substrate main body, and a peripheral portion of the surface portion extend in a direction perpendicular to the main surface of the substrate main body, and are embedded in the substrate main body and engaged with the substrate main body.
  • a substrate main body, a surface portion disposed on the main surface of the substrate main body, and a peripheral portion of the surface portion extend in a direction perpendicular to the main surface of the substrate main body, and are embedded in the substrate main body and engaged with the substrate main body.
  • a main body of the substrate body including a plurality of laminated ceramic layers and an internal wiring pattern disposed therein; a surface portion disposed on a main surface of the substrate body; and a peripheral portion of the surface portion.
  • a method of manufacturing a ceramic substrate comprising: an external electrode extending in a direction perpendicular to a surface and having an anchor portion embedded in the substrate body and engaged with the substrate body,
  • the ceramic green sheets are stacked with the same type and / or other types of ceramic green sheets so that the surface on which the conductive paste is applied to the surface portion forming region is the main surface, and an unfired ceramic laminate is formed. Forming a body;
  • the method for producing a ceramic substrate according to claim 9 comprises:
  • a substrate main body, a surface portion disposed on a main surface of the substrate main body, and a peripheral portion of the surface portion extend in a direction perpendicular to the main surface of the substrate main body, and are embedded in the substrate main body to engage with the substrate main body.
  • the ceramic green sheets are stacked with the same type and / or other types of ceramic green sheets so that the surface on which the conductive paste is applied to the surface portion forming region is the main surface, and an unfired ceramic laminate is formed. Forming a body;
  • the ceramic green sheet is formed on a carrier film, and the groove is formed so that at least the carrier film does not penetrate V. Characterized by doing! /
  • the method for manufacturing a ceramic substrate according to claim 11 is characterized in that, in the step of forming the groove, the groove is formed by irradiating a laser beam.
  • the step of embedding a conductive paste in the groove and the step of applying the conductive paste to the surface portion forming region include the surface portion forming region.
  • a special feature is that a conductive paste is applied to the groove, and the conductive paste is embedded in the groove.
  • the external electrode has a surface portion formed on the main surface of the substrate body, and a peripheral portion of the surface portion extends in a direction perpendicular to the main surface of the substrate body. Since the anchor portion engaged with the substrate body is embedded in the state of being embedded in the body, a highly reliable ceramic substrate in which the external electrode is firmly bonded to the substrate body can be provided.
  • the anchor portion of the external electrode is formed so as to extend in the vertical direction from the peripheral edge portion of the surface portion to the main surface of the substrate body, it is cracked when subjected to an impact caused by dropping or bending. It is possible to suppress and prevent the occurrence of breakage from the end surface of the surface portion of the external electrode, which is likely to be a base point of the above, and to obtain sufficient bonding strength.
  • the anchor portion of the external electrode is formed so as to extend in the vertical direction from the peripheral edge portion of the surface portion to the main surface of the substrate body, the planar area of the entire external electrode and the surface portion of the external electrode The effective area of the external electrode can be secured widely, so that the compatibility with high-density mounting does not deteriorate.
  • the ceramic substrate of the present invention may have a single-plate structure in which there are no particular restrictions on the specific configuration of the substrate body, or a laminated type having a structure in which a plurality of ceramic layers are laminated. It may be of the structure of
  • the state in which the anchor portion is engaged with the peripheral portion of the surface portion is most preferably the side surface of the surface portion being flush with the outer peripheral surface of the anchor portion.
  • the outer surface of the anchor part and the outer peripheral surface of the anchor part are slightly displaced on the same surface (for example, the outer peripheral surface of the anchor part is outside the side surface of the surface part, or the side surface of the surface part is outside the outer peripheral surface of the anchor part) In other words, there may be a slight difference in level between the two).
  • the anchor portion force extends from the entire periphery of the surface portion in a direction perpendicular to the main surface of the substrate body. Since it stretches and engages with the board body, it is more reliable to generate damage from the end face of the surface of the external electrode, which tends to become the base point of the crack when subjected to impacts such as dropping or bending. It becomes possible to suppress the suppression, and it becomes possible to further improve the coupling reliability between the external electrode and the substrate body.
  • the substrate body when the substrate body is configured to include a plurality of laminated ceramic layers and an internal wiring pattern, the substrate body has a laminated structure and has a high function. It becomes possible to provide a multilayer ceramic substrate having a high density and a high bonding reliability of external electrodes.
  • the electronic device of the present invention (Claim 5) is obtained by mounting an electronic component on the ceramic substrate of the present invention so as to be connected to the external electrode, and the bonding strength of the external electrode is high. It is possible to provide an electronic device that is highly resistant to impacts such as dropping or bending and has high reliability.
  • the peripheral portion of the unfired ceramic molded body in the surface portion forming region where the surface portion of the external electrode is formed that is, the surface portion forming region.
  • a groove that does not penetrate the ceramic molded body is formed in at least a part of the innermost outermost part including the outer periphery), the conductive paste is embedded in the groove, and the conductive paste is applied to the surface portion formation region.
  • the ceramic molded body is fired, so that the surface portion formed on the main surface of the substrate body and the peripheral portion of the surface portion in the direction perpendicular to the main surface of the substrate body It is possible to reliably form an external electrode having an anchor portion that extends and is embedded in the substrate body and engages with the substrate body, and the external electrode is firmly bonded to the substrate body. High ceramic Allowing you to produce plate efficiently.
  • a green sheet for shrinkage suppression is laminated on at least one main surface of the ceramic molded body to form a composite laminated body. After forming and firing this composite laminate at a temperature at which the ceramic compact sinters, the green sheet for suppressing shrinkage is removed, so that shrinkage in the planar direction during the firing process is suppressed. Ceramic base with high dimensional accuracy and shape accuracy It becomes possible to manufacture a board efficiently.
  • the surface on which the surface portion of the external electrode of the ceramic green sheet serving as the ceramic layer of the substrate body is to be formed A groove is formed in at least a part of the periphery of the part formation region, and the conductive paste is applied to the surface part formation region of the ceramic green sheet, and the conductive paste is embedded in the groove to Since it is laminated with the same type and / or other types of ceramic green sheets so that the surface where the conductive paste is applied to the part formation region is the main surface, the green ceramic molded body is fired.
  • Efficient multi-layer ceramic substrate with multi-layer structure, high functionality, high density, and high reliability with external electrodes firmly bonded to the substrate body It is possible to Ku production.
  • the composite laminate when firing the ceramic laminate, is obtained by laminating a shrinkage-suppressing green sheet on at least one main surface of the ceramic laminate. After forming and firing this composite laminate at the temperature at which the ceramic laminate sinters, the green sheet for suppressing shrinkage is removed, so that shrinkage in the planar direction during the firing process is suppressed. Thus, it becomes possible to efficiently manufacture a ceramic substrate having high dimensional accuracy and shape accuracy.
  • the ceramic liner sheet is connected to the entire surface, so that the better Handling property can be secured.
  • the groove is formed so as to penetrate the ceramic green sheet
  • the groove is formed by adjusting the output of the laser beam so that the carrier film does not penetrate but only the green sheet. Force At this time, since the output of the laser beam is easier to adjust than in the case of forming a groove that does not penetrate, the groove forming process can be facilitated.
  • the groove is formed by irradiating the laser beam as in the method for manufacturing the ceramic substrate according to claim 11, the groove can be easily formed by adjusting the output of the laser beam. The depth can be controlled, and the present invention can be made more effective.
  • the conductive paste is applied to the surface portion formation region and the conductive paste is embedded in the groove as in the method for manufacturing a ceramic substrate according to claim 12, the conductive to the groove
  • the conductive paste can be embedded and the conductive paste can be efficiently applied to the surface portion formation region, and the present invention can be made more effective.
  • FIG. 1 is a cross-sectional view showing a ceramic substrate (and an electronic device on which an electronic component is mounted) which is applied to an embodiment of the present invention.
  • FIG. 2 is a diagram showing an embodiment of a method for producing a ceramic substrate of the present invention, wherein ⁇ is a plan view showing a state in which grooves are formed in the surface portion forming region of the ceramic green sheet for substrates, and (b) is a plan view. It is sectional drawing.
  • FIG. 3 is a diagram showing an embodiment of a method for producing a ceramic substrate of the present invention, wherein ⁇ is a conductive paste applied to the surface portion forming region of the ceramic green sheet for a substrate, and the conductive paste is provided in the groove.
  • the top view which shows the state which filled up, (b) is sectional drawing.
  • FIG. 4 (a) to (d) are diagrams showing a process for producing a ceramic green sheet for a substrate provided with a via-hole conductor and an external conductor film, and (a) is a ceramic green sheet for a substrate before processing.
  • (B) is a view showing a state where a via conductor is formed by filling a conductive paste after forming a through hole for a via hole, and (c) is a groove formed by irradiating a laser beam.
  • (D) is a diagram showing a state in which an external electrode is formed by printing a conductive paste.
  • FIG. 5 is a diagram showing a method for manufacturing a ceramic substrate according to the present invention, and is a diagram showing a method for forming a laminated body by disposing ceramic ceramic sheets for a substrate in a predetermined order.
  • FIG. 6 is a view showing a state in which ceramic green sheets for suppressing shrinkage are disposed on both main surfaces of the laminate of FIG.
  • FIG. 7 (a) and (b) are views showing a modification of the arrangement of the anchor portion constituting the external electrode.
  • FIG. 8] A view showing another example of the arrangement of the anchor portions constituting the external electrode, where ( a ) is a plan view and (b) is a cross-sectional view.
  • FIG. 9 A diagram showing a bonding structure of a conventional wiring board (ceramic board) to an external electrode of a lead terminal.
  • FIG. 10 is a diagram showing a conventional method for forming an external electrode of a wiring board.
  • a substrate body 3 having a plurality of laminated ceramic layers 1 and an internal wiring pattern 2 disposed inside, and a main body of the substrate body 3
  • the surface portion 4 disposed on the surface and the anchor portion 5 extending from the peripheral portion of the surface portion 4 in a direction perpendicular to the main surface of the substrate body 3 and being engaged with the substrate body 3 while being embedded in the substrate body 3
  • a ceramic substrate having a structure in which an electronic component 7 (for example, a multilayer capacitor 7a, a semiconductor element 7b) is mounted on the upper main surface so as to be connected to the surface portion 4 of the external electrode 6. (Electronic device)
  • An example of manufacturing 10 will be described.
  • a low-temperature sintered ceramic material in which ceramic powder and glass powder are mixed, a binder, a dispersant, a plasticizer, and A ceramic slurry is prepared by adding an appropriate amount of each organic solvent and mixing the whole.
  • the ceramic powder for example, alumina powder is used.
  • the glass component contained in the low-temperature sintered ceramic material may be contained as glass powder from the beginning, or may precipitate glassy during the firing process. Further, such a glass component may be crystallized by depositing a crystalline substance at least in the final stage of the baking process.
  • a glass component contained in the low-temperature sintered ceramic material for example, a borosilicate glass powder capable of precipitating a crystal having a low dielectric loss such as forsterite, akermanite, or diopsite is advantageously used.
  • this ceramic slurry is formed into a sheet by a method such as a doctor blade method to obtain a ceramic green sheet for a substrate.
  • the obtained ceramic green sheet is provided with a through hole for forming a via hole conductor, and the through hole is filled with a conductive paste or conductive powder. A via-hole conductor is formed.
  • a silver-based conductive paste is printed on the ceramic green sheet for a substrate to form an external conductor film to be an external electrode and an internal conductor film to be an internal electrode pattern.
  • the outer conductor film is formed by the method described below.
  • a ceramic green sheet 11 supported by a carrier film 12 is prepared as a ceramic green sheet for a substrate.
  • Laser light is applied to the entire periphery of the peripheral portion of the surface portion forming region 16 inside the surface portion forming region 16 where the surface portion 4 (FIG. 1) of the external electrode 6 (FIG. 1) is to be formed.
  • a groove 20 having a depth that does not penetrate the ceramic green sheet 11 and reaches the middle of the thickness direction of the ceramic green sheet 11 (that is, a groove that does not penetrate the ceramic green sheet 11) is formed.
  • a conductive paste 26 for forming an external electrode is applied to the surface portion forming region 16 of the ceramic green sheet 11 and filled in the groove 20.
  • the conductive paste various conductive pastes generally used for forming external electrodes of electronic components can be used. By using such a conductive paste, there is no particular problem with the conductive paste.
  • the paste can be filled into the groove 20.
  • FIG. 4 (a) to 4 (d) are diagrams showing a process for producing the ceramic green sheet 11 for a substrate provided with the outer conductor film 36a and the via-hole conductor 36b.
  • a ceramic green sheet 11 as shown in FIG. 4 (a) is prepared.
  • a through hole 21 for a via hole is formed, and a conductive paste 26 is filled in the through hole 21.
  • the groove may be formed by using a cutting blade such as a dicer, but the method of irradiating with laser light is preferable because the depth of the groove 20 can be easily adjusted. That is, laser light In the case of the irradiation method, the force S can easily control the depth of the groove 20 by adjusting the output of the laser beam.
  • the conductive paste 26 for forming the external electrode is applied to the surface portion forming region 16 of the ceramic green sheet and filled in the groove 20, whereby the external conductor is formed as shown in FIG. 4 (d).
  • a ceramic green sheet for substrate 11 having a film 36a and a via-hole conductor 36b is obtained.
  • the conductive paste 26 for forming the external electrode is applied to the surface portion formation region 16 of the ceramic green sheet and filled in the groove 20 as described above. It is preferable that the external conductor film 36a can be efficiently formed without requiring a plurality of printing processes. However, first, the groove 20 is filled with the conductive paste 26, and then the ceramic green sheet is formed. The outer conductive film 36a may be formed by applying the conductive paste 26 to the surface portion formation region 16 of the ceramic, or the conductive paste 26 may be applied to the surface portion formation region 16 of the ceramic green sheet. Fill the groove 20 with the conductive paste 26 to form the outer conductor film 36a.
  • the ceramic green sheet 11 having the inner conductor film 36c formed on the surface is obtained.
  • sintering is performed at the sintering temperature of the low-temperature sintered ceramic material contained in the ceramic liner sheet for the substrate.
  • An inorganic material slurry is prepared by adding an appropriate amount of each of a binder, a dispersant, a plasticizer, an organic solvent, and the like to an inorganic material powder that is not used, such as alumina powder, and mixing them.
  • the inorganic material slurry is formed into a sheet shape by a method such as a doctor blade method to obtain a ceramic green sheet for a shrinkage suppression layer.
  • a plurality of ceramic green sheets 11 for a substrate manufactured as described above are stacked in a predetermined order as shown in FIG. 5, for example.
  • shrinkage-suppressing ceramic green sheets 30 are arranged and pressed on both main surfaces of the laminated body composed of the laminated ceramic green sheets 11 for the substrate as shown in FIG.
  • a composite laminate 40 is obtained in which the ceramic green sheets for shrinkage suppression are laminated on the upper and lower main surface sides relative to the seats of the laminated ceramic green sheets 11 for a substrate. It is also possible to configure the composite laminate to be cut to an appropriate size.
  • the composite laminate including the ceramic green sheet for shrinkage suppression is sintered at a temperature at which the ceramic green sheet for substrate (low-temperature sintered ceramic material) is sintered but the ceramic liner sheet for shrinkage suppression is not sintered. Bake.
  • the ceramic green sheet for shrinkage suppression does not substantially shrink, and the main surface direction (planar direction) of the ceramic green sheet for substrate (laminate) does not shrink. Demonstrate the restraint force to suppress the shrinkage.
  • the ceramic green sheet for substrate is sintered in the low-temperature sintered ceramic material while shrinkage in the main surface direction is suppressed, and substantially shrinks only in the thickness direction.
  • the unsintered shrinkage suppression layer is removed. As a result, a highly reliable ceramic substrate with high dimensional accuracy in the principal surface direction can be obtained.
  • a ceramic substrate (electronic device) having a structure in which the electronic component 7 (multilayer capacitor 7a, semiconductor element 7b) is mounted on the ceramic substrate is provided. Device) is obtained.
  • the anchor portion of the external electrode is formed all around the peripheral portion of the surface portion!
  • the surface portions 4 face each other! /, And the anchor portions are on one side (two sides in total).
  • 5 (groove 20) may be formed, and as shown in FIG. 7 (b), the anchor portion 5 (groove 20) may be formed only on one side of the surface portion 4.
  • an anchor is placed on the side 4a near the peripheral edge of the ceramic green sheet 11 in the surface portion forming region 16 of the ceramic green sheet 11 serving as the ceramic substrate.
  • a groove 20 for forming part 5 is formed, so that no groove is formed on side 4b opposite to side 4a on which groove 20 is formed and side 4c perpendicular to side 4a. 26 may be printed on the surface portion forming region 16 and the groove 20 may be filled.
  • the four surface portion forming regions 16 (16c) in the vicinity of the corner portion of the ceramic green sheet 11 in plan view are the ceramic green sheet 11 of each side.
  • a groove 20 for forming the anchor portion 5 is formed on the two sides 4a close to the peripheral edge of the groove.
  • the anchor portion be formed on at least one side of the surface portion. This is because when an anchor part is formed only on a part of one side of the surface part, the anchor part is formed! /, It is formed with a part! /, Na! /, Cracks etc. are broken at the boundary of the part As a result, the effect of improving the bonding strength cannot be obtained immediately. [0061] On the other hand, when the anchor portion is formed on the entire circumference of the plane portion, the strength against impacts such as dropping and bending can be improved more reliably.
  • the conductive paste for forming the external electrode it is preferable to use a paste having a viscosity in the range of 100 to 300 Pa's. This is because when the viscosity is less than lOOPa's, the printing accuracy of the surface portion decreases, and when the viscosity exceeds 300 Pa's, it is difficult to reliably fill the grooves with the conductive paste.
  • the particle size of the metal powder is the same as that of a normal conductive paste.
  • metal species that make up the metal powder there are no particular restrictions on the metal species that make up the metal powder, but for example, Ag, Cu, Au,
  • Pd, Pt, W, Mo, etc. can be used.
  • a groove width of 100 or 1 m or more is preferable because the filling property of the conductive paste decreases.
  • the depth of the groove is usually 10 to 100 m, preferably 25 to 50 111. If the depth of the groove is insufficient, the bonding strength of the external electrode becomes insufficient, and if the depth of the groove is too deep, the filling property of the conductive paste is lowered.
  • a groove that does not penetrate the ceramic green sheet may be formed by adjusting the output of the laser light. it can. In this case, the groove is formed shallow, and the filling property of the conductive paste can be improved.
  • the ceramic green sheet is connected over the entire surface, so that good handling properties can be ensured.
  • a groove can be formed so as to penetrate the ceramic green sheet.
  • the carrier film does not penetrate.
  • the groove is formed by adjusting the laser beam output so that only the green sheet does not pass through, but it is easier to adjust the laser beam output than when a groove that does not penetrate is formed.
  • the thickness of the ceramic green sheet on which the external electrode is formed is preferably the above-mentioned depth (10 to 100 depth). It is preferable to have a thickness that can form a groove.
  • the squeegee angle should be smaller than usual (with the squeegee a little laid down).
  • this ceramic slurry was formed into a sheet shape by a method such as a doctor blade method to produce a ceramic green sheet for a substrate having a thickness of 100 m.
  • the through hole is filled with a silver-based conductive paste to form a via-hole conductor, and a silver-based conductive paste is screen-printed on a ceramic green sheet for a substrate on which no external electrode is formed. To form an internal conductor film.
  • the surface portion of the external electrode is inside the surface portion forming region where the surface portion is to be formed, The entire circumference was irradiated with laser light to form a groove with a width of 50 111 and a depth of 50 m in the ceramic green sheet.
  • a conductive paste was printed on the surface portion formation region by screen printing to form an external conductor film, and the conductive paste was filled in the grooves.
  • the same conductive paste as that used for forming the inner conductor film was used.
  • the external conductor film may be formed by filling the paste and filling the groove with the conductive paste and printing the conductive paste on the surface portion formation region.
  • a ceramic green sheet for suppressing shrinkage a ceramic green sheet was produced by the following method.
  • ceramic powder alumina powder
  • binder alumina powder
  • dispersing agent 4 parts by weight of plasticizer
  • organic solvent 100 parts by weight of organic solvent
  • this inorganic material slurry was formed into a sheet shape by a method such as a doctor-blade method to produce a ceramic green sheet for shrinkage suppression having a thickness of 100 m.
  • the composite laminate was fired at 870 ° C. After completion of the firing step, sintering was performed to remove the layer and the shrinkage suppression layer, thereby obtaining a highly reliable multilayer ceramic substrate with high dimensional accuracy in the principal surface direction.
  • the substrate body of the external electrode has less occurrences of cracks or the like than conventional ceramic substrates. It was confirmed that the bonding strength to the steel was improved.
  • the anchor portion is formed so as to extend in the vertical direction from the peripheral edge portion of the surface portion to the main surface of the substrate body, the planar area of the entire external electrode and the area of the surface portion of the external electrode are It became substantially the same, and it was confirmed that the effective area of an external electrode could be secured widely.
  • the force described by taking the multilayer ceramic substrate as an example can also be applied to a single plate type ceramic substrate.
  • the shrinkage suppression layer is disposed on both main surfaces of the laminate, but the shrinkage suppression layer may be disposed only on at least one main surface of the laminate in some cases.
  • the surface area of the external electrode is substantially the same, and it is possible to improve the bonding strength of the external electrode to the substrate body compared to the conventional ceramic substrate without sacrificing the effective area of the external electrode. Obviously,
  • the present invention can be widely applied to a technical field related to the production of a ceramic substrate having an external electrode, an electronic device having an electronic component mounted thereon, and a ceramic substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

[PROBLEMS] To provide a ceramic substrate excellent in bonding reliability of an external electrode to a substrate main body and in high density mounting performance of mounting components, and to provide an electronic device employing it and a method for producing a ceramic multilayer substrate for producing the ceramic substrate efficiently. [MEANS FOR SOLVING PROBLEMS] An external electrode (6) has a surface portion (4) formed on the major surface of a substrate body (1), and an anchor portion (5) extending from the circumferential edge of the surface portion in the direction perpendicular to the major surface of the substrate main body and engaging with the substrate main body under a state embedded in the substrate body. The anchor portion is formed on the entire circumference at the circumferential edge of the surface portion. At least a part of the circumferential edge in the surface portion forming region of an unburnt ceramic molding is irradiated with a laser beam to form a groove not penetrating the ceramic molding, and conductive paste is applied to the surface portion forming region of the ceramic molding to fill the groove and then burnt thus forming an external electrode having a surface portion and an anchor portion.

Description

明 細 書  Specification
セラミック基板、電子装置およびセラミック基板の製造方法  Ceramic substrate, electronic device, and method for manufacturing ceramic substrate
技術分野  Technical field
[0001] 本願発明はセラミック基板、電子装置およびセラミック基板の製造方法に関し、詳し くは、外部電極の基板本体への接合信頼性に優れたセラミック基板、それを用いた 電子装置、セラミック基板の製造方法に関する。  TECHNICAL FIELD [0001] The present invention relates to a ceramic substrate, an electronic device, and a method for manufacturing a ceramic substrate, and more specifically, a ceramic substrate excellent in bonding reliability of an external electrode to a substrate body, and an electronic device and a ceramic substrate manufactured using the ceramic substrate. Regarding the method.
背景技術  Background art
[0002] 近年、例えば、携帯電話その他の電子機器において用いられている配線基板は、 電子機器の小型化にともなって、薄型化が進んでいる。そして、薄型化が進むにつ れて、落下やたわみなどの衝撃により配線基板が破損しやすくなるため、落下やたわ みなどの衝撃に対する強度の向上が求められるに至って!/、る。  [0002] In recent years, for example, wiring boards used in mobile phones and other electronic devices are becoming thinner as electronic devices become smaller. As the thickness is reduced, the wiring board is more likely to be damaged by impacts such as dropping or bending, so that improvement in strength against impacts such as dropping or bending is required!
[0003] これに対し、ガラスセラミック焼結体からなる絶縁基板の表面にリード端子と接続す るための銅メタライズパッドを具備する配線基板において、図 9に示すように、銅メタラ ィズパッド 51の周辺部 51aを絶縁基板 52内に埋め込んだ構造とし、銅メタライズパッ ド 51の露出部分 51bにめつきを施して形成しためっき膜を電極 53とし、これにリード 端子 54をはんだ付けして、リード端子 54をはんだ 55により電極 53に接続した構造を 有する配線基板が提案されて!/、る(特許文献 1参照)。  On the other hand, in a wiring board having a copper metallized pad for connecting to a lead terminal on the surface of an insulating substrate made of a glass ceramic sintered body, the periphery of the copper metallized pad 51 as shown in FIG. The part 51a is embedded in the insulating substrate 52, and the plating film formed by attaching the exposed part 51b of the copper metallized pad 51 is used as the electrode 53, and the lead terminal 54 is soldered to the lead terminal 54. A wiring board having a structure in which 54 is connected to an electrode 53 by solder 55 has been proposed! (See Patent Document 1).
[0004] そして、この配線基板においては、銅メタライズパッド 51の周辺部 51aが絶縁基板 5 2内に埋め込まれており、落下やたわみなどの衝撃を受けたときにクラックの基点とな りやすい電極 53の端面から破壊が生じることを抑制して、接合強度を向上させること 力 Sでさるとされている。  [0004] In this wiring board, the peripheral portion 51a of the copper metallized pad 51 is embedded in the insulating substrate 52, and an electrode that easily becomes the starting point of a crack when subjected to an impact such as dropping or bending. Suppressing the occurrence of breakage from the end face of 53 and improving the joint strength is said to be performed with force S.
[0005] しかしながら、この配線基板において、銅メタライズパッド 51の周囲を絶縁基板 52 内に埋め込んだ構造とするにあたっては、  [0005] However, in this wiring board, in the structure in which the periphery of the copper metallized pad 51 is embedded in the insulating substrate 52,
(a)図 10(a)に示すように、グリーンシート 61に銅メタライズパッド 51を印刷する工程  (a) The step of printing the copper metallized pad 51 on the green sheet 61 as shown in FIG.
(b)銅メタライズパッド 51の周辺部 51a上にガラスセラミック組成物からなるグリーン シート 62を積層する(図 10(b))か、あるいはガラスセラミック組成物を含むペーストを 印刷する工程、 (b) A green sheet 62 made of a glass ceramic composition is laminated on the peripheral portion 51a of the copper metallized pad 51 (FIG. 10 (b)) or a paste containing the glass ceramic composition is laminated. Printing process,
(c)図 10(c)に示すように全体を圧着する工程、  (c) The process of crimping the whole as shown in Fig. 10 (c),
(d)焼成を行い、図 10(d)に示すように、露出部分にめっきを施して、めっき層からな る電極 53を形成する工程  (d) A step of firing and plating the exposed portion to form an electrode 53 made of a plating layer as shown in FIG. 10 (d).
の各工程を必要とすることから、製造工程が複雑になり、コストの増大を招くという問 題点がある。  Therefore, there is a problem that the manufacturing process becomes complicated and the cost increases.
[0006] また、銅メタライズパッド 51の周辺部 51aを絶縁基板 52内に埋め込んだ構造であり 、銅メタライズパッド 51の平面面積に比べて、電極 53の平面面積が小さぐ絶縁基板 の表面の、電極を使用することが可能な有効エリアが狭くなり、電子機器の小型化に ともな!/、要求が大きくなつてレ、る高密度実装に十分に対応することができな!/、とレ、う 問題点がある。  [0006] Further, the peripheral portion 51a of the copper metallized pad 51 is embedded in the insulating substrate 52, and the surface area of the insulating substrate in which the planar area of the electrode 53 is smaller than the planar area of the copper metallized pad 51. The effective area where electrodes can be used is narrowed, and as electronic devices become smaller! /, The demand is growing, and high-density mounting cannot be fully supported! / There is a problem.
特許文献 1 :特開平 9 293956号公報  Patent Document 1: JP-A-9 293956
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] 本願発明は上記課題を解決するものであり、外部電極の基板本体への接合信頼 性に優れ、かつ、外部電極の有効エリアを大きく確保することが可能で、高密度実装 への対応性に優れたセラミック基板、それを用いた電子装置、および前記セラミック 基板を効率よく製造することが可能なセラミック多層基板を提供することを目的とする [0007] The present invention solves the above-mentioned problems, is excellent in the reliability of bonding the external electrode to the substrate body, and can secure a large effective area of the external electrode, and is compatible with high-density mounting. An object of the present invention is to provide a ceramic substrate having excellent properties, an electronic device using the same, and a ceramic multilayer substrate capable of efficiently manufacturing the ceramic substrate.
課題を解決するための手段 Means for solving the problem
[0008] 上記課題を解決するために、本願発明(請求項 1)のセラミック基板は、 In order to solve the above problems, the ceramic substrate of the present invention (Claim 1) is:
基板本体と、前記基板本体の主面に配設された外部電極を備えたセラミック基板 において、前記外部電極が、  In a ceramic substrate comprising a substrate body and an external electrode disposed on a main surface of the substrate body, the external electrode is:
前記基板本体の主面に形成された表面部と、  A surface portion formed on the main surface of the substrate body;
前記表面部の周縁部から前記基板本体の主面に垂直方向に伸び、前記基板本体 に埋設された状態で前記基板本体と係合するアンカー部と  An anchor portion extending from a peripheral portion of the surface portion in a direction perpendicular to a main surface of the substrate body and engaged with the substrate body in a state of being embedded in the substrate body;
を備えてレ、ることを特 ί毁として!/、る。  The special feature is that you are equipped with!
[0009] また、請求項 2のセラミック基板は、請求項 1の発明の構成において、前記アンカー 部が、前記表面部の周縁部の全周に形成されてレ、ることを特徴として!/、る。 [0009] Further, the ceramic substrate of claim 2 is the anchor according to the configuration of the invention of claim 1. The portion is formed on the entire periphery of the peripheral portion of the surface portion.
[0010] また、請求項 3のセラミック基板は、請求項 1または 2の発明の構成において、前記 基板本体が、積層された複数のセラミック層と、内部に配設された内部配線パターン とを備えたものであることを特徴として!/、る。 [0010] Further, in the ceramic substrate of claim 3, in the configuration of the invention of claim 1 or 2, the substrate body includes a plurality of laminated ceramic layers, and an internal wiring pattern disposed therein. It is characterized by being!
[0011] また、請求項 4のセラミック基板は、請求項 3の発明の構成において、前記アンカー 部力、少なくとも前記セラミック層の一つを貫通して形成されていることを特徴としてい [0011] Further, the ceramic substrate of claim 4 is characterized in that, in the configuration of the invention of claim 3, the anchor member force is formed so as to penetrate at least one of the ceramic layers.
[0012] また、請求項 5の電子装置は、請求項 1〜4のいずれかに記載のセラミック基板に、 前記外部電極と接続するように電子部品が実装されていることを特徴としている。 An electronic device according to a fifth aspect is characterized in that an electronic component is mounted on the ceramic substrate according to any one of the first to fourth aspects so as to be connected to the external electrode.
[0013] また、請求項 6のセラミック基板の製造方法は、  [0013] Further, the method of manufacturing a ceramic substrate according to claim 6,
基板本体と、前記基板本体の主面に配設された表面部および前記表面部の周縁 部から前記基板本体の主面に垂直方向に伸び、前記基板本体に埋設されて前記基 板本体と係合するアンカー部を有する外部電極とを備えたセラミック基板の製造方法 であって、  A substrate main body, a surface portion disposed on the main surface of the substrate main body, and a peripheral portion of the surface portion extend in a direction perpendicular to the main surface of the substrate main body, and are embedded in the substrate main body and engaged with the substrate main body. A method of manufacturing a ceramic substrate comprising an external electrode having an anchor portion to be joined,
未焼成のセラミック成形体の、前記外部電極の前記表面部が形成されるべき表面 部形成領域内の周縁部の少なくとも一部に、セラミック成形体を貫通しな!、溝を形成 する工程と、  Forming a groove in the green ceramic molded body without penetrating the ceramic molded body in at least a part of the peripheral portion in the surface portion forming region where the surface portion of the external electrode is to be formed; and
前記溝に導電性ペーストを埋め込む工程と、  Embedding a conductive paste in the groove;
前記セラミック成形体の前記表面部形成領域に導電性ペーストを塗布する工程と、 前記セラミック成形体を焼成する工程と  Applying a conductive paste to the surface portion forming region of the ceramic molded body; firing the ceramic molded body;
を具備することを特徴としてレ、る。  It is characterized by comprising.
[0014] 請求項 7のセラミック基板の製造方法は、 [0014] A method of manufacturing a ceramic substrate according to claim 7,
基板本体と、前記基板本体の主面に配設された表面部および前記表面部の周縁 部から前記基板本体の主面に垂直方向に伸び、前記基板本体に埋設されて前記基 板本体と係合するアンカー部を有する外部電極とを備えたセラミック基板の製造方法 であって、  A substrate main body, a surface portion disposed on the main surface of the substrate main body, and a peripheral portion of the surface portion extend in a direction perpendicular to the main surface of the substrate main body, and are embedded in the substrate main body and engaged with the substrate main body. A method of manufacturing a ceramic substrate comprising an external electrode having an anchor portion to be joined,
未焼成のセラミック成形体の、前記外部電極の前記表面部が形成されるべき表面 部形成領域内の周縁部の少なくとも一部に、セラミック成形体を貫通しな!、溝を形成 する工程と、 Form a groove in the green ceramic molded body without penetrating the ceramic molded body in at least a part of the peripheral portion in the surface portion forming region where the surface portion of the external electrode is to be formed. And a process of
前記溝に導電性ペーストを埋め込む工程と、  Embedding a conductive paste in the groove;
前記セラミック成形体の前記表面部形成領域に導電性ペーストを塗布する工程と、 前記セラミック成形体の少なくとも一方主面に、前記セラミック成形体を焼成する温 度では焼結しない無機材料粉末を含む収縮抑制用グリーンシートを積層して複合積 層体を形成する工程と、  A step of applying a conductive paste to the surface portion forming region of the ceramic molded body, and shrinkage including an inorganic material powder that is not sintered at a temperature at which the ceramic molded body is fired on at least one main surface of the ceramic molded body. Forming a composite stack by laminating green sheets for suppression;
前記複合積層体を、前記セラミック成形体が焼結する温度で焼成する工程と、 前記複合積層体から、未焼結の収縮抑制用グリーンシートを除去する工程と を具備することを特徴としてレ、る。  Firing the composite laminate at a temperature at which the ceramic molded body is sintered; and removing the green sheet for suppressing shrinkage from the composite laminate. The
[0015] また、請求項 8のセラミック基板の製造方法は、 [0015] Further, the method of manufacturing a ceramic substrate according to claim 8,
積層された複数のセラミック層および内部に配設された内部配線パターンを備えた 基板本体と、前記基板本体の主面に配設された表面部および前記表面部の周縁部 から前記基板本体の主面に垂直方向に伸び、前記基板本体に埋設されて前記基板 本体と係合するアンカー部を有する外部電極とを備えたセラミック基板の製造方法で あって、  A main body of the substrate body including a plurality of laminated ceramic layers and an internal wiring pattern disposed therein; a surface portion disposed on a main surface of the substrate body; and a peripheral portion of the surface portion. A method of manufacturing a ceramic substrate, comprising: an external electrode extending in a direction perpendicular to a surface and having an anchor portion embedded in the substrate body and engaged with the substrate body,
前記基板本体の前記セラミック層となるセラミックグリーンシートの、前記外部電極 の前記表面部が形成されるべき表面部形成領域の周縁部の少なくとも一部に、溝を 形成する工程と、  Forming a groove in at least a part of a peripheral portion of a surface portion forming region where the surface portion of the external electrode is to be formed in a ceramic green sheet to be the ceramic layer of the substrate body;
前記溝に導電性ペーストを埋め込む工程と、  Embedding a conductive paste in the groove;
前記セラミックグリーンシートの前記表面部形成領域に導電性ペーストを塗布する 工程と、  Applying a conductive paste to the surface portion forming region of the ceramic green sheet;
前記セラミックグリーンシートを、前記導電ペーストが前記表面部形成領域に塗布さ れた面が主面となるように、同種および/または他種のセラミックグリーンシートと積 層して、未焼成のセラミック積層体を形成する工程と、  The ceramic green sheets are stacked with the same type and / or other types of ceramic green sheets so that the surface on which the conductive paste is applied to the surface portion forming region is the main surface, and an unfired ceramic laminate is formed. Forming a body;
前記セラミック積層体を焼成する工程と  Firing the ceramic laminate;
を具備することを特徴としてレ、る。  It is characterized by comprising.
[0016] また、請求項 9のセラミック基板の製造方法は、 [0016] Further, the method for producing a ceramic substrate according to claim 9 comprises:
積層された複数のセラミック層および内部に配設された内部配線パターンを備えた 基板本体と、前記基板本体の主面に配設された表面部および前記表面部の周縁部 から前記基板本体の主面に垂直方向に伸び、前記基板本体に埋設されて前記基板 本体と係合するアンカー部を有する外部電極とを備えたセラミック基板の製造方法で あって、 Provided with a plurality of laminated ceramic layers and internal wiring pattern arranged inside A substrate main body, a surface portion disposed on a main surface of the substrate main body, and a peripheral portion of the surface portion extend in a direction perpendicular to the main surface of the substrate main body, and are embedded in the substrate main body to engage with the substrate main body. A method of manufacturing a ceramic substrate comprising an external electrode having an anchoring portion,
前記基板本体の前記セラミック層となるセラミックグリーンシートの、前記外部電極 の前記表面部が形成されるべき表面部形成領域の周縁部の少なくとも一部に、溝を 形成する工程と、  Forming a groove in at least a part of a peripheral portion of a surface portion forming region where the surface portion of the external electrode is to be formed in a ceramic green sheet to be the ceramic layer of the substrate body;
前記溝に導電性ペーストを埋め込む工程と、  Embedding a conductive paste in the groove;
前記セラミックグリーンシートの前記表面部形成領域に導電性ペーストを塗布する 工程と、  Applying a conductive paste to the surface portion forming region of the ceramic green sheet;
前記セラミックグリーンシートを、前記導電ペーストが前記表面部形成領域に塗布さ れた面が主面となるように、同種および/または他種のセラミックグリーンシートと積 層して、未焼成のセラミック積層体を形成する工程と、  The ceramic green sheets are stacked with the same type and / or other types of ceramic green sheets so that the surface on which the conductive paste is applied to the surface portion forming region is the main surface, and an unfired ceramic laminate is formed. Forming a body;
前記セラミック積層体の少なくとも一方主面に、前記セラミック積層体を焼成する温 度では焼結しない無機材料粉末を含む収縮抑制用グリーンシートを積層して複合積 層体を形成する工程と、  Forming a composite laminate by laminating at least one main surface of the ceramic laminate a green sheet for shrinkage suppression containing an inorganic material powder that is not sintered at a temperature at which the ceramic laminate is fired;
前記複合積層体を、前記セラミック積層体が焼結する温度で焼成する工程と、 前記複合積層体から、未焼結の収縮抑制用グリーンシートを除去する工程と を具備することを特徴としてレ、る。  Firing the composite laminate at a temperature at which the ceramic laminate sinters; and removing the green sheet for suppressing shrinkage from the composite laminate, The
[0017] また、請求項 10のセラミック基板の製造方法は、前記セラミックグリーンシートがキヤ リアフィルム上に形成されたものであって、少なくとも前記キャリアフィルムは貫通しな V、ように前記溝を形成することを特徴として!/、る。 [0017] Further, in the method for manufacturing a ceramic substrate according to claim 10, the ceramic green sheet is formed on a carrier film, and the groove is formed so that at least the carrier film does not penetrate V. Characterized by doing! /
[0018] また、請求項 11のセラミック基板の製造方法は、前記溝を形成する工程において、 レーザ光を照射することにより溝を形成することを特徴としている。 [0018] The method for manufacturing a ceramic substrate according to claim 11 is characterized in that, in the step of forming the groove, the groove is formed by irradiating a laser beam.
[0019] また、請求項 12のセラミック基板の製造方法は、前記溝に導電性ペーストを埋め込 む工程と、前記表面部形成領域に導電性ペーストを塗布する工程とが、前記表面部 形成領域に導電性ペーストを塗布するとともに、前記溝に導電性ペーストを埋め込む ことにより fiわれることを特 ί毁としている。 発明の効果 [0019] Further, in the method for manufacturing a ceramic substrate according to claim 12, the step of embedding a conductive paste in the groove and the step of applying the conductive paste to the surface portion forming region include the surface portion forming region. A special feature is that a conductive paste is applied to the groove, and the conductive paste is embedded in the groove. The invention's effect
[0020] 本願発明(請求項 1)のセラミック基板は、外部電極が、基板本体の主面に形成され る表面部と、表面部の周縁部から基板本体の主面に垂直方向に伸び、基板本体に 埋設された状態で基板本体と係合するアンカー部とを備えて!/、るので、外部電極が 基板本体に強固に接合した信頼性の高いセラミック基板を提供することができる。  [0020] In the ceramic substrate of the present invention (claim 1), the external electrode has a surface portion formed on the main surface of the substrate body, and a peripheral portion of the surface portion extends in a direction perpendicular to the main surface of the substrate body. Since the anchor portion engaged with the substrate body is embedded in the state of being embedded in the body, a highly reliable ceramic substrate in which the external electrode is firmly bonded to the substrate body can be provided.
[0021] また、外部電極のアンカー部が、表面部の周縁部から基板本体の主面に垂直方向 に伸びるように形成されているので、落下やたわみなどによる衝撃を受けたときにクラ ックの基点となりやすい、外部電極の表面部の端面から破壊が生じることを抑制、防 止して、十分な接合強度を得ることができる。  [0021] Further, since the anchor portion of the external electrode is formed so as to extend in the vertical direction from the peripheral edge portion of the surface portion to the main surface of the substrate body, it is cracked when subjected to an impact caused by dropping or bending. It is possible to suppress and prevent the occurrence of breakage from the end surface of the surface portion of the external electrode, which is likely to be a base point of the above, and to obtain sufficient bonding strength.
[0022] さらに、外部電極のアンカー部が、表面部の周縁部から基板本体の主面に垂直方 向に伸びるように形成されているので、外部電極全体の平面面積と、外部電極の表 面部の面積とが実質的に同一となり、外部電極の有効エリアを広く確保することがで きるため、高密度実装への対応性が低下することがない。  [0022] Furthermore, since the anchor portion of the external electrode is formed so as to extend in the vertical direction from the peripheral edge portion of the surface portion to the main surface of the substrate body, the planar area of the entire external electrode and the surface portion of the external electrode The effective area of the external electrode can be secured widely, so that the compatibility with high-density mounting does not deteriorate.
なお、本願発明のセラミック基板においては、基板本体の具体的な構成に特別の 制約はなぐ単板型の構造のものであってもよぐまた、セラミック層が複数積層され た構造を有する積層型の構造のものであってもよレ、。  The ceramic substrate of the present invention may have a single-plate structure in which there are no particular restrictions on the specific configuration of the substrate body, or a laminated type having a structure in which a plurality of ceramic layers are laminated. It may be of the structure of
また、セラミック基板の構成材料についても、特別の制約はなぐ種々の材料からな るあのを用いること力でさる。  In addition, regarding the constituent material of the ceramic substrate, it is the force to use various materials made of various materials without special restrictions.
また、本願発明のセラミック基板において、表面部の周縁部にアンカー部が係合し ている状態としては、表面部の側面がアンカー部の外周面と同一面にあることが最も 望ましいが、表面部の側面とアンカー部の外周面が同一面ではなぐいくらかずれた 状態(例えば、アンカー部の外周面が表面部の側面よりも外側にあったり、表面部の 側面がアンカー部の外周面よりも外側にあったりして、両者の境目に多少の段差が ある状態)であってもよい。  In the ceramic substrate of the present invention, the state in which the anchor portion is engaged with the peripheral portion of the surface portion is most preferably the side surface of the surface portion being flush with the outer peripheral surface of the anchor portion. The outer surface of the anchor part and the outer peripheral surface of the anchor part are slightly displaced on the same surface (for example, the outer peripheral surface of the anchor part is outside the side surface of the surface part, or the side surface of the surface part is outside the outer peripheral surface of the anchor part) In other words, there may be a slight difference in level between the two).
[0023] また、請求項 2のセラミック基板のように、表面部の周縁部の全周にアンカー部を形 成した場合、表面部の全周からアンカー部力 基板本体の主面に垂直方向に伸び て基板本体と係合した状態となるため、落下やたわみなどの衝撃を受けた場合にクラ ックの基点となりやすい、外部電極の表面部の端面からの破壊の発生をより確実に 抑制止することが可能になり、外部電極と基板本体との結合信頼性をさらに向上させ ることが可能になる。 [0023] Further, as in the ceramic substrate of claim 2, when the anchor portion is formed on the entire periphery of the peripheral portion of the surface portion, the anchor portion force extends from the entire periphery of the surface portion in a direction perpendicular to the main surface of the substrate body. Since it stretches and engages with the board body, it is more reliable to generate damage from the end face of the surface of the external electrode, which tends to become the base point of the crack when subjected to impacts such as dropping or bending. It becomes possible to suppress the suppression, and it becomes possible to further improve the coupling reliability between the external electrode and the substrate body.
[0024] また、請求項 3のセラミック基板のように、基板本体を、積層された複数のセラミック 層と内部配線パターンとを備えた構成のものとした場合、積層構造を有し、高機能、 高密度で、かつ、外部電極の接合信頼性の高い積層セラミック基板を提供することが 可能になる。  [0024] Further, as in the ceramic substrate of claim 3, when the substrate body is configured to include a plurality of laminated ceramic layers and an internal wiring pattern, the substrate body has a laminated structure and has a high function. It becomes possible to provide a multilayer ceramic substrate having a high density and a high bonding reliability of external electrodes.
[0025] また、請求項 4のセラミック基板のように、アンカー部を、少なくとも前記セラミック層 の一つを貫通して形成することにより、外部電極と基板本体との間の十分な接合信 頼性を確保することが可能になり、本願発明を実効あらしめることができる。  [0025] In addition, as in the ceramic substrate of claim 4, by forming the anchor portion so as to penetrate at least one of the ceramic layers, sufficient bonding reliability between the external electrode and the substrate body is achieved. Can be ensured, and the present invention can be effectively realized.
[0026] また、本願発明(請求項 5)の電子装置は、本願発明のセラミック基板に、外部電極 と接続するように電子部品を実装したものであり、外部電極の接合強度が大きいこと から、落下やたわみなどの衝撃に強く高い信頼性を備えた電子装置を提供すること が可能になる。  [0026] Further, the electronic device of the present invention (Claim 5) is obtained by mounting an electronic component on the ceramic substrate of the present invention so as to be connected to the external electrode, and the bonding strength of the external electrode is high. It is possible to provide an electronic device that is highly resistant to impacts such as dropping or bending and has high reliability.
[0027] また、請求項 6のセラミック基板の製造方法は、未焼成のセラミック成形体の、外部 電極の表面部が形成される表面部形成領域内の周縁部(すなわち、表面部形成領 域の内側であって、外周を含む最も外側の部分)の少なくとも一部に、セラミック成形 体を貫通しない溝を形成し、導電性ペーストを溝に埋め込み、導電性ペーストを表面 部形成領域に塗布することにより外部電極パターンを形成した後、セラミック成形体 を焼成するようにしているので、基板本体の主面に形成される表面部と、表面部の周 縁部から基板本体の主面に垂直方向に伸び、基板本体に埋設された状態で基板本 体と係合するアンカー部とを備えた外部電極を確実に形成することが可能になり、外 部電極が基板本体に強固に接合した信頼性の高いセラミック基板を効率よく製造す ることが可能になる。  [0027] Further, in the method for manufacturing a ceramic substrate according to claim 6, the peripheral portion of the unfired ceramic molded body in the surface portion forming region where the surface portion of the external electrode is formed (that is, the surface portion forming region). A groove that does not penetrate the ceramic molded body is formed in at least a part of the innermost outermost part including the outer periphery), the conductive paste is embedded in the groove, and the conductive paste is applied to the surface portion formation region. After forming the external electrode pattern, the ceramic molded body is fired, so that the surface portion formed on the main surface of the substrate body and the peripheral portion of the surface portion in the direction perpendicular to the main surface of the substrate body It is possible to reliably form an external electrode having an anchor portion that extends and is embedded in the substrate body and engages with the substrate body, and the external electrode is firmly bonded to the substrate body. High ceramic Allowing you to produce plate efficiently.
[0028] また、請求項 7のセラミック基板の製造方法は、セラミック成形体を焼成するにあた つて、セラミック成形体の少なくとも一方主面に、収縮抑制用グリーンシートを積層し て複合積層体を形成し、この複合積層体をセラミック成形体が焼結する温度で焼成 した後、未焼結の収縮抑制用グリーンシートを除去するようにしているので、焼成ェ 程における平面方向への収縮を抑制して、寸法精度や形状精度の高いセラミック基 板を効率よく製造することが可能になる。 [0028] Further, in the method for producing a ceramic substrate according to claim 7, when firing the ceramic molded body, a green sheet for shrinkage suppression is laminated on at least one main surface of the ceramic molded body to form a composite laminated body. After forming and firing this composite laminate at a temperature at which the ceramic compact sinters, the green sheet for suppressing shrinkage is removed, so that shrinkage in the planar direction during the firing process is suppressed. Ceramic base with high dimensional accuracy and shape accuracy It becomes possible to manufacture a board efficiently.
[0029] 請求項 8のセラミック基板の製造方法は、積層型のセラミック基板を製造する場合に おいて、基板本体のセラミック層となるセラミックグリーンシートの、外部電極の表面部 が形成されるべき表面部形成領域の周囲の少なくとも一部に、溝を形成し、導電性 ペーストを、セラミックグリーンシートの表面部形成領域に塗布するとともに、導電性 ペーストを溝に埋め込むことにより、セラミックグリーンシートを、表面部形成領域に導 電ペーストが塗布された面が主面となるように、同種および/または他種のセラミック グリーンシートと積層して、未焼成のセラミック成形体を焼成するようにしているので、 積層構造を有し、高機能、高密度で、かつ、外部電極が基板本体に強固に接合した 信頼性の高い、積層セラミック基板を効率よく製造することが可能になる。  [0029] According to the method for manufacturing a ceramic substrate of claim 8, in the case of manufacturing a multilayer ceramic substrate, the surface on which the surface portion of the external electrode of the ceramic green sheet serving as the ceramic layer of the substrate body is to be formed A groove is formed in at least a part of the periphery of the part formation region, and the conductive paste is applied to the surface part formation region of the ceramic green sheet, and the conductive paste is embedded in the groove to Since it is laminated with the same type and / or other types of ceramic green sheets so that the surface where the conductive paste is applied to the part formation region is the main surface, the green ceramic molded body is fired. Efficient multi-layer ceramic substrate with multi-layer structure, high functionality, high density, and high reliability with external electrodes firmly bonded to the substrate body It is possible to Ku production.
[0030] また、請求項 9のセラミック基板の製造方法は、セラミック積層体を焼成するにあた つて、セラミック積層体の少なくとも一方主面に、収縮抑制用グリーンシートを積層し て複合積層体を形成し、この複合積層体をセラミック積層体が焼結する温度で焼成 した後、未焼結の収縮抑制用グリーンシートを除去するようにしているので、焼成ェ 程における平面方向への収縮を抑制して、寸法精度や形状精度の高いセラミック基 板を効率よく製造することが可能になる。  [0030] Further, in the method for producing a ceramic substrate according to claim 9, when firing the ceramic laminate, the composite laminate is obtained by laminating a shrinkage-suppressing green sheet on at least one main surface of the ceramic laminate. After forming and firing this composite laminate at the temperature at which the ceramic laminate sinters, the green sheet for suppressing shrinkage is removed, so that shrinkage in the planar direction during the firing process is suppressed. Thus, it becomes possible to efficiently manufacture a ceramic substrate having high dimensional accuracy and shape accuracy.
[0031] また、請求項 10のセラミック基板の製造方法のように、セラミックグリーンシートとして 、キャリアフィルム上に形成されたものを用い、少なくともキャリアフィルムは貫通しな いように溝を形成することにより、必要なハンドリング性を確保しつつ、セラミックダリー ンシートに効率よく溝を形成することができる。  [0031] Further, as in the method for manufacturing a ceramic substrate according to claim 10, by using a ceramic green sheet formed on a carrier film and forming a groove so as not to penetrate at least the carrier film. Therefore, it is possible to efficiently form grooves in the ceramic liner sheet while ensuring the necessary handling properties.
[0032] なお、キャリアフィルム上に形成されたセラミックグリーンシートに溝を形成する工程 において、溝がセラミックグリーンシートを貫通しないようにした場合、セラミックダリー ンシートが全面でつながつているため、より良好なハンドリング性を確保することがで きる。  [0032] In the step of forming the groove in the ceramic green sheet formed on the carrier film, if the groove does not penetrate the ceramic green sheet, the ceramic liner sheet is connected to the entire surface, so that the better Handling property can be secured.
[0033] また、セラミックグリーンシートを貫通するように溝を形成する場合、キャリアフィルム は貫通せずグリーンシートのみを貫通するようにレーザ光の出力を調整して溝の形 成を行うことになる力 このときには、貫通しない溝を形成する場合よりレーザ光の出 力を調整しやすいため、溝の形成工程を容易にすることができる。 [0034] また、請求項 11のセラミック基板の製造方法のように、レーザ光を照射することによ り溝を形成するようにした場合、レーザ光の出力を調整することにより、容易に溝の深 さを制御することが可能になり、本発明をより実効あらしめることができる。 [0033] When the groove is formed so as to penetrate the ceramic green sheet, the groove is formed by adjusting the output of the laser beam so that the carrier film does not penetrate but only the green sheet. Force At this time, since the output of the laser beam is easier to adjust than in the case of forming a groove that does not penetrate, the groove forming process can be facilitated. [0034] Further, when the groove is formed by irradiating the laser beam as in the method for manufacturing the ceramic substrate according to claim 11, the groove can be easily formed by adjusting the output of the laser beam. The depth can be controlled, and the present invention can be made more effective.
[0035] また、請求項 12のセラミック基板の製造方法のように、表面部形成領域に導電性ぺ 一ストを塗布するとともに、溝に導電性ペーストを埋め込むようにした場合、溝への導 電性ペーストの埋め込みと、表面部形成領域への導電性ペーストの塗布を効率よく 行うことが可能になり、本発明をより実効あらしめることができる。  [0035] When the conductive paste is applied to the surface portion formation region and the conductive paste is embedded in the groove as in the method for manufacturing a ceramic substrate according to claim 12, the conductive to the groove The conductive paste can be embedded and the conductive paste can be efficiently applied to the surface portion formation region, and the present invention can be made more effective.
図面の簡単な説明  Brief Description of Drawings
[0036] [図 1]本願発明の実施形態に力、かるセラミック基板 (及びそれに電子部品を実装した 電子装置)を示す断面図である。  [0036] FIG. 1 is a cross-sectional view showing a ceramic substrate (and an electronic device on which an electronic component is mounted) which is applied to an embodiment of the present invention.
[図 2]本願発明のセラミック基板の製造方法の一実施形態を示す図であって、 ωは 基板用セラミックグリーンシートの表面部形成領域に溝を形成した状態を示す平面図 、(b)は断面図である。  FIG. 2 is a diagram showing an embodiment of a method for producing a ceramic substrate of the present invention, wherein ω is a plan view showing a state in which grooves are formed in the surface portion forming region of the ceramic green sheet for substrates, and (b) is a plan view. It is sectional drawing.
[図 3]本願発明のセラミック基板の製造方法の一実施形態を示す図であって、 ωは 基板用セラミックグリーンシートの表面部形成領域に導電性ペーストを塗布するととも に、溝に導電性ペーストを充填した状態を示す平面図、(b)は断面図である。  FIG. 3 is a diagram showing an embodiment of a method for producing a ceramic substrate of the present invention, wherein ω is a conductive paste applied to the surface portion forming region of the ceramic green sheet for a substrate, and the conductive paste is provided in the groove. The top view which shows the state which filled up, (b) is sectional drawing.
[図 4](a)〜(d)は、ビアホール導体と外部導体膜を備えた基板用セラミックグリーンシ ートの作製工程を示す図であり、(a)は加工前の基板用セラミックグリーンシートを示 す図、(b)はビアホール用の貫通孔を形成した後、導電性ペーストを充填してビア導 体を形成した状態を示す図、(c)はレーザ光を照射して溝を形成した状態を示す図、 ( d)導電性ペーストを印刷して外部電極を形成した状態を示す図である。  [FIG. 4] (a) to (d) are diagrams showing a process for producing a ceramic green sheet for a substrate provided with a via-hole conductor and an external conductor film, and (a) is a ceramic green sheet for a substrate before processing. (B) is a view showing a state where a via conductor is formed by filling a conductive paste after forming a through hole for a via hole, and (c) is a groove formed by irradiating a laser beam. (D) is a diagram showing a state in which an external electrode is formed by printing a conductive paste.
[図 5]本願発明のセラミック基板の製造方法を示す図であって、基板用セラミックダリ ーンシートを所定の順序で配置することにより積層体を形成する方法を示す図である FIG. 5 is a diagram showing a method for manufacturing a ceramic substrate according to the present invention, and is a diagram showing a method for forming a laminated body by disposing ceramic ceramic sheets for a substrate in a predetermined order.
Yes
[図 6]図 5の積層体の両主面に収縮抑制用セラミックグリーンシートを配設した状態を 示す図である。  6 is a view showing a state in which ceramic green sheets for suppressing shrinkage are disposed on both main surfaces of the laminate of FIG.
[図 7](a), (b)は、外部電極を構成するアンカー部の配設態様の変形例を示す図であ 園 8]外部電極を構成するアンカー部の配設態様の他の例を示す図であって、(a)は 平面図、(b)は断面図である。 [Fig. 7] (a) and (b) are views showing a modification of the arrangement of the anchor portion constituting the external electrode. FIG. 8] A view showing another example of the arrangement of the anchor portions constituting the external electrode, where ( a ) is a plan view and (b) is a cross-sectional view.
[図 9]従来の配線基板 (セラミック基板)の、リード端子の外部電極への接合構造を示 す図である。  [Fig. 9] A diagram showing a bonding structure of a conventional wiring board (ceramic board) to an external electrode of a lead terminal.
園 10]従来の配線基板の外部電極の形成方法を示す図である。 [10] FIG. 10 is a diagram showing a conventional method for forming an external electrode of a wiring board.
符号の説明 Explanation of symbols
1 セラミック層  1 Ceramic layer
2 内部配線パターン  2 Internal wiring pattern
3 基板本体  3 Board body
4 表面部  4 Surface
4a 表面部のセラミックグリーンシートの周端に近い辺  4a Side near the edge of the ceramic green sheet on the surface
4b 辺 4aと対向する辺  4b Side opposite to side 4a
4c 辺 4aと直交する辺  4c Side orthogonal to side 4a
5 アンカー部  5 Anchor part
6 外部電極  6 External electrode
7 電子部品  7 Electronic components
7a 積層コンデンサ  7a multilayer capacitors
7b 半導体素子  7b Semiconductor device
10 セラミック基板  10 Ceramic substrate
11 基板用セラミックグリーンシート  11 Ceramic green sheet for substrates
12 キャリアフィルム  12 Carrier film
16 表面部形成領域  16 Surface formation area
20 溝  20 groove
21 貫通孔  21 Through hole
26 導電性ペースト  26 Conductive paste
36a 外部導体膜  36a Outer conductor film
36b ビアホール導体  36b Via-hole conductor
36c 内部導体膜 40 複合積層体 36c Inner conductor film 40 Composite laminate
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0038] 以下に本願発明の実施の形態を示して、本願発明の特徴とするところを詳しく説明 する。 [0038] The features of the present invention will be described in detail below with reference to embodiments of the present invention.
[0039] この実施の形態では、図 1に示すように、積層された複数のセラミック層 1と、内部に 配設された内部配線パターン 2とを備えた基板本体 3と、基板本体 3の主面に配設さ れた表面部 4および表面部 4の周縁部から基板本体 3の主面に垂直方向に伸び、基 板本体 3に埋設された状態で基板本体 3と係合するアンカー部 5を有する外部電極 6 とを備え、上側の主面に、外部電極 6の表面部 4と接続するように電子部品 7 (例えば 、積層コンデンサ 7a,半導体素子 7b)が実装された構造を有するセラミック基板 (電 子装置) 10を製造する場合を例にとって説明する。  In this embodiment, as shown in FIG. 1, a substrate body 3 having a plurality of laminated ceramic layers 1 and an internal wiring pattern 2 disposed inside, and a main body of the substrate body 3 The surface portion 4 disposed on the surface and the anchor portion 5 extending from the peripheral portion of the surface portion 4 in a direction perpendicular to the main surface of the substrate body 3 and being engaged with the substrate body 3 while being embedded in the substrate body 3 A ceramic substrate having a structure in which an electronic component 7 (for example, a multilayer capacitor 7a, a semiconductor element 7b) is mounted on the upper main surface so as to be connected to the surface portion 4 of the external electrode 6. (Electronic device) An example of manufacturing 10 will be described.
[0040] [基板用セラミックグリーンシートの作製]  [0040] [Production of ceramic green sheet for substrate]
基板本体 3を構成するセラミック層 1となる基板用セラミックグリーンシートを作製す るにあたっては、まず、セラミック粉末とガラス粉末とを混合した低温焼結セラミック材 料に、バインダ、分散剤、可塑剤および有機溶剤を各々適量添加し、全体を混合す ることによって、セラミックスラリーを作製する。  In producing a ceramic green sheet for a substrate that becomes the ceramic layer 1 constituting the substrate body 3, first, a low-temperature sintered ceramic material in which ceramic powder and glass powder are mixed, a binder, a dispersant, a plasticizer, and A ceramic slurry is prepared by adding an appropriate amount of each organic solvent and mixing the whole.
[0041] セラミック粉末としては、例えば、アルミナ粉末が用いられる。低温焼結セラミック材 料に含有されるガラス成分は、当初からガラス粉末として含有されていても、焼成ェ 程においてガラス質を析出するものであってもよい。また、このようなガラス成分は、焼 成工程の少なくとも最終段階において、結晶質を析出させ、それによつて結晶化する ものであってもよい。なお、低温焼結セラミック材料に含有されるガラス成分としては、 たとえば、フォルステライト、ァケルマナイトまたはディオプサイトといった誘電損失の 小さい結晶質を析出させることができるホウケィ酸系のガラス粉末が有利に用いられ  [0041] As the ceramic powder, for example, alumina powder is used. The glass component contained in the low-temperature sintered ceramic material may be contained as glass powder from the beginning, or may precipitate glassy during the firing process. Further, such a glass component may be crystallized by depositing a crystalline substance at least in the final stage of the baking process. As a glass component contained in the low-temperature sintered ceramic material, for example, a borosilicate glass powder capable of precipitating a crystal having a low dielectric loss such as forsterite, akermanite, or diopsite is advantageously used.
[0042] 次いで、このセラミックスラリーをドクターブレード法などの方法によってシート状に 成形して、基板用セラミックグリーンシートを得る。 [0042] Next, this ceramic slurry is formed into a sheet by a method such as a doctor blade method to obtain a ceramic green sheet for a substrate.
[0043] それから、得られたセラミックグリーンシートに、必要に応じて、ビアホール導体を形 成するための貫通孔を設け、この貫通孔に導電性ペーストまたは導体粉を充填して ビアホール導体を形成する。 [0043] Then, if necessary, the obtained ceramic green sheet is provided with a through hole for forming a via hole conductor, and the through hole is filled with a conductive paste or conductive powder. A via-hole conductor is formed.
また、基板用セラミックグリーンシート上に、必要に応じて、たとえば銀系導電性ぺ 一ストを印刷することにより、外部電極となる外部導体膜および内部電極パターンと なる内部導体膜を形成する。  Further, if necessary, for example, a silver-based conductive paste is printed on the ceramic green sheet for a substrate to form an external conductor film to be an external electrode and an internal conductor film to be an internal electrode pattern.
[0044] ここで、外部導体膜の形成は以下に説明する方法により行う。 Here, the outer conductor film is formed by the method described below.
まず、基板用セラミックグリーンシートとして、例えば、図 2(a), (b)に示すように、キヤ リアフィルム 12により支持されたセラミックグリーンシート 11を用意し、このセラミックグ リーンシート 11上の、外部電極 6 (図 1)の表面部 4 (図 1)が形成されるべき表面部形 成領域 16の内側であって、表面部形成領域 16の周縁部の全周に、レーザ光を照射 して、セラミックグリーンシート 11を貫通せず、セラミックグリーンシート 11の厚み方向 の途中にまで達するような深さの溝(すなわち、セラミックグリーンシート 11を貫通しな い溝) 20を形成する。  First, as a ceramic green sheet for a substrate, for example, as shown in FIGS. 2 (a) and 2 (b), a ceramic green sheet 11 supported by a carrier film 12 is prepared. Laser light is applied to the entire periphery of the peripheral portion of the surface portion forming region 16 inside the surface portion forming region 16 where the surface portion 4 (FIG. 1) of the external electrode 6 (FIG. 1) is to be formed. Thus, a groove 20 having a depth that does not penetrate the ceramic green sheet 11 and reaches the middle of the thickness direction of the ceramic green sheet 11 (that is, a groove that does not penetrate the ceramic green sheet 11) is formed.
[0045] それから、図 3(a), (b)に示すように外部電極形成用の導電性ペースト 26を、セラミ ックグリーンシート 11の表面部形成領域 16に塗布するとともに、溝 20に充填する。 なお、導電性ペーストとしては、一般に電子部品の外部電極の形成に用いられる種 々の導電性ペーストを用いることが可能であり、そのような導電性ペーストを用いるこ とにより、特に問題なく導電性ペーストを溝 20に充填することができる。  Then, as shown in FIGS. 3 (a) and 3 (b), a conductive paste 26 for forming an external electrode is applied to the surface portion forming region 16 of the ceramic green sheet 11 and filled in the groove 20. To do. As the conductive paste, various conductive pastes generally used for forming external electrodes of electronic components can be used. By using such a conductive paste, there is no particular problem with the conductive paste. The paste can be filled into the groove 20.
[0046] また、図 4(a)〜(d)は、外部導体膜 36aとビアホール導体 36bとを備えた基板用セラ ミックグリーンシート 11の作製工程を示す図である。外部導体膜 36aと、ビアホーノレ 導体 36aとを備えた基板用セラミックグリーンシート 11を作製するにあたっては、まず 、図 4(a)に示すようなセラミックグリーンシート 11を用意し、図 4(b)に示すように、ビア ホール用の貫通孔 21を形成し、貫通孔 21に導電性ペースト 26を充填する。  4 (a) to 4 (d) are diagrams showing a process for producing the ceramic green sheet 11 for a substrate provided with the outer conductor film 36a and the via-hole conductor 36b. In producing the ceramic green sheet 11 for a substrate provided with the outer conductor film 36a and the via-honor conductor 36a, first, a ceramic green sheet 11 as shown in FIG. 4 (a) is prepared. As shown, a through hole 21 for a via hole is formed, and a conductive paste 26 is filled in the through hole 21.
[0047] それから、図 4(c)に示すように、外部電極の表面部を形成すべき表面部形成領域 1 6の、内側であって、表面部形成領域 16の周縁部の全周に、レーザ光を照射して、 セラミックグリーンシート 11の厚み方向の途中にまで達するような深さの溝 20を形成 する。  [0047] Then, as shown in FIG. 4 (c), inside the surface portion forming region 16 where the surface portion of the external electrode is to be formed, on the entire periphery of the peripheral portion of the surface portion forming region 16, A laser beam is irradiated to form a groove 20 having a depth that reaches the middle of the thickness direction of the ceramic green sheet 11.
なお、溝はダイサーなどのカット刃などを用いて形成してもよいが、レーザ光を照射 する方法の方が、溝 20の深さを調整しやすいため好ましい。すなわち、レーザ光を 照射する方法の場合、レーザ光の出力を調整することにより、容易に溝 20の深さを 制卸すること力 Sでさる。 The groove may be formed by using a cutting blade such as a dicer, but the method of irradiating with laser light is preferable because the depth of the groove 20 can be easily adjusted. That is, laser light In the case of the irradiation method, the force S can easily control the depth of the groove 20 by adjusting the output of the laser beam.
[0048] その後、外部電極形成用の導電性ペースト 26を、セラミックグリーンシートの表面部 形成領域 16に塗布するとともに、溝 20に充填することにより、図 4(d)に示すように、 外部導体膜 36aとビアホール導体 36bを備えた基板用セラミックグリーンシート 1 1が 得られる。  [0048] After that, the conductive paste 26 for forming the external electrode is applied to the surface portion forming region 16 of the ceramic green sheet and filled in the groove 20, whereby the external conductor is formed as shown in FIG. 4 (d). A ceramic green sheet for substrate 11 having a film 36a and a via-hole conductor 36b is obtained.
外部電極の形成にあたっては、例えばスクリーン印刷法を用いて、上記のように、 外部電極形成用の導電性ペースト 26を、セラミックグリーンシートの表面部形成領域 16に塗布するとともに、溝 20に充填することにより同時に形成すると、複数回の印刷 工程を必要とすることなぐ効率よく外部導体膜 36aを形成することができて好ましい ただし、まず、溝 20に導電性ペースト 26を充填し、その後セラミックグリーンシート の表面部形成領域 16に導電性ペースト 26を塗布して外部導体膜 36aを形成するよ うにしてもよく、また、セラミックグリーンシートの表面部形成領域 16に導電性ペースト 26を塗布し、その後溝 20に導電性ペースト 26を充填して外部導体膜 36aを形成す るようにしてあよレヽ。  In forming the external electrode, for example, by using a screen printing method, the conductive paste 26 for forming the external electrode is applied to the surface portion formation region 16 of the ceramic green sheet and filled in the groove 20 as described above. It is preferable that the external conductor film 36a can be efficiently formed without requiring a plurality of printing processes. However, first, the groove 20 is filled with the conductive paste 26, and then the ceramic green sheet is formed. The outer conductive film 36a may be formed by applying the conductive paste 26 to the surface portion formation region 16 of the ceramic, or the conductive paste 26 may be applied to the surface portion formation region 16 of the ceramic green sheet. Fill the groove 20 with the conductive paste 26 to form the outer conductor film 36a.
なお、外部導体膜 36aとビアホール導体 36bとを、例えばスクリーン印刷法を用い て同時に形成すると、さらに工程を減らすことができるため好ましい。  Note that it is preferable to form the external conductor film 36a and the via-hole conductor 36b simultaneously by using, for example, a screen printing method because the number of steps can be further reduced.
[0049] なお、同様にして、導電性ペースト 26を所定のパターンで印刷することにより表面 に内部導体膜 36cが形成されたセラミックグリーンシート 11が得られる。 Similarly, by printing the conductive paste 26 in a predetermined pattern, the ceramic green sheet 11 having the inner conductor film 36c formed on the surface is obtained.
[0050] [収縮抑制層用のグリーンシートの作製] [0050] [Preparation of Green Sheet for Shrinkage Suppression Layer]
焼成工程におけるセラミックグリーンシートの平面方向への収縮を抑制する機能を 果たす収縮抑制用セラミックグリーンシートを作製するために、基板用セラミックダリー ンシートに含まれる低温焼結セラミック材料の焼結温度では焼結しない無機材料粉 末、例えばアルミナ粉末に、バインダ、分散剤、可塑剤および有機溶剤などを各々適 量添加し、これらを混合することによって、無機材料スラリーを作製する。  In order to produce a ceramic green sheet for shrinkage suppression that functions to suppress the shrinkage of the ceramic green sheet in the planar direction during the firing process, sintering is performed at the sintering temperature of the low-temperature sintered ceramic material contained in the ceramic liner sheet for the substrate. An inorganic material slurry is prepared by adding an appropriate amount of each of a binder, a dispersant, a plasticizer, an organic solvent, and the like to an inorganic material powder that is not used, such as alumina powder, and mixing them.
そして、この無機材料スラリーをドクターブレード法などの方法によってシート状に 成形して、収縮抑制層用セラミックグリーンシートとする。 [0051] [積層体の形成] Then, the inorganic material slurry is formed into a sheet shape by a method such as a doctor blade method to obtain a ceramic green sheet for a shrinkage suppression layer. [0051] [Formation of laminate]
上述のようにして作製した複数の基板用セラミックグリーンシート 11を、例えば、図 5 に示すように所定の順序に配置して積層する。  A plurality of ceramic green sheets 11 for a substrate manufactured as described above are stacked in a predetermined order as shown in FIG. 5, for example.
そして、この積層された複数の基板用セラミックグリーンシート 11からなる積層体の 両主面に、図 6に示すように収縮抑制用セラミックグリーンシート 30を配置してプレス する。これにより、積層された基板用セラミックグリーンシート 11の席相対の上下両主 面側に、収縮抑制用セラミックグリーンシートが積層された複合積層体 40が得られる なお、必要に応じて、この生の複合積層体を適当な大きさに切断するように構成す ることも可倉である。  Then, shrinkage-suppressing ceramic green sheets 30 are arranged and pressed on both main surfaces of the laminated body composed of the laminated ceramic green sheets 11 for the substrate as shown in FIG. As a result, a composite laminate 40 is obtained in which the ceramic green sheets for shrinkage suppression are laminated on the upper and lower main surface sides relative to the seats of the laminated ceramic green sheets 11 for a substrate. It is also possible to configure the composite laminate to be cut to an appropriate size.
[0052] [積層体の焼成] [0052] [Baking of laminate]
次に、収縮抑制用セラミックグリーンシートを備えた複合積層体を、基板用セラミック グリーンシート(低温焼結セラミック材料)は焼結するが、収縮抑制用セラミックダリー ンシートは焼結しなレ、温度で焼成する。  Next, the composite laminate including the ceramic green sheet for shrinkage suppression is sintered at a temperature at which the ceramic green sheet for substrate (low-temperature sintered ceramic material) is sintered but the ceramic liner sheet for shrinkage suppression is not sintered. Bake.
この焼成工程にお!/、て収縮抑制用セラミックグリーンシート (収縮抑制層)は実質的 に収縮せず、基板用セラミックグリーンシート (積層体)に対して、その主面方向(平面 方向)の収縮を抑制する拘束力を発揮する。その結果、焼成工程において、基板用 セラミックグリーンシートは、主面方向における収縮が抑制されながら、低温焼結セラ ミック材料が焼結し、実質的に厚み方向にのみ収縮することになる。  In this firing process, the ceramic green sheet for shrinkage suppression (shrinkage suppression layer) does not substantially shrink, and the main surface direction (planar direction) of the ceramic green sheet for substrate (laminate) does not shrink. Demonstrate the restraint force to suppress the shrinkage. As a result, in the firing step, the ceramic green sheet for substrate is sintered in the low-temperature sintered ceramic material while shrinkage in the main surface direction is suppressed, and substantially shrinks only in the thickness direction.
焼成工程の終了後、焼結していない収縮抑制層を除去する。これにより、主面方向 における寸法精度が高く信頼性の高いセラミック基板が得られる。  After completion of the firing step, the unsintered shrinkage suppression layer is removed. As a result, a highly reliable ceramic substrate with high dimensional accuracy in the principal surface direction can be obtained.
[0053] [セラミック基板への電子部品の搭載] [0053] [Mounting of electronic components on ceramic substrate]
それから、得られたセラミック基板に、電子部品を搭載することにより、図 1に示すよ うに、セラミック基板に電子部品 7 (積層コンデンサ 7a,半導体素子 7b)が実装された 構造を有するセラミック基板 (電子装置)が得られる。  Then, by mounting an electronic component on the obtained ceramic substrate, as shown in FIG. 1, a ceramic substrate (electronic device) having a structure in which the electronic component 7 (multilayer capacitor 7a, semiconductor element 7b) is mounted on the ceramic substrate is provided. Device) is obtained.
[0054] なお、この実施の形態にお!/、ては、収縮抑制セラミックグリーンシート配設した複合 積層体を形成して、収縮を抑制しつつ焼成を行ういわゆる収縮抑制工法を用いる場 合にっレ、て説明したが、収縮抑制用セラミックグリーンシートを用いな!/、で焼成を行う 方法によりセラミック基板を作製することも可能である。 [0054] In this embodiment, when using a so-called shrinkage suppression method in which a composite laminate having a shrinkage-suppressing ceramic green sheet is formed and firing is performed while suppressing shrinkage. As explained above, do not use a ceramic green sheet for shrinkage suppression! It is also possible to produce a ceramic substrate by the method.
[0055] [外部電極の具体的構成について] [0055] [Specific configuration of external electrode]
(1)外部電極のアンカー部の配置について  (1) Arrangement of anchor part of external electrode
本願発明のセラミック基板において、外部電極のアンカー部は、表面部の周縁部 の全周に形成されて!、なくてもょレ、。  In the ceramic substrate of the present invention, the anchor portion of the external electrode is formed all around the peripheral portion of the surface portion!
[0056] 例えば、平面形状が矩形状の表面部を備える外部電極の場合、図 7(a)に示すよう に、表面部 4の互いに向か!/、合う一辺(合計二辺)にアンカー部 5 (溝 20)を形成して もよく、また、図 7(b)に示すように、表面部 4のいずれか一辺にのみアンカー部 5 (溝 2 0)を形成してもよい。 [0056] For example, in the case of an external electrode having a surface portion with a rectangular planar shape, as shown in FIG. 7 (a), the surface portions 4 face each other! /, And the anchor portions are on one side (two sides in total). 5 (groove 20) may be formed, and as shown in FIG. 7 (b), the anchor portion 5 (groove 20) may be formed only on one side of the surface portion 4.
[0057] また、例えば、セラミック基板の落下時に外部電極の周囲にクラックが入るような場 合、外部電極の平面部の、セラミック基板の周端に近い辺の近傍力 破壊しやすい ことが実験より確認されていることから、破壊の生じやすい、セラミック基板の周端に 近い辺にはアンカー部を形成し、該アンカー部を形成した辺と対向するセラミック基 板の周端から遠い方の辺、および、該アンカー部を形成した辺と直交する辺にはァ ンカ一部を形成しないように構成することも可能である。  [0057] Further, for example, when a crack is generated around the external electrode when the ceramic substrate is dropped, the force near the edge of the flat portion of the external electrode near the peripheral edge of the ceramic substrate is likely to be destroyed. Since it has been confirmed, an anchor portion is formed on the side near the peripheral edge of the ceramic substrate that is prone to breakage, and the side far from the peripheral edge of the ceramic substrate facing the side on which the anchor portion is formed, It is also possible to configure so that a part of the anchor is not formed on the side orthogonal to the side on which the anchor portion is formed.
[0058] その場合、図 8(a), (b)に示すように、セラミック基板となるセラミックグリーンシート 11 の表面部形成領域 16の、セラミックグリーンシート 11の周端に近い辺 4aにはアンカ 一部 5を形成するための溝 20を形成し、溝 20を形成した辺 4aと対向する辺 4b、およ び、辺 4aと直交する辺 4cには溝を形成しないようにし、導電性ペースト 26を表面部 形成領域 16に印刷するとともに、溝 20に充填するようにすればよい。  In this case, as shown in FIGS. 8 (a) and 8 (b), an anchor is placed on the side 4a near the peripheral edge of the ceramic green sheet 11 in the surface portion forming region 16 of the ceramic green sheet 11 serving as the ceramic substrate. A groove 20 for forming part 5 is formed, so that no groove is formed on side 4b opposite to side 4a on which groove 20 is formed and side 4c perpendicular to side 4a. 26 may be printed on the surface portion forming region 16 and the groove 20 may be filled.
[0059] なお、図 8(a)の構成では、平面的にみてセラミックグリーンシート 11のコーナ部付近 にある四つの表面部形成領域 16 (16c)については、各辺のうち、セラミックグリーン シート 11の周端に近い 2つの辺 4aにアンカー部 5形成用の溝 20を形成するようにし ている。  In the configuration of FIG. 8 (a), the four surface portion forming regions 16 (16c) in the vicinity of the corner portion of the ceramic green sheet 11 in plan view are the ceramic green sheet 11 of each side. A groove 20 for forming the anchor portion 5 is formed on the two sides 4a close to the peripheral edge of the groove.
[0060] なお、本願発明のセラミック基板において、アンカー部は、表面部の少なくとも一辺 全体に形成することが望ましい。これは、表面部の一辺の一部のみにアンカー部を 形成した場合、アンカー部が形成されて!/、る部分と形成されて!/、な!/、部分の境界で クラックなどの破壊が生じやすぐ十分な接合強度向上の効果が得られないことによ [0061] 一方、平面部の全周にアンカー部を形成した場合には、落下やたわみなどの衝撃 に対する強度をより確実に向上させることができる。 [0060] In the ceramic substrate of the present invention, it is desirable that the anchor portion be formed on at least one side of the surface portion. This is because when an anchor part is formed only on a part of one side of the surface part, the anchor part is formed! /, It is formed with a part! /, Na! /, Cracks etc. are broken at the boundary of the part As a result, the effect of improving the bonding strength cannot be obtained immediately. [0061] On the other hand, when the anchor portion is formed on the entire circumference of the plane portion, the strength against impacts such as dropping and bending can be improved more reliably.
[0062] (2)外部電極形成用の導電性ペースト [0062] (2) Conductive paste for external electrode formation
外部電極形成用の導電性ペーストとしては、粘度が 100〜300Pa ' sの範囲のもの を用いることが好ましい。これは、粘度が l OOPa ' s未満になると表面部の印刷精度が 低下し、また、粘度が 300Pa ' sを超えると溝に導電性ペーストを確実に充填すること が困難になることによる。  As the conductive paste for forming the external electrode, it is preferable to use a paste having a viscosity in the range of 100 to 300 Pa's. This is because when the viscosity is less than lOOPa's, the printing accuracy of the surface portion decreases, and when the viscosity exceeds 300 Pa's, it is difficult to reliably fill the grooves with the conductive paste.
[0063] 金属粉末の粒径は通常の導電性ペーストと同じでよぐ例えば 1〜5 mのものを用 いること力 Sでさる。 [0063] The particle size of the metal powder is the same as that of a normal conductive paste.
金属粉末を構成する金属種としては特に制約はないが、例えば、 Ag、 Cu、 Au、 There are no particular restrictions on the metal species that make up the metal powder, but for example, Ag, Cu, Au,
Pd、 Pt、 W、 Moなどを用いることができる。 Pd, Pt, W, Mo, etc. can be used.
[0064] (3)溝の形状 [0064] (3) Groove shape
アンカー部を形成するための溝の形状には特別の制約はないが、通常、溝の幅は There is no special restriction on the shape of the groove for forming the anchor part, but the width of the groove is usually
100 μ m未満とすることが好まし!/、。溝の幅が 100 ,1 m以上になると導電性ペーストの 充填性が低下するため好ましくな!/、。 Preferably less than 100 μm! / ,. A groove width of 100 or 1 m or more is preferable because the filling property of the conductive paste decreases.
溝の深さは、通常、 10〜; 100 m、特に 25〜50 111とすることが望ましい。溝の深 さが不足すると外部電極の接合強度が不十分になり、また、溝の深さを深くしすぎる と、導電性ペーストの充填性が低下する。  The depth of the groove is usually 10 to 100 m, preferably 25 to 50 111. If the depth of the groove is insufficient, the bonding strength of the external electrode becomes insufficient, and if the depth of the groove is too deep, the filling property of the conductive paste is lowered.
[0065] また、キャリアフィルム上に形成されたセラミックグリーンシートにレーザ光を照射し て溝を形成する場合、レーザ光の出力を調整してセラミックグリーンシートを貫通しな い溝を形成することができる。この場合、溝が浅く形成されることになり、導電性ぺー ストの充填性を向上させることができる。 [0065] Further, in the case of forming a groove by irradiating a ceramic green sheet formed on a carrier film with laser light, a groove that does not penetrate the ceramic green sheet may be formed by adjusting the output of the laser light. it can. In this case, the groove is formed shallow, and the filling property of the conductive paste can be improved.
[0066] また、溝がセラミックグリーンシートを貫通しないようにした場合、セラミックグリーンシ ートが全面でつながつているため、良好なハンドリング性を確保することができる。 [0066] Further, when the groove is prevented from penetrating the ceramic green sheet, the ceramic green sheet is connected over the entire surface, so that good handling properties can be ensured.
[0067] また、本願発明においては、セラミックグリーンシートを貫通するように溝を形成する ことも可能である。 [0067] In the present invention, a groove can be formed so as to penetrate the ceramic green sheet.
セラミックグリーンシートを貫通するように溝を形成する場合、キャリアフィルムは貫 通せずグリーンシートのみを貫通するようにレーザ光の出力を調整して溝の形成を行 うが、貫通しない溝を形成する場合よりもレーザ光の出力を調整しやすくなるため、ェ 程を容易にすること力 Sできる。 When the groove is formed so as to penetrate the ceramic green sheet, the carrier film does not penetrate. The groove is formed by adjusting the laser beam output so that only the green sheet does not pass through, but it is easier to adjust the laser beam output than when a groove that does not penetrate is formed. The ability to make S
[0068] また、外部電極が形成されるセラミックグリーンシート、すなわち、最外層となる溝形 成用のセラミックグリーンシートの厚みは、上述のような好ましい深さ(10〜; 100 in の深さ)の溝を形成することができるような厚みとすることが好ましレ、。 [0068] Further, the thickness of the ceramic green sheet on which the external electrode is formed, that is, the ceramic green sheet for forming the groove serving as the outermost layer is preferably the above-mentioned depth (10 to 100 depth). It is preferable to have a thickness that can form a groove.
[0069] (4)外部電極形成用の導電性ペーストの付与方法 [0069] (4) Method of applying conductive paste for forming external electrode
外部電極形成用の導電性ペーストをセラミックグリーンシートに付与する方法に特 別の制約はないが、通常は、スクリーン印刷法を用いることが望ましい。  Although there is no particular restriction on the method of applying the conductive paste for forming the external electrode to the ceramic green sheet, it is usually preferable to use the screen printing method.
スクリーン印刷の条件にも特別の制約はないが、導電性ペーストの溝への充填性を 向上させる見地からは、通常よりもスキージ角度を小さくし (スキージをやや寝かせて There are no special restrictions on the conditions for screen printing, but from the standpoint of improving the fillability of the conductive paste into the grooves, the squeegee angle should be smaller than usual (with the squeegee a little laid down).
)、かつ、印刷速度を遅めにして印刷することが望ましい。 It is desirable to print at a slower printing speed.
実施例 1  Example 1
[0070] 以下に本願発明の実施例を示して、本願発明の特徴とするところをさらに詳しく説 明する。  [0070] The features of the present invention will be described in more detail below with reference to examples of the present invention.
セラミック粉末 48重量部と、ガラス粉末重量 52部とを混合して得られた混合粉末 10 0重量部に、バインダ 8重量部、分散剤 1重量部、可塑剤 3重量部および有機溶剤 8 0重量部を各々適量添加し、これらを混合することにより、セラミックスラリーを作製し た。  To 100 parts by weight of mixed powder obtained by mixing 48 parts by weight of ceramic powder and 52 parts by weight of glass powder, 8 parts by weight of binder, 1 part by weight of dispersant, 3 parts by weight of plasticizer and 80 parts by weight of organic solvent An appropriate amount of each was added and mixed to prepare a ceramic slurry.
[0071] 次いで、このセラミックスラリーをドクターブレード法などの方法により、シート状に成 形して、厚み 100 mの基材用セラミックグリーンシートを作製した。  Next, this ceramic slurry was formed into a sheet shape by a method such as a doctor blade method to produce a ceramic green sheet for a substrate having a thickness of 100 m.
[0072] それから、得られた基材用セラミックグリーンシートに、ビアホール導体を形成する ための貫通孔を形成した。 [0072] Then, a through hole for forming a via-hole conductor was formed in the obtained ceramic green sheet for a base material.
[0073] そして、この貫通孔に銀系導電性ペーストを充填してビアホール導体を形成し、さら に外部電極が形成されない基材用セラミックグリーンシート上に、銀系導電性ペース トをスクリーン印刷法により印刷して内部導体膜を形成した。 [0073] Then, the through hole is filled with a silver-based conductive paste to form a via-hole conductor, and a silver-based conductive paste is screen-printed on a ceramic green sheet for a substrate on which no external electrode is formed. To form an internal conductor film.
[0074] また、外部電極を形成すべき基材用セラミックグリーンシート上の、外部電極の表面 部が形成されるべき表面部形成領域の内側であって、表面部形成領域の周縁部の 全周に、レーザ光を照射して、セラミックグリーンシートに、幅 50 111、深さ 50 mの 溝を形成した。 [0074] Further, on the ceramic green sheet for a substrate on which the external electrode is to be formed, the surface portion of the external electrode is inside the surface portion forming region where the surface portion is to be formed, The entire circumference was irradiated with laser light to form a groove with a width of 50 111 and a depth of 50 m in the ceramic green sheet.
[0075] 次に、スクリーン印刷法により表面部形成領域に導電性ペーストを印刷して、外部 導体膜を形成するとともに、溝に導電性ペーストを充填した。このときの導電性ペース トとしては、内部導体膜の形成に用いたものと同じ導電性ペーストを用いた。  [0075] Next, a conductive paste was printed on the surface portion formation region by screen printing to form an external conductor film, and the conductive paste was filled in the grooves. As the conductive paste at this time, the same conductive paste as that used for forming the inner conductor film was used.
なお、ビアホール導体を形成するための貫通孔を形成した後、導電性ペーストを充 填する前に外部電極を形成すべき基材用セラミックグリーンシートに溝を形成し、貫 通孔への導電性ペーストの充填および溝への導電性ペーストの充填と同時に表面 部形成領域への導電性ペーストの印刷を行って、外部導体膜を形成するようにして あよい。  After forming the through-hole for forming the via-hole conductor, before filling the conductive paste, a groove is formed in the ceramic green sheet for the substrate on which the external electrode is to be formed, and the conductive to the through-hole is formed. The external conductor film may be formed by filling the paste and filling the groove with the conductive paste and printing the conductive paste on the surface portion formation region.
[0076] また、収縮抑制用セラミックグリーンシートとして、以下の方法でセラミックグリーンシ ートを作製した。  [0076] Further, as a ceramic green sheet for suppressing shrinkage, a ceramic green sheet was produced by the following method.
まず、セラミック粉末(アルミナ粉末) 100重量部、バインダ 12重量部、分散剤 1重 量部、可塑剤 4重量部および有機溶剤 100重量部を配合し、混合することにより、無 機材料スラリー(セラミックスラリー)を作製した。そして、この無機材料スラリーをドクタ 一ブレード法などの方法によってシート状に成形して、厚みが 100 mの収縮抑制 用セラミックグリーンシートを作製した。  First, 100 parts by weight of ceramic powder (alumina powder), 12 parts by weight of binder, 1 part by weight of dispersing agent, 4 parts by weight of plasticizer and 100 parts by weight of organic solvent were blended and mixed to obtain an inorganic material slurry (ceramics). Rally). Then, this inorganic material slurry was formed into a sheet shape by a method such as a doctor-blade method to produce a ceramic green sheet for shrinkage suppression having a thickness of 100 m.
[0077] それから、上述のようにして作製した基材用セラミックグリーンシート 10枚を所定の 順序で積み重ね、さらに、外部電極を形成した基材用セラミックグリーンシートを最外 層に積み重ねた。積み重ねた基材用セラミックグリーンシートの両主面に収縮抑制用 セラミックグリーンシートを 4枚ずつ配置して積層し、プレスすることにより、両主面側 に収縮抑制用セラミックグリーンシートが配設された複合積層体を作製した。  [0077] Then, 10 ceramic green sheets for base material produced as described above were stacked in a predetermined order, and further, the ceramic green sheets for base material on which external electrodes were formed were stacked on the outermost layer. Four ceramic green sheets for suppressing shrinkage are placed on both main surfaces of the stacked ceramic green sheets for base material, stacked and pressed, and the ceramic green sheets for shrinkage suppression are arranged on both main surfaces. A composite laminate was produced.
[0078] 次に、この複合積層体を 870°Cで焼成した。焼成工程の終了後、焼結してレ、な!/、 収縮抑制層を除去することにより、主面方向における寸法精度が高く信頼性の高い 多層セラミック基板を得た。  [0078] Next, the composite laminate was fired at 870 ° C. After completion of the firing step, sintering was performed to remove the layer and the shrinkage suppression layer, thereby obtaining a highly reliable multilayer ceramic substrate with high dimensional accuracy in the principal surface direction.
[0079] この多層セラミック基板に落下やたわみなどの衝撃を加えて、クラックなどの破壊の 有無を調べた結果、従来のセラミック基板に比べてクラックなどの破壊の発生が少な ぐ外部電極の基板本体への接合強度が向上していることが確認された。 [0080] また、アンカー部が、表面部の周縁部から基板本体の主面に垂直方向に伸びるよ うに形成されているので、外部電極全体の平面面積と、外部電極の表面部の面積と が実質的に同一となり、外部電極の有効エリアを広く確保できることが確認された。 [0079] As a result of investigating the presence or absence of cracks or the like by applying an impact such as dropping or bending to this multilayer ceramic substrate, the substrate body of the external electrode has less occurrences of cracks or the like than conventional ceramic substrates. It was confirmed that the bonding strength to the steel was improved. [0080] Further, since the anchor portion is formed so as to extend in the vertical direction from the peripheral edge portion of the surface portion to the main surface of the substrate body, the planar area of the entire external electrode and the area of the surface portion of the external electrode are It became substantially the same, and it was confirmed that the effective area of an external electrode could be secured widely.
[0081] なお、この実施例では、多層セラミック基板を例にとって説明した力 本願発明は、 単板型のセラミック基板にも適用することが可能である。 In this embodiment, the force described by taking the multilayer ceramic substrate as an example. The present invention can also be applied to a single plate type ceramic substrate.
また、上記実施例では収縮抑制層を積層体の両主面に配設するようにしたが、収 縮抑制層は、場合によっては積層体の少なくとも一方主面にのみ配置されてもよい。  Further, in the above embodiment, the shrinkage suppression layer is disposed on both main surfaces of the laminate, but the shrinkage suppression layer may be disposed only on at least one main surface of the laminate in some cases.
[0082] 本願発明はさらにその他の点においても上記実施例に限定されるものではなぐ発 明の範囲内において、種々の応用、変形を加えることが可能である。 [0082] The invention of the present application can be variously applied and modified within the scope of the invention which is not limited to the above embodiments in other points.
産業上の利用可能性  Industrial applicability
[0083] 上述のように、本願発明のセラミック基板においては、外部電極全体の平面面積と[0083] As described above, in the ceramic substrate of the present invention, the planar area of the entire external electrode and
、外部電極の表面部の面積とが実質的に同一となり、外部電極の有効エリアを犠牲 にすることなぐ従来のセラミック基板に比べて外部電極の基板本体への接合強度を 向上させることが可能になる。 The surface area of the external electrode is substantially the same, and it is possible to improve the bonding strength of the external electrode to the substrate body compared to the conventional ceramic substrate without sacrificing the effective area of the external electrode. Become.
したがって、本願発明は、外部電極を備えたセラミック基板、それに電子部品を実 装した電子装置、及びセラミック基板の製造に関する技術分野に広く適用することが 可能である。  Therefore, the present invention can be widely applied to a technical field related to the production of a ceramic substrate having an external electrode, an electronic device having an electronic component mounted thereon, and a ceramic substrate.

Claims

請求の範囲 The scope of the claims
[1] 基板本体と、前記基板本体の主面に配設された外部電極を備えたセラミック基板 において、前記外部電極が、  [1] In a ceramic substrate provided with a substrate body and an external electrode disposed on a main surface of the substrate body, the external electrode comprises:
前記基板本体の主面に形成された表面部と、  A surface portion formed on the main surface of the substrate body;
前記表面部の周縁部から前記基板本体の主面に垂直方向に伸び、前記基板本体 に埋設された状態で前記基板本体と係合するアンカー部と  An anchor portion extending from a peripheral portion of the surface portion in a direction perpendicular to a main surface of the substrate body and engaged with the substrate body in a state of being embedded in the substrate body;
を備えてレ、ることを特徴とするセラミック基板。  A ceramic substrate characterized by comprising:
[2] 前記アンカー部が、前記表面部の周縁部の全周に形成されていることを特徴とする 請求項 1記載のセラミック基板。  [2] The ceramic substrate according to [1], wherein the anchor part is formed on the entire periphery of the peripheral part of the surface part.
[3] 前記基板本体が、積層された複数のセラミック層と、内部に配設された内部配線パ ターンとを備えたものであることを特徴とする請求項 1または 2記載のセラミック基板。 [3] The ceramic substrate according to [1] or [2], wherein the substrate body includes a plurality of laminated ceramic layers and an internal wiring pattern disposed therein.
[4] 前記アンカー部が、少なくとも前記セラミック層の一つを貫通して形成されているこ とを特徴とする請求項 3記載のセラミック基板。 4. The ceramic substrate according to claim 3, wherein the anchor portion is formed to penetrate at least one of the ceramic layers.
[5] 請求項 1〜4のいずれかに記載のセラミック基板に、前記外部電極と接続するように 電子部品が実装されていることを特徴とする電子装置。 [5] An electronic device, wherein an electronic component is mounted on the ceramic substrate according to any one of claims 1 to 4 so as to be connected to the external electrode.
[6] 基板本体と、前記基板本体の主面に配設された表面部および前記表面部の周縁 部から前記基板本体の主面に垂直方向に伸び、前記基板本体に埋設されて前記基 板本体と係合するアンカー部を有する外部電極とを備えたセラミック基板の製造方法 であって、 [6] The substrate main body, a surface portion disposed on the main surface of the substrate main body, and a peripheral portion of the surface portion extend in a direction perpendicular to the main surface of the substrate main body, and are embedded in the substrate main body to be embedded in the substrate A method of manufacturing a ceramic substrate comprising an external electrode having an anchor portion engaged with a main body,
未焼成のセラミック成形体の、前記外部電極の前記表面部が形成されるべき表面 部形成領域内の周縁部の少なくとも一部に、セラミック成形体を貫通しな!、溝を形成 する工程と、  Forming a groove in the green ceramic molded body without penetrating the ceramic molded body in at least a part of the peripheral portion in the surface portion forming region where the surface portion of the external electrode is to be formed; and
前記溝に導電性ペーストを埋め込む工程と、  Embedding a conductive paste in the groove;
前記セラミック成形体の前記表面部形成領域に導電性ペーストを塗布する工程と、 前記セラミック成形体を焼成する工程と  Applying a conductive paste to the surface portion forming region of the ceramic molded body; firing the ceramic molded body;
を具備することを特徴とするセラミック基板の製造方法。  A method for producing a ceramic substrate, comprising:
[7] 基板本体と、前記基板本体の主面に配設された表面部および前記表面部の周縁 部から前記基板本体の主面に垂直方向に伸び、前記基板本体に埋設されて前記基 板本体と係合するアンカー部を有する外部電極とを備えたセラミック基板の製造方法 であって、 [7] A substrate main body, a surface portion disposed on a main surface of the substrate main body, and a peripheral portion of the surface portion extend in a direction perpendicular to the main surface of the substrate main body, and are embedded in the substrate main body to be embedded in the base body. A method of manufacturing a ceramic substrate comprising an external electrode having an anchor portion engaged with a plate body,
未焼成のセラミック成形体の、前記外部電極の前記表面部が形成されるべき表面 部形成領域内の周縁部の少なくとも一部に、セラミック成形体を貫通しな!、溝を形成 する工程と、  Forming a groove in the green ceramic molded body without penetrating the ceramic molded body in at least a part of the peripheral portion in the surface portion forming region where the surface portion of the external electrode is to be formed; and
前記溝に導電性ペーストを埋め込む工程と、  Embedding a conductive paste in the groove;
前記セラミック成形体の前記表面部形成領域に導電性ペーストを塗布する工程と、 前記セラミック成形体の少なくとも一方主面に、前記セラミック成形体を焼成する温 度では焼結しない無機材料粉末を含む収縮抑制用グリーンシートを積層して複合積 層体を形成する工程と、  A step of applying a conductive paste to the surface portion forming region of the ceramic molded body, and shrinkage including an inorganic material powder that is not sintered at a temperature at which the ceramic molded body is fired on at least one main surface of the ceramic molded body. Forming a composite stack by laminating green sheets for suppression;
前記複合積層体を、前記セラミック成形体が焼結する温度で焼成する工程と、 前記複合積層体から、未焼結の収縮抑制用グリーンシートを除去する工程と を具備することを特徴とするセラミック基板の製造方法。  A ceramic comprising: firing the composite laminate at a temperature at which the ceramic molded body sinters; and removing an unsintered green sheet for suppressing shrinkage from the composite laminate. A method for manufacturing a substrate.
積層された複数のセラミック層および内部に配設された内部配線パターンを備えた 基板本体と、前記基板本体の主面に配設された表面部および前記表面部の周縁部 から前記基板本体の主面に垂直方向に伸び、前記基板本体に埋設されて前記基板 本体と係合するアンカー部を有する外部電極とを備えたセラミック基板の製造方法で あって、  A main body of the substrate body including a plurality of laminated ceramic layers and an internal wiring pattern disposed therein; a surface portion disposed on a main surface of the substrate body; and a peripheral portion of the surface portion. A method of manufacturing a ceramic substrate, comprising: an external electrode extending in a direction perpendicular to a surface and having an anchor portion embedded in the substrate body and engaged with the substrate body,
前記基板本体の前記セラミック層となるセラミックグリーンシートの、前記外部電極 の前記表面部が形成されるべき表面部形成領域の周縁部の少なくとも一部に、溝を 形成する工程と、  Forming a groove in at least a part of a peripheral portion of a surface portion forming region where the surface portion of the external electrode is to be formed in a ceramic green sheet to be the ceramic layer of the substrate body;
前記溝に導電性ペーストを埋め込む工程と、  Embedding a conductive paste in the groove;
前記セラミックグリーンシートの前記表面部形成領域に導電性ペーストを塗布する 工程と、  Applying a conductive paste to the surface portion forming region of the ceramic green sheet;
前記セラミックグリーンシートを、前記導電ペーストが前記表面部形成領域に塗布さ れた面が主面となるように、同種および/または他種のセラミックグリーンシートと積 層して、未焼成のセラミック積層体を形成する工程と、  The ceramic green sheets are stacked with the same type and / or other types of ceramic green sheets so that the surface on which the conductive paste is applied to the surface portion forming region is the main surface, and an unfired ceramic laminate is formed. Forming a body;
前記セラミック積層体を焼成する工程と を具備することを特徴とするセラミック基板の製造方法。 Firing the ceramic laminate; A method for producing a ceramic substrate, comprising:
[9] 積層された複数のセラミック層および内部に配設された内部配線パターンを備えた 基板本体と、前記基板本体の主面に配設された表面部および前記表面部の周縁部 から前記基板本体の主面に垂直方向に伸び、前記基板本体に埋設されて前記基板 本体と係合するアンカー部を有する外部電極とを備えたセラミック基板の製造方法で あって、 [9] A substrate body including a plurality of laminated ceramic layers and an internal wiring pattern disposed therein, a surface portion disposed on a main surface of the substrate body, and a peripheral portion of the surface portion. A method of manufacturing a ceramic substrate comprising: an external electrode extending in a direction perpendicular to a main surface of a main body, embedded in the substrate main body and having an anchor portion engaged with the substrate main body,
前記基板本体の前記セラミック層となるセラミックグリーンシートの、前記外部電極 の前記表面部が形成されるべき表面部形成領域の周縁部の少なくとも一部に、溝を 形成する工程と、  Forming a groove in at least a part of a peripheral portion of a surface portion forming region where the surface portion of the external electrode is to be formed in a ceramic green sheet to be the ceramic layer of the substrate body;
前記溝に導電性ペーストを埋め込む工程と、  Embedding a conductive paste in the groove;
前記セラミックグリーンシートの前記表面部形成領域に導電性ペーストを塗布する 工程と、  Applying a conductive paste to the surface portion forming region of the ceramic green sheet;
前記セラミックグリーンシートを、前記導電ペーストが前記表面部形成領域に塗布さ れた面が主面となるように、同種および/または他種のセラミックグリーンシートと積 層して、未焼成のセラミック積層体を形成する工程と、  The ceramic green sheets are stacked with the same type and / or other types of ceramic green sheets so that the surface on which the conductive paste is applied to the surface portion forming region is the main surface, and an unfired ceramic laminate is formed. Forming a body;
前記セラミック積層体の少なくとも一方主面に、前記セラミック積層体を焼成する温 度では焼結しない無機材料粉末を含む収縮抑制用グリーンシートを積層して複合積 層体を形成する工程と、  Forming a composite laminate by laminating at least one main surface of the ceramic laminate a green sheet for shrinkage suppression containing an inorganic material powder that is not sintered at a temperature at which the ceramic laminate is fired;
前記複合積層体を、前記セラミック積層体が焼結する温度で焼成する工程と、 前記複合積層体から、未焼結の収縮抑制用グリーンシートを除去する工程と を具備することを特徴とするセラミック基板の製造方法。  A ceramic comprising: firing the composite laminate at a temperature at which the ceramic laminate is sintered; and removing an unsintered green sheet for suppressing shrinkage from the composite laminate. A method for manufacturing a substrate.
[10] 前記セラミックグリーンシートがキャリアフィルム上に形成されたものであって、少なく とも前記キャリアフィルムは貫通しないように前記溝を形成することを特徴とする請求 項 8または 9記載のセラミック基板の製造方法。 10. The ceramic substrate according to claim 8, wherein the ceramic green sheet is formed on a carrier film, and the groove is formed so that at least the carrier film does not penetrate. Production method.
[11] 前記溝を形成する工程において、レーザ光を照射することにより溝を形成すること を特徴とする請求項 6〜; 10のいずれかに記載のセラミック基板の製造方法。 [11] The method for manufacturing a ceramic substrate according to any one of [6] to [10], wherein in the step of forming the groove, the groove is formed by irradiating a laser beam.
[12] 前記溝に導電性ペーストを埋め込む工程と、前記表面部形成領域に導電性ぺー ストを塗布する工程とが、前記表面部形成領域に導電性ペーストを塗布するとともに 、前記溝に導電性ペーストを埋め込むことにより行われることを特徴とする請求項 6〜 10のいずれかに記載のセラミック基板の製造方法。 [12] The step of embedding a conductive paste in the groove and the step of applying a conductive paste to the surface portion forming region apply the conductive paste to the surface portion forming region. The method for producing a ceramic substrate according to claim 6, wherein the method is performed by embedding a conductive paste in the groove.
PCT/JP2007/071299 2006-11-02 2007-11-01 Ceramic substrate, electronic device and method for producing ceramic substrate WO2008053956A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-299024 2006-11-02
JP2006299024 2006-11-02

Publications (1)

Publication Number Publication Date
WO2008053956A1 true WO2008053956A1 (en) 2008-05-08

Family

ID=39344296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/071299 WO2008053956A1 (en) 2006-11-02 2007-11-01 Ceramic substrate, electronic device and method for producing ceramic substrate

Country Status (1)

Country Link
WO (1) WO2008053956A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009188229A (en) * 2008-02-07 2009-08-20 Koa Corp Laminated ceramic substrate and manufacturing method thereof
WO2012157436A1 (en) * 2011-05-16 2012-11-22 株式会社村田製作所 Ceramic electronic component and manufacturing method thereof
EP2711981A1 (en) * 2011-05-16 2014-03-26 NGK Insulators, Ltd. Circuit substrate for large-capacity module periphery circuit, and large-capacity module including periphery circuit employing circuit substrate
EP3349244A4 (en) * 2016-01-22 2018-09-26 KYOCERA Corporation Electronic component storage package, multi-piece wiring substrate, electronic device, and electronic module
US11345059B2 (en) 2016-06-08 2022-05-31 Corning Incorporated Methods of laser machining wet cellular ceramic extrudate for honeycomb body manufacture
EP3993024A4 (en) * 2019-06-27 2023-08-09 Kyocera Corporation Electronic component housing package, electronic device, and electronic module
EP4394860A1 (en) * 2022-12-28 2024-07-03 INTEL Corporation Architectures and methods for metal lamination on a glass layer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07176864A (en) * 1993-12-21 1995-07-14 Fujitsu Ltd Manufacture of multilayered ceramic board
JP2004104091A (en) * 2002-07-16 2004-04-02 Murata Mfg Co Ltd Laminated ceramic electronic component and its manufacturing method
JP2004165295A (en) * 2002-11-11 2004-06-10 Murata Mfg Co Ltd Ceramic multilayered board and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07176864A (en) * 1993-12-21 1995-07-14 Fujitsu Ltd Manufacture of multilayered ceramic board
JP2004104091A (en) * 2002-07-16 2004-04-02 Murata Mfg Co Ltd Laminated ceramic electronic component and its manufacturing method
JP2004165295A (en) * 2002-11-11 2004-06-10 Murata Mfg Co Ltd Ceramic multilayered board and its manufacturing method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009188229A (en) * 2008-02-07 2009-08-20 Koa Corp Laminated ceramic substrate and manufacturing method thereof
WO2012157436A1 (en) * 2011-05-16 2012-11-22 株式会社村田製作所 Ceramic electronic component and manufacturing method thereof
CN103535121A (en) * 2011-05-16 2014-01-22 株式会社村田制作所 Ceramic electronic component and manufacturing method thereof
EP2711981A1 (en) * 2011-05-16 2014-03-26 NGK Insulators, Ltd. Circuit substrate for large-capacity module periphery circuit, and large-capacity module including periphery circuit employing circuit substrate
EP2711981A4 (en) * 2011-05-16 2014-12-10 Ngk Insulators Ltd Circuit substrate for large-capacity module periphery circuit, and large-capacity module including periphery circuit employing circuit substrate
US8958215B2 (en) 2011-05-16 2015-02-17 Ngk Insulators, Ltd. Circuit board for peripheral circuits of high-capacity modules, and a high-capacity module including a peripheral circuit using the circuit board
JP5708798B2 (en) * 2011-05-16 2015-04-30 株式会社村田製作所 Manufacturing method of ceramic electronic component
US10178774B2 (en) 2011-05-16 2019-01-08 Murata Manufacturing Co., Ltd. Ceramic electronic component and manufacturing method thereof
EP3349244A4 (en) * 2016-01-22 2018-09-26 KYOCERA Corporation Electronic component storage package, multi-piece wiring substrate, electronic device, and electronic module
US11345059B2 (en) 2016-06-08 2022-05-31 Corning Incorporated Methods of laser machining wet cellular ceramic extrudate for honeycomb body manufacture
EP3993024A4 (en) * 2019-06-27 2023-08-09 Kyocera Corporation Electronic component housing package, electronic device, and electronic module
EP4394860A1 (en) * 2022-12-28 2024-07-03 INTEL Corporation Architectures and methods for metal lamination on a glass layer

Similar Documents

Publication Publication Date Title
JP4803185B2 (en) Manufacturing method of ceramic multilayer substrate and aggregate substrate of ceramic multilayer substrate
JP5029699B2 (en) Ceramic composite multilayer substrate, method for manufacturing the same, and electronic component
KR100905423B1 (en) Ceramic electronic component and method for manufacturing the same
WO2008053956A1 (en) Ceramic substrate, electronic device and method for producing ceramic substrate
WO2003072325A1 (en) Ceramic multilayer substrate manufacturing method and unfired composite multilayer body
KR100896609B1 (en) Manufacturing method of multi-layer ceramic substrate
KR101175412B1 (en) Method for the production of laminated ceramic electronic parts
JP3591437B2 (en) Multilayer ceramic substrate, method of manufacturing the same, and electronic device
WO2014174710A1 (en) Multi-layer wiring board, manufacturing method for same, and probe-card-use substrate
KR20090051627A (en) Multilayer ceramic substrate and manufacturing method of the same
JP4565383B2 (en) Multilayer ceramic substrate with cavity and method for manufacturing the same
JP4826253B2 (en) Method for manufacturing ceramic multilayer substrate and ceramic multilayer substrate
JP2006216709A (en) Multilayered wiring board with built-in multilayered electronic component, and multilayered electronic component
KR100956212B1 (en) Manufacturing method of multi-layer substrate
JP2006108483A (en) Multilayered ceramic board having cavity and its manufacturing method
JP4888564B2 (en) Manufacturing method of ceramic multilayer substrate with cavity
JP4038616B2 (en) Manufacturing method of multilayer ceramic substrate
JP4089356B2 (en) Manufacturing method of multilayer ceramic substrate
JP2004165343A (en) Laminated ceramic electronic component and its manufacturing method
JP2010153554A (en) Ceramic substrate, and method of manufacturing the same
JP4311090B2 (en) Multilayer ceramic substrate and manufacturing method thereof
KR101046142B1 (en) Manufacturing method of non-contraction ceramic substrate
KR20090090718A (en) Non-shirinkage ceramic substrate and manufacturing method thereof
KR100818461B1 (en) Multi-layer ceramic substrate and method of manufacturing the same
KR100872297B1 (en) Manufacturing method of multi-layer ceramic substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07831033

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07831033

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP